Sample records for landgard pyrolysis system

  1. Derivation of hydrous pyrolysis kinetic parameters from open-system pyrolysis

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Hsin; Huang, Wuu-Liang

    2010-05-01

    Kinetic information is essential to predict the temperature, timing or depth of hydrocarbon generation within a hydrocarbon system. The most common experiments for deriving kinetic parameters are mainly by open-system pyrolysis. However, it has been shown that the conditions of open-system pyrolysis are deviant from nature by its low near-ambient pressure and high temperatures. Also, the extrapolation of heating rates in open-system pyrolysis to geological conditions may be questionable. Recent study of Lewan and Ruble shows hydrous-pyrolysis conditions can simulate the natural conditions better and its applications are supported by two case studies with natural thermal-burial histories. Nevertheless, performing hydrous pyrolysis experiment is really tedious and requires large amount of sample, while open-system pyrolysis is rather convenient and efficient. Therefore, the present study aims at the derivation of convincing distributed hydrous pyrolysis Ea with only routine open-system Rock-Eval data. Our results unveil that there is a good correlation between open-system Rock-Eval parameter Tmax and the activation energy (Ea) derived from hydrous pyrolysis. The hydrous pyrolysis single Ea can be predicted from Tmax based on the correlation, while the frequency factor (A0) is estimated based on the linear relationship between single Ea and log A0. Because the Ea distribution is more rational than single Ea, we modify the predicted single hydrous pyrolysis Ea into distributed Ea by shifting the pattern of Ea distribution from open-system pyrolysis until the weight mean Ea distribution equals to the single hydrous pyrolysis Ea. Moreover, it has been shown that the shape of the Ea distribution is very much alike the shape of Tmax curve. Thus, in case of the absence of open-system Ea distribution, we may use the shape of Tmax curve to get the distributed hydrous pyrolysis Ea. The study offers a new approach as a simple method for obtaining distributed hydrous pyrolysis

  2. Pyrolysis system evaluation study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of two different pyrolysis concepts which recover energy from solid waste was conducted in order to determine the merits of each concept for integration into a Integrated Utility System (IUS). The two concepts evaluated were a Lead Bath Furnace Pyrolysis System and a Slagging Vertical Shaft, Partial Air Oxidation Pyrolysis System. Both concepts will produce a fuel gas from the IUS waste and sewage sludge which can be used to offset primary fuel consumption in addition to the sanitary disposal of the waste. The study evaluated the thermal integration of each concept as well as the economic impact on the IUS resulting from integrating each pyrolysis concepts. For reference, the pyrolysis concepts were also compared to incineration which was considered the baseline IUS solid waste disposal system.

  3. Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis

    USGS Publications Warehouse

    Lewan, M.D.; Ruble, T.E.

    2002-01-01

    This study compares kinetic parameters determined by open-system pyrolysis and hydrous pyrolysis using aliquots of source rocks containing different kerogen types. Kinetic parameters derived from these two pyrolysis methods not only differ in the conditions employed and products generated, but also in the derivation of the kinetic parameters (i.e., isothermal linear regression and non-isothermal nonlinear regression). Results of this comparative study show that there is no correlation between kinetic parameters derived from hydrous pyrolysis and open-system pyrolysis. Hydrous-pyrolysis kinetic parameters determine narrow oil windows that occur over a wide range of temperatures and depths depending in part on the organic-sulfur content of the original kerogen. Conversely, open-system kinetic parameters determine broad oil windows that show no significant differences with kerogen types or their organic-sulfur contents. Comparisons of the kinetic parameters in a hypothetical thermal-burial history (2.5 ??C/my) show open-system kinetic parameters significantly underestimate the extent and timing of oil generation for Type-US kerogen and significantly overestimate the extent and timing of petroleum formation for Type-I kerogen compared to hydrous pyrolysis kinetic parameters. These hypothetical differences determined by the kinetic parameters are supported by natural thermal-burial histories for the Naokelekan source rock (Type-IIS kerogen) in the Zagros basin of Iraq and for the Green River Formation (Type-I kerogen) in the Uinta basin of Utah. Differences in extent and timing of oil generation determined by open-system pyrolysis and hydrous pyrolysis can be attributed to the former not adequately simulating natural oil generation conditions, products, and mechanisms.

  4. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization.

