Science.gov

Sample records for landfill leachate treatment

  1. Sustainable treatment of landfill leachate

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd. Suffian; Aziz, Hamidi Abdul; Hung, Yung-Tse

    2015-06-01

    Landfill leachate is a complex liquid that contains excessive concentrations of biodegradable and non-biodegradable products including organic matter, phenols, ammonia nitrogen, phosphate, heavy metals, and sulfide. If not properly treated and safely disposed, landfill leachate could be an impending source to surface and ground water contamination as it may percolate throughout soils and subsoils, causing adverse impacts to receiving waters. Lately, various types of treatment methods have been proposed to alleviate the risks of untreated leachate. However, some of the available techniques remain complicated, expensive and generally require definite adaptation during process. In this article, a review of literature reported from 2008 to 2012 on sustainable landfill leachate treatment technologies is discussed which includes biological and physical-chemical techniques, respectively.

  2. Electrochemical oxidation for landfill leachate treatment

    SciTech Connect

    Deng, Yang Englehardt, James D.

    2007-07-01

    This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.

  3. Occurrence and treatment efficiency of pharmaceuticals in landfill leachates.

    PubMed

    Lu, Mu-Chen; Chen, Yao Yin; Chiou, Mei-Rung; Chen, Men Yu; Fan, Huan-Jung

    2016-09-01

    Landfill leachates might contain pharmaceuticals due to the expired or unwanted drugs were disposed of at landfills. These pharmaceuticals might pose a threat to soil and groundwater. Therefore, this study investigated the distributions of pharmaceutical residues and toxicities among four typical municipal landfill leachates. Twenty six pharmaceuticals were investigated in this study and fifteen of them were found in all samples from four leachates. In addition, ampicillin and methylenedioxymethamphetamine (MDMA) were detected in urban landfills (A1 and A2) but were not in rural and suburb landfills (B and C). On the other hand, some compounds were much more abundant in suburb/rural landfill leachates than those in urban landfills including diclofenac, gemfibrozil and amphetamine. Landfill leachate treatment plants could not remove most of the pharmaceuticals effectively. Landfill leachates without proper treatments would have significant adverse health impacts on human and aquatic life.

  4. Treatment of landfill leachates by nanofiltration.

    PubMed

    Chaudhari, Latesh B; Murthy, Z V P

    2010-05-01

    Landfill leachate contains high concentrations of organic matter, color, heavy metals and toxic substances. This study presents the feasibility of a commercial nanofiltration membrane (NF-300) in the removal of pollutants from a landfill leachate generated from the Treatment Stabilization and Disposal Facility in Gujarat state of India. Two different leachate samples (Leachates A and B) were collected from the downstream side of closed landfill cells A and B. The average quality of the leachate was 67 719 mg/L COD, 217 mg/L ammonical nitrogen, 22 418 mg/L BOD, 3847 mg/L chlorides and 909 mg/L sulphate. The operating variables studied were applied pressure (4-20 atm), feed flowrate (5-15L/min) and pH (2, 4, 5.5 and 6.7). It was observed that the solute rejection (R(O)) increased with increase in feed pressure and decreased with increase in feed concentration at constant feed flowrate. In the present study, the rejection of cations followed the sequence: R(O) (Cr(3+))>R(O) (Ni(2+))>R(O) (Zn(2+))>R(O) (Cu(2+))>R(O) (Cd(2+)) for leachates A and B. The order of solute rejection sequence is inversely proportional to the diffusion coefficients. The rejection of sulphate ions by the NF-300 membrane was 83 and 85%, while the rejection of chlorides was 62 and 65% for leachates A and B, respectively. The NF-300 membrane was characterized by using the combined-film theory-Spiegler-Kedem (CFSK) model based on irreversible thermodynamics and the ion transport model based on the extended Nernst-Planck equation. The membrane transport parameters were estimated using the Levenberg-Marquadt method. The estimated parameters were used to predict the membrane performance and the predicted values are in good agreement with the experimental results. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Characterization and electrochemical treatment of landfill leachate.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Ruk, Damir; Nad, Karlo

    2012-01-01

    A combined treatment approach using advanced oxidation, electrochemical methods and microwaves was developed and applied for the treatment of landfill leachate taken from Piskornica (Koprivnica, Croatia) sanitary landfill. Due to the complex nature of the effluent and extremely low bio-degradability (BOD(5)/COD ratio = 0.01) the purification of the leachate started with pre-treatment with ozone followed by simultaneous ozonation and electrocoagulation/electrooxidation using the set of iron and aluminum electrodes, and finally, the degradation of organic residue and ammonia with microwaves. Applied treatment approach resulted in clear, colorless and odorless effluent with the values of all measured parameters significantly lower compared to the upper permissible limit for discharge into the environment. The removal percentages of the parameters: color, turbidity, suspended solids, ammonia, COD and iron following the combined treatment were 98.43%, 99.48%, 98.96%, 98.80%, 94.17% and 98.56%, respectively.

  6. Fungi immobilization for landfill leachate treatment.

    PubMed

    Saetang, Jenjira; Babel, Sandhya

    2010-01-01

    This paper investigated treatment of landfill leachate collected from Nonthaburi landfill site, Thailand, by using immobilized white rot fungi, namely, Trametes versicolor BCC 8725 and Flavodon flavus BCC 17421. Effects of pH and co-substrates were investigated at different contact times. Three types of co-substrates as carbon source used in this study are glucose, corn starch and cassava. Treatment efficiency was evaluated based on color, BOD, and COD removal. Initial BOD and COD were found to be 5,600 and 34,560 mg/L, respectively. The optimum pH was found to be 4, the optimum co-substrate concentration (glucose, corn starch and cassava) was 3 g/L and the optimum contact time was 10 days for both types of fungi. Addition of glucose, corn starch and cassava as co-substrate at optimum conditions could remove 78, 74, and 66% of color, respectively for T. versicolor and 73, 68, and 60%, respectively, for F. flavus. Moreover, for T. versicolor, BOD and COD reduction of 69 and 57%, respectively, could be achieved at optimum conditions when using glucose as a co-substrate. For F. flavus, BOD and COD reduction of 66 and 52%, respectively were obtained when using glucose as a co-substrate. White rot fungi can be considered potentially useful in the treatment of landfill leachate as they can help in removing color, BOD and COD due to their biodegradative abilities.

  7. Low-cost treatment of landfill leachate using peat.

    PubMed

    Heavey, M

    2003-01-01

    The EU Landfill Directive obliges member states to collect and treat leachate from landfill sites. In regions of high population density, this is commonly achieved through discharge of the leachate to the municipal sewerage system. In Ireland, rural landfills can be a long distance from a suitable sewerage system, resulting in high transportation costs. On-site treatment systems, when used elsewhere, are mainly aerobic treatment systems, which are costly to construct and operate. There is a particular need for low-cost, low-maintenance leachate treatment systems for small low-income landfills, and for closed landfills, where long-term running costs of aerobic systems may be unsustainable. In 1989, this research work was initiated to investigate the use of local peat for the treatment of leachate from a small rural landfill site. In 1997, following the award of grant-aid under the EU LIFE Programme, a full-scale leachate treatment plant was constructed, using local un-drained peat as the treatment medium. When the LIFE Project ended in February 2001, leachate treatment research continued at the site using a pre-treated peat as the treatment medium. The treatment levels achieved using both types of peat are discussed in this paper. It is concluded that landfill leachate may be successfully treated using a low-cost peat bed to achieve almost 100% removal of both BOD and ammonia.

  8. Fungal and enzymatic treatment of mature municipal landfill leachate.

    PubMed

    Kalčíková, Gabriela; Babič, Janja; Pavko, Aleksander; Gotvajn, Andreja Žgajnar

    2014-04-01

    The aim of our study was to evaluate biotreatability of mature municipal landfill leachate by using white rot fungus and its extracellular enzymes. Leachates were collected in one active and one closed regional municipal landfill. Both chosen landfills were operating for many years and the leachates generated there were polluted by organic and inorganic compounds. The white rot fungus Dichomitus squalens was able to grow in the mature leachate from the closed landfill and as it utilizes present organic matter as a source of carbon, the results were showing 60% of DOC and COD removal and decreased toxicity to the bacterium Aliivibrio fischeri. On the other hand, growth of the fungus was inhibited in the presence of the leachate from the active landfill. However, when the leachate was introduced to a crude enzyme filtrate containing extracellular ligninolytic enzymes, removal levels of COD and DOC reached 61% and 44%, respectively. Furthermore, the treatment led to detoxification of the leachate to the bacterium Aliivibrio fischeri and to reduction of toxicity (42%) to the plant Sinapis alba. Fungal and enzymatic treatment seems to be a promising biological approach for treatment of mature landfill leachates and their application should be further investigated.

  9. Characterization of a joint recirculation of concentrated leachate and leachate to landfills with a microaerobic bioreactor for leachate treatment.

    PubMed

    He, Ruo; Wei, Xiao-Meng; Tian, Bao-Hu; Su, Yao; Lu, Yu-Lan

    2015-12-01

    With comparison of a traditional landfill, a joint recirculation of concentrated leachate and leachate to landfills with or without a microaerobic reactor for leachate treatment was investigated in this study. The results showed that the joint recirculation of concentrated leachate and leachate with a microaerobic reactor for leachate treatment could not only utilize the microaerobic reactor to buffer the fluctuation of quality and quantity of leachate during landfill stabilization, but also reduce the inhibitory effect of acidic pH and high concentrations of ammonium in recycled liquid on microorganisms and accelerate the degradation of landfilled waste. After 390 days of operation, the discharge of COD and total nitrogen (TN) from the landfill with leachate pretreatment by a microaerobic reactor was 7.4 and 0.9 g, respectively, which accounted for 0.7% and 2.6% of COD, 1.9% and 7.5% of the TN discharge from the landfills without recirculation and directly recirculated with leachate and concentrated leachate, respectively. The degradation of the organic matter and biodegradable matter (BDM) in the landfill reactors could fit well with the first-order kinetics. The highest degradation of the organic matter and BDM was observed in the joint recirculation system with a microaerobic reactor for leachate treatment with the degradation constant of the first-order kinetics of 0.001 and 0.002. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Application of iron nanaoparticles in landfill leachate treatment - case study: Hamadan landfill leachate

    PubMed Central

    2012-01-01

    This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361

  11. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    PubMed Central

    Kalka, J.

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms. PMID:22623882

  12. Landfill leachate toxicity removal in combined treatment with municipal wastewater.

    PubMed

    Kalka, J

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5-10 L/d; HRT-1.4-1.6 d; MLSS 1.6-2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms.

  13. Saline landfill leachate disposal in facultative lagoons for wastewater treatment.

    PubMed

    Orta de Velasquez, M T; Monje-Ramirez, I; Yañez Noguez, I

    2012-01-01

    This study was carried out to determine the effect of disposing of saline landfill leachates in a Facultative Lagoon Wastewater Treatment Plant (FLWTP). The FLWTP is near a landfill and presents two characteristics: a wastewater influent with low organic matter, and high lagoon salinity due to the soil characteristics. These characteristics made the FLWTP a viable candidate to evaluate the feasibility of adding landfill leachates to the wastewater influent. Different mixtures of leachate with raw wastewater using volumetric ratios of 4%, 6%, and 10% (v/v) were evaluated in facultative lagoon reactors (FLRs). A 10% concentration of leachates in raw wastewater increased BOD5 and COD in the influent from 45 to 110 mg L(-1) and from 219 to 711 mg L(-1), respectively. It was found that the increase in salinity given by the raw wastewater and leachate mixture did not inhibit algae diversity. The types of algae present were Microcystis sp., Merismopedia sp., Euglena sp., Scenedesmus sp., Chlorella, Diatomea and Anacystis sp. However, decreased algae densities were observed, as measured by the decrease in chlorophyll concentration. The results showed that a 100% leachate concentration combined with wastewater did not upset biological treatment in the FLRs. Mean removal efficiencies for BOD5 and COD were 75% and 35%, respectively, giving a final BOD5 lower than 25 mg L(-1). There was also a significant decrease in the leachate heavy metal content when diluted with raw wastewater as result of natural precipitation.

  14. Treatment of Landfill Leachate at Army Facilities.

    DTIC Science & Technology

    1983-08-01

    e.g., training residues; propellant, explosive , or pyrotechnic residues; and abandoned transformers. Such materials may be mixed with the general...Schanche, L. J. Benson, M. J. Staub , and M. A. Kamiya, Charateristics, Control, and Treatment of Leachate at Military Installations, Interim Report N-97

  15. In situ treatment of landfill leachate using bioventing

    SciTech Connect

    Barr, K.D.; O`Flanagan, B.D.; Newman, W.A.; Julik, J.K.; Wetzstein, D.W.

    1997-01-01

    The effectiveness of in situ, aerobic biodegradation of landfill leachate has been tested by applying bioventing at a closed municipal solid waste landfill in Minnesota. A pilot test was conducted with air injection into a field of six bioventing wells for a six-month period, creating an aerobic biotreatment zone for leachate as it migrates to groundwater. Results show that an effective aerobic treatment zone can be established and maintained with organic compounds actively biodegraded, and dissolved inorganic compounds, such as metals, oxidized and immobilized. Groundwater contaminants also showed decreasing concentrations during the pilot test. This approach may, ultimately, obliterate the need for groundwater removal and treatment.

  16. Municipal landfill leachate management

    SciTech Connect

    Kusterer, T.; Willson, R.; Bruce, S.C.; Tissue, E. Lou, P.J.

    1998-12-31

    From 1995 to 1997, the Montgomery County Leachate Pretreatment Facility (MCLPF) has successfully pretreated in excess of 18,000,000 gallons of leachate generated by the county`s municipal solid waste landfill. The collection system directs leachate from the original landfill. The collection system directs leachate from the original landfill, the new lined section, and the ash cell to the leachate pump station. The leachate, prior to being pumped to the leachate pretreatment system, is equalized in two storage lagoons with a combined capacity of more than 5,000,000 gallons. The innovative leachate treatment system, incorporating a biological reactor system equipped with a submerged fixed-film reactor using a patented Matrix Biological Film (MBF) media, continues to provide excellent pretreatment results for the leachate generated at the Oaks Landfill in Montgomery County, Maryland. In 1995 and 1996, the system responded to the substantial challenges imposed by the changing characteristics of the material being landfilled and by the significant amounts of incinerator ash, received in 1995 from the county`s resource recovery facility (RRF), which influenced the influent leachate characteristics.

  17. In situ microbial treatment of landfill leachate using aerated lagoons.

    PubMed

    Mehmood, M K; Adetutu, E; Nedwell, D B; Ball, A S

    2009-05-01

    The aim of this study was to assess the efficiency of leachate treatment by microbial oxidation in four connected on-site aerated lagoons at a landfill site. The landfill site was found to be in an ageing methanogenic state, producing leachate with relatively low COD (mean value 1740 mg l(-1)) and relatively high ammonium concentrations (mean value 1241 mg l(-1)). Removal of COD averaged 75%, with retention times varying from 11 to 254 days. Overall 80% of the N load was removed within the plant, some by volatilisation of ammonium. Microbial community profiling of the water from each lagoon showed a divergent community profile, presumably a reflection of the nutrient status in each lagoon. In municipal solid waste landfills under similar conditions, leachate treatment through a facultative aerobic system in which sequential aerobic and anaerobic microbial oxidations occurred can readily be achieved using a simple two-lagoon system, suggesting this technology can be economic to install and simple to run.

  18. Attenuation of municipal landfill leachate through land treatment.

    PubMed

    Pazoki, Maryam; Abdoli, Mohammad Ali; Karbassi, Abdolreza; Mehrdadi, Naser; Yaghmaeian, Kamyar

    2014-01-07

    The treatment of municipal landfill's leachate is considered as one of the most significant environmental issues. In this study a laboratory experiment was conducted through land treatment, achieving an efficient and economical method by using Vetiver plant. Moreover, the effects of land treatment of leachate of municipal landfills on the natural reduction of organic and inorganic contaminants in the leachate after the pre-treatment in the Aradkouh disposal center are invested. Three pilots including the under-investigation region's soil planted by Vetiver plant, the region's intact soil pilot and the artificial composition of the region's soil including the natural region's soil, sand, and rock stone are used. The leachate, having passed its initial treatment, passed through the soil and to the pilot. It was collected in the end of the pilots and its organic and inorganic contaminants were measured. However, the land treatment of leachate was conducted in a slow rate at various speeds. According to the results, in order to remove COD, BOD5, TDS, TSS, TOC the best result was obtained in the region's soil planted with Vetiver plant and at the speed of 0.2 ml per minute which resulted 99.1%, 99.7%, 52.4%, 98.8%, 94.9% removal efficiencies, respectively. It also can be concluded that the higher the organic rate load is, the lower the efficiency of the removal would be. In addition, EC & pH were measured and the best result was obtained in the region's soil planted with Vetiver plant and at the speed of 0.2 ml/min.

  19. Fenton treatment of landfill leachate under different COD loading factors.

    PubMed

    Singh, Shrawan K; Tang, Walter Z; Tachiev, Georgio

    2013-10-01

    The application of Fenton treatment technology for treatment of landfill leachate greatly depends on the optimum Fenton operating conditions for a specific leachate. Determining optimum Fenton conditions requires multiple experiments using variable reaction parameters (pH, temperature, and H2O2 and Fe(2+) doses) and previous researches show a wide range of optimal operating conditions. In this study, the applicability of the dimensionless loading factor (LCOD), which is defined as the initial COD (COD0) of leachate with respect to available O2 for oxidation, was examined to derive optimum Fenton oxidant dose using reduced set of experiments. The Fenton experiments were conducted using leachates with three different COD0 concentrations, 1092, 546, and 273mgL(-1), LCOD in the range of 0.25-1.0, and H2O2/Fe(2+) 1.8 (w/w). The experimental data were analyzed to determine the correlation between the LCOD factor and selected feasibility parameters, amongst which were: (i) the COD removal kinetics, (ii) the total COD removal, (iii) the usability of H2O2 with respect to COD removal, (iv) leachate biodegradability, and (v) treatment cost incurred by chemical usage. The experimental COD removal with respect to the amount of O2 supplied by H2O2 was compared with respect to the optimum COD removal efficiency by the equation: η(FP(optimum)=0.733L(COD)-0.182 as developed by Singh and Tang (2013) and a LCOD of 0.75 was determined to be the optimum L(COD) for leachate treatment.

  20. Greenhouse gas emissions from landfill leachate treatment plants: a comparison of young and aged landfill.

    PubMed

    Wang, Xiaojun; Jia, Mingsheng; Chen, Xiaohai; Xu, Ying; Lin, Xiangyu; Kao, Chih Ming; Chen, Shaohua

    2014-07-01

    With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH4 emissions were observed from the fresh leachate storage pond, with the fluxes values (2219-26,489 mg Cm(-2)h(-1)) extremely higher than those of N2O (0.028-0.41 mg Nm(-2)h(-1)). In contrast, the emission values for both CH4 and N2O were low for the aged leachate tank. N2O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8-12% of the removal of N-species gases. Per capita, the N2O emission based on both leachate treatment systems was estimated to be 7.99 g N2O-N capita(-1)yr(-1). An increase of 80% in N2O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO2, with a small portion as CH4 (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO(2) eq yr(-1), respectively, for a total that could be transformed to 9.09 kg CO(2) eq capita(-1)yr(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Attenuation of municipal landfill leachate through land treatment

    PubMed Central

    2014-01-01

    The treatment of municipal landfill’s leachate is considered as one of the most significant environmental issues. In this study a laboratory experiment was conducted through land treatment, achieving an efficient and economical method by using Vetiver plant. Moreover, the effects of land treatment of leachate of municipal landfills on the natural reduction of organic and inorganic contaminants in the leachate after the pre-treatment in the Aradkouh disposal center are invested. Three pilots including the under-investigation region’s soil planted by Vetiver plant, the region’s intact soil pilot and the artificial composition of the region’s soil including the natural region’s soil, sand, and rock stone are used. The leachate, having passed its initial treatment, passed through the soil and to the pilot. It was collected in the end of the pilots and its organic and inorganic contaminants were measured. However, the land treatment of leachate was conducted in a slow rate at various speeds. According to the results, in order to remove COD, BOD5, TDS, TSS, TOC the best result was obtained in the region’s soil planted with Vetiver plant and at the speed of 0.2 ml per minute which resulted 99.1%, 99.7%, 52.4%, 98.8%, 94.9% removal efficiencies, respectively. It also can be concluded that the higher the organic rate load is, the lower the efficiency of the removal would be. In addition, EC & pH were measured and the best result was obtained in the region’s soil planted with Vetiver plant and at the speed of 0.2 ml/min. PMID:24397862

  2. Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations.

    PubMed

    Brennan, R B; Clifford, E; Devroedt, C; Morrison, L; Healy, M G

    2017-03-01

    Landfill leachate is the result of water percolating through waste deposits that have undergone aerobic and anaerobic microbial decomposition. In recent years, increasingly stringent wastewater discharge requirements have raised questions regarding the efficacy of co-treatment of leachate in municipal wastewater treatment plants (WWTPs). This study aimed to (1) examine the co-treatment of leachate with a 5-day biochemical oxygen demand (BOD5): chemical oxygen demand (COD) ratio less than or slightly greater than 0.26 (intermediate age leachate) in municipal WWTPs (2) quantify the maximum hydraulic and mass (expressed as mass nitrogen or COD) loading of landfill leachate (as a percentage of the total influent loading rate) above which the performance of a WWTP may be inhibited, and (3) quantify the impact of a range of hydraulic loading rates (HLRs) of young and intermediate age leachate, loaded on a volumetric basis at 0 (study control), 2, 4 and 10% (volume landfill leachate influent as a percentage of influent municipal wastewater), on the effluent ammonium concentrations. The leachate loading regimes examined were found to be appropriate for effective treatment of intermediate age landfill leachate in the WWTPs examined, but co-treatment may not be suitable in WWTPs with low ammonium-nitrogen (NH4-N) and total nitrogen (TN) emission limit values (ELVs). In addition, intermediate leachate, loaded at volumetric rates of up to 4% or 50% of total WWTP NH4-N loading, did not significantly inhibit the nitrification processes, while young leachate, loaded at volumetric rates greater of than 2% (equivalent to 90% of total WWTP NH4-N loading), resulted in a significant decrease in nitrification. The results show that current hydraulic loading-based acceptance criteria recommendations should be considered in the context of leachate NH4-N composition. The results also indicate that co-treatment of old leachate in municipal WWTPs may represent the most sustainable solution

  3. Characteristics and biological treatment of leachates from a domestic landfill

    USDA-ARS?s Scientific Manuscript database

    Waste material from urban areas is a major environmental concern and landfill application is a frequent method for waste disposal. The leachate from landfills can, however, negatively affect the surrounding environment. A bioreactor cascade containing submerged biofilms was used to treat newly forme...

  4. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    SciTech Connect

    Wang, Xiaojun; Jia, Mingsheng; Chen, Xiaohai; Xu, Ying; Lin, Xiangyu; Kao, Chih Ming; Chen, Shaohua

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  5. [Influence of biological activated carbon dosage on landfill leachate treatment].

    PubMed

    Cui, Yan-Rui; Guo, Yan; Wu, Qing

    2014-08-01

    Effects of biological activated carbon (BAC) dosage on COD removal in landfill leachate treatment were compared. The COD removal efficiency of reactors with 0, 100 and 300 g activated carbon dosage per litre activated sludge was 12.9%, 19.6% and 27.7%, respectively. The results indicated that BAC improved the refractory organic matter removal efficiency and there was a positive correlation between COD removal efficiency and BAC dosage. The output of carbon dioxide after 8h of aeration in reactors was 109, 193 and 306 mg corresponding to the activated carbon dosages mentioned above, which indicated the amount of biodegradation and BAC dosage also had a positive correlation. The combination of adsorption and bioregeneration of BAC resulted in the positive correlation betweem organic matter removal efficiency and BAC dosage, and bioregeneration was the root cause for the microbial decomposition of refractory organics.

  6. Aerobic biological treatment of leachates from municipal solid waste landfill.

    PubMed

    Andrés, P; Gutierrez, F; Arrabal, C; Cortijo, M

    2004-01-01

    The main objective of the study was to improve chemical oxygen demand (COD) elimination by secondary biological treatment from leachate of municipal solid waste landfill. This effluent was a supernatant liquid obtained after physicochemical processes and coagulating with Al3+ followed by ammoniacal stripping. First, respirometric assays were carried out to determine the substrate biodegradability. Specific sludge respiration rate (R(s)) vs. concentration of substrate (S), showed an increasing specific rate of assimilation of substrate (Rs), which reached the highest value, when the substrate concentration (COD) was between 75 and 200 mg O2 L(-1). Second, continuous experiments were made in an aerobic digester to test the previous respirometric data and the results showed removal efficiency of COD between 83 and 69%, and a substrate assimilation rate between 1.3 and 3.1 g COD g(-1) volatile suspended solids d(-1).

  7. Evaluation of phytotoxicity of municipal landfill leachate before and after biological treatment.

    PubMed

    Klauck, C R; Rodrigues, M A S; Silva, L B

    2015-05-01

    In the present study, leachate toxicity of a municipal solid waste landfill located in the Sinos River Valley region (southern Brazil) was evaluated using plant bioassays. Leachate toxicity was assessed by analysis of seed germination and root elongation of lettuce (Lactuca sativa L.) and rocket plant Eruca sativa Mill.) and root elongation of onions Allium cepa L.). Bioassays were performed by exposing the seeds of L. sativa and E. sativa and the roots of A. cepa to raw leachate, treated leachate (biological treatment) and negative control (tap water). The levels of metals detected in both samples of leachate were low, and raw leachate showed high values for ammoniacal nitrogen and total Kjeldahl nitrogen. There is a reduction in the values of several physicochemical parameters, which demonstrates the efficiency of the treatment. Both L. sativa and A. cepa showed a phytotoxic response to landfill leachate, showing reduced root elongation. However, the responses of these two plant species were different. Root elongation was significantly lower in A. cepa exposed to treated leachate, when compared to negative control, but did not show any difference when compared to raw leachate. In L. sativa, seeds exposed to the raw leachate showed significant reduction in root elongation, when compared to treated leachate and negative control. Seed germination showed no difference across the treatments. The results of the study show that plant species respond differently and that municipal solid waste landfill leachate show phytotoxicity, even after biological treatment.

  8. Optimization of electrocoagulation process for the treatment of landfill leachate

    NASA Astrophysics Data System (ADS)

    Huda, N.; Raman, A. A.; Ramesh, S.

    2017-06-01

    The main problem of landfill leachate is its diverse composition comprising of persistent organic pollutants (POPs) which must be removed before being discharge into the environment. In this study, the treatment of leachate using electrocoagulation (EC) was investigated. Iron was used as both the anode and cathode. Response surface methodology was used for experimental design and to study the effects of operational parameters. Central Composite Design was used to study the effects of initial pH, inter-electrode distance, and electrolyte concentration on color, and COD removals. The process could remove up to 84 % color and 49.5 % COD. The experimental data was fitted onto second order polynomial equations. All three factors were found to be significantly affect the color removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was conducted to obtain the optimum process performance. Further work will be conducted towards integrating EC with other wastewater treatment processes such as electro-Fenton.

  9. Transformation of metals speciation in a combined landfill leachate treatment.

    PubMed

    Wu, Yanyu; Zhou, Shaoqi; Chen, Dongyu; Zhao, Rong; Li, Huosheng; Lin, Yiming

    2011-04-01

    Landfill leachate was treated by a combined sequential batch reactor (SBR), coagulation, Fenton oxidation and biological aerated filter (BAF) technology. The metals in treatment process were fractionated into three fractions: particulate and colloidal (size charge filtration), free ion/labile (cation exchange) and non-labile fractions. Fifty percent to 66% Cu, Ni, Zn, Mn, Pb and Cd were present as particulate/colloidal matter in raw leachate, whereas Cr was present 94.9% as non-labile complexes. The free ion/labile fractions of Ni, Zn, Mg, Mn, Pb and Cd increased significantly after treatment except Cr. Fifty-nine percent to 100% of Al was present mainly as particulate/colloidal matter >0.45 μm and the remaining portions were predicted as non-labile complexes except in coagulation effluent. The speciation of Fe varied significantly in various individual processes. Visual MINTEQ simulation showed that 95-100% colloidal species for Cu, Cd and Pb were present as metal-humic complexes even with the lower dissolved organic carbon. Optimum agreements for the free ion/labile species were within acidic solution, whereas under-estimated in alkaline effluents. Overestimated particulate/colloidal fraction consisted with the hypothesis that a portion of colloids in fraction <0.45 μm were considered as dissolved.

  10. Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope.

    PubMed

    Mandal, Pubali; Dubey, Brajesh K; Gupta, Ashok K

    2017-08-30

    Various studies on landfill leachate treatment by electrochemical oxidation have indicated that this process can effectively reduce two major pollutants present in landfill leachate; organic matter and ammonium nitrogen. In addition, the process is able to enhance the biodegradability index (BOD/COD) of landfill leachate, which make mature or stabilized landfill leachate suitable for biological treatment. The elevated concentration of ammonium nitrogen especially observed in bioreactor landfill leachate can also be reduced by electrochemical oxidation. The pollutant removal efficiency of the system depends upon the mechanism of oxidation (direct or indirect oxidation) which depends upon the property of anode material. Applied current density, pH, type and concentration of electrolyte, inter-electrode gap, mass transfer mode, total anode area to volume of effluent to be treated ratio, temperature, flow rate or flow velocity, reactor geometry, cathode material and lamp power during photoelectrochemical oxidation may also influence the system performance. In this review paper, past and present scenarios of landfill leachate treatment efficiencies and costs of various lab scale, pilot scale electrochemical oxidation studies asa standalone system or integrated with biological and physicochemical processes have been reviewed with the conclusion that electrochemical oxidation can be employed asa complementary treatment system with biological process for conventional landfill leachate treatment as well asa standalone system for ammonium nitrogen removal from bioreactor landfill leachate. Furthermore, present drawbacks of electrochemical oxidation process asa landfill leachate treatment system and relevance of incorporating life cycle assessment into the decision-making process besides process efficiency and cost, have been discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Utilization of natural zeolite and perlite as landfill liners for in situ leachate treatment in landfills.

    PubMed

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-05-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO(3)-N), ammonium-nitrogen (NH(4)-N), phosphate (PO(4)), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO(3), NH(4), PO(4), COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO(3), PO(4) and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH(4) (1.5%).

  12. Utilization of Natural Zeolite and Perlite as Landfill Liners for in Situ Leachate Treatment in Landfills

    PubMed Central

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-01-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO3-N), ammonium-nitrogen (NH4-N), phosphate (PO4), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO3, NH4, PO4, COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO3, PO4 and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH4 (1.5%). PMID:22754458

  13. Landfill leachate treatment by solar-driven AOPs

    SciTech Connect

    Rocha, Elisangela M.R.; Vilar, Vitor J.P.; Boaventura, Rui A.R.; Fonseca, Amelia; Saraiva, Isabel

    2011-01-15

    Sanitary landfill leachate resulting from the rainwater percolation through the landfill layers and waste material decomposition is a complex mixture of high-strength organic and inorganic compounds which constitutes serious environmental problems. In this study, different heterogeneous (TiO{sub 2}/UV, TiO{sub 2}/H{sub 2}O{sub 2}/UV) and homogenous (H{sub 2}O{sub 2}/UV, Fe{sup 2+}/H{sub 2}O{sub 2}/UV) photocatalytic processes were investigated as an alternative for the treatment of a mature landfill leachate. The addition of H{sub 2}O{sub 2} to TiO{sub 2}/UV system increased the reduction of the aromatic compounds from 15% to 61%, although mineralization was almost the same. The DOC and aromatic content abatement is similar for the H{sub 2}O{sub 2}/UV and TiO{sub 2}/H{sub 2}O{sub 2}/UV processes, although the H{sub 2}O{sub 2} consumption is three times higher in the H{sub 2}O{sub 2}/UV system. The low efficiency of TiO{sub 2}/H{sub 2}O{sub 2}/UV system is presumably due to the alkaline leachate solution, for which the H{sub 2}O{sub 2} becomes highly unstable and self-decomposition of H{sub 2}O{sub 2} occurs. The efficiency of the TiO{sub 2}/H{sub 2}O{sub 2}/UV system increased 10 times after a preliminary pH correction to 4. The photo-Fenton process is much more efficient than heterogeneous (TiO{sub 2}, TiO{sub 2}/H{sub 2}O{sub 2}/UV) or homogeneous (H{sub 2}O{sub 2}/UV) photocatalysis, showing an initial reaction rate more than 20 times higher, and leading to almost complete mineralization of the wastewater. However, when compared with TiO{sub 2}/H{sub 2}O{sub 2}/UV with acidification, the photo-Fenton reaction is only two times faster. The optimal initial iron dose for the photo-Fenton treatment of the leachate is 60 mg Fe{sup 2+} L{sup -1}, which is in agreement with path length of 5 cm in the photoreactor. The kinetic behaviour of the process (60 mg Fe{sup 2+} L{sup -1}) comprises a slow initial reaction, followed by a first-order kinetics (k = 0.020 LkJ{sub UV

  14. Characterisation of ultraviolet-absorbing recalcitrant organics in landfill leachate for treatment process optimisation.

    PubMed

    Keen, Olya S

    2017-03-01

    Organics in leachate from municipal solid waste landfills are notoriously difficult to treat by biological processes. These organics have high ultraviolet absorbance and can interfere with the ultraviolet disinfection process at the wastewater treatment plant that receives leachate if the leachate flow contribution is large enough. With more wastewater treatment plants switching to ultraviolet disinfection, landfills face increased pressure to treat leachate further. This study used size exclusion chromatography, fluorescence spectroscopy and ultraviolet/Vis spectrophotometry to characterise the bulk organic matter in raw landfill leachate and the biorecalcitrant organic matter in biologically treated leachate from the same site. The results indicate that biorecalcitrant organics have the polyphenolic absorbance peak at 280 nm, fluorescence peak at 280 nm excitation and 315 nm emission, and molecular size range of 1000-7000 Da, all of which are consistent with lignin. The lignin-like nature of biorecalcitrant leachate organics is supported by the fact that 30%-50% of municipal solid waste consists of plant debris and paper products. These findings shed light on the nature of biorecalcitrant organics in leachate and will be useful for the design of leachate treatment processes and further research on leachate treatment methods.

  15. Method for treating landfill leachate

    SciTech Connect

    Singhvi, S.S.

    1993-08-24

    A method is described for removing contaminants from leachate of a landfill which produces landfill gas, comprising the steps of: (a) combusting the landfill gas to produce combustion products; (b) heating the leachate with said combustion products; (c) removing contaminants from the leachate by gas stripping; and (d) reducing the pH of the leachate with said combustion products.

  16. Treatment of landfill leachate using ASBR combined with zeolite adsorption technology.

    PubMed

    Lim, Chi Kim; Seow, Ta Wee; Neoh, Chin Hong; Md Nor, Muhamad Hanif; Ibrahim, Zaharah; Ware, Ismail; Mat Sarip, Siti Hajar

    2016-12-01

    Sanitary landfilling is the most common way to dispose solid urban waste; however, improper landfill management may pose serious environmental threats through discharge of high strength polluted wastewater also known as leachate. The treatment of landfill leachate to fully reduce the negative impact on the environment, is nowadays a challenge. In this study, an aerobic sequencing batch reactor (ASBR) was proposed for the treatment of locally obtained real landfill leachate with initial ammoniacal nitrogen and chemical oxygen demand (COD) concentration of 1800 and 3200 mg/L, respectively. ASBR could remove 65 % of ammoniacal nitrogen and 30 % of COD during seven days of treatment time. Thereafter, an effective adsorbent, i.e., zeolite was used as a secondary treatment step for polishing the ammoniacal nitrogen and COD content that is present in leachate. The results obtained are promising where the adsorption of leachate by zeolite further enhanced the removal of ammoniacal nitrogen and COD up to 96 and 43 %, respectively. Furthermore, this combined biological-physical treatment system was able to remove heavy metals, i.e. aluminium, vanadium, chromium, magnesium, cuprum and plumbum significantly. These results demonstrate that combined ASBR and zeolite adsorption is a feasible technique for the treatment of landfill leachate, even considering this effluent's high resistance to treatment.

  17. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes.

    PubMed

    Hermosilla, Daphne; Cortijo, Manuel; Huang, Chin Pao

    2009-05-15

    Landfill, a matured and economically appealing technology, is the ultimate approach for the management of municipal solid wastes. However, the inevitable generation of leachate from landfill requires further treatment. Among the various leachate treatment technologies available, advanced oxidation processes (AOPs) are among powerful methods to deal with the refractory organic constituents, and the Fenton reagent has evolved as one promising AOPs for the treatment of leachates. Particularly, the combination of UV-radiation with Fenton's reagent has been reported to be a method that allows both the photo-regeneration of Fe(2+) and photo-decarboxylation of ferric carboxylates. In this study, Fenton and photo-Fenton processes were fine tuned for the treatment of leachates from the Colmenar Viejo (Madrid, Spain) Landfill. Results showed that it is possible to define a set of conditions under which the same COD and TOC removals (approximately 70%) could be achieved with both the conventional and photo-Fenton processes. But Fenton process generated an important quantity of iron sludge, which will require further disposal, when performed under optimal COD removal conditions. Furthermore conventional Fenton process was able to achieve slightly over an 80% COD removal from a "young" leachate, while for "old" and "mixed" leachates was close to a 70%. The main advantage showed by the photo-assisted Fenton treatment of landfill leachate was that it consumed 32 times less iron and produced 25 times less sludge volume yielding the same COD removal results than a conventional Fenton treatment.

  18. Long-term characterization, lagoon treatment and migration potential of landfill leachate: a case study in an active Italian landfill.

    PubMed

    Frascari, D; Bronzini, F; Giordano, G; Tedioli, G; Nocentini, M

    2004-01-01

    The elaboration of 10 years of monitoring of leachate quality and quantity, leachate treatment and degree of contamination of soil and surface waters at the Tre Monti site--an active, 4-million-m(3) landfill in Northern Italy--is presented in this study. A hydrological model of leachate production is applied, with a good match of the experimental data. The concentrations of all leachate components except sulfate are characterized by fluctuations over a constant or increasing value. Different ways of interpreting leachate quality data are discussed; the elaboration indicates that the pollutant load on the leachate treatment facility will remain basically constant as long as waste will be added to the landfill. The analysis of the data relative to 10 years of leachate pre-treatment in the adjoining, non-aerated lagoon system indicates that a significant removal is achieved for most leachate components; the operational conditions of the plant are described, and the removal mechanisms are discussed. Finally, the potential for contamination of soil and surface waters is examined by analyzing long-term quality trends of the sub-superficial waters sampled near the lagoons and by means of an analytical campaign conducted on clay cores sampled near and underneath the treatment ponds. The experimental values indicate that the clay layer located under the entire site offers an effective barrier to the migration of leachate contaminants.

  19. Leachate treatment in landfills is a significant N2O source.

    PubMed

    Wang, Xiaojun; Jia, Mingsheng; Zhang, Chengliang; Chen, Shaohua; Cai, Zucong

    2017-10-15

    The importance of methane (CH4) emissions from landfills has been extensively documented, while the nitrous oxide (N2O) emissions from landfills are considered negligible. In this study, three landfills were selected to measure CH4 and N2O emissions using the static chamber method. Dongbu (DB) and Dongfu (DF) landfills, both located in Xiamen city, Fujian Province, were classified as sanitary. The former started to receive solid waste from Xiamen city in 2009, and the latter was closed in 2009. Nanjing (NJ) landfill, located in Nanjing county, Fujian Province, was classified as managed. Results showed that for the landfill reservoirs, CH4 emissions were significant, while N2O emissions occurred mainly in operating areas (on average, 16.3 and 19.0mgN2Om(-2)h(-1) for DB and NJ landfills, respectively) and made a negligible contribution to the total greenhouse gas emissions in term of CO2 equivalent. However, significant N2O emissions were observed in the leachate treatment systems of sanitary landfills and contributed 72.8% and 45.6% of total emissions in term of CO2 equivalent in DB and DF landfills, respectively. The N2O emission factor (EF) of the leachate treatment systems was in the range of 8.9-11.9% of the removed nitrogen. The total N2O emissions from the leachate treatment systems of landfills in Xiamen city were estimated to be as high as 8.55gN2O-Ncapita(-1)yr(-1). These results indicated that N2O emissions from leachate treatment systems of sanitary landfills were not negligible and should be included in national and/or local inventories of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evaluation of the Treatment Process of Landfill Leachate Using the Toxicity Assessment Method

    PubMed Central

    Qiu, Aifeng; Cai, Qiang; Zhao, Yuan; Guo, Yingqing; Zhao, Liqian

    2016-01-01

    Landfill leachate is composed of a complex composition with strong biological toxicity. The combined treatment process of coagulation and sedimentation, anaerobics, electrolysis, and aerobics was set up to treat landfill leachate. This paper explores the effect of different operational parameters of coagulation and sedimentation tanks and electrolytic cells, while investigating the combined process for the removal efficiency of physicochemical indices after processing the landfill leachate. Meanwhile, a battery of toxicity tests with Vibrio fischeri, zebrafish larvae, and embryos were conducted to evaluate acute toxicity and calculated the toxicity reduction efficiency after each treatment process. The combined treatment process resulted in a 100% removal efficiency of Cu, Cd and Zn, and a 93.50% and an 87.44% removal efficiency of Ni and Cr, respectively. The overall removal efficiency of chemical oxygen demand (COD), ammonium nitrogen (NH4+-N), and total nitrogen (TN) were 93.57%, 97.46% and 73.60%, respectively. In addition, toxicity test results showed that the acute toxicity of landfill leachate had also been reduced significantly: toxicity units (TU) decreased from 84.75 to 12.00 for zebrafish larvae, from 82.64 to 10.55 for zebrafish embryos, and from 3.41 to 0.63 for Vibrio fischeri. The combined treatment process was proved to be an efficient treatment method to remove heavy metals, COD, NH4+-N, and acute bio-toxicity of landfill leachate. PMID:28009808

  1. Use of zeolitised coal fly ash for landfill leachate treatment: a pilot plant study.

    PubMed

    Luna, Y; Otal, E; Vilches, L F; Vale, J; Querol, X; Fernández Pereira, C

    2007-01-01

    Treatment of municipal solid waste (MSW) landfill leachate generally results in low percentages of nutrient removal due to the high concentration and accumulation of refractory compounds. For this reason, individual physical, chemical and biological processes have been used for the treatment of raw landfill leachate and sometimes for the mixture of domestic wastewater and landfill leachate. In this work, the possibility of treating landfill leachate was tested in a bench-scale pilot plant by a two-step method combining adsorption and coagulation-flocculation. Zeolite synthesized from coal fly ash, a by-product of coal-fired power stations, was used in this study both as a decantation aid reagent and as an adsorbent of COD and NH4-N. The coagulation-flocculation step was performed by the use of aluminium sulphate and a polyelectrolyte (ACTIPOL A-401). The leachate was collected directly from a storage unit of the organic fraction of MSW, before it was composted. For this reason the raw leachate was diluted before treatment. The sludge was recirculated to enhance the removal efficiency of nutrients as well as to optimize flocculant saving and to decrease sludge production. The results showed that it is possible to remove 43%, 53% and 82% of COD, NH4-N, and suspended solids, respectively. Therefore, this method may be an alternative for ammonium removal, as well as a suitable pre- or post-treatment step, in combination with other processes in order to meet regulatory limits.

  2. In-situ treatment of landfill leachate and wastes using bioventing technology

    SciTech Connect

    Barr, K.D.; O`Flanagan, B.D.; Newman, W.A.

    1995-12-31

    The effectiveness of in-situ, aerobic biodegradation of landfill leachate has been tested by applying bioventing at a closed municipal solid waste landfill in Minnesota. A pilot test was conducted with air injection into a field of six bioventing wells for a six month period, creating an aerobic biotreatment zone for leachate as it migrates to groundwater. Results show that an effective aerobic treatment zone can be established and maintained with organic compounds actively biodegraded and dissolved inorganic compounds, such as metals, oxidized and immobilized. Groundwater contaminants also showed decreasing concentrations during the pilot test. This approach may, ultimately, obviate the need for groundwater removal and treatment.

  3. In-situ treatment of landfill leachate and wastes using bioventing technology

    SciTech Connect

    Barr, K.D.; O`Flanagan, B.D.; Newman, W.A.; Julik, J.K.; Wetzstein, D.W.

    1995-12-31

    The effectiveness of in-situ, aerobic biodegradation of landfill leachate has been tested by applying bioventing at a closed municipal solid waste landfill in Minnesota. A pilot test was conducted with air injection into a field of six bioventing wells for a six month period, creating an aerobic biotreatment zone for leachate as it migrates to ground water. Results show that an effective aerobic treatment zone can be established and maintained with organic compounds actively biodegraded and dissolved inorganic compounds, such as metals, oxidized and immobilized. Groundwater contaminants also showed decreasing concentrations during the pilot test. This approach may, ultimately, obviate the need for groundwater removal and treatment.

  4. Phytoremediation of landfill leachate

    SciTech Connect

    Jones, D.L. . E-mail: d.jones@bangor.ac.uk; Williamson, K.L.; Owen, A.G.

    2006-07-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  5. Three-stage aged refuse biofilter for the treatment of landfill leachate.

    PubMed

    Li, Hongjiang; Zhao, Youcai; Shi, Lei; Gu, Yingying

    2009-01-01

    A field-scale aged refuse (AR) biofilter constructed in Shanghai Refuse Landfill, containing about 7000 m3 aged refuse inside, was evaluated for its performance in the treatment of landfill leachate. This AR biofilter can be divided into three stages and can manage 50 m3 landfill leachate per day. The physical, chemical, and biological characteristics of AR were analyzed for evaluating the AR biofilter as leachate treatment host. The results revealed that over 87.8%-96.2% of COD and 96.9%-99.4% of ammonia nitrogen were removed by the three-stage AR biofilter when the influent leachate COD and ammonia nitrogen concentration were in the range 5478-10842 mg/L and 811-1582 mg/L, respectively. The final effluent was inodorous and pale yellow with COD and ammonia nitrogen below 267-1020 mg/L and 6-45 mg/L, respectively. The three-stage AR biofilter had efficient nitrification but relative poor denitrification capacity with a total nitrogen (TN) removal of 58%-73%. The external temperature of AR biofilter did not influence the total ammonia nitrogen removal significantly. It was concluded that the scale-up AR biofilter can work very well and can be a promising technology for the treatment of landfill leachate.

  6. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    PubMed

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  7. Sequencing treatment of landfill leachate using ammonia stripping, Fenton oxidation and biological treatment.

    PubMed

    Nurisepehr, Mohammad; Jorfi, Sahand; Rezaei Kalantary, Roshanak; Akbari, Hamideh; Soltani, Reza Darvishi Cheshmeh; Samaei, Mohamad

    2012-09-01

    Landfill leachates contain a wide variety of pollutants such as organic matter, refractory compounds, ammonia, particulate and dissolved solids and hazardous metals requiring application of advanced and well designed treatment processes before release to the environment. The main purpose of this research was to evaluate the efficiency of combined air stripping, Fenton oxidation and biological treatment in treating landfill leachate, especially the elimination of ammonia and refractory organics. The laboratory scale set-up consisted of three sequential but separate steps. The optimum conditions for air stripping and the Fenton oxidation were determined for landfill leachate from Karaj city, Iran. The final step was a moving bed bioreactor with HRTs of 18, 12 and 6 h. The highest NH(3)-N removal was 79% in the air stripping process at pH 10.5. At the optimum conditions for the Fenton reaction at a reaction time of 90 min, pH 3 and a H(2)O(2)/Fe(2+) mass ratio of 20, the COD removal was 61% and improved the BOD/COD ratio from 0.42 to 0.78. The overall COD removal including the final biological reactor with a HRT of 6 h resulted in an effluent COD concentration of less than 100 mg L(-1).

  8. Constructed wetlands for municipal solid waste landfill leachate treatment. Final report

    SciTech Connect

    Peverly, J.; Sanford, W.E.; Steenhuis, T.S.

    1993-11-01

    In 1989, the US Geological Survey and Cornell University, in cooperation with the New York State Energy Research and Development Authority and the Tompkins County Solid Waste Department, began a three-year study at a municipal solid-waste landfill near Ithaca, New York, to test the effectiveness of leachate treatment with constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; effects of leachate and plant growth on the hydraulic characteristics of the substrate; and chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. A parallel study at a municipal solid-waste landfill near Fenton, New York was conducted by researchers at Cornell University, Ithaca College, and Hawk Engineering (Trautmann and others, 1989). Results are described.

  9. Ozone catalysed with solids as an advanced oxidation process for landfill leachate treatment.

    PubMed

    Tizaoui, C; Mansouri, L; Bousselmi, L

    2007-01-01

    Heterogeneous catalytic ozonation (HCO) of wastewater is gaining both research and industrial interests. It is proved to be an advanced oxidation process since it involves hydroxyl radicals as oxidation species. Few studies have been carried out to test HCO in the treatment of landfill leachates. This work has been carried out to test three types of catalysts: activated carbon (AC), expanded perlite (EP) and titanium dioxide (TiO2) combined with ozone at 80 g/m3 gas concentration for the treatment of a leachate generated by Jebel Chakir landfill site near Tunis-capital of Tunisia. The work has shown a reduction in COD of about 45% and an increase in biodegradability (BOD5/COD) from 0.1 to 0.34. A catalyst concentration of 0.7 g/L was found optimal for the treatment of the leachate.

  10. Sequential anaerobic, aerobic/anoxic treatment of simulated landfill leachate.

    PubMed

    Agdag, O N; Sponza, D T

    2008-02-01

    In this study COD, ammonia and nitrate were treated through methanogenesis, nitrification denitrification and anammox processes in anaerobic-aerobic and anaerobic/anoxic sequential in leachate samples produced from municipal solid waste in an anaerobic simulated landfilling bioreactor. The experiments were performed in an upflow anaerobic sludge blanket reactor (UASB), aerobic completely stirred tank reactor (CSTR) and upflow anaerobic/anoxic sludge blanket reactor (UA/A(N)SB). Hydraulic retention times in anaerobic, aerobic and anaerobic/anoxic stages were 1, 3.6 and 1 days, respectively, through 244 days of total operation period with 168 days of adaptation period of microorganisms to the reactors. The organic loading rates increased from 5.9 to 50 kg COD m(-3) day(-1). The total COD and TN removal efficiencies of the anaerobic-aerobic-anoxic system were 96% and 99%, respectively, at an influent OLR as high as 50 kg COD m(-3) day(-1). The maximum methane percentage in the UASB reactor was 82% while the methane percentage was zero in UA/A(N)SB reactor for the aforementioned OLR at the end of steady-state conditions. NH4-N removal efficiency of the aerobic reactor was 90% while anaerobic ammonia oxidation was measured as 99% in the anoxic reactor. The denitrification efficiency was 99% in the same reactor. Total TN removal of the whole system was 99%.

  11. Advanced physico-chemical treatment experiences on young municipal landfill leachates

    SciTech Connect

    Ozturk, Izzet; Altinbas, Mahmut; Koyuncu, Ismail; Arikan, Osman; Gomec-Yangin, Cigdem

    2003-07-01

    In this study, Membrane Filtration (UF+RO), Struvite (MAP) precipitation and ammonia stripping alternatives were studied on biologically pre-treated Landfill Leachate. The results indicated that the system including the Upflow Anaerobic Sludge Blanket Reactor (UASBR) and Membrane Reactors (UF+RO) has been offered as an appropriate treatment alternative for young landfill leachates. This system provided high removals of COD, colour and conductivity (>98-99%). For ammonia removal, struvite precipitation was applied at the stoichiometric ratio (Mg:NH{sub 4}:PO{sub 4}=1:1:1) to anaerobically pre-treated raw landfill leachate effluent having an influent ammonium concentration of 2240 mg/l. Maximum ammonium nitrogen removal was observed as 85% at pH of 9.2. In ammonia stripping following 2 h of aeration, the removal was 72% at pH=12 while the removals were around 20% at pH=10 and pH=11. When membrane reactor, and struvite precipitation or ammonia stripping was applied to anaerobically pre-treated effluents, the results indicated that each system could be used as an appropriate post-treatment option for young landfill leachates. In economic aspect, ammonia stripping was found as the cheapest alternative with high ammonium removal. However, when both high COD and ammonium removals were to be achieved membrane technology such as UF+RO (SW) could be considered as the most appropriate system due to the fact that COD removal could be obtained very low by ammonia stripping.

  12. Removal of toxic metals during biological treatment of landfill leachates.

    PubMed

    Robinson, T

    2017-05-01

    Progressive implementation of the European Water Framework Directive has resulted in substantial changes in limits for discharges of heavy metals both to watercourses, and to sewer. The objective of this paper is to provide original, real, full-scale data obtained for removal of metals during aerobic biological leachate treatment, and also to report on studies carried out to look at further trace metal removal. Polishing technologies examined and investigated include; the incorporation of ultrafiltration (UF) membranes into biological treatment systems, the use of ion exchange, and of activated carbon polishing processes. Ultrafiltration was able to provide a 60 percent reduction in COD values in treated leachates, compared with COD values found in settled/clarified effluents. Removal rates for COD varied from 30.5 to 79.8 percent. Additionally, ultrafiltration of treated leachates significantly reduced both chromium and nickel concentrations of effluents by 61.6% and 34.3% respectively (median values). Despite mean reductions of chromium (9.7%) and nickel (13.7%) noted during the ion exchange trials, these results would not justify use of this technology for metals removal at full-scale. Further preliminary studies used pulverized activated carbon (PAC) polishing of UF effluents to demonstrate that significant (up to 80 per cent) removal of COD, TOC and heavy metals could readily be achieved by doses of up to 10g/l of suitable activated carbons. Additional evidence is provided that many trace metals are present not in ionic form, but as organic complexes; this is likely to make their removal to low levels more difficult and expensive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Characterization and treatment of Denizli landfill leachate using anaerobic hybrid/aerobic CSTR systems.

    PubMed

    Ağdağ, Osman Nuri

    2011-01-01

    Leachate generated in municipal solid waste landfill contains large amounts of organic and inorganic contaminants. In the scope of the study, characterization and anaerobic/aerobic treatability of leachate from Denizli (Turkey) Sanitary Landfill were investigated. Time-based fluctuations in characteristics of leachate were monitored during a one-year period. In characterization study; chemical oxygen demand (COD), biochemical oxygen demand (BOD) dissolved oxygen, temperature, pH, alkalinity, volatile fatty acids, total nitrogen, NH4-N, BOD5/COD ratio, suspended solid, inert COD, anaerobic toxicity assay and heavy metals concentrations in leachate were monitored. Average COD, BOD and NH4-N concentration in leachate were measured as 18034 mg/l, 11504 mg/l and 454 mg/l, respectively. Generally, pollution parameters in leachate were higher in summer and relatively lower in winter due to dilution by precipitation. For treatment of leachate, two different reactors, namely anaerobic hybrid and aerobic completely stirred tank reactor (CSTR) having effective volumes of 17.7 and 10.5 litres, respectively, were used. After 41 days of start-up period, leachate was loaded to hybrid reactor at 10 different organic loading rates (OLRs). OLR was increased by increasing COD concentrations. COD removal efficiency of hybrid reactor was carried out at a maximum of 91%. A percentage of 96% of residual COD was removed in the aerobic reactor. NH4-N removal rate in CSTR was quite high. In addition, high methane content was obtained as 64% in the hybrid reactor. At the end of the study, after 170 operation days, it can be said that the hybrid reactor and CSTR were very effective for leachate treatment.

  14. Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes.

    PubMed

    Zolfaghari, Mehdi; Jardak, Karama; Drogui, Patrick; Brar, Satinder Kaur; Buelna, Gerardo; Dubé, Rino

    2016-12-15

    Combination of high performance membrane bioreactor (MBR) equipped with ultrafiltration and electro-oxidation process (EOP) by boron-doped diamond electrode (BDD) was used to effectively treat highly contaminated old landfill leachate. MBR and EOP were optimized for raw and pretreated landfill leachate. Seasonal changes dramatically affected the both processes' performance, as the landfill leachate was ¾ more concentrated in winter. For MBR, organic load rate of 1.2 gCOD/L/day and sludge retention time of 80 days was considered as the optimum operating condition in which COD, TOC, NH4(+) and phosphorous removal efficiencies reached the average of 63, 35, 98 and 52%, respectively. The best performance of EOP was in current intensity of 3 A with treatment of time of 120 min. Effluent of electro-oxidation was more toxic due to the presence of radicals and organochlorinated compounds. These compounds were removed by stripping or assimilation of sludge if EOP was used as a pretreatment method. Furthermore, the energy consumption of EOP was decreased from 22 to 16 KWh/m(3) for biologically treated and raw landfill leachate, respectively.

  15. Chemical quality of landfill leachate in treatment ponds and migration of leachate in the surficial aquifer, Pinellas County, Florida

    USGS Publications Warehouse

    Fernandez, Mario; Barr, G.L.

    1984-01-01

    The Pinellas County leachate treatment and disposal site encompasses about 8 acres within the 220 acres of the county 's Bridgeway Acres landfill. The site has a high water table and is subject to inundation due to tidal flooding and major storms. Fresh leachate is pumped from V-shaped trenches an average of about 3.8 hours per day. The pumping rate ranges from 150 to 500 gallons per minute. The leachate is aerated for about 2 days in a lined basin, then transferred by gravity to a stabilization pond where it is permitted to infiltrate into the surficial aquifer. Two chemical constituents, ammonia nitrogen and potassium, were used as indicators of migration of the leachate in the aquifer. No apparent nitrification occurred within the treatment system. Leachate has migrated from about 75 to 80 feet along the upper 5 feet of the aquifer during the period of study. Vertical migration was about 4 feet beneath the bottom of the pond into the aquifer. (USGS)

  16. Different treatment strategies for highly polluted landfill leachate in developing countries.

    PubMed

    Mahmud, Kashif; Hossain, Md Delwar; Shams, Shahriar

    2012-11-01

    The aim of this research was to determine appropriate treatment technique for effective treatment of heavily polluted landfill leachate. We accomplished several treatment experiments: (i) aerobic biological treatment, (ii) chemical coagulation, (iii) advanced oxidation process (AOP) and (iv) several combined treatment strategies. Efficiency of these treatment procedures were monitored by analysing COD and colour removal. Leachate used for this study was taken from Matuail landfill site at Dhaka city. With extended aeration process which is currently used in Matuail landfill site for leachate treatment, maximum COD and colour removal of 36% and 20%, respectively could be achieved with optimum retention period of 7 days. With optimum aluminium sulphate dose of 15,000 mg/L and pH value of 7.0, maximum COD and colour removals of 34% and 66%, respectively were observed by using chemical coagulation. With optimum pH of 5.0 and optimum dosages of reagents having H(2)O(2)/Fe(2+) molar ratio of 1.3 the highest removal of COD and colour were found 68% and 87%, respectively with sludge production of 55%. Fenton treatment which is an advanced oxidation process was the most successful between these three separate treatment procedures. Among the combined treatment options performed, extended aeration followed by Fenton method was the most suitable one. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Pilot-scale comparison of two hybrid-passive landfill leachate treatment systems operated in a cold climate.

    PubMed

    Speer, Sean; Champagne, Pascale; Anderson, Bruce

    2012-01-01

    Hybrid-passive landfill leachate treatment systems employ active pretreatment to remove dissolved inorganic constituents and decrease the oxygen demand of the leachate prior to treatment in a passive system. In a 1-year pilot-scale study, two passive treatment systems - a peat and wood shaving biological trickle filter and a sand and gravel constructed wetland - were installed to treat leachate from the Merrick Landfill in North Bay, Ontario, Canada. Leachate was pretreated in a fixed-film aerobic reactor, which provided reductions in COD (26%), and masses of ammonia (21%), Al (69%), Ca (57%), Fe (73%) and Sr (37%). A comparison of the performance of the hybrid-passive treatment systems indicated different extents of heterotrophic nitrification; the peat and wood shaving filter removed 49% of the ammonia and nitrified 29%, while the constructed wetland removed 99% of the ammonia and nitrified 90%. Hybrid-passive landfill leachate treatment was determined to be feasible in cold climates.