    PubMed

    Zhou, Junwen; Liu, Shiyu; Zhou, Nan; Fan, Liangliang; Zhang, Yaning; Peng, Peng; Anderson, Erik; Ding, Kuan; Wang, Yunpu; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2018-05-01

    A continuous fast microwave-assisted pyrolysis system was designed, fabricated, and tested with sewage sludge. The system is equipped with continuous biomass feeding, mixing of biomass and microwave absorbent, and separated catalyst upgrading. The effect of the sludge pyrolysis temperature (450, 500, 550, and 600 °C) on the products yield, distribution and potentially energy recovery were investigated. The physical, chemical, and energetic properties of the raw sewage sludge and bio-oil, char and gas products obtained were analyzed using elemental analyzer, GC-MS, Micro-GC, SEM and ICP-OES. While the maximum bio-oil yield of 41.39 wt% was obtained at pyrolysis temperature of 550 °C, the optimal pyrolysis temperature for maximum overall energy recovery was 500 °C. The absence of carrier gas in the process may be responsible for the high HHV of gas products. This work could provide technical support for microwave-assisted system scale-up and sewage sludge utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis

    NASA Astrophysics Data System (ADS)

    Verner, Kelley M.

    Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.

  6. Grid-connected integrated community energy system. Phase II, Stage 2, final report. Preliminary design pyrolysis facility. [Andco-Torrax system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The University of Minnesota is studying and planning a grid connected integrated community energy system to include disposal of wastes from health centers and utilizing the heat generated. The University of Minnesota has purchased the so called Southeast Generating Station from the Northern States Power Company. This plant contains two coal-fired boilers that will be retrofitted to burn low-sulfur Montana coal. Building modifications and additions will be made to support the components of the Andco-Torrax system and integrate the system with the rest of the plant. The Andco-Torrax system is a new high-temperature refuse-conversion process known technically as slagging pyrolysis.more » Although the pyrolysis of solid waste is a relatively new innovation, pyrolysis processes have been used for years by industry. This report covers the preliminary design and operation of the system. (MCW)« less

  7. The thermal degradation of 5 alpha (H)-cholestane during closed-system pyrolysis

    NASA Astrophysics Data System (ADS)

    Abbott, Geoffrey D.; Bennett, Barry; Stuart Fetch, G.

    1995-06-01

    Involatile hydrocarbons were identified following the heating of 5α(H)-cholestane in water with reaction vessel walls composed of 316 grade stainless steel and borosilicate glass. These analyses were compared with the hydrocarbon product compositions from closed-system pyrolysis experiments with no added water. Unsaturated hydrocarbons dominate their saturated counterparts following hydrous pyrolysis in both stainless steel-316 and borosilicate glass. In the absence of added water the converse is true in that saturated components dominate the hydrocarbon mixture. Backbone rearrangement in the steroid nucleus leading to spirosterene formation was only observed under aqueous conditions in both borosilicate glass and stainless steel-316 vessels. These comparisons demonstrate that water, as opposed to reaction vessel surface catalytic effects, plays a central role in mediating hydrocarbon degradation during closed-system hydrous pyrolysis. 5α(H)-cholestane degradation under aqueous conditions is a complex composite of dissociative and rearrangement processes. These include (I) carbon-carbon bond cleavage in the sidechains as well as the ring system, (2) dehydrogenation, and (3) backbone rearrangement. These laboratory experiments provide a product description of the involatile hydrocarbons which will be the basis for a mechanistic study of 5α(H)-cholestane degradation in hot water.

  8. Understanding the fast pyrolysis of lignin.

    PubMed

    Patwardhan, Pushkaraj R; Brown, Robert C; Shanks, Brent H

    2011-11-18

    In the present study, pyrolysis of corn stover lignin was investigated by using a micro-pyrolyzer coupled with a GC-MS/FID (FID=flame ionization detector). The system has pyrolysis-vapor residence times of 15-20 ms, thus providing a regime of minimal secondary reactions. The primary pyrolysis product distribution obtained from lignin is reported. Over 84 % mass balance and almost complete closure on carbon balance is achieved. In another set of experiments, the pyrolysis vapors emerging from the micro-pyrolyzer are condensed to obtain lignin-derived bio-oil. The chemical composition of the bio-oil is analyzed by using GC-MS and gel permeation chromatography techniques. The comparison between results of two sets of experiments indicates that monomeric compounds are the primary pyrolysis products of lignin, which recombine after primary pyrolysis to produce oligomeric compounds. Further, the effect of minerals (NaCl, KCl, MgCl(2), and CaCl(2)) and temperature on the primary pyrolysis product distribution is investigated. The study provides insights into the fundamental mechanisms of lignin pyrolysis and a basis for developing more descriptive models of biomass pyrolysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis

    DOE PAGES

    Black, Brenna A.; Michener, William E.; Ramirez, Kelsey J.; ...

    2016-09-05

    Here, biomass pyrolysis offers a promising means to rapidly depolymerize lignocellulosic biomass for subsequent catalytic upgrading to renewable fuels. Substantial efforts are currently ongoing to optimize pyrolysis processes including various fast pyrolysis and catalytic fast pyrolysis schemes. In all cases, complex aqueous streams are generated containing solubilized organic compounds that are not converted to target fuels or chemicals and are often slated for wastewater treatment, in turn creating an economic burden on the biorefinery. Valorization of the species in these aqueous streams, however, offers significant potential for substantially improving the economics and sustainability of thermochemical biorefineries. To that end, heremore » we provide a thorough characterization of the aqueous streams from four pilot-scale pyrolysis processes: namely, from fast pyrolysis, fast pyrolysis with downstream fractionation, in situ catalytic fast pyrolysis, and ex situ catalytic fast pyrolysis. These configurations and processes represent characteristic pyrolysis processes undergoing intense development currently. Using a comprehensive suite of aqueous-compatible analytical techniques, we quantitatively characterize between 12 g kg -1 of organic carbon of a highly aqueous catalytic fast pyrolysis stream and up to 315 g kg -1 of organic carbon present in the fast pyrolysis aqueous streams. In all cases, the analysis ranges between 75 and 100% of mass closure. The composition and stream properties closely match the nature of pyrolysis processes, with high contents of carbohydrate-derived compounds in the fast pyrolysis aqueous phase, high acid content in nearly all streams, and mostly recalcitrant phenolics in the heavily deoxygenated ex situ catalytic fast pyrolysis stream. Overall, this work provides a detailed compositional analysis of aqueous streams from leading thermochemical processes -- analyses that are critical for subsequent development of selective

  10. Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Brenna A.; Michener, William E.; Ramirez, Kelsey J.

    Here, biomass pyrolysis offers a promising means to rapidly depolymerize lignocellulosic biomass for subsequent catalytic upgrading to renewable fuels. Substantial efforts are currently ongoing to optimize pyrolysis processes including various fast pyrolysis and catalytic fast pyrolysis schemes. In all cases, complex aqueous streams are generated containing solubilized organic compounds that are not converted to target fuels or chemicals and are often slated for wastewater treatment, in turn creating an economic burden on the biorefinery. Valorization of the species in these aqueous streams, however, offers significant potential for substantially improving the economics and sustainability of thermochemical biorefineries. To that end, heremore » we provide a thorough characterization of the aqueous streams from four pilot-scale pyrolysis processes: namely, from fast pyrolysis, fast pyrolysis with downstream fractionation, in situ catalytic fast pyrolysis, and ex situ catalytic fast pyrolysis. These configurations and processes represent characteristic pyrolysis processes undergoing intense development currently. Using a comprehensive suite of aqueous-compatible analytical techniques, we quantitatively characterize between 12 g kg -1 of organic carbon of a highly aqueous catalytic fast pyrolysis stream and up to 315 g kg -1 of organic carbon present in the fast pyrolysis aqueous streams. In all cases, the analysis ranges between 75 and 100% of mass closure. The composition and stream properties closely match the nature of pyrolysis processes, with high contents of carbohydrate-derived compounds in the fast pyrolysis aqueous phase, high acid content in nearly all streams, and mostly recalcitrant phenolics in the heavily deoxygenated ex situ catalytic fast pyrolysis stream. Overall, this work provides a detailed compositional analysis of aqueous streams from leading thermochemical processes -- analyses that are critical for subsequent development of selective

  11. Investigation on the removal of H2S from microwave pyrolysis of sewage sludge by an integrated two-stage system.

    PubMed

    Zhang, Jun; Tian, Yu; Yin, Linlin; Zuo, Wei; Gong, Zhenlong; Zhang, Jie

    2017-08-01

    In this study, an integrated two-stage system, including the in-situ catalytic microwave pyrolysis (ICMP) and subsequent catalytic wet oxidation (CWO) processes, was proposed to remove H 2 S released from microwave-induced pyrolysis of sewage sludge. The emission profile and H 2 S removal from the pyrolysis of raw sewage sludge (SS) and sewage sludge spiked with conditioner CaO (SS-CaO) were investigated. The results showed that CaO played a positive role on sulfur fixation during the pyrolysis process. It was found that SS-CaO (10 wt.%) contributed to about 35% of H 2 S removal at the first stage (ICMP process). Additionally, the CWO process was demonstrated to have promising potential for posttreatment of remaining H 2 S gas. At the Fe 3+ concentration of 30 g/L, the maximum H 2 S removal efficiency of 94.8% was obtained for a single Fe 3+ /Cu 2+ solution. Finally, at the pyrolysis temperature of 800 °C, 99.7% of H 2 S was eliminated by the integrated two-stage system meeting the discharge standard of China. Therefore, the integrated two-stage system of ICMP + CWO may provide a promising strategy to remove H 2 S dramatically for the biomass pyrolysis industry.