  18. Ocean bacteria: performance on CODCr and NH4(+)-N removal in landfill leachate treatment.

    PubMed

    Feng, Yali; Yi, Aifei; Li, Haoran; Wang, Weida; Du, Yunlong

    2015-01-01

    An experiment was carried out to investigate the performance of mixed ocean bacteria, isolated from the ocean sediment, on landfill leachate treatment. In this treatment, ocean bacteria were the only constituent added to remove organics and NH(4)(+)-N. Given their considerable influence on wastewater purification, factors such as inoculum, initial pH, processing time and oxygen condition, were directly involved in this research. As indicated by laboratory test results, chemical oxygen demand (CODCr) and NH(4)(+)-N removal could reach 94.45% and 67.87%, respectively, after 3 days of treatment, in conditions of natural pH 6.3 and with the application of oxygen. The volt-ampere characteristics of the bacteria solution verified the redox-active ability of the bacteria in landfill leachate treatment.

  19. Statistical analysis of optimum Fenton oxidation conditions for landfill leachate treatment.

    PubMed

    Singh, Shrawan K; Tang, Walter Z

    2013-01-01

    Optimal operating conditions observed by peer reviewed publications for Fenton oxidation of raw and biological and coagulation treated leachates were reviewed and statistically analyzed. For the first-stage Fenton oxidation, the optimal pH range of 2.5-4.5 was observed for raw and coagulation treated leachates with a median pH of 3.0, whereas, for biologically treated leachate the optimum pH range was 2.5-6.0 with a median pH of 4.2. Theoretically, the optimal ratio of H(2)O(2)/Fe(2+) should be the ratio of rate constants of the reactions between OH() radical with Fe(2+) and H(2)O(2), which is approximately 11; however, for leachate treatment, a median optimum relative dose of 1.8 (w/w) (3.0M/M) was observed. Biologically treated leachate showed relatively lower optimum ratio of H(2)O(2)/Fe(2+) doses (median: 0.9 w/w) as compared to raw (median: 2.4 w/w) and coagulation treated (median: 2.8 w/w) leachate. Median absolute doses of H(2)O(2) and Fe(2+) were 1.2mg H(2)O(2)/mg of initial COD (COD(0)) and 0.9 mg Fe(2+)/mg COD(0), respectively and raw leachate required higher reagent doses compared to pretreated leachates. A universal Fenton oxidation relationship between COD removal efficiency (η) and COD loading factor (L(COD)) for landfill leachate treatment was developed. As L(COD) increases from 0.03 to 72.0, η varies linearly as η=0.733 L(COD)-0.182. This robust linear relationship between L(COD) and η holds for Fenton oxidation of raw as well as biological and coagulation treated leachates. The relationship was validated using Leave-one-out cross validation technique and errors in predicting η using L(COD) were evaluated by applying Monte Carlo Simulation. As a result, the relationship can be used as a universal equation to predict Fenton treatment efficiency for a given COD(0) loading in the range of 0.03-72.0 for landfill leachate treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Treatment of landfill leachate by white rot fungus in combination with zeolite filters.

    PubMed

    Kim, Yeong-Kwan; Park, Se-Kun; Kim, Seung-Do

    2003-04-01

    This article presents the experimental work for the treatment of landfill leachate in a combined process using the white rot fungus Phanerochaete chrysosporium and the natural zeolite Clinoptilolite. Clinoptilolite was used in a pretreatment step as a sink for ammonia nitrogen and, on average it reduced the levels of ammonia nitrogen, soluble chemical oxygen demand (COD) and color by 72, 4.7, and 25%, respectively. The reductions by fungal treatment alone were 16.6, 21.5, and 31.2%, respectively. However, a reduction in nitrogen loading greatly enhanced fungal treatment efficiency. A high C/N ratio in the leachate was found preferable for the fungal treatment. With the synergy created by pretreatment and fungal growth that was stimulated by the addition of a growth medium, the process could remove ammonia nitrogen, soluble COD (SCOD) and color at levels as high as 81.5, 65, and 59%, respectively. The ratio of SBOD5/SCOD increased from 0.1 to 0.17 upon treatment, indicating that the process rendered the leachate more amenable to the biological process. This result suggested that the preliminary reduction of ammonia nitrogen was essential in making the fungal process practicable for landfill leachate treatment.

  1. An Autopsy of Nanofiltration Membrane Used for Landfill Leachate Treatment

    PubMed Central

    Demir, Ibrahim; Koyuncu, Ismail; Guclu, Serkan; Yildiz, Senol; Balahorli, Vahit; Caglar, Suphi; Turken, Turker; Pasaoglu, Mehmet E.; Kaya, Recep; Sengur-Tasdemir, Reyhan

    2015-01-01

    Komurcuoda leachate treatment plant, Istanbul, which consists of membrane bioreactor (MBR) and nanofiltration (NF) system, faced rapid flux decline in membranes after 3-year successful operation. To compensate rapid flux decline in membranes, the fouled membranes were renewed but replacement of the membranes did not solve the problem. To find the reasons and make a comprehensive analysis, membrane autopsy was performed. Visual and physical inspection of the modules and some instrumental analysis were conducted for membrane autopsy. Membranes were found severely fouled with organic and inorganic foulants. Main foulant was iron which was deposited on surface. The main reason was found to be the changing of aerator type of MBR. When surface aerators were exchanged with bottom diffusers which led to increasing of dissolved oxygen (DO) level of the basin, iron particles were oxidized and they converted into particulate insoluble form. It was thought that probably this insoluble form of the iron particles was the main cause of decreased membrane performance. After the diagnosis, a new pretreatment alternative including a new iron antiscalant was suggested and system performance has been recovered. PMID:26137593

  2. Toxicological characterization of a novel wastewater treatment process using EDTA-Na2Zn as draw solution (DS) for the efficient treatment of MBR-treated landfill leachate.

    PubMed

    Niu, Aping; Ren, Yi-Wei; Yang, Li; Xie, Shao-Lin; Jia, Pan-Pan; Zhang, Jing-Hui; Wang, Xiao; Li, Jing; Pei, De-Sheng

    2016-07-01

    Landfill leachate has become an important source of environmental pollution in past decades, due to the increase of waste volume. Acute toxic and genotoxic hazards to organisms can be caused by landfill leachate. Thus, how to efficiently recover water from landfill leachate and effectively eliminate combined toxicity of landfill leachate are the most pressing issues in waste management. In this study, EDTA-Na2Zn as draw solution (DS) was used to remove the toxicity of membrane bioreactor-treated landfill leachate (MBR-treated landfill leachate) in forward osmosis (FO) process, and nanofiltration (NF) was designed for recovering the diluted DS. Zebrafish and human cells were used for toxicity assay after the novel wastewater treatment process using EDTA-Na2Zn as DS. Results showed that the water recovery rate of MBR-treated landfill leachate (M-LL) in FO membrane system could achieve 66.5% and 71.2% in the PRO and FO mode respectively, and the diluted DS could be efficiently recovered by NF. Toxicity tests performed by using zebrafish and human cells showed that M-LL treated by EDTA-Na2Zn had no toxicity effect on zebrafish larvae and human cells, but it had very slight effect on zebrafish embryos. In conclusion, all results indicated that EDTA-Na2Zn as DS can effectively eliminate toxicity of landfill leachate and this method is economical and eco-friendly for treatment of different types of landfill leachate.

  3. Energy consumption by forward osmosis treatment of landfill leachate for water recovery.

    PubMed

    Iskander, Syeed Md; Zou, Shiqiang; Brazil, Brian; Novak, John T; He, Zhen

    2017-03-22

    Forward osmosis (FO) is an alternative approach for treating landfill leachate with potential advantages of reducing leachate volume and recovering high quality water for direct discharge or reuse. However, energy consumption by FO treatment of leachate has not been examined before. Herein, the operational factors such as recirculation rates and draw concentrations were studied for their effects on the quantified energy consumption by an FO system treating actual leachate collected from two different landfills. It was found that the energy consumption increased with a higher recirculation rate and decreased with a higher draw concentration, and higher water recovery tended to reduce energy consumption. The highest energy consumption was 0.276±0.033kWhm(-3) with the recirculation rate of 110mLmin(-1) and 1-M draw concentration, while the lowest of 0.005±0.000kWhm(-3) was obtained with 30mLmin(-1) recirculation and 3-M draw concentration. The leachate with lower concentrations of the contaminants had a much lower requirement for energy, benefited from its higher water recovery. Osmotic backwashing appeared to be more effective for removing foulants, but precise understanding of membrane fouling and its controlling methods will need a long-term study. The results of this work have implied that FO treatment of leachate could be energy efficient, especially with the use of a suitable draw solute that can be regenerated in an energy efficient way and/or through combination with other treatment technologies that can reduce contaminant concentrations before FO treatment, which warrants further investigation.

  4. Transpiration as landfill leachate phytotoxicity indicator.

    PubMed

    Białowiec, Andrzej

    2015-05-01

    An important aspect of constructed wetlands design for landfill leachate treatment is the assessment of landfill leachate phytotoxicity. Intravital methods of plants response observation are required both for lab scale toxicity testing and field examination of plants state. The study examined the toxic influence of two types of landfill leachate from landfill in Zakurzewo (L1) and landfill in Wola Pawłowska (L2) on five plant species: reed Phragmites australis (Cav.) Trin. ex Steud, manna grass Glyceria maxima (Hartm.) Holmb., bulrush Schoenoplectus lacustris (L.) Palla, sweet flag Acorus calamus L., and miscanthus Miscanthus floridulus (Labill) Warb. Transpiration measurement was used as indicator of plants response. The lowest effective concentration causing the toxic effect (LOEC) for each leachate type and plant species was estimated. Plants with the highest resistance to toxic factors found in landfill leachate were: sweet flag, bulrush, and reed. The LOEC values for these plants were, respectively, 17%, 16%, 9% in case of leachate L1 and 21%, 18%, 14% in case of L2. Leachate L1 was more toxic than L2 due to a higher pH value under similar ammonia nitrogen content, i.e. pH 8.74 vs. pH 8.00.

  5. Treatment of hazardous landfill leachate by the Rochem DTM membrane separation technology

    SciTech Connect

    Grosse, D.W.; Cook, K.

    1995-10-01

    The Disc Tube{trademark} Module (DTM) technology was developed by Rochem Separations Systems, Inc. and designed to remove a variety of organic and inorganic contaminants from liquid hazardous waste streams. The DTM technology is a membrane based technology utilizing an innovative process configuration which allows for treatment of aqueous waste streams such as landfill leachate. Historically, membrane based technologies have been used as a secondary polishing step in treating effluents to meet pretreatment discharge standards. The DTM technology was designed to treat liquids containing higher dissolved solids, turbidity and contaminant levels than previously possible with conventional membrane processes. The DTM process was evaluated under the Superfund Innovative Technology Evaluation (SITE) program at the Central Landfill in Johnston, Rhode Island during the months of August and September 1994. Approximately 33,000 gallons of hazardous landfill leachate were treated by the DTM technology using reverse osmosis membranes. The leachate contained moderate to high levels of volatile organic contaminants, low levels of heavy metals, and high total dissolved solids. The Developer (Rochem) claimed that the technology was capable of (1) achieving a high percent rejection of the contaminants of concern; (2) recovering {ge}75% permeate (treated water); and (3) allowing for a greater resistance to scaling and fouling of membranes than conventional membrane processes.

  6. Coagulation-Flocculation Process in Landfill Leachate Treatment: Focus on Coagulants and Coagulants Aid

    NASA Astrophysics Data System (ADS)

    Kamaruddin, M. A.; Abdullah, M. M. A.; Yusoff, M. S.; Alrozi, R.; Neculai, O.

    2017-06-01

    In physico-chemical treatment, the separation of suspended particles from the liquid phase is usually accomplished by coagulation, flocculation and sedimentation. Coagulation-flocculation processes have been widely used as alternative treatment to remove leachate pollutants such as BOD, COD, TSS, heavy metals, colour, and nitrogen compounds prior to other treatment methods. It is often coupled with treatment methods like biological process, chemical oxidation, adsorption or filtration to achieve desirable effluent quality. In spite of being economical, the dewatering and disposal of the precipitated sludge could be laborious and time-consuming. In this manuscript, brief discussions on coagulant and coagulants aid in landfill leachate treatment is discussed with respect to their mechanism.

  7. Co-treatment of landfill leachate and domestic wastewater using a submerged aerobic biofilter.

    PubMed

    Ferraz, F M; Povinelli, J; Pozzi, E; Vieira, E M; Trofino, J C

    2014-08-01

    This study used a pilot-scale submerged aerobic biofilter (SAB) to evaluate the co-treatment of domestic wastewater and landfill leachate that was pre-treated by air stripping. The leachate tested volumetric ratios were 0, 2, and 5%. At a hydraulic retention time of 24 h, the SAB was best operated with a volumetric ratio of 2% and removed 98% of the biochemical oxygen demand (BOD), 80% of the chemical oxygen demand (COD) and dissolved organic carbon (DOC), and 90% of the total suspended solids (TSS). A proposed method, which we called the "equivalent in humic acid" (Eq.HA) approach, indicated that the hardly biodegradable organic matter in leachate was removed by partial degradation (71% of DOC Eq.HA removal). Adding leachate at a volumetric ratio of 5%, the concentration of the hardly biodegradable organic matter was decreased primarily as a result of dilution rather than biodegradation, which was confirmed by Fourier transform infrared (FTIR) spectroscopy. The total ammoniacal nitrogen (TAN) was mostly removed (90%) by nitrification, and the SAB performances at the volumetric ratios of 0 and 2% were equal. For the three tested volumetric ratios of leachate (0, 2, and 5%), the concentrations of heavy metals in the treated samples were below the local limits.

  8. First-order kinetics of landfill leachate treatment in a pilot-scale anaerobic sequence batch biofilm reactor.

    PubMed

    Contrera, Ronan Cleber; da Cruz Silva, Katia Cristina; Morita, Dione Mari; Domingues Rodrigues, José Alberto; Zaiat, Marcelo; Schalch, Valdir

    2014-12-01

    This paper reports the kinetics evaluation of landfill leachate anaerobic treatment in a pilot-scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was carried out at room temperature (23.8 ± 2.1 °C) in the landfill area in São Carlos-SP, Brazil. Biomass from the bottom of a local landfill leachate stabilization pond was used as inoculum. After acclimated and utilizing leachate directly from the landfill, the AnSBBR presented efficiency over 70%, in terms of COD removal, with influent COD ranging from 4825 mg L(-1) to 12,330 mg L(-1). To evaluate the kinetics of landfill leachate treatment, temporal profiles of CODFilt. concentration were performed and a first-order kinetics model was adjusted for substrate consumption, obtaining an average k1 = 4.40 × 10(-5) L mgTVS(-1) d(-1), corrected to 25 °C. Considering the temperature variations, a temperature-activity coefficient θ = 1.07 was obtained. Statistical "Randomness" and "F" tests were used to successfully validate the model considered. Thus, the results demonstrate that the first-order kinetic model is adequate to model the anaerobic treatment of the landfill leachate in the AnSBBR.

  9. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    SciTech Connect

    Müller, Gabriel Timm; Giacobbo, Alexandre; Santos Chiaramonte, Edson Abel dos; Rodrigues, Marco Antônio Siqueira; Meneguzzi, Alvaro; Bernardes, Andréa Moura

    2015-02-15

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm{sup −2}, 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment.

  10. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  11. Plants scrub landfill leachate clean

    SciTech Connect

    Not Available

    1980-09-01

    Leachate from the sanitary landfill in Barre, Mass., is collected in a series of holding lagoons. There, aquatic plants such as duckweed biodegrade and purify the wastewater. The plants saturate the leachate with oxygen, which speeds up aerobic oxidation by bacteria. The leachate is moved progressively through the series of lagoons, and the contents of the final lagoon are emptied into a trout pond. (3 photos)

  12. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments.

    PubMed

    Wang, Liqun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin

    2016-11-15

    A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H2O2 concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD5/COD) as the responses. The highest COD removal (74.59%) and BOD5/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72g/L, H2O2 concentration 12.32mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate.

  13. Effect of season, substrate composition, and plant growth on landfill leachate treatment in a constructed wetland

    SciTech Connect

    Surface, J.M.; Peverly, J.H.; Steenhuis, T.S.; Sanford, W.E.

    1991-12-31

    In 1989 the US, Geological Survey (USGS), in cooperation with Tompkins County, New York Departments of Planning and Solid Waste, began a 3-year study at a municipal solid-waste landfill near Ithaca, N.Y., to test the efficiency of leachate treatment by constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: (1) Treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; (2) effects of leachate and plant growth on the hydraulic characteristics of the substrate; and (3) chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. This report addresses the first two of these objectives and briefly discusses the third. It (1) describes the substrate plots, leachate-distribution system, sampling methods, and analytical procedures; and (2) presents results in terms of (a) percent removal rates of selected constituents between inflow- and outflow-sampling points, (b) seasonal effects on constituent-removal rates, and (c) effect of substrate composition on constituent removal and plant growth.

  14. Pilot aerobic membrane bioreactor and nanofiltration for municipal landfill leachate treatment.

    PubMed

    Amaral, Míriam C S; Moravia, Wagner G; Lange, Liséte C; Zico, Mariana R; Magalhães, Natalie C; Ricci, Bárbara C; Reis, Beatriz G

    2016-07-02

    The purpose of this article is to evaluate the integration of the air stripping, membrane bioreactor (MBR) and nanofiltration (NF) processes for the treatment of landfill leachate (LFL). Pretreatment by air stripping, without adjustment of pH, removed 65% of N-NH3 present in LFL. After pretreatment, the effluent was treated in MBR obtaining 44% of COD removal, and part of the N-NH3 was converted to nitrite and nitrate, which was later removed in the post-treatment. Nanofiltration was shown to be an effective process to improve the removal of organic compounds, the high toxicity present in LFL and nitrite and nitrate generated in the MBR. The system (air stripping + MBR + nanofiltration) obtained great efficiency of removal in most parameters analyzed, with overall removal of COD, ammonia, color and toxicity approximately 88, 95, 100 and 100%, respectively. By this route, treated landfill leachate may be reused at the landfill as water for dust arrestment and also as earth work on construction sites.

  15. Treatment of landfill leachate using an up-flow anaerobic sludge semi-fixed filter

    NASA Astrophysics Data System (ADS)

    Hua, J.; Bai, S. Y.; Li, Z. Y.; Zhou, H. C.

    2017-08-01

    In the present work, an up-flow anaerobic sludge semi-fixed filter (UASSF) was developed for landfill leachate treatment by packing the soft polyurethane belt as the supporting carrier. The performance of the hybrid reactor was evaluated in terms of COD removal and carbon flux distribution, also, the biomass effectiveness was investigated by restarting the reactor without the supporting carrier. The COD removal increased with the stepwise increment of the organic loading rate (OLR), while the sulfate removal decreased slowly. When the reactor was operated at design load (9 kgCOD/m3·d), COD and sulfate removal remained around 81% and 90%, respectively. The results indicate that this kind of semi-fixed carrier is capable to form the active biofilm in the anaerobic process, and the UASSF system can perform well in the leachate treatment.

  16. Leachate evaporation using landfill gas

    SciTech Connect

    White, T.M.; Grace, V.M.; Freivald, W.

    1996-05-01

    This paper describes a century-old technology with a new twist of using landfill gas as a fuel in an evaporation system. The system is designed to help landfills reduce the cost of leachate disposal while also destroying VOC emissions in an enclosed flare.

  17. Solar photocatalytic treatment of landfill leachate using a solid mineral by-product as a catalyst.

    PubMed

    Poblete, Rodrigo; Prieto-Rodríguez, Lucia; Oller, Isabel; Maldonado, Manuel I; Malato, Sixto; Otal, Emilia; Vilches, Luis F; Fernández-Pereira, Constantino

    2012-08-01

    The treatment of municipal solid waste landfill leachate in a pilot plant made up of solar compound parabolic collectors, using a solid industrial titanium by-product (WTiO(2)) containing TiO(2) and Fe(III) as a photocatalyst, was investigated. In the study evidence was found showing that the degradation performed with WTiO(2) was mainly due to the Fe provided by this by-product, instead of TiO(2). However, although TiO(2) had very little effect by itself, a synergistic effect was observed between Fe and TiO(2). The application of WTiO(2), which produced coupled photo-Fenton and heterogeneous catalysis reactions, achieved a surprisingly high depuration level (86% of COD removal), higher than that reached by photo-Fenton using commercial FeSO(4) (43%) in the same conditions. After the oxidation process the biodegradability and toxicity of the landfill leachate were studied. The results showed that the leachate biodegradability was substantially increased, at least in the first stages of the process, and again that WTiO(2) was more efficient than FeSO(4) in terms of increasing biodegradability.

  18. An overview of landfill leachate treatment via activated carbon adsorption process.

    PubMed

    Foo, K Y; Hameed, B H

    2009-11-15

    Water scarcity and pollution rank equal to climate change as the most urgent environmental issue for the 21st century. To date, the percolation landfill leachate into the groundwater tables and aquifer systems which poses a potential risk and potential hazards towards the public health and ecosystems, remains an aesthetic concern and consideration abroad the nations. Arising from the steep enrichment of globalization and metropolitan growth, numerous mitigating approaches and imperative technologies have currently drastically been addressed and confronted. Confirming the assertion, this paper presents a state of art review of leachate treatment technologies, its fundamental background studies, and environmental implications. Moreover, the key advance of activated carbons adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons adsorption represents a potentially viable and powerful tool, leading to the superior improvement of environmental conservation.

  19. Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system.

    PubMed

    El-Gendy, A S; Biswas, N; Bewtra, J K

    2006-09-01

    Experiments were carried out to investigate the ability of water hyacinth (Eichhornia crassipes) to remove five heavy metals (cadmium, chromium, copper, nickel, and lead) commonly found in leachate. All experiments were conducted in batch reactors in a greenhouse. It was found that living biomass of water hyacinth was a good accumulator for copper, chromium, and cadmium. The plants accumulated copper, chromium, and cadmium up to 0.96, 0.83, and 0.50%, respectively, of their dry root mass. However, lead and nickel were poorly accumulated in water hyacinth. Also, nonliving biomass of water hyacinth dry roots showed ability to accumulate all metals, except Cr(VI), which was added in anionic form. The highest total metal sorption by nonliving dry water hyacinth roots was found to take place at pH 6.4. The current research demonstrates the potential of using water hyacinth for the treatment of landfill leachate containing heavy metals.

  20. Ultrasound assisted biogas production from landfill leachate

    SciTech Connect

    Oz, Nilgün Ayman Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  1. Nitrogen Removal from Landfill Leachate by Microalgae

    PubMed Central

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  2. Nitrogen Removal from Landfill Leachate by Microalgae.

    PubMed

    Pereira, Sérgio F L; Gonçalves, Ana L; Moreira, Francisca C; Silva, Tânia F C V; Vilar, Vítor J P; Pires, José C M

    2016-11-17

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N-NH₄⁺) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N-NH₄⁺ concentration. In terms of nutrients uptake, an effective removal of N-NH₄⁺ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N-NO₃(-) removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates.

  3. Aerobic co-treatment of landfill leachate and domestic wastewater - are slowly biodegradable organics removed or simply diluted?

    PubMed

    Campos, R; Ferraz, F M; Vieira, E M; Povinelli, J

    2014-01-01

    This study investigated the co-treatment of landfill leachate/domestic wastewater in bench-scale activated sludge (AS) reactors to determine whether the slowly biodegradable organic matter (SBOM) was removed rather than diluted. The AS reactors were loaded with mixtures of raw leachate and leachate that was pretreated by air stripping. The tested volumetric ratios were 0%, 0.2%, 2% and 5%. For all of the tested conditions, the reactors performed better when pretreated leachate was used rather than raw leachate, and the best volumetric ratio was 2%. The following removals were obtained: 97% for the biochemical oxygen demand (BOD5,20), 79% for total suspended solids, 77% for dissolved organic carbon and 84% for soluble chemical oxygen demand. Most of the pretreated leachate SBOM (65%) was removed rather than diluted or adsorbed into the sludge, as confirmed by Fourier transform infrared (FTIR) spectroscopy analyses.

  4. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration

    SciTech Connect

    Abood, Alkhafaji R.; Bao, Jianguo; Du, Jiangkun; Zheng, Dan; Luo, Ye

    2014-02-15

    Highlights: • A novel method of stripping (agitation) was investigated for NH{sub 3}-N removal. • PFS coagulation followed agitation process enhanced the leachate biodegradation. • Nitrification–denitrification achieved by changing operation process in SBR treatment. • A dual filter of carbon-sand is suitable as a polishing treatment of leachate. • Combined treatment success for the complete treatment of non-biodegradable leachate. - Abstract: This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH{sub 3}-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s{sup −1} within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD{sub 5}) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L{sup −1} at pH 5.0. The biodegradable ratio BOD{sub 5}/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD{sub 5}, 95.5% COD and 98.1% NH{sub 3}-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD{sub 5}, suspended solid (SS), NH{sub 3}-N and total organic carbon (TOC) were 72.4 mg L{sup −1}, 22.8 mg L{sup −1}, 24.2 mg L{sup −1}, 18.4 mg L{sup −1} and 50.8 mg L{sup −1} respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated

  5. Performance evaluation of a hybrid-passive landfill leachate treatment system using multivariate statistical techniques

    SciTech Connect

    Wallace, Jack; Champagne, Pascale; Monnier, Anne-Charlotte

    2015-01-15

    Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system, followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling

  6. Performance evaluation of a hybrid-passive landfill leachate treatment system using multivariate statistical techniques.

    PubMed

    Wallace, Jack; Champagne, Pascale; Monnier, Anne-Charlotte

    2015-01-01

    A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system, followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), "heavy" metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling the five criteria parameters (set as dependent variables), on a statistically significant level: conductivity, dissolved oxygen (DO), nitrite (NO2(-)), organic nitrogen (N), oxidation reduction potential (ORP), pH, sulfate and total volatile solids (TVS). The criteria parameters and the significant explanatory parameters were most important in modeling the dynamics of the passive treatment system during the study period. Such techniques and

  7. Post-treatment of sanitary landfill leachate by coagulation-flocculation using chitosan as primary coagulant.

    PubMed

    Nascimento, Inara Oliveira do Carmo; Guedes, Ana Rosa Pinto; Perelo, Louisa Wessels; Queiroz, Luciano Matos

    2016-01-01

    Chitosan was chosen as an alternative primary coagulant in a complementary coagulation-flocculation treatment of sanitary landfill leachate with the aim of removing recalcitrant organic matter. In order to optimize the process conditions, central composite design and response surface methodology were applied. To evaluate the performance of the process using chitosan, we also carried out tests with aluminium sulphate (Al(2) (SO(4))(3).14 H(2)O) as coagulant. In addition, acute toxicity tests were carried using the duckweed Lemna minor and the guppy fish Poecilia reticulata as test organisms. The analytic hierarchy process was employed for selecting the most appropriate coagulant. Mean values of true colour removal efficiency of 80% and turbidity removal efficiency of 91.4% were reached at chitosan dosages of 960 mg L(-1) at pH 8.5. The acute toxicity tests showed that organisms were sensitive to all samples, mainly after coagulation-flocculation using chitosan. CE(50) for L. minor was not determined because there was no inhibition of the average growth rate and biomass production; LC(50) for P. reticulata was 23% (v v(-1)). Multi-criteria analysis showed that alum was the most appropriate coagulant. Therefore, chitosan as primary coagulant was not considered to be a viable alternative in the post-treatment of landfill leachate.

  8. An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale.

    PubMed

    Silva, Tânia F C V; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P

    2017-01-15

    In this work, an innovative methodology for the treatment of landfill leachates, after aerobic lagooning, is proposed and adjusted at pilot-scale. This methodology involves an aerobic activated sludge biological pre-oxidation (ASBO), a coagulation/sedimentation step (240mgFe(3+)/L, at pH4.2) and a photo-oxidation through a photo-Fenton (PF) reaction (60mg Fe(2+), at pH2.8) combining solar and artificial light. The ASBO process applied to a leachate after aerobic lagooning, with high organic and nitrogen content (1.1-1.5gC/L; 0.8-3.0gN/L) and low biodegradability (BOD5/COD =0.07-0.13), is capable to oxidise 62-99% of the ammonium nitrogen, consuming only the affluent alkalinity (70-100%). The coagulation/sedimentation stage led to the humic acids precipitation, promoting a marked change in leachate colour, from dark-brown to yellowish-brown (related to fulvic acids), accompanied by a reduction of 60%, 58% and 88% on DOC, COD and TSS, respectively. The PF system promoted the degradation of the recalcitrant organic molecules into more easily biodegradable ones. According to Zahn-Wellens biodegradability test, a leachate with 419mg DOC/L after coagulation, would have to be photo-oxidized until DOC <256mg/L, consuming 117mM of H2O2 and 10.4kJ/L of accumulated UV energy, to achieve an effluent that can be biologically treated in compliance with the COD discharge limit (150mg O2/L) into water bodies. The biological process downstream from the photocatalytic system would promote a mineralization >60%. The PF step cost to treat 100m(3)/day of leachate was 6.41€/m(3), combining 1339m(2) of CPCs with 31 lamps. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    SciTech Connect

    Not Available

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

  10. Iron-loaded mangosteen as a heterogeneous Fenton catalyst for the treatment of landfill leachate.

    PubMed

    Laiju, A R; Sivasankar, T; Nidheesh, P V

    2014-09-01

    Iron-loaded mangosteen shell powder (Fe-MSP) was found as an effective heterogeneous Fenton catalyst for the treatment of stabilized landfill leachate. Sonolytically produced catalyst has higher efficiency than other catalysts. At the optimal conditions (pH 3, catalyst concentration of 1,750 mg/L and hydrogen peroxide concentration of 0.26 M), 81 % of the chemical oxygen demand (COD) was removed effectively from the landfill leachate. But, the efficiency of Fe-MSP was reduced in the first recycling due to the poisoning of active sites. A metal leaching study indicated that the degradation of the pollutant is mainly due to solid Fe ions present in Fe-MSP rather than the leached ferrous and ferric ions. Hydroxyl radical production in the system was confirmed by the Fenton oxidation of benzoic acid. Compared to the homogeneous Fenton process, the heterogeneous Fenton process using Fe-MSP had higher COD removal efficiency, indicating the practical applicability of the prepared catalyst.

  11. Hollow fiber vs. flat sheet MBR for the treatment of high strength stabilized landfill leachate.

    PubMed

    Hashisho, J; El-Fadel, M; Al-Hindi, M; Salam, D; Alameddine, I

    2016-09-01

    The Membrane Bioreactor (MBR) technology is increasingly becoming a prominent process in the treatment of high-strength wastewater such as leachate resulting from the decomposition of waste in landfills. This study presents a performance comparative assessment of flat sheet and hollow fiber membranes in bioreactors for the treatment of relatively stable landfill leachate with the objective of defining guidelines for pilot/full scale plants. For this purpose, a laboratory scale MBR system was constructed and operated to treat a leachate with Chemical Oxygen Demand (COD) (3900-7800mg/L), Biochemical Oxygen Demand (BOD5) (∼440-1537mg/L), Total Phosphorus (TP) (∼10-59mg/L), Phosphate (PO4(3)(-)) (5-58mg/L), Total Nitrogen (TN) (1500-5200mg/L), and ammonium (NH4(+)) (1770-4410mg/L). Both membranes achieved comparable BOD (92.2% vs. 93.2%) and TP (79.4% vs. 78.5%) removals. Higher PO4(3)(-) removal efficiency or percentage (87.3% vs. 81.3%) and slightly higher, but not statistically significant, COD removal efficiency were obtained with the hollow fiber membrane (71.4% vs. 68.5%). On the other hand, the flat sheet membrane achieved significantly higher TN and NH4(+) removal efficiencies (61.2% vs. 49.4% and 63.4% vs. 47.8%, respectively), which may be attributed to the less frequent addition of NaOCl compared to the hollow fiber system.

  12. Industrial landfill leachate characterization and treatment utilizing anaerobic digestion with methane production

    SciTech Connect

    Corbo, P.

    1985-01-01

    Anaerobic digestion of organic compounds found in an industrial landfill leachate originating from a Superfund site was assessed using mixed methanogenic cultures. Leachate was found to contain a dissolved organic content (DOC) of about 16,000 mg/liter, of which 40% was in the form of acetic, propionic and butyric acids. The overall reduction of DOC and the fates of individual volatile fatty acids were studied during batch experiments of 5, 10, and 20% leachate dilutions. Other leachate components were characterized. Two methanogenic cultures were selected. A leachate digesting culture was selected directly with the leachate. A volatile fatty acid digesting culture was selected using acetic, propionic and butyric acids in the ratio found in the leachate. An overall DOC reduction of 64.3% was observed for the leachate digesting culture. A reduction of 69.1% was observed for the volatile fatty acid digesting culture. Specific DOC utilization rates were 0.154 and 0.211 day/sup -1/, for the leachate digesting and volatile fatty acid digesting cultures, respectively. Methane was produced at levels of 0.95-0.99 liters per gram DOC removed. Cell growth could not be observed during batch experiments. Acetate appeared to be the rate-limiting step in the DOC removal. Batch experiments with 20% leachate dilutions did not produce much methane, possibly due to overloading systems with volatile fatty acids. Other leachate components did not appear to effect anaerobic digestion.

  13. Decomposition of toxic pollutants in landfill leachate by ozone after coagulation treatment.

    PubMed

    Poznyak, Tatyana; Bautista, G Luis; Chaírez, Isaac; Córdova, R Ivan; Ríos, L Elvira

    2008-04-15

    This study deals with evaluation of organic matter from Mexico City waste sanitary landfill leachate of Bordo Poniente (including domestic and industrial) by ozonation after a coagulation treatment with Fe2(SO4)(3) (2.5 g/L at pH 4-5). The content of humic substances after the coagulation treatment decreases up to 70%. Then leachate obtained from a solid with initial COD=1511 mg/L and the pH 8.5 was treated by ozone. The aqueous samples by a UV-vis and HPLC technique were analyzed. The partial identification of the initial composition of the organic matter as well as of intermediates and final products was carried out after the extraction of the initial and ozonated leachate with benzene, chloroform:methanol (2:1) and hexane. Then the extracts with a gas chromatograph with mass detector and FID were analyzed. In the HPLC results we identify malonic and oxalic acids. The initial concentrations of these acids were 19 mg/L and 214 mg/L, respectively. The oxalic acid is formatted and accumulated in ozonation. The obtained results show that the color disappears (visually) at 100% during 5 min of ozonation. The organic substances, extracted with chloroform-methanol, may be destructed during 15 min of ozonation; the organic matter, extracted with benzene, destructs completely by ozone during 5 min, and the organic compounds extracted with hexane have a low ozonation rate. The toxic compounds presented in leachate decompose completely during 15 min of ozonation. The ozonation rate constants for each group of organics (as observed constants) were calculated applying simplified mathematical model and the recurrent least square method using the program MATLAB 6.5.

  14. Use of aged refuse-based bioreactor/biofilter for landfill leachate treatment.

    PubMed

    Hassan, Muhammad; Xie, Bing

    2014-08-01

    Sanitary landfilling is a proven way for disposal of municipal solid waste (MSW) in developed countries in general and in developing countries in particular, owing to its low immediate costs. On the other hand, landfilling is a matter of concern due to its generation of heavily polluted leachate. Landfill leachate becomes more refractory with time and is very difficult to treat using conventional biological processes. The aged refuse-based bioreactor/biofilter (ARB) has been shown to be a promising technology for the removal of various pollutants from landfill leachate and validates the principle of waste control by waste. Based on different environmental and operational factors, many researchers have reported remarkable pollutant removal efficiencies using ARB. This paper gives an overview of various types of ARBs used; their efficiencies; and certain factors like temperatures, loading rates, and aerobic/anaerobic conditions which affect the performance of ARBs in eliminating pollutants from leachate. Treating leachate by ARBs has been proved to be more cost-efficient, environment friendly, and simple to operate than other traditional biological techniques. Finally, future research and developments are also discussed.

  15. Strategies of management for the whole treatment of leachates generated in a landfill and in a composting plant.

    PubMed

    García-López, Juan; Rad, Carlos; Navarro, Milagros

    2014-01-01

    This study compares the leachates generated in the treatment of Municipal Solid Wastes (MSW) of similar origin but managed in two different ways: (a) sorting and composting in a Treatment Plant in Aranda de Duero (Burgos, Spain), and (b) direct dumping in a landfill in Aranda de Duero (Burgos, Spain) with no prior treatment. Two different leachates were considered for the former: those generated in the fermentation shed (P1) and those generated in the composting tunnels (P2); another leachate was collected from the landfill (P3). Physical and chemical properties, including heavy metal contents, were seasonally monitored in the different leachates. This study allowed us to conclude that the sampling season had a significant effect on Pb, Cd, Ni, Mg and total-N contents (P < 0.01). Similarly, leachates P1, P2 and P3 exhibited significant overall differences for most of the measured parameters except for Cd, Cu, Pb, K, Fe, C-inorg and C-org contents (P < 0.01). This study concludes with the feasibility of a whole treatment for both leachates using ultrafiltration in a membrane bioreactor (MBR).

  16. Application of constructed wetlands to the treatment of leachates from a municipal solid waste landfill in Ibadan, Nigeria.

    PubMed

    Aluko, Olufemi Oludare; Sridhar, M K C

    2005-06-01

    Leachates are wastewater generated principally from landfills and solid waste disposal sites. Leachates emanating from municipal wastes are a major source of surface and groundwater pollution worldwide. Globally, leachates have been implicated in low yield of farm produce, developmental anomalies, low birth weights, leukemia incidence, and other cancers in communities around the site. They have also been implicated in hazards to the environment, loss of biodiversity, and contamination of water sources. At Aba-Eku in Nigeria, leachates are being discharged into the Omi Stream without treatment. A study was conducted on a method of leachate treatment that passes the leachate through constructed wetlands using Ipomoea aquatica (Forsk), a locally available plant found close to the landfill site. The aim of the study was to evolve a sustainable and cost-effective method of treatment whose effluents can be discharged into the Omi Stream with no or minimal impact. The study was descriptive and analytical in design. Samples were collected and analyzed with standard methods for pH, suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia, nitrate, and trace metals. Raw leachates were turbid and amber in color and contained suspended solids (197.5 mg/L), ammonia (610.9 mg/L), lead (1.64 mg/L), iron (198.10 mg/L), and manganese (23.20 mg/L). When the leachates were passed through the constructed wetland with eight hours' detention time, effluents showed significant reductions in suspended solids (81.01 percent), BOD (86.03 percent), and ammonia (97.77 percent). The study shows that a constructed wetland is a feasible tool for the treatment of leachates before their disposal into the environment in Nigeria and can help safeguard environmental quality.

  17. Treatment of Navy landfill leachate contaminated with low levels of priority pollutants. Final report, Jun 89-Mar 90

    SciTech Connect

    Jue, C.; Regan, R.W.

    1991-10-01

    This report discusses remediation of landfill leachate and contaminated ground water at selected Naval facilities. A conventional treatment train (air stripping, ion exchange, and carbon adsorption) was used to illustrate the treatment potential for a diluted leachate at Naval Weapons Station, Seal Beach. The treatment removed specified organics to below 29 ppb and specified metals to below California's drinking water standards. Available costs for conventional and innovative treatment trains were considered. Treatment technologies include oil water separators, activated sludge, trickling filter, powdered activated carbon, neutralization, oxidation reduction, precipitation/floculation/sedimentation, and air stripping.

  18. Biodegradation characteristics and size fractionation of landfill leachate for integrated membrane treatment.

    PubMed

    Insel, Güçlü; Dagdar, Mina; Dogruel, Serdar; Dizge, Nadir; Ubay Cokgor, Emine; Keskinler, Bülent

    2013-09-15

    The fate of organics and nitrogen during the biological treatment with MBR and subsequent membrane filtration processes (nano filtration, NF; reverse osmosis, RO) were investigated for a landfill leachate. The chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) removal performances of membrane bioreactor (MBR) were obtained to be around 89% and 85%, respectively. The effluent COD of MBR was measured to be 1935 mg/L (30 kDa) which is much lower than experimentally determined soluble inert COD of 3200 mg/L using 0.45 μm filter. The readily and slowly biodegradable COD fractions were estimated to be 17% and 52% of raw influent COD, respectively. The respirometry based modeling test performed on raw leachate exhibited much slower degradation kinetics compared to municipal wastewater. A unique subset of model parameters was extracted from batch respirometry by using acclimated MBR sludge. The sequential ultrafiltration (UF) experiments (particle size distribution, PSD) revealed that most of the organics was below 2 nm filter mesh size. In addition, NF/RO post treatment after MBR system was required to increase COD and total nitrogen (TN) removal performances up to 99%. Relatively lower salt rejection rates around 94% was obtained for RO system as a post treatment of MBR system.

  19. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration.

    PubMed

    Abood, Alkhafaji R; Bao, Jianguo; Du, Jiangkun; Zheng, Dan; Luo, Ye

    2014-02-01

    This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH3-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s(-1) within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD5) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L(-1) at pH 5.0. The biodegradable ratio BOD5/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD5, 95.5% COD and 98.1% NH3-N removal were achieved by SBR operated under anoxic-aerobic-anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD5, suspended solid (SS), NH3-N and total organic carbon (TOC) were 72.4 mg L(-1), 22.8 mg L(-1), 24.2 mg L(-1), 18.4 mg L(-1) and 50.8 mg L(-1) respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate.

  20. Assessment of combined treatment of landfill urban solid waste leachate and sewage using Danio rerio and Daphnia similis.

    PubMed

    Mannarino, Camille F; Ferreira, João Alberto; Moreira, Josino C; Bila, Daniele M; Magalhães, Danielly P

    2010-09-01

    The co-treatment from Morro do Céu landfill leachate with domestic sewage in the Icaraí STP was monitored with regard to the behavior of toxicity of its inflows and outflow. Leachate not exceeded 1.5% in volume in the plant. The acute ecotoxicological tests showed that, although leachate is far more harmful to D. rerio (LC50 approximately = 4) and D. similis (LC50 approximately = 5) than sewage (LC50 approximately = 62; LC50 approximately = 22), statistically the mixture of leachate with sewage did not result in a more toxic inflow (LC50 approximately = 57; LC50 approximately = 12) for treatment than raw sewage. After treatment, the outflow toxicity (LC50 approximately = 76; LC50 approximately = 16) complied with the environmental laws.

  1. Demonstration of an advanced liquid treatment system for industrial wastes and energy conservation: Al Turi sanitary landfill leachate treatment plant. Final report

    SciTech Connect

    1994-09-01

    Landfill leachate, collected at lined sanitary landfills, is usually hauled to off-site sewage treatment plants for disposal. These sewage treatment plants are characteristically aerobic treatment systems designed to treat moderate strength wastewater; however, transportation off-site and aerobic treatment both use energy. The project investigated the on-site anaerobic treatment (anaerobic treatment systems usually produce methane gas) of leachate, designed to enhance methane gas production and eliminate having to haul leachate off-site. The methane gas would heat various buildings on the landfill; energy used by the landfilling operation would decrease. The project`s objective was to design and construct an on-site treatment plant to treat the leachate produced by the landfill and to compare the system`s operation to transportation and treatment off-site at a nearby sewage treatment plant. Bench-scale tests were done on the leachate to determine design. Using this design, the system was constructed and used to treat leachate. Costs and effluent quality were monitored.

  2. Characterization and treatment of organic constituents in landfill leachates that influence the UV disinfection in the publicly owned treatment works (POTWs).

    PubMed

    Zhao, Renzun; Gupta, Abhinav; Novak, John T; Goldsmith, C Douglas; Driskill, Natalie

    2013-08-15

    Landfill leachates strongly quench UV light. When discharged to POTWs, leachates can interfere with UV disinfection. To investigate the UV quenching problem of landfill leachates, a variety of landfill leachates with a range of conditions were collected and characterized. The UV blocking component was found to be resistant to biological degradation so they pass through wastewater treatment plants and impact the subsequent UV disinfection system. Leachate samples were fractionated into humic acids (HAs), fulvic Acids (FAs) and hydrophilic (Hpi) fractions to investigate the source of UV absorbing materials. Results show that for all leachates examined, the specific UV254 absorbance (SUVA254) of the three fractions follows: HA>FA>Hpi. However, the overall UV254 absorbance of the Hpi fraction was important because there was more hydrophilic organic matter than humic or fulvic acids. The size distribution was also investigated to provide information about the potential for membrane treatment. It was found that the size distribution of the three fractions follows: HA>FA>Hpi. This indicates that membrane separation following biological treatment is a promising technology for removal of humic substances from landfill leachates. Leachate samples treated in this manner could meet the UV transmittance requirement of the POTWs. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Metal retention on pine bark and blast furnace slag--on-site experiment for treatment of low strength landfill leachate.

    PubMed

    Nehrenheim, Emma; Waara, Sylvia; Johansson Westholm, Lena

    2008-03-01

    Treatment of landfill leachate using blast furnace slag and pine bark as reactive sorbents was studied in an in situ column experiment at the Lilla Nyby landfill site in Eskilstuna, Sweden. The columns were filled with approximately 101 of each sorbent and leachate was supplied at three different flow rates during a period of 4 months. Samples of inflow and outflow were collected three times a week and were analyzed for physical and chemical parameters, including concentrations of some metals, and toxicity. It was found that pine bark removed metals more efficiently than did the blast furnace slags; that Zn was most efficiently retained in the filters and that both retention time and initial concentration played an important role in the sorption process. It was also observed that the pine bark column did not release COD. No toxicity of the untreated or the treated leachate was found with the test organisms and test responses used.

  4. Water-quality data from a landfill-leachate treatment and disposal site, Pinellas County, Florida, January 1979-August 1980

    USGS Publications Warehouse

    Barr, G.L.; Fernandez, Mario

    1981-01-01

    Water-quality data collected between January 1979 and August 1980 at the landfill leachate treatment site in Pinellas County, Fla., are presented. Data include field and laboratory measurements of physical properties, major chemical constituents , nitrogen and phosphorus species, chemical oxygen demand, trace metals, coliform bacteria, taxonomy of macroinvertebrates and phytoplankton, and chlorophyll analyses. Data were collected as part of a study to determine water-quality changes resulting from aeration and ponding of leachate pumped from landfill burial trenches and for use in determining the rate of movement and quality changes as the leachate migrates through the surficial aquifer. Samples were collected from 81 surficial-aquifer water-quality monitoring wells constructed in January 1975, February 1979, and March 1979, and 8 surface-water quality monitoring sites established in January 1975, February 1978, and November 1978. (USGS)

  5. Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate.

    PubMed

    Hasar, Halil; Unsal, Sezahat A; Ipek, Ubeyde; Karatas, Serdar; Cinar, Ozer; Yaman, Cevat; Kinaci, Cumali

    2009-11-15

    This study presents a configuration for the complete treatment of landfill leachate with high organic and ammonium concentrations. Ammonia stripping is performed to overcome the ammonia toxicity to aerobic microorganisms. By coagulation-flocculation process, COD and suspended solids (SS) were removed 36 and 46%, respectively. After pretreatment, an aerobic/anoxic membrane bioreactor (Aer/An MBR) accomplished the COD and total inorganic nitrogen (total-N(i)) removals above 90 and 92%, respectively, at SRT of 30 days. Concentrations of COD and total-N(i) (not considering organic nitrogen) in the Aer/An MBR effluent decreased to 450 and 40 mg/l, respectively, by significant organic oxidation and nitrification/denitrification processes. As an advanced treatment for the leachate, the reverse osmosis (RO) was applied to the collected Aer/An MBR effluents. Reverse osmosis provided high quality effluent by reducing the effluent COD from MBR to less than 4.0mg/l at SRT of 30 days.

  6. Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate.

    PubMed

    Labiadh, Lazhar; Fernandes, Annabel; Ciríaco, Lurdes; Pacheco, Maria José; Gadri, Abdellatif; Ammar, Salah; Lopes, Ana

    2016-10-01

    Conventional sanitary landfill leachate treatment has recently been complemented and, in some cases, completely replaced by reverse osmosis technology. Despite the good quality of treated water, the efficiency of the process is low and a large volume of reverse osmosis concentrate has to be either discharged or further treated. In this study, the use of anodic oxidation combined with electro-Fenton processes to treat the concentrate obtained in the reverse osmosis of sanitary landfill leachate was evaluated. The anodic oxidation pretreatment was performed in a pilot plant using an electrochemical cell with boron-doped diamond electrodes. In the electro-Fenton experiments, a boron-doped diamond anode and carbon-felt cathode were used, and the influence of the initial pH and iron concentration were studied. For the experimental conditions, the electro-Fenton assays performed at an initial pH of 3 had higher organic load removal levels, whereas the best nitrogen removal was attained when the electrochemical process was performed at the natural pH of 8.8. The increase in the iron concentration had an adverse impact on treatment under natural pH conditions, but it enhanced the nitrogen removal in the electro-Fenton assays performed at an initial pH of 3. The combined anodic oxidation and electro-Fenton process is useful for treating the reverse osmosis concentrate because it is effective at removing the organic load and nitrogen-containing species. Additionally, this process potentiates the increase in the biodegradability index of the treated effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A combined treatment of landfill leachate using calcium oxide, ferric chloride and clinoptilolite.

    PubMed

    Orescanin, Visnja; Ruk, Damir; Kollar, Robert; Mikelic, Ivanka Lovrencic; Nad, Karlo; Mikulic, Nenad

    2011-01-01

    The aim of this research was development of appropriate procedure for treatment of landfill leachate taken from old sanitary landfill Piskornica (Koprivnica, Croatia). Due to complex nature of the effluent a combined treatment approach was applied. Samples were treated with calcium oxide followed by ferric chloride and finally with clinoptilolite. The optimum amount of treating agents and contact time were determined. Application of calcium oxide (25 g/L, 20 min. contact time) resulted in the reduction of color, turbidity, suspended solids and ammonia for 94.50%, 96.55%, 95.66% and 21.60%, respectively, while the removal efficiency of Cr (VI), Fe, Ni, Cu, Zn and Pb was 75.00%, 95.34%, 56.52%, 78.72%, 73.02% and 100.00%, respectively. After addition of ferric chloride (570 mg Fe(3+)/L, 20 min. contact time) removal efficiency of color, turbidity, suspended solids and ammonia increased to 96.04%, 99.27%, 98.61%, and 43.20%, respectively. Removal of ammonia (81.60%) increased significantly after final adsorption onto clinoptilolite (25 g/L, 4 h contact time). Removal of COD after successive treatment with calcium oxide, ferric chloride and clinoptilolite was 64.70%, 77.40% and 81.00%, respectively.

  8. Bioaugmentation treatment of mature landfill leachate by new isolated ammonia nitrogen and humic acid resistant microorganism.

    PubMed

    Yu, Dahai; Yang, Jiyu; Teng, Fei; Feng, Lili; Fang, Xuexun; Ren, Hejun

    2014-07-01

    The mature landfill leachate, which is characterized by a high concentration of ammonia nitrogen (NH3-N) and humic acid (HA), poses a challenge to biotreatment methods, due to the constituent toxicity and low biodegradable fraction of the organics. In this study, we applied bioaugmentation technology in landfill leachate degradation by introducing a domesticated NH3-N and HA resistant bacteria strain, which was identified as Bacillus cereus (abbreviated as B. cereus Jlu) and Enterococcus casseliflavus (abbreviated as E. casseliflavus Jlu), respectively. The isolated strains exhibited excellent tolerant ability for NH3-N and HA and they could also greatly improved the COD (chemical oxygen demand), NH3-N and HA removal rate, and efficiency of bioaugmentation degradation of landfill leachate. Only 3 days was required for the domesticated bacteria to remove about 70.0% COD, compared with 9 days' degradation for the undomesticated (autochthonous) bacteria to obtain a similar removal rate. An orthogonal array was then used to further improve the COD and NH3-N removal rate. Under the optimum condition, the COD removal rate in leachate by using E. casseliflavus Jlu and B. cereus Jlu increased to 86.0% and 90.0%, respectively after, 2 days of degradation. The simultaneous removal of NH3-N and HA with more than 50% and 40% removal rate in leachate by employing the sole screened strain was first observed.

  9. Treatment of landfill leachate-impacted groundwater using cascade aeration and constructed wetlands

    SciTech Connect

    Loer, J.; O`Flanagan, B.; Fellows, W.

    1995-12-31

    At an unlined municipal solid waste landfill, heavy metal and toxic organic compounds present in leachate have impacted groundwater, necessitating extraction and treatment of the contaminated groundwater. A remedial design relying on a natural systems engineering approach will take advantage of existing contours (gravity flow) and surroundings (wetlands), and will limit energy inputs and eliminate chemical inputs. Impacted groundwater will be extracted, and aerated via a cascade constructed of polypropylene sheets fabricated into {open_quotes}step{close_quotes} sections and set into a side slope of the landfill. Volatilization of organics and oxidation of iron and heavy metals to insoluble compounds will occur during cascading and will continue within a sedimentation basin where settling of iron precipitates will induce co-settling of heavy metal precipitates. Following the sedimentation basin, a constructed wetland containing both aerobic zones and anaerobic zones will provide additional treatment of remaining solids and heavy metals, before surface discharge. Use of a natural systems approach significantly reduces operating costs compared to a mechanical-aeration, chemical-precipitation system, and is more aesthetically pleasing and suited to the remote locale. The system is under construction and seasonal operation will begin in spring 1996.

  10. High rate nitrogen removal by ANAMMOX internal circulation reactor (IC) for old landfill leachate treatment.

    PubMed

    Phan, The Nhat; Van Truong, Thi Thanh; Ha, Nhu Biec; Nguyen, Phuoc Dan; Bui, Xuan Thanh; Dang, Bao Trong; Doan, Van Tuan; Park, Joonhong; Guo, Wenshan; Ngo, Huu Hao

    2017-06-01

    This study aimed to evaluate the performance of a high rate nitrogen removal lab-scale ANAMMOX reactor, namely Internal Circulation (IC) reactor, for old landfill leachate treatment. The reactor was operated with pre-treated leachate from a pilot Partial Nitritation Reactor (PNR) using a high nitrogen loading rate ranging from 2 to 10kgNm(-3)d(-1). High rate removal of nitrogen (9.52±1.11kgNm(-3)d(-1)) was observed at an influent nitrogen concentration of 1500mgNL(-1). The specific ANAMMOX activity was found to be 0.598±0.026gN2-NgVSS(-1)d(-1). Analysis of ANAMMOX granules suggested that 0.5-1.0mm size granular sludge was the dominant group. The results of DNA analysis revealed that Candidatus Kueneniastuttgartiensis was the dominant species (37.45%) in the IC reactor, whereas other species like uncultured Bacteroidetes bacterium only constituted 5.37% in the system, but they were still responsible for removing recalcitrant organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Landfill leachate treatment with microbial fuel cells; scale-up through plurality.

    PubMed

    Gálvez, Antonia; Greenman, John; Ieropoulos, Ioannis

    2009-11-01

    Three Microbial Fuel Cells (MFCs) were fluidically connected in series, with a single feed-line going into the 1st column through the 2nd column and finally as a single outflow coming from the 3rd column. Provision was also made for re-circulation in a loop (the outflow from the 3rd column becoming the feed-line into the 1st column) in order to extend the hydraulic retention time (HRT) on treatment of landfill leachate. The effect of increasing the electrode surface area was also studied whilst the columns were (fluidically) connected in series. An increase in the electrode surface area from 360 to 1080 cm(2) increased the power output by 118% for C2, 151% for C3 and 264% for C1. COD and BOD(5) removal efficiencies also increased by 137% for C1, 279% for C2 and 182% for C3 and 63% for C1, 161% for C2 and 159% for C3, respectively. The system when configured into a loop was able to remove 79% of COD and 82% of BOD(5) after 4 days. These high levels of removal efficiency demonstrate the MFC system's ability to treat leachate with the added benefit of generating energy.

  12. Municipal solid waste landfill leachate treatment and electricity production using microbial fuel cells.

    PubMed

    Damiano, Lisa; Jambeck, Jenna R; Ringelberg, David B

    2014-05-01

    Microbial fuel cells were designed and operated to treat landfill leachate while simultaneously producing electricity. Two designs were tested in batch cycles using landfill leachate as a substrate without inoculation (908 to 3,200 mg/L chemical oxygen demand (COD)): Circle (934 mL) and large-scale microbial fuel cells (MFC) (18.3 L). A total of seven cycles were completed for the Circle MFC and two cycles for the larger-scale MFC. Maximum power densities of 24 to 31 mW/m(2) (653 to 824 mW/m(3)) were achieved using the Circle MFC, and a maximum voltage of 635 mV was produced using the larger-scale MFC. In the Circle MFC, COD, biological oxygen demand (BOD), total organic carbon (TOC), and ammonia were removed at an average of 16%, 62%, 23%, and 20%, respectively. The larger-scale MFC achieved an average of 74% BOD removal, 27% TOC removal, and 25% ammonia reduction while operating over 52 days. Analysis of the microbial characteristics of the leachate indicates that there might be both supportive and inhibiting bacteria in landfill leachate for operation of an MFC. Issues related to scale-up and heterogeneity of a mixed substrate remain.

  13. Evaluation of toxicity and estrogenicity of the landfill-concentrated leachate during advanced oxidation treatment: chemical analyses and bioanalytical tools.

    PubMed

    Wang, Guifang; Lu, Gang; Zhao, Jiandi; Yin, Pinghe; Zhao, Ling

    2016-08-01

    Landfill-concentrated leachate from membrane separation processes is a potential pollution source for the surroundings. In this study, the toxicity and estrogenicity potentials of concentrated leachate prior to and during UV-Fenton and Fenton treatments were assessed by a combination of chemical (di (2-ethylhexyl) phthalate and dibutyl phthalate were chosen as targets) and biological (Daphnia magna, Chlorella vulgaris, and E-screen assay) analyses. Removal efficiencies of measured di (2-ethylhexyl) phthalate and dibutyl phthalate were more than 97 % after treatment with the two methods. Biological tests showed acute toxicity effects on D. magna tests in untreated concentrated leachate samples, whereas acute toxicity on C. vulgaris tests was not observed. Both treatment methods were found to be efficient in reducing acute toxicity effects on D. magna tests. The E-screen test showed concentrated leachate had significant estrogenicity, UV-Fenton and Fenton treatment, especially the former, were effective methods for reducing estrogenicity of concentrated leachate. The EEQchem (estradiol equivalent concentration) of all samples could only explain 0.218-5.31 % range of the EEQbio. These results showed that UV-Fenton reagent could be considered as a suitable method for treatment of concentrated leachate, and the importance of the application of an integrated (biological + chemical) analytical approach for a comprehensive evaluation of treatment suitability.

  14. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell.

    PubMed

    Mahmoud, Mohamed; Parameswaran, Prathap; Torres, César I; Rittmann, Bruce E

    2014-01-01

    Pre-fermentation of poorly biodegradable landfill leachate (BOD5/COD ratio of 0.32) was evaluated for enhanced current density (j), Coulombic efficiency (CE), Coulombic recovery (CR), and removal of organics (BOD5 and COD) in a microbial electrolysis cell (MEC). During fermentation, the complex organic matter in the leachate was transformed to simple volatile fatty acids, particularly succinate and acetate in batch tests, but mostly acetate in semi-continuous fermentation. Carbohydrate had the highest degree of fermentation, followed by protein and lipids. j, CE, CR, and BOD5 removal were much greater for an MEC fed with fermented leachate (23 A/m(3) or 16 mA/m(2), 68%, 17.3%, and 83%, respectively) compared to raw leachate (2.5 A/m(3) or 1.7 mA/m(2), 56%, 2.1%, and 5.6%, respectively). All differences support the value of pre-fermentation before an MEC for stabilization of BOD5 and enhanced electron recovery as current when treating a recalcitrant wastewater like landfill leachate.

  15. Management and treatment of landfill leachate by a system of constructed wetlands and ponds in Singapore.

    PubMed

    Sim, C H; Quek, B S; Shutes, R B E; Goh, K H

    2013-01-01

    Lorong Halus, Singapore's first landfill leachate treatment system, consists of a pre-treatment system (8,000 m(2)), five constructed reed beds (38,000 m(2)), five polishing ponds (13,000 m(2)), an education centre and a learning trail for visitors. Eight species of wetland plants (total 160,000 plants) were selected for their ability to uptake nutrients, tolerance to low phosphorus concentrations and resistance to pest infestations. The wetland was launched in March 2011 and water quality monitoring started in April 2011. The removal efficiencies of the pre-treatment system from April 2011 to August 2012 are biochemical oxygen demand (BOD5) 57.4%; chemical oxygen demand (COD) 23.6%; total suspended solids (TSS) 55.1%; ammoniacal nitrogen (NH4-N) 76.8%; total phosphorus (TP) 33.3% and total nitrogen (TN) 60.2%. Removal efficiencies of the reed beds are BOD5 47.0%; COD 42.2%; TSS 57.0%; NH4-N 82.5%; TP 29.3% and TN 83.9%. Plant growth is generally satisfactory, but the lower than designed volume of leachate has adversely affected some sections of plants and resulted in uneven flow distribution in reed beds. The plant management programme includes improving plant regrowth by harvesting of alternate strips of plants and replanting. The treated effluent meets water quality limits for discharge to the public sewer and is subsequently treated by the NEWater treatment system, which recycles water for industrial and indirect potable use.