  12. The Construction of a Simple Pyrolysis Gas Chromatograph.

    ERIC Educational Resources Information Center

    Hedrick, Jack L.

    1982-01-01

    Describes a simple and inexpensive pyrolysis gas chromatography (PGC) system constructed from items available in undergraduate institutions. The system is limited, accepting only liquid samples and pyrolyzing "on the fly" rather than statically and not allowing for reductive pyrolysis. Applications, experiments, and typical results are included.…

  13. Pyrolysis of fast-growing aquatic biomass -Lemna minor (duckweed): Characterization of pyrolysis products.

    PubMed

    Muradov, Nazim; Fidalgo, Beatriz; Gujar, Amit C; T-Raissi, Ali

    2010-11-01

    The aim of this work was to conduct the experimental study of pyrolysis of fast-growing aquatic biomass -Lemna minor (commonly known as duckweed) with the emphasis on the characterization of main products of pyrolysis. The yields of pyrolysis gas, pyrolytic oil (bio-oil) and char were determined as a function of pyrolysis temperature and the sweep gas (Ar) flow rate. Thermogravimetric/differential thermogravimetric (TG/DTG) analyses of duckweed samples in inert (helium gas) and oxidative (air) atmosphere revealed differences in the TG/DTG patterns obtained for duckweed and typical plant biomass. The bio-oil samples produced by duckweed pyrolysis at different reaction conditions were analyzed using GC-MS technique. It was found that pyrolysis temperature had minor effect on the bio-oil product slate, but exerted major influence on the relative quantities of the individual pyrolysis products obtained. While, the residence time of the pyrolysis vapors had negligible effect on the yield and composition of the duckweed pyrolysis products. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. The slow and fast pyrolysis of cherry seed.

    PubMed

    Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale

    2011-01-01

    The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Mineral nutrient recovery from pyrolysis systems

    USDA-ARS?s Scientific Manuscript database

    Bioenergy crops such as high-energy sorghum (HES), bioenergy rice, corn stover, and switchgrass can be thermo-chemically converted by pyrolysis to produce bio-oil, synthesis gas from non-condensable gases, and biochar. The biochar fraction can be recycled back to the production field to improve soil...

  16. Extent of pyrolysis impacts on fast pyrolysis biochar properties.

    PubMed

    Brewer, Catherine E; Hu, Yan-Yan; Schmidt-Rohr, Klaus; Loynachan, Thomas E; Laird, David A; Brown, Robert C

    2012-01-01

    A potential concern about the use of fast pyrolysis rather than slow pyrolysis biochars as soil amendments is that they may contain high levels of bioavailable C due to short particle residence times in the reactors, which could reduce the stability of biochar C and cause nutrient immobilization in soils. To investigate this concern, three corn ( L.) stover fast pyrolysis biochars prepared using different reactor conditions were chemically and physically characterized to determine their extent of pyrolysis. These biochars were also incubated in soil to assess their impact on soil CO emissions, nutrient availability, microorganism population growth, and water retention capacity. Elemental analysis and quantitative solid-state C nuclear magnetic resonance spectroscopy showed variation in O functional groups (associated primarily with carbohydrates) and aromatic C, which could be used to define extent of pyrolysis. A 24-wk incubation performed using a sandy soil amended with 0.5 wt% of corn stover biochar showed a small but significant decrease in soil CO emissions and a decrease in the bacteria:fungi ratios with extent of pyrolysis. Relative to the control soil, biochar-amended soils had small increases in CO emissions and extractable nutrients, but similar microorganism populations, extractable NO levels, and water retention capacities. Corn stover amendments, by contrast, significantly increased soil CO emissions and microbial populations, and reduced extractable NO. These results indicate that C in fast pyrolysis biochar is stable in soil environments and will not appreciably contribute to nutrient immobilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelsayed, Victor; Shekhawat, Dushyant; Smith, Mark W.

    Pyrolysis conditions greatly affect the structure-reactivity relationship of char during coal gasification. Here, this work investigated the effect of temperature and microwave heating on the structural properties of the chars generated during pyrolysis, as well as gaseous and tar products. Results showed that microwave pyrolysis of Mississippi coal produced more gaseous products and less tars compared to conventional pyrolysis. Higher CO/CO 2 ratio (>1) was observed under microwave pyrolysis compared to conventional pyrolysis (CO/CO2 < 1), which may be explained by a greater extent of gasification between solid carbon and the CO 2 formed during microwave pyrolysis. Additionally, in microwavemore » pyrolysis, the oil tars generated exhibited lower concentrations of polar oxygenates, while the wax tars showed higher concentrations of non-polar alkanes, as observed from the intensity of CH vibrations in FTIR. The product compositions and FTIR analysis of the tars (oils and waxes) suggest that the microwave interacted preferentially with these polar species, which have relatively higher dielectric properties compared to alkanes. The structure–reactivity relationship of the chars produced was also investigated using a variety of characterization tools such as XRD, BET, SEM, EDS, and FTIR. Finally, the char reactivity towards combustion suggested that microwave-produced chars have a higher thermal stability, likely due to lower O/C ratios, and could be utilized in the metallurgical industry.« less

  18. Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis

    DOE PAGES

    Abdelsayed, Victor; Shekhawat, Dushyant; Smith, Mark W.; ...

    2018-01-13

    Pyrolysis conditions greatly affect the structure-reactivity relationship of char during coal gasification. Here, this work investigated the effect of temperature and microwave heating on the structural properties of the chars generated during pyrolysis, as well as gaseous and tar products. Results showed that microwave pyrolysis of Mississippi coal produced more gaseous products and less tars compared to conventional pyrolysis. Higher CO/CO 2 ratio (>1) was observed under microwave pyrolysis compared to conventional pyrolysis (CO/CO2 < 1), which may be explained by a greater extent of gasification between solid carbon and the CO 2 formed during microwave pyrolysis. Additionally, in microwavemore » pyrolysis, the oil tars generated exhibited lower concentrations of polar oxygenates, while the wax tars showed higher concentrations of non-polar alkanes, as observed from the intensity of CH vibrations in FTIR. The product compositions and FTIR analysis of the tars (oils and waxes) suggest that the microwave interacted preferentially with these polar species, which have relatively higher dielectric properties compared to alkanes. The structure–reactivity relationship of the chars produced was also investigated using a variety of characterization tools such as XRD, BET, SEM, EDS, and FTIR. Finally, the char reactivity towards combustion suggested that microwave-produced chars have a higher thermal stability, likely due to lower O/C ratios, and could be utilized in the metallurgical industry.« less

  19. Solar heated oil shale pyrolysis process

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1985-01-01

    An improved system for recovery of a liquid hydrocarbon fuel from oil shale is presented. The oil shale pyrolysis system is composed of a retort reactor for receiving a bed of oil shale particules which are heated to pyrolyis temperature by means of a recycled solar heated gas stream. The gas stream is separated from the recovered shale oil and a portion of the gas stream is rapidly heated to pyrolysis temperature by passing it through an efficient solar heater. Steam, oxygen, air or other oxidizing gases can be injected into the recycle gas before or after the recycle gas is heated to pyrolysis temperature and thus raise the temperature before it enters the retort reactor. The use of solar thermal heat to preheat the recycle gas and optionally the steam before introducing it into the bed of shale, increases the yield of shale oil.

  20. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature.

    PubMed

    Chen, Yingquan; Yang, Haiping; Wang, Xianhua; Zhang, Shihong; Chen, Hanping

    2012-03-01

    To study the process of biomass-based pyrolytic polygeneration and its mechanism in depth, the pyrolysis of cotton stalk was investigated in a packed bed, with focus on the evolution of the chemical and physical structures of the solid, liquid and gaseous products. The evolution of product characteristics could be good explaining the process mechanism of biomass pyrolysis. A relationship between the pore distribution of solid products and the fused aromatic rings system revealed by Raman analysis might be exist and need to quantify in further study. Regarding the optimum conditions for obtaining high-quality pyrolytic products from the polygeneration system, the optimum temperature is 550-750°C, with a higher calorific value of the obtained charcoal (≈ 28 MJ/kg) and a higher surface area (>200 m(2)/g). Meanwhile, the calorific value of the gas reaches 8-9 MJ/m(3) and the liquid oil would be used as a platform product in biorefinery. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. An economic analysis of mobile pyrolysis for northern New Mexico forests.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Patrick D.; Brown, Alexander L.; Mowry, Curtis Dale