  16. Ferrous ion-activated persulphate process for landfill leachate treatment: removal of organic load, phenolic micropollutants and nitrogen.

    PubMed

    Kattel, Eneliis; Dulova, Niina

    2017-05-01

    The innovative [Formula: see text] treatment technology based on sulphate radicals induced oxidation was applied for the treatment of landfill leachate. The performance of chemical oxygen demand (COD) and dissolved organic carbon (DOC) removal in the Fe(2+)-activated persulphate system was moderate; however, the results of dissolved nitrogen (DN) and total phenols removal showed significant efficacy (≤39% and ≥87%, respectively). [Formula: see text] addition to the [Formula: see text] system enhanced the treatment efficacy and resulted in supplementary 15% of COD and 5% of DN removal. Hydroxyl radical-based H2O2/Fe(2+) treatment of the landfill leachate was performed as well; the results indicated higher removal efficacy of COD and DOC compared to the [Formula: see text] system. However, practical application of the H2O2/Fe(2+) system is considerably influenced by temperature rise and excessive foam formation. Generally, the ferrous ion-activated persulphate treatment could be a promising technology for ex situ as well as in situ landfill leachate treatment applications.

  17. Photochemical destruction of cyanide in landfill leachate

    SciTech Connect

    Kim, B.R.; Podsiadlik, D.H.; Hartlund, J.L.; Gaines, W.A.; Kalis, E.M.

    1998-11-01

    The Allen Park Clay Mine Landfill, owned by Ford, produces a leachate that occasionally contains cyanide at levels marginally below the discharge limit. The form of the cyanide in the leachate was found to be iron-cyanide complexes that resist oxidation by a conventional treatment method, alkaline oxidation. Furthermore, the leachate also was found to contain a relatively large amount of organics which would exert additional demand for oxidizing agents (e.g., chlorine). A study was performed to determine what treatment technology could be employed in the event treatment becomes necessary because of potential changes in the leachate characteristics and/or discharge limits. In this study, among several chemical oxidation methods, ultraviolet (UV) irradiation with or without ozone was investigated as a treatment option. The following are the primary findings: (1) UV irradiation alone was effective for removing the iron-cyanide complex in both the leachate and the clean water; (2) the demand for UV or ozone by chemical oxygen demand was relatively low for this leachate; (3) ozone alone was not effective for removing the iron-cyanide complex; and (4) UV irradiation alone and UV irradiation with ozone resulted in the same removal for total cyanide in clean-water experiments, but the UV irradiation alone left some free cyanide whereas the UV irradiation with ozone did not.

  18. Hydroxyl radical (OH) scavenging in young and mature landfill leachates.

    PubMed

    Ghazi, Niloufar M; Lastra, Andres A; Watts, Michael J

    2014-06-01

    The final discharge point for collected landfill leachates is frequently the local municipal wastewater treatment facility. The salinity, color, nutrient, and anthropogenic organics contamination of leachates often necessitate some form of pre-treatment. When advanced oxidation processes (AOPs) are considered for pre-treatment, the unique composition of dissolved organic matter (DOM) and the relatively high concentrations of some inorganic solutes in leachate will inhibit treatment efficiency. The most important benchmark for design of AOPs is the expected steady-state production of free radical (OH). Without a quantitative assessment of total OH consumption in high-strength waste water, like a landfill leachate, efficient AOP treatment is uncertain. For this reason, two landfill leachates, distinct in color, DOM, and age of landfill, were characterized for OH-scavenging using an established competition kinetics method. After stripping the samples of inorganic carbon, the DOM in leachate from mature (stabilized) landfill was found to react with OH at a rate of 9.76 × 10(8) M(-1)s(-1). However, DOM in leachate from newer landfill was observed to scavenge available OH at a faster rate (8.28 × 10(9) M(-1)s(-1)). The combination of fast rate of reaction with OH and abundance of DOM in the sampled leachate severely limited the contribution of OH to degradation of an O3- and OH-labile organic probe compound (bisphenol-a) in oxidized mature leachate (fOH = 0.03). Substantial dosing of both O3 and H2O2 (>70 mg/L and >24 mg/L, respectively) may be required to see at least 1-log-removal (>90%) of an OH-selective leachate contaminant (i.e., parachlorobenzoic acid) in a mature landfill leachate.

  19. Removal of hydrogen sulfide gas and landfill leachate treatment using coal bottom ash.

    PubMed

    Lin, C Y; Hesu, P H; Yang, D H

    2001-06-01

    Coal bottom ashes produced from three thermal power plants were used in column and batch experiments to investigate the adsorption capacity of the coal ash. Hydrogen sulfide and leachates collected from three sanitary landfill sites were used as adsorbate gas and solutions, respectively. Experimental results showed that coal bottom ash could remove H2S from waste gas or reduce the concentrations of various pollutants in the leachate. Each gram of bottom ash could remove up to 10.5 mg of H2S. In treating the landfill leachate, increasing ash dosage increased the removal efficiency but decreased the adsorption amount per unit mass of ash. For these tested ashes, the removal efficiencies of chemical oxygen demand (COD), NH3-N, total Kjeldhal nitrogen (TKN), P, Fe3+, Mn2+, and Zn2+ were 36.4-50, 24.2-39.4, 27.0-31.1, 82.2-92.9, 93.8-96.5, 93.7-95.4, and 80.5-82.2%, respectively; the highest adsorption capacities for those parameters were 3.5-5.6, 0.22-0.63, 0.36-0.45, 0.027-0.034, 0.050-0.053, 0.029-0.032, and 0.006 mg/g of bottom ash, respectively. The adsorption of pollutants in the leachate conformed to Freundlich's adsorption model.

  20. Characterization and detoxification of a mature landfill leachate using a combined coagulation-flocculation/photo Fenton treatment.

    PubMed

    Vedrenne, Michel; Vasquez-Medrano, Ruben; Prato-Garcia, Dorian; Frontana-Uribe, Bernardo A; Ibanez, Jorge G

    2012-02-29

    The aim of the present work was to characterize and treat a mature landfill leachate using a coagulation/flocculation process followed by a photo-Fenton oxidation treatment. The leachate was obtained from a landfill in Tetlama, Morelos (Mexico) during the drought season and was characterized in terms of its major pollutants. Considerable levels of chemical oxygen demand (COD), total carbon (TC) and NH4+ were identified, as well as high concentrations of Hg, Pb, and As. Other heavy metals such as Ni, Co, Zn, Cd, and Mn were detected at trace levels. The lethal concentration (LC50) of the leachate, evaluated on Artemia salina, was 12,161±11 mg/L of COD, demonstrating an antagonistic interaction among the leachate's components. The treatment of this effluent consisted of a coagulation-flocculation process using an optimal dose of FeCl3 · 6H2O of 300 mg/L. The supernatant was treated using a photo-Fenton process mediated with FeCl2 · 4H2O and H2O2 in a compound parabolic concentrator (CPC) photo-reactor operating in batch mode using an R ratio (R=[H2O2]/[Fe2+]) of 114. The global removal efficiencies after treatment were 56% for the COD, 95% for TC, and 64% for NH4+. The removal efficiencies for As, Hg, and Pb were 46%, 9%, and 85%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Old landfill leachate treatment through multistage process: membrane adsorption bioreactor and nanofitration.

    PubMed

    Peyravi, Majid; Jahanshahi, Mohsen; Alimoradi, Mahsa; Ganjian, Etesam

    2016-12-01

    A bench-scale integrated process based on submerged aerobic powdered activated carbon-membrane bioreactor (PAC-MBR) has been utilized and established for the treatment of landfill leachate. The results showed that the submerged PAC-MBR system effectively removed biodegradable trace organic compounds by the average removal rate about 71 % at optimum food to microorganism (F/M) ratio of 0.4 gCOD/g day under a HRT of 24 h. Adding nanofiltration (NF) process increased the treatment efficiency up to 99 %. Further, adding powdered activated carbon to activated sludge (AS) resulted in a higher adsorption capacity in comparison with AS. Adsorption isotherms were investigated and fitted by the Langmuir and Freundlich isotherm models in which the Langmuir model performed better. The specific oxygen uptake rate (SOUR) showed that adding PAC reduces the effects of COD on microorganism activities. NH3-N, TKN and Heavy metals removal efficiency amounted to 97 ± 2, 96 ± 2, and 99 ± 2 %, respectively.

  2. Bioreactor treatment of municipal solid waste landfill leachates: characterization of organic fractions.

    PubMed

    Pelaez, Ana Isabel; Sanchez, Jesus; Almendros, Gonzalo

    2009-01-01

    Quantitative and qualitative changes in organic matter were studied at different stages of treatment in a bioreactor designed to process leachates from a municipal solid waste landfill. The particulate matter (PM) and macromolecular fractions of the dissolved organic matter with solubility properties comparable to humic (acid-insoluble) and fulvic (acid-soluble) acid fractions (AI, AS, respectively) from the incoming black liquid, the bioreactor content, and the final processed effluent were isolated, quantified, and characterized by visible and infrared (IR) spectroscopies. The macromolecular signature either aliphatic (glycopeptides, carbohydrates) or aromatic (coinciding with infrared patterns of lignin, tannins etc.) enabled us to characterize the different organic fractions during the course of microbial transformation. The results reveal significant changes in the nitrogen speciation patterns within the different organic fractions isolated from the wastewater. The final increase in the relative proportions of nitrogen in the least aromatic AS fraction during microbial transformation could be related to protein formation inside the bioreactor. After biological treatment and ultrafiltration, the amount of organic matter was reduced by approximately 70%, whereas aromaticity increased in all fractions, indicating preferential elimination of aliphatic wastewater compounds. Most of the remaining fractions at the end of the process consisted of a yellow residue rich in low molecular weight AS fractions.

  3. Molecular weight distribution of a full-scale landfill leachate treatment by membrane bioreactor and nanofiltration membrane.

    PubMed

    Campagna, Marco; Cakmakcı, Mehmet; Yaman, F Büşra; Ozkaya, Bestamin

    2013-04-01

    In this study, Molecular weight (MW) distributions of a full-scale landfill leachate treatment plant consisting of membrane bioreactor (MBR) and nanofiltration (NF) membrane were investigated. The leachate was sampled from the equalization tank, and effluents of MBR and NF membrane in the landfill leachate treatment plant. Parameters of COD, TOC, TKN, NH4(+)-N and UV(254, 280 and 320) absorbance were analyzed to evaluate both the removal performance of the plant and MW distributions. MW distribution of samples were determined by ultrafiltration (UF) (100 kDa, 10 kDa, 5 kDa, 1 kDa and 500 Da) membranes. The results indicated that organic matter of one third percent is particulate or colloidal form and almost half of the organic fraction has a lower MW than 500 Da. In addition, organic matter had hydrophilic character. Most part of TKN was>500 Da with the corresponding rate of 92%. Further, UV absorbance of raw leachate (RW) decreased 85% after 500 Da.

  4. Powdered ZELIAC augmented sequencing batch reactors (SBR) process for co-treatment of landfill leachate and domestic wastewater.

    PubMed

    Mojiri, Amin; Aziz, Hamidi Abdul; Zaman, Nastaein Q; Aziz, Shuokr Qarani; Zahed, Mohammad Ali

    2014-06-15

    Sequencing batch reactor (SBR) is one of the various methods of biological treatments used for treating wastewater and landfill leachate. This study investigated the treatment of landfill leachate and domestic wastewater by adding a new adsorbent (powdered ZELIAC; PZ) to the SBR technique. ZELIAC consists of zeolite, activated carbon, lime stone, rice husk ash, and Portland cement. The response surface methodology and central composite design were used to elucidate the nature of the response surface in the experimental design and describe the optimum conditions of the independent variables, including aeration rate (L/min), contact time (h), and ratio of leachate to wastewater mixture (%; v/v), as well as their responses (dependent variables). Appropriate conditions of operating variables were also optimized to predict the best value of responses. To perform an adequate analysis of the aerobic process, four dependent parameters, namely, chemical oxygen demand (COD), color, ammonia-nitrogen (NH3-N), and phenols, were measured as responses. The results indicated that the PZ-SBR showed higher performance in removing certain pollutants compared with SBR. Given the optimal conditions of aeration rate (1.74 L/min), leachate to wastewater ratio (20%), and contact time (10.31 h) for the PZ-SBR, the removal efficiencies for color, NH3-N, COD, and phenols were 84.11%, 99.01%, 72.84%, and 61.32%, respectively.

  5. Management of landfill leachate: The legacy of European Union Directives.

    PubMed

    Brennan, R B; Healy, M G; Morrison, L; Hynes, S; Norton, D; Clifford, E

    2016-09-01

    Landfill leachate is the product of water that has percolated through waste deposits and contains various pollutants, which necessitate effective treatment before it can be released into the environment. In the last 30years, there have been significant changes in landfill management practices in response to European Union (EU) Directives, which have led to changes in leachate composition, volumes produced and treatability. In this study, historic landfill data, combined with leachate characterisation data, were used to determine the impacts of EU Directives on landfill leachate management, composition and treatability. Inhibitory compounds including ammonium (NH4-N), cyanide, chromium, nickel and zinc, were present in young leachate at levels that may inhibit ammonium oxidising bacteria, while arsenic, copper and silver were present in young and intermediate age leachate at concentrations above inhibitory thresholds. In addition, the results of this study show that while young landfills produce less than 50% of total leachate by volume in the Republic of Ireland, they account for 70% of total annual leachate chemical oxygen demand (COD) load and approximately 80% of total 5-day biochemical oxygen demand (BOD5) and NH4-N loads. These results show that there has been a decrease in the volume of leachate produced per tonne of waste landfilled since enactment of the Landfill Directive, with a trend towards increased leachate strength (particularly COD and BOD5) during the initial five years of landfill operation. These changes may be attributed to changes in landfill management practices following the implementation of the Landfill Directive. However, this study did not demonstrate the impact of decreasing inputs of biodegradable municipal waste on leachate composition. Increasingly stringent wastewater treatment plant (WWTP) emission limit values represent a significant threat to the sustainability of co-treatment of leachate with municipal wastewater. In addition

  6. Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant

    SciTech Connect

    Maranon, E. . E-mail: emara@uniovi.es; Castrillon, L.; Fernandez, Y.; Fernandez, E.

    2006-07-01

    The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1 cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.

  7. A comparative examination of MBR and SBR performance for the treatment of high-strength landfill leachate.

    PubMed

    El-Fadel, M; Hashisho, J

    2014-09-01

    The management of landfill leachate is challenging, with relatively limited work targeting high-strength leachate. In this study, the performance of the membrane bioreactor (MBR) and sequencing batch reactor (SBR) technologies are compared in treating high-strength landfill leachate. The MBR exhibited a superior performance with removal efficiencies exceeding 95% for BOD5, TN, and NH3 and an improvement on SBR efficiencies ranging between 21 and 34%. The coupled experimental results contribute in filling a gap toward improving the management of high-strength landfill leachate and providing comparative guidelines or selection criteria and limitations for MBR and SBR applications. Implications: While the sequencing batch reactor (SBR) technology offers some flexibility in terms of cycle time and sequence, its performance is constrained when considering landfill leachate associated with significant variations in quality and quantity. Combining membrane separation and biodegradation processes or the membrane bioreactor (MBR) technology improved removal efficiencies significantly. In the context of leachate management using the MBR technology, more efforts have targeted low-strength leachate with limited attempts at moderate to high strength leachate. In this study, the SBR and MBR technologies were tested under different operating conditions to compare and evaluate their feasibility for the management of high-strength leachate from a full-scale operating landfill. Such a comparison has not been reported for high-strength leachate.

  8. Assessment of the efficiency and economic viability of various methods of treatment of sanitary landfill leachate.

    PubMed

    Gupta, S K; Singh, Gurdeep

    2007-12-01

    This study assesses the efficiency of various physico-chemical, biological and other tertiary methods for treating leachate. An evaluation study on the treatability of the leachate from methane phase bed (MPB) reactor indicated that at an optimum hydraulic retention time of 6 days, the efficiency of the reactor in terms of biological oxygen demand (BOD) and chemical oxygen demand (COD) removal was 91.29 and 82.69%, respectively. Recycling of the treated leachate through the municipal solid waste layers in the leachate recycling unit (LRU) resulted in a significant increase in the biodegradation of organics present in the leachate. Optimum BOD and COD removal efficiencies were achieved at the third recycle; additional recycling of the leachate did not produce any significant improvement. Physico-chemical treatment of the leachate demonstrated that alum and lime (Option 2) were more economical than coagulants lime and MgCO(3). A cost analysis of the economics of the various treatments revealed that the alternative treatment consisting of a MPB bed followed by a LRU and aerated lagoon is the most cost-effective treatment. However, the alternative consisting of a MPB followed by the LRU and a soil column, which is slightly more costly, would be the most appropriate treatment when adequate land is readily available.

  9. Estrogenic and dioxin-like potency in each step of a controlled landfill leachate treatment plant in Japan.

    PubMed

    Behnisch, P A; Fujii, K; Shiozaki, K; Kawakami, I; Sakai, S

    2001-01-01

    The estrogenic activity (by E-screen bioassay), the concentrations of PCBs, PCDDs/PCDFs (and their resulting toxicity equivalents, TEQ) and several endocrine disrupting chemicals (EDCs: e.g., bisphenol A, nonylphenol, Butyl benzylpthalate (BBP), di-n-butylphthalate (DBP), 17alpha-ethynyl-estradiol or 4-octylphenol) have been analyzed from leachates of each step (before treatment, after biodegradation/sedimentation and after charcoal treatment) of a controlled landfill leachate treatment plant. The comparison of the effluent of the examined landfill leachate treatment plant with water from a nearby river in this study indicated no additional dioxin-like (e.g., TEQ: 0.027 compared to 1.01 pg TEQ/l; PCBs: 1.2 compared to 3.9 ng/l) or estrogenic impact (2.8 compared to 3.5 ng estradiol equivalents EE/l; analyzed by E-screen bioassay) from the leachate treatment plant into the surrounding water environment. The impact of dioxin-like compounds from uncleaned leachates into the final cleaned effluents could be sufficiently reduced by the leachate treatment plant for PCDDs (75%), PCDFs (62%), dioxin-like PCBs (97%), and the sum of TEQ (78%). The leachate treatment plant also achieved a reduction of the estrogenic activity as determined by E-screen (from 4.8 to 2.8 ng EE/l = 42%), by GC/MS for bisphenol A (>96% and nonylphenol (>98%) or by ELISA for estradiol (>80%). Additionally, for the validation of the E-screen, five known endocrine disrupting chemicals (EDCs: bisphenol A, BBP, DBP, 17 alpha-ethynyl-estradiol, 4-octylphenol) were analyzed. The EC50 values and estradiol equivalents factors (EEFs) for the five EDCs determined in this study were comparable to previously published data. The combined biological and chemical trace analysis data have provided valuable information on the relative contribution of natural, synthetic, and non-steroidal anthropogenic chemicals to the estrogenic and dioxin-like activity in leachates from a wastewater treatment plant, and water from

  10. Optimization of treatment leachates from young, middle-aged and elderly landfills with bipolar membrane electrodialysis.

    PubMed

    Ilhan, Fatih; Guvenc, Senem Yazici; Avsar, Yasar; Kurt, Ugur; Gonullu, Mustafa Talha

    2017-01-12

    In this study, a bipolar membrane electrodialysis (BMED) process, which is thought to be an effective treatment method for leachate, was evaluated for leachates of three different ages ('young', 'middle-aged' and 'elderly'). The leachates were pretreated to eliminate membrane fouling problems prior to the BMED process. Experimental studies were carried out to determine optimal operating conditions for the three differently aged leachates in the BMED process. According to the experiment results, there was a high removal efficiency of conductivity determined at 4 membrane - 25 V for young and elderly leachate and at 1 membrane - 25 V for middle-aged leachate. It was found that the operating times required to reach the optimal endpoints (at conductivity of about 2 mS/cm) of BMED process were 90, 180 and 300 min for the middle-aged, young and elderly leachates, respectively. Under the optimum operating conditions for the BMED process, removal efficiencies of conductivity and chemical oxygen demand were determined to be 89.5% and 60% for young, 82.5% and 30% for middle-aged and 91.8% and 26% for elderly leachate, respectively.

  11. Municipal landfill leachate characteristics and feasibility of retrofitting existing treatment systems with deammonification - A full scale survey.

    PubMed

    Mohammad-Pajooh, Ehsan; Weichgrebe, Dirk; Cuff, Graham

    2017-02-01

    Leachate characteristics, applied technologies and energy demand for leachate treatment were investigated through survey in different states of Germany. Based on statistical analysis of leachate quality data from 2010 to 2015, almost half of the contaminants in raw leachate satisfy direct discharge limits. Decrease in leachate pollution index of current landfills is mainly related to reduction in concentrations of certain heavy metals (Pb, Zn, Cd, Hg) and organics (biological oxygen demand (BOD5), chemical oxygen demand (COD), and adsorbable organic halogen (AOX)). However, contaminants of concern remain COD, ammonium-nitrogen (NH4N) and BOD5 with average concentrations in leachate of about 1850, 640, and 120 mg/L respectively. Concentrations of COD and NH4N vary seasonally, mainly due to temperature changes; concentrations during the first quarter of the year are mostly below the annual average value. Electrical conductivity (EC) of leachate may be used as a time and cost saving alternative to monitor sudden changes in concentration of these two parameters, due to high correlations of around 0.8 with both COD and NH4N values which are possibly due to low heavy metal concentrations in leachate. The decreased concentrations of heavy metals and BOD5 favor the retrofitting of an existing biological reactor (nitrification/denitrification) with the deammonification process and post denitrification, as this lowers average annual operational cost (in terms of energy and external carbon source) and CO2 emission by €25,850 and 15,855 kg CO2,eq respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.

    PubMed

    Moreira, Francisca C; Soler, J; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-09-15

    The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200 mA cm(-2) for a PEF process using a BDD anode, [TDI]0 of 60 mg L(-1), pH 2.8 and 20 °C. The relative oxidation ability of EAOPs increased in the order EF with 12 mg [TDI]0 L(-1) < EF with 60 mg [TDI]0 L(-1) < PEF with 60 mg [TDI]0 L(-1) ≤ SPEF with 60 mg [TDI]0 L(-1), using the abovementioned conditions. While EF process was much superior to the Fenton one, the superiority of PEF over photo-Fenton was less evident and SPEF attained similar degradation to solar photo-Fenton. To provide a final dissolved organic carbon (DOC) of 163 mg L(-1) to fulfill the discharge limits into the environment after

  13. Degradation of recalcitrant compounds from stabilized landfill leachate using a combination of ozone-GAC adsorption treatment.

    PubMed

    Kurniawan, Tonni Agustiono; Lo, Wai-Hung; Chan, Gilbert Y S

    2006-09-01

    Laboratory experiments were undertaken to investigate the treatment performances of ozonation alone and/or its combination with granular activated carbon (GAC) adsorption for raw leachate from the NENT landfill (in Hong Kong). To improve its removal of recalcitrant contaminants from the leachate, the surface of GAC was oxidized with ozone prior to treatment. With respect to ozone dose and pH, the removal of COD and/or NH(3)-N from ozonation alone and combined ozone-GAC adsorption were evaluated and compared to those of other physico-chemical treatments in some reported studies. The removal mechanism of recalcitrant compounds by ozone-GAC adsorption treatment was presented. Among the various treatments studied, the combination of ozone-GAC adsorption using ozone-modified GAC had the highest removal for COD (86%) and/or NH(3)-N (92%) compared to ozonation alone (COD: 35%; NH(3)-N: 50%) at the same initial COD and/or NH(3)-N concentrations of 8000 and 2620 mg/L, respectively. Although the integrated treatment was more effective than ozonation alone for treating stabilized leachate, the results suggested that it could not generate treated effluent that complied with the COD limit of lower than 200 mg/L and the NH(3)-N discharge standard of less than 5 mg/L. Therefore, further biological treatments to complement the degradation of the leachate are still required to meet the environmental legislation.

  14. Treatment of MSW landfill leachate by a thin gap annular UV/H2O2 photoreactor with multi-UV lamps.

    PubMed

    Shu, Hung-Yee; Fan, Hung-Jung; Chang, Ming-Chin; Hsieh, Wen-Pin

    2006-02-28

    The treatment of leachate from landfills is a major disposal problem for municipal solid waste. The leachate is generally recalcitrant to be treated according to complicated characteristics and high color intensity resulting further threat for environment and human health. In this work, the designed thin gap annular photoreactor with 4-UV lamps in UV/H2O2 process was proposed to decolor and remove chemical oxygen demand (COD) from the landfill leachate for solving this environmental problem. Meanwhile, the operating parameters such as UV dosage, hydrogen peroxide concentration and leachate strength were evaluated. The landfill leachate treated with the maximum dosage of 4-UV lamps and 232.7 mM of hydrogen peroxide concentration achieved 72 and 65% of color and COD removal efficiencies in 300 min. As for less concentrated leachate of 20% strength, 91% of color and 87% of COD were removed within only 120 min. From the experimental results, the UV/H2O2 process in this work was an effective pre-treatment or treatment technology for landfill leachate.

  15. Enhancing filterability of activated sludge from landfill leachate treatment plant by applying electrical field ineffective on bacterial life.

    PubMed

    Akkaya, Gulizar Kurtoglu; Sekman, Elif; Top, Selin; Sagir, Ece; Bilgili, Mehmet Sinan; Guvenc, Senem Yazici

    2017-03-09

    The aim of this study is to investigate filterability enhancement of activated sludge supplied form a full-scale leachate treatment plant by applying DC electric field while keeping the biological operational conditions in desirable range. The activated sludge samples were received from the nitrification tank in the leachate treatment plant of Istanbul's Odayeri Sanitary Landfill Site. Experimental sets were conducted as laboratory-scale batch studies and were duplicated for 1A, 2A, 3A, 4A, and 5A of electrical currents and 2, 5, 10, 15, and 30 min of exposure times under continuous aeration. Physicochemical parameters such as temperature, pH, and oxidation reduction potential in the mixture right after each experimental set and biochemical parameters such as chemical oxygen demand, total phosphorus, and ammonia nitrogen in supernatant were analyzed to define the sets that remain in the range of ideal biological operational conditions. Later on, sludge filterability properties such as capillary suction time, specific resistance to filtration, zeta potential, and particle size were measured for remaining harmless sets. Additionally, cost analyses were conducted in respect to energy and electrode consumptions. Application of 2A DC electric field and 15-min exposure time was found to be the most favorable conditions to enhance filterability of the landfill leachate-activated sludge.

  16. Mathematical modeling of COD removal via the combined treatment of domestic wastewater and landfill leachate based on the PACT process.

    PubMed

    Fernández Bou, Ángel S; Nascentes, Alexandre Lioi; Costa Pereira, Barbara; Da Silva, Leonardo Duarte Batista; Alberto Ferreira, João; Campos, Juacyara Carbonelli

    2015-01-01

    The experiments performed in this study consisted of 16 batch reactors fed different mixtures of landfill leachate combined with synthetic wastewater treated using the Powdered Activated Carbon Treatment (PACT) process. The objective was to measure the COD mass removal per liter each day for each reactor using two models: the first model combined the variables PAC concentration (0 g·L(-1), 2 g·L(-1), 4 g·L(-1), and 6 g·L(-1)) and leachate rate in the wastewater (0%, 2%, 5%, and 10%), and the second model combined the PAC concentration and the influent COD. The Response Surface Methodology with Central Composite Design was used to describe the response surface of both models considered in this study. Domestic wastewater was produced under controlled conditions in the laboratory where the experiments were performed. The results indicated that the PAC effect was null when the influent did not contain leachate; however, as the concentration of leachate applied to the mixture was increased, the addition of a higher PAC concentration resulted in a better COD mass removal in the reactors. The adjusted R(2) values of the two models were greater than 0.95, and the predicted R(2) values were greater than 0.93. The models may be useful for wastewater treatment companies to calculate PAC requirements in order to meet COD mass removal objectives in combined treatment.

  17. Cascade bioreactor with submerged biofilm for aerobic treatment of Tunisian landfill leachate.

    PubMed

    Ismail, Trabelsi; Tarek, Dhifallah; Mejdi, Snoussi; Amira, Ben Yahmed; Murano, Fumio; Neyla, Saidi; Naceur, Jedidi

    2011-09-01

    A bioreactor cascade with a submerged biofilm is proposed to treat young landfill leachate of jbel chakir landfill site south west from capital Tunis, Tunisia. The prototype was run under different organic loading charges varying from 0.6 to 16.3 kg TOC m(-3)day(-1). Without initial pH adjustment total organic carbon (TOC) removal rate varied between 65% and 97%. The total reduction of COD reached 92% at a hydraulic retention time of 36 h. However, the removal of total kjeldahl nitrogen for loading charges of 0.5 kg Nm(-3)day(-1) reached 75%. The adjustment of pH to 7.5 improved nitrogen removal to a rate of 85% for loading charge of 1 kg Nm(-3)day(-1). The main bacterial groups responsible for a simultaneous removal of organic carbon and nitrogen belonged to Bacillus, Actinomyces, Pseudomonas and Burkholderia genera. These selected isolates showed a great capacity of degradation at different leachate concentrations of total organic carbon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Use of shredded tire chips and tire crumbs as packing media in trickling filter systems for landfill leachate treatment.

    PubMed

    Mondal, B; Warith, M A

    2008-08-01

    Scrap tire stockpiles are breeding grounds for pests, mosquitoes and west Nile viruses and, thereby, become a potential health risk. This experimental study was carried out in six stages to determine the suitability of shredded tire materials in a trickling filter system to treat landfill leachate. Biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and NH3-N removals were obtained in the range of 81 to 96%, 76 to 90% and 15 to 68%, respectively. The removal of organics appears to be largely related to total dissolved solids reduction in leachate. A sudden increase, from time to time, in organic content of effluent could be attributed to biomass sloughing and clogging in the trickling filters. However, tire crumbs exhibited more consistent organics removal throughout the experimental program. Due to the high surface area of shredded tire chips and crumbs, a layer of biomass, 1-2 mm thick, was attached to them and was sloughed off at an interval of 21 days. Apart from that, as shredded tires are comparatively cheaper than any other usable packing material, tire chips and tire crumbs appeared to be quite promising as packing media in trickling filters for landfill leachate treatment.

  19. Effect of incineration on the removal of key offensive odorants released from a landfill leachate treatment station (LLTS).

    PubMed

    Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On

    2012-04-01

    As a basic means to control odorants released from a landfill leachate treatment station (LLTS), effluents venting from this station were treated via incineration with methane rich landfill gas (at 750°C). A list of the key offensive odorants covering 22 chemicals was measured by collecting those gas samples both before and after the treatment. Upon incineration, the concentration levels of most odorants decreased drastically below threshold levels. The sum of odorant intensities (SOIs), if compared between before and after incineration, decreased from 6.94 (intolerable level) to 3.45 (distinct level). The results indicate that the thermal incineration method can be used as a highly efficient tool to remove most common odorants (e.g., reduced sulfur species), while it is not so for certain volatile species (e.g., carbonyls, fatty acids, etc.). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Simultaneous chemical oxygen demand removal, methane production and heavy metal precipitation in the biological treatment of landfill leachate using acid mine drainage as sulfate resource.

    PubMed

    Li, Yu-Long; Wang, Jin; Yue, Zheng-Bo; Tao, Wei; Yang, Hai-Bin; Zhou, Yue-Fei; Chen, Tian-Hu

    2017-03-06

    Biological treatment played an important role in the treatment of landfill leachate. In the current study, acid mine drainage (AMD) was used as a source of sulfate to strengthen the anaerobic treatment of landfill leachate. Effects of chemical oxygen demand (COD) and SO4(2-) mass concentration ratio on the decomposition of organic matter, methane production and sulfate reduction were investigated and the microbial community was analyzed using the high throughout methods. Results showed that high removal efficiency of COD, methane production and heavy metal removal was achieved when the initial COD/SO4(2-) ratio (based on mass) was set at 3.0. The relative abundance of anaerobic hydrogen-producing bacteria (Candidatus Cloacamonas) in the experimental group with the addition of AMD was significantly increased compared to the control. Abundance of hydrogenotrophic methanogens of Methanosarcina and Methanomassiliicoccus was increased. Results confirmed that AMD could be used as sulfate resource to strengthen the biological treatment of landfill leachate.

  1. LCA and economic evaluation of landfill leachate and gas technologies.

    PubMed

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna; Stensøe, Steen; Christensen, Thomas H

    2011-07-01

    Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3-4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production of electricity and heat. The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost-effective in reducing the impact from a conventional landfill. This was done by modeling landfills ranging from a simple open dump to highly engineered conventional landfills with energy recovery in form of heat or electricity. The modeling was done in the waste LCA model EASEWASTE. The results showed drastic improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to -0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE). For the toxic and spoiled groundwater impact categories the trend is not as clear. The reason for this was that the load to the environment shifted as more technologies were used. For the dump landfill the main impacts were impacts for spoiled groundwater due to lack of leachate collection, 2.3 PE down to 0.4 PE when leachate is collected. However, at the same time, leachate collection causes a slight increase in eco-toxicity and human toxicity via water (0.007 E to 0

  2. Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system.

    PubMed

    Ismail, Sherif; Tawfik, Ahmed

    2016-01-01

    Fenton process for pre-treatment of hazardous landfill leachate (HLL) was investigated. Total, particulate and soluble chemical oxygen demand (CODt, CODp and CODs) removal efficiency amounted to 67%, 47% and 64%, respectively, at pH value of 3.5, molar ratio (H2O2/Fe(2+)) of 5, H2O2 dosage of 25 ml/L and contact time of 15 min. Various treatment scenarios were attempted and focused on studying the effect of pre-catalytic oxidation process on the performance of up-flow anaerobic sludge blanket (UASB), UASB/down-flow hanging sponge (DHS) and DHS system. The results obtained indicated that pre-catalytic oxidation process improved the CODt removal efficiency in the UASB reactor by a value of 51.4%. Overall removal efficiencies of CODt, CODs and CODp were 80 ± 6%, 80 ± 7% and 78 ± 16% for UASB/DHS treating pre-catalytic oxidation effluent, respectively. The removal efficiencies of CODt, CODs and CODp were, respectively, decreased to 54 ± 2%, 49 ± 2% and 71 ± 16% for UASB/DHS system without pre-treatment. However, the results for the combined process (UASB/DHS) system is almost similar to those obtained for UASB reactor treating pre-catalytic oxidation effluent. The DHS system achieved average removal efficiencies of 52 ± 4% for CODt, 51 ± 4% for CODs and 52 ± 15% for CODp. A higher COD fractions removal was obtained when HLL was pre-treated by Fenton reagent. The combined processes provided a removal efficiency of 85 ± 1% for CODt, 85 ± 1% for CODs and 83 ± 8% for CODp. The DHS system is not only effective for organics degradation but also for ammonia oxidation. Almost complete ammonia (NH4-N) removal (92 ± 3.6%) was occurred and the nitrate production amounted to 37 ± 6 mg/L in the treated effluent. This study strongly recommends applying Fenton process followed by DHS system for treatment of HLL.

  3. POTASSIUM PERMANGANATE AND CLINOPTILOLITE ZEOLITE FOR IN SITU TREATMENT OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE: LABORATORY STUDY

    EPA Science Inventory

    There are tens of thousands of closed landfills in the United States, many of whicih are unlined and sited on alluvial deposits. Landfills are of concern because leachate contains a variety of pollutants that can contaminate ground and surface water. Data from chemical analysis...

  4. POTASSIUM PERMANGANATE AND CLINOPTILOLITE ZEOLITE FOR IN SITU TREATMENT OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE: LABORATORY STUDY

    EPA Science Inventory

    There are tens of thousands of closed landfills in the United States, many of whicih are unlined and sited on alluvial deposits. Landfills are of concern because leachate contains a variety of pollutants that can contaminate ground and surface water. Data from chemical analysis...

  5. The application of novel coagulant reagent (polyaluminium silicate chloride) for the post-treatment of landfill leachates.

    PubMed

    Tzoupanos, N D; Zouboulis, A I; Zhao, Y-C

    2008-10-01

    Relatively "old" (stabilized) landfill leachates are a special category of wastewaters, which are difficult to treat further, mainly due to their bio-refractory organic content (humic substances). In this study, coagulation-flocculation was examined as post-treatment method for the biologically pre-treated stabilized leachates. The purpose was to examine the coagulation performance of alternative coagulant agents, i.e. the composite coagulant polyaluminium silicate chloride. Composite coagulants with different Al to Si molar ratio and different preparation methods were tested. Their efficiency was evaluated by monitoring from turbidity and phosphate content, other parameters strongly correlated with the presence of organic matter, such as UV absorbance at 254nm, COD and colour. The results suggest that the silica-based coagulants exhibit better coagulation performance, than the relevant conventional coagulant (alum) or simple pre-polymerized coagulants (PACl). Polyaluminium silicate chloride has greater tolerance against pH variation than alum or PACl, whereas this novel coagulant works better at pH values between 7 and 9. Coagulation-flocculation has proved to be an efficient post-treatment method for the biologically pre-treated leachates, promoting the removal of the refractory humic substances, while the treatment efficiency of coagulation can be improved by the application of the new coagulant agent.

  6. Municipal solid waste landfill leachate treatment by fenton, photo-fenton and fenton-like processes: Effect of some variables

    PubMed Central

    2012-01-01

    Advanced oxidation processes like Fenton and photo-Fenton have been effectively applied to oxidize the persistent organic compounds in solid waste leachate and convert them to unharmful materials and products. However, there are limited data about application of Fenton-like process in leachate treatment. Therefore, this study was designed with the objective of treating municipal landfill leachate by Fenton, Fenton-like and photo–Fenton processes to determine the effect of different variables, by setting up a pilot system. The used leachate was collected from a municipal unsanitary landfill in Qaem-Shahr in the north of Iran. Fenton and Fenton-like processes were conducted by Jar-test method. Photo-Fenton process was performed in a glass photo-reactor. In all processes, H2O2 was used as the oxidant. FeSO4.7H2O and FeCl3.6H2O were used as reagents. All parameters were measured based on standard methods. The results showed that the optimum concentration of H2O2 was equal to 5 g/L for the Fenton-like process and 3 g/L for the Fenton and photo-Fenton processes. The optimum ratio of H2O2: Fe+2/Fe+3 were equal to 8:1 in all processes. At optimum conditions, the amount of COD removal was 69.6%, 65.9% and 83.2% in Fenton, Fenton-like and photo–Fenton processes, respectively. In addition, optimum pH were 3, 5 and 3 and the optimum contact time were 150, 90 and 120 minutes, for Fenton, Fenton-like and photo–Fenton processes, respectively. After all processes, the biodegradability (BOD5/COD ratio) of the treated leachate was increased compared to that of the raw leachate and the highest increase in BOD5/COD ratio was observed in the photo-Fenton process. The efficiency of the Fenton-like process was overally less than Fenton and photo-Fenton processes, meanwhile the Fenton-like process was at higher pH and did not show problems. PMID:23369204

  7. Municipal solid waste landfill leachate treatment by fenton, photo-fenton and fenton-like processes: Effect of some variables.

    PubMed

    Zazouli, Mohammad Ali; Yousefi, Zabihollah; Eslami, Akbar; Ardebilian, Maryam Bagheri

    2012-08-02

    Advanced oxidation processes like Fenton and photo-Fenton have been effectively applied to oxidize the persistent organic compounds in solid waste leachate and convert them to unharmful materials and products. However, there are limited data about application of Fenton-like process in leachate treatment. Therefore, this study was designed with the objective of treating municipal landfill leachate by Fenton, Fenton-like and photo-Fenton processes to determine the effect of different variables, by setting up a pilot system. The used leachate was collected from a municipal unsanitary landfill in Qaem-Shahr in the north of Iran. Fenton and Fenton-like processes were conducted by Jar-test method. Photo-Fenton process was performed in a glass photo-reactor. In all processes, H2O2 was used as the oxidant. FeSO4.7H2O and FeCl3.6H2O were used as reagents. All parameters were measured based on standard methods. The results showed that the optimum concentration of H2O2 was equal to 5 g/L for the Fenton-like process and 3 g/L for the Fenton and photo-Fenton processes. The optimum ratio of H2O2: Fe+2/Fe+3 were equal to 8:1 in all processes. At optimum conditions, the amount of COD removal was 69.6%, 65.9% and 83.2% in Fenton, Fenton-like and photo-Fenton processes, respectively. In addition, optimum pH were 3, 5 and 3 and the optimum contact time were 150, 90 and 120 minutes, for Fenton, Fenton-like and photo-Fenton processes, respectively. After all processes, the biodegradability (BOD5/COD ratio) of the treated leachate was increased compared to that of the raw leachate and the highest increase in BOD5/COD ratio was observed in the photo-Fenton process. The efficiency of the Fenton-like process was overally less than Fenton and photo-Fenton processes, meanwhile the Fenton-like process was at higher pH and did not show problems.

  8. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation

    SciTech Connect

    Liu, ZhiPing; Wu, WenHui; Shi, Ping; Guo, JinSong; Cheng, Jin

    2015-07-15

    Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.

  9. Design of landfill leachate-collection filters

    SciTech Connect

    Koerner, G.R.; Koerner, R.M.; Martin, J.P. )

    1994-10-01

    Geotextile-filter design for the leachate-collection system in a municipal solid-waste landfill is quite different from that of a geotextile-filter design for other conventional geotechnical drainage applications. This is primarily due to the nature of the permeating liquid. Clearly, leachate is not ground water. Leachate has high suspended solids as well as high organic content. As a result, filters can excessively clog when permeated with leachate over long periods of time. The essential question, which is answered in this paper, is what defines excessive clogging. A design equation for geotextile filters or graded granular soils used in landfill leachate-collection systems is proposed in the paper.

  10. Performance and kinetic process analysis of an Anammox reactor in view of application for landfill leachate treatment.

    PubMed

    Gao, Junling; Chys, Michael; Audenaert, Wim; He, Yanling; Van Hulle, Stijn W H

    2014-01-01

    Anammox has shown its promise and low cost for removing nitrogen from high strength wastewater such as landfill leachate. A reactor was inoculated with nitrification-denitrification sludge originating from a landfill leachate treating waste water treatment plant. During the operation, the sludge gradually converted into red Anammox granular sludge with high and stable Anammox activity. At a maximal nitrogen loading rate of 0.6 g N l(-1) d(-1), the reactor presented ammonium and nitrite removal efficiencies of above 90%. In addition, a modified Stover-Kincannon model was applied to simulate and assess the performance of the Anammox reactor. The Stover-Kincannon model was appropriate for the description of the nitrogen removal in the reactor with the high regression coefficient values (R2 = 0.946) and low Theil's inequality coefficient (TIC) values (TIC < 0.3). The model results showed that the maximal N loading rate of the reactor should be 3.69 g N l(-1) d(-).

  11. Extraction and application of starch-based coagulants from sago trunk for semi-aerobic landfill leachate treatment.

    PubMed

    Aziz, Hamidi Abdul; Sobri, Nur Izzati Mohamad

    2015-11-01

    Malaysia is one of the highest starch producers. In this study, sago starch was utilized as a natural coagulant aid to reduce the dosage of aluminum-based coagulant in leachate treatment. The potential of native sago trunk starch (NSTS) and commercial sago starch (CSS) was evaluated as sole coagulant and coagulant aid in the presence of polyaluminum chloride (PACl) in the removal of color, suspended solids (SS), NH3-N, turbidity, chemical oxygen demand, organic UV254, Cd, and Ni. Leachate was sampled from Pulau Burung Landfill Site, one of the semi-aerobic landfills in Malaysia. The optimum dosage for PACl in the presence of NSTS or CSS as coagulant aid was reduced from 3100 to 2000 mg/L. In the presence of 2000 mg/L PACl with 6000 mg/L NSTS and 2000 mg/L PACl with 5000 mg/L CSS, the removal performance for color, SS, and turbidity are 94.7, 99.2, and 98.9%, respectively. Similar results were obtained with the use of 3100 mg/L PACl alone. Therefore, CSS and NSTS can be used as coagulant aid.

  12. Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor

    SciTech Connect

    Castillo, E. Vergara, M.; Moreno, Y.

    2007-07-01

    This paper describes the feasibility of an aerobic system (rotating biological contactor, RBC) and a biological anaerobic system (upward-flow anaerobic sludge bed reactor) at small scale for the treatment of a landfill leachate. In the first phase of the aerobic system study, a cyclic-batch RBC system was used to select perforated acetate discs among three different acetate disc configurations. These discs were chosen on the basis of high COD removal (65%) and biological stability. In the second phase, the RBC system (using four stages) was operated continuously at different hydraulic retention times (HRT), at different rotational speeds, and with varying organic concentrations of the influent leachate (2500-9000 mg L{sup -1}). Forty percent of the total surface area of each perforated disc was submerged in the leachate. A COD removal of about 52% was obtained at an HRT of 24 h and a rotational speed of 6 rpm. For the anaerobic system, the reactor was evaluated with a volumetric organic load of 3273 g-COD m{sup -3} day{sup -1} at an HRT of 54, 44, 39, 24 and 17 h. At these conditions, the system reached COD removal efficiencies of 62%, 61%, 59%, 44% and 24%, respectively.

  13. The removal efficiency of constructed wetlands filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment.

    PubMed

    He, Hailing; Duan, Zhiwei; Wang, Zhenqing; Yue, Bo

    2017-07-01

    The removal efficiencies of two horizontal subsurface flow constructed wetlands (HSSF CWs, down-flow (F1) and up-flow (F2)) filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment were investigated. The adsorption experiment was conducted to evaluate the potential of zeolite and slag as the wetland substrate. The effects of distance variations along the longitudinal profile of wetland bed on pollutant removal were assessed by sampling at four locations (inlet, outlet, 0.55 m, and 1.10 m from the inlet). During the operation time, the influent and effluent concentrations of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen (TN), heavy metals, and polycyclic aromatic hydrocarbon (PAH) were measured. The results showed that the constructed wetlands were capable of removing COD, 20.5-48.2% (F1) and 18.6-61.2% (F2); NH3-N, 84.0-99.9% (F1) and 93.5-99.2% (F2); TN, 80.3-92.1% (F1) and 80.3-91.2% (F2); and heavy metals, about 90% (F1 and F2). The zeolite-slag hybrid substrate performed excellent removal efficiency for the nitrogen and heavy metals. The inlet area was the most active region of leachate removal. The up-flow constructed wetland (F2) has a higher removal efficiency for the PAH compounds. The significant removal efficiency illustrated that the rural landfill leachate can be treated using the horizontal subsurface flow constructed wetland filled with the zeolite-slag hybrid substrate.

  14. Temperature-induced changes in treatment efficiency and microbial structure of aerobic granules treating landfill leachate.

    PubMed

    Mieczkowski, Dorian; Cydzik-Kwiatkowska, Agnieszka; Rusanowska, Paulina; Świątczak, Piotr

    2016-06-01

    This paper investigates the effect of temperature on nitrogen and carbon removal by aerobic granules from landfill leachate with a high ammonium concentration and low concentration of biodegradable organics. The study was conducted in three stages; firstly the operating temperature of the batch reactor with aerobic granules was maintained at 29 °C, then at 25 °C, and finally at 20 °C. It was found that a gradual decrease in operational temperature allowed the nitrogen-converting community in the granules to acclimate, ensuring efficient nitrification even at ambient temperature (20 °C). Ammonium was fully removed from leachate regardless of the temperature, but higher operational temperatures resulted in higher ammonium removal rates [up to 44.2 mg/(L h) at 29 °C]. Lowering the operational temperature from 29 to 20 °C decreased nitrite accumulation in the GSBR cycle. The highest efficiency of total nitrogen removal was achieved at 25 °C (36.8 ± 10.9 %). The COD removal efficiency did not exceed 50 %. Granules constituted 77, 80 and 83 % of the biomass at 29, 25 and 20 °C, respectively. Ammonium was oxidized by both aerobic and anaerobic ammonium-oxidizing bacteria. Accumulibacter sp., Thauera sp., cultured Tetrasphaera PAO and Azoarcus-Thauera cluster occurred in granules independent of the temperature. Lower temperatures favored the occurrence of denitrifiers of Zooglea lineage (not Z. resiniphila), bacteria related to Comamonadaceae, Curvibacter sp., Azoarcus cluster, Rhodobacter sp., Roseobacter sp. and Acidovorax spp. At lower temperatures, the increased abundance of denitrifiers compensated for the lowered enzymatic activity of the biomass and ensured that nitrogen removal at 20 °C was similar to that at 25 °C and significantly higher than removal at 29 °C.

  15. Landfill leachate treatment using sub-surface flow constructed wetland by Cyperus haspan.

    PubMed

    Akinbile, Christopher O; Yusoff, Mohd Suffian; Ahmad Zuki, A Z

    2012-07-01

    Performance evaluation of pilot scale sub-surface constructed wetlands was carried out in treating leachate from Pulau Burung Sanitary Landfill (PBSL). The constructed wetland was planted with Cyperus haspan with sand and gravel used as substrate media. The experiment was operated for three weeks retention time and during the experimentation, the influent and effluent samples were tested for its pH, turbidity, color, total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD(5)), ammonia nitrogen (NH(3)-N), Total phosphorus (TP), total nitrogen (TN) and also for heavy metals such as iron (Fe), magnesium (Mg), manganese (Mn) and zinc (Zn) concentrations. The results showed that the constructed wetlands with C. haspan were capable of removing 7.2-12.4% of pH, 39.3-86.6% of turbidity, 63.5-86.6% of color, 59.7-98.8% of TSS, 39.2-91.8% of COD, 60.8-78.7% of BOD(5), 29.8-53.8% of NH(3)-N, 59.8-99.7% of TP, 33.8-67.0% of TN, 34.9-59.0% of Fe, 29.0-75.0% of Mg, 51.2-70.5% of Mn, and 75.9-89.4% of Zn. The significance of removal was manifested in the quality of the effluent obtained at the end of the study. High removal efficiencies in the study proved that leachate could be treated effectively using subsurface constructed wetlands with C. haspan plant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Landfill leachate-induced toxicity in mice.

    PubMed

    Bakare, A A; Mosuro, A A; Osibanjo, O

    2003-10-01

    Microbial, plant and studies in aquatic animals have shown that landfill leachate is toxic. However, more information about its effects in terrestrial animals is required. As a part of ongoing research into the toxic effects of landfill leachate in Nigeria, we evaluated the acute effects of raw and simulated leachates from Abadina, Orita-Aperin and Oworonsoki dump sites, all in Southwest Nigeria, in mice. Raw leachates were obtained directly from the dumps while the simulated leachates were obtained from the solid wastes in the laboratory by using the ASTM method. The samples were designated Abadina raw leachate (ARL), Orita-Aperin raw leachate (OARL) and Oworonsoki raw leachate (OWRL); and Abadina simulated leachate (ASL), Orita-Aperin simulated leachate (OASL) and Oworonsoki simulated leachate (OWSL). Their physico-chemical properties were determined in accordance with standard analytical methods. Young male mice (12-15 wk) weighing 24-31 g were exposed to 1%, 5%, 10%, 25%, 50% and 100% concentrations of each test samples for 5 consecutive days and were observed for a period of 96 h for toxic response. Mortality recorded at different times for each sample at the various concentrations was mostly within the last 48 h of the exposure period. The LC50 obtained are 100% for both ARL and OARL, and 50% for OWRL; and 83.50% and 50% for ASL and OWSL, respectively. It was indeterminate for OASL. Apart from this, other toxic effects like weight loss, sluggishness, loss of hair and reduced food intake were observed. The investigated samples were ranked as OWRL > OWSL > ASL > OARL > ARL > OASL. The observed effects were due to the toxic constituents present in the leachate samples. This suggests that the mixtures have the potential to cause harmful effect to public health and our environment through seepage into ground or surface water.

  17. Phycoremediation of landfill leachate with the chlorophyte Chlamydomonas sp. SW15aRL and evaluation of toxicity pre and post treatment.

    PubMed

    Paskuliakova, Andrea; McGowan, Ted; Tonry, Steve; Touzet, Nicolas

    2017-09-15

    Landfill leachate treatment is an ongoing challenge in the wastewater management of existing sanitary landfill sites due to the complex nature of leachates and their heavy pollutant load. There is a continuous interest in treatment biotechnologies with expected added benefits for resource recovery; microalgal bioremediation is seen as promising in this regard. Toxicity reduction of landfill leachate subsequent to phycoremediation was investigated in this study. The treatment eventuated from the growth of the ammonia tolerant microalgal strain Chlamydomonas sp. SW15aRL using a N:P ratio adjustment in diluted leachate for facilitating the process. Toxicity tests ranging over a number of trophic levels were applied, including bacterial-yeast (MARA), protistean (microalgae growth inhibition test), crustacean (daphnia, rotifer) and higher plant (monocot, dicot) assays. Ammonia nitrogen in the diluted landfill leachate containing up to 158mgl(-1) NH4(+)-N (60% dilution of the original) was reduced by 83% during the microalgal treatment. Testing prior to remediation indicated the highest toxicity in the crustacean assays Daphnia magna and Brachionus calyciflorus with EC50s at 24h of ~ 35% and 40% leachate dilution, respectively. A major reduction in toxicity was achieved with both bioassays post microalgal treatment with effects well below the EC20s. The microalgae inhibition test on the other hand indicated increased stimulation of growth after treatment as a result of toxicity reduction but also the presence of residual nutrients. Several concurrent processes of both biotic and abiotic natures contributed to pollutant reduction during the treatment. Modifying phosphate dosage especially seems to require further attention. As a by-product of the remediation process, up to 1.2gl(-1) of microalgal biomass was obtained with ~ 18% DW lipid content. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment.

    PubMed

    Yalcuk, Arda; Ugurlu, Aysenur

    2009-05-01

    The main purpose of this study was to treat organic pollution, ammonia and heavy metals present in landfill leachate by the use of constructed wetland systems and to quantify the effect of feeding mode. The effect of different bedding material (gravel and zeolite surface) was also investigated. A pilot-scale study was conducted on subsurface flow constructed wetland systems operated in vertical and horizontal mode. Two vertical systems differed from each other with their bedding material. The systems were planted with cattail (Typha latifolia) and operated identically at a flow rate of 10 l/day and hydraulic retention times of 11.8 and 12.5 day in vertical 1, vertical 2 and horizontal systems, respectively. Concentration based average removal efficiencies for VF1, VF2 and HF were NH(4)-N, 62.3%, 48.9% and 38.3%; COD, 27.3%, 30.6% and 35.7%; PO(4)-P, 52.6%, 51.9% and 46.7%; Fe(III), 21%, 40% and 17%, respectively. Better NH(4)-N removal performance was observed in the vertical system with zeolite layer than that of the vertical 2 and horizontal system. In contrast, horizontal system was more effective in COD removal.

  19. Human-virulent microsporidian spores in solid waste landfill leachate and sewage sludge, and effects of sanitization treatments on their inactivation.

    PubMed

    Graczyk, Thaddeus K; Kacprzak, Malgorzata; Neczaj, Ewa; Tamang, Leena; Graczyk, Halshka; Lucy, Frances E; Girouard, Autumn S

    2007-08-01

    Solid waste landfill leachate and sewage sludge samples were quantitatively tested for viable Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon hellem, and Encephalitozoon cuniculi spores by the multiplexed fluorescence in situ hybridization (FISH) assay. The landfill leachate samples tested positive for E. bieneusi and the sludge samples for E. bieneusi and E. intestinalis. The effects of four sanitization treatments on the inactivation of these pathogens were assessed. Depending on the variations utilized in the ultrasound disintegration, sonication reduced the load of human-virulent microsporidian spores to nondetectable levels in 19 out of 27 samples (70.4%). Quicklime stabilization was 100% effective, whereas microwave energy disintegration was 100% ineffective against the spores of E. bieneusi and E. intestinalis. Top-soil stabilization treatment gradually reduced the load of both pathogens, consistent with the serial dilution of sewage sludge with the soil substrate. This study demonstrated that sewage sludge and landfill leachate contained high numbers of viable, human-virulent microsporidian spores, and that sonication and quicklime stabilization were the most effective treatments for the sanitization of sewage sludge and solid waste landfill leachates. Multiplexed FISH assay is a reliable quantitative molecular fluorescence microscopy method for the simultaneous identification of E. bieneusi, E. intestinalis, E. hellem, and E. cuniculi spores in environmental samples.

  20. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes.

    PubMed

    Amor, Carlos; De Torres-Socías, Estefanía; Peres, José A; Maldonado, Manuel I; Oller, Isabel; Malato, Sixto; Lucas, Marco S

    2015-04-09

    This work reports the treatment of a mature landfill leachate through the application of chemical-based treatment processes in order to achieve the discharge legal limits into natural water courses. Firstly, the effect of coagulation/flocculation with different chemicals was studied, evaluating the role of different initial pH and chemicals concentration. Afterwards, the efficiency of two different advanced oxidation processes for leachate remediation was assessed. Fenton and solar photo-Fenton processes were applied alone and in combination with a coagulation/flocculation pre-treatment. This physicochemical conditioning step, with 2 g L(-1) of FeCl3 · 6H2O at pH 5, allowed removing 63% of COD, 80% of turbidity and 74% of total polyphenols. Combining the coagulation/flocculation pre-treatment with Fenton reagent, it was possible to reach 89% of COD removal in 96 h. Moreover, coagulation/flocculation combined with solar photo-Fenton revealed higher DOC (75%) reductions than single solar photo-Fenton (54%). In the combined treatment (coagulation/flocculation and solar photo-Fenton), it was reached a DOC reduction of 50% after the chemical oxidation, with 110 kJ L(-1) of accumulated UV energy and a H2O2 consumption of 116 mM. Toxicity and biodegradability assays were performed to evaluate possible variations along the oxidation processes. After the combined treatment, the leachate under study presented non-toxicity but biodegradability increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Co-treatment of landfill leachate in laboratory-scale sequencing batch reactors: analysis of system performance and biomass activity by means of respirometric techniques.

    PubMed

    Capodici, M; Di Trapani, D; Viviani, G

    2014-01-01

    Aged or mature leachate, produced by old landfills, can be very refractory; for this reason mature leachate is difficult to treat alone, but it can be co-treated with sewage or domestic wastewater. The aim of the study was to investigate the feasibility of leachate co-treatment with synthetic wastewater, in terms of process performance and biomass activity, by means of respirometric techniques. Two sequencing batch reactors (SBRs), named SBR1 and SBR2, were fed with synthetic wastewater and two different percentages of landfill leachate (respectively 10% and 50% v v(-1) in SBR1 and SBR2). The results showed good chemical oxygen demand (COD) removal efficiency for both reactors, with average COD removals equal to 91.64 and 89.04% respectively for SBR1 and SBR2. Furthermore, both SBRs showed good ammonia-nitrogen (AN) removal efficiencies, higher than 60%, thus confirming the feasibility of leachate co-treatment with a readily biodegradable wastewater. Significant respiration rates were obtained for the heterotrophic population (average values of maximum oxygen uptake rate equal to 37.30 and 56.68 mg O2 L(-1) h(-1) respectively for SBR1 and SBR2), thus suggesting the feasibility of leachate co-treatment with synthetic wastewater.

  2. Modelling flow to leachate wells in landfills

    SciTech Connect

    Al-Thani, A.A.; Beaven, R.P.; White, J.K

    2004-07-01

    Vertical wells are frequently used as a means of controlling leachate levels in landfills. They are often the only available dewatering option for both old landfills without any basal leachate collection layer and for newer sites where the installed drainage infrastructure has failed. When the well is pumped, a seepage face develops at the entry into the well so that the drawdown in the surrounding waste will not be as great as might be expected. The numerical groundwater flow model MODFLOW-SURFACT, which contains the functionality to model seepage surfaces, has been used to investigate the transient dewatering of a landfill. The study concludes that the position of the seepage face and information about the characteristics of the induced seepage flow field are important and should not be neglected when designing wells in landfills.

  3. Modelling flow to leachate wells in landfills.

    PubMed

    Al-Thani, A A; Beaven, R P; White, J K

    2004-01-01

    Vertical wells are frequently used as a means of controlling leachate levels in landfills. They are often the only available dewatering option for both old landfills without any basal leachate collection layer and for newer sites where the installed drainage infrastructure has failed. When the well is pumped, a seepage face develops at the entry into the well so that the drawdown in the surrounding waste will not be as great as might be expected. The numerical groundwater flow model MODFLOW-SURFACT, which contains the functionality to model seepage surfaces, has been used to investigate the transient dewatering of a landfill. The study concludes that the position of the seepage face and information about the characteristics of the induced seepage flow field are important and should not be neglected when designing wells in landfills.