    2011-12-01

    In the interest of providing an economically sensible use for the copious small-diameter wood in Northern New Mexico, an economic study is performed focused on mobile pyrolysis. Mobile pyrolysis was selected for the study because transportation costs limit the viability of a dedicated pyrolysis plant, and the relative simplicity of pyrolysis compared to other technology solutions lends itself to mobile reactor design. A bench-scale pyrolysis system was used to study the wood pyrolysis process and to obtain performance data that was otherwise unavailable under conditions theorized to be optimal given the regional problem. Pyrolysis can convert wood to three mainmore » products: fixed gases, liquid pyrolysis oil and char. The fixed gases are useful as low-quality fuel, and may have sufficient chemical energy to power a mobile system, eliminating the need for an external power source. The majority of the energy content of the pyrolysis gas is associated with carbon monoxide, followed by light hydrocarbons. The liquids are well characterized in the historical literature, and have slightly lower heating values comparable to the feedstock. They consist of water and a mix of hundreds of hydrocarbons, and are acidic. They are also unstable, increasing in viscosity with time stored. Up to 60% of the biomass in bench-scale testing was converted to liquids. Lower ({approx}550 C) furnace temperatures are preferred because of the decreased propensity for deposits and the high liquid yields. A mobile pyrolysis system would be designed with low maintenance requirements, should be able to access wilderness areas, and should not require more than one or two people to operate the system. The techno-economic analysis assesses fixed and variable costs. It suggests that the economy of scale is an important factor, as higher throughput directly leads to improved system economic viability. Labor and capital equipment are the driving factors in the viability of the system. The break

  2. Pyrolysis of waste tyres: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk

    2013-08-15

    Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest inmore » pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}–C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.« less

  3. Generation of functional structures by laser pyrolysis of polysilazane

    NASA Astrophysics Data System (ADS)

    Krauss, Hans-Joachim; Otto, Andreas

    2002-06-01

    The pyrolysis of polysilazanes by laser power represents an innovative technique for the generation of ceramic-like coatings and structures. The dissolved polysilazanes can be easily applied by painting techniques such as dipping or spraying. In the following pyrolysis the polysilazane layer transforms into an amorphous ceramic-like coating. The laser power is absorbed in the precursor layer, which leads to the latter's ceramization without damaging the substrate by thermal load. While plane laser pyrolysis creates a protective coating, selective pyrolysis creates a raised and adherent ceramic-like structure that remains after the unexposed polymer layer has been removed. The flexibility of a writing laser system in conjunction with a suitable handling system makes it possible to inscribe any kind of 2D structure on nearly any complexly shaped part. Some of the chemical, magnetic, and electrical structure properties can be adjusted by the pyrolysis parameters and special types of filler particles. Especially the possibility to control electric conductivity should make it possible to create structure dielectric films or planar resistors, inductors or capacitors, which are basically written on the surface of the part. Because of their ceramic nature of the structures are resistant against high temperatures and corrosive media. Thus, this new additive structuring technique could finally strike a new path in creating corrosion resistant high- temperature sensors and control systems.

  4. ENGINEERING BULLETIN: PYROLYSIS TREATMENT

    EPA Science Inventory

    Pyrolysis is formally defined as chemical decomposition induced in organic materials by heat in the absence of oxygen. In practice, it is not possible to achieve a completely oxygen-free atmosphere; actual pyrolytic systems are operated with less than stoichiometric quantities of...

  5. Pyrolysis characteristics of typical biomass thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Cai, Hongzhen; Ba, Ziyu; Yang, Keyan; Zhang, Qingfa; Zhao, Kunpeng; Gu, Shiyan

    The biomass thermoplastic composites were prepared by extrusion molding method with poplar flour, rice husk, cotton stalk and corn stalk. The thermo gravimetric analyzer (TGA) has also been used for evaluating the pyrolysis process of the composites. The results showed that the pyrolysis process mainly consists of two stages: biomass pyrolysis and the plastic pyrolysis. The increase of biomass content in the composite raised the first stage pyrolysis peak temperature. However, the carbon residue was reduced and the pyrolysis efficiency was better because of synergistic effect of biomass and plastic. The composite with different kinds of biomass have similar pyrolysis process, and the pyrolysis efficiency of the composite with corn stalk was best. The calcium carbonate could inhibit pyrolysis process and increase the first stage pyrolysis peak temperature and carbon residue as a filling material of the composite.

  6. [Characterization of pyrolysis of waste printed circuit boards by high-resolution pyrolysis gas chromatography-mass spectrometry].