  4. Appropriate combination of physico-chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of landfill leachates.

    PubMed

    Ntampou, X; Zouboulis, A I; Samaras, P

    2006-02-01

    An integrated technique consisted of ozonation and coagulation/flocculation processes was studied, aiming to provide an efficient method for the treatment of stabilized/biologically pre-treated leachates, in order to reduce the organic pollutants' content to concentration values lower than the corresponding limits, imposed by the legislation. Leachates were collected from a municipal landfill site; samples containing around 1000 mg l(-1) COD and BOD(5)/COD ratio about 0.17 were treated by using two different processes or combinations between them, i.e. ozonation, coagulation-flocculation, ozonation followed by coagulation/flocculation and coagulation/flocculation followed by ozonation. The application of single ozonation resulted to the efficient removal of color and organic loading, due to the respective oxidation, induced by ozonation; however, COD values lower than 200 mg l(-1) could be only achieved after prolonged reaction times and for high ozone production rates. The coagulation of leachate samples was studied by the addition of ferric chloride or poly-aluminum chloride agents at various dosages. Maximum COD removal rates (up to 72%) were achieved by the addition of 7 mM Fe, or of 11 mM Al respectively. However, final COD values higher than 200 mg l(-1) were obtained indicating the requirement of an additional treatment step. Pre-ozonation followed by coagulation/flocculation was not found to be an efficient treatment approach for this aim, but coagulation/flocculation followed by ozonation, was proved to be an efficient process for the reduction of COD to lower than 180 mg l(-1).

  5. Effects of concentrated leachate injection modes on stabilization of landfilled waste.

    PubMed

    He, Ruo; Wei, Xiao-Meng; Chen, Min; Su, Yao; Tian, Bao-Hu

    2016-02-01

    Injection of concentrated leachate to landfills is a simple and cost-effective technology for concentrated leachate treatment. In this study, the effects of injection mode of concentrated leachate and its hydraulic loading rate on the stabilization of landfilled waste were investigated. Compared with the injection of concentrated leachate, the joint injection of leachate and concentrated leachate (1:1, v/v) was more beneficial to the degradation of landfilled waste and mitigated the discharge amount of pollutants at the hydraulic loading rate of 5.9 L m(-2) day(-1). As the hydraulic loading rate of the joint injection of leachate and concentrated leachate was increased from 5.9 to 17.6 L m(-2) day(-1), the organic matter, biologically degradable matter, and total nitrogen of landfilled waste were degraded more rapidly, with the degradation constant of the first-order kinetics of 0.005, 0.004, and 0.003, respectively. Additionally, NO2(-)-N and NO3(-)-N in the concentrated leachate could be well removed in the landfill bioreactors. These results showed that a joint injection of concentrated leachate and raw leachate might be a good way to relieve the inhibitory effect of high concentrations of toxic pollutants in the concentrated leachate and accelerate the stabilization of landfilled waste.

  6. Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents.

    PubMed

    Siciliano, Alessio

    2016-03-01

    Leachates generated in methanogenic landfills contain high strength of ammonium nitrogen which removal is hard to be accomplished by means of conventional techniques. The chemical precipitation of struvite, which is a mineral that could be reused as a slow-release fertilizer, is an effective process in the removal and recovery of NH4 amount of high-concentrated wastewaters. In this paper, a struvite precipitation process using unconventional reagents is proposed for a sustainable recovery of nitrogen content. In particular, seawater bittern, a by-product of marine salt manufacturing, and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. The process enables the removal of more than 98 % ammonia load, the recovery about 99 and 95 % of phosphorus and magnesium, respectively, and the production of a precipitate containing struvite crystals. Heavy metals concentrations of produced precipitate were below the threshold values specified by the EC Directive for use of sewage sludges as fertilizers. Specific agronomic tests were conducted to investigate the fertilizing value of precipitate recovered from landfill leachate. The fertilizing effect of struvite deposit in cultivating Spinacia oleracea was compared with that of vegetable soil and commercial fertilizer. The growth of selected vegetable in the pots with struvite precipitate resulted significantly greater in both than those in the control pots and in the pots with the complex fertilizer. Furthermore, the struvite application as fertilizer did not result in more heavy metals in the vegetables respect those from soil and model fertilizer.

  7. Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design

    SciTech Connect

    Anglada, Angela; Urtiaga, Ane; Ortiz, Inmaculada; Diamadopoulos, Evan

    2011-08-15

    Highlights: > Landfill leachates can be treated effectively by catalytic wet oxidation. > Addition of H{sub 2}O{sub 2} in the presence of transition metals promotes degradation. > Factorial design evaluates the statistically significant operating conditions. > H{sub 2}O{sub 2}, reaction time and temperature are critical in determining performance. - Abstract: The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30 min), temperature (160-200 deg. C), Cu{sup 2+} concentration (250-750 mg L{sup -1}) and H{sub 2}O{sub 2} concentration (0-1500 mg L{sup -1}) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920 mg L{sup -1}, was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45 min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H{sub 2}O{sub 2} to reactive hydroxyl radicals. WAO at 2.5 MPa oxygen partial pressure advanced treatment further; for example, 22 min of oxidation at 200 deg. C, 250 mg L{sup -1} Cu{sup 2+} and 0-1500 mg L{sup -1} H{sub 2}O{sub 2} resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H{sub 2}O{sub 2} concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H{sub 2}O{sub 2} concentration were found to depend on the concentration levels of catalyst as suggested by the

  8. Variations in the chemical properties of landfill leachate

    NASA Astrophysics Data System (ADS)

    Chu, L. M.; Cheung, K. C.; Wong, M. H.

    1994-01-01

    Landfill leachates were collected and their chemical properties analyzed once every two months over a ten-month period from the Gin Drinkers' Bay (GDB) and Junk Bay (JB) landfills. The contents of solids, and inorganic and organic components fluctuated considerably with time. In general, the chemical properties of the two leachates correlated negatively ( P<0.05) with the amounts of rainfall prior to the sampling periods. However, magnesium and pH of the leachates remained relatively constant with respect to sampling time. The JB leachate contained higher average contents of solids and inorganic and organic matter than those of GDB with the exception of trace metals. Trace metals were present in the two leachates in trace quantities (<1.0 mg/liter). The concentrations of average ammoniacal nitrogen were 1040 and 549 mg/liter, while chemical oxygen demand (COD) values were 767 and 695 mg/liter for JB and GDB leachates, respectively. These results suggest that the leachates need further treatment before they can be discharged to the coastal waters.

  9. Occurrence of Cryptosporidium and Giardia in sewage sludge and solid waste landfill leachate and quantitative comparative analysis of sanitization treatments on pathogen inactivation.

    PubMed

    Graczyk, Thaddeus K; Kacprzak, Malgorzata; Neczaj, Ewa; Tamang, Leena; Graczyk, Halshka; Lucy, Frances E; Girouard, Autumn S

    2008-01-01

    Circulation of Cryptosporidum and Giardia in the environment can be facilitated by spreading of sewage sludge on agricultural or livestock grazing lands or depositing in landfills. Solid waste landfill leachate and sewage sludge samples were quantitatively tested for C. parvum and C. hominis oocysts, and G. lamblia cysts by the combined multiplexed fluorescence in situ hybridization (FISH) and immunofluorescent antibody (IFA) method. Subsequently, the effects of four sanitization treatments (i.e., ultrasound and microwave energy disintegrations, and quicklime and top-soil stabilization) on inactivation of these pathogens were determined. The landfill leachate samples were positive for Giardia, and sewage sludge samples for both Cryptosporididium and Giardia. The overall concentration of G. lamblia cysts (mean; 24.2/g) was significantly higher (P<0.01) than the concentration of C. parvum and C. hominis oocysts (mean; 14.0/g). Sonication reduced the load of G. lamblia cysts to non-detectable levels in 12 of 21 samples (57.1%), and in 5 of 6 samples (83.3%) for C. parvum and C. hominis. Quicklime stabilization treatment was 100% effective in inactivation of Cryptosporidium and Giardia, and microwave energy disintegration lacked the efficacy. Top-soil stabilization treatment reduced gradually the load of both pathogens which was consistent with the serial dilution of sewage sludge with the soil substrate. This study demonstrated that sewage sludge and landfill leachate contained high numbers of potentially viable, human-virulent species of Cryptosporidium and Giardia, and that sonication and quicklime stabilization were the most effective treatments for sanitization of sewage sludge and solid waste landfill leachates.

  10. Ultrasound assisted biogas production from landfill leachate.

    PubMed

    Oz, Nilgün Ayman; Yarimtepe, Canan Can

    2014-07-01

    The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman's test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p<0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann-Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p<0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Evaluation of the toxic and genotoxic potential of landfill leachates using bioassays.

    PubMed

    Bortolotto, Tiago; Bertoldo, Jean Borges; da Silveira, Fernanda Zanette; Defaveri, Tamires Manganelli; Silvano, Jacira; Pich, Claus Tröger

    2009-09-01

    Landfill leachates are liquid effluents with elevated concentrations of chemical compounds that can cause serious environmental pollution. In the south of the state of Santa Catarina, Brazil, a sanitary landfill was installed that employs a system of anaerobic/facultative lagoons for the treatment of its leachate. The present work examined the toxic and genotoxic potential of untreated and treated landfill leachates using bioassays. The chemical, toxic, genotoxic and mutagenic properties of the untreated leachate and the treated leachate were determined. Examination of the chemical properties showed a marked decrease in parameters after treatment, as well as in toxicity towards all the organisms tested. The results of the comet assay demonstrated that both leachates showed genotoxicity in all of the organisms tested, indicating the persistence of genotoxic substances even after treatment. A significant decrease in micronucleated cells was detected in Geophagus brasiliensis exposed to the treated leachate compared to untreated.

  12. Co-digestion of intermediate landfill leachate and sewage sludge as a method of leachate utilization.

    PubMed

    Montusiewicz, A; Lebiocka, M

    2011-02-01

    This study examines the co-digestion of intermediate landfill leachate and sewage sludge from a municipal wastewater treatment plant. Application of leachate as a co-fermentation component increased the concentrations of soluble organic compounds (expressed as total organic carbon), ammonium nitrogen, and alkalinity in the digester influents. The biogas yield obtained from the co-fermentation of a 20:1 sewage sludge: intermediate leachate mixture was 1.30 m(3) per kg of removed volatile solids (VS), while that from a 10:1 mixture was 1.24 m(3) per kg of removed VS. These values exceeded the biogas yield for the sludge alone by 13% and 8%, respectively. The leachate addition influenced the proportion of methane to a minor extent. Increased methane yields of 16.9% and 6.2% per kg of removed VS were found for the two sewage sluge:intermediate leachate mixtures, respectively.

  13. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation.

    PubMed

    Liu, ZhiPing; Wu, WenHui; Shi, Ping; Guo, JinSong; Cheng, Jin

    2015-07-01

    A combined treatment process of air stripping+Fenton+sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD5) and ammonia nitrogen (NH3N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW<2k and MW>100k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet-visible spectra (UV-vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While smallMW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A novel forward osmosis system in landfill leachate treatment for removing polycyclic aromatic hydrocarbons and for direct fertigation.

    PubMed

    Li, Jing; Niu, Aping; Lu, Chun-Jiao; Zhang, Jing-Hui; Junaid, Muhammad; Strauss, Phyllis R; Xiao, Ping; Wang, Xiao; Ren, Yi-Wei; Pei, De-Sheng

    2017-02-01

    Landfill leachate (LL) is harmful to aquatic environment because it contains high concentrations of dissolved organic matter, inorganic components, heavy metals, and other xenobiotics. Thus, the remediation of LL is crucial for environmental conservation. Here, a potential application of the forward osmosis (FO) filtration process with ammonium bicarbonate (NH4HCO3) as a draw solution (DS) was investigated to remediate membrane bioreactor-treated LL (M-LL). After the leachate treatment, the toxicity and removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) were evaluated using zebrafish and cultured human cells. The water recovery rate was improved using the current protocol up to 86.6% and 91.6% by both the pressure retarded osmosis (PRO) mode and the forward osmosis (FO) mode. Water flux increased with the increasing DS concentrations, but solution velocities decreased with the operation time. Toxicity tests revealed that the M-LL treated by NH4HCO3 had no toxic effect on zebrafish and human cells. Moreover, green fluorescent protein (GFP) expression in the transgenic zebrafish Tg(cyp1a:gfp) induced by PAHs was very weak compared to the effects induced by untreated M-LL. Since the diluted DS met local safety requirements of liquid fertilizer, it could be directly applied as the liquid fertilizer for fertigation. In conclusion, this novel FO system using NH4HCO3 as the DS provides a cheap and efficient protocol to effectively remove PAHs and other pollutants in LL, and the diluted DS can be directly applied to crops as a liquid fertilizer, indicating that this technique is effective and eco-friendly for the treatment of different types of LL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design.

    PubMed

    Anglada, Angela; Urtiaga, Ane; Ortiz, Inmaculada; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2011-08-01

    The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30min), temperature (160-200°C), Cu(2+) concentration (250-750mgL(-1)) and H(2)O(2) concentration (0-1500mgL(-1)) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920mgL(-1), was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H(2)O(2) to reactive hydroxyl radicals. WAO at 2.5MPa oxygen partial pressure advanced treatment further; for example, 22min of oxidation at 200°C, 250mgL(-1) Cu(2+) and 0-1500mgL(-1) H(2)O(2) resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H(2)O(2) concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H(2)O(2) concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.

  16. Influence of tropical seasonal variations on landfill leachate characteristics--results from lysimeter studies.

    PubMed

    Tränkler, J; Visvanathan, C; Kuruparan, P; Tubtimthai, O

    2005-01-01

    Considering the quality of design and construction of landfills in developing countries, little information can be derived from randomly taken leachate samples. Leachate generation and composition under monsoon conditions have been studied using lysimeters to simulate sanitary landfills and open cell settings. In this study, lysimeters were filled with domestic waste, highly organic market waste and pre-treated waste. Results over two subsequent dry and rainy seasons indicate that the open cell lysimeter simulation showed the highest leachate generation throughout the rainy season, with leachate flow in all lysimeters coming to a halt during the dry periods. More than 60% of the precipitation was found in the form of leachate. The specific COD and TKN load discharged from the open cell was 20% and 180% more than that of the sanitary landfill lysimeters. Types of waste material and kind of pre-treatment prior to landfilling strongly influenced the pollutant load. Compared to the sanitary landfill lysimeter filled with domestic waste, the specific COD and TKN load discharged from the pre-treated waste lysimeter accounted for only 4% and 16%, respectively. Considering the local settings of tropical landfills, these results suggest that landfill design and operation has to be adjusted. Leachate can be collected and stored during the rainy season, and recirculation of leachate is recommended to maintain a steady and even accelerated degradation during the prolonged dry season. The open cell approach in combination with leachate recirculation is suggested as an option for interim landfill operations.

  17. Nitrogen removal via the nitrite pathway during wastewater co-treatment with ammonia-rich landfill leachates in a sequencing batch reactor.

    PubMed

    Fudala-Ksiazek, S; Luczkiewicz, A; Fitobor, K; Olanczuk-Neyman, K

    2014-06-01

    The biological treatment of ammonia-rich landfill leachates due to an inadequate C to N ratio requires expensive supplementation of carbon from an external carbon source. In an effort to reduce treatment costs, the objective of the study was to determine the feasibility of nitrogen removal via the nitrite pathway during landfill leachate co-treatment with municipal wastewater. Initially, the laboratory-scale sequencing batch reactor (SBR) was inoculated with nitrifying activated sludge and fed only raw municipal wastewater (RWW) during a start-up period of 9 weeks. Then, in the co-treatment period, consisting of the next 17 weeks, the system was fed a mixture of RWW and an increasing quantity of landfill leachates (from 1 to 10% by volume). The results indicate that landfill leachate addition of up to 10% (by volume) influenced the effluent quality, except for BOD5. During the experiment, a positive correlation (r(2) = 0.908) between ammonia load in the influent and nitrite in the effluent was observed, suggesting that the second step of nitrification was partially inhibited. The partial nitrification (PN) was also confirmed by fluorescence in situ hybridisation (FISH) analysis of nitrifying bacteria. Nitrogen removal via the nitrite pathway was observed when the oxygen concentration ranged from 0.5 to 1.5 mg O2/dm(3) and free ammonia (FA) ranged from 2.01 to 35.86 mg N-NH3/dm(3) in the aerobic phase. Increasing ammonia load in wastewater influent was also correlated with an increasing amount of total nitrogen (TN) in the effluent, which suggested insufficient amounts of assimilable organic carbon to complete denitrification. Because nitrogen removal via the nitrite pathway is beneficial for carbon-limited and highly ammonia-loaded mixtures, obtaining PN can lead to a reduction in the external carbon source needed to support denitrification.

  18. Accepting leachate from a hazardous-waste landfill

    SciTech Connect

    Kelly, J.M.; Brandenburg, B.L. )

    1991-08-01

    This article discusses the considerations necessary in preparing to treat leachate from a hazardous-waste landfill. The topics discussed include a review of the law, federal, state and local regulations, specific constituents of concern, leachate characteristics, process design and toxicity of the leachate. A table of the actual leachate composition is included.

  19. Post-treatment of the permeate of a submerged anaerobic membrane bioreactor (SAMBR) treating landfill leachate.

    PubMed

    Trzcinski, Antoine P; Ofoegbu, Nkechi; Stuckey, David C

    2011-01-01

    In this study, various methods were compared to reduce the Chemical Oxygen Demand (COD) content of stabilised leachate from a Submerged Anaerobic Membrane Bioreactor (SAMBR). It was found that Powdered Activated Carbon (PAC) resulted in greater COD removals (84 %) than Granular Activated Carbon (GAC-80 %), an ultrafiltration membrane of 1kDa (75 %), coagulation-flocculation with FeCl(3) and polyelectrolyte (45 %), FeCl(3) alone (32 %), and polymeric adsorbents such as XAD7HP (46 %) and XAD4 (32 %). Results obtained on the <1 kDa fraction showed that PAC and GAC had a similar adsorption efficiency of about 60 % COD removal, followed by XAD7HP (48 %), XAD4 (27 %) and then FeCl(3) (23 %). The post-treatment sequence UF+GAC would result in a final effluent with less than 100 mg COD/L. Size Exclusion Chromatography (SEC) revealed that the extent of adsorption of low MW compounds onto PAC was limited due to low MW hydrophilic compounds, whereas the kinetics of PAC adsorption depended mainly on the adsorption of high MW aromatics.

  20. Natural system for combined treatment of mine tailings and industrial landfill leachates

    SciTech Connect

    Martin, J.P.; Girts, M.A.; Koncewicz, F.J.

    1995-06-01

    Water in Camp Branch, next to U.S. Steel`s abandoned Edgewater Mine tailings pile, has a low pH and contains high sulfate, iron, manganese and zinc concentrations. Part of the water originates from precipitation, surface and groundwater flowing through the Edgewater Mine tailing pile and part from the nonpoint source discharge of leachate from U.S. Steel`s Exum materials storage and disposal facility. U.S. Steel retained CH2M Hill to develop this concept and design a demonstration wetland treatment system. A passive, low-cost, low maintenance system was designed and installed that uses a trench to collect the two nonpoint sources. The system has an engineered anoxic trench that increases pH by contacting the waste-water with high calcium limestone, precipitates metal hydroxides in a sedimentation pond without chemical addition, and uses both constructed and natural wetlands to remove sulfate, total dissolved solids and heavy metals from the water. Primary results indicate higher than design influent pH and iron levels. Removal of iron and manganese has been limited because of lack of oxygen in the sedimentation and subsequent ponds.

  1. The Comet Assay for the Evaluation of Genotoxic Potential of Landfill Leachate

    PubMed Central

    Widziewicz, Kamila; Kalka, Joanna; Skonieczna, Magdalena; Madej, Paweł

    2012-01-01

    Genotoxic assessment of landfill leachate before and after biological treatment was conducted with two human cell lines (Me45 and NHDF) and Daphnia magna somatic cells. The alkali version of comet assay was used to examine genotoxicity of leachate by DNA strand breaks analysis and its repair dynamics. The leachate samples were collected from Zabrze landfill, situated in the Upper Silesian Industrial District, Poland. Statistically significant differences (Kruskal-Wallice ANOVA rank model) were observed between DNA strand breaks in cells incubated with leachate before and after treatment (P < 0.001). Nonparametric Friedman ANOVA confirmed time-reliable and concentration-reliable cells response to leachate concentration. Examinations of chemical properties showed a marked decrease in leachate parameters after treatment which correlate to reduced genotoxicity towards tested cells. Obtained results demonstrate that biological cotreatment of leachate together with municipal wastewater is an efficient method for its genotoxic potential reduction; however, treated leachate still possessed genotoxic character. PMID:22666120

  2. [Assessment of impacts of combined treatment of solid urban waste landfill leachate and sewage on aquatic biota].

    PubMed

    Mannarino, Camille Ferreira; Moreira, Josino Costa; Ferreira, João Alberto; Arias, Ana Rosa Linde

    2013-11-01

    The impact on tilapia fish of combined treatment of landfill leachate and domestic sewage was monitored in a waste treatment plant that operated on a pilot scale using the activated sludge process. Biomarkers of sub-lethal toxicity were used to indicate the possibility of damage to organisms due to interaction with pollutants. The concentration of metallothioneins did not indicate the increased presence of metals in fish exposed than in control groups. Acetylcholinesterase enzyme activity was inhibited in only one of the exposed groups, indicating the possible presence of organophosphate and/or carbamate pesticides in treated effluent. The PAHs used as biomarkers (naphthalene, pyrene, benzo(a)pyrene and 1-hydroxypyrene) indicated that exposed fish had a greater absorption of PAHs than control groups of fish, indicating the likely presence of these compounds in at least one of the combined treatment effluents. The frequencies of micronuclei and other erythrocytic nuclear abnormalities also indicate greater genotoxic damage in cells of organisms exposed than in control groups. The use of biomarkers proved to be important to permit an evaluation of sub-lethal damage present in organisms exposed to the pollution source studied.

  3. LEACHATE CLOGGING ASSESSMENT OF GEOTEXTILE AND SOIL LANDFILL FILTERS

    EPA Science Inventory

    The liquids management strategy for any municipal or hazardous waste landfill requires a knowledgeable design strategy for the leachate collection system located at the base of the waste mass. Such leachate collection systems generally consist of sumps, perforated pipes, drainag...

  4. LEACHATE CLOGGING ASSESSMENT OF GEOTEXTILE AND SOIL LANDFILL FILTERS

    EPA Science Inventory

    The liquids management strategy for any municipal or hazardous waste landfill requires a knowledgeable design strategy for the leachate collection system located at the base of the waste mass. Such leachate collection systems generally consist of sumps, perforated pipes, drainag...

  5. Effect of the mixing ratio during co-treatment of landfill leachate and sewage with a combined stripping and reversed A²/O process.

    PubMed

    Zeng, Xiao-lan; Ding, Wen-chuan; Zhang, Zhi; Wan, Peng; Deng, Yang; Wang, Shuangshuang

    2015-01-01

    In this study, pilot-scale tests were conducted to evaluate the effect of volumetric mixing ratio of landfill leachate to sewage on the performance of the combined ammonia stripping and reversed anaerobic/anoxic/oxic (A(2)/O) process for co-treatment of landfill leachate and municipal sewage. Stripping, as pre-treatment, could significantly remove ammonia nitrogen (NH3-N) and total nitrogen (TN) by 55% and 52%, respectively. Moreover, chemical oxygen demand (COD) was slightly reduced by 6.8%, and little total phosphorus (TP) was removed. The subsequent reversed A(2)/O process appeared to be highly influenced by the volumetric mixing ratio of leachate to sewage. Typically, the effluent COD, NH3-N, TN and TP increased with the increasing ratio from 1:30 to 1:15, namely, the increasing fraction of leachate. Over the all tested mixing ratio range, the effluent COD and NH3-N were satisfied with the primary B standards of Chinese Discharge Standard of Pollutants for municipal waste water treatment plant (GB18918-2002). The standards different from the primary A standards for water reuse are used for discharge into the most surface water bodies in China. However, TN and TP would exceed the primary B standard levels at a mixing ratio of 1:15 or greater. These findings suggest that an appropriate volumetric mixing ratio should be carefully selected to ensure the performance of the reversed A(2)/O process.

  6. Landfill leachate as a mirror of today's disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States

    USGS Publications Warehouse

    Masoner, Jason R.; Kolpin, Dana W.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.

    2015-01-01

    Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17 200 000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1 000 000 ng/L), followed by plant/animal sterols (∼1000-100 000 ng/L), nonprescription pharmaceuticals (∼100-10 000 ng/L), prescription pharmaceuticals (∼10-10 000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p < 0.01) in untreated leachate compared with treated leachate. The CEC concentrations were significantly greater in leachate disposed to wastewater treatment plants from modern lined landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study.

  7. Landfill leachate as a mirror of today's disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States.

    PubMed

    Masoner, Jason R; Kolpin, Dana W; Furlong, Edward T; Cozzarelli, Isabelle M; Gray, James L

    2016-04-01

    Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17,200,000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1,000,000 ng/L), followed by plant/animal sterols (∼1000-100,000 ng/L), nonprescription pharmaceuticals (∼100-10,000 ng/L), prescription pharmaceuticals (∼10-10,000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p < 0.01) in untreated leachate compared with treated leachate. The CEC concentrations were significantly greater in leachate disposed to wastewater treatment plants from modern lined landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study. Published 2015 SETAC. This article is a US Government work and as such

  8. Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates.

    PubMed

    Gallen, C; Drage, D; Eaglesham, G; Grant, S; Bowman, M; Mueller, J F

    2017-06-05

    Leachate from 27 landfills was analysed for nine perfluoroalkyl substances (PFASs). Five PFASs were detected ubiquitously, with perfluorohexanoate (PFHxA) the predominant PFAS (mean 1700ng/L; range 73-25,000ng/L). Despite the complexity of landfill-specific factors, some general trends in PFAS concentrations were observed. Mean concentrations of eight PFASs were higher in operating landfills (or landfill cells) accepting primarily municipal waste, compared to closed municipal landfills. Landfills accepting primarily construction and demolition wastes produced leachate that had higher mean PFAS concentrations than municipal landfills. Younger landfills appeared to have a higher burden of waste containing PFASs (or their precursors), as significant relationships (p<0.05) were observed between selected PFAS concentrations and landfill age. Increasing pH and total organic carbon (TOC) in leachate were associated with increased concentrations of several PFASs. Eight landfills discharged leachate to wastewater treatment plants (WWTPs). Estimated masses of PFASs discharged reached a maximum of 62g annually (PFHxA), with a national estimate reaching 31kg (PFHxA) annually. The practise of treating leachate at WWTPs allows redistribution of PFASs between the solid and liquid waste streams, although the contribution of leachate to the total load of PFASs entering WWTPs is minor compared to domestic waste water sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Coupling of abiotic and biotic parameters to evaluate performance of combining natural lagooning and use of two sand filters in the treatment of landfill leachates.

    PubMed

    Aleya, L; Khattabi, H; Belle, E; Grisey, H; Mudry, J; Mania, J

    2007-02-01

    A study in the Etueffont landfill, located in Belfort (France), was conducted to evaluate the performance of combining natural lagooning and use of two sand filters for treating leachates through the coupling estimation of several abiotic and biotic parameters. Two gravel filters were installed in the upstream of the first basin which communicates with the remaing 2, 3 and 4 basins. The distribution of physical-chemical (T, pH, Eh, EC, O2, SM, SO4(2-), Cl-, Zn, Fe, Mg, Ni, Al, As, Ba, Cu, Sn, Zn, BOD, COD, KN, NH4+, NO2+ ,TP, AOX: absorbable organic halides, VFA: volatile fatty acids, and atrazine) and biological (bacteria, protozoa, phytoplankton) parameters was assessed in the leachate entering in basin 1, and downstream of the filters. The results showed slight variations in the physical-chemical composition of the leachate between 1999 and 2000, most likely ascribed to the maturation of the landfill but a very significant removal of SM (suspended matter) by the sand filters. This, applied to the majority of the studied parameters. Thus, the sand filter treatment of the leachates combined with natural lagooning was efficient in the improvement of water clarification.

  10. Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: isotherm and kinetic study

    NASA Astrophysics Data System (ADS)

    Zamri, Mohd Faiz Muaz Ahmad; Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Aziz, Hamidi Abdul; Foo, Keng Yuen

    2015-03-01

    This study was carried out to investigate the treatability of ion exchange resin (Indion MB 6 SR) for the removal of chromium (VI), aluminium (III), zinc (II), copper (II), iron (II), and phosphate (PO4)3-, chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and colour from semi-aerobic stabilized leachate by batch test. A range of ion exchange resin dosage was tested towards the removal efficiency of leachate parameters. It was observed that equilibrium data were best represented by the Langmuir model for metal ions and Freundlich was ideally fit for COD, NH3-N and colour. Intra particle diffusion model, pseudo first-order and pseudo second-order isotherm models were found ideally fit with correlation of the experimental data. The findings revealed that the models could describe the ion exchange kinetic behaviour efficiently, which further suggests comprehensive outlook for the future research in this field.

  11. Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: isotherm and kinetic study

    NASA Astrophysics Data System (ADS)

    Zamri, Mohd Faiz Muaz Ahmad; Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Aziz, Hamidi Abdul; Foo, Keng Yuen

    2017-05-01

    This study was carried out to investigate the treatability of ion exchange resin (Indion MB 6 SR) for the removal of chromium (VI), aluminium (III), zinc (II), copper (II), iron (II), and phosphate (PO4)3-, chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and colour from semi-aerobic stabilized leachate by batch test. A range of ion exchange resin dosage was tested towards the removal efficiency of leachate parameters. It was observed that equilibrium data were best represented by the Langmuir model for metal ions and Freundlich was ideally fit for COD, NH3-N and colour. Intra particle diffusion model, pseudo first-order and pseudo second-order isotherm models were found ideally fit with correlation of the experimental data. The findings revealed that the models could describe the ion exchange kinetic behaviour efficiently, which further suggests comprehensive outlook for the future research in this field.

  12. Landfill leachate treatment by an experimental subsurface flow constructed wetland in tropical climate countries.

    PubMed

    Ujang, Z; Soedjono, E; Salim, M R; Shutes, R B

    2005-01-01

    Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.

  13. Household hazardous waste in municipal landfills: contaminants in leachate.

    PubMed

    Slack, R J; Gronow, J R; Voulvoulis, N

    2005-01-20

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge.

  14. Variation in organic matter characteristics of landfill leachates in different stabilisation stages.

    PubMed

    Gupta, Abhinav; Zhao, Renzun; Novak, John T; Goldsmith, C Douglas

    2014-12-01

    This study investigates the effect of landfill age on landfill leachate characteristics; two aspects are focused here. One is ultraviolet absorbance at 254 nm (UV(254)) property, as the discharge of landfill leachates to publically owned treatment works can cause interference with UV(254) disinfection. The other is biorefractory organic nitrogen in leachates, as it can contribute to effluent nitrogen making it difficult to meet stringent effluent nitrogen regulations. To study variation in UV(254)-absorbing organic carbon and organic nitrogen, leachate samples ranging from cells with ages 2 to 30 y from a large landfill in Kentucky, were collected and fractionated on a basis of their molecular weight and chemical nature into humic acids, fulvic acids and a hydrophilic fraction. The effectiveness of long term landfilling and membrane treatment for organic matter and organic nitrogen removal was examined. Humic materials, which were the major UV(254)-absorbing substances, were mainly >1 kDa and they degraded significantly with landfill age. The hydrophilic organic fraction, which was the major contributor to organic nitrogen, was mainly <1 kDa and it became increasingly recalcitrant with landfill age. This study provides insight into the characteristics of the different leachate fractions with landfilling age that might aid the design of on-site leachate treatment techniques.

  15. Improvement of Landfill Leachate Biodegradability with Ultrasonic Process

    PubMed Central

    Mahvi, Amir Hossein; Roodbari, Ali Akbar; Nabizadeh Nodehi, Ramin; Nasseri, Simin; Dehghani, Mohammad Hadil; Alimohammadi, Mahmood

    2012-01-01

    Landfills leachates are known to contain recalcitrant and/or non-biodegradable organic substances and biological processes are not efficient in these cases. A promising alternative to complete oxidation of biorecalcitrant leachate is the use of ultrasonic process as pre-treatment to convert initially biorecalcitrant compounds to more readily biodegradable intermediates. The objectives of this study are to investigate the effect of ultrasonic process on biodegradability improvement. After the optimization by factorial design, the ultrasonic were applied in the treatment of raw leachates using a batch wise mode. For this, different scenarios were tested with regard to power intensities of 70 and 110 W, frequencies of 30, 45 and 60 KHz, reaction times of 30, 60, 90 and 120 minutes and pH of 3, 7 and 10. For determining the effects of catalysts on sonication efficiencies, 5 mg/l of TiO2 and ZnO have been also used. Results showed that when applied as relatively brief pre-treatment systems, the sonocatalysis processes induce several modifications of the matrix, which results in significant enhancement of its biodegradability. For this reason, the integrated chemical–biological systems proposed here represent a suitable solution for the treatment of landfill leachate samples. PMID:22829863

  16. COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors.

    PubMed

    Bilgili, M Sinan; Demir, Ahmet; Akkaya, Ebru; Ozkaya, Bestamin

    2008-10-01

    One of the most important problems with designing and maintaining a landfill is managing leachate that generated when water passes through the waste. In this study, leachate samples taken from aerobic and anaerobic landfill reactors operated with and without leachate recirculation are investigated in terms of biodegradable and non-biodegradable fractions of COD. The operation time is 600 days for anaerobic reactors and 250 days for aerobic reactors. Results of this study show that while the values of soluble inert COD to total COD in the leachate of aerobic landfill with leachate recirculation and aerobic dry reactors are determined around 40%, this rate was found around 30% in the leachate of anaerobic landfill with leachate recirculation and traditional landfill reactors. The reason for this difference is that the aerobic reactors generated much more microbial products. Because of this condition, it can be concluded that total inert COD/total COD ratios of the aerobic reactors were 60%, whereas those of anaerobic reactors were 50%. This study is important for modeling, design, and operation of landfill leachate treatment systems and determination of discharge limits.

  17. Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates.

    PubMed

    Pérez, G; Saiz, J; Ibañez, R; Urtiaga, A M; Ortiz, I

    2012-05-15

    This work investigates the formation of oxidation by-products during the electrochemical removal of ammonium using BDD electrodes from wastewaters containing chlorides. The influence of the initial chloride concentration has been experimentally analyzed first, working with model solutions with variable ammonium concentration and second, with municipal landfill leachates. Two different levels of chloride concentration were studied, i) low chloride concentrations ranging between 0 and 2000 mg/L and, ii) high chloride concentrations ranging between 5000 and 20,000 mg/L. Ammonium removal took place mainly via indirect oxidation leading to the formation of nitrogen gas and nitrate as the main oxidation products; at high chloride concentration the formation of nitrogen gas and the rate of ammonium removal were both favored. However, chloride was also oxidized during the electrochemical treatment leading to the formation of free chlorine responsible of the ammonium oxidation, together with undesirable products such as chloramines, chlorate and perchlorate. Chloramines appeared during the treatment but they reached a maximum and then started decreasing, being totally removed when high chloride concentrations were used. With regard to the formation of chlorate and perchlorate once again the concentration of chloride exerted a strong influence on the formation kinetics of the oxidation by-products and whereas at low chloride concentrations, chlorate appeared like an intermediate compound leading to the formation of perchlorate, at high chloride concentrations chlorate formation was delayed significantly and perchlorate was not detected during the experimental time. Thus this work contributes first to the knowledge of the potential hazards of applying the electro-oxidation technology as an environmental technology to deal with ammonium oxidation under the presence of chloride and second it reports efficient conditions that minimize or even avoid the formation of undesirable

  18. Supercritical water oxidation of landfill leachate

    SciTech Connect

    Wang Shuzhong; Guo Yang; Chen Chongming; Zhang Jie; Gong Yanmeng; Wang Yuzhen

    2011-09-15

    Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is the main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.

  19. Use of combined coagulation-adsorption process as pretreatment of landfill leachate

    PubMed Central

    2013-01-01

    Landfill leachate is an important pollution factor resulting from municipal landfill sites. Physical and chemical processes are the better option for pretreatment or full treatment of landfill leachate. This article presents a combination of pre-treatment method (coagulation and adsorption) for leachate collected from municipal solid waste open dumping site. Physico chemical characteristics of stabilized and fresh leachate were examined. Coagulation process was examined by using alum and ferric chloride. A low cost adsorbent, fly ash was used for adsorption studies. Coagulation studies were carried out for fresh and stabilized leachate. Adsorption studies have been conducted for alum pre-treated stabilized leachate. Effect of coagulant dose, adsorbent dose, pH and contact time were carried out. The effective optimum coagulant dosages were 0.6 g/L and 0.7 g/L for alum and ferric chloride respectively for stabilized leachate and incase of fresh leachate 0.8 g/L and 0.6 g/L for alum and ferric chloride respectively. For the alum pretreated stabilized leachate, the maximum COD removal is 28% using fly ash adsorbent with equilibrium time of 210 min and optimum dose of 6 g/L. Overall COD removal efficiency of 82% was obtained by coagulation using alum and adsorption using fly ash for stabilized leachate. The results obtained showed that combined coagulation and adsorption process can be used effectively for stabilized leachate treatment. PMID:23517661

  20. Growth and biomass of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; David R. Coyle; Richard B. Hall

    2007-01-01

    Resource managers are challenged with waste disposal and leachate produced from its degradation. Poplar (Populus spp.) trees offer an opportunity for ecological leachate disposal as an irrigation source for managed tree systems. Our objective was to irrigate Populus trees with municipal solid waste landfill leachate or fertilized well water (control...

  1. Preparation of tamarind fruit seed activated carbon by microwave heating for the adsorptive treatment of landfill leachate: A laboratory column evaluation.

    PubMed

    Foo, K Y; Lee, L K; Hameed, B H

    2013-04-01

    The preparation of tamarind fruit seed granular activated carbon (TSAC) by microwave induced chemical activation for the adsorptive treatment of semi-aerobic landfill leachate has been attempted. The chemical and physical properties of TSAC were examined. A series of column tests were performed to determine the breakthrough characteristics, by varying the operational parameters, hydraulic loading rate (5-20 mL/min) and adsorbent bed height (15-21 cm). Ammonical nitrogen and chemical oxygen demand (COD), which provide a prerequisite insight into the prediction of leachate quality was quantified. Results illustrated an encouraging performance for the adsorptive removal of ammonical nitrogen and COD, with the highest bed capacity of 84.69 and 55.09 mg/g respectively, at the hydraulic loading rate of 5 mL/min and adsorbent bed height of 21 cm. The dynamic adsorption behavior was satisfactory described by the Thomas and Yoon-Nelson models. The findings demonstrated the applicability of TSAC for the adsorptive treatment of landfill leachate.

  2. Photochemically-assisted electrochemical degradation of landfill leachate.

    PubMed

    Tauchert, Elias; Schneider, Silvana; de Morais, Josmaria Lopes; Peralta-Zamora, Patricio

    2006-08-01

    In this work, the treatment of landfill leachates by a photoelectrochemical procedure is reported. When applied to untreated leachates the photochemical system was significantly hindered on account of the characteristic dark coloration of the samples. At this condition the degradation process was essentially electrochemical permitting typical color and COD removal of about 50% and 20%, respectively. When a previous chemical precipitation process was applied aiming the elimination of colored species (mainly humic substances) the decolorization and COD removal was extended to 90% and 60%, respectively. Considering the extremely complex character of the leachates and its usual resistance to conventional degradation processes the result reported here attest the high potentiality of photoelectrochemical processes to remediation of recalcitrant residues.

  3. Effect of landfill characteristics on leachate organic matter properties and coagulation treatability.

    PubMed

    Comstock, Sarah E H; Boyer, Treavor H; Graf, Katherine C; Townsend, Timothy G

    2010-11-01

    This work spans landfill characteristics, leachate organic matter properties, and coagulation chemistry to provide new insights into the physical-chemical treatability of stabilized landfill leachate. Furthermore, leachate organic matter is viewed in terms of dissolved organic matter (DOM) present in the natural environment, and coagulation chemistry is evaluated based on previous leachate and water treatment coagulation studies. Stabilized leachate was collected from four landfills for a total of seven leachate samples, and samples were coagulated using ferric chloride, ferric sulfate, and aluminum sulfate. Landfill characteristics, such as age, leachate recirculation, and cover material, influenced properties of DOM present in the leachate, as measured by specific ultraviolet (UV) absorbance at 254 nm (SUVA254) and fluorescence excitation-emission matrices. The coagulation performance of the metal salts was ferric sulfate>aluminum sulfate>ferric chloride, and DOM removal followed the trend of color>UV254>dissolved organic carbon>chemical oxygen demand (COD). Finally, a strong association was found between increasing SUVA254 and increasing DOM removal for coagulation of both leachate and natural surface water. Thus, SUVA254 is expected to be a better predictor of leachate treatability, in particular DOM removal, than the traditionally used ratio of biochemical oxygen demand to COD. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Evaluation of leachate recirculation on nitrous oxide production in the Likang Landfill, China.

    PubMed

    Lee, Chun Man; Lin, Xue Rui; Lan, Chong Yu; Lo, Samuel Chun Lap; Chan, Gilbert Yuk Sing

    2002-01-01

    Landfill leachate recirculation is efficient in reducing the leachate quantity handled by a leachate treatment plant. However, after land application of leachate, nitrification and denitrification of the ammoniacal N becomes possible and the greenhouse gas nitrous oxide (N2O) is produced. Lack of information on the effects of leachate recirculation on N2O production led to a field study being conducted in the Likang Landfill (Guangzhou, China) where leachate recirculation had been practiced for 8 yr. Monthly productions and fluxes of N2O from leachate and soil were studied from June to November 2000. Environmental and chemical factors regulating N2O production were also accessed. An impermeable top liner was not used at this site; municipal solid waste was simply covered by inert soil and compacted by bulldozers. A high N2O emission rate (113 mg m-2 h-1) was detected from a leachate pond purposely formed on topsoil within the landfill boundary after leachate irrigation. A high N2O level (1.09 micrograms L-1) was detected in a gas sample emitted from topsoil 1 m from the leachate pond. Nitrous oxide production from denitrification in leachate-contaminated soil was at least 20 times higher than that from nitrification based on laboratory incubation studies. The N2O levels emitted from leachate ponds were compared with figures reported for different ecosystems and showed that the results of the present study were 68.7 to 88.6 times higher. Leachate recirculation can be a cost-effective operation in reducing the volume of leachate to be treated in landfill. However, to reduce N2O flux, leachate should be applied to underground soil rather than being irrigated and allowed to flow on topsoil.

  5. Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives.

    PubMed

    Iskander, Syeed Md; Brazil, Brian; Novak, John T; He, Zhen

    2016-02-01

    Landfill leachate has recently been investigated as a substrate for bioelectrochemical systems (BES) for electricity generation. While BES treatment of leachate is effective, the unique feature of bioelectricity generation in BES creates opportunities for resource recovery from leachate. The organic compounds in leachate can be directly converted to electrical energy through microbial interaction with solid electron acceptors/donors. Nutrient such as ammonia can be recovered via ammonium migration driven by electricity generation and ammonium conversion to ammonia in a high-pH condition that is a result of cathode reduction reaction. Metals in leachate may also be recovered, but the recovery is affected by their concentrations and values. Through integrating membrane process, especially forward osmosis, BES can recover high-quality water from leachate for applications in landscaping, agricultural irrigation or direct discharge. This review paper discusses the opportunities, challenges, and perspectives of resource recovery from landfill leachate by using BES.

  6. Characterisation of landfill leachate by EEM-PARAFAC-SOM during physical-chemical treatment by coagulation-flocculation, activated carbon adsorption and ion exchange.

    PubMed

    Oloibiri, Violet; De Coninck, Sam; Chys, Michael; Demeestere, Kristof; Van Hulle, Stijn W H

    2017-11-01

    The combination of fluorescence excitation-emission matrices (EEM), parallel factor analysis (PARAFAC) and self-organizing maps (SOM) is shown to be a powerful tool in the follow up of dissolved organic matter (DOM) removal from landfill leachate by physical-chemical treatment consisting of coagulation, granular activated carbon (GAC) and ion exchange. Using PARAFAC, three DOM components were identified: C1 representing humic/fulvic-like compounds; C2 representing tryptophan-like compounds; and C3 representing humic-like compounds. Coagulation with ferric chloride (FeCl3) at a dose of 7 g/L reduced the maximum fluorescence of C1, C2 and C3 by 52%, 17% and 15% respectively, while polyaluminium chloride (PACl) reduced C1 only by 7% at the same dose. DOM removal during GAC and ion exchange treatment of raw and coagulated leachate exhibited different profiles. At less than 2 bed volumes (BV) of treatment, the humic components C1 and C3 were rapidly removed, whereas at BV ≥ 2 the tryptophan-like component C2 was preferentially removed. Overall, leachate treated with coagulation +10.6 BV GAC +10.6 BV ion exchange showed the highest removal of C1 (39% - FeCl3, 8% - PACl), C2 (74% - FeCl3, 68% - PACl) and no C3 removal; whereas only 52% C2 and no C1 and C3 removal was observed in raw leachate treated with 10.6 BV GAC + 10.6 BV ion exchange only. Analysis of PARAFAC-derived components with SOM revealed that coagulation, GAC and ion exchange can treat leachate at least 50% longer than only GAC and ion exchange before the fluorescence composition of leachate remains unchanged. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/zeolite constructed wetland system.

    PubMed

    Mojiri, Amin; Ziyang, Lou; Tajuddin, Ramlah Mohd; Farraji, Hossein; Alifar, Nafiseh

    2016-01-15

    Constructed wetland (CW) is a low-cost alternative technology to treat wastewater. This study was conducted to co-treat landfill leachate and municipal wastewater by using a CW system. Typha domingensis was transplanted to CW, which contains two substrate layers of adsorbents, namely, ZELIAC and zeolite. Response surface methodology and central composite design have been utilized to analyze experimental data. Contact time (h) and leachate-to-wastewater mixing ratio (%; v/v) were considered as independent variables. Colour, COD, ammonia, nickel, and cadmium contents were used as dependent variables. At optimum contact time (50.2 h) and leachate-to-wastewater mixing ratio (20.0%), removal efficiencies of colour, COD, ammonia, nickel, and cadmium contents were 90.3%, 86.7%, 99.2%, 86.0%, and 87.1%, respectively. The accumulation of Ni and Cd in the roots and shoots of T. domingensis was also monitored. Translocation factor (TF) was >1 in several runs; thus, Typha is classified as a hyper-accumulator plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Application of environmental isotopes to characterize landfill gases and leachate

    SciTech Connect

    Liu, C.L.; Hackley, K.C. ); Baker, J. . Environmental Labs.)

    1992-01-01

    Environmental isotopes have been used to help characterize landfill gases and leachate for the purpose of identifying leachate and/or gas contamination in surrounding monitoring wells. Carbon isotopes (C-13/C-12 and C-14), hydrogen isotopes (H-3 and H-2/H-1) and oxygen isotopes (O-18/O-16) were used to characterize methane, carbon dioxide and leachate produced from two municipal landfills in northeastern Illinois. The isotopic results from the landfill-derived gases and leachate are compared to isotopic compositions of groundwater and gases from nearby monitoring wells. C-14 activity of landfill CH[sub 4] is high compared to CH[sub 4] normally found in subsurface sediments. For this study C-14 activities of the landfill methane range from 129--140 PMC. The C-14 of the dissolved inorganic carbon (DIC) of the leachate samples also have relatively high activities, ranging from 126--141 PMC. The [delta]C-13 and [delta]D values for CH[sub 4] from the landfills fall within a range of values representative of microbial methane produced by acetate-fermentation. The [delta]C-13 of the CO[sub 2] and the DIC are very positive, ranging from 8--14[per thousand] for CO[sub 2] and 13--22[per thousand] for DIC. The [delta]O-18 values of the leachates are similar to current meteoric water values, however, two of the leachate samples are significantly enriched in deuterium by approximately 65[per thousand]. Tritium values of the leachate water are generally higher than expected. For one landfill the tritium activity ranges from 227--338 TU, for the second landfill the tritium activity is approximately 1,300 TU. Compared to tritium levels in normal groundwater, these higher tritium values in the leachates indicate that this isotope has the potential to be an effective tracer for detecting leachate migration.

  9. Treating landfill leachate using passive aeration trickling filters; effects of leachate characteristics and temperature on rates and process dynamics.

    PubMed

    Matthews, Richard; Winson, Michael; Scullion, John

    2009-04-01

    Biological ammoniacal-nitrogen (NH(4)(+)-N) and organic carbon (TOC) treatment was investigated in replicated mesoscale attached microbial film trickling filters, treating strong and weak strength landfill leachates in batch mode at temperatures of 3, 10, 15 and 30 degrees C. Comparing leachates, rates of NH(4)(+)-N reduction (0.126-0.159 g m(-2) d(-1)) were predominantly unaffected by leachate characteristics; there were significant differences in TOC rates (0.072-0.194 g m(-2) d(-1)) but no trend relating to leachate strength. Rates of total oxidised nitrogen (TON) accumulation (0.012-0.144 g m(-2) d(-1)) were slower for strong leachates. Comparing temperatures, treatment rates varied between 0.029-0.319 g NH(4)(+)-N m(-2) d(-1) and 0.033-0.251 g C m(-2) d(-1) generally increasing with rising temperatures; rates at 3 degrees C were 9 and 13% of those at 30 degrees C for NH(4)(+)-N and TOC respectively. For the weak leachates (NH(4)(+)-N<140 mg l(-1)) complete oxidation of NH(4)(+)-N was achieved. For the strong leachates (NH(4)(+)-N 883-1150 mg l(-1)) a biphasic treatment response resulted in NH(4)(+)-N removal efficiencies of between 68 and 88% and for one leachate no direct transformation of NH(4)(+)-N to TON in bulk leachate. The temporal decoupling of NH(4)(+)-N oxidation and TON accumulation in this leachate could not be fully explained by denitrification, volatilisation or anammox, suggesting temporary storage of N within the treatment system. This study demonstrates that passive aeration trickling filters can treat well-buffered high NH(4)(+)-N strength landfill leachates under a range of temperatures and that leachate strength has no effect on initial NH(4)(+)-N treatment rates. Whether this approach is a practicable option depends on a range of site specific factors.

  10. Combined processes of two-stage Fenton-biological anaerobic filter-biological aerated filter for advanced treatment of landfill leachate.

    PubMed

    Wang, Xiaojun; Han, Jijun; Chen, Zhiwei; Jian, Lei; Gu, Xiaoyang; Lin, Che-Jen

    2012-12-01

    There are numerous non-biodegradable organic materials in the mature landfill leachate. To meet the new discharge standard of China, additional advanced treatment is needed for the effluent from the biological treatment processes of leachate. In this study, a combined process including two stages of "Fenton-biological anaerobic filter (BANF)-biological aerated filter (BAF)" was evaluated to address the advanced treatment need. The Fenton oxidation was applied to reduce chemical oxygen demand (COD) and enhance biodegradability of refractory organics, and the BANF-BAF process was then applied to remove the total nitrogen (TN). The treatment achieved effluent concentrations of COD<70 mg/L, TN<40 mg/L and NH(3)-N<10 mg/L. The removal efficiency of COD and TN were 96.1% and 95.9%, respectively. The effluent quality met the new discharge standard for Pollution Control on the Landfill Site of Municipal Solid of PR China (GB16889-2008). The operation cost of these processes was about 36.1CHY/t (5.70USD/t).

  11. Artificial sweeteners as potential tracers of municipal landfill leachate.

    PubMed

    Roy, James W; Van Stempvoort, Dale R; Bickerton, Greg

    2014-01-01

    Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources.

  12. Physico-chemical and biological characterization of urban municipal landfill leachate.

    PubMed

    Naveen, B P; Mahapatra, Durga Madhab; Sitharam, T G; Sivapullaiah, P V; Ramachandra, T V

    2017-01-01

    Unscientific management and ad-hoc approaches in municipal solid waste management have led to a generation of voluminous leachate in urban conglomerates. Quantification, quality assessment, following treatment and management of leachate has become a serious problem worldwide. In this context, the present study investigates the physico-chemical and biological characterization of landfill leachate and nearby water sources and attempts to identify relationships between the key parameters together with understanding the various processes for chemical transformations. The analysis shows an intermediate leachate age (5-10 years) with higher nutrient levels of 10,000-12,000 mg/l and ∼2000-3000 mg/l of carbon (COD) and nitrogen (TKN) respectively. Elemental analysis and underlying mechanisms reveal chemical precipitation and co-precipitation as the vital processes in leachate pond systems resulting in accumulation of trace metals. Based on the above criteria the samples were clustered into major groups that showed a clear distinction between leachate and water bodies. The microbial analysis showed bacterial communities correlating with specific factors relevant to redox environments indicating a gradient in nature and abundance of biotic diversity with a change in leachate environment. Finally, the quality and the contamination potential of the samples were evaluated with the help of leachate pollution index (LPI) and water quality index (WQI) analysis. The study helps in understanding the contamination potential of landfill leachate and establishes linkages between microbial communities and physico-chemical parameters for effective management of landfill leachate.

  13. Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water.

    PubMed

    Zhang, Xiao-Hua; Xu, Yan-Bin; He, Xiao-Lin; Huang, Lu; Ling, Jia-Yin; Zheng, Li; Du, Qing-Ping

    2016-11-01

    The antibiotic resistance genes (ARGs) from urban waste may spread to the environment with the discharge of leachate. Fifteen types of ARGs, including tetracycline, sulfonamides, AmpC β-lactamase and the class 1 integron gene were detected in the samples from the largest leachate treatment plant (LTP) in Guangzhou and its effluent receiving bodies (soil and surface water). The results showed that ARGs in leachates were in high levels and varied with seasons. The abundance of ARGs in the influent from high to low was in the turn of summer, winter, spring. About 2 to 4 orders of magnitude of ARGs were eliminated by the whole leachate treatment process. The predominant ARGs in the receiving soil were intI1, tetB, sul2, tetA and tetX, while those in the receiving surface water were sul2, intI1 and sul1, and the concentrations of ARGs in the receiving bodies were higher than those in the other natural bodies by 1 to 2 orders of magnitude. In addition, the results of bivariate correlation analysis showed that the abundances of ARGs (tetC, tetW, sul1, sul2, intI1 and FOX) were in significant correlation with the concentrations of heavy metals (Cu, Zn, Ni and Cr) (p < 0.05). LTPs are more likely to be sources of ARGs than wastewater treatment plant (WWTP) and need to be focused on.

  14. Effects of ion exchange resins in different mobile ion forms on semi-aerobic landfill leachate treatment.

    PubMed

    Bashir, Mohammed J K; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Huqe, A A M; Mohajeri, Soraya

    2010-01-01

    Landfill leachate is one of the major contamination sources. In this study, the ability of synthetic ion exchange resins which carry different mobile ion for removing color, chemical oxygen demand (COD), and ammonia nitrogen (NH(3)-N) from stabilized leachate was investigated. The synthetic resin INDION 225 Na as a cationic exchanger and INDION FFIP MB as an anionic exchanger were used in this study. INDION 225 Na was used in hydrogen form (H(+)) and in sodium form (Na(+)), while INDION FFIP MB resin was used in hydroxide form (OH(-)) and in calcium form (Cl(-)) form. The results indicated better removal of color, COD and NH(3)-N by using INDION 225 Na in H(+) as compared with Na(+) form, while no performance differences were observed by using INDION FFIP MB in OH(-) or Cl(-) form. Applying cationic resin followed by anionic resin achieved 97, 88 and 94, percent removal of color, COD and NH(3)-N. The residual amounts were 160 Pt-Co, 290 mg/L and 110 mg/L of color, COD and NH(3)-N respectively.

  15. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant.

    PubMed

    Wang, Chih-Cheng; Lee, Po-Heng; Kumar, Mathava; Huang, Yu-Tzu; Sung, Shihwu; Lin, Jih-Gaw

    2010-03-15

    The occurrence of simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) observed in a single partially aerated full-scale bioreactor treating landfill-leachate is reported in this paper. At present, the full-scale bioreactor is treating an average leachate flow of 304 m(3)d(-1) with a sludge retention time between 12 and 18d. The average COD, NH(4)(+)-N and NO(3)(-)-N concentrations at the upstream end of the bioreactor, i.e., influent, are 554, 634 and 3 mg L(-1), respectively; whereas no NO(2)(-)-N is detected in the influent. The percentage removals of COD and NH(4)(+)-N in the bioreactor were 28% and 80%, respectively. A nitrogen mass balance approach was adopted to analyze the performance of SNAD in the full-scale bioreactor. The total nitrogen (TN) removal by combined partial nitrification and anaerobic ammonium oxidation is 68% and the heterotrophic denitrification contributes to 8% and 23% of TN and COD removals, respectively. The red granule in the bioreactor was analyzed by using fluorescence in situ hybridization and polymerase chain reaction. The results of both analytical methods confirm the presence of anaerobic ammonium oxidizing bacteria as the predominant species along with other Planctomycete-like bacteria. Overall, the SNAD process offers the simultaneous removals of nitrogen and COD in the wastewater. (c) 2009 Elsevier B.V. All rights reserved.

  16. System case studies for the removal of heavy metals from landfill leachate

    SciTech Connect

    Kimball, P.V.; Sargavakian, K.L.

    1994-12-31

    The purpose of this paper is to present proven technologies used in the treatment of solid waste landfill leachates. The design considerations include the type of landfill and its contents, leachate collection, leachate water characteristics and effluent limitations. The three technologies presented will include precipitation followed by conventional gravity settling, precipitation followed by crossflow microfiltration and treatment by ion exchange processes. Three case studies will be presented to illustrate the design process and application of the technologies, along with capital and operating costs. The main metals of concern are zinc, iron, lead, copper, chromium and arsenic.

  17. Sanitary Landfill Leachate Recycle and Environmental Problems at Selected Army Landfills: Lessons Learned

    DTIC Science & Technology

    1986-09-01

    Benson, M. J. Staub , and M. A. Kamlys, Characteristics, Control and Treatment of Leachate at Military Irnstallations, !nterim Report N- 97/ADA097035...D. Smith, R. Pileccia, J. Handy, G. Gerdes, S. Kloster, G. Schanche, _. .1. fJanson, M. J. Staub , and M. A. Kamiya, Characteri.tic.i Control, and...Learned N 1. Do not construct buildings on top of or close to a closed landfill until methane gas production has stopped.... - 2. Note that explosive

  18. Supercritical water oxidation of landfill leachate.

    PubMed

    Wang, Shuzhong; Guo, Yang; Chen, Chongming; Zhang, Jie; Gong, Yanmeng; Wang, Yuzhen

    2011-01-01

    In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N(2) is the main product, and the formation of NO(2) and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 °C, reaction time of 50-300s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH(3) conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH(3) is a refractory compound in supercritical water. The conversion of COD and NH(3) were higher in the presence of MnO(2) than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH(3) conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH(3). The activation energy with and without catalyst for NH(3) oxidation were 107.07 ± 8.57 kJ/mol and 83.22 ± 15.62 kJ/mol, respectively.

  19. A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.

    PubMed

    Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei

    2017-09-01

    A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.

  20. Environmental Isotope Characteristics of Landfill Leachates and Gases

    USGS Publications Warehouse

    Hackley, Keith C.; Liu, Chao-Li; Coleman, D.D.

    1996-01-01

    The isotopic characteristics of municipal landfill leachate and gases (carbon dioxide and methane) are unique relative to the aqueous and gaseous media in most other natural geologic environments. The ??13 C of the CO2 in landfills is significantly enriched in 13C, with values as high as +20??? reported. The ?? 13C and ??D values of the methane fall within a range of values representative of microbial methane produced primarily by the acetate-fermentation process. The ??D of landfill leachate is strongly enriched in deuterium, by approximately 30??? to nearly 60??? relative to local average precipitation values. This deuterium enrichment is undoubtedly due to the extensive production of microbial methane within the limited reservoir of a landfill. The concentration of the radiogenic isotopes, 14C and 3H, are significantly elevated in both landfill leachate and methane. The 14C values range between approximately 120 and 170 pMC and can be explained by the input of organic material that was affected by the increased 14C content of atmospheric CO2 caused by atmospheric testing of nuclear devices. The tritium measured in leachate, however, is often too high to be explained by previous atmospheric levels and must come from material buried within the landfill. The unique isotopic characteristics observed in landfill leachates and gases provide a very useful technique for confirming whether contamination is from a municipal landfill or some other local source.

  1. The performance of Electro-Fenton oxidation in the removal of coliform bacteria from landfill leachate.

    PubMed

    Aziz, Hamidi Abdul; Othman, Osama Mohammed; Abu Amr, Salem S

    2013-02-01

    Leachate pollution is one of the main problems in landfilling. Researchers have yet to find an effective solution to this problem. The technology that can be used may differ based on the type of leachate produced. Coliform bacteria were recently reported as one of the most problematic pollutants in semi-aerobic (stabilized) leachate. In the present study, the performance of the Electro-Fenton process in removing coliform from leachate was investigated. The study focused on two types of leachate: Palau Borung landfill leachate with low Coliform content (200 MPN/100 m/L) and Ampang Jajar landfill leachate with high coliform content (>24 × 10(4)MPN/100 m/L). Optimal conditions for the Electro-Fenton treatment process were applied on both types of leachate. Then, the coliform was examined before and after treatment using the Most Probable Number (MPN) technique. Accordingly, 100% removal of coliform was obtained at low initial coliform content, whereas 99.9% removal was obtained at high initial coliform content. The study revealed that Electro-Fenton is an efficient process in removing high concentrations of pathogenic microorganisms from stabilized leachate.

  2. An investigation of carbon release rate via leachate from an industrial solid waste landfill.

    PubMed

    Kim, Hee Jong; Matsuto, Toshihiko; Tojo, Yasumasa

    2011-06-01

    Long-term behaviour of leachate pollutants is a key factor to estimate time and cost required for the leachate treatment in landfills. Estimating carbon release via leachate can be a good way by which to understand the long-term behaviour, however, most studies have had a timeline of only several months or years. In this study, a release rate of carbon via leachate for 20 years was estimated at an industrial solid waste landfill. The total carbon content in dumped waste was estimated based on combustible contents determined by collecting samples from other industrial landfills and pretreatment facilities, and carbon contents in literature values. Leachate quantity data, which were not recorded for the first ten years, were estimated using a macro-moisture balance model including the effect of snow melt. Because leachate quantity and quality at each site were only measured after leachates were mixed, the quantity at each site was calculated by assuming infiltration rates with and without final cover. Results indicated that less than 2% of total input carbon was released from each site via leachate regardless of landfill age.

  3. Effects of electric potential, NaCl, pH and distance between electrodes on efficiency of electrolysis in landfill leachate treatment.

    PubMed

    Erabee, Iqbal K; Ahsan, Amimul; Jose, Bipin; Arunkumar, T; Sathyamurthy, R; Idrus, Syazwani; Daud, N N Nik

    2017-07-03

    This study investigated the effects of different parameters on the removal efficiencies of organic and inorganic pollutants in landfill leachate treatment by electrolysis. Different parameters were considered such as the electric potential (e.g., 24, 40 and 60 V), hydraulic retention time (HRT) (e.g., 40, 60, 80, 100 and 120 min), sodium chloride (NaCl) concentration (e.g., 1, 3, 5 and 7%), pH (e.g., 3, 7 and 9), electrodes materials [e.g., aluminum (Al) and iron (Fe)] and distance between electrodes (e.g., 1, 2 and 3 cm). The best operational condition of electrolysis was then recommended. The electric potential of 60 V with HRT of 120 min at 5% of NaCl solution using Al as anode and Fe as cathode (kept at a distance of 3 cm) was the most efficient condition which increased the removal efficiencies of various parameters such as turbidity, salinity, total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and heavy metals (e.g., Zn and Mn). The higher removal percentages of many parameters, especially COD (94%) and Mn (93%) indicated that the electrolysis is an efficient technique for multi-pollutants (e.g., organic, inorganic and heavy metals) removal from the landfill leachate.

  4. Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates.

    PubMed

    Fuertes, I; Gómez-Lavín, S; Elizalde, M P; Urtiaga, A

    2017-02-01

    Landfill leachates have been recognized as significant secondary sources of poly- and perfluoroalkyl substances (PFASs). This study presents data on the occurrence and concentration of 11 perfluoroalkyl carboxylates (PFCAs) and 5 perfluoroalkyl sulfonates (PFSAs) in leachates from 4 municipal solid waste landfill sites located across northern Spain. To the best of our knowledge, this is the first report of the presence of PFASs in Spanish landfill leachates. Two of the landfill sites applied on-site treatment using membrane bioreactors (MBR), and its effect on PFASs occurrence is also reported. Total PFASs (∑PFASs) in raw leachates reached 1378.9 ng/L, while in treated samples ∑PFASs was approximately two-fold (3162.3 ng/L). PFCAs accounted for the majority of the detected PFASs and perfluorooctanoic acid (PFOA) was the dominant compound in raw leachates (42.6%), followed by shorter chain PFHxA (30.1%), PFPeA and PFBA. The age of the sites might explain the PFASs pattern found in raw leachates as all of them were stabilized leachates. However, PFASs profile was different in treated samples where the most abundant compound was PFHxA (26.5%), followed by linear perfluorobutane sulfonate (L-PFBS) (18.7%) and PFOA (17.7%). The overall increase of the PFASs content as well as the change in the PFASs profile after the MBR treatment, could be explained by the possible degradation of PFASs precursors such as fluorotelomer alcohols or fluorotelomer sulfonates. Using the volume of leachates generated in the landfill sites, that served 1.8 million people, the discharge of 16 ∑PFASs contained in the landfill leachates was estimated as 1209 g/year.

  5. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.

    PubMed

    Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John

    2016-09-01

    Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. Copyright © 2016 Elsevier Ltd. All

  6. Removal of non-biodegradable organic matter from landfill leachates by adsorption.

    PubMed

    Rodríguez, J; Castrillón, L; Marañón, E; Sastre, H; Fernández, E

    2004-01-01

    Leachates produced at the La Zoreda landfill in Asturias, Spain, were recirculated through a simulated landfill pilot plant. Prior to recirculation, three loads of different amounts of Municipal Solid Waste (MSW) were added to the plant, forming in this way consecutive layers. When anaerobic digestion was almost completed, the leachates from the landfill were recirculated. After recirculation, a new load of MSW was added and two new recirculations were carried out. The organic load of the three landfill leachates recirculated through the anaerobic pilot plant decreased from initial values of 5108, 3782 and 2560 mg/l to values of between 1500 and 1600 mg/l. Despite achieving reductions in the organic load of the leachate, a residual organic load still remained that was composed of non-biodegradable organic constituents such as humic substances. Similar values of the chemical oxygen demand (COD) were obtained when the landfill leachate was treated by a pressurised anoxic-aerobic process followed by ultrafiltration. After recirculation through the pilot plant, physico-chemical treatment was carried out to reduce the COD of the leachate. The pH of the leachate was decreased to a value of 1.5 to precipitate the humic fraction, obtaining a reduction in COD of about 13.5%. The supernatant liquid was treated with activated carbon and different resins, XAD-8, XAD-4 and IR-120. Activated carbon presented the highest adsorption capacities, obtaining COD values for the treated leachate in the order of 200mg/l. Similar results were obtained when treating with activated carbon, the leachate from the biological treatment plant at the La Zoreda landfill; in this case without decreasing the pH.

  7. Research on leachate recirculation from different types of landfills

    SciTech Connect

    Wang Qi . E-mail: wangqi@craes.org.cn; Matsufuji, Yasushi; Dong Lu; Huang Qifei; Hirano, Fumiaki; Tanaka, Ayako

    2006-07-01

    Landfills can produce a great amount of leachate containing highly concentrated organic matter. This is especially true for the initial leachate from landfilled municipal solid wastes (MSW) that generally has concentrations of COD{sub Cr} and BOD{sub 5} up to 80,000 and 50,000 mg/L, respectively. The leachate could be disposed by means of recirculating technique, which decomposes the organics through the action of proliferating microorganisms and thereby purifies the leachate, and simultaneously accelerates organic decomposition through water saturation control. Data from experimental results indicated that leachate recirculating could reduce the organic concentration considerably, with a maximum reduction rate of COD{sub Cr} over 95%; and, using a semi-aerobic process, NH{sub 3}-N concentration of treated leachate could be under 10 mg/L. In addition, the organic concentration in MSW decreased greatly.

  8. Attenuation of Landfill Leachate In Unsaturated Sandstone

    NASA Astrophysics Data System (ADS)

    Butler, A. P.; Brook, C.; Godley, A.; Lewin, K.; Young, C. P.

    Landfill leachate emanating from old "dilute and disperse" sites represents a potential (and in many cases actual) threat to the integrity of groundwater. Indeed, this concern has been included in EU legislation (80/86/EEC), where key contaminants (e.g. ammonia, various toxic organic compounds and heavy metals) are explicitly highlighted in terms of their impact on groundwater. In the UK, whilst there are a substantial number of unlined landfills sited on major aquifers, many of these are in locations where there is a substantial unsaturated zone. Thus, there exists the opportunity for the modification and attenuation of contaminants prior to it encountering the water table. An understanding of likely changes in leachate content and concentrations at such sites will enable a more comprehensive assessment of the potential risks and liabilities posed by such sites to be evaluated. The Burntstump landfill, situated 8 km north of Nottingham (UK), is sited on an outcrop of Sherwood sandstone. The fine friable sand has been quarried since the 1960s and the excavated volume used to store municipal waste. Filling at the site commenced in the mid 1970s and originally was unlined. In 1978 the first of what was to become a series of boreholes was installed within an area of roughly 5 m radius over one of the original waste cells. Cores of the waste and underlying sandstone were extracted and analysed for a range of physical and chemical parameters. The most recent set of analyses were obtained in 2000. The series of investigations therefore provide an important record of leachate migration and modification through the unsaturated zone for over twenty years. The progression of the leachate front is clearly delineated by the chloride concentration profile with an average velocity of around 1.6 m.yr-1. Combining this value with an average (and reasonably uniform) measured moisture content of about 7% gives a mean inter-granular specific discharge of 110 mm.yr-1. An interesting

  9. Field survey of enteric viruses in solid waste landfill leachates.

    PubMed Central

    Sobsey, M D

    1978-01-01

    Because municipal solid waste may contain fecal material from a variety of sources, there is concern that the leachate discharged from some solid waste landfills may contain enteric pathogens, including enteric viruses. In this study, 22 leachate samples from 21 different landfills in the United States and Canada were examined for enteric viruses. The sites represented a broad range of conditions for solid waste landfills and the leachate samples ranged from 10.3 to 18 liters in volume. Enteric viruses were found in only one of the 22 leachate samples examined. Two viruses, identified as poliovirus types 1 and 3, were found in an 11.8 liter sample obtained from a site where solid waste landfill practice was deficient. The low levels of enteric viruses detected in field samples of raw leachate and the opportunities for further reductions in the virus concentration of leachates by such processes as thermal inactivation, removal by soil and dilution in ground and surface waters, suggest that leachates from properly operated solid waste landfills do not constitute an environmental or public health hazard due to enteric viruses. PMID:28677

  10. Field survey of enteric viruses in solid waste landfill leachates.

    PubMed

    Sobsey, M D

    1978-09-01

    Because municipal solid waste may contain fecal material from a variety of sources, there is concern that the leachate discharged from some solid waste landfills may contain enteric pathogens, including enteric viruses. In this study, 22 leachate samples from 21 different landfills in the United States and Canada were examined for enteric viruses. The sites represented a broad range of conditions for solid waste landfills and the leachate samples ranged from 10.3 to 18 liters in volume. Enteric viruses were found in only one of the 22 leachate samples examined. Two viruses, identified as poliovirus types 1 and 3, were found in an 11.8 liter sample obtained from a site where solid waste landfill practice was deficient. The low levels of enteric viruses detected in field samples of raw leachate and the opportunities for further reductions in the virus concentration of leachates by such processes as thermal inactivation, removal by soil and dilution in ground and surface waters, suggest that leachates from properly operated solid waste landfills do not constitute an environmental or public health hazard due to enteric viruses.

  11. Hybrid zero valent iron (ZVI)/H2O2 oxidation process for landfill leachate treatment with novel nanosize metallic calcium/iron composite.

    PubMed

    Lee, Son Dong; Mallampati, Srinivasa Reddy; Lee, Byoung Ho

    2017-04-01

    A novel nanosize metallic calcium/iron dispersed reagent was synthesized and tested as coagulant/catalyst in a hybrid zero valent iron (ZVI)/H2O2 oxidation process to treat leachate. Two different types of leachates, one from municipal solid waste (MSW) tipping hall (MSWIL) and second from an MSW landfill site (MSWLL), were collected and characterized. The morphology, elemental composition, and mineral phases of the nano-Ca/CaO and nano-Fe/Ca/CaO were characterized by scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS) and x-ray powder diffraction (XRD) analysis. The coagulation process with 2.5 g L(-1) nano-Ca/CaO attained 64.0, 56.0, and 20.7% removal of color, chemical oxygen demand (COD), and total suspended solids (TSS) in MSWLL. With only 1.0 g L(-1) of nano-Fe/Ca/CaO, relatively high color, COD and TSS removal was achieved in MSWLL at 67.5, 60.2, and 37.7%, respectively. The heavy metal removal efficiency reached 91-99% after treatment with nano-Fe/Ca/CaO in both leachate samples. The coupling process, using 1.0 g L(-1) of nano-Fe/Ca/CaO and 20 mM H2O2 doses, achieved enhancement removal of color, COD, and TSS, up to 95%, 96%, and 66%, respectively, without initial pH control. After this treatment, the color, COD, TSS, and heavy metals were significantly decreased, fitting the Korean discharge regulation limit. A hybrid coupled zero valent iron (ZVI)/H2O2 oxidation process with novel nanosized metallic calcium/iron dispersed reagent proved to be a suitable treatment for dealing with leachate samples.

  12. Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids.

    PubMed

    Gallen, C; Drage, D; Kaserzon, S; Baduel, C; Gallen, M; Banks, A; Broomhall, S; Mueller, J F

    2016-07-15

    The levels of perfluroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDDs) were studied in Australian landfill leachate and biosolids. Leachate was collected from 13 landfill sites and biosolids were collected from 16 wastewater treatment plants (WWTPs), across Australia. Perfluorohexanoate (PFHxA) (12-5700ng/L) was the most abundant investigated persistent, bioaccumulative and toxic (PBT) chemical in leachate. With one exception, mean concentrations of PFASs were higher in leachate of operating landfills compared to closed landfills. Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane isomers (HBCDDs) were detected typically at operating landfills in comparatively lower concentrations than the PFASs. Decabromodiphenyl ether (BDE-209) (<0.4-2300ng/g) and perfluoroctanesulfonate (PFOS) (leachate discharged to WWTPs for treatment was small (<1% total inflow), and masses of PBTs transferred reached a maximum of 16g/yr (PFHxA). A national estimate of masses of PBTs accumulated in Australian biosolids reached 167kg/yr (BDE-209), a per capita contribution of 7.2±7.2mg/yr. Nationally, approximately 59% of biosolids are repurposed and applied to agricultural land. To our knowledge this study presents the first published data of PFASs and HBCDDs in Australian leachate and biosolids. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Characterization of landfill leachates by molecular size distribution, biodegradability, and inert chemical oxygen demand.

    PubMed

    Amaral, Míriam C S; Ferreira, Cynthia F A; Lange, Liséte Celina; Aquino, Sérgio F

    2009-05-01

    This work presents results from a detailed characterization of landfill leachates of different ages from a landfill in a major Brazilian city. This characterization consists of determining the molecular size distribution and the inert chemical oxygen demand (COD) and the biodegradability of both aerobic and anaerobic processes. Results show that leachate with a high COD concentration leachate has low biodegradability. A significant fraction of the COD is not characterized as protein, carbohydrate, or lipids, which reinforces the hypothesis that the remaining fraction was present in all leachate fractions (less than 1 kDa; between 1 and 10 kDa; between 10 and 100 kDa; and greater than 100 kDa) and is refractory. These results suggest that leachates with such characteristics require treatment systems that use physical-chemical processes as a pre- or post-treatment step to biological processes.

  14. Design of a multifunctional permeable reactive barrier for the treatment of landfill leachate contamination: laboratory column evaluation.

    PubMed

    Van Nooten, Thomas; Diels, Ludo; Bastiaens, Leen

    2008-12-01

    This study describes a laboratory-scale multifunctional permeable reactive barrier (multibarrier) for the removal of ammonium (NH4+: 313 +/- 51 mg N L(-1)), adsorbable organic halogens (AOX: 0.71 +/- 0.25 mg Cl L(-1)), chemical oxygen demand (COD: 389 +/- 36 mg L(-1)), and toxicity from leachate originating from a 40-year-old Belgian landfill. The complexity of the contamination required a sequential setup combining different reactive materials and removal processes. All target contaminants could be removed to levels below the regulatory discharge limits. Ammonium was efficiently removed in a first microbial nitrification compartment, which was equipped with diffusive oxygen emitters to ensure a sufficient oxygen supply. Ammonium was mainly oxidized to nitrite and to a lesser extent to nitrate, with an average mass recovery of 96%. Remaining ammonium concentrations could be further removed by ion exchange in a second compartment filled with clinoptilolite, exhibiting a total ammonium removal capacity of 46.7 mg N per g of clinoptilolite. Athird microbial denitrification compartment fed with sodium butyrate as a carbon source, was used to remove nitrate and nitrite formed in the first compartment. Maximum nitrification and denitrification rates at 12 degrees C indicated that hydraulic retention times of approximately 62 h and approximately 32 h were required in the columns to remove 400 mg N L(-1) by nitrification and denitrification, respectively. Leachate toxicity decreased to background levelstogetherwiththe removal of ammonium and its oxidation products. AOX and COD were efficiently removed by sorption in an additional compartment filled with granular activated carbon.

  15. Phytotoxicity of landfill leachate on willow--Salix amygdalina L.

    PubMed

    Bialowiec, Andrzej; Randerson, Peter F

    2010-01-01

    Because of low investment and operational costs, interest is increasing in the use of willow plants in landfill leachate disposal. Toxic effects of leachate on the plants should be avoided in the initial period of growth and phytotoxicological testing may be helpful to select appropriate leachate dose rates. The aim of this study was to determine the phytotoxicity of landfill leachate on young willow (Salix amygdalina L.) cuttings, as a criterion for dose rate selection in the early phase of growth. Over a test period of 6 weeks plants were exposed to six concentrations of landfill leachate solutions (0%; 6.25%; 12.5%; 25%; 50% and 100%), under two different regimes. In regime A willow plants were cultivated in leachate solution from the beginning, whereas in regime B they were grown initially in clean water for 4 weeks, after which the water was exchanged for leachate solutions. The lowest effective concentration causing toxic effects (LOEC) was calculated (p<0.05). In regime A LOEC was between 5.44% and 6.50% of leachate concentration, but slightly higher in regime B (5.32-6.59%). Willow plants were able to survive in landfill leachate solutions with electrical conductivity (EC) values up to 5.0 mS/cm in regime A, whereas in regime B plants were killed when EC exceeded 3.0 mS/cm. This indicates an ability of willow plants to tolerate higher strengths of landfill leachate if they are cultivated in such concentrations from the beginning.

  16. Monitoring of leachate quality stored in gas ventilation pipes for evaluating the degree of landfill stabilization.

    PubMed

    Tojo, Yasumasa; Sato, Masahiro; Matsuo, Takayuki; Matsuto, Toshihiko

    2011-01-01

    Monitoring of leachate quality is the essential measure in aftercare for evaluating landfill stabilization. Generally, the most common way of leachate monitoring is executed at the inlet of the leachate treatment facility. However, it does not necessarily reflect the actual state of the site. Thus, methodologies which focus on both the discharge, in order to determine when the post-closure care of the facility should terminate, and on the degree of waste stabilization in the landfill are required. In the present study, monitoring of leachate quality stored in 68 gas ventilation pipes was conducted and the degree of waste stabilization at each location in the landfill was estimated by a statistical approach using the results obtained by monitoring. Leachate characteristics varied significantly for each pipe but seemed to reflect the waste condition of the nearby location. Correlation among the analysed items was quite high. Namely, the difference of leachate quality seemed to be categorized only by the level of concentration but not by the specific characteristics. To confirm this, Euclidean distances of dissimilarity were calculated by multidimensional scaling using six items of leachate quality and temperature. Two factors (thickness of leachate and concentration of total organic carbon (TOC) and electric conductivity (EC)) that distinguish leachate characteristics appeared. To indicate the degree of stabilization by location, the spatial distribution of TOC, total nitrogen (TN), inorganic carbon (IC), and chloride ion were estimated by using the ordinary Kriging methodology. As the result, it was estimated that the concentration of leachate existing within the landfill, especially TN, was higher than the completion criteria for leachate in most parts of the investigated area.

  17. Nitrification, denitrification, and dephosphatation capability of activated sludge during co-treatment of intermediate-age landfill leachates with municipal wastewater.

    PubMed

    Fudala-Ksiazek, S; Kulbat, E; Luczkiewicz, A

    2017-05-03

    This study focuses on the possible use and efficacy of the co-treatment of landfill leachate (intermediate-age) with municipal wastewater. The nitrification, denitrification, and dephosphatation capability of activated sludge acclimated with a mixture of raw municipal wastewater (RWW) with gradually increasing amounts of raw landfill leachate (RLL) (from 0.5 to 5% v/v) were tested. Biochemical tests were conducted simultaneously in batch reactors (BRs). According to the obtained data, the ammonia utilization rate (AUR) was 3.68 g N/(kg volatile suspended solids (VSS)·h) for RWW, and it increased to 5.78 g N/(kg VSS·h) with the addition of 5% RLL. The nitrate utilization rate under anoxic conditions (NURAX) remained at a comparable level of 1.55-1.98 g N/(kg VSS·h). During the anoxic phase, both nitrate utilization and phosphorus uptake occurred, suggesting that denitrifying phosphorus-accumulating organisms (DPAOs) utilized N-NO3. With the addition of RLL, the rates of anoxic and aerobic phosphate uptake (PURAX and PURAE) and phosphate release rate (PRR) decreased. The PRR was likely negatively influenced by high N-NO3 concentrations but not completely inhibited due to the availability of a biodegradable fraction of chemical oxygen demand (COD). Thus, monitoring the NH4-N load in wastewater treatment plant influent before co-treatment is more informative than that using hydraulic-based criteria. σ - standard deviation; AUR - ammonia utilization rate; DPAO - denitrifying phosphorus-accumulating organisms; MLVSS - mixed liquor volatile suspended solids content; MSW - municipal solid waste; NURAE - nitrate production rate under aerobic conditions; NURAX - nitrate utilization rate under anoxic conditions; PAO - phosphorus-accumulating organisms; PRR - phosphate release rate under anaerobic conditions; PURAX - phosphate uptake rate under anoxic conditions; PURAE - phosphate uptake rate under aerobic conditions; RLL - raw landfill leachates; RM0.5 - raw

  18. Fluorescence excitation-emission matrix spectroscopy analysis of landfill leachate DOM in coagulation-flocculation process.

    PubMed

    Zhu, Guocheng; Wang, Chuang; Dong, Xingwei

    2017-06-01

    Landfill leachate contains a variety of organic matters, some of which can be excited and emit fluorescence signal. In order to degrade these organic matters, the pretreatment of the leachate is needed, which can improve the degradation performance of post-treatment process. Coagulation-flocculation is one of the important pretreatment processes to treat landfill leachate. Assessing the chemical compositions of landfill leachate is helpful in the understanding of their sources and fates as well as the mechanistic behaviors in the water environment. The present work aimed to use fluorescence excitation-emission matrix spectroscopy (EEMs) to characterize the chemical fractions of landfill leachate dissolved organic matter (DOM) in conjunction with parallel factor analysis (PARAFAC). Results showed that the DOM of landfill leachate tested in this study was identified resulting from microbial input, which included five typical characteristic peaks and four kinds of PARAFAC fractions. These fractions were mainly composed of hydrophobic macromolecule humic acid-like (HM-HA), hydrophilic intermediate molecular fulvic acid-like (HIM-FA), and hydrophilic small molecule protein-like substances (HSM-PS). HM-HA and HIM-FA were found to be easier to remove than HSM-PS. Further research on HSM-PS removal by coagulation-flocculation still needs to be improved.

  19. Measuring organic carbon, nutrients and heavy metals in rivers receiving leachate from controlled and uncontrolled municipal solid waste (MSW) landfills

    SciTech Connect

    Yusof, N. Haraguchi, A.; Hassan, M.A.; Othman, M.R.; Wakisaka, M.; Shirai, Y.

    2009-10-15

    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact of leachate from an active uncontrolled landfill was the highest, as the organic content, NH{sub 4}{sup +}-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH{sub 4}{sup +}-N, NO{sub 3}{sup -}-N and NO{sub 2}{sup -}-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.

  20. Evaluation of Persistence of Viruses in Landfill Leachate ...

    EPA Pesticide Factsheets

    Report The purpose of this effort was to assess the persistence of viruses in landfill leachate. To determine whether active viruses could pose a threat to human and environmental health once introduced into a landfill, laboratory testing was performed to measure the decay rate of viral agents in landfill leachate. This effort was performed using surrogate test agents similar to BW agents following the well-established hypothesis that, though the diversity of viral contaminants may be quite large, a limited list of viral surrogates can be chosen that qualitatively represent the likely BW threat agents of interest.

  1. Pharmaceuticals and other contaminants of emerging concern in landfill leachate of the United States

    USGS Publications Warehouse

    Kolpin, Dana W.; Masoner, Jason R.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.; Schwab, Eric A.

    2015-01-01

    Landfills are commonly the final respository for a heterogeneous mixture of waste from residential, commercial, and industrial sources. The use of landfills as a means of waste disposal will likely increase as the global population increases and nations develop. Thus, landfills receiving such waste have the potential to produce leachate containing numerous organic chemicals including contaminants of emerging concern (CECs) such as pharmaceuticals, personal care products, and hormones. This leachate is often discharged to pathways that lead directly (e.g. groundwater, streams) or indirectly (e.g. wastewater treament plants) to the environment. Limited research, however, has been conducted regarding the characterisation of landfill leachate for CECs.To provide the first national-scale assessment of CECs in landfill leachate across the United States, fresh leachate samples (i.e. prior to onsite treatment) from 19 landfills in 16 states were collected in 2011 and analysed for 202 CECs [1]. The targeted CECs were selected for analysis because they were expected to be persistent in the environment; are used, excreted, or disposed of in substantial quantities; may have human or environmental health effects; or are potential indicators of environmentally relevant classes of chemicals or source materials.

  2. Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: optimization by response surface methodology.

    PubMed

    Aziz, Shuokr Qarani; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Bashir, Mohammed J K

    2011-05-15

    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.

  3. Hydraulic performance and fouling characteristics of a membrane sequencing batch reactor (MSBR) for landfill leachate treatment under various operating conditions.

    PubMed

    Gkotsis, Petros; Tsilogeorgis, Jason; Zouboulis, Anastasios

    2017-09-13

    This study investigates the hydraulic performance and the fouling characteristics of a bench-scale membrane sequencing batch reactor (MSBR), treating mature landfill leachate under various time-based operating conditions. The MSBR system operated initially under a high-flux condition (Period 1) which resulted in a rapid trans-membrane pressure (TMP) rise due to intense fouling. Following the characterization of Period 1 as super-critical, the system was subsequently operated under a near-critical condition (Period 2). The overall filtration resistance analysis showed that cake layer formation was the dominant fouling mechanism during Period 1, contributing to 85.5% of the total resistance. However, regarding the MSBR operation during Period 2, adsorption was found to also be a dominant fouling mechanism (Days 1 to 47), contributing to 29.1% of the total resistance. Additionally, the irregular total resistance variation, which was observed during the subsequent operation (Days 48 to 75), and the respective filtration resistance analysis suggested also the formation of an initial sludge cake layer on the membrane surface, contributing to the 47.7% of the total resistance.

  4. Application of response surface methodology (RSM) for optimization of semi-aerobic landfill leachate treatment using ozone

    NASA Astrophysics Data System (ADS)

    Abu Amr, Salem S.; Aziz, Hamidi Abdul; Bashir, Mohammed J. K.

    2014-09-01

    The removal efficiencies for chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), and color, as well as ozone consumption (OC) from the Malaysian semi-aerobic landfill stabilized leachate using ozone reactor, were investigated. Central composite design with response surface methodology was applied to evaluate the interaction and relationship between operating variables (i.e., ozone dosage, COD concentration, and reaction time) and to develop the optimum operating condition. Based on statistical analysis, Quadratic models for the four responses (COD, NH3-N, color, and OC) proved to be significant with very low probability values (<0.0001). The obtained optimum conditions were 70 g/m3 ozone, 250 mg/l COD, and 60 min reaction time. The results obtained by the predicted model were 26.7, 7.1, and 92 % removal for COD, NH3-N, and color, respectively, with 9.42 (kgO3/kg COD) OC. The predicted results fitted well with the results of the laboratory experiment.

  5. [Performance of leachate nitrogen removal in bioreactor landfill system].

    PubMed

    He, Ruo; Shen, Dongsheng; Zhu, Yin-mei

    2006-03-01

    Utilizing the unique vertical aerobic-anoxic-anerobic ecological enviornment of landfills and adopting intermittent aeration at the top of landfilled refuse, this paper studied the performance of leachate nitrogen removal in the bioreactor landfill system. The results showed that intermittent aeration at the top of landfilled refuse could stimulate the growth of nitrifying and denitrifying bacteria. The population of denitrifying bacteria was 4 to approximately 13 orders of magnitude higher than that in conventional landfilled waste layers, and the maximal value of nitrifying bacteria population reached 10(9) cells g(-1). The bioreactor landfill system with intermittent aeration at the top of landfilled refuse increased the potential of nitrogen removal from re-circulated leachate in the landfill bioreactor. By the end of the experiment, the concentrations of leachate NH4(+) -N and total nitrogen (TN) decreased to 186 mg x L(-1) and 289 mg x L(-1), being only 18% and 26% of control, respectively. Intermittent aeration at the top of landfilled refuse also accelerated refuse decomposition, and increased the degree of waste stabilization.

  6. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    PubMed

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  7. Combined coagulation-flocculation and sequencing batch reactor with phosphorus adjustment for the treatment of high-strength landfill leachate: experimental kinetics and chemical oxygen demand fractionation.

    PubMed

    El-Fadel, M; Matar, F; Hashisho, J

    2013-05-01

    The treatability of high-strength landfill leachate is challenging and relatively limited. This study examines the feasibility of treating high-strength landfill leachate (chemical oxygen demand [COD]: 7,760-11,770 mg/L, biochemical oxygen demand [BOD5]: 2,760-3,569 mg/L, total nitrogen [TN] = 980-1,160 mg/L) using a sequencing batch reactor (SBR) preceded by a coagulation-flocculation process with phosphorus nutritional balance under various mixing and aeration patterns. Simulations were also conducted to define kinetic parameters and COD fractionation. Removal efficiencies reached 89% for BOD5, 60% for COD, and 72% for TN, similar to and better than reported studies, albeit with a relatively lower hydraulic retention time (HRT) and solid retention time (SRT). The coupled experimental and simulation results contribute in filling a gap toward managing high-strength landfill leachate and providing guidelines for corresponding SBR applications. The treatability of high-strength landfill leachate, which is challenging and relatively limited, was demonstrated using a combined coagulation-flocculation with SBR technology and nutrient balance adjustment. The most suitable coagulant, kinetic design parameters, and COD fractionation were defined using coupled experimental and simulation results contributing in filling a gap toward managing high-strength leachate by providing guidelines for corresponding SBR applications and anticipating potential constraints related to the non-biodegradable COD fraction. In this context, while the combined coagulation-flocculation and SBR process improved removal efficiencies, posttreatment may be required for high-strength leachate, depending on discharge standards and ultimate usage of the treated leachate.

  8. Application of Landfill Leachate Improves Wheat Nutrition and Yield but Has Minor Effects on Soil Properties.

    PubMed

    Kuwano, Biana H; Nogueira, Marco A; Santos, Cristiane A; Fagotti, Dáfila S L; Santos, Michele B; Lescano, Luís E A M; Andrade, Diva S; Barbosa, Graziela M C; Tavares-Filho, João

    2017-01-01

    Landfill leachates, which are potential pollutants, may also carry significant amounts of nutrients that can be recycled by plants. We assessed the nutritional status and yield of wheat ( L.) and properties of a Rhodic Kandiudult soil (depths of 0-10, 10-20, 20-40, and 40-60 cm) after 11 applications of landfill leachate over 4 yr. In the last application, wheat received 0, 32.7, 65.4, 98.1, or 130.8 m ha (875 mg L of nitrogen, N) of leachate and a positive control (90 kg ha of N as urea) 15 d after sowing. Urea increased nitrate (>160 mg kg) in the topsoil (down to 40 cm), whereas landfill leachate increased nitrate (>60 mg kg) only at 40 to 60 cm with the highest dose, suggesting leaching. Urea-treated soil had less negative ΔpH, which might have led to greater retention of nitrate in the topsoil. Sodium (0.02-0.26 cmol Na kg), potassium (0.18-0.82 cmol K kg), and electrical conductivity (0.05-0.14 dS m) all increased with leachate dosage. Treatments did not affect resistance to penetration and clay dispersion. Basal respiration increased with leachate dosage, whereas dehydrogenase activity decreased, suggesting effects on soil microbial metabolism. Microbial biomass and soil enzyme activities were not affected by addition of leachate. Nitrogen nutrition (15.1-22.7 g N kg in flag leaves) and grain yield (1381-2378 kg grain ha) increased with leachate dosage so that the highest dose gave results similar to those for urea-treated plants (2563 kg grain ha). Landfill leachate showed strong potential as source of N for wheat but caused none, or transient, effects on soil properties. However, nitrate from leachate was more leachable than nitrate from urea. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Toxicity test of landfill leachate using Sarotherodon mossambicus (freshwater fish)

    SciTech Connect

    Wong, M.H.

    1989-04-01

    Landfill leachate was collected in March and July, 1984, at the Gin Drinkers' Bay Landfill Site, and the properties of the two leachates were examined. The leachate collected in March contained higher contents of total solids, ammonia, and metals than that collected in July. The leachates were treated with EDTA (10(-3) M) and Al/sub 2/(SO/sub 4/)/sub 3/ (2 and 4 g/liter), alone and in combination. Addition of alum (2 g/liter) removed more than 60% of the phosphate content of the two leachates, and about 20 and 68% of total solids from leachates collected in March and July, respectively. Different concentrations of the leachates (untreated and alum-treated) were used to test the survival of tilapia, Sarotherodon mossambicus. The 96-hr LC50 for untreated leachates of March and July were 1.4 and 12%, respectively. The alum-treated leachates raised the 96-hr LC50 to 2.2 and 31.4%, accordingly.

  10. Removal of COD and colour from young municipal landfill leachate by Fenton process.

    PubMed

    Yilmaz, Tuba; Aygün, Ahmet; Berktay, Ali; Nas, Bilgehan

    2010-12-14

    Landfill is a common solution for the final disposal of municipal solid waste in Turkey. In recent years, studies of landfill leachate treatment by Fenton process have indicated that these methods can effectively reduce concentrations of organic contaminants and colour. The aim of this study is to investigate the removal efficiencies of colour and organic matter as COD from young municipal landfill leachate and the effect of operating conditions such as initial pH and Fenton's reagent dosage. Leachate was collected from municipal sanitary landfill located in city of Konya, Turkey. The main characteristics of the leachate were: pH = 7.25, colour = 3510 ptCo, COD = 38200 mgL(-1), BOD5 = 22000 mgL(-1), ratio of BOD5/COD was 0.58 and alkalinity as CaCO3 = 10250 mgL(-1). It is observed that presenting a high value of COD and BOD5 and the rate of BOD5/COD values indicate that the leachate can be defined as young. The treatment of the leachate by Fenton process was carried out in a batch reactor. Under the optimal operation conditions (initial pH = 3, 2000 mgL(-1) Fe2+ and 5000 mgL(-1) H2O2), 55.9% of the initial COD and 89.4% colour were removed.

  11. PRESENT AND LONG-TERM COMPOSITION OF MSW LANDFILL LEACHATE: A REVIEW. (R827580)

    EPA Science Inventory

    The major potential environmental impacts related to landfill leachate are pollution of groundwater and surface waters. Landfill leachate contains pollutants that can be categorized into four groups (dissolved organic matter, inorganic macrocomponents, heavy metals, and xenobi...

  12. PRESENT AND LONG-TERM COMPOSITION OF MSW LANDFILL LEACHATE: A REVIEW. (R827580)

    EPA Science Inventory

    The major potential environmental impacts related to landfill leachate are pollution of groundwater and surface waters. Landfill leachate contains pollutants that can be categorized into four groups (dissolved organic matter, inorganic macrocomponents, heavy metals, and xenobi...

  13. Optimization of leachate treatment using persulfate/H2O2 based advanced oxidation process: case study: Deir El-Balah Landfill Site, Gaza Strip, Palestine.

    PubMed

    Hilles, Ahmed H; Abu Amr, Salem S; Hussein, Rim A; Arafa, Anwar I; El-Sebaie, Olfat D

    2016-01-01

    The objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD) and NH3-N removal. The obtained optimum conditions included a reaction time of 116 min, 4.97 g S2O8(2-), 7.29 g H2O2 dosage and pH 11. The experimental results were corresponding well with predicted models (COD and NH3-N removal rates of 81% and 83%, respectively). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as persulfate only and H2O2 only, to evaluate its effectiveness. The combined method (i.e., /S2O8(2-)/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with other studied applications.

  14. Bioassays for the evaluation of landfill leachate toxicity.

    PubMed

    Thomas, David John Lawrence; Tyrrel, Sean Ferguson; Smith, Richard; Farrow, Steve

    2009-01-01

    This article reviews the application of bioassays for assessing the toxicity hazard posed by landfill leachate discharged to an aquatic environment. Landfill leachate is a complex mixture of chemicals; thus it is difficult to assess the risk posed to aquatic wildlife using standard chemical identification techniques, such as gas chromatography-mass spectroscopy (GC-MS). From this review it is clear that toxicity testing, using species that represent the different trophic levels, is a superior way to predict the risk posed by discharge than chemical analysis. Previous studies assessed leachate toxicity using bacteria, algae, plants, invertebrates, fish, and genotoxicity. Studies showed that leachate exhibits a wide range of toxicities to the species tested. Ammonia, alkalinity, heavy metals, and recalcitrant organics were identified to be the cause of adverse responses from the test organisms. Concentrations of these chemicals were found to depend upon the types of waste landfilled. As part of this review, Slooff analysis was applied to published results to calculate the sensitivity of test species. It was concluded that Lemna minor and Thamnocephalus platyurus were the most sensitive tests and, Vibrio fischeri (Microtox) was the least sensitive test available. Little is known about the sensitivity of each species to the different types of waste that might have been landfilled. A battery of tests needed for a more accurate assessment of landfill leachate is proposed. Some of the more common tests have been replaced by more sensitive tests that produce more relevant results for the industry and regulators.

  15. MAP precipitation from landfill leachate and seawater bittern waste.

    PubMed

    Li, X Z; Zhao, Q L

    2002-09-01

    The leachates generated at Hong Kong landfill sites contain high strength of ammonium-nitrogen (NH4+-N) over 3,000 mg l(-1) and are generally inhibitive to most biological treatment processes. To remove the NH4+-N from the landfill leachates and also recover the nitrogen as a struvite fertilizer, a lab-scale study was performed to investigate the feasibility of NH4+-N removal and struvite crystallization using different magnesium sources. Three combinations of chemicals, MgCl2 x 6H2O+Na2HPO4 x 12H2O, MgO+H3PO4 and MgSO4 x 7H2O+Ca(H2PO4) x H2O, were first used at different molar ratios to precipitate NH4+-N from the leachate. The experimental results indicated that NH4+-N was removed by 92%, 36% and 70% respectively at pH 9.0 and a molar ratio of Mg:N:P=1:1:1. Two synthetic seawater bitten wastes containing Mg2+ at 9,220 mg l(-1) and 24,900 mg l(-1) respectively were then used as a magnesium source, while 85% H3PO4 chemical was used as a phosphorus source. The results revealed that NH4+-N was removed by 80% and 72% respectively, while a molar ratio of Mg:N:P=1:1:1 was applied. In the final stage of experiments, the magnesium-ammonium-phosphate (MAP) precipitates were examined by SEM, EDS and XRD. The SEM micrographs of the MAP precipitates showed a typical morphology of elongated tubular and short prismatic crystals. The EDS and XRD results indicated that the chemical composition of the MAP precipitates depended on the chemicals used and experimental conditions. The study confirmed that the recovery of NH4+-N from landfill leachate and seawater bitten wastes could be effectively achieved by MAP precipitation to obtain struvite crystals with a composition of 5.1%N, 10.3%Mg and 16.5%P.

  16. An Interactive Real-time Decision Support System for Leachate Irrigation on Evapotranspiration Landfill Covers

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Landfill disposal is still the most common and economical practice for municipal solid waste in most countries. However, heavily polluted leachate generated by excess rainwater percolating through the landfill waste is the major drawback of this practice. Evapotranspiration (ET) cover systems are increasingly being used as alternative cover systems to minimize percolation by evapotranspiration. Leachate recirculation is one of the least expensive options for leachate treatment. The combination of ET cover systems and leachate recirculation can be an economical and environment-friendly practice for landfill leachate management. An interactive real-time decision support system is being developed to better manage leachate irrigation using historical and forecasting weather data, and real time soil moisture data. The main frame of this system includes soil water modules, and plant-soil modules. An inverse simulation module is also included to calibrate certain parameters based on observed data when necessary. It would be an objectives-oriented irrigation management tool to minimize landfill operation costs and negative environmental impacts.

  17. Environmental isotope characteristics of landfill leachates and gases

    SciTech Connect

    Hackley, K.C.; Liu, C.L.; Coleman, D.D.

    1996-09-01

    The isotopic characteristics of municipal landfill leachate and gases (carbon dioxide and methane) are unique relative to the aqueous and gaseous media in most other natural geologic environments. The {delta}{sup 13}C of the CO{sub 2} in landfills is significantly enriched in {sup 13}C, with values as high as +20{per_thousand} reported. The {delta}{sup 13} C and {delta}D values of the methane fall within a range of values representative of microbial methane produced primarily by the acetate-fermentation process. The {delta}D of landfill leachate is strongly enriched in deuterium, by approximately 30{per_thousand} to nearly 60{per_thousand} relative to local average precipitation values. This deuterium enrichment is undoubtedly due to the extensive production of microbial methane within the limited reservoir of a landfill. The concentration of the radiogenic isotopes, {sup 14}C and {sup 3}H, are significantly elevated in both landfill leachate and methane. The {sup 14}C values range between approximately 120 and 170 pMC and can be explained by the input of organic material that was affected by the increased {sup 14}C content of atmospheric CO{sub 2} caused by atmospheric testing of nuclear devices. The tritium measured in leachate, however, is often too high to be explained by previous atmospheric levels and must come from material buried within the landfill. The unique isotopic characteristics observed in landfill leachates and gases provide a very useful technique for confirming whether contamination is from a municipal landfill or some other local source.

  18. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    NASA Astrophysics Data System (ADS)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  19. Phycoremediation of landfill leachate with chlorophytes: Phosphate a limiting factor on ammonia nitrogen removal.

    PubMed

    Paskuliakova, Andrea; Tonry, Steven; Touzet, Nicolas

    2016-08-01

    The potential of microalgae to bioremediate wastewater has been reported in numerous studies but has not been investigated as extensively for landfill leachate, which may be attributed to its complex nature and toxicity. In this study we explored if microalgal phycoremediation could constitute an alternative biological treatment option for landfill leachate management in regions with temperate climatic conditions. The aim of this study was to assess the performance of microalgae species at relatively low temperature (15 °C) and light intensity (14:10 h, light: dark, 22 μmol m(-2) s(-1)) for reduction in energy inputs. Four chlorophyte strains originating from the North-West of Ireland were selected and used in batch experiments in order to evaluate their ability to reduce total ammonia nitrogen, oxidised nitrogen and orthophosphate in landfill leachate. The Chlamydomonas sp. strain SW15aRL isolated from raw leachate achieved the highest level of pollutant reduction whereby a decrease of 51.7% of ammonia nitrogen was observed in 10% raw leachate (∼100 mg l(-1) NH4(+)-N) by day 24 in experiments without culture agitation. However, in the experiment conducted with 10% raw leachate supplemented with phosphate, a decrease of 90.7% of ammonia nitrogen was obtained by day 24 while also achieving higher biomass production. This series of experiments pointed to phosphorus being a limiting factor in the microalgae based phycoremediation of the landfill leachate. The effective reduction of ammonia nitrogen in landfill leachate can be achieved at lower temperature and light conditions. This was attained by employing native species adapted to such conditions and by improving nutrient balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Characterization and toxicological evaluation of leachate from closed sanitary landfill.

    PubMed

    Emenike, Chijioke U; Fauziah, Shahul H; Agamuthu, P

    2012-09-01

    Landfilling is a major option in waste management hierarchy in developing nations. It generates leachate, which has the potential of polluting watercourses. This study analysed the physico-chemical components of leachate from a closed sanitary landfill in Malaysia, in relation to evaluating the toxicological impact on fish species namely Pangasius sutchi S., 1878 and Clarias batrachus L., 1758. The leachate samples were taken from Air Hitam Sanitary Landfill (AHSL) and the static method of acute toxicity testing was experimented on both fish species at different leachate concentrations. Each fish had an average of 1.3 ± 0.2 g wet weight and length of 5.0 ± 0.1 cm. Histology of the fishes was examined by analysing the gills of the response (dead) group, using the Harris haemtoxylin and eosin (H&E) method. Finneys' Probit method was utilized as a statistical tool to evaluate the data from the fish test. The physico-chemical analysis of the leachate recorded pH 8.2 ± 0.3, biochemical oxygen demand 3500 ± 125 mg L(-1), COD 10 234 ± 175 mg L(-1), ammonical nitrogen of 880 ± 74 mg L(-1), benzene 0.22 ± 0.1 mg L(-1) and toluene 1.2 ± 0.4 mg L(-1). The 50% lethality concentration (LC(50)) values calculated after 96 h exposure were 3.2% (v/v) and 5.9% (v/v) of raw leachate on P. sutchi and C. batrachus, respectively. The H&E staining showed denaturation of the nucleus and cytoplasm of the gills of the response groups. Leachate from the sanitary landfill was toxic to both fish species. The P. sutchi and C. batrachus may be used as indicator organisms for leachate pollution in water.

  1. Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process

    SciTech Connect

    Sri Shalini, S.; Joseph, Kurian

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.

  2. Effects of supplement with sanitary landfill leachate in gas exchange of sunflower (Helianthus annuus L.) seedlings under drought stress.

    PubMed

    Nunes Junior, Francisco H; Freitas, Valdineia S; Mesquita, Rosilene O; Braga, Brennda B; Barbosa, Rifandreo M; Martins, Kaio; Gondim, Franklin A

    2017-09-06

    Sanitary landfill leachate is one of the major problems arising from disposal of urban waste. Sanitary landfill leachate may, however, have use in agriculture. This study, therefore, aimed to analyze initial plant growth and gas exchange in sunflower seedlings supplemented with sanitary landfill leachate and subjected to drought stress through variables of root fresh mass (RFM), shoot fresh mass (SFM), total fresh mass (TFM), relative chlorophyll content (CL), stomatal conductance (g s ), transpiration rate (E), net photosynthetic rate (A), ratio of internal to external CO2 concentration (Ci/Ca),water use efficiency (EUA), instantaneous carboxylation efficiency (A/Ci), and electron transport rate (ETR). The experimental design was a completely randomized 2 (irrigated and non-irrigated) × 4 (sand, sand + 100 kg N ha(-1) organic fertilizer, sand + 100 kg N ha(-1) sanitary landfill leachate, and sand + 150 kg N ha(-1) sanitary landfill leachate) factorial with five replicates. Under drought stress conditions, leachate treatment supplemented with 100 kg N ha(-1) exhibited higher plant fresh weights than those of the treatment containing 150 kg N ha(-1). Increases in fresh mass in plant treatments supplemented with 100 and 150 kg N ha(-1) sanitary landfill leachate were related to higher photosynthetic rates.

  3. Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate.

    PubMed

    Amaral, Míriam C S; Gomes, Rosimeire F; Brasil, Yara L; Oliveira, Sílvia M A; Moravia, Wagner G

    2017-09-14

    The startup process of a membrane bioreactor inoculated with yeast biomass (Saccharomyces cerevisiae) and used in the treatment of landfill leachate was evaluated. The yeast membrane bioreactor (MBRy) was inoculated with an exogenous inoculum, a granulated active dry commercial bakers' yeast. The MBRy was successfully started up with a progressive increase in the landfill leachate percentage in the MBRy feed and the use of Sabouraud Dextrose Broth. The membrane plays an important role in the startup phase because of its full biomass retention and removal of organic matter. MBRy is a suitable and promising process to treat recalcitrant landfill leachate. After the acclimation period, the COD and NH3 removal efficiency reached values of 72 ± 3% and 39 ± 2% respectively. MBRy shows a low membrane-fouling potential. The membrane fouling was influenced by soluble microbial products, extracellular polymeric substances, sludge particle size, and colloidal dissolved organic carbon.

  4. Chromium in soil layers and plants on closed landfill site after landfill leachate application.

    PubMed

    Zupancic, Marija; Justin, Maja Zupancic; Bukovec, Peter; Selih, Vid Simon

    2009-06-01

    Landfill leachate (LL) usually contains low concentrations of heavy metals due to the anaerobic conditions in the methanogenic landfill body after degradation of easily degradable organic matter and the neutral pH of LL, which prevents mobilization and leaching of metals. Low average concentrations of metals were also confirmed in our extensive study on the rehabilitation of an old landfill site with vegetative landfill cover and LL recirculation after its treatment in constructed wetland. The only exception was chromium (Cr). Its concentrations in LL ranged between 0.10 and 2.75 mg/L, and were higher than the concentrations usually found in the literature. The objectives of the study were: (1) to understand why Cr is high in LL and (2) to understand the fate and transport of Cr in soil and vegetation of landfill cover due to known Cr toxicity to plants. The total concentration of Cr in LL, total and exchangeable concentrations of Cr in landfill soil cover and Cr content in the plant material were extensively monitored from May 2004 to September 2006. By obtained data on Cr concentration in different landfill constituents, supported with the data on the amount of loaded leachate, amount of precipitation and potential evapotranspiration (ETP) during the performance of the research, a detailed picture of time distribution and co-dependency of Cr is provided in this research. A highly positive correlation was found between concentrations of Cr and dissolved organic carbon (r=0.875) in LL, which indicates the co-transport of Cr and dissolved organic carbon through the system. Monitoring results showed that the substrate used in the experiment did not contribute to Cr accumulation in the landfill soil cover, resulting in percolation of a high proportion of Cr back into the waste layers and its circulation in the system. No negative effects on plant growth appeared during the monitoring period. Due to low uptake of Cr by plants (0.10-0.15 mg/kg in leaves and 0.05-0.07 mg

  5. Regeneration and reuse of leachate from a municipal solid waste landfill.

    PubMed

    Chen, Chih-Kuei; Lo, Shang-Lien; Chen, Ting-Yu

    2014-11-01

    Landfill leachate is deep brown in color with extremely complex composition and difficult to treat in order to meet the effluent standards. The leachate of Keelung City Tien Wai Tien landfill has an average flow of 350 CMD. In the present study following serially connected devices: Activated sludge/contact aeration (AS/CA) combined system, reverse osmosis (RO) and an ammonia stripping tower were used to treat the leachate. After treatment, the COD (removal rate of 91%), BOD (removal rate of 83%), SS (removal rate of 86%) and NH(4+)-N level (removal rate of 98%) significantly reduced in the leachate. The treated effluent was further recycled and used as RO back washing water and for sprinkling roads and watering plants in Keelung City. It is further required to evaluate whether the treated effluent can be reutilized for agriculture and extinguishing fire during shortage of water.

  6. Kaolinite sorption of Cd, Ni and Cu from landfill leachates: influence of leachate composition.

    PubMed

    Petrangeli Papini, M; Majone, M; Rolle, E

    2001-01-01

    Heavy metal speciation in landfill leachates plays a significant role in determining the mobility during the percolation through soils. The complexation characteristics of landfill leachate directly affects heavy metal solubility and the extent of the interaction with soils, lowering or raising the sorbed amount depending on the relative affinity of the complexed metal and uncomplexed form to soil adsorption sites. In this paper, the adsorption of Cd, Ni and Cu onto kaolinite from three leachates (collected from landfill at different fermentation stage) is studied, also in comparison with metal speciation by two different operative procedures. The heavy metals, at their natural concentration, were divided into operational classes according to an exchange-based procedure and by fractionation on the basis of molecular weight (exchange onto Chelex100 resin and ultrafiltration, respectively). All the experiments were performed also on synthetic solutions designed according to leachate composition and theoretical speciation. The experimental results have shown leachate complexing capacity is strongly dependent on landfill age, and that broad parameters such as COD, DOC, pH, ionic strength and VFA concentration are not able to predict it. It is notheworthy that the strong complexing capacity of leachate can cause extraction of metals from the solid phase instead of adsorption from the liquid one.

  7. Nitrogen dynamics in a constructed wetland system treating landfill leachate.

    PubMed

    Kinsley, C B; Crolla, A M; Kuyucak, N; Zimmer, M; Laflèche, A

    2007-01-01

    A pilot scale treatment system was established in 2002 at the Laflèche Landfill in Eastern Ontario, Canada. The system consists of a series of treatment steps: a stabilisation basin (10,000 m3), a woodland peat trickling filter (5,200 m2), a subsurface flow constructed wetland planted in Phragmites sp. (2,600 m2), a surface flow constructed wetland planted in Typha sp. (3,600 m2) and a polishing pond (3,600 m2). The system operates from May to December with leachate being recycled within the landfill during the winter months. Hydraulic loading was increased three-fold over four operating seasons with nitrogen and organic mass loading increasing six-fold. Excellent removal efficiencies were observed with 93% BOD5, 90% TKN and 97% NH4-N removed under the highest loading conditions. Almost complete denitrification was observed throughout the treatment system with NO3-N concentrations never exceeding 5mg L(-1). The peat filter reached treatment capacity at a hydraulic loading of 4cm d(-1) and organic loading rate of 42 kg BOD ha(-1) d(-1), which is consistent with design criteria for vertical flow wetland systems and intermittent sand filters, The first order plug flow kinetic model was effective at describing TKN and ammonium removal in the SSF and FWS wetlands when background concentrations were taken into account. Ammonium removal k-values were consistent with the literature at 52.6 and 57.7 yr(-1) for the SSF and FWS wetlands, respectively, while TKN k-values at 6.9 and 7.7 yr(-1) were almost an order of magnitude lower than literature values, suggesting that leachate TKN could contain refractory organics not found in domestic wastewater.

  8. Growth behavior studies of bread wheat plant exposed to municipal landfill leachate.

    PubMed

    Mor, Suman; Kaur, Kamalpreet; Khaiwal, Ravindra

    2013-11-01

    Pot experiments were carried out to study the effect of different dilutions of leachate generated from municipal solid waste (MSW) landfill on bread wheat (Triticum aestivum). Eight treatment groups with different concentrations (0-100%) of leachate were prepared and treatments were given to the plants till they reached complete vegetative phase (45 days). The growth performances of wheat plants were assessed in terms of various parameters such as shoot and root length, dry biomass and chlorophyll content. Plants treated with higher concentrations of leachate (75% and 100%) showed higher growth (2.5 and 6%) and 100% survival rate as compared to control. However, high shoot weight (0.028 and 0.030 gm) and high chlorophyll content (213 and 230%) was reported in 30 and 40% leachate treatment as compared to control. Some symptoms of stress (discoloration of leaf blade, wilting and yellowing of plants) were also observed in plants, which could be related to the presence of high concentration of salts in the leachate. The current study suggests that MSW landfill leachate is rich in nutrients and can be used as fertilizer but before its application, the salinity level and concentration of toxic metals present in leachate should be considered in accordance with the tolerance ability of any plant.

  9. Seasonal variation in chemical properties and degradability by anaerobic digestion of landfill leachate at Benowo in Surabaya, Indonesia.

    PubMed

    Kawai, M; Purwanti, I F; Nagao, N; Slamet, A; Hermana, J; Toda, T

    2012-11-15

    Seasonal variations in the physical and chemical characteristics of leachate taken from Benowo landfill in Indonesia, including factors likely to inhibit anaerobic digestion, were investigated to determine the impacts on the stability of anaerobic treatment. To evaluate the biodegradability of the leachate, a continuous experiment was conducted by changing the organic loading rate (OLR). Chemical oxygen demand (COD) ranged between 2621 and 16,832 mg L(-1), and COD in the dry season was twice the level in the rainy season owing to reduced rainwater input and significant evaporation. COD, pH, and the concentrations of ammonium ion, and metals in the leachate were within acceptable ranges for decomposition by anaerobic digestion. However, the Na(+) and Cl(-) in the leachate are high enough to inhibit anaerobic digestion. From chemical investigation of leachate at six monitoring wells in Benowo, food waste accumulation and seawater intrusion might cause high salinity in the leachate. In the continuous experiment, COD removal efficiency was maintained at 40% regardless of OLR, suggesting that at least 40% of the leachate contained biodegradable substances. Based on these results, issues surrounding the biological treatment of saline and refractory substances in landfill leachate were discussed. It is suggested that high salinity and refractory substances in the leachate are common issues during the leachate treatment by anaerobic digestion as the implications for similar landfills in other countries around the world. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  10. Quantification of regional leachate variance from municipal solid waste landfills in China.

    PubMed

    Yang, Na; Damgaard, Anders; Kjeldsen, Peter; Shao, Li-Ming; He, Pin-Jing

    2015-12-01

    The quantity of leachate is crucial when assessing pollution emanating from municipal landfills. In most cases, existing leachate quantification measures only take into account one source - precipitation, which resulted in serious underestimation in China due to its waste properties: high moisture contents. To overcome this problem, a new estimation method was established considering two sources: (1) precipitation infiltrated throughout waste layers, which was simulated with the HELP model, (2) water squeezed out of the waste itself, which was theoretically calculated using actual data of Chinese waste. The two sources depended on climate conditions and waste characteristics, respectively, which both varied in different regions. In this study, 31 Chinese cities were investigated and classified into three geographic regions according to landfill leachate generation performance: northwestern China (China-NW) with semi-arid and temperate climate and waste moisture content of about 46.0%, northern China (China-N) with semi-humid and temperate climate and waste moisture content of about 58.2%, and southern China (China-S) with humid and sub-tropical/tropical climate and waste moisture content of about 58.2%. In China-NW, accumulated leachate amounts were very low and mainly the result of waste degradation, implying on-site spraying/irrigation or recirculation may be an economic approach to treatment. In China-N, water squeezed out of waste by compaction totaled 22-45% of overall leachate amounts in the first 40 years, so decreasing the initial moisture content of waste arriving at landfills could reduce leachate generation. In China-S, the leachate generated by infiltrated precipitation after HDPE geomembranes in top cover started failing, contributed more than 60% of the overall amounts over 100 years of landfilling. Therefore, the quality and placing of HDPE geomembranes in the top cover should be controlled strictly for the purpose of mitigation leachate generation

  11. Quantitative Determination of Fluorochemicals in Municipal Landfill Leachates

    PubMed Central

    Huset, Carin A.; Barlaz, Morton A.; Barofsky, Douglas F.; Field, Jennifer A.

    2014-01-01

    Twenty four fluorochemicals were quantified in landfill leachates recovered from municipal refuse using an analytical method based on solid-phase extraction, dispersive-carbon sorbent cleanup, and liquid chromatography/tandem mass spectrometry. The method was applied to six landfill leachates from four locations in the U.S. with as well as to a leachate generated by a laboratory bioreactor containing residential refuse. All seven leachates had the common characteristic that short-chain (C4-C7) carboxylates or sulfonates were greater in abundance than their respective longer-chain homologs (≥C8). Perfluoroalkyl carboxylates were the most abundant (67 ± 4% on a nanomolar (nM) basis) fluorochemicals measured in leachates; concentrations of individual carboxylates reaching levels up to 2,800 ng L−1. Perfluoroalkyl sulfonates were the next most abundant class (22 ± 2%) on a nM basis; their abundances in each of the seven leachates derived from municipal refuse were greater for the shorter-chain homologs (C4 and C6) compared to longer-chain homologs (C8 and C10). Perfluorobutane sulfonate concentrations were as high as 2,300 ng/L. Sulfonamide derivatives composed 8 ± 2.1% (nM basis) of the fluorochemicals in landfill leachates with methyl (C4 and C8) and ethyl (C8) sulfonamide acetic acids being the most abundant. Fluorotelomer sulfonates (6:2 and 8:2) composed 2.4 ± 1.3% (nM basis) of the fluorochemicals detected and were present in all leachates. PMID:21194725

  12. Impact of landfill leachate on the groundwater quality: A case study in Egypt.

    PubMed

    Abd El-Salam, Magda M; I Abu-Zuid, Gaber

    2015-07-01

    Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69) indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes.