    PubMed

    Zhang, Yanhong; Huang, Hong; Xia, Zhengbin; Chen, Huanqin

    2008-07-01

    Thermal degradation of pyrolysis of waste circuit boards was investigated by high-resolution pyrolysis gas chromatography-mass spectrometry (PyGC-MS) and thermogravimetry (TG). In helium atmosphere, the products of FR-4 waste printed circuit board were pyrolyzed at 350, 450, 550, 650, and 750 degrees degrees C, separately, and the pyrolysis products were identified by online MS. The results indicated that the pyrolysis products of the FR-4 waste circuit board were three kinds of substances, such as the low boiling point products, phenol, bisphenol and their related products. Moreover, under 300 degrees degrees C, only observed less pyrolysis products. As the increase of pyrolysis temperature, the relative content of the low boiling point products increased. In the range of 450-650 degrees degrees C, the qualitative analysis and character were similar, and the relative contents of phenol and bisphenol were higher. The influence of pyrolysis temperature on pyrolyzate yields was studied. On the basis of the pyrolyzate profile and the dependence of pyrolyzate yields on pyrolysis temperature, the thermal degradation mechanism of brominated epoxy resin was proposed.

  7. In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.

    In situ and ex situ catalytic pyrolysis were compared in a system with two 2-in. bubbling fluidized bed reactors. Pine was pyrolyzed in the system with a catalyst, HZSM-5 with a silica-to-alumina ratio of 30, placed either in the first (pyrolysis) reactor or the second (upgrading) reactor. Both the pyrolysis and upgrading temperatures were 500 degrees C, and the weight hourly space velocity was 1.1 h -1. Five catalytic cycles were completed in each experiment. The catalytic cycles were continued until oxygenates in the vapors became dominant. The catalyst was then oxidized, after which a new catalytic cycle was begun.more » The in situ configuration gave slightly higher oil yield but also higher oxygen content than the ex situ configuration, which indicates that the catalyst deactivated faster in the in situ configuration than the ex situ configuration. Analysis of the spent catalysts confirmed higher accumulation of metals in the in situ experiment. In all experiments, the organic oil mass yields varied between 14 and 17% and the carbon efficiencies between 20 and 25%. The organic oxygen concentrations in the oils were 16-18%, which represented a 45% reduction compared to corresponding noncatalytic pyrolysis oils prepared in the same fluidized bed reactor system. GC/MS analysis showed the oils to contain one- to four-ring aromatic hydrocarbons and a variety of oxygenates (phenols, furans, benzofurans, methoxyphenols, naphthalenols, indenols). Lastly, high fractions of oxygen were rejected as water, CO, and CO 2, which indicates the importance of dehydration, decarbonylation, and decarboxylation reactions. Light gases were the major sources of carbon losses, followed by char and coke.« less

  8. In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System

    DOE PAGES

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; ...

    2016-02-03

    In situ and ex situ catalytic pyrolysis were compared in a system with two 2-in. bubbling fluidized bed reactors. Pine was pyrolyzed in the system with a catalyst, HZSM-5 with a silica-to-alumina ratio of 30, placed either in the first (pyrolysis) reactor or the second (upgrading) reactor. Both the pyrolysis and upgrading temperatures were 500 degrees C, and the weight hourly space velocity was 1.1 h -1. Five catalytic cycles were completed in each experiment. The catalytic cycles were continued until oxygenates in the vapors became dominant. The catalyst was then oxidized, after which a new catalytic cycle was begun.more » The in situ configuration gave slightly higher oil yield but also higher oxygen content than the ex situ configuration, which indicates that the catalyst deactivated faster in the in situ configuration than the ex situ configuration. Analysis of the spent catalysts confirmed higher accumulation of metals in the in situ experiment. In all experiments, the organic oil mass yields varied between 14 and 17% and the carbon efficiencies between 20 and 25%. The organic oxygen concentrations in the oils were 16-18%, which represented a 45% reduction compared to corresponding noncatalytic pyrolysis oils prepared in the same fluidized bed reactor system. GC/MS analysis showed the oils to contain one- to four-ring aromatic hydrocarbons and a variety of oxygenates (phenols, furans, benzofurans, methoxyphenols, naphthalenols, indenols). Lastly, high fractions of oxygen were rejected as water, CO, and CO 2, which indicates the importance of dehydration, decarbonylation, and decarboxylation reactions. Light gases were the major sources of carbon losses, followed by char and coke.« less

  9. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    PubMed Central

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  10. Pyrolysis of waste tyres: a review.

    PubMed

    Williams, Paul T

    2013-08-01

    Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H(2), C(1)-C(4) hydrocarbons, CO(2), CO and H(2)S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature.