  13. Impact of landfill leachate on the groundwater quality: A case study in Egypt

    PubMed Central

    Abd El-Salam, Magda M.; I. Abu-Zuid, Gaber

    2014-01-01

    Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69) indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes. PMID:26199748

  14. Kinetics and oxidative mechanism for H2O2-enhanced iron-mediated aeration (IMA) treatment of recalcitrant organic compounds in mature landfill leachate.

    PubMed

    Deng, Yang; Englehardt, James D

    2009-09-30

    A hydrogen peroxide (H(2)O(2))-enhanced iron (Fe(0))-mediated aeration (IMA) process has been recently demonstrated to effectively remove organic wastes from mature landfill leachate. In this paper, the kinetics and oxidative mechanisms of the enhanced IMA treatment were studied. Bench-scale full factorial tests were conducted in an orbital shaker reactor for treatment of a mature leachate with an initial chemical oxygen demand (COD) of 900-1200 mg/L. At the maximum aeration rate (8.3 mL air/min mL sample), process variables significantly influencing the rates of H(2)O(2) decay and COD removal were pH (3.0-8.0), initial H(2)O(2) doses (0.21-0.84 M), and Fe(0) surface area concentrations (0.06-0.30 m(2)/L). Empirical kinetic models were developed and verified for the degradation of H(2)O(2) and COD. High DO maintained by a high aeration rate slowed the H(2)O(2) self-decomposition, accelerated Fe(0) consumption, and enhanced the COD removal. In hydroxyl radical (OH*) scavenging tests, the rate of removal of glyoxylic acid (target compound) was not inhibited by the addition of para-chlorobenzoic acid (OH* scavenger) at pH 7.0-7.5, ruling out hydroxyl radical as the principal oxidant in neutral-weakly basic solution. These experimental results show that this enhanced IMA technology is a potential alternative for the treatment of high strength recalcitrant organic wastewaters.

  15. Full-scale leachate-recirculating MSW landfill bioreactor assessments

    SciTech Connect

    Carson, D.A.

    1995-10-01

    The integrated waste management hierarchy philosophy continues to develop as a useful tool to solve solid waste issues in an environmentally responsible manner. Recent statistics indicate that approximately two thirds of municipal solid waste in the United States is disposed in landfills. Current landfill operational technique involves the preparation of a waste containment facility, the filling of the waste unit, installation of the final cover, and the maintenance of the unit. This method of operation has proven to be reasonably effective in waste disposal, effectively minimizing risk by collecting the liquid that percolates through the waste, called leachates, at the bottom of the landfill, and controlling landfill gas with collection systems. Concerns over the longevity of containment systems components present questions that cannot be answered without substantial performance data. Landfills, as currently operated, serve to entomb dry waste. Therefore, the facility must be maintained in perpetuity, consuming funds and ultimately driving up waste collection costs. This presentation will describe a new form of solid waste landfill operation, it is a technique that involves controlled natural processes to break down landfilled waste, and further minimize risk to human health and the environment. A landfill operated in an active manner will encourage and control natural decomposition of landfilled waste. This can be accomplished by collecting leachate, and reinjecting it into the landfilled waste mass. Keeping the waste mass moist will lead to a largely anaerobic system with the capacity to rapidly stabilize the landfilled waste mass via physical, chemical and biological methods. The system has proven the ability to breakdown portions of the waste mass, and to degrade toxic materials at the laboratory scale.

  16. Modeling of leachate recirculation using vertical wells in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Zhang, Xu; Xie, Hai-Jian

    2015-06-01

    Leachate recirculation (LR) in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. The subsurface application method of vertical wells is one of the most common LR techniques. The objective of this study was to develop a novel two-dimensional model of leachate recirculation using vertical wells. This novel method can describe leachate flow considering the effects of MSW settlement while also accounting separately for leachate flow in saturated and unsaturated zones. In this paper, a settlement model for MSW when considering the effects of compression and biodegradation on the MSW porosity was adopted. A numerical model was proposed using new governing equations for the saturated and unsaturated zones of a landfill. The following design parameters were evaluated by simulating the recirculated leachate volume and the influence zones of waste under steady-state flow conditions: (1) the effect of MSW settlement, (2) the effect of the initial void ratio, (3) the effect of the injected head, (4) the effect of the unit weight, (5) the effect of the biodegradation rate, and (6) the effect of the compression coefficient. The influence zones of LR when considering the effect of MSW settlement are smaller than those when neglecting the effect. The influence zones and LR volume increased with an increase in the injection pressure head and initial void ratio of MSW. The proposed method and the calculation results can provide important insight into the hydrological behavior of bioreactor landfills.

  17. Heavy metal binding capacity (HMBC) of municipal solid waste landfill leachates.

    PubMed

    Ward, Marnie L; Bitton, Gabriel; Townsend, Timothy

    2005-07-01

    This research describes the use of a toxicity assay for the identification of metal toxicity, bioavailability and heavy metal binding capacity (HMBC) of municipal solid waste (MSW) landfill leachates. MetPLATE, an assay specific for heavy metal toxicity, was used to determine the HMBC of MSW leachates collected from 14 sites in Florida, with a wide range of chemical and physical characteristics. The leachates displayed a low toxicity which was attributed to the site-specific parameters, including, high concentrations of both organic and inorganic ligands. The HMBC test was undertaken to measure the effect of these site-specific parameters on metal toxicity. The potential for MSW leachate to bind and, thus, detoxify heavy metals was investigated with copper, zinc, and mercury. The HMBC values obtained ranged from 3 to 115, 5 to 93 and 4 to 101 for HMBC-Cu+2, HMBC-Zn+2, and HMBC-Hg+2, respectively. Additionally, the high strength leachates displayed the highest binding capacities, although the landfills sampled represented a wide range of characteristics. For comparison, the HMBC values reported with local lake water, Lake Alice and Lake Beverly, and a wastewater treatment plant effluent were all below 3. A partial fractionation of MSW leachate samples from sites 1, 5 and 8, was conducted to further investigate the influence of selected site-specific physico-chemical parameters on metal binding. The fractionation revealed that the HMBC of the leachate samples was heavily influenced by the concentration of solids, organics and hardness.

  18. Applicability of leachates originating from solid-waste landfills for irrigation in landfill restoration projects.

    PubMed

    Erdogan, Reyhan; Zaimoglu, Zeynep; Sucu, M Yavuz; Budak, Fuat; Kekec, Secil

    2008-09-01

    Since, landfill areas are still the most widely used solid waste disposal method across the world, leachate generated from landfills should be given importance. Leachate of landfills exerts environmental risks mostly on surface and groundwater with its high pollutant content, which may cause unbearable water quality. This leads to the obligation for decontamination and remediation program to be taken into progress for the landfill area. Among a number of alternatives to cope with leachate, one is to employ the technology of phytoremediation. The main objective of this study was to determine the N accumulation ratios and the effects of landfill leachate in diluted proportions of chosen ratios (as 1/1, 1/2, 1/4, 0), on the growth and development of Cynodon dactylon, Stenotaphrum secundatum, Paspalum notatum, Pennisetum clandestinum, Mentha piperita, Rosmarinus officinalis, Nerium oleander, Pelargonium peltatum and Kochia scoparia species. In order to simulate the actual conditions of the landfill, soil covering the landfill is taken and used as medium for the trials. The study showed that S. secundatum, K. scoparia and N. oleander species had an impressive survival rate of 100%, being irrigated with pure leachate, while the others' survival rates were between 0 to 35% under the same conditions. As expected, application of leachate to the plants caused an increase in the accumulation of N, in the upper parts of all plants except P. peltatum. The highest N content increase was observed at S. Secundatum set, accumulating 3.70 times higher than its control set, whereas P. clandestinum value was 3.41 times of its control set.

  19. Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications.

    PubMed

    Macdonald, Neil W; Rediske, Richard R; Scull, Brian T; Wierzbicki, David

    2008-01-01

    Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.

  20. Establishment and early growth of Populus hybrids irrigated with landfill leachate

    Treesearch

    Ronald S., Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Jill A. Zalesny

    2007-01-01

    Hybrid poplar genotypes exhibit great potential for tree establishment and growth when irrigated with municipal solid waste landfill leachate. We evaluated the potential for establishment on leachate-irrigated soils by testing: 1) aboveground growth of hybrid poplar during repeated irrigation with landfill leachate and 2) aboveground and belowground biomass after 70 d...

  1. Removal of COD from a stabilized landfill leachate by physicochemical and advanced oxidative process.

    PubMed

    Cheibub, Ana F; Campos, Juacyara C; da Fonseca, Fabiana V

    2014-01-01

    This work investigated the effectiveness of a physicochemical and oxidative process for the removal of chemical oxygen demand (COD) from stabilized landfill leachates. The application of these technologies for landfill leachate treatment greatly depends on the optimal operating conditions for a specific leachate. Coagulation-flocculation followed by H2O2, Fenton and photo-Fenton processes was evaluated. Advanced oxidation processes were evaluated in the raw leachate and the leachate pretreated by coagulation-flocculation. Via the coagulation process, at 30 sec and a stirring speed of 150 rpm followed by flocculation and settling steps, 53% COD was removed at an optimal dose of 1400 mg L(-1) and pH 4.0. Moreover, from the POA evaluated, the Fenton process was determined to be the most effective process for removing COD from the leachate pretreated by coagulation-flocculation, reaching 83.3% COD removal with 1330 mg L(-1) of H2O2 and 266 mg L(-1) of Fe(2+). The photo-Fenton process applied directly to the raw effluent was effective for the removal of COD; a 75% reduction in COD was observed in tests using 2720 mg L(-1) of H2O2 and 544 mg L(-1) of Fe(2+). Due to the variability in the composition of the Gramacho landfill leachate, the combination of coagulation-flocculation and the Fenton process is an effective technology for reducing the COD in samples of this leachate.

  2. Internal leachate quality in a municipal solid waste landfill: vertical, horizontal and temporal variation and impacts of leachate recirculation.

    PubMed

    Sormunen, Kai; Ettala, Matti; Rintala, Jukka

    2008-12-30

    The aim of this study was to monitor and characterise internal leachate quality at a Finnish municipal solid waste landfill (Lahti, Kujala, in operation for approximately 50 years) to provide information about its horizontal and vertical variation as well as effects of leachate recirculation on leachate quality. The study area (approximately 4h) of the landfill had 14 monitoring wells for leachate quality monitoring over a 2-year period. The leachate was monitored for COD, BOD, TKN, NH4-N, Cl, pH and electric conductivity. The results showed high horizontal and vertical variability in leachate quality between monitoring wells, indicating that age and properties of waste, local conditions (e.g., water table) and degradation and dilution processes have a marked effect on local leachate quality. The mean COD values (642-8037mg/l) and mean BOD/COD ratios (0.08-0.17) from the different monitoring wells were typical of landfills in the methanogenic phase of degradation. The leachate in the monitoring wells was notably more concentrated than the leachate effluent used for leachate recirculation. In the landfill as a whole the effects of the leachate recirculation on leachate quality, although difficult to distinguish from those caused by other factors, appeared to be minor during the study period.

  3. MOLECULAR AND CULTURAL METHODOLOGIES FOR ENUMERATING BACTERIA IN LANDFILL LEACHATES

    EPA Science Inventory

    Landfill bioreactor technology has been under investigation in the field for its potential economic and waste treatment benefits over conventional landfill systems. A better understanding of biological influences on the stabilization process is needed for incorporation into the e...

  4. MOLECULAR AND CULTURAL METHODOLOGIES FOR ENUMERATING BACTERIA IN LANDFILL LEACHATES

    EPA Science Inventory

    Landfill bioreactor technology has been under investigation in the field for its potential economic and waste treatment benefits over conventional landfill systems. A better understanding of biological influences on the stabilization process is needed for incorporation into the e...

  5. Treatment of nanofiltration concentrates of mature landfill leachate by a coupled process of coagulation and internal micro-electrolysis adding hydrogen peroxide.

    PubMed

    Huang, Jingang; Chen, Jianjun; Xie, Zhengmiao; Xu, Xiaojun

    2015-01-01

    In this study, a coupled process of coagulation and aerated internal micro-electrolysis (IME) with the in situ addition of hydrogen peroxide (H2O2) was investigated for the treatment of nanofiltration (NF) concentrate from mature landfill leachate. The acceptable operating conditions were determined as follows: initial pH 4, polymeric aluminium chloride dosage of 525 mg-Al2O3/L in the coagulation process, H2O2 dosage of 0.75 mM and an hydraulic retention time of 2 h in an aerated IME reactor. As a result, the removal efficiencies for chemical oxygen demand (COD), total organic carbon, UV254 and colour were 79.2%, 79.6%, 81.8% and 90.8%, respectively. In addition, the ratio of biochemical oxygen demand (BOD5)/COD in the final effluent increased from 0.03 to 0.31, and that of E2/E4 from 12.4 to 38.5, respectively. The results indicate that the combined process is an effective and economical way to remove organic matters and to improve the biodegradability of the NF concentrate. Coagulation process reduces the adverse impact of high-molecular-weight organic matters such as humic acids, on the aerated IME process. A proper addition of H2O2 in the aerated IME can promote the corrosion of solid iron (Fe2+/Fe3+) and cause a likely domino effect in the enhancement of removal efficiencies.

  6. Effects of constant pH and unsteady pH at different free ammonia concentrations on shortcut nitrification for landfill leachate treatment.

    PubMed

    Zhang, Chaosheng; Zhang, Shaoqing; Zhang, Liqiu; Rong, Hongwei; Zhang, Kefang

    2015-04-01

    On the basis of achieving shortcut nitrification in a lab-scale SBR, the effects of constant pH and unsteady pH at different free ammonia concentrations on shortcut nitrification for landfill leachate treatment was investigated. The results indicate that under the condition of DO of 0.5 ± 0.2 mg/L and temperature of 30 ± 2 °C, the absolute value of nitrite accumulation increased significantly with the increase in free ammonia (FA) concentration from 5.30 to 48.67 mg/L; however, the nitrite accumulation rate remained almost constant at a constant pH of 8.0 ± 0.1. Ammonia oxidation and the nitrite accumulation become slow with the pH decreased from 8.0 ± 0.1 to 7.5 ± 0.2, and the activities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were severely inhibited when the pH further decreased to 6.5. More importantly, this study confirmed that the pH decrease from 8.0 to 6.5 within a short time exhibited significant negative effect on the ammonia oxidation rather than the FA concentration.

  7. Preparation of hydrophilic PVDF/PPTA blend membranes by in situ polycondensation and its application in the treatment of landfill leachate

    NASA Astrophysics Data System (ADS)

    Li, Hongbin; Shi, Wenying; Zhang, Yufeng; Zhou, Rong; Zhang, Haixia

    2015-08-01

    High modulus poly(p-phenylene terephtalamide) (PPTA) reinforced composites are of great scientific interests. But the thermodynamic difference makes the polymer pairs incompatible and endows the composites with inferior physical-chemical properties. In this study, hydrophilic poly(vinylidene fluoride) (PVDF)/poly(p-phenylene terephtalamide) (PPTA) blend membrane with improved hydrophilicity and mechanical strength was prepared through in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution and subsequent immersion precipitation phase inversion process. The effects of PPTA concentration in polymer dopes on membrane formation process, structure, morphology and performance were systematically investigated. The results showed that thermodynamically, PPTA acted as a demixing enhancer which accelerated the phase inversion process. Dynamically, liquid-liquid phase separation was still in control of membrane formation process especially in the later period, whereas the addition of PPTA mainly promoted the early emergence of the liquid-liquid demixing. The surface hydrophilicity, ant-fouling properties and mechanical strength were significantly improved when PPTA content was 17 wt%. When PPTA content increased to 26 wt%, membrane bursting pressure increased to nearly 0.6 MPa which was 1.5 times higher than that of PVDF membrane. The resultant PVDF/PPTA blend membrane exhibited an improved antifouling property than that of PVDF membrane when applied in the MBR in the treatment of landfill leachate and also showed a relatively high removal rate of chemical oxygen demand (COD) and chrom.

  8. Phthalate release in leachate from municipal landfills of central Poland

    PubMed Central

    Wowkonowicz, Paweł; Kijeńska, Marta

    2017-01-01

    Phthalate diesters (PAEs) are used as plasticizer additives to polymer chains to make the material more flexible and malleable. PAEs are bonded physically, not chemically, to the polymeric matrix and can migrate to and leach from the product surface, posing a serious danger to the environment and human health. There have been a number of studies on PAE concentrations in landfill leachate conducted in the EU and around the world, though few in Poland. In the present study, the leachate of five municipal landfills was analyzed for the presence of PAEs. Raw leachate was sampled four times over the period of one year in 2015/16. It was the first large study on this subject in Poland. PAEs were detected in the leachate samples on all of the landfills, thereby indicating that PAEs are ubiquitous environmental contaminants. The following PAEs were detected in at least one sample: Di(2-ethylhexyl) phthalate (DEHP), Diethyl phthalate (DEP), Dimethyl phthalate (DMP), Di-n-butyl phthalate (DBP), Di-isobutylphthalate (DIBP). Out of all ten PAEs, DEHP was the most predominant, with concentrations up to 73.9 μg/L. DEHP was present in 65% of analyzed samples (in 100% of samples in spring, 80% in winter, and 40% in summer and autumn). In only 25% of all samples DEHP was below the acceptable UE limit for surface water (1.3 μg/L), while 75% was from 1.7 to 56 times higher than that value. On the two largest landfills DEHP concentrations were observed during samples from all four seasons, including on a landfill which has been remediated and closed for the last 5 years. PMID:28358912

  9. Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill.

    PubMed

    Mangimbulude, Jubhar C; van Straalen, Nico M; Röling, Wilfred F M

    2012-01-01

    Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929mgNL(-1). The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06mgNL(-1)h(-1)) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Perspective of harnessing energy from landfill leachate via microbial fuel cells: novel biofuels and electrogenic physiologies.

    PubMed

    Wu, Dong; Wang, Ting; Huang, Xinghua; Dolfing, Jan; Xie, Bing

    2015-10-01

    Organic carbon, nitrogen, and sulfur are highly concentrated in municipal solid waste (MSW) landfill leachate, which usually frustrates conventional leachate treatment technologies from the perspective of energy costs. Therefore, the possibility of converting leachate to a new energy source via microbial fuel cell (MFC) technology has been examined recently. This paper summarizes the power output and energy recovery efficiency of the leachate-fed MFCs according to different feeding patterns, cell structures, and loading rates. Also, we assess potential energy-generating chemicals in leachate like nitrogen and sulfur compounds and propose alternative pathways, which may lift strict ratios between organic carbon and nitrogen content in conventional denitrification of leachate and are expected to achieve a higher voltage than traditional organic-oxygen based cells. Although currently power output of leachate-fed MFCs is limited, it seems well possible that dynamic characteristics of MSW leachates and microbial physiologies underlying some bio-electrochemically efficient activities (e.g., direct interspecies electron transfer) could be stimulated in MFC systems to improve the present status.

  11. Electrochemical treatment of landfill leachate: Oxidation at Ti/PbO{sub 2} and Ti/SnO{sub 2} anodes

    SciTech Connect

    Cossu, R.; Polcaro, A.M.; Mascia, M.; Palmas, S.; Renoldi, F.; Lavagnolo, M.C.

    1998-11-15

    Leachate originating in landfills where municipal solid wastes are disposed is a wastewater with a complex composition that could have a high environmental impact. The primary goal of this research was to investigate the feasibility of removing refractory organic pollutants and ammonium nitrogen from landfill leachate by electrochemical oxidation. The effects of current density, pH, and chloride concentration on the removal of both chemical oxygen demand (COD) and ammonium nitrogen were investigated. Titanium coated with lead dioxide (PbO{sub 2}) or tin dioxide (SnO{sub 2}) was used as the anode. An effective process was achieved in which the leachate was decolorized, COD was removed up to a value of 100 mg L{sup {minus}1}, and ammonia was totally eliminated. Average current efficiency of about 30% was measured for a decrease of COD from 1200 to 150 mg L{sup {minus}1}, while efficiency of about 10% was measured for a near complete removal of ammonium nitrogen, starting from an initial value of 380 mg L{sup {minus}1}. Results indicated that the organic load was removed by both direct and indirect oxidation. Indirect oxidation by chlorine or hypochlorite originating from oxidation of chlorides is believed to be mainly responsible for the nitrogen removal.

  12. Methane Rates in the Landfill Leachate Plume Of Wuhan Erfei Shan Landfill, China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wang, Y.

    2010-12-01

    : This paper presents the result of methane analysis in leachate, air and groundwater samples collected at Wuhan Erfei Shan Landfill. Eleven multilevel sampling wells ranging from 1.5 to 10 m were chosen for groundwater sampling, three locations were chosen for leachate sampling and four locations were chosen for air sampling. The method of gas chromatography fitted with FID detector (GC-FID) was used for the determination of methane in samples. In all samples, leachates samples presented high dissolved methane concentration (average is 49.168 mg/L), while dissolved methane was only detected in 3 groundwater wells with low depth and close to the landfill. The distance and depth distribution showed a variation of redox species with methane. High methane concentrations were identified closest to the landfill and at low depths (methanogenesis zone). Sulfate and nitrate zone overlapped but elevated concentrations of sulfate zone were observed between 400 and 600 m far from the landfill and between 4 and 8 m depths. In the zone of elevated sulfate concentrations, methane was depleted. The average ambient methane levels at Wuhan Erfei Shan landfill were found to be 50.87 ppm for SA1, 119.109 ppm for SA2, 14.199ppm for SA3 and 90 ppm for SA4. Although average methane concentrations in air samples were not high compared to leachate samples, the greenhouse effects of such concentrations in air is enormous.

  13. Microbial reduction of hexavalent chromium by landfill leachate.

    PubMed

    Li, Yarong; Low, Gary K-C; Scott, Jason A; Amal, Rose

    2007-04-02

    The reduction of hexavalent chromium (Cr(VI)) in municipal landfill leachates (MLL) and a non-putrescible landfill leachate (NPLL) was investigated. Complete Cr(VI) reduction was achieved within 17 days in a MLL when spiked with 100 mg l(-1) Cr(VI) or less. In the same period, negligible Cr(VI) reduction was observed in NPLL. In MLL, Cr(VI) reduction was demonstrated to be a function of initial Cr(VI) concentration and bacterial biomass and organic matter concentrations. The bacteria were observed to tolerate 250 mg l(-1) Cr(VI) in MLL and had an optimal growth activity at pH 7.4 in a growth medium. The MLL also possessed an ability to sequentially reduce Cr(VI) over three consecutive spiking cycles.

  14. Water reduction by constructed wetlands treating waste landfill leachate in a tropical region.

    PubMed

    Ogata, Yuka; Ishigaki, Tomonori; Ebie, Yoshitaka; Sutthasil, Noppharit; Chiemchaisri, Chart; Yamada, Masato

    2015-10-01

    One of the key challenges in landfill leachate management is the prevention of environmental pollution by the overflow of untreated leachate. To evaluate the feasibility of constructed wetlands (CWs) for the treatment of waste landfill leachate in tropical regions, water reduction and pollutant removal by a CW subjected to different flow patterns (i.e., horizontal subsurface flow (HSSF) and free water surface (FWS)) were examined in both rainy and dry seasons in Thailand. A pilot-scale CW planted with cattail was installed at a landfill site in Thailand. With HSSF, the CW substantially removed pollutants from the landfill leachate without the need to harvest plants, whereas with FWS, it only slightly removed pollutants. Under both flow patterns, the CW significantly reduced the leachate volume to a greater extent than surface evaporation, which is regarded as an effect of the storage pond. Additionally, water reduction occurred regardless of season and precipitation, within the range 0-9 mm d(-1). In the case of low feeding frequency, water reduction by the CW with HSSF was lower than that with FWS. However, high feeding frequency improved water reduction by the CW with HSSF and resulted in a similar reduction to that observed with FWS, which exhibited maximum evapotranspiration. In terms of water reduction, with both HSSF in conjunction with high frequency feeding and FWS, the CW provided a high degree of evapotranspiration. However, pollutant removal efficiencies with HSSF were higher than for FWS. The present study suggested that CWs with HSSF and high frequency feeding could be useful for the prevention of uncontrollable dispersion of polluted leachate in the tropical climate zone.

  15. Abiotic properties of landfill leachate controlling arsenic release from drinking water adsorbents.

    PubMed

    Stuckman, Mengling Y; Lenhart, John J; Walker, Harold W

    2011-10-15

    In this study, As leaching from five arsenic bearing solid residuals (ABSRs) comprised of the iron hydroxide adsorbent Bayoxide E33 used in long-term operations was evaluated in leaching trials using California Waste Extraction Test (CalWET) and Toxicity Characteristic Leaching Protocol (TCLP) leachate solutions, a landfill leachate (LL), and synthetic leachate (SL). The initial As loading of the media, which reflects the influence of source water chemistry and varying treatment conditions at the point of removal, strongly influenced the magnitude of As release. The chemical composition of the leachate also influenced As release and demonstrated the relative importance of different release mechanisms, namely media dissolution, pH-dependent sorption/desorption, and ion exchange. The CalWET solution, which partially dissolved the iron-based media, resulted in 100 times more As release than did the TCLP solution, which did not dissolve the media. The LL had a higher pH than the TCLP solution, and even though its organic carbon content was lower it tended to release more As. Tests with the SL were conducted to determine the influence of variations in leachate pH, phosphate, bicarbonate, sulfate, silicate, and natural organic matter (NOM). Release increased at high pH, in the presence of high concentrations of phosphate and bicarbonate, and in the presence of high NOM concentrations. For pH, this reflects the pH-dependence of sorption reactions, whereas for the anions and NOM, direct competition appeared important. Similar to the CalWET solution, excess NOM dissolved portions of the media thereby facilitating As release. In general, our results suggest that estimating As release into landfills will remain a challenge as it depends upon As loading, which reflects site-specific properties, and the composition of the leachate, which varies from landfill to landfill. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Phytoremediation of landfill leachate using Populus

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall; Bart Sexton

    2006-01-01

    Proper genotype selection is required for successful phytoremediation. We selected eight Populus clones (NC13460, NC14018, DM115, NC14104, NC14106, DN5, NM2, NM6) of four genomic groups after three cycles of phyto-recurrent selection for a field trial that began June 2005 at the Oneida County Landfill in Rhinelander, WI, USA.

  17. Increased reproductive toxicity of landfill leachate after degradation was caused by nitrite.

    PubMed

    Dave, Göran; Nilsson, Eva

    2005-06-01

    Leachate from the landfill Lindbodarna was suspected to cause reproductive effects on fish in a Swedish lake, called Molnbyggen. The acute toxicity of this landfill leachate is caused by ammonia. In the present study the acute and chronic toxicity of the leachate from the landfill was tested with Ceriodaphnia dubia before and after treatment, either with (inoculated) or without addition of microorganisms from activated sludge, in both 2000 and 2001. On both occasions, the acute toxicity decreased after treatment, more rapidly with inoculum than without, and the cause of the decrease was mainly explained by decreasing concentrations of ammonia. However, the chronic toxicity decreased after treatment with inoculum but increased after treatment without inoculum. Therefore, we performed a series of acute and reproductive tests with ammonia, nitrite and nitrate on C. dubia, and the 24-h EC50s were 1.0, 2.7 and 59 mM, respectively, which are consistent with literature data. However, the chronic toxicity of these compounds gave quite a different picture with 8-day EC50s for reproduction of 3.0 mM for ammonia, 0.016 mM for nitrite and 1.5 mM for nitrate. Thus, the acute-chronic ratios for these compounds were 0.33 for ammonia, 170 for nitrite and 39 for nitrate. These findings show that reproduction is more sensitive than survival for both nitrite and nitrate, and that nitrite is the more hazardous of the two. This implies that the chronic and reproductive toxicity of nitrite and nitrate on zooplankton may in fact increase effects of eutrophication. In this study the toxicity of the fresh leachate was dominated by ammonia, but after treatment the contribution of nitrite increased, and especially the chronic toxicity of the treated landfill leachate was dominated by nitrite toxicity.

  18. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Böhlke, John Karl; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.

    2011-01-01

    Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.

  19. A PRELIMINARY EXPERIMENT ON DENITRIFICATION OF WASTE LANDFILL LEACHATE

    NASA Astrophysics Data System (ADS)

    Wada, Nariaki; Nakamichi, Tamihiro; Yagi, Masahiro; Matsumoto, Toshihide; Kugimiya, Akikazu; Michioku, Kohji

    A laboratory experiment on denitrification was carried out in order to reduce nitrogen load from municipal landfill leachate. Nitrogen was efficiently removed by feeding sludge of the leachate pond into the tanks, which could activate denitrification bacteria. Although inorganic reducing agent such as iron powder was not able to make the whole water mass anoxic, denitrification took place by supplying organic matters such as methanol, hydrogen feeding agent, etc.. It is considered that small amount of anoxic water film produced on surfaces of container and carriers might contribute to denitrification, although the bulk water is kept aerobic. It is found that organic matters contained in the leachate is so insufficient that nitrification liquid circulation does not work well for denitrification.

  20. Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment.

    PubMed

    Hilles, Ahmed H; Abu Amr, Salem S; Hussein, Rim A; El-Sebaie, Olfat D; Arafa, Anwaar I

    2016-01-15

    A combination of persulfate and hydrogen peroxide (S2O8(2-)/H2O2) was used to oxidizelandfill leachate. The reaction was performed under varying S2O8(2-)/H2O2 ratio (g/g), S2O8(2-)/H2O2 dosages (g/g), pH, and reaction time (minutes), so as to determine the optimum operational conditions. Results indicated that under optimum operational conditions (i.e. 120 min of oxidation using a S2O8(2-)/H2O2 ratio of 1 g/1.47 g at a persulfate and hydrogen peroxide dosage of 5.88 g/50 ml and8.63 g/50 ml respectively, at pH 11) removal of 81% COD and 83% NH3-N was achieved. In addition, the biodegradability (BOD5/COD ratio) of the leachate was improved from 0.09 to 0.17. The results obtained from the combined use of (S2O8(2-)/H2O2) were compared with those obtained with sodium persulfate only, hydrogen peroxide only and sodium persulfate followed by hydrogen peroxide. The combined method (S2O8(2-)/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with the other methods using a single oxidizing agent. Additionally, the study has proved that the combination of S2O8(2-)/H2O2 is more efficient than the sequential use of sodium persulfate followed by hydrogen peroxide in advanced oxidation processes aiming at treatingstabilizedlandfill leachate.

  1. Delineating landfill leachate discharge to an arsenic contaminated waterway.

    PubMed

    Ford, Robert G; Acree, Steven D; Lien, Bob K; Scheckel, Kirk G; Luxton, Todd P; Ross, Randall R; Williams, Aaron G; Clark, Patrick

    2011-11-01

    Discharge of contaminated ground water may serve as a primary and on-going source of contamination to surface water. A field investigation was conducted at a Superfund site in Massachusetts, USA to define the locus of contaminant flux and support source identification for arsenic contamination in a pond abutting a closed landfill. Subsurface hydrology and ground-water chemistry were evaluated in the aquifer between the landfill and the pond during the period 2005-2009 employing a network of wells to delineate the spatial and temporal variability in subsurface conditions. These observations were compared with concurrent measures of ground-water seepage and surface water chemistry within a shallow cove that had a historical visual record of hydrous ferric oxide precipitation along with elevated arsenic concentrations in shallow sediments. Barium, presumably derived from materials disposed in the landfill, served as an indicator of leachate-impacted ground water discharging into the cove. Evaluation of the spatial distributions of seepage flux and the concentrations of barium, calcium, and ammonium-nitrogen indicated that the identified plume primarily discharged into the central portion of the cove. Comparison of the spatial distribution of chemical signatures at depth within the water column demonstrated that direct discharge of leachate-impacted ground water was the source of highest arsenic concentrations observed within the cove. These observations demonstrate that restoration of the impacted surface water body will necessitate control of leachate-impacted ground water that continues to discharge into the cove. Published by Elsevier Ltd.

  2. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm.

    PubMed

    Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin

    2017-05-01

    The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN(-1). But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m(-3). Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency.

  3. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE).

    PubMed

    Xing, Wei; Lu, Wenjing; Zhao, Yan; Zhang, Xu; Deng, Wenjing; Christensen, Thomas H

    2013-02-01

    impacts by approximately 90% in most categories, like global warming, photochemical ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Therefore, leachate recirculation is considered a cost-effective and environmentally viable solution for the current situation, and landfill gas treatment is urgently required. These results can provide important evidence for leachate and gas management of landfill in arid regions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Genotoxicity of leachates from a landfill using three bioassays.

    PubMed

    Cabrera, G L; Rodriguez, D M

    1999-05-19

    In the city of Queretaro, around 500 tons of solid wastes are produced everyday and are deposited in a landfill. This is the result of social and economic activities of human beings or from their normal physiological functions. As a result of rain, leachates are produced, which, if not handled and treated correctly, may pollute the underground water. Among the bioassays developed for the detection of mutagenicity in environmental pollutants, plant systems have been proven to be sensitive, cheap, and effective. The purpose of this study was to determine the presence of genotoxic agents in the leachates of the landfill of the city using three bioassays: Tradescantia-micronucleus (Trad-MCN), Tradescantia stamen hair mutations (Trad-SHM) and Allium root anaphase aberrations (AL-RAA) and make a comparison of the results in the three assays. Leachates were sampled during both the dry and rainy seasons. Plant cuttings of Tradescantia or the roots of Allium were treated by submerging them in the leachates. Three replicates of each sample were analyzed in each of the three bioassays. As expected the samples of leachates collected during the dry season showed a higher genotoxicity than those collected during the rainy season. In conclusion, there are substances present in the leachates capable of inducing genotoxicity in the plant assays. On the other hand, the plant assays showed different degrees of sensitivity: the more sensitive was the Trad-MCN bioassay and the less sensitive the Trad-SHM assay. Therefore, when analyzing environmental pollutants it is recommended to use a battery of bioassays.

  5. Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement.

    PubMed

    Bila, Daniele M; Montalvão, A Filipe; Silva, Alessandra C; Dezotti, Márcia

    2005-01-31

    This work shows an evaluation of treatments for the leachate produced at the Gramacho Municipal Landfill in Rio de Janeiro state, Brazil. This leachate has very peculiar characteristics, with a high salinity level and very low biodegradability (BOD(5)/COD of 0.05). A sequence of processes was employed in the treatment of this leachate. Initially, a physicochemical treatment was used, while the second stage consisted of application of ozone to improve the biodegradability of the leachate. The final stage comprised a biological treatment. The physical-chemical treatment led to COD and DOC removal levels of 40 and 25%, respectively, with the use of Al(2)(SO(4))(3). The sequence of treatments proposed brought good results, with an increase in the BOD(5)/COD ratio from 0.05 to 0.3 after ozonation. The toxicity tests performed using Brachydanio rerio and Poecilia vivipara showed that the toxicity of the leachate had hardly been reduced by ozonation. These results are in agreement with the fact that, despite the higher BOD(5)/COD ratio, the biological process did not present a good performance. The total average removal levels of COD and DOC achieved using the combined treatment were 73 and 63%, respectively, for an ozone dose of 3.0 gL(-1) by the leachate.

  6. Anaerobic methane oxidation in a landfill-leachate plume

    USGS Publications Warehouse

    Grossman, Ethan L.; Cifuentes, Luis A.; Cozzarelli, Isabelle M.

    2002-01-01

    The alluvial aquifer adjacent to Norman Landfill, OK, provides an excellent natural laboratory for the study of anaerobic processes impacting landfill-leachate contaminated aquifers. We collected groundwaters from a transect of seven multilevel wells ranging in depth from 1.3 to 11 m that were oriented parallel to the flow path. The center of the leachate plume was characterized by (1) high alkalinity and elevated concentrations of total dissolved organic carbon, reduced iron, and methane, and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (δ13C) values suggest anaerobic methane oxidation was occurring within the plume and at its margins. Methane δ13C values increased from about −54‰ near the source to >−10‰ downgradient and at the plume margins. The isotopic fractionation associated with this methane oxidation was −13.6 ± 1.0‰. Methane 13C enrichment indicated that 80−90% of the original landfill methane was oxidized over the 210-m transect. First-order rate constants ranged from 0.06 to 0.23 per year, and oxidation rates ranged from 18 to 230 μM/y. Overall, hydrochemical data suggest that a sulfate reducer-methanogen consortium may mediate this methane oxidation. These results demonstrate that natural attenuation through anaerobic methane oxidation can be an important sink for landfill methane in aquifer systems.

  7. Integrated characterisation of aquifer heterogeneity and landfill leachate plume migration

    NASA Astrophysics Data System (ADS)

    Tremblay, L.; Lefebvre, R.; Gloaguen, E.; Paradis, D.

    2009-05-01

    The understanding of groundwater flow and contaminant migration is based on our ability to characterize aquifers and represent these processes with numerical simulators. This understanding is required to efficiently remediate contaminated sites since the failure of remediation actions are often related to an insufficient understanding of aquifer heterogeneity. During the last decades, continuous development of numerical simulators allowed models to better represent complex flow systems. However, conventional hydrogeological characterization methods do not provide the data required to define aquifer heterogeneity. An original hydrogeological characterization approach was used to define aquifer heterogeneity and delineate landfill leachate plumes through the use and integration of varied techniques. The objective of the study is to develop a methodology to integrate hydrogeological, geophysical and geochemical data using geostatistical tools. The characterization program aims to better characterize the aquifer, delineate leachate plumes emitted by a former landfill, and guide a study of the natural attenuation of the plumes. The initial phase of the integrated multidisciplinary aquifer characterization program was carried out in a 12 km2 area of the sub-watershed surrounding the landfill of St-Lambert-de-Lauzon, Québec. In the study area, a 10-m thick sandy unconfined aquifer overlies clayey silt and till layers. In this relatively flat area, natural streams as well as agricultural and forestry drainage networks control groundwater flow. The first phase of the project focused on a regional hydrogeological and geochemical characterization where 5 field methods were combined: 1) surface geophysics (ground penetrating radar and electrical tomography) (GPR); 2) direct-push methods including a) cone penetration tests (CPT), b) soil sampling and c) installation of full- screened observation wells; 3) multilevel measurement of geochemical parameters and groundwater

  8. Metals in municipal landfill leachate and their health effects.

    PubMed Central

    James, S C

    1977-01-01

    The leachate from five municipal landfills (containing no industrial waste or sewage sludge) was studied in 1975 by the U. S. Environmental Protection Agency (EPA). Copper was not present in concentrations above EPA standards. Zinc concentrations decreased with age of the site and were below standards. The amounts of cadmium and chromium appear to vary greatly from site to site. Lead, selenium, iron, and mercury were present at each site in concentrations above standards, regardless of site age. Although raw leachate contains concentrations of heavy metals in excess of the drinking water standards, it is not clear how likely it would be for these recorded levels to be found in drinking water supplies or for contamination to reach the human body. Before leachate reaches an aquifer, it is subject to the attenuating effect of the unsaturated zone. If municipal solid waste is placed directly into ground water, or if leachate is allowed to drain directly into surface water, severe damage to water quality can result. Further study of the environmental effects of leachate are being undertaken by the Environmental Protection Agency. PMID:857685

  9. The controlling of landfill leachate evapotranspiration from soil-plant systems with willow: Salix amygdalina L.

    PubMed

    Białowiec, Andrzej; Wojnowska-Baryła, Irena; Hasso-Agopsowicz, Marek

    2007-02-01

    The use of willows (Salix amygdalina L) to manage landfill leachate disposal is an effective and cost-effective method due to the high transpiration ability of the willow plants. A 2-year lysimetric experiment was performed to determine an optimum leachate hydraulic loading rate to achieve high evapotranspiration but exert no harmful influence on the plants. The evapotranspiration rate of a soil-plant system planted with the willow was 1.28-5.12-fold higher than the rate measured on a soil surface lacking vegetation, suggesting that soil-willow systems with high volatilization rates are a viable landfill leachate treatment method. Of the soil-willow systems, the one with willow growing on sand amended with sewage sludge soil at an hydraulic loading rate of 1 mm day(-1) performed best, with evapotranspiration ranging from 2.25 to 3.02 mm day(-1) and a biomass yield of 8.0-9.85 Mg dry matter ha(-1). The organic fraction of the soil increased as much as 2.5% of dry matter, due to the sewage sludge input, which exerted a positive effect on the biomass yield as well as on transpiration and evaporation. It was observed that the plants in the sand-and-sewage sludge soil systems displayed higher resistance to toxic effects from the applied landfill leachate relative to plants in the sand-soil systems.

  10. Leachate injection using vertical wells in bioreactor landfills.

    PubMed

    Khire, Milind V; Mukherjee, Moumita

    2007-01-01

    Leachate recirculation or liquid injection in municipal solid waste landfills offers economic and environmental benefits. The key objective of this study was to carry out numerical evaluation of key design variables for leachate recirculation system consisting of vertical wells. In order to achieve the objective, numerical modeling was carried out using the finite-element model HYDRUS-2D. The following design parameters were evaluated by simulating liquid pressure head on the liner and the wetted width of the waste under steady-state flow conditions: (1) hydraulic conductivities of the waste and vertical well backfill; (2) liquid injection rate and dosing frequency; (3) well diameter, screen height and screen depth; and (4) hydraulic conductivity of the leachate collection system, slope of the leachate collection system and spacing of the leachate collection pipes. The key findings of this study are as follows. The well diameter, hydraulic conductivity of the well drainage pack, and screen height and screen depth of the well have very little effect on the wetted width for a given liquid flux. The wetted width and the injection pressure for a given liquid flux decrease with the increase in the hydraulic conductivity of the waste. The pressure head on the liner increases with the decrease in the vertical distance between the bottom of the well screen and the top of leachate collection system. The liquid injection flux increases with the decrease in hydraulic conductivity of the leachate collection system. Unlike sand (k approximately 10(-4)m/s), pea gravel (k approximately 0.01 m/s) resulted in less than 0.3m pressure head on the liner for all simulations carried out in this study.

  11. Nitrogen recovery from a stabilized municipal landfill leachate.

    PubMed

    Di Iaconi, Claudio; Pagano, Michele; Ramadori, Roberto; Lopez, Antonio

    2010-03-01

    The present paper reports the results of an investigation aimed at evaluating the effectiveness of magnesium ammonium phosphate precipitation (MAP), commonly called struvite, for removing ammonia from a mature municipal landfill leachate. MAP precipitation was carried out at laboratory scale by adding phosphoric acid and magnesium oxide as external sources of phosphorus and magnesium, respectively, and regulating the pH at 9.0. The effect of Mg:NH(4):PO(3) ratio was studied. Due to the low solubility of MgO, a low ammonia removal efficiency (i.e. 67%), with a rather high residual concentration, was obtained when the stoichiometric molar ratio was applied. However, by doubling the amount of magnesium oxide (i.e. by using a molar ratio of 2:1:1), ammonia removal efficiency increased up to 95% with a residual concentration compatible with a successive biological treatment. The struvite produced in the present study showed a composition close to the theoretical one. Furthermore, the precipitate was characterized by a heavy metal content much lower than that of typical raw soil, excluding any concern about heavy metal contamination in the case of its use as a fertilizer. The economic analysis of the process showed that ammonia can be removed at a cost of 9.6 euro/kg NH(4)-N(removed). This value can be greatly reduced, however, if the value of the struvite produced is considered.

  12. Leachate composition and toxicity assessment: an integrated approach correlating physicochemical parameters and toxicity of leachates from MSW landfill in Delhi.

    PubMed

    Gupta, Anshu; Paulraj, R

    2017-07-01

    Landfills are considered the most widely practiced method for disposal of municipal solid waste (MSW) and 95% of the total MSW collected worldwide is disposed of in landfills. Leachate produced from MSW landfills may contain a number of pollutants and pose a potential environmental risk for surface as well as ground water. In the present study, chemical analysis and toxicity assessment of landfill leachate have been carried out. Leachate samples were collected from Ghazipur landfill site, New Delhi. Leachates were characterized by measuring the concentration of heavy metals (Pb, Cu, Cr and Ni), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), pH, electrical conductivity and SO4(2)-. For toxicity testing of leachate, Triticum aestivum (wheat) was selected and testing was done in a time- and dose-dependent manner using the crude leachate. Median lethal concentration after 24 and 48 h of exposure was observed. The main objective of this study was to evaluate toxicity of MSW landfill leachate and establish a possible correlation between the measured physicochemical parameters and resultant toxicity. Statistical analysis showed that toxicity was dependent on the concentration of heavy metals (Pb, Cu), conductivity, and organic matter (COD and BOD5).

  13. Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill

    SciTech Connect

    Mangimbulude, Jubhar C.; Straalen, Nico M. van; Roeling, Wilfred F.M.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Microbial nitrogen transformations can alleviate toxic ammonium discharge. Black-Right-Pointing-Pointer Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. Black-Right-Pointing-Pointer Organic nitrogen ammonification was most dominant. Black-Right-Pointing-Pointer Anaerobic nitrate reduction and ammonium oxidation potential were also high. Black-Right-Pointing-Pointer A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L{sup -1}. The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L{sup -1} h{sup -1}) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic

  14. Landfill Gas Characterization and Leachate Removal at the Alachua County Southwest Landfill, Alachua County, Florida Through Utilization of a Mechanical Gas Collection System

    DTIC Science & Technology

    1994-01-01

    AD-A280 036 LANDFILL GAS CHARACTERIZATION AND LEACHATE REMOVAL AT THE ALACHUA COUNTY SOUTHWEST LANDFILL, ALACHUA COUNTY, FLORIDA THROUGH UTILIZATION...UNIVERSITY OF FLORIDA 1994 94 6 8 131S - &~ i I I LANDFILL GAS CHARACTERIZATION AND LEACHATE REMOVAL AT THE ALACHUA COUNTY SOUTHWEST LANDFILL, ALACHUA...of the Requirements for the Degree of Master of Engineering. LANDFILL GAS CHARACTERIZATION AND LEACHATE REMOVAL AT THE ALACHUA COUNTY SOUTHWEST

  15. Changes in soil characteristics during landfill leachate irrigation of Populus deltoides.

    PubMed

    Zupanc, Vesna; Justin, Maja Zupančič

    2010-11-01

    The effects of wastewater application on electrical conductivity, water retention and water repellency of soils planted with Populus deltoides (eastern cottonwood) and irrigated with different concentrations of landfill leachate and compost wastewater, tap water and nutrient solution were evaluated. Substrate water content at field capacity (-0.033 MPa) and at permanent wilting point (-1.5 MPa) was determined with a pressure plate extractor to assess available water capacity of the substrate. A water drop penetration test was used to determine substrate water repellency. The biomass of nutrient and landfill leachate treatments was significantly (P<0.05) greater compared to the tap water and compost wastewater treatments. All treatments increased substrate water content at field capacity and at permanent wilting point. Landfill leachate significantly increased available water capacity (up to 52%); treatment with compost wastewater significantly decreased it (25-47%). All substrates showed increased water repellency after the experiment at field capacity and permanent wilting point comparing to the original substrate. The strongest influence on water repellency at both field capacity and permanent wilting point showed irrigation with compost wastewater and tap water. Pronounced influence on substrate's water repellency of compost wastewater could be contributed to a high content of dissolved organic carbon, whereas Mg and Ca cations caused flocculation and consequent water repellency of the substrate irrigated with tap water. The results indicate that soil physical characteristics must be closely monitored when landfill leachate and compost wastewater are used for irrigation to avoid long term detrimental effects on the soil, and consequently on the environment. Due to the complexity of the compost wastewater quality the latter should be applied on open fields only after prior pre-treatment to reduce dissolved organic carbons, or alternatively, compost wastewater

  16. Biogeochemistry and isotope geochemistry of a landfill leachate plume.

    PubMed

    van Breukelen, Boris M; Röling, Wilfred F M; Groen, Jacobus; Griffioen, Jasper; van Verseveld, Henk W

    2003-09-01

    The biogeochemical processes were identified which improved the leachate composition in the flow direction of a landfill leachate plume (Banisveld, The Netherlands). Groundwater observation wells were placed at specific locations after delineating the leachate plume using geophysical tests to map subsurface conductivity. Redox processes were determined using the distribution of solid and soluble redox species, hydrogen concentrations, concentration of dissolved gases (N(2), Ar, and CH(4)), and stable isotopes (delta15N-NO(3), delta34S-SO(4), delta13C-CH(4), delta2H-CH(4), and delta13C of dissolved organic and inorganic carbon (DOC and DIC, respectively)). The combined application of these techniques improved the redox interpretation considerably. Dissolved organic carbon (DOC) decreased downstream in association with increasing delta13C-DOC values confirming the occurrence of degradation. Degradation of DOC was coupled to iron reduction inside the plume, while denitrification could be an important redox process at the top fringe of the plume. Stable carbon and hydrogen isotope signatures of methane indicated that methane was formed inside the landfill and not in the plume. Total gas pressure exceeded hydrostatic pressure in the plume, and methane seems subject to degassing. Quantitative proof for DOC degradation under iron-reducing conditions could only be obtained if the geochemical processes cation exchange and precipitation of carbonate minerals (siderite and calcite) were considered and incorporated in an inverse geochemical model of the plume. Simulation of delta13C-DIC confirmed that precipitation of carbonate minerals happened.

  17. Biogeochemistry and isotope geochemistry of a landfill leachate plume

    NASA Astrophysics Data System (ADS)

    van Breukelen, Boris M.; Röling, Wilfred F. M.; Groen, Jacobus; Griffioen, Jasper; van Verseveld, Henk W.

    2003-09-01

    The biogeochemical processes were identified which improved the leachate composition in the flow direction of a landfill leachate plume (Banisveld, The Netherlands). Groundwater observation wells were placed at specific locations after delineating the leachate plume using geophysical tests to map subsurface conductivity. Redox processes were determined using the distribution of solid and soluble redox species, hydrogen concentrations, concentration of dissolved gases (N 2, Ar, and CH 4), and stable isotopes ( δ15N-NO 3, δ34S-SO 4, δ13C-CH 4, δ2H-CH 4, and δ13C of dissolved organic and inorganic carbon (DOC and DIC, respectively)). The combined application of these techniques improved the redox interpretation considerably. Dissolved organic carbon (DOC) decreased downstream in association with increasing δ13C-DOC values confirming the occurrence of degradation. Degradation of DOC was coupled to iron reduction inside the plume, while denitrification could be an important redox process at the top fringe of the plume. Stable carbon and hydrogen isotope signatures of methane indicated that methane was formed inside the landfill and not in the plume. Total gas pressure exceeded hydrostatic pressure in the plume, and methane seems subject to degassing. Quantitative proof for DOC degradation under iron-reducing conditions could only be obtained if the geochemical processes cation exchange and precipitation of carbonate minerals (siderite and calcite) were considered and incorporated in an inverse geochemical model of the plume. Simulation of δ13C-DIC confirmed that precipitation of carbonate minerals happened.

  18. Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale.

    PubMed

    Vilar, Vítor J P; Rocha, Elisangela M R; Mota, Francisco S; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R

    2011-04-01

    A solar photo-Fenton process combined with a biological nitrification and denitrification system is proposed for the decontamination of a landfill leachate in a pilot plant using photocatalytic (4.16 m(2) of Compound Parabolic Collectors - CPCs) and biological systems (immobilized biomass reactor). The optimum iron concentration for the photo-Fenton reaction of the leachate is 60 mg Fe(2+) L(-1). The organic carbon degradation follows a first-order reaction kinetics (k = 0.020 L kJ(UV)(-1), r(0) = 12.5 mg kJ(UV)(-1)) with a H(2)O(2) consumption rate of 3.0 mmol H(2)O(2) kJ(UV)(-1). Complete removal of ammonium, nitrates and nitrites of the photo-pre-treated leachate was achieved by biological denitrification and nitrification, after previous neutralization/sedimentation of iron sludge (40 mL of iron sludge per liter of photo-treated leachate after 3 h of sedimentation). The optimum C/N ratio obtained for the denitrification reaction was 2.8 mg CH(3)OH per mg N-NO(3)(-), consuming 7.9 g/8.2 mL of commercial methanol per liter of leachate. The maximum nitrification rate obtained was 68 mg N-NH(4)(+) per day, consuming 33 mmol (1.3 g) of NaOH per liter during nitrification and 27.5 mmol of H(2)SO(4) per liter during denitrification. The optimal phototreatment energy estimated to reach a biodegradable effluent, considering Zahn-Wellens, respirometry and biological oxidation tests, at pilot plant scale, is 29.2 kJ(UV) L(-1) (3.3 h of photo-Fenton at a constant solar UV power of 30 W m(-2)), consuming 90 mM of H(2)O(2) when used in excess, which means almost 57% mineralization of the leachate, 57% reduction of polyphenols concentration and 86% reduction of aromatic content. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Ammonia removal from landfill leachate by air stripping and absorption.

    PubMed

    Ferraz, Fernanda M; Povinelli, Jurandyr; Vieira, Eny Maria

    2013-01-01

    An old landfill leachate was pre-treated in a pilot-scale aerated packed tower operated in batch mode for total ammoniacal nitrogen (TAN) removal. The stripped ammonia was recovered with a 0.4 mol L(-1) H2SO4 solution, deionized water and tap water. Ca(OH)2 (95% purity) or commercial hydrated lime was added to the raw leachate to adjust its pH to 11, causing removal of colour (82%) and heavy metals (70-90% for Zn, Fe and Mn). The 0.4 molL(-1) H2SO4 solution was able to neutralize 80% of the stripped ammonia removed from 12 L of leachate. The effectiveness of the neutralization of ammonia with deionized water was 75%. Treating 100 L of leachate, the air stripping tower removed 88% of TAN after 72 h of aeration, and 87% of the stripped ammonia was recovered in two 31 L pilot-scale absorption units filled with 20 L of tap water.

  20. Electrocoagulation of bio-filtrated landfill leachate: Fractionation of organic matter and influence of anode materials.

    PubMed

    Dia, Oumar; Drogui, Patrick; Buelna, Gerardo; Dubé, Rino; Ihsen, Ben Salah

    2017-02-01

    Electrocoagulation (EC) was employed to treat residual organic matter from a landfill leachate pretreated by an aerated bio-filter system. Organic matter (humic acids (HA), fulvic acids (FA) and hydrophilic compounds (Hyl)) was fractionated using DAX-8 resin in order to estimate the efficiency of EC on each fraction. Initial characterization of the bio-filtrated landfill leachate showed that humic substances (HA + FA) represented nearly 90% of TOC. The effects of current densities, type of anode (Aluminum versus iron), and treatment time on the performance of COD removal were investigated. The best COD removal performances were recorded at a current density ranging between 8.0 and 10 mA cm(-2) during 20 min of treatment time. Under these conditions, 70% and 65% of COD were removed using aluminum and iron electrodes, respectively. The fractionating of organic matter after EC treatment revealed that HA was completely removed using either aluminum or iron anode. However, FA and Hyl fractions were partially removed, with the percentages varying from 57 to 60% and 37-46%, respectively. FA and Hyl removal were quite similar using either aluminum or iron anode. Likewise, a significant decrease in 254-nm absorbance was recorded (UV254 removal of 79-80%) using either type of anode. These results proved that EC is a suitable and efficient approach for treating the residual refractory organic matter from a landfill leachate previously treated by a biological system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Soil contamination by heavy metals in landfills: measurements from an unlined leachate storage basin.

    PubMed

    Bouzayani, Fethi; Aydi, Abdelwaheb; Abichou, Tarek

    2014-08-01

    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of soil pollution within and around the Jebel Chakir landfill, located in the Tunis City, Tunisia. The main objective was to characterize soil samples of an unlined storage basin in relation to heavy metal concentrations in the Jebel Chakir landfill to the southwest of Tunis, Northern Tunisia. Twenty-four soil samples taken from different locations around the storage basin were analyzed by atomic absorption spectrophotometry for Cr, Cu, Ni, Pb, and Zn investigation. Our results indicated high concentrations of Cr (54.4-129.9 mg/kg of DM), Zn (4.1-81.8 mg/kg of DM), Ni (15.1-43.9 mg/kg of DM), Pb (5.6-16.1 mg/kg of DM), and Cu (0.2-1.84 mg/kg of DM). These results suggested that contaminant migration is controlled by an active clay layer acting as an insulating material in the landfill. It is therefore necessary to set a treatment system for the landfill leachates and place a liner under the storage basin to reduce the pollution threat.

  2. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system.

    PubMed

    Yi, Xinzhu; Tran, Ngoc Han; Yin, Tingru; He, Yiliang; Gin, Karina Yew-Hoong

    2017-09-15

    Landfill leachate could be a significant source of emerging contaminants (ECs) and antibiotic resistance genes (ARGs) into the environment. This study provides the first information on the occurrence of selected ECs and ARGs in raw leachate from 16-year old closed landfill site in Singapore. Among the investigated ECs, acetaminophen (ACT), bisphenol A (BPA), clofibric acid (CA), caffeine (CF), crotamiton (CTMT), diclofenac (DCF), N,N-diethyl-m-toluamide (DEET), gemfibrozil (GFZ), lincomycin (LIN), salicylic acid (SA), and sulfamethazine (SMZ) were the most frequently detected compounds in raw landfill leachate. The concentrations of detected ECs in raw landfill leachate varied significantly, from below quantification limit to 473,977 ng/L, depending on the compound. In this study, Class I integron (intl1) gene and ten ARGs were detected in raw landfill leachate. Sulfonamide resistance (sul1, sul2, and dfrA), aminoglycoside resistance (aac6), tetracycline resistance (tetO), quinolone resistance (qnrA), and intl1 were ubiquitously present in raw landfill leachate. Other resistance genes, such as beta-lactam resistance (blaNMD1, blaKPC, and blaCTX) and macrolide-lincosamide resistance (ermB) were also detected, detection frequency of <50%. The removal of target ECs and ARGs by a full-scale hybrid constructed wetland (CW) was also evaluated. The vast majority of ECs exhibited excellent removal efficiencies (>90%) in the investigated hybrid CW system. This hybrid CW system was also found to be effective in the reduction of several ARGs (intl1, sul1, sul2, and qnrA). Aeration lagoons and reed beds appeared to be the most important treatment units of the hybrid CW for removing the majority of ECs from the leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biodegradation of organics in landfill leachate by immobilized white rot fungi, Trametes versicolor BCC 8725.

    PubMed

    Saetang, Jenjira; Babel, Sandhya

    2012-12-01

    Immobilized Trametes versicolor BCC 8725 was evaluated for the biodegradation of the organic components of four different types of landfill leachate collected at different time periods and locations from the Nonthaburi landfill site of Thailand in batch treatment. The effects of carbon source, ammonia and organic loading on colour, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal, and the reuse of immobilized fungi were investigated. It was found that fungi can remove 78% of colour, reduce BOD by 68% and reduce COD by 57% in leachate within 15 days at optimum conditions. Organic loading and ammonia were the factors that affected the biodegradation. When immobilized T versicolor on polyurethane foam (PUF) was subjected to repeated use for treatment over the course of three cycles, the decolourization efficiency of the first and the second cycle was very similar, whereas the third cycle was about 20% lower than the first cycle under similar conditions. The obtained removal of colour, BOD and COD indicates the effectiveness of fungi for leachate treatment with high organic loading and varied leachate characteristics.

  4. Determination of volatile fatty acids in landfill leachates by ion-exclusion chromatography.

    PubMed

    Yamamoto, Atsushi; Yasuhara, Akio; Kodama, Shuji; Matsunaga, Akinobu; Suzuki, Shigeru; Mohri, Shino; Yamada, Masato

    2004-03-01

    An ion-exclusion chromatographic method with on-line desalinization for the determination of volatile fatty acids in landfill leachates is described. Highly sensitive conductivity detection of the organic acids was achieved by using dilute p-hydroxybenzoic acid solution as an eluent. Interference with mineral acids was reduced by treatment with barium chloride solution prior to desalinization. A silver-loaded cation-exchange guard column for the desalinization was installed in series with the analytical column to avoid the contamination of organic acids. This method features detection limits of 0.01 mg L(-1) formic acid, 0.02 mg L(-1) acetic acid, 0.05 mg L(-1) propionic acid, and 0.1 mg L(-1) butyric acid, respectively, with an injection of 20 microL sample. Application of the on-line desalinization LC method is illustrated for leachate samples from a Japanese sanitary landfill.

  5. Using phyto-recurrent selection to choose Populus genotypes for phytoremediation of landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall

    2006-01-01

    Information about the response of Populus genotypes to landfill leachate irrigation is needed, along with efficient methods for choosing genotypes based on leachate composition. We irrigated poplar clones during three cycles of phyto-recurrent selection to test whether genotypes responded differently to leachate and water, and to test whether our...

  6. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: I. LEACHATE HYDROLOGY AND WASTE SETTLEMENT

    EPA Science Inventory

    An assessment of state-of-the-practice at five full-scale North American landfills operating as bioreactors is presented in this two-paper set. This paper focuses on effectiveness of liners and leachate collection systems, leachate generation rates, leachate recirculation practi...

  7. Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall

    2007-01-01

    Information about the response of poplar (Populus spp.) genotypes to landfill leachate irrigation is needed, along with efficient methods for choosing genotypes based on leachate composition. Poplar clones were irrigated during three cycles of phyto-recurrent selection to test whether genotypes responded differently to leachate and water, and to test...

  8. PERFORMANCE OF NORTH AMERICAN BIOREACTOR LANDFILLS: I. LEACHATE HYDROLOGY AND WASTE SETTLEMENT

    EPA Science Inventory

    An assessment of state-of-the-practice at five full-scale North American landfills operating as bioreactors is presented in this two-paper set. This paper focuses on effectiveness of liners and leachate collection systems, leachate generation rates, leachate recirculation practi...

  9. Solidification/stabilization of landfill leachate concentrate using different aggregate materials.

    PubMed

    Hunce, Selda Yigit; Akgul, Deniz; Demir, Goksel; Mertoglu, Bulent

    2012-07-01

    The application of reverse osmosis for the treatment of landfill leachate is becoming widespread in Turkey as well as in Europe. A major drawback of this process is the production of concentrate, which could be as much as 30% of the feed stream, and high concentrations of salts and contaminants. The reverse osmosis concentrate is disposed of by using several methods including re-infiltration, drying, incineration and solidification/stabilization. In this study, solidification/stabilization (S/S) technology was studied for the treatment of reverse osmosis concentrate produced from landfill leachate. In order to benefit from its capability to absorb heavy metals, ammonia and some other pollutants, zeolite and different aggregate materials were used in solidification experiments. Main pollutants in the leachate concentrate, TOC, DOC, TDS and ammonia were successfully solidified and approximately 1% of TOC, DOC, TDS and ammonia remained in the eluate water. The results indicated that the landfill disposal limits could be attained by solidification/stabilization process.

  10. LEACHATE RECIRCULATION, METHANOGENS AND METAL CONCENTRATIONS IN BIOREACTOR LANDFILLS

    EPA Science Inventory

    The idea of operating landfills as bioreactors has received a lot of attention owing to many of the economic and waste treatment benefits. Portions of the Outer Loop landfill in Louisville, KY, owned and operated by WMI, Inc., are currently being used to test two different decom...

  11. Use of Impervious Covers and Carbon Adsorption for the Control of Leachate Production in Municipal Landfills.

    DTIC Science & Technology

    1979-05-01

    REPORT 4 PERIOD COVERED Carbon Adsorption for the Control of THESIS /oW* J0 Leachate Production in Municipal Landfills 6 PERFORMING 01G. REPORT NUMBER...LEACHATE PRODUCTION IN MUNICIPAL LANDFILLS A Thesis by / RICHARD CHARLES CARMICHAEL // Submitted to the Graduate College of Texas A&M University in...leachate.4 Depending upon the The format and style of this thesis follows that of the Journal of the Water Pollution Control Federation. . r4* 2

  12. Evaluation of landfill leachate in arid climate-a case study.

    PubMed

    Al-Yaqout, A F; Hamoda, M F

    2003-08-01

    Generation of leachate from municipal solid waste (MSW) landfill in arid regions has long been neglected on the assumption that minimal leachate could be formed in the absence of precipitation. Therefore, a case study was conducted at two unlined MSW landfills, of different ages, in the state of Kuwait in order to determine the chemical characteristics of leachate and examine the mechanism of leachate formation. Leachate quality data were collected from both active and old (closed) landfills where co-disposal of MSW and other solid and liquid wastes is practiced. The analysis of data confirms that leachates from both landfills are severely contaminated with organics, salts and heavy metals. However, the organic strength of the leachate collected from the old landfill was reduced due to waste decomposition and continuous gas flaring. A significant degree of variability was encountered and factors which may influence leachate quality were identified and discussed. A water balance at the landfill site was assessed and a conceptual model was presented which accounts for leachate generation due to rising water table, capillary water and moisture content of the waste.

  13. Municipal landfill leachates: a significant source for new and emerging pollutants.

    PubMed

    Eggen, Trine; Moeder, Monika; Arukwe, Augustine

    2010-10-01

    Landfills have historically remained the most common methods of organized waste disposal and still remain so in many regions of the world. Thus, they may contain wastes resulting from several decades of disposal and decomposition with subsequent release of organic compounds that may have environmental, wildlife and human health consequences. Products containing different types of additives with unique beneficial improvement properties are in daily use. However, when these products are decomposed, additives are release into the environment, some of which have been shown to have negative environmental impacts, resulting in the ban or at least restricted application of some chemicals. New and emerging compounds are continuously discovered in the environment. Herein, we report qualitative and quantitative data on the occurrence of new and emerging compounds with increasing environmental and public health concern in water- and particle phase of landfill leachates. Under normal environmental conditions, several of these chemicals are persistent high-volume products. Identified chemicals in the leachates at nanogram (ng) or microgram (microg) per liter levels include - chlorinated alkylphosphates such as tris(1-chloro-2-propyl) phosphate (TCPP), N-butyl benzensulfonamide (NBBS), the insect repellent diethyl toluamide (DEET) and personal care products such as the non-steroidal anti-inflammatory drug ibuprofen and polycyclic musk compounds. Among new and emerging contaminants, perfluorinated compounds (PFCs) were measured in the water phase at concentrations up to 6231 ng/L. Compared with the other chemicals, PFCs were primarily distributed in water phase. An effective removal method for PFCs and other polar and persistent compounds from landfill leachates has been a major challenge, since commonly used treatment technologies are based on aeration and sedimentation. Thus, the present study has shown that municipal landfill leachates may represent a significant source of

  14. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect

    Wei Yanjie; Ji Min; Li Ruying; Qin Feifei

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  15. Phytoextraction of As and Fe using Hibiscus cannabinus L. from soil polluted with landfill leachate.

    PubMed

    Meera, M; Agamuthu, P

    2012-02-01

    Terrestrial plants as potential phytoremediators for remediation of surface soil contaminated with toxic metals have gained attention in clean-up technologies. The potential of kenaf (Hibiscus cannabinus L.) to offer a cost-effective mechanism to remediate Fe and As from landfill leachate-contaminated soil was investigated. Pot experiment employing soil polluted with treatments of Jeram landfill leachate was conducted for 120 days. Plants were harvested after 8th, 12th, and 16th weeks of growth. Accumulation of Fe and As was assessed based on Bioconcentration Factor and Translocation Factor. Results showed sequestration of 0.06-0.58 mg As and 66.82-461.71 mg Fe per g plant dry weight in kenaf root, which implies that kenaf root can be an bioavailable sink for toxic metals. Insignificant amount of Fe and As was observed in the aerial plant parts (< 12% of total bioavailable metals). The ability of kenaf to tolerate these metals and avoid phytotoxicity could be attributed to the stabilization of the metals in the roots and hence reduction of toxic metal mobility (TF < 1). With the application of leachate, kenaf was also found to have higher biomass and subsequently recorded 11% higher bioaccumulation capacity, indicating its suitability for phytoextraction of leachate contaminated sites.

  16. Investigation of organic, inorganic and synthetic adsorbents for the pretreatment of landfill leachate.

    PubMed

    Shahriari, H; Fernandes, L; Tezel, F H

    2008-05-01

    An investigation into the use of organic, inorganic and synthetic adsorbents for the pretreatment of landfill leachate, generated by the City of Ottawa Trail Road Landfill, was carried out. The purpose of this project was to reduce the concentration of contaminants in order to meet the local Sewer Use By-Laws, prior to transporting the leachate from the generating site to the local municipal sewage treatment plant, and thereby reducing the disposal fees. Peat moss, compost, clinoptilolite, basalt and two types of activated carbon (DSR-A and F400) were investigated to determine the adsorption capacity for contaminants from leachate. Kinetic studies were also performed. The results based on batch adsorption isotherms show that peat moss has the highest adsorption capacity for boron (B) and barium (Ba), compared with the other adsorbents. Also peat moss has good removals of Total Kjeldahl Nitrogen (TKN), Total Organic Carbon (TOC), and benzene, toluene, ethylbenzene and xylene (BTEX), but these are lower than the removals obtained with activated carbon. Because of its relatively low cost and higher adsorption of B and Ba, peat moss was selected as the filter media for the column studies. The treated leachate was tested for B, Ba, TKN, carbonaceous biological oxygen demand (CBOD5) and hydrogen sulfide (H2S). The breakthrough curves for B and Ba showed the effectiveness of peat moss in removing these contaminants.

  17. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    PubMed Central

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-01-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g−1 COD and methane percentages of 53–76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L−1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg−1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L−1 d−1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68–95 fmol N cell−1 d−1, which finally led to the stable operation of the system. PMID:27279481

  18. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    NASA Astrophysics Data System (ADS)

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-06-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g-1 COD and methane percentages of 53-76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L-1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg-1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L-1 d-1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68-95 fmol N cell-1 d-1, which finally led to the stable operation of the system.

  19. The removal of COD and color by Fenton oxidation from leachate of Erzurum municipal solid waste landfill

    NASA Astrophysics Data System (ADS)

    Kocakaplan, Nihal; Ertugay, Neşe; Malkoç, Emine

    2016-04-01

    The optimal conditions for treatment of leachate were determined as pH = 2.5, Fe2+= 2 mg/L and H2O2= 100 mg/L. Under the optimal conditions, approximately 90% color (at 620 nm), 84% color (at 525 nm), 74% color (at 436 nm) and 47.8% COD removal efficiency from leachate were achieved after 20 min of reaction. Depending on the results obtained experiments, Fenton process has been used successfully in removal of COD and color in landfill leachate.

  20. Methanogenic diversity and activity in municipal solid waste landfill leachates.

    PubMed

    Laloui-Carpentier, Wassila; Li, Tianlun; Vigneron, Vassilia; Mazéas, Laurent; Bouchez, Théodore

    2006-01-01

    Archaeal microbial communities present in municipal solid waste landfill leachates were characterized using a 16S rDNA approach. Phylogenetic affiliations of 239 partial length 16S rDNA sequences were determined. Sequences belonging to the order Methanosarcinales were dominant in the clone library and 65% of the clones belonged to the strictly acetoclastic methanogenic family Methanosaetaceae. Sequences affiliated to the metabolically versatile family Methanosarcinaceae represented 18% of the retrieved sequences. Members of the hydrogenotrophic order Methanomicrobiales were also recovered in limited numbers, especially sequences affiliated to the genera Methanoculleus and Methanofollis. Eleven euryarchaeal and thirteen crenarchaeal sequences (i.e. 10%) were distantly related to any hitherto cultivated microorganisms, showing that archaeal diversity within the investigated samples was limited. Lab-scale incubations were performed with leachates mixed with several methanogenic precursors (acetate, hydrogen, formate, methanol, methylamine). Microbial populations were followed using group specific 16S rRNA targeted fluorescent oligonucleotidic probes. During the incubations with acetate, acetoclastic methanogenesis was rapidly induced and led to the dominance of archaea hybridizing with probe MS1414 which indicates their affiliation to the family Methanosarcinaceae. Hydrogen and formate addition induced an important acetate synthesis resulting from the onset of homoacetogenic metabolism. In these incubations, species belonging to the family Methanosarcinaceae (hybridizing with probe MS1414) and the order Methanomicrobiales (hybridizing with probe EURY496) were dominant. Homoacetogenesis was also recorded for incubations with methanol and methylamines. In the methanol experiment, acetoclastic methanogenesis took place and archaea hybridizing with probe MS821 (specific for Methanosarcina spp.) were observed to be the dominant population. These results confirm that

  1. Coal pile leachate treatment

    SciTech Connect

    Davis, E C; Kimmitt, R R

    1982-09-01

    The steam plant located at the Oak Ridge National Laboratory was converted from oil- to coal-fired boilers. In the process, a diked, 1.6-ha coal storage yard was constructed. The purpose of this report is to describe the treatment system designed to neutralize the estimated 18,000 m/sup 3/ of acidic runoff that will be produced each year. A literature review and laboratory treatability study were conducted which identified two treatment systems that will be employed to neutralize the acidic runoff. The first, a manually operated system, will be constructed at a cost of $200,000 and will operate for an interim period of four years. This system will provide for leachate neutralization until a more automated system can be brought on-line. The second, a fully automated system, is described and will be constructed at an estimated cost of $650,000. This automated runoff treatment system will ensure that drainage from the storage yard meets current National Pollutant Discharge Elimination System Standards for pH and total suspended solids, as well as future standards, which are likely to include several metals along with selected trace elements.

  2. Quality and Quantity of Leachate in Aerobic Pilot-Scale Landfills

    NASA Astrophysics Data System (ADS)

    Bilgili, Memmet Sinan; Demir, Ahmet; Özkaya, Bestamin

    2006-08-01

    In this study, two pilot-scale aerobic landfill reactors with (A1) and without (A2) leachate recirculation are used to obtain detailed information on the quantity and quality of leachate in aerobic landfills. The observed parameters of leachate quality are pH, chloride (Cl-), chemical oxygen demand (COD), biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), and nitrate (NO3 --N). pH values of the leachate increased to 7 after 50 days in reactor A1 and after 70 days in reactor A2. Cl- concentrations increased rapidly to 6100 (A1) and 6900 (A2) mg/L after 80 days, from initial values of 3000 and 2800 mg/L, respectively. COD and BOD values decreased rapidly in the A1 landfill reactor, indicating the rapid oxidation of organic matter. The BOD/COD ratio indicates that leachate recirculation slightly increases the degradation of solid waste in aerobic landfills. NH3-N concentrations decreased as a result of the nitrification process. Denitrification occurred in parts of the reactors as a result of intermittent aeration; this process causes a decrease in NO3 - concentrations. There is a marked difference between the A1 and A2 reactors in terms of leachate quantity. Recirculated leachate made up 53.3% of the leachate generated from the A1 reactor during the experiment, while leachate quantity decreased by 47.3% with recirculation when compared with the aerobic dry landfill reactor.

  3. Leachate recirculation at the Nanticoke sanitary landfill using a bioreactor trench. Final report

    SciTech Connect

    Pagano, J.J.; Scrudato, R.J.; Sumner, G.M.

    1998-02-01

    A one-year landfill leachate recirculation demonstration project was conducted in a 20-acre cell at the Broome County, NY, Nanticoke Landfill using a retrofit bioreactor trench design concept to introduce landfill leachate to the surrounding refuse mass. Over the course of the project, 1.1 million gallons of landfill leachate were distributed through the bioreactor trench, substantially increasing the moisture content (approaching 70%) of the surrounding municipal solid waste. Experimental results also indicate that the bioreactor trench functioned as an in-situ anaerobic bioreactor, effectively treating landfill leachate retained within the trench due to decreasing refuse permeability and enhanced leachate hydraulic retention time. A significant and steady decline was noted in landfill leachate chemical oxygen demand (COD), volatile fatty acid (VFA), and total organic carbon (TOC), suggesting that the rapid biological stabilization of the refuse within the 20-acre demonstration area was influenced by the bioreactor trench. Characterization of the resulting landfill gas indicated that optimum methane:carbon dioxide ratios were measured in all experimental gas wells and in the bioreactor trench. No apparent enhancement of landfill gas production was noted in promixity to the bioreactor trench.

  4. In situ nitrogen removal from leachate by bioreactor landfill with limited aeration

    SciTech Connect

    Shao Liming; He Pinjing Li Guojian

    2008-07-01

    The feasibility of simultaneous nitrification and denitrification in a bioreactor landfill with limited aeration was assessed. Three column reactors, simulating bioreactor landfill operations under anaerobic condition (as reference), intermittent forced aeration and enhanced natural aeration were hence established, where aerated columns passed through two phases, i.e., fresh landfill and well-decomposed landfill. The experimental results show that limited aeration decreased nitrogen loadings of leachate distinctly in the fresh landfill. In the well-decomposed landfill, the NH{sub 4}{sup +}-N of the input leachate could be nitrified completely in the aerated landfill columns. The nitrifying loadings of the column cross section reached 7.9 g N/m{sup 2} d and 16.9 g N/m{sup 2} d in the simulated landfill columns of intermittent forced aeration and enhanced natural aeration, respectively. The denitrification was influenced by oxygen distribution in the landfill column. Intermittent existence of oxygen in the landfill with the intermittent forced aeration was favorable to denitrify the NO{sub 2}{sup -}-N and NO{sub 3}{sup -}-N, indicated by the high denitrification efficiency (>99%) under the condition of BOD{sub 5}/TN of more than 5.4 in leachate; locally persistent existence of oxygen in the landfill with enhanced natural aeration could limit the denitrification, indicated by relatively low denitrification efficiency of about 75% even when the BOD{sub 5}/TN in leachate had an average of 7.1.

  5. Methane emissions from MSW landfill with sandy soil covers under leachate recirculation and subsurface irrigation

    NASA Astrophysics Data System (ADS)

    Zhang, Houhu; He, Pinjing; Shao, Liming

    CH 4 emissions and leachate disposal are recognized as the two major concerns in municipal solid waste (MSW) landfills. Recently, leachate recirculation was attempted to accelerate land-filled waste biodegradation and thus enhanced landfill gas generation. Leachate irrigation was also conducted for volume reduction effectively. Nevertheless, the impacts of leachate recirculation and irrigation on landfill CH 4 emissions have not been previously reported. A field investigation of landfill CH 4 emissions was conducted on selected sandy soil cover with leachate recirculation and subsurface irrigation based on whole year around measurement. The average CH 4 fluxes were 311±903, 207±516, and 565±1460 CH 4 m -2 h -1 from site A without leachate recirculation and subsurface irrigation, lift B2 with leachate subsurface irrigation, and lift B1 with both leachate recirculation and subsurface irrigation, respectively. Both gas recovery and cover soil oxidation minimized CH 4 emissions efficiently, while the later might be more pronounced when the location was more than 5 m away from gas recovery well. After covered by additional clay soil layer, CH 4 fluxes dropped by approximately 35 times in the following three seasons compared to the previous three seasons in lift B2. The diurnal peaks of CH 4 fluxes occurred mostly followed with air or soil temperature in the daytimes. The measured CH 4 fluxes were much lower than those of documented data from the landfills, indicating that the influences of leachate recirculation and subsurface irrigation on landfill CH 4 emissions might be minimized with the help of a well-designed sandy soil cover. Landfill cover composed of two soil layers (clay soil underneath and sandy soil above) is suggested as a low-cost and effective alternative to minimize CH 4 emissions.

  6. Statistical comparison of leachate from hazardous, codisposal, and municipal solid waste landfills

    SciTech Connect

    Gibbons, R.D.; Dolan, D.G.; May, H.; O'Leary, K.; O'Hara, R.

    1999-09-30

    There has been considerable debate regarding the chemical characterization of landfill leachate in general and the comparison of various types of landfill leachate (e.g., hazardous, codisposal, and municipal) in particular. For example, the preamble to the US EPA Subtitle D regulation (40 CFR Parts 257 and 258) suggests that there are no significant differences between the number and concentration of toxic constituents in hazardous versus municipal solid waste landfill leachate. The purpose of this paper is to statistically test this hypothesis in a large leachate database comprising 1490 leachate samples from 283 sample points (i.e., monitoring location such as a leachate sump) in 93 landfill waste cells (i.e., a section of a facility that took a specific waste stream or collection of similar waste streams) from 48 sites with municipal, codisposal, or hazardous waste site histories. Results of the analysis reveal clear differention between landfill leachate types, both in terms of constituents detected and their concentrations. The result of the analysis is a classification function that can estimate the probability that new leachate or ground water sample was produced by the disposal of municipal, codisposal, or hazardous waste. This type of computation is illustrated, and applications of the model to Superfund cost-allocation problems are discussed.

  7. Feasibility of sulfate-calcined eggshells for removing pathogenic bacteria and antibiotic resistance genes from landfill leachates.

    PubMed

    Ye, Mao; Sun, Mingming; Chen, Xu; Feng, Yanfang; Wan, Jinzhong; Liu, Kuan; Tian, Da; Liu, Manqiang; Wu, Jun; Schwab, Arthur P; Jiang, Xin

    2017-03-23

    High abundance of human pathogen and antibiotic resistance genes (ARGs) in landfill leachate has become an emerging threat against human health. Therefore, sulfate- and calcination-modified eggshells as green agricultural bioresource were applied to test the feasibility of removing pathogenic bacteria and ARGs from leachate. The highest removal of Escherichia coli (E. coil) and gentamycin resistant gene (gmrA) from artificial contaminated landfill leachate was achieved by the application of eggshell with combined treatment of sulfate and calcination. The 16S and gmrA gene copies of E. coil declined significantly from 1.78E8±8.7E6 and 4.12E8±5.9E6 copies mL(-1) to 1.32E7±2.6E6 and 2.69E7±7.2E6 copies mL(-1), respectively, within 24h dynamic adsorption equilibrium process (p<0.05). Moreover, according to the Langmuir kinetic model, the greatest adsorption amount (1.56×10(9) CFU E. coil per gram of modified eggshells) could be obtained at neutral pH of 7.5. The optimal adsorption eggshells were then screened to the further application in three typical landfill leachates in Nanjing, eastern China. Significant decrease in species and abundance of pathogenic bacteria and ARGs (tet, sul, erm, qnr, and ampC) indicated its great efficiency to purify landfill leachates. This study demonstrated that sulfate-calcined eggshells can be an environmentally-friendly and highly efficient bioadsorbent to the management of reducing dissemination risk of pathogen and ARGs in landfill leachate.

  8. Assessment of groundwater contamination by landfill leachate: a case in México.

    PubMed

    Reyes-López, Jaime A; Ramírez-Hernández, Jorge; Lázaro-Mancilla, Octavio; Carreón-Diazconti, Concepción; Garrido, Miguel Martín-Loeches

    2008-01-01

    In México, uncontrolled landfills or open-dumps are regularly used as "sanitary landfills". Interactions between landfills/open-dumps and shallow unconfined aquifers have been widely documented. Therefore, evidence showing the occurrence of aquifer contamination may encourage Mexican decision makers to enforce environmental regulations. Traditional methods such as chemical analysis of groundwater, hydrological descriptions, and geophysical studies including vertical electrical sounding (VES) and ground penetrating radar (GPR) were used for the identification and delineation of a contaminant plume in a shallow aquifer. The Guadalupe Victoria landfill located in Mexicali is used as a model study site. This landfill has a shallow aquifer of approximately 1m deep and constituted by silty sandy soil that may favor the transport of landfill leachate. Geophysical studies show a landfill leachate contaminant plume that extends for 20 and 40 m from the SE and NW edges of the landfill, respectively. However, the zone of the leachate's influence stretches for approximately 80 m on both sides of the landfill. Geochemical data corroborates the effects of landfill leachate on groundwater.

  9. Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills.

    PubMed

    Azadi, Sama; Amiri, Hamid; Rakhshandehroo, G Reza

    2016-09-01

    Waste burial in uncontrolled landfills can cause serious environmental damages and unpleasant consequences. Leachates produced in landfills have the potential to contaminate soil and groundwater resources. Leachate management is one of the major issues with respect to landfills environmental impacts. Improper design of landfills can lead to leachate spread in the environment, and hence, engineered landfills are required to have leachate monitoring programs. The high cost of such programs may be greatly reduced and cost efficiency of the program may be optimized if one can predict leachate contamination level and foresee management and treatment strategies. The aim of this study is to develop two expert systems consisting of Artificial Neural Network (ANN) and Principal Component Analysis-M5P (PCA-M5P) models to predict Chemical Oxygen Demand (COD) load in leachates produced in lab-scale landfills. Measured data from three landfill lysimeters, including rainfall depth, number of days after waste deposition, thickness of top and bottom Compacted Clay Liners (CCLs), and thickness of top cover over the lysimeter, were utilized to develop, train, validate, and test the expert systems and predict the leachate COD load. Statistical analysis of the prediction results showed that both models possess good prediction ability with a slight superiority for ANN over PCA-M5P. Based on test datasets, the mean absolute percentage error for ANN and PCA-M5P models were 4% and 12%, respectively, and the correlation coefficient for both models was greater than 0.98. Developed models may be used as a rough estimate for leachate COD load prediction in primary landfill designs, where the effect of a top and/or bottom liner is disputed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Macro- and micro-nutrient concentration in leaf, woody, and root tissue of Populus irrigated with landfill leachate

    Treesearch

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2007-01-01

    Landfill leachate offers an opportunity to supply water and plant nutritional benefits at a lower cost than traditional sources. Information about nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps increase biomass production along with evaluating the impacts of leachate chemistry on tree health.

  11. Advanced treatment of landfill leachate using anaerobic-aerobic process: organic removal by simultaneous denitritation and methanogenesis and nitrogen removal via nitrite.

    PubMed

    Sun, Hongwei; Peng, Yongzhen; Shi, Xiaoning

    2015-02-01

    A novel biological system coupling an UASB and a SBR was established to treat landfill leachate. In order to enhance organics and nitrogen removal, simultaneous denitritation and methanogenesis (SDM) was performed in the UASB. Free ammonia (FA) inhibition on nitrite-oxidizing bacteria (NOB) and process control was used to achieve nitrite pathway in the SBR. Results over 623 days showed that the maximum organic removal rate in the UASB and the maximum ammonium oxidization rate in the SBR was 12.7 kgCOD/m(3) d and 0.96 kgN/m(3) d, respectively. The system achieved COD, TN, and NH4(+)-N removal efficiencies of 93.5%, 99.5%, and 99.1%, respectively. By using FA inhibition coupled with process control, the nitrite pathway was started-up in the SBR at low temperatures (14.0-18.2°C) and was maintained for 142 days at temperatures below 15°C (the lowest level was 9.0°C). The predominant ammonia-oxidizing bacteria (AOB) explains essentially stable nitritation obtained.

  12. Adsorption of humic acid from landfill leachate by nitrogen-containing activated carbon

    NASA Astrophysics Data System (ADS)

    Qin, Hangdao; Meng, Jianling; Chen, Jing

    2017-01-01

    Humic substances are the major contaminants in the landfill leachate, while activated carbon adsorption is an effective treatment method. AC was modified with nitric acid, ammonium hydroxide and urea, which introduced functional groups onto AC surface. The adsorption capacity of HA on AC were investigated. ACN showed the highest HA adsorption capacity, increasing more than 20% compared to the parent one. The results indicated that the mesoporous structure favored HA adsorption and the nitrogen-containing basic groups played an important role in the adsorption of HA.

  13. Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial--biodegradability enhancement and evolution profile of trace pollutants.

    PubMed

    Silva, Tânia F C V; Silva, M Elisabete F; Cunha-Queda, A Cristina; Fonseca, Amélia; Saraiva, Isabel; Sousa, M A; Gonçalves, C; Alpendurada, M F; Boaventura, Rui A R; Vilar, Vítor J P

    2013-10-15

    A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO. The raw leachate was characterized by a high concentration of humic substances (HS) (1211 mg CHS/L), representing 39% of the dissolved organic carbon (DOC) content, and a high nitrogen content, mainly in the form of ammonium nitrogen (>3.8 g NH4(+)-N/L). In the first biological oxidation step, a 95% removal of total nitrogen and a 39% mineralization in terms of DOC were achieved, remaining only the recalcitrant fraction, mainly attributed to HS (57% of DOC). Under aerobic conditions, the highest nitrification rate obtained was 8.2 mg NH4(+)-N/h/g of volatile suspended solids (VSS), and under anoxic conditions, the maximum denitrification rate obtained was 5.8 mg (NO2(-)-N + NO3(-)-N)/h/g VSS, with a C/N consumption ratio of 2.4 mg CH3OH/mg (NO2(-)-N + NO3(-)-N). The precipitation of humic acids (37% of HS) after acidification of the bio-treated leachate corresponds to a 96% DOC abatement. The amount of UV energy and H2O2 consumption during the photo-Fenton reaction was 30% higher in the experiment without sludge removal and, consequently, the reaction velocity was 30% lower. The phototreatment process led to the depletion of HS >80%, of low-molecular-weight carboxylate anions >70% and other organic micropollutants, thus resulting in a total biodegradability increase of >70%. The second biological oxidation allowed to obtain a final treated leachate in compliance with legal discharge limits regarding water bodies (with the exception of sulfate ions), considering the experiment without sludge. Finally, the high efficiency of the overall treatment

  14. Fractionation of the organic matter contained in leachate resulting from two modes of landfilling: an indicator of waste degradation.

    PubMed

    Berthe, C; Redon, E; Feuillade, G

    2008-06-15

    Three experimental pilots were set up at the semi-industrial scale to assess the impact of leachate recirculation and Mechanical Biological Pre-treatment (MBP) before landfilling on the biological degradation of landfilled wastes. The organic matter contained in leachates resulting from these pilots has been used as an indicator of waste degradation. Fractionations were carried out (i) using XAD resins in order to divide the organic matter into several fractions according to the hydrophobic character of the molecules and (ii) using an ultrafiltration protocol to divide the organic matter into several fractions according to the apparent molecular weight of molecules. Three phases of degradation are determined according to the distribution of the organic matter and according to the humification rate. The humification process seems to be more rapid for MBP leachates than for Bioreactor leachate. These results were confirmed by the ultrafiltration results indicating that, to date, MBP leachates contain more molecules with a high molecular weight than Bioreactor leachate. However, this could be explained by an interruption of waste degradation due to an accumulation of volatile fatty acids.

  15. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna.

    PubMed

    Coyle, David R; Zalesny, Jill A; Zalesny, Ronald S; Wiese, Adam H

    2011-10-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy.

  16. Removal of ammonia nitrogen from distilled old landfill leachate by adsorption on raw and modified aluminosilicate.

    PubMed

    Couto, Rafael Schirmer de Paula; Oliveira, Aline Faria; Guarino, Alcides Wagner Serpa; Perez, Daniel Vidal; Marques, Mônica Regina da Costa

    2017-04-01

    This study aimed to evaluate the ammonia-nitrogen removal by aluminosilicates, using both standard solutions as pretreated landfill leachate. Three types of commercial clays and one commercial zeolite were initially tested using standard solution; however, only one clay with the best removability and the zeolite were tested with pretreated leachate. The chosen clay sorption capacity with the standard solution reached 83%, while with the pretreated leachate solution has reached 95% and zeolites have reached, respectively, a removal of 73% and 81%. For this two adsorbents' studies of equilibrium and kinetic of the sorption were also performed. The Langmuir model was more adequate to describe the ion exchange equilibrium and the sorption mechanism fit the pseudo-second-order kinetic model. Moreover, the pretreatment used on leachate proved to be essential not only for ammonium detection in solution, but also to facilitate its sorption in aluminosilicates. This alternative of ammonia-nitrogen removal also generates a product derived from treatment that can be used as agricultural feedstock in the form of fertilizer.

  17. [Start-up and steady operation of two stage UASB-SBR new process for treatment of real landfill leachate of high strength ammonia-nitrogen].

    PubMed

    Sun, Hong-Wei; Peng, Yong-Zhen; Shi, Xiao-Ning; Wang, Shu-Ying; Zhang, Shu-Jun; Yang, Qing; Chen, Ying

    2009-06-15

    Under the well-controlled experimental conditions, the biological treatability of real municipal landfill leachate with high strength nitrogen and high chemical oxygen demand (COD) concentration using anoxic/anaerobic upflow anaerobic sludge bed (UASB) -sequencing batch reactor (SBR) combined process was conducted in laboratory. The results indicated: stable anoxic/anaerobic UASB-SBR process performance was developed during running continuously for five phase (116 d) when feed COD concentration was range from 1 237.2 mg/L to 12596.8 mg/L, effluent COD concentration was between 108.4 mg/L and 528.26 mg/L, and when the influent ammonia nitrogen (NH4(+) -N) was changed from 155.8 mg/L to 1298.0 mg/L, the effluent NH4(+) -N was varied from 0.12 mg/L to 4.1 mg/L, it achieved high COD and NH4(+) -N removal efficiency. In this present study, it is noted that the anoxic UASB1 has two significant effects: firstly, denitrification reaction of high efficiency was conducted for SBR nitrified effluent recirculated by using the abundant organic matters in the raw leachate as carbon source. Secondly, its removal COD was highly effected by anaerobic biodegradation. The effluent COD of anoxic UASB1 was biodegraded further in the anaerobic UASB2 and aerobic SBR, the maximum organic loading rates (OLR) (as COD) were 13.0, 2.09, 2.14 kg/(m3 x d), respectively. In addition, the correlation between OLR with OLRrem and COD removal efficiency of three reactors was studied, relation between nitrogen loading rate (NLR) with NH4(+) -N removal efficiency of SBR was tested by linear regression analysis, it was found that the OLR of anoxic UASB1, anaerobic UASB2 and aerobic SBR increased linearly with OLRrem. As to SBR, the correlation was significant between NLR (as N) with NLRrem. In addition, the OLR of three reactors shows second order exponential correlation with COD removal efficiency. At last, when the water temperature of SBR ranged from 20.7 degrees C to 10.3 degrees C, and dissolved

  18. A Framework for Assessing Uncertainty Associated with Human Health Risks from MSW Landfill Leachate Contamination.

    PubMed

    Mishra, Harshit; Karmakar, Subhankar; Kumar, Rakesh; Singh, Jitendra

    2016-09-24

    Landfilling is a cost-effective method, which makes it a widely used practice around the world, especially in developing countries. However, because of the improper management of landfills, high leachate leakage can have adverse impacts on soils, plants, groundwater, aquatic organisms, and, subsequently, human health. A comprehensive survey of the literature finds that the probabilistic quantification of uncertainty based on estimations of the human health risks due to landfill leachate contamination has rarely been reported. Hence, in the present study, the uncertainty about the human health risks from municipal solid waste landfill leachate contamination to children and adults was quantified to investigate its long-term risks by using a Monte Carlo simulation framework for selected heavy metals. The Turbhe sanitary landfill of Navi Mumbai, India, which was commissioned in the recent past, was selected to understand the fate and transport of heavy metals in leachate. A large residential area is located near the site, which makes the risk assessment problem both crucial and challenging. In this article, an integral approach in the form of a framework has been proposed to quantify the uncertainty that is intrinsic to human health risk estimation. A set of nonparametric cubic splines was fitted to identify the nonlinear seasonal trend in leachate quality parameters. LandSim 2.5, a landfill simulator, was used to simulate the landfill activities for various time slices, and further uncertainty in noncarcinogenic human health risk was estimated using a Monte Carlo simulation followed by univariate and multivariate sensitivity analyses.

  19. Metal loss from treated wood products in contact with municipal solid waste landfill leachate.

    PubMed

    Dubey, Brajesh; Townsend, Timothy; Solo-Gabriele, Helena

    2010-03-15

    The research presented in this paper evaluates the potential impact of municipal solid waste (MSW) landfill leachate quality on the loss of metals from discarded treated wood during disposal. The loss of arsenic (As), chromium (Cr), copper (Cu), and boron (B) from several types of pressure-treated wood (CCA: chromated copper arsenate, ACQ: alkaline copper quaternary, CBA: copper boron azole, and DOT: disodium octaborate tetrahydrate) using leachate collected from 26 MSW landfills in Florida was examined. The toxicity characteristic leaching procedure (TCLP), the synthetic precipitation leaching procedure (SPLP), and California's waste extraction test (WET) were also performed. The results suggested that loss of preservative components was influenced by leachate chemistry. Copper loss from CCA-, ACQ- and CBA-treated wood was similar in magnitude when in contact with landfill leachates compared to synthetic TCLP and SPLP solutions. Ammonia was found as one of the major parameters influencing the leaching of Cu from treated wood when leached with MSW landfill leachates. The results suggest that disposal of ACQ- and CBA-treated wood in substantial quantity in MSW landfills may elevate the Cu concentration in the leachate; this could be of potential concern, especially for a bioreactor MSW landfill in which relatively higher ammonia concentrations in leachate have been reported in recent literature. For the As, Cr and B the concentrations observed with the landfill leachate as the leaching solutions were over a range from some sample showing the concentrations below and some showing above the observed value from corresponding SPLP and TCLP tests. In general the WET test showed the highest concentrations.

  20. Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity.

    PubMed

    Pablos, M V; Martini, F; Fernández, C; Babín, M M; Herraez, I; Miranda, J; Martínez, J; Carbonell, G; San-Segundo, L; García-Hortigüela, P; Tarazona, J V

    2011-08-01

    Leachates from municipal solid waste (MSW) landfills may contain a huge diversity of contaminants; these wastewaters should be considered as potentially hazardous complex mixtures, representing a potential environmental risk for surface and groundwater. Current MSW landfill wastes regulatory approaches deem exclusively on the physicochemical characterization and does not contemplate the ecotoxicological assessment of landfill leachates. However, the presence of highly toxic substances in consumer products requires reconsideration on the need of more specific ecotoxicological assessments. The main aim of this study was to evaluate the toxicity of different MSW landfill leachates using a battery of toxicity tests including acute toxicity tests with Daphnia magna and the anuran Xenopus laevis and the in vitro toxicity test with the fish cell line RTG-2. The additional objective was to study the possible correlation between physicochemical properties and the toxicity results obtained for untreated landfill leachates. The results showed that the proposed test battery was effective for the ecotoxicological characterization of MSW landfill leachates. A moderate to strong correlation between the measured physicochemical parameters and the calculated toxicity units was detected for all toxicity assays. Correlation factors of 0.85, 0.86 and 0.55 for Daphnia, Xenopus and RTG-2 tests, respectively, were found. The discriminant analysis showed that certain physicochemical parameters could be used for an initial categorization of the potential aquatic acute toxicity of leachates; this finding may facilitate leachates management as the physicochemical characterization is currently the most common or even only monitoring method employed in a large majority of landfills. Ammonia, alkalinity and chemical oxygen demand (COD), together with chloride, allowed a proper categorization of leachates toxicity for up to 75% of tested samples, with a small percentage of false negatives

  1. Leachate generation from landfill in a semi-arid climate: A qualitative and quantitative study from Sousse, Tunisia.

    PubMed

    Frikha, Youssef; Fellner, Johann; Zairi, Moncef

    2017-09-01

    Despite initiatives for enhanced recycling and waste utilization, landfill still represents the dominant disposal path for municipal solid waste (MSW). The environmental impacts of landfills depend on several factors, including waste composition, technical barriers, landfill operation and climatic conditions. A profound evaluation of all factors and their impact is necessary in order to evaluate the environmental hazards emanating from landfills. The present paper investigates a sanitary landfill located in a semi-arid climate (Tunisia) and highlights major differences in quantitative and qualitative leachate characteristics compared to landfills situated in moderate climates. Besides the qualitative analysis of leachate samples, a quantitative analysis including the simulation of leachate generation (using the HELP model) has been conducted. The results of the analysis indicate a high load of salts (Cl, Na, inorganic nitrogen) in the leachate compared to other landfills. Furthermore the simulations with HELP model highlight that a major part of the leachate generated originates form the water content of waste.

  2. The use of electrical resistivity tomography and borehole to characterize leachate distribution in Laogang landfill, China.

    PubMed

    Feng, Shi-Jin; Bai, Zhen-Bai; Cao, Ben-Yi; Lu, Shi-Feng; Ai, Shu-Gang

    2017-08-09

    Leachate is a polluting liquid which may cause harmful effects on human health or the environment without a tightly control manner. The leachate management is an important part of the design and operation of bioreactor landfills. To detect the leachate distribution in Laogang Landfill, China, the measurement of electrical resistivity tomography (ERT) was carried out in three areas with different ages. ERT method proved to be an effective non-invasive geophysical method in bioreactor landfills, and the physical properties of waste samples obtained by boreholes were tested in a laboratory. The correlation between the resistivity and the moisture content was described by Archie's law. The result shows that the moisture content of fresh waste is inhomogeneous, while that of aged waste increases with depth. A pseudo 3D model of the moisture content was proposed to improve the understanding of leachate distribution and exhibit the accuracy of the ERT method.

  3. Monitoring of landfill leachate dispersion using reflectance spectroscopy and ground-penetrating radar.

    PubMed

    Splajt, T; Ferrier, G; Frostick, L E

    2003-09-15

    The utility of ground-penetrating radar and reflectance spectroscopy in the monitoring of landfill sites has been investigated. Strong correlations between red edge inflection position and chlorophyll and heavy metal concentrations have been demonstrated from grassland species affected by leachate contamination of the soil adjacent to the landfill test site. This study demonstrated that reflectance spectroscopy can identify vegetation affected by leachate-contaminated soil at a range of spatial resolutions. To identify the vegetation affected by leachate contamination, the spectroradiometer must have contiguous bands at sufficient spectral resolution over the critical wave range that measures chlorophyll absorption and the red edge (between 650 and 750 nm). The utility of ground-penetrating radar data to identify leachate escaping from breakout points in the contaminant wall has also been demonstrated. An integrated approach using these techniques, combined with field and borehole sampling and contaminant migration modeling, offers a possible cost-effective monitoring approach for landfill sites.

  4. [Study on fluorescence characteristic of dissolved organic matter from municipal solid waste landfill leachate].

    PubMed

    Xi, Bei-Dou; Wei, Zi-Min; Zhao, Yue; Li, Ming-Xiao; Liu, Hong-Liang; Jiang, Yong-Hai; He, Xiao-Song; Yang, Tian-Xue

    2008-11-01

    In the present study, the samples of leachate of 0, 5, 10-years-old landfill were respectively taken from landfill plant, the dissolved organic matter (DOM) was extracted from landfill leachate, and the fluorescence spectra of DOM were determined. The fluorescence synchronous scan spectra of DOM in 0-year-old leachate exhibited a primary peak at 335 nm, a secondary peak at 455 nm, and a shoulder peak at 385 nm. While the fluorescence intensities of DOM at different peaks were decreased for 5-year-old leachate, especially those of the peaks at shorter wavelengths (335 and 385 nm) which may be ascribed that the simpler structural components were decreased sharply. Compared with 5-year-old leachate, the fluorescence intensity of DOM in 10-year-old leachate decreased slightly. Three-dimensional excitation emission matrix fluorescence spectra (3DEEM) of DOM in 0-year-old leachate exhibited two peaks at Ex/Em wavelength pairs of 270/355 and 220/350, respectively, which were all associated with protein-derived compounds, while the peaks of protein-like disappeared in 5-year-old leachate, and new peaks of complex structural fulvic acid-like were formed at Ex/Em wavelength pair of 330/412.5 and 250/416.5, respectively. This indicated the component of DOM in the leachate of 5-year-old landfill led to a decrease in low molecular compound, and an increase in high molecular compound compared to that of the 0-year-old. 3DEEM of DOM of 10-year-old leachate was similar to that of DOM in the 5-year-old, but the fluorescence intensity of the peaks of fulvic acid-like in DOM was different, and compared with that of 5-year-old leachate, the peak of DOM in 10-year-old leachate shifted from Ex/Em wavelength pair of 250/416.5 to 250/427.5. This indicated that the DOM formed similar structures, but the structure of fulvic acid-like in DOM of 10-year-old leachate had a greater degree of aromatization and quantity than that of 5-year-old leachate. The results obtained from fluorescence

  5. Fresh Kills leachate treatment and minimization study: Volume 2, Modeling, monitoring and evaluation. Final report

    SciTech Connect

    Fillos, J.; Khanbilvardi, R.

    1993-09-01

    The New York City Department of Sanitation is developing a comprehensive landfill leachate management plan for the Fresh Kills landfill, located on the western shore of Staten Island, New York. The 3000-acre facility, owned and operated by the City of New York, has been developed into four distinct mounds that correspond to areas designated as Sections 1/9, 2/8, 3/4 and 6/7. In developing a comprehensive leachate management plan, the estimating leachate flow rates is important in designing appropriate treatment alternatives to reduce the offsite migration that pollutes both surface water and groundwater resources.Estimating the leachate flow rates from Sections 1/9 and 6/7 was given priority using an available model, hydrologic evaluation of landfill performance (HELP), and a new model, flow investigation for landfill leachate (FILL). The field-scale analysis for leachate flow included data collection of the leachate mound-level from piezometers and monitoring wells installed on-site, for six months period. From the leachate mound-head contours and flow-gradients, Leachate flow rates were computed using Darcy`s Law.

  6. Development of Methods for Detecting Viruses in Solid Waste Landfill Leachates

    PubMed Central

    Sobsey, Mark D.; Wallis, Craig; Melnick, Joseph L.

    1974-01-01

    Methods were developed for detecting and concentrating enteric viruses in municipal solid waste landfill leachates. Poliovirus added to a leachate was not readily detectable, possibly because the virus was adsorbed to the leachate particulates. The masking effects associated with suspended solids in the leachate were overcome by adding a final 0.1 M sodium (tetra)ethylenediaminetetraacetate concentration to the leachate. A sodium (tetra)ethylenediaminetetraacetate-treated leachate could be clarified by filtration at pH 8.0 without a loss of virus. The clarified and sodium (tetra)ethylenediaminetetraacetate-treated leachate contained interfering materials of an anionic nature which prevented virus adsorption to epoxy-fiber glass filters. This interfering effect was overcome by treating the leachate with an anion-exchange resin. Viruses in the resin-treated leachate were concentrated by adjusting the leachate to pH 3.5, adding AlCl3 to a final 0.005 M concentration, adsorbing the viruses to an epoxy-fiber glass virus adsorbent, and eluting the adsorbed viruses in a small volume. When this method was used to concentrate poliovirus 100-fold in a variety of leachates, the average virus recovery efficiency was 37%. With the methods described in this study, it should be possible to efficiently monitor solid waste disposal site leachates for enteric viruses. PMID:4368581

  7. Development of methods for detecting viruses in solid waste landfill leachates.

    PubMed

    Sobsey, M D; Wallis, C; Melnick, J L

    1974-08-01

    Methods were developed for detecting and concentrating enteric viruses in municipal solid waste landfill leachates. Poliovirus added to a leachate was not readily detectable, possibly because the virus was adsorbed to the leachate particulates. The masking effects associated with suspended solids in the leachate were overcome by adding a final 0.1 M sodium (tetra)ethylenediaminetetraacetate concentration to the leachate. A sodium (tetra)ethylenediaminetetraacetate-treated leachate could be clarified by filtration at pH 8.0 without a loss of virus. The clarified and sodium (tetra)ethylenediaminetetraacetate-treated leachate contained interfering materials of an anionic nature which prevented virus adsorption to epoxy-fiber glass filters. This interfering effect was overcome by treating the leachate with an anion-exchange resin. Viruses in the resin-treated leachate were concentrated by adjusting the leachate to pH 3.5, adding AlCl(3) to a final 0.005 M concentration, adsorbing the viruses to an epoxy-fiber glass virus adsorbent, and eluting the adsorbed viruses in a small volume. When this method was used to concentrate poliovirus 100-fold in a variety of leachates, the average virus recovery efficiency was 37%. With the methods described in this study, it should be possible to efficiently monitor solid waste disposal site leachates for enteric viruses.

  8. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States

    USGS Publications Warehouse

    Masoner, Jason R.; Kolpin, Dana W.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.; Schwab, Eric A.

    2014-01-01

    To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L−1 to mg L−1. Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7020000 ng L−1), BPA (6380000 ng L−1), and phenol (1550000 ng L−1), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones <1% of the total measured CEC concentrations. Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation.

  9. Modeling unsteady state leachate flow in a landfill using finite difference and boundary element methods

    SciTech Connect

    Ahmed, S.

    1992-01-01

    The physical processes involving leachate flow in a solid waste landfill are described by the unsaturated flow through the refuse to the saturated leachate mound at the bottom of a landfill. The moisture-flow in the unsaturated zone helps build up the saturated leachate mound at the bottom of a landfill. The moisture content in the unsaturated zone is obtained by solving the two-dimensional unsaturated moisture-flow equation using numerical techniques. A two-dimensional unsteady sate Flow Investigation for Landfill Leachate (FILL) model, based on the implicit finite-difference technique, has been developed to describe the leachate flow process in a landfill. To obtain accuracy and efficiency in numerical molding, it is important to investigate the numerical solution techniques suitable to solve the governing equations. Accuracy and efficiency of the boundary integral method over the finite-difference methods has been investigated. Two approaches, direct Green's function and perturbation Green's function formulations have been developed to solve the unsaturated flow problem. Direct Green's function and perturbation Green's function boundary integral solutions are found to be more accurate than both the Gauss-Seidel iteration and Gauss-Jordon elimination method of finite-difference solution. The efficiency of the boundary integral formulation for the computation of the moisture-flux is an advantage that is useful to estimate leachate of the moisture-flux is an advantage that is useful to estimate leachate accretion in a landfill. A close agreement of the internal fluxes with the exact solution shows the ability of the boundary integral methods to compute accurate recharge from the unsaturated zone to the saturated leachate mound.

  10. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States.

    PubMed

    Masoner, Jason R; Kolpin, Dana W; Furlong, Edward T; Cozzarelli, Isabelle M; Gray, James L; Schwab, Eric A

    2014-01-01

    To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L(-1) to mg L(-1). Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7 020 000 ng L(-1)), BPA (6 380 000 ng L(-1)), and phenol (1 550 000 ng L(-1)), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones <1% of the total measured CEC concentrations. Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation.

  11. Study on detecting leachate leakage of municipal solid waste landfill site.

    PubMed

    Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting

    2015-06-01

    The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7.

  12. Adsorption and hydraulic conductivity of landfill-leachate perfluorinated compounds in bentonite barrier mixtures.

    PubMed

    Li, Belinda; Li, Loretta Y; Grace, John R

    2015-06-01

    Perfluorinated compounds (PFCs) are leached in landfills from a wide range of domestic and industrial products. Sodium bentonite, a common barrier material, was contacted with water and landfill leachate spiked with PFCs in batch adsorption tests to measure PFC adsorption. Leaching cell tests were also conducted in which water, landfill leachate and PFC-spiked leachate permeated through compacted sand-bentonite mixtures. It was found that the PFCs did not bind substantially to the bentonite. Hydraulic conductivities were not appreciably affected by the PFCs, showing that bentonite liners are not affected for the range of concentrations tested. The sand-bentonite mixture partially retained the PFCs, indicating limited effectiveness in containing PFC within landfills.

  13. Leachate flow around a well in MSW landfill: Analysis of field tests using Richards model.

    PubMed

    Slimani, R; Oxarango, L; Sbartai, B; Tinet, A-J; Olivier, F; Dias, D

    2016-08-20

    During the lifespan of a Municipal Solid Waste landfill, its leachate drainage system may get clogged. Then, as a consequence of rainfall, leachate generation and possibly leachate injection, the moisture content in the landfill increases to the point that a leachate mound could be created. Therefore, pumping the leachate becomes a necessary solution. This paper presents an original analysis of leachate pumping and injection in an instrumented well. The water table level around the well is monitored by nine piezometers which allow the leachate flow behaviour to be captured. A numerical model based on Richards equation and an exponential relationship between saturated hydraulic conductivity and depth is used to analyze the landfill response to pumping and injection. Decreasing permeability with depth appears to have a major influence on the behaviour of the leachate flow. It could have a drastic negative impact on the pumping efficiency with a maximum quasi-stationary pumping rate limited to approximately 1m(3)/h for the tested well and the radius of influence is less than 20m. The numerical model provides a reasonable description of both pumping and injection tests. However, an anomalous behaviour observed at the transition between pumping and recovery phases is observed. This could be due to a limitation of the Richards model in that it neglects the gas phase behaviour and other double porosity heterogeneous effects.

  14. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills.

    PubMed

    Gibbons, Robert D; Morris, Jeremy W F; Prucha, Christopher P; Caldwell, Michael D; Staley, Bryan F

    2014-09-01

    Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates "gateway" indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.

  15. Long term monitoring of leachate flux into drainage pipes of MSW landfills.

    PubMed

    Münnich, Kai; Bauer, Jan; Fricke, Klaus

    2012-01-01

    The measurement of leachate quality and quantity is an essential part of the monitoring of landfills in the different phases during their lifespan. These measurements allow the evaluation of the decomposition processes in the landfill and the efficiency of technical installations for the reduction of the leachate generation. Normally the measurements are made at the outlet of larger sections of the landfill or at the overall landfill. An identification of smaller parts with different biological or hydraulic behaviour within the landfill section is not possible in that case. In the framework of a long-term research project concerning the monitoring of landfills, different devices for small-scale identification of the leachate discharge were developed at the Technical University of Braunschweig. The device allows a measurement of the leachate discharge inside a single drainage pipe having a length up to 375  m. The measurements showed the influence of changes in operation. It was found that the discharge in the pipes and the efficiency of the drainage system was strongly influenced by deformations and torsion of the high-density polyethylene pipes and unequal settlements of the subsoil. The discharge of leachate in the drainage system was, as expected, very non-uniform and in parts the leachate was not flowing inside the pipes, but rather in the surrounding gravel layer. Furthermore, large differences in leachate quality may occur, whereas the differences in discharge volume are small. With the developed system it is possible to control the efficiency and the functioning of top cover systems for landfills.

  16. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Yu, Zhiming; Wei, Qiuping; Long, HangYu; Xie, Youneng; Wang, Yijia

    2016-07-01

    In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH3sbnd N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm-2, pH 5.16, flow velocity 6 L h-1. Under these conditions, 87.5% COD and 74.06% NH3sbnd N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m-3. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  17. Ammonia recovery from landfill leachate using hydrophobic membrane contactors.

    PubMed

    Amaral, Míriam C S; Magalhães, Nátalie C; Moravia, Wagner G; Ferreira, Carolina D

    2016-11-01

    This article aims to evaluate membrane contactors capability to remove and recover ammonia from landfill leachate (LFL). A hydrophobic hollow fiber membrane module was used to achieve such purpose. A sulfuric acid diluted solution was used as extraction solution to speed up ammonia content removal. Several factors that have influence on ammonia removal and recovery capability such as ammonia solution pH, concentration of sulfuric acid solutions and flow rate of liquid phases have been examined. Microfiltration was the method used as pretreatment. The results have shown that membrane contactor operated with LFL (pH 10), 0.1 M acid solution and liquid flow rate up to 0.5 L min(-1) achieved 99.9% of ammonia removal, which corresponds to 79.1% of ammonia recovery from the extraction solution, and it is capable to produce highly purified ammonium sulfate solutions (41.2%, wt wt(-1)) to be used as fertilizer. The concentration of total ammonia nitrogen (TAN) in the residual LFL complies with Brazilian law requirements of 20.0 mg L(-1) of TAN, regarding the disposal of effluents.

  18. Study of organic matter during coagulation and electrocoagulation processes: application to a stabilized landfill leachate.

    PubMed

    Labanowski, J; Pallier, V; Feuillade-Cathalifaud, G

    2010-07-15

    Organic matter contained in leachates appears to be a relevant indicator of waste evolution. Among the physico-chemical treatments applied to stabilize leachates, coagulation-flocculation is considered a classical process and electrocoagulation can be developed. Electrocoagulation tests were carried out in a laboratory pilot using aluminium plates and compared to classical coagulation-flocculation with aluminium ions and to electrolysis alone. The leachate used in this study came from the landfill of Crezin (Limoges, France) and it presented low biodegradability and high concentration of macromolecules. To assess the efficiency of the chemical and electrochemical processes, we specifically studied Organic Matter (OM) by using two protocols: adsorption on XAD resins and fractionation by ultrafiltration. Biodegradable Dissolved Organic Carbon (BDOC) measurements were applied to the fractions extracted by XAD resins and were also used as an indicator of the efficiency of the treatments. Residual organic matter concentration was the same for the two processes but its composition appeared different after electrocoagulation: a higher percentage of small hydrophilic organic molecules which seemed to be less biodegradable than the initial organic matter was observed. 2010 Elsevier B.V. All rights reserved.

  19. Distribution and fate of inorganic and organic arsenic species in landfill leachates and biogases.

    PubMed

    Pinel-Raffaitin, P; Le Hecho, I; Amouroux, D; Potin-Gautier, M

    2007-07-01

    The arsenic release from landfills requires special attention both due to its potential toxicity and due to the increasing global municipal solid waste production. The determination of arsenic species in both leachates and biogases has been performed in this work to determine the fate of arsenic in landfills. Both inorganic and methylated arsenic species occur in leachates with concentrations varying from 0.1 to 80 microg As L(-1). These species are representative of the leachate arsenic composition, as the mean recovery obtained for the speciation analyses is 67% of the total arsenic determined in elementary analyses. In biogases, both methylated and ethylated volatile arsenic species have been identified and semiquantified (0-15 microg As m(-3)). The landfill monitoring has emphasized close relationships between the concentrations of mono-, di-, and tri-methylated arsenic compounds in leachates. A biomethylation pathway has thus been proposed as a source of these methylated compounds in the leachates from waste arsenic, which is supposed to be in major part under inorganic forms. In addition, peralkylation mechanisms of both biomethylation and bioethylation have been suggested to explain the occurrence of the identified volatile species. This combined speciation approach provides a qualitative and quantitative characterization of the potential emissions of arsenic from domestic waste disposal in landfills. This work highlights the possible formation of less harmful organoarsenic species in both leachates and biogases during the waste degradation process.

  20. Determination of transformation mechanisms for DMMTA and DMDTA in landfill leachate

    NASA Astrophysics Data System (ADS)

    An, J.; Yoon, H.; Bae, J.; Jung, H.; Kong, M.; Kim, M.

    2011-12-01

    Dimethylmonothiolated arsinic acid (DMMTA) and dimethyldithiolated arsinic acid (DMDTA) have receiving increasing attention because of its high toxicity to human epidermoid carcinoma A431 cells (Naranmandura et al., 2007) and bladder EJ-1 cells (Naranmandura et al., 2009). These findings require accurate assessment of arsenic species including thiolated compounds in environmental media. Recently, Li et al. (2010) found DMMTA and DMDTA was transformed from dimethylarsinic acid (DMA) in landfill leachate with low redox potential and high bacterial biomass and concentrations of BOD and sulfide. Therefore, the transformation mechanisms for DMMTA and DMDTA were investigated to quantify what arsenic species are existed and transformed in landfill leachate for determining their potential risk. For this purpose, simulated leachate mimicking mature landfill condition was prepared under the concentrations of sulfide and volatile fatty acid (VFA) and redox potential controlled. The leachate was spiked with arsenite (iAs(III)), arsenate (iAs(V)), monomethylarsonic acid (MMA) and DMA respectively and the transformed arsenic species were analyzed using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). Factors influencing arsenic transformations in landfill leachate were evaluated in present study and these results provide to us pathways for being generated thiolated arsenicals. Realistic risk in arsenic disposed landfill is able to calculate by using these results. Acknowledgement : This research was supported by the research grant T31603 from Korea Basic Science Institute.

  1. Evaluation of Cajanus cajan (pigeon pea) for phytoremediation of landfill leachate containing chromium and lead.

    PubMed

    Jerez Ch, José A; Romero, Rosaura M

    2016-11-01

    Landfill leachates containing heavy metals are important contaminants and a matter of great concern due to the effect that they might have on ecosystems. We evaluated the use of Cajanus cajan to remove chromium and lead from landfill leachates. Eight-week-old plants were submitted to varied tests to select the experimental conditions. Water assays with a solution (pH 6) containing leachate (25% v/v) were selected; the metals were added as potassium dichromate and lead (II) nitrate salts. Soil matrices that contained leachate (30% v/v) up to field capacity were used. For both water and soil assays, the metal concentrations were 10 mg kg(-1). C. cajan proved able to remove 49% of chromium and 36% of lead, both from dilute leachate. The plants also removed 34.7% of chromium from irrigated soil, but were unable to decrease the lead content. Removal of nitrogen from landfill leachate was also tested, resulting in elimination of 85% of ammonia and 70% of combined nitrite/nitrate species. The results indicate that C. cajan might be an effective candidate for the rhizofiltration of leachates containing chromium and lead, and nitrogen in large concentrations.

  2. A Study of Leachate Generated from Construction and Demolition Landfills,

    DTIC Science & Technology

    2007-11-02

    solid waste (MSW) landfills and hazardous waste landfills. Regulators felt that since C&D landfills did not accept large quantities of hazardous waste...Construction and demolition (C&D) waste landfills have largely been ignored because they have been viewed as innocuous in comparison to municipal

  3. Dynamics of copper and zinc sedimentation in a lagooning system receiving landfill leachate.

    PubMed

    Guigue, Julien; Mathieu, Olivier; Lévêque, Jean; Denimal, Sophie; Steinmann, Marc; Milloux, Marie-Jeanne; Grisey, Hervé

    2013-11-01

    This study characterises the sediment dredged from a lagooning system composed of a settling pond and three lagoons that receive leachates from a municipal solid waste (MSW) landfill in France. Organic carbon, carbonate, iron oxyhydroxides, copper (Cu) and zinc (Zn) concentrations were measured in the sediment collected from upstream to downstream in the lagooning system. In order to complete our investigation of sedimentation mechanisms, leachates were sampled in both dry (spring) and wet (winter) seasonal conditions. Precipitation of calcite and amorphous Fe-oxyhydroxides and sedimentation of organic matter occurred in the settling pond. Since different distributions of Zn and Cu concentrations are measured in sediment samples collected downstream in the lagooning system, it is suggested that these elements were not distributed in a similar way in the leachate fractions during the first stage of treatment in the settling pond, so that their sedimentation dynamics in the lagooning system differ. In the lagoons, it was found that organic carbon plays a major role in Cu and Zn mobility and trapping. The presence of macrophytes along the edges provided an input of organic matter that enhanced Cu and Zn scavenging. This edge effect resulted in a two-fold increase in Cu and Zn concentrations in the sediment deposited near the banks of the lagoons, thus confirming the importance of vegetation for the retention of Cu and Zn in lagooning systems.

  4. Removal of contaminants in leachate from landfill by waste steel scrap and converter slag.

    PubMed

    Oh, Byung-Taek; Lee, Jai-Young; Yoon, Jeyong

    2007-08-01

    This study may be the first investigation to be performed into the potential benefits of recycling industrial waste in controlling contaminants in leachate. Batch reactors were used to evaluate the efficacy of waste steel scrap and converter slag to treat mixed contaminants using mimic leachate solution. The waste steel scrap was prepared through pre-treatment by an acid-washed step, which retained both zero-valent iron site and iron oxide site. Extensive trichloroethene (TCE) removal (95%) occurred by acid-washed steel scrap within 48 h. In addition, dehalogenation (Cl(-) production) was observed to be above 7.5% of the added TCE on a molar basis for 48 h. The waste steel scrap also removed tetrachloroethylene (PCE) through the dehalogenation process although to a lesser extent than TCE. Heavy metals (Cr, Mn, Cu, Zn, As, Cd, and Pb) were extensively removed by both acid-washed steel scrap and converter slag through the adsorption process. Among salt ions (NH (4)(+) , NO (3)(-) , and PO (4)(3-) ), PO (4)(3-) was removed by both waste steel scrap (100% within 8 h) and converter slag (100% within 20 min), whereas NO (3)(-) and NH (4)(+ ) were removed by waste steel scrap (100% within 7 days) and converter slag (up to 50% within 4 days) respectively. This work suggests that permeable reactive barriers (PRBs) with waste steel scrap and converter slag might be an effective approach to intercepting mixed contaminants in leachate from landfill.

  5. Biosorption of landfill leachate by Phanerochaete sp. ISTL01: isotherms, kinetics and toxicological assessment.

    PubMed

    Ghosh, Pooja; Thakur, Indu Shekhar

    2016-10-17

    The study investigates the ability of fungus Phanerochaete sp. ISTL01 for biosorption of color from landfill leachate. Batch mode experiments were conducted to study the effects of pH, temperature, adsorbent dose, contact time and initial leachate concentration on biosorption. Maximum biosorption capacity was determined as 17.73 mg g(-1) of biomass. Equilibrium isotherms and kinetics were further studied. The biosorption data were found to fit well to the Freundlich isotherm and pseudo-second-order kinetic model. The value of activation energy suggested that chemisorption mechanism was involved. Biosorption efficiency was also evaluated by the Methyltetrazolium (MTT) assay for cytotoxicity and alkaline comet assay in HepG2 human hepato-carcinoma cells. The fungus reduced toxicity as shown by 1.3-fold increase in MTT EC50 and 1.5- and 1.1-fold reduction in Tail moment and Olive tail moment, respectively, after 12 h biosorption. The fungus showed good biosorption characteristics in terms of contaminant-level reduction per unit mass of adsorbent, process kinetics and toxicity reduction, envisaging its application in leachate treatment.

  6. Removal of organic matter and ammonium from landfill leachate through different scenarios: Operational cost evaluation in a full-scale case study of a Flemish landfill.

    PubMed

    Oloibiri, Violet; Chys, Michael; De Wandel, Stijn; Demeestere, Kristof; Van Hulle, Stijn W H

    2016-09-22

    Several scenarios are available to landfilling facilities to effectively treat leachate at the lowest possible cost. In this study, the performance of various leachate treatment sequences to remove COD and nitrogen from a leachate stream and the associated cost are presented. The results show that, to achieve 100% nitrogen removal, autotrophic nitrogen removal (ANR) or a combination of ANR and nitrification - denitrification (N-dN) is more cost effective than using only the N-dN process (0.58 €/m(3)) without changing the leachate polishing costs associated with granular activated carbon (GAC). Treatment of N-dN effluent by ozonation or coagulation led to the reduction of the COD concentration by 10% and 59% respectively before GAC adsorption. This reduced GAC costs and subsequently reduced the overall treatment costs by 7% (ozonation) and 22% (coagulation). On the contrary, using Fenton oxidation to reduce the COD concentration of N-dN effluent by 63% increased the overall leachate treatment costs by 3%. Leachate treatment sequences employing ANR for nitrogen removal followed by ozonation or Fenton or coagulation for COD removal and final polishing with GAC are on average 33% cheaper than a sequence with N-dN + GAC only. When ANR is the preceding step and GAC the final step, choice of AOP i.e., ozonation or Fenton did not affect the total treatment costs which amounted to 1.43 (ozonation) and 1.42 €/m(3) (Fenton). In all the investigated leachate treatment trains, the sequence with ANR + coagulation + GAC is the most cost effective at 0.94 €/m(3).

  7. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills

    SciTech Connect

    Gibbons, Robert D.; Morris, Jeremy W.F.; Prucha, Christopher P.; Caldwell, Michael D.; Staley, Bryan F.

    2014-09-15

    Highlights: • Longitudinal data analysis using a mixed-effects regression model. • Dataset consisted of a total of 1402 samples from 101 closed municipal landfills. • Target analytes and classes generally showed predictable degradation trends. • Validates historical studies focused on macro organic indicators such as BOD. • BOD can serve as “gateway” indicator for planning leachate management. - Abstract: Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.

  8. Adsorption and degradation processes of tributyltin and trimethyltin in landfill leachates treated with iron nanoparticles.

    PubMed

    Peeters, Kelly; Lespes, Gaëtane; Milačič, Radmila; Ščančar, Janez

    2015-10-01

    Biotic and abiotic degradation of toxic organotin compounds (OTCs) in landfill leachates is usually not complete. In this work adsorption and degradation processes of tributyltin (TBT) and trimethyltin (TMeT) in leachate sample treated with different iron nanoparticles (FeNPs): Fe(0) (nZVI), FeO and Fe3O4 were investigated to find conditions for their efficient removal. One sample aliquot was kept untreated (pH 8), while to the others (pH 8) FeNPs dispersed with tetramethyl ammonium hydroxide (TMAH) or by mixing were added and samples shaken under aerated conditions for 7 days. The same experiments were done in leachates in which the pH was adjusted to 3 with citric acid. Size distribution of TBT and TMeT between particles >5 µm, 0.45-5 µm, 2.5-0.45 µm, and <2.5 nm was determined by sequential filtration and their concentrations in a given fraction by gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS). Results revealed that most of the TBT or TMeT was present in fractions with particles >2.5 or <2.5 nm, respectively. At pH 8 adsorption of TBT to FeNPs prevailed, while at pH 3, the Fenton reaction provoked degradation of TBT by hydroxyl radicals. TBT was the most effectively removed (96%) when sequential treatment of leachate with nZVI (dispersed by mixing) was applied first at pH 8, followed by nZVI treatment of the aqueous phase, previously acidified to pH 3 with citric acid. Such treatment less effectively removed TMeT (about 40%). It was proven that TMAH provoked methylation of tin, so mixing was recommended for dispersion of nZVI. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effects of leachate accumulation on landfill stability in humid regions of China.

    PubMed

    Jianguo, Jiang; Yong, Yang; Shihui, Yang; Bin, Ye; Chang, Zhang

    2010-05-01

    Leachate levels are important to landfill stability and safety. High leachate or water levels often lead to landfill instability, which can cause accidents. Here a case study of a landfill located in a humid region of southern China is presented. Leachate distribution and quality were systematically analyzed, and the effect of leachate level on waste-mass stability was assessed. Boreholes were drilled in the field, samples were analyzed in the laboratory, and a simulation was performed. In addition, the safety and stability of the landfill was evaluated. The leachate level in the landfill was 9-19m, which was higher than the top of the dam crest (8-20m). Leachate accounted for more than 1/4 of the total landfill storage capacity. The contaminant concentration of the leachate samples collected directly from the waste body was very high, with large variation among the samples. The mean concentrations of NH(3)-N, BOD, and COD from the waste body were 5404, 14,136, and 22,691mg/L, nearly 2.7, 2.4, and 1.8 times the mean concentrations in the leachate pond, respectively. Three series of shear strength parameters were used in a slope stability analysis, and a limit equilibrium method was used to calculate the factor of safety (Fs). The analysis showed that Fs could be affected by potential anisotropy in the shear strength of the waste. The minimum values of Fs corresponding to series I were 1.84 and 1.17 for units capital I, Ukrainian and II, respectively. The Fs value of unit II was significantly lower than the safe design value (1.25). In addition, Fs decreased with increase in the normalized height of the leachate level, h/H, where h is the height of the leachate mound and H is the maximum thickness of the landfill. If the h/H values of units I and II are kept below 50% and 40%, respectively, a safe design value of 1.25 for Fs can be guaranteed. Therefore, some measures to prevent risk should be considered. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Effects of leachate accumulation on landfill stability in humid regions of China

    SciTech Connect

    Jiang Jianguo; Yang Yong; Yang Shihui; Ye Bin; Zhang Chang

    2010-05-15

    Leachate levels are important to landfill stability and safety. High leachate or water levels often lead to landfill instability, which can cause accidents. Here a case study of a landfill located in a humid region of southern China is presented. Leachate distribution and quality were systematically analyzed, and the effect of leachate level on waste-mass stability was assessed. Boreholes were drilled in the field, samples were analyzed in the laboratory, and a simulation was performed. In addition, the safety and stability of the landfill was evaluated. The leachate level in the landfill was 9-19 m, which was higher than the top of the dam crest (8-20 m). Leachate accounted for more than 1/4 of the total landfill storage capacity. The contaminant concentration of the leachate samples collected directly from the waste body was very high, with large variation among the samples. The mean concentrations of NH{sub 3}-N, BOD, and COD from the waste body were 5404, 14,136, and 22,691 mg/L, nearly 2.7, 2.4, and 1.8 times the mean concentrations in the leachate pond, respectively. Three series of shear strength parameters were used in a slope stability analysis, and a limit equilibrium method was used to calculate the factor of safety (Fs). The analysis showed that Fs could be affected by potential anisotropy in the shear strength of the waste. The minimum values of Fs corresponding to series I were 1.84 and 1.17 for units I and II, respectively. The Fs value of unit II was significantly lower than the safe design value (1.25). In addition, Fs decreased with increase in the normalized height of the leachate level, h/H, where h is the height of the leachate mound and H is the maximum thickness of the landfill. If the h/H values of units I and II are kept below 50% and 40%, respectively, a safe design value of 1.25 for Fs can be guaranteed. Therefore, some measures to prevent risk should be considered.

  11. Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner.

    PubMed

    Pivato, A; Raga, R

    2006-01-01

    Uncontrolled leachate emissions are one of the key factors in the environmental impact of municipal solid waste (MSW) landfills. The concentration of ammonium, given the anaerobic conditions in traditional landfills, can remain significantly high for a very long period of time, as degradation does not take place and volatilisation is not significant (the pH is not high enough to considerably shift the equilibrium towards un-ionised ammonia). Recent years have witnessed a continuous enhancement of landfill technology in order to minimize uncontrolled emissions into the environment; bottom lining systems have been improved and more attention has been devoted to the study of the attenuation of the different chemicals in leachate in case of migration through the mineral barrier. Different natural materials have been considered for use as components of landfill liners in the last years and tested in order to evaluate the performance of the different alternatives. Among those materials, bentonite is often used, coupled with other materials in two different ways: in addition to in situ soil or in geocomposite clay liner (GCL). A lab-scale test was carried out in order to further investigate the influence of bentonite on the attenuation of ammonium in leachate passing through a landfill liner. Two different tests were conducted: a standardized batch test with pulverized bentonite and a batch test with compacted bentonite. The latter was proposed in order to better simulate the real conditions in a landfill liner. The two tests produced values for the partition coefficient K(d) higher than the average measured for other natural materials usually utilized as components of landfill liners. Moreover, the two tests showed similar results, thus providing a further validation of the suitability of the standard batch test with pulverized bentonite. A thorough knowledge of attenuation processes of ammonium in landfill liners is the basis for the application of risk analysis models

  12. Preparation of activated carbon from sugarcane bagasse by microwave assisted activation for the remediation of semi-aerobic landfill leachate.

    PubMed

    Foo, K Y; Lee, L K; Hameed, B H

    2013-04-01

    This study evaluates the sugarcane bagasse derived activated carbon (SBAC) prepared by microwave heating for the adsorptive removal of ammonical nitrogen and orthophosphate from the semi-aerobic landfill leachate. The physical and chemical properties of SBAC were examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and elemental analysis. The effects of adsorbent dosage, contact time and solution pH on the adsorption performance were investigated in a batch mode study at 30°C. Equilibrium data were favorably described by the Langmuir isotherm model, with a maximum monolayer adsorption capacity for ammonical nitrogen and orthophosphate of 138.46 and 12.81 mg/g, respectively, while the adsorption kinetic was best fitted to the pseudo-second-order kinetic model. The results illustrated the potential of sugarcane bagasse derived activated carbon for the adsorptive treatment of semi-aerobic landfill leachate.

  13. Pseudomonas chengduensis sp. nov., isolated from landfill leachate.

    PubMed

    Tao, Yong; Zhou, Yan; He, Xiaohong; Hu, Xiaohong; Li, Daping

    2014-01-01

    Strain MBR(T) was isolated from landfill leachate in a solid-waste disposal site in Chengdu, Sichuan, China. An analysis of 16S rRNA gene sequences revealed that the isolate was closely related to members of the genus Pseudomonas, sharing the highest sequence similarities with Pseudomonas toyotomiensis HT-3(T) (99.8 %), Pseudomonas alcaliphila AL15-21(T) (99.7 %) and Pseudomonas oleovorans ATCC 8062(T) (99.4 %). Multi-locus sequence analysis based on three housekeeping genes (gyrB, rpoB and rpoD) provided higher resolution at the species level than that based on 16S rRNA gene sequences, which was further confirmed by less than 70 % DNA-DNA relatedness between the new isolate and P. toyotomiensis HT-3(T) (61.3 %), P. alcaliphila AL15-21(T) (51.5 %) and P. oleovorans ATCC 8062(T) (57.8 %). The DNA G+C content of strain MBR(T) was 61.9 mol% and the major ubiquinone was Q-9. The major cellular fatty acids (>10 %) were C18 : 1ω7c and/or C18 : 1ω6c, C16 : 0, and C16 : 1ω7c and/or C16 : 1ω6c. Polyphasic analysis indicates that strain MBR(T) represents a novel species of the genus Pseudomonas, for which the name Pseudomonas chengduensis sp. nov. is proposed. The type strain is MBR(T) ( = CGMCC 2318(T) = DSM 26382(T)).

  14. A laboratory study of landfill-leachate transport in soils.

    PubMed

    Islam, Jahangir; Singhal, Naresh

    2004-04-01

    Continuous flow experiments were conducted using sand-packed columns to investigate the relative significance of bacterial growth, metal precipitation, and anaerobic gas formation on biologically induced clogging of soils. Natural leachate from a local municipal landfill, amended with acetic acid, was fed to two sand-packed columns operated in upflow mode. Degradation of the influent acetic acid resulted in the production of methane and carbon dioxide, and simultaneous reduction of manganese, iron, and sulphate. Subsequent increase in the influent acetic acid concentration from 1750 to 2900 mg/l, and then to 5100 mg/l, led to rapid increase in the dissolved inorganic carbon, solution pH, and soil-attached biomass concentration at the column inlet, which promoted the precipitation of Mn(2+) and Ca(2+) as carbonate, and Fe(2+) as sulphide. An influent acetic acid concentration of 1750 mg/l decreased the soil's hydraulic conductivity from an initial value of 8.8 x 10(-3)cm/s to approximately 7 x 10(-5)cm/s in the 2-6 cm section of the column. Increasing the influent acetic acid to 5100 mg/l only further decreased the hydraulic conductivity to 3.6 x 10(-5)cm/s; rather, the primary effect was to increase the length of the zone experiencing reduced hydraulic conductivity from 0-6 cm to the entire column. As bioaccumulation was limited to the 0-5 cm section of the column, and the effect of metal precipitation was negligible, the reduction on the deeper sections of the column is attributed to gas flow, which was up to 1440 ml/day. Mathematical modelling shows that biomass accumulation and gas formation were equally significant in reducing the hydraulic conductivity, while metal precipitation contributed only up to 4% of the observed reduction.

  15. Unusual calcite stromatolites and pisoids from a landfill leachate collection system

    NASA Astrophysics Data System (ADS)

    Maliva, Robert G.; Missimer, Thomas M.; Leo, Kevin C.; Statom, Richard A.; Dupraz, Christophe; Lynn, Matthew; Dickson, J. A. D.

    2000-10-01

    Low-magnesium calcite stromatolites and pisoids were found to have precipitated within the leachate collection system piping of a Palm Beach County, Florida, landfill. The stromatolites and pisoids formed in an aphotic and anoxic environment that was at times greatly supersaturated with calcite. The stromatolites are composed of branching cylindrical bundles of concentrically laminated radial fibrous crystals. The pisoids consist of concentric layers of radial fibrous and microcrystalline calcite. Bacteria, likely sulfate reducing, appear to have acted as catalysts for calcite crystal nucleation, and thus the formation of the stromatolites and pisoids. The leachate system stromatolites provide a recent example of stromatolites that formed largely by cement precipitation. By acting as catalysts for calcite nucleation, bacteria may cause more rapid cementation than would have occurred under purely abiotic conditions. Rapid calcite precipitation catalyzed by bacteria has interfered with the operation of the Palm Beach County landfill leachate collection by obstructing pipes and may be an unrecognized problem at other landfill sites.

  16. Spatial and temporal migration of a landfill leachate plume in alluvium

    USGS Publications Warehouse

    Masoner, Jason R.; Cozzarelli, Isabelle M.

    2015-01-01

    Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m2/year and expanded by 878 %, from an area of 20,800 m2 in 1986 to 203,400 m2 in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10−5 to 7.5 × 10−4 m/s, with a median of 2.0 × 10−4 m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl− concentrations during dry periods and decreasing Cl− concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl− concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl−concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic

  17. Modeling precipitate-dominant clogging for landfill leachate with NICA-Donnan theory.

    PubMed

    Li, Zhenze

    2014-06-15

    Bioclogging of leachate drains is ubiquitous in landfills for municipal solid wastes. Formation of calcium precipitates and biofilms in pore space is the principal reason for clogging. But the calcium speciation in leachte rich in dissolved organic matters (DOM) remains to be uncovered. In spite of its complexity, NICA-Donnan model has been used to compute the speciation of metals and the binding capacities of humic substances. This study applies NICA-Donnan theory into the simulation of calcium speciation during the formation of precipitate-dominant clogging in leachate drainage aggregates for the first time. The consideration of DOC-Ca complexation gives reasonable explanation to the speciation of calcium, which is viewed as oversaturated, in leachate with concentrated DOM. The modeling results for calcium speciation are in good agreement with a large collection of experimental observations, suggesting that NICA-Donnan theory could be used in the modelings of reactive transport and clogging of landfill leachate collection systems.

  18. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1977-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse , incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer hydraulic conductivity 190 to 500 ft/d. The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the entire thickness of the aquifer beneath both landfills, but hydrologic boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 1,400 feet wide at the landfill and narrows to 500 feet near its terminus 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/liter sodium, 110 mg/liter potassium, 565 mg/liter calcium, 100 mg/liter magnesium, 2,700 mg/liter bicarbonate, and 1,300 mg/liter chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Woodard-USGS)

  19. Geophysical identification of leachate levels and refuse characterization in a landfill at Argonne National Laboratory, Illinois

    SciTech Connect

    Carpenter, P.J.; Xi, Y.; El-Hussain, I.W. . Dept. of Geology); Moos, L. )

    1991-01-01

    Magnetic and electrical geophysical techniques were used to survey the 800 Area landfill at Argonne National Laboratory as part of an environmental site assessment. This landfill was opened in 1966 and has accepted non-radioactive laboratory, office, food service and construction wastes. Magnetic profiles and electrical resistivity surveys using Wenner, Schlumberger and dipole-dipole arrays were made primarily over the northern portion of the landfill and long its margins. Mounding of leachate to within 5 ft. (1.5 m) of the surface was identified within the north-central and northeastern portions of the landfill using resistivity soundings and dipole-dipole surveys. Soundings also suggest refuse thickness varies from 10--30 ft (3--10 m) south to north across the landfill. Both dipole-dipole and magnetic profiles have identified conductive and insulating objects in the refuse. Areas of low resistivity flanking the northeastern and eastern margins of the landfill may represent migration of leachate to the north and east. High resistivity layers detected beneath the landfill suggest little or no downward percolation of mineralized leachate. Such high resistivity layers, however, may indicate the presence of sand and gravel layers/lenses embedded in the drift which are potential contaminant pathways. The geophysical results are presently being used in optimum placement of monitoring wells, soil gas probes and future remediation planning. 5 refs., 6 figs.

  20. Temporal and Spatial Pore Water Pressure Distribution Surrounding a Vertical Landfill Leachate Recirculation Well

    PubMed Central

    Kadambala, Ravi; Townsend, Timothy G.; Jain, Pradeep; Singh, Karamjit

    2011-01-01

    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth. PMID:21655145

  1. Temporal and spatial pore water pressure distribution surrounding a vertical landfill leachate recirculation well.

    PubMed

    Kadambala, Ravi; Townsend, Timothy G; Jain, Pradeep; Singh, Karamjit

    2011-05-01

    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth.

  2. Elements in cottonwood trees as an indicator of ground water contaminated by landfill leachate

    USGS Publications Warehouse

    Erdman, James A.; Christenson, Scott

    2000-01-01

    Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site. Leaf samples of broad-leafed cottonwood, Populus deltoides, were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or “well plant,” functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby. Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.

  3. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed.

  4. Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates.

    PubMed

    Matejczyk, Marek; Płaza, Grażyna A; Nałęcz-Jawecki, Grzegorz; Ulfig, Krzysztof; Markowska-Szczupak, Agata

    2011-02-01

    The leachates from 22 municipal solid waste (MSW) landfill sites in Southern Poland were characterized by evaluation of chemical, microbiological and ecotoxicological parameters. Chemical analyses were mainly focused on the identification of the priority hazardous substances according to Directive on Priority Substances, 2008/105/EC (a daughter directive of the WFD) in leachates. As showed, only five substances (Cd, Hg, hexachlorobutadiene, pentachlorobenzene and PAHs) were detected in the leachates. The compounds tested were absent or present at very low concentrations. Among them, only PAHs were found in all samples in the range from 0.057 to 77.2 μg L⁻¹. The leachates were contaminated with bacteria, including aerobic, psychrophilic and mesophilic bacteria, coliform and fecal coliforms, and spore-forming-bacteria, including Clostridium perfringens, and with filamentous fungi. From the analysis of specific microorganism groups (indicators of environmental pollution by pathogenic or opportunistic pathogenic organisms) it can be concluded that the landfill leachates showed sanitary and epidemiological hazard. In the ecotoxicological study, a battery of tests comprised of 5 bioassays, i.e. Microtox(®), Spirotox, Rotoxkit F™, Thamnotoxkit F™ and Daphtoxkit F™ magna was applied. The leachate samples were classified as toxic in 13.6%, highly toxic in 54.6% and very highly toxic in 31.8%. The Spirotox test was the most sensitive bioassay used. The percentage of class weight score was very high - above 60%; these samples could definitely be considered seriously hazardous and acutely toxic to the fauna and microflora. No correlations were found between the toxicity values and chemical parameters. The toxicity of leachate samples cannot be explained by low levels of the priority pollutants. It seems that other kinds of xenobiotics present in the samples at subacute levels gave the high aggregate toxic effect. The chemical, ecotoxicological and microbiological

  5. [Study on spectral characteristic of dissolved organic matter fractions extracted from municipal solid waste landfill leachate].

    PubMed

    Zhang, Jun-Zheng; Yang, Qian; Xi, Bei-Dou; Wei, Zi-Min; He, Xiao-Song; Li, Ming-Xiao; Yang, Tian-Xue

    2008-11-01

    In the present study, the samples of landfill leachate of 0, 5, 10-year-old were respectively taken from landfill plant. Based on a modified Leenheer fractionation scheme, dissolved organic matter (DOM) extracted from landfill leachate of three different ages was fractioned according to their polarities and charge characteristics by using XAD-8 resin, and the fractions of hydrophobic acid (HOA), neutral (HON) and hydrophilic matter (HIM) were obtained, Then the fluorescence and UV spectra of DOM fractions were determined. The fluorescence synchronous scan spectra of DOM fractions exhibited a primary peak at 280 nm for 0-year-old, while the primary peak exhibited at 340nm for 5 and 10 year-old, suggesting that DOM fractions contained mainly protein-like matter at initial stage of landfill, and with the increase in landfill ages, aromatic structures of DOM fractions in leachate were enriched. Among the DOM fractions of HOA, HON and HIM at different ages of landfill leachate, the fluorescence and UV spectra all indicated that the molecular weight, content of aromatic compounds and degree of condensation were all in the order of HOA>HON>HIM. The ratio of UV absorbance at 253 nm to that at 203 nm (A253/A203) showed, that the substituent on the aromatic ring of HOA and HON fractions consisted mainly of carbonyl, carboxyl and hydroxyl; while that of HIM consisted of aliphatic chains, and the content of aromatic compounds was lower than that of HOA and HON; which implied that the HIM displayed a lower molecular weight and simpler structure compared to HOA and HON. Altogether, the results obtained from fluorescence and UV spectra indicate that the degree of aromatization increased in DOM fractions of leachate with the landfill ages, in the following order: HOA > HON > HIM.

  6. Three-dimensional modelling of leachate recirculation using vertical wells in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Chen, Zheng-Wei; Cao, Ben-Yi

    2016-12-01

    Bioreactor landfills use leachate recirculation to enhance the biodegradation of municipal solid waste and accelerate landfill stabilisation, which can provide significant environmental and economic benefits. Vertical wells are operated as a major method for leachate recirculation systems. The objectives of this article are to analyse the leachate migration in bioreactor landfills using vertical wells and to offer theoretical basis for the design of leachate recirculation systems. A three-dimensional numerical model was built using FLAC-3D, and this model can consider the saturated and unsaturated flow of leachate within anisotropic waste to reflect the actual conditions. First, main influence factors of leachate migration were analysed, including the vertical well height, hydraulic conductivity, and anisotropic coefficient, in a single-well recirculation system. Then, the effects of different configurations of a group-well system were studied and the optimal well spacing was obtained. Some key design parameters (e.g. the recirculation flow rate, volume of impact zone, radius of impact zone and time to reach steady state) were also evaluated. The results show that the hydraulic conductivity has a great impact on the optimal height of vertical wells and uniform configuration is the best option in terms of both volume of impact zone and time to reach steady state. © The Author(s) 2016.

  7. Transmission electron microscopy investigation of colloids and particles from landfill leachates.

    PubMed

    Matura, Marek; Ettler, Vojtech; Klementová, Mariana

    2012-05-01

    Leachates collected at two (active and closed) municipal solid waste (MSW) landfills were examined for colloids and particles by transmission electron microscopy, energy dispersive spectrometry, selected area electron diffraction and for the chemical compositions of the filtrates after the filtration to 0.1 µm and ultrafiltration to 1 kDa (~ 1 nm). Six groups of colloids/particles in the range 5 nm to 5 µm were determined (in decreasing order of abundance): carbonates, phyllosilicates (clay minerals and micas), quartz, Fe-oxides, organics and others (salts, phosphates). Inorganic colloids/particles in leachates from the active landfill predominantly consist of calcite (CaCO(3)) and minor clay minerals and quartz (SiO(2)). The colloids/particles in the leachates from the closed landfill consist of all the observed groups with dominant phyllosilicates. Whereas calcite, Fe-oxides and phosphates can precipitate directly from the leachates, phyllosilicates and quartz are more probably either derived from the waste or formed by erosion of the geological environment of the landfill. Low amounts of organic colloids/particles were observed, indicating the predominance of organic molecules in the 'truly dissolved' fraction (fulvic compounds). Especially newly formed calcite colloids forming particles of 500 nm and stacking in larger aggregates can bind trace inorganic contaminants (metals/metalloids) and immobilize them in landfill environments.

  8. Household hazardous waste disposal to landfill: using LandSim to model leachate migration.

    PubMed

    Slack, Rebecca J; Gronow, Jan R; Hall, David H; Voulvoulis, Nikolaos

    2007-03-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW.

  9. Quantification of leachate discharged to groundwater using the water balance method and the hydrologic evaluation of landfill performance (HELP) model.

    PubMed

    Alslaibi, Tamer M; Abustan, Ismail; Mogheir, Yunes K; Afifi, Samir

    2013-01-01

    Landfills are a source of groundwater pollution in Gaza Strip. This study focused on Deir Al Balah landfill, which is a unique sanitary landfill site in Gaza Strip (i.e., it has a lining system and a leachate recirculation system). The objective of this article is to assess the generated leachate quantity and percolation to the groundwater aquifer at a specific site, using the approaches of (i) the hydrologic evaluation of landfill performance model (HELP) and (ii) the water balance method (WBM). The results show that when using the HELP model, the average volume of leachate discharged from Deir Al Balah landfill during the period 1997 to 2007 was around, 6800 m3/year. Meanwhile, the average volume of leachate percolated through the clay layer was 550 m3/year, which represents around 8% of the generated leachate. Meanwhile, the WBM indicated that the average volume of leachate discharged from Deir Al Balah landfill during the same period was around 7660 m3/year--about half of which comes from the moisture content of the waste, while the remainder comes from the infiltration of precipitation and re-circulated leachate. Therefore, the estimated quantity of leachate to groundwater by these two methods was very close. However, compared with the measured leachate quantity, these results were overestimated and indicated a dangerous threat to the groundwater aquifer, as there was no separation between municipal, hazardous and industrial wastes, in the area.

  10. Comparative evaluation of leachate pollution index of MSW landfill site of Kolkata with other metropolitan cities of India.

    PubMed

    Motling, Sanjay; Dutta, Amit; Mukherjee, S N; Kumar, Sunil

    2013-07-01

    The uncontrolled tipping of mixed urban solid waste in landfill site causes serious negative impacts on the environment. The major issue in this context is the generation of leachate which possesses potential of polluting freshwater ecosystem including groundwater besides associated health hazards and depletion of soil fertility. In this context, a pseudo computation quantitative tool, known as leachate pollution index (LPI), has been developed by some researchers for scaling pollution potential of landfill site owing to emergence of leachate. This paper. deals with the assessment of leachate quality of existing landfill site of Kolkata situated at Dhapa waste dumping ground through evaluation of the LPI from experimental analysis of leachate. The leachate was collected from this site in different seasons. 18 parameters were tested with real leachate samples in the Environmental Engineering Laboratory of Civil Engineering Department of Jadavpur University Kolkata. The results exhibited a very high value of organic pollutants in the leachate with COD as 21,129 mg/L and also values of TDS, Fe2+, Cr, Zn, chloride and ammonical nitrogen. The LPI value of Kolkata landfill site at Dhapa was estimated and also compared with leachate quality data of other metropolitan cities viz. Mumbai, Delhi, Chennai as available in literatures. It is found that LPI of the Kolkata landfill site is highest compared to all other landfill sites of other metropolitan cities in India.

  11. Heterogeneous adsorption behavior of landfill leachate on granular activated carbon revealed by fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC).

    PubMed

    Lee, Sonmin; Hur, Jin

    2016-04-01

    Heterogeneous adsorption behavior of landfill leachate on granular activated carbon (GAC) was investigated by fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). The equilibrium adsorption of two leachates on GAC was well described by simple Langmuir and Freundlich isotherm models. More nonlinear isotherm and a slower adsorption rate were found for the leachate with the higher values of specific UV absorbance and humification index, suggesting that the leachate containing more aromatic content and condensed structures might have less accessible sites of GAC surface and a lower degree of diffusive adsorption. Such differences in the adsorption behavior were found even within the bulk leachate as revealed by the dissimilarity in the isotherm and kinetic model parameters between two identified PARAFAC components. For both leachates, terrestrial humic-like fluorescence (C1) component, which is likely associated with relatively large sized and condensed aromatic structures, exhibited a higher isotherm nonlinearity and a slower kinetic rate for GAC adsorption than microbial humic-like (C2) component. Our results were consistent with size exclusion effects, a well-known GAC adsorption mechanism. This study demonstrated the promising benefit of using EEM-PARAFAC for GAC adsorption processes of landfill leachate through fast monitoring of the influent and treated leachate, which can provide valuable information on optimizing treatment processes and predicting further environmental impacts of the treated effluent.

  12. LEACHATE NITROGEN CONCENTRATIONS AND BACTERIAL NUMBERS FROM TWO BIOREACTOR LANDFILLS

    EPA Science Inventory

    The U.S. EPA and Waste Management Inc. have entered into a cooperative research and development agreement (CRADA) to study landfills operated as bioreactors. Two different landfill bioreactor configurations are currently being tested at the Outer Loop landfill in Louisville, KY...

  13. Organic matters removal from landfill leachate by immobilized Phanerochaete chrysosporium loaded with graphitic carbon nitride under visible light irradiation.

    PubMed

    Hu, Liang; Liu, Yutang; Zeng, Guangming; Chen, Guiqiu; Wan, Jia; Zeng, Yunxiong; Wang, Longlu; Wu, Haipeng; Xu, Piao; Zhang, Chen; Cheng, Min; Hu, Tianjue

    2017-10-01

    This study investigated the technical applicability of a combination of Phanerochaete chrysosporium (P. chrysosporium) with photocatalyst graphitic carbon nitride (g-C3N4) for organic matters removal from landfill leachate under visible light irradiation. Photocatalyst g-C3N4 was well immobilized on the hyphae surface of P. chrysosporium by calcium alginate. The typical absorption edge in visible light region for g-C3N4 was at about 460 nm, and the optical absorption bandgap of g-C3N4 was estimated to be 2.70 eV, demonstrating the great photoresponsive ability of g-C3N4. An optimized g-C3N4 content of 0.10 g in immobilized P. chrysosporium and an optimized immobilized P. chrysosporium dosage of 1.0 g were suitable for organic matters removal. The removal efficiency of total organic carbon (TOC) reached 74.99% in 72 h with the initial TOC concentration of 100 mg L(-1). In addition, the gas chromatography coupled with mass spectrometry (GC-MS) measurements showed that immobilized P. chrysosporium presented an outstanding removal performance for almost all organic compounds in landfill leachate, especially for the volatile fatty acids and long-chain hydrocarbons. The overall results indicate that the combination P. chrysosporium with photocatalyst g-C3N4 for organic matters removal from landfill leachate may provide a more comprehensive potential for the landfill leachate treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pretreatment of old-age landfill leachate by microwave-assisted catalytic oxidation in the presence of activated carbon.

    PubMed

    Xu, Xiao-Chun; Zhang, Hong-Tao; Dong, Zhi-Yong; Fan, Yu-Feng

    2013-01-01

    Landfill leachate is posing an ever-greater environmental hazard. Recently, a process for purification combining activated carbon, microwave (MW) and Fenton oxidation has drawn much attention. In this study, the effectiveness of this process for the pretreatment of an old-age landfill leachate was tested. The effects of various parameters were investigated and the optimal condition included as follows: MW energy density, 6 W/mL; MW power, 300 W; radiation time, 8 min; H2O2 dosage, 0.1 mol/L; Fe(2+)-EDTA dosage, 0.02 mol/L; granular activated carbon (GAC) dosage, 6 g/L. Within the present experimental condition applied, the chemical oxygen demand (COD) removal reached 56.5%, and the ratio of 5-day biochemical oxygen demand to chemical oxygen demand (BOD5/COD) was enhanced from 0.122 to 0.462. Comparing with GAC, MW and Fenton alone or the combinations of any two of them, MW/Fenton/GAC displayed superior treatment efficiency. The MW/Fenton/GAC process is believed to be a promising pretreatment technology for biorefractory old-age landfill leachate.

  15. Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor.

    PubMed

    Giannis, A; Makripodis, G; Simantiraki, F; Somara, M; Gidarakos, E

    2008-01-01

    Long-term biodegradation of MSW in an aerobic landfill bioreactor was monitored as a function of time during 510 days of operation. Operational characteristics such as air importation, temperature and leachate recirculation were monitored. The oxygen utilization rates and biodegradation of organic matter rates showed that aerobic biodegradation was feasible and appropriate to proceed in aerobic landfill bioreactor. Leachate analyses showed that the aerobic bioreactor could remove above 90% of chemical oxygen demand (COD) and close to 100% of biochemical oxygen demand (BOD5) from leachate. Ammonium (NH4+), nitrate (NO3-) and sulphate (SO4(2-)) concentrations of leachate samples were regularly measured. Results suggest that nitrification and denitrification occurred simultaneously, and the increase in nitrate did not reach the levels predicted stoichiometrically, suggesting that other processes were occurring. Leachate recirculation reduced the concentrations of heavy metals because of the effect of the high pH of the leachate, causing heavy metals to be retained by processes such as sorption on MSW, carbonate precipitation, and hydroxide precipitation. Furthermore, the compost derived from the aerobic biodegradation of the organic matter of MSW may be considered as soil improvement in the agricultural plant production. Bio-essays indicated that the ecotoxicity of leachate from the aerobic bioreactor was not toxic at the end of the experiment. Finally, after 510 days of degradation, waste settlement reached 26% mainly due to the compost of the organic matter.

  16. Toxicological evaluation of landfill leachate using plant (Allium cepa) and fish (Leporinus obtusidens) bioassays.

    PubMed

    Klauck, Cláudia Regina; Rodrigues, Marco Antonio Siqueira; da Silva, Luciano Basso

    2013-11-01

    The disposal of municipal waste in landfills may pose an environmental problem because the product of the decomposition of these residues generates large volumes of leachate, which may present high toxicity. The aim of this study was to assess the toxic and genotoxic effects of a sample of untreated leachate in fish (Leporinus obtusidens) and onions (Allium cepa). The leachate was collected in a landfill located in the region of Vale do Rio dos Sinos, southern Brazil. The fish were exposed to raw leachate, at concentrations of 0.5%, 1.0%, 5%, 10% and 20% for 6 days, while the bulbs of A. cepa were exposed to concentrations of 5%, 10%, 25%, 50% and 100% for 48 h. For fish, the concentrations of 5%, 10% and 20% were lethal, thus indicating high toxicity; however, sublethal concentrations (0.5% and 1.0%) showed no genotoxicity by micronucleus test when compared with the control group. In the bioassays involving onions, high toxicity was observed, with significant reduction of root growth and mitotic index in bulbs exposed to the 100% concentration of the leachate. An increase in the frequency of chromosome abnormalities in the A. cepa root cells in anaphase-telophase was observed in accordance with the increase in the concentration of leachate (5%, 10%, 25% and 50%), with values significantly greater than the control, at the highest concentration. The results showed that the leachate contains toxic and genotoxic substances, thus representing a major source of environmental pollution if not handled properly.

  17. Using fractal geometry to determine phytotoxicity of landfill leachate on willow.

    PubMed

    Bialowiec, Andrzej; Randerson, Peter F; Kopik, Monika

    2010-04-01

    Phytotoxicological tests were conducted during 6weeks on the willow Salix amygdalina using six concentrations of landfill leachate. Plants were exposed to landfill leachate solutions using two regimes: (A) - the willow shoots were watered by leachate solution from the beginning of the test; (B) - the willow shoots were cultivated in pots with clean water during 4weeks, then water was exchanged for leachate solutions. The tolerance of plants to prepared leachate concentration was determined by observations of morphological parameters of leaves including their fractal dimension. The lowest effective concentration (LOEC) was calculated. Results showed that in regime A, all measured parameters indicated similar response of plants to phytotoxic compounds in leachate. The LOEC was in the range 4.69-5.63% of leachate concentration. In regime B, only such parameters as leaf length and fractal dimension indicated a marked response (LOEC was much lower for other parameters, 0.8% and 1.84% respectively). Leaf length and, especially, fractal dimension are shown to be good indicators of plant response to toxicants in their environment.

  18. Isotopic tracing of landfill leachates and pollutant lead mobility in soil and groundwater.

    PubMed

    Vilomet, J D; Veron, A; Ambrosi, J P; Moustier, S; Bottero, J Y; Chatelet-Snidaro, L

    2003-10-15

    Here we provide evidence of the capability of stable lead isotopes to trace landfill leachate in a shallow groundwater. The municipal landfill we have investigated is located in southeastern France. It has no bottom liner, and wastes are placed directly on the ground. Stable lead isotopes allow the characterization of this landfill leachate signature (206Pb/207Pb = 1.189 +/- 0.004) that is clearly different from that of the local atmosphere (206Pb/207Pb = 1.150 +/- 0.006) and crustal lead (206Pb/207Pb = 1.200 +/- 0.005). Piezometers located in the direct vicinity of the landfill generally display this contaminant imprint. The landfill plume is monitored up to 1000 m downgradient of the landfill, in very good agreement with evaluation from chloride concentration. Meanwhile, 206Pb/207Pb ratios measured at a piezometer located 4600 m downgradient of the landfill suggest a contamination by the landfill plume. This result shows that the complexity of a pollutant plume dispersion in this shallow groundwater system requires several independent tracers to clearly resolve origin and transport pathways for contaminants. Furthermore, seasonal rainfall variation for this Mediterranean mixed Quaternary alluvion reservoir and the use of KCl fertilizers might favor an efficient remobilization of atmospheric lead in plowed soils and its transfer into groundwater as shown by lead isotope systematics.

  19. Comparing field investigations with laboratory models to predict landfill leachate emissions

    SciTech Connect

    Fellner, Johann; Brunner, Paul H.

    2009-06-15

    Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m{sup 3}, landfill: 80,000 m{sup 3}), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore water participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.

  20. Pharmaceuticals and other organic wastewater contaminants within a leachate plume downgradient of a municipal landfill

    USGS Publications Warehouse

    Barnes, Kimberlee K.; Christenson, Scott C.; Kolpin, Dana W.; Focazio, Michael J.; Furlong, Edward T.; Zaugg, Steven D.; Meyer, Michael T.; Barber, Larry B.

    2004-01-01

    Ground water samples collected from the Norman Landfill research site in central Oklahoma were analyzed as part of the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program's national reconnaissance of pharmaceuticals and other organic waste water contaminants (OWCs) in ground water. Five sites, four of which are located downgradient of the landfill, were sampled in 2000 and analyzed for 76 OWCs using four research methods developed by the USGS. OWCs were detected in water samples from all of the sites sampled, with 22 of the 76 OWCs being detected at least once. Cholesterol (a plant and animal steroid), was detected at all five sites and was the only compound detected in a well upgradient of the landfill. N,Ndiethyltoluamide (DEET used in insect repellent) and tri(2-chloroethyl) phosphate (fire-retardant) were detected in water samples from all four sites located within the landfill-derived leachate plume. The sites closest to the landfill had more detections and greater concentrations of each of the detected compounds than sites located farther away. Detection of multiple OWCs occurred in the four sites located within the leachate plume, with a minimum of four and a maximum of 17 OWCs detected. Because the landfill was established in the 1920s and closed in 1985, many compounds detected in the leachate plume were likely disposed of decades ago. These results indicate the potential for long-term persistence and transport of some OWCs in ground water.

  1. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: a field-scale study.

    PubMed

    Chung, Jinwook; Kim, Seungjin; Baek, Seungcheon; Lee, Nam-Hoon; Park, Seongjun; Lee, Junghun; Lee, Heechang; Bae, Wookeun

    2015-03-21

    Leachate recirculation for rapid landfill stabilization can result in the accumulation of high-strength ammonium. An on-site sequencing batch reactor (SBR) was therefore, applied to oxidize the ammonium to nitrite, which was then recirculated to the landfill for denitrification to nitrogen gas. At relatively higher ammonium levels, nitrite accumulated well in the SBR; the nitrite was denitrified stably in the landfill, despite an insufficient biodegradable carbon source in the leachate. As the leachate was recirculated, the methane and carbon dioxide contents produced from the landfill fluctuated, implying that the organic acids and hydrogen produced in the acid production phase acted as the carbon source for denitrification in the landfill. Leachate recirculation combined with ex-situ partial nitrification of the leachate may enhance the biodegradation process by: (a) removing the nitrogen that is contained with the leachate, and (b) accelerating landfill stabilization, because the biodegradation efficiency of landfill waste is increased by supplying sufficient moisture and its byproducts are used as the carbon source for denitrification. In addition, partial nitrification using an SBR has advantages for complete denitrification in the landfill, since the available carbon source is in short supply in aged landfills.

  2. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    PubMed

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  3. Comparison of different physico-chemical methods for the removal of toxicants from landfill leachate.

    PubMed

    Cotman, Magda; Gotvajn, Andreja Zgajnar

    2010-06-15

    Our work was focused on investigation of different treatment procedures for the removal of toxic fractions from a landfill leachate, because sometimes the existing treatment in biological sequencing batch reactor (SBR) is not efficient enough, leading to a hazardous environmental impact of the present persistent and toxic compounds. The efficiency of the procedures used was monitored by chemical analyses and two toxicity tests (activated sludge and Vibrio fischeri). The existing SBR (HRT=1.9 days) removed 46-78% of COD and 96-73% of NH(4)(+)-N. Experiments were conducted with three landfill leachate samples expressing significant difference in concentrations of pollutants and with low BOD(5)/COD ratio (0.06/0.01/0.03). The applied methods were air stripping, adsorption to activated carbon and zeolite clinoptilolite and Fenton oxidation. Air stripping at pH 11 was a viable treatment option for the removal of ammonia nitrogen (up to 94%) and reduction of toxicity to microorganisms. In the adsorption experiments in batch system with different concentration of PAC the most effective was the highest addition (50.0gL(-1)) where 63-92% of COD was removed followed by significant reduction in toxicity to V. fischeri. In the column experiments with clinoptilolite 45/93/100% of NH(4)(+)-N as well as 25/32/39% of COD removal was attained. The removal efficiency for metals followed the sequence Cr>Zn>Cd>Ni. The procedure with zeolite was the second most efficient one regarding reduction of toxicity to both organisms. Fenton oxidation at molar ratio Fe(2+):H(2)O(2)=1.0:10.0 assured 70-85% removal of COD but it only slightly reduced the toxicity.

  4. Removal of nitrogen compounds from landfill leachate using reverse osmosis with leachate stabilization in a buffer tank.

    PubMed

    Talalaj, Izabela Anna

    2015-01-01

    In this paper, a removal of nitrogen compounds from a landfill leachate during reverse osmosis (RO) was evaluated. The treatment facility consists of a buffer tank and a RO system. The removal rate of N─NH4, [Formula: see text] and [Formula: see text] in the buffer tank reached 14%, 91% and 41%, respectively. The relatively low concentration of organic carbon limits N─NH4 oxidation in the buffer tank. The removal rate for the total organic nitrogen (TON) was 47%. The removal rate in RO was 99% for [Formula: see text], 84.1% for [Formula: see text] and 41% for [Formula: see text]. The accumulation of [Formula: see text] may be the result of a low pH, which before the RO process is reduced to a value of 6.0-6.5. Besides it, the cause for a low removal rate of the [Formula: see text] in the buffer tank and during RO may be free ammonia, which can inhibit the [Formula: see text] oxidation. The removal rates of total inorganic nitrogen and TON in the RO treatment facility were similar being 99% and 98.5%, respectively.

  5. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    PubMed

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.

  6. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1980-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer (hydraulic conductivity 190 and 500 ft/d). The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/L sodium, 110 mg/L potassium, 565 mg/L calcium, 100 mg/L magnesium, 2,7000 mg/L bicarbonate, and 1,300 mg/L chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of the longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Kosco-USGS)

  7. Coagulation-flocculation in leachate treatment using modified micro sand

    NASA Astrophysics Data System (ADS)

    Thaldiri, Nur Hanani; Halim, Azhar Abdul

    2013-11-01

    Sanitary landfill leachate is considered as highly polluted wastewater, without any treatment, discharging into water system will cause underground water and surface water pollutions. This study was to investigate the treatability of the semi-aerobic landfill leachate via coagulation-flocculation using poly-aluminum chloride (PAC), cationic polymer, and modified micro sand. Leachate was collected from Pulau Burung Sanitary Landfill (PBSL) located in Penang, Malaysia. Coagulation-flocculation was performed by using jar test equipment and the effect of pH, dose of coagulant and dose of polymer toward removal of chemical oxygen demand (COD), color and suspended solid (SS) were examined. Micro sand was also used in this study to compare settling time of coagulation-flocculation process. The optimum pH, dose of coagulant (PAC) and dose of polymer (cationic) achieved were 7.0, 1000 mg/L and 8 mg/L, respectively. The dose of micro sand used for the settling time process was 300 mg/L. Results showed that 52.66% removal of COD, 97.16% removal of SS and 96.44% removal of color were achieved under optimum condition. The settling times for the settling down of the sludge or particles that formed during coagulation-flocculation process were 1 min with modified sand, 20 min with raw micro sand and 45 min without micro sand.

  8. Assessment of leachate infiltration from Piyungan landfill using electrical resistivity method

    NASA Astrophysics Data System (ADS)

    Parhusip, Jaingot Anggiat; Harijoko, Agung; Putra, Doni Prakasa Eka; Suryanto, Wiwit

    2017-07-01

    Piyungan Landfill (TPA) is the largest landfill located in Bantul Regency of Yogyakarta. Leachate samples collected around the landfill area indicate that there is a contamination of groundwater around the landfill. This study has been successfully found a leachate infiltration to the soil layer at the north area of the landfill, which is the flow direct ion of the groundwater flow from the landfill. Electrical resistivity (ER) measurement towards fluid-saturated soil was carried out in the laboratory. Soil samples were saturated with fluid aquades-leachate and ER values were measured. ER value gained for saturated sandy clay with total dissolve solid TDS 10 mg/l to 350 mg/l is between 6.8 Ωm - 9.7 Ωm. Measurement of geo-electric resistivity 2-D of multi electrode Wener Schlumberger configuration has a minimum distance of 5m with an expanse length of 190 m. It is geo-electric line is 300°NW at the point X = 437.172m; Y = 9130495m; Z = 73.5m. This line perpendicularly cut the fault line at point 110m, and cross the Banyak River flow at point 135m. ER values of soil layer obtained from the results of geo-electric interpretation RES2DINV were ranged from 2 Ωm - 120 Ωm. At point 135m of the eastern part, ER value is between 2 Ωm to 10 Ωm with a depth of 10-12 m. This layer is estimated as a layer of Sandy Clayey saturated with contaminated water by leachate from Piyungan Landfill. ER value under point 40m to 130m is between 2 Ωm -12 Ωm with a depth of 15m, which is estimated as a layer of Tuffaceous Clay Sand Stone.

  9. Combined chemical and toxicological evaluation of leachate from municipal solid waste landfill sites of Delhi, India.

    PubMed

    Ghosh, Pooja; Gupta, Asmita; Thakur, Indu Shekhar

    2015-06-01

    In the present study, landfill leachate of three landfill sites of Delhi, India, was toxico-chemically analyzed for human risk assessment. Raw leachate samples were collected from the municipal solid waste (MSW) landfills of Delhi lacking liner systems. Samples were characterized with relatively low concentrations of heavy metals while the organic component exceeded the upper permissible limit by up to 158 times. Qualitative analysis showed the presence of numerous xenobiotics belonging to the group of halogenated aliphatic and aromatic compounds, polycyclic aromatic hydrocarbons (PAHs), phthalate esters, and other emerging contaminants. Quantitative analysis of PAHs showed that the benzo(a)pyrene-toxic equivalence quotient (BaP-TEQ) ranged from 41.22 to 285.557 ng L(-1). The human risk assessment methodology employed to evaluate the potential adverse effects of PAHs showed that the cancer risk level was lower than the designated acceptable risk of 10(-6). However, significant cytotoxic and genotoxic effects of leachates on HepG2 cell line was observed with MTT EC50 value ranging from 11.58 to 20.44 % and statistically significant DNA damage. Thus, although the leachates contained low concentrations of PAHs with proven carcinogenic potential, but the mixture of contaminants present in leachates are toxic enough to cause synergistic or additive cytotoxicity and genotoxicity and affect human health.

  10. Artemia salina as test organism for assessment of acute toxicity of leachate water from landfills.

    PubMed

    Svensson, B M; Mathiasson, L; Mårtensson, L; Bergström, S

    2005-03-01

    Artemia salina has, for the first time, been used as test organism for acute toxicity of leachate water from three landfills (the municipal landfills at Kristianstad, Sweden and Siauliai, Lithuania, and an industrial landfill at Stena fragmenting AB, Halmstad, as well as for leachate from Kristianstad treated in different ways in a pilot plan). Artemia can tolerate the high concentrations of chloride ions found in such waters. Large differences in toxicities were found, the leachate from Siauliai being the most toxic one. To increase the selectivity in the measurements, a fractionation was done by using ion exchange to separate ammonium/ammonia and metal ions from the leachate, and activated carbon adsorbents for organic pollutants. The influence of some metals and phenol compounds on the toxicity was investigated separately. It was found that most of the toxicity emanated from the ammonium/ammonia components in the leachate. However, there was also a significant contribution n from organic pollutants, other than phenol compounds, since separate experiments had in this latter case indicated negligible impact. The concentrations of metals were at a level, shown by separate experiments, where only small contribution to the toxicity could be expected.

  11. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. Genotype-specific elemental phytoremediation

    Treesearch

    Ronald S., Jr. Zalesny; Edmund O. Bauer

    2007-01-01

    There is a need for the identification and selection of specific tree genotypes that can sequester elements from contaminated soils, with elevated rates of uptake. We irrigated Populus (DN17, DN182, DN34, NM2, NM6) and Salix (94003, 94012, S287, S566, SX61) genotypes planted in large soil-filled containers with landfill leachate or...

  12. Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes.

    PubMed

    Oturan, Nihal; van Hullebusch, Eric D; Zhang, Hui; Mazeas, Laurent; Budzinski, Hélène; Le Menach, Karyn; Oturan, Mehmet A

    2015-10-20

    In recent years, electrochemical advanced oxidation processes have been shown to be an effective alternative for the removal of refractory organic compounds from water. This study is focused on the effective removal of recalcitrant organic matter (micropollutants, humic substances, etc.) present in municipal solid waste landfill leachates. A mixture of eight landfill leachates has been studied by the electro-Fenton process using a Pt or boron-doped diamond (BDD) anode and a carbon felt cathode or by the anodic oxidation process with a BDD anode. These processes exhibit great oxidation ability due to the in situ production of hydroxyl radicals ((•)OH), a highly powerful oxidizing species. Both electrochemical processes were shown to be efficient in the removal of dissolved total organic carbon (TOC) from landfill leachates. Regarding the electro-Fenton process, the replacement of the classical anode Pt by the anode BDD allows better performance in terms of dissolved TOC removal. The occurrence and removal yield of 19 polycyclic aromatic hydrocarbons, 15 volatile organic compounds, 7 alkylphenols, 7 polychlorobiphenyls, 5 organochlorine pesticides, and 2 polybrominated diphenyl ethers in landfill leachate were also investigated. Both electrochemical processes allow one to reach a quasicomplete removal (about 98%) of these organic micropollutants.

  13. Evaluation of Populus and Salix continuously irrigated with landfill leachate II. Soils and early tree development

    Treesearch

    Ronald S., Jr. Zalesny; Edmund O. Bauer

    2007-01-01

    Soil contaminant levels and early tree growth data are helpful for assessing phytoremediation systems. Populus (DN17, DN182, DN34, NM2, and NM6) and Salix (94003, 94012, S287, S566, and SX61) genotypes were irrigated with landfill leachate or municipal water and tested for differences in 1) element concentrations (P, K, Ca, Mg, S,...

  14. Growth of water hyacinth in municipal landfill leachate with different pH.

    PubMed

    El-Gendy, A S; Biswas, N; Bewtra, J K

    2004-07-01

    Batch experiments were conducted to investigate the effect of municipal landfill leachate pH on the growth of water hyacinth (Eichhornia crassipes). These experiments were carried out in a green house environment on leachate samples collected from Essex-Windsor Regional Landfill, Windsor, Ontario, Canada. It was found that water hyacinth plants survived in a pH range of 4.0 to 8.0. Both alkaline pH (above 8.0) and highly acidic pH (below 4.0) had inhibitory effect on the growth of plants. The pH range, for optimum growth of the water hyacinth plants was found to be 5.8 to 6.0. At optimum growth, water hyacinth had an average mean relative growth rate of 0.043 d-1. It was found that nitrogen compounds underwent different transformations depending on the pH of leachate. Plant uptake, nitrification and volatilization were among these transformations.

  15. Town of Colonie sanitary landfill leachate management system. Final report for 1992 and 1993 spraying season

    SciTech Connect

    Reis, J.R.

    1996-08-01

    The development, construction, and operation of the Colonie Landfill Leachate Management System (LLMS) was first conceived as a two-year project in 1987, but took more than six years to reach the final reporting stage, during which time substantial regulatory hurdles were encountered and overcome. During the summer of 1987, a work plan for the project was developed. It was determined that a pilot leachate-spraying study should be undertaken to provide additional information on the potential environmental impacts due to surface runoff and moisture front penetration through the landfill cap. To achieve this, a {1/4}-acre (100` x 100`) test area was prepared and equipped with a single leachate spray head, a collection point for runoff, a rain gage, and four pan lysimeters (at depths of 6 inch, 12 inch, 18 inch, and 24 inch) to measure moisture advancement through the cap. A similarly equipped control area, minus the spray head, was prepared nearby.

  16. [Variation characteristics of leachate quality in a semi-aerobic municipal solid waste landfill].

    PubMed

    Yang, Yufei; Huang, Qifei; Wang, Qi; Liu, Yuqiang; Dong, Lu

    2005-11-01

    A large-scale semi-aerobic landfill set (21 m x 3.8 m x 6.0 m) was constructed to study the variation characteristics of pollutants in the landfill leachate. The results showed that after 39 weeks, the concentrations of CODCr, BOD5 and NH3+-N in the leachate declined rapidly, which reached 173, 30 and 15 mg x L(-1) respectively, and the reducing rate of NH3+-N was 99.6%. The pH value was below 7 during the first 2 weeks, but became weak alkaline after three weeks. Based on the experimental data, the attenuation equations of pollutants in the leachate were built.

  17. Effects of fulvic substances on the distribution and migration of Hg in landfill leachate.

    PubMed

    Xiaoli, Chai; Guixiang, Liu; Jun, Wu; Huanhuan, Tong; Rong, Ji; Youcai, Zhao

    2011-05-01

    Mercury (Hg) distribution and migration in different landfill stabilization processes were evaluated in this study. Wide ranges of Hg concentrations were observed because of the heterogeneity and variability of landfill refuse. In addition, temporally variable conditions, including pH, organic matter, and vegetation cover, which influence Hg migration in landfills, may also affect the temporal distribution of Hg in landfill refuse. The main fraction of Hg, elemental Hg, decreased with time, while the stable fractions of Hg increased. The fulvic acid (FA) extracted from the landfill leachate had much lower overall Hg-complexation stability constants, which suggests that organic S groups might have been rapidly saturated by small amounts of Hg while leaving oxygen functional groups, such as carboxylic functional or phenolic groups, acting as the primary binding sites for Hg.

  18. Comparative modeling of biological nutrient removal from landfill leachate using a circulating fluidized bed bioreactor (CFBBR).