    PubMed

    Chen, Dengyu; Li, Yanjun; Cen, Kehui; Luo, Min; Li, Hongyan; Lu, Bin

    2016-10-01

    The pyrolysis of poplar wood were comprehensively investigated at different pyrolysis temperatures (400, 450, 500, 550, and 600°C) and at different heating rates (10, 30, and 50°C/min). The results showed that BET surface area of biochar, the HHV of non-condensable gas and bio-oil reached the maximum values of 411.06m(2)/g, 14.56MJ/m(3), and 14.39MJ/kg, under the condition of 600°C and 30°C/min, 600°C and 50°C/min, and 550°C and 50°C/min, respectively. It was conducive to obtain high mass and energy yield of bio-oil at 500°C and higher heating rate, while lower pyrolysis temperature and heating rate contributed towards obtaining both higher mass yield and energy yield of biochar. However, higher pyrolysis temperature and heating rate contributed to obtain both higher mass yield and energy yield of the non-condensable gas. In general, compared to the heating rate, the pyrolysis temperature had more effect on the product properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Char yield on pyrolysis of cellulose

    Treesearch

    A. Broido; Maxine A. Nelson

    1975-01-01

    Whether the pyrolysis of cellulose is conducted in an inert medium or in air, partial pyrolysis at a lower temperature increases the char yield subsequently obtained after 1 hour at 370°C. The results are consistent with a pyrolysis scheme in which two competing sequences of cellulose pyrolysis reactions are initiated by (1) an intermolecular dehydration leading to...

  13. Pyrolysis with staged recovery

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.

    1979-03-20

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.

  14. Methods and apparatuses for preparing upgraded pyrolysis oil

    DOEpatents

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  15. Integration of pyrolysis and anaerobic digestion--use of aqueous liquor from digestate pyrolysis for biogas production.

    PubMed

    Hübner, Tobias; Mumme, Jan

    2015-05-01

    Anaerobic digestion of aqueous pyrolysis liquor derived from pyrolysis of solid digestate was tested in batch mode using an un-adapted inoculum. Three pyrolysis liquors produced at 330°C, 430°C and 530°C in four COD-based concentrations of 3, 6, 12 and 30 g L(-1) were investigated. The three lower concentrations showed considerable biogas production, whereas the 30 g L(-1) dosage caused process inhibition. The highest methane yield of 199.1±18.5 mL g(COD)(-1) (COD removal: 56.9±5.3%) was observed for the 330°C pyrolysis liquor, followed by the 430°C sample with only slightly lower values. The 530°C sample dropped to a yield of 129.3±19.7 mL g(COD)(-1) (COD removal: 36.9±5.6%). Most VOCs contained in the pyrolysis liquor (i.e. furfural, phenol, catechol, guaiacol, and levoglucosan) were reduced below detection limit (cresol by 10-60%). Consequently, integrated pyrolysis and anaerobic digestion in addition to thermochemical conversion of digestate also promises bioconversion of pyrolysis liquors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Volatile Analysis by Pyrolysis of Regolith for Planetary Resource Exploration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Malespin, Charles; ten Kate, Inge L.; Getty, Stephanie A.; Holmes, Vincent E.; Mumm, Erik; Franz, Heather B.; Noreiga, Marvin; Dobson, Nick; Southard, Adrian E.; hide

    2012-01-01

    The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400 C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300 C and determining the composition of volatiles released as a function of temperature.

  17. Pyrolysis with cyclone burner

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.

    1978-07-25

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue and separating out the fines.

  18. Catalytic biomass pyrolysis process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  19. Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor

    NASA Astrophysics Data System (ADS)

    Urban, Brook

    Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of

  20. Method for Hot Real-Time Sampling of Pyrolysis Vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomeroy, Marc D

    Biomass Pyrolysis has been an increasing topic of research, in particular as a replacement for crude oil. This process utilizes moderate temperatures to thermally deconstruct the biomass which is then condensed into a mixture of liquid oxygenates to be used as fuel precursors. Pyrolysis oils contain more than 400 compounds, up to 60 percent of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during the condensation and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition beforemore » condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors, many challenges must be overcome. Sampling must occur within a narrow range of temperatures to reduce product composition changes from overheating or partial condensation or plugging of lines from condensed products. Residence times must be kept at a minimum to reduce further reaction chemistries. Pyrolysis vapors also form aerosols that are carried far downstream and can pass through filters resulting in build-up in downstream locations. The co-produced bio-char and ash from the pyrolysis process can lead to plugging of the sample lines, and must be filtered out at temperature, even with the use of cyclonic separators. A practical approach for considerations and sampling system design, as well as lessons learned are integrated into the hot analytical sampling system of the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU) to provide industrially relevant demonstrations of thermochemical transformations of biomass feedstocks at the pilot scale.« less

  1. Effect of temperature on pyrolysis product of empty fruit bunches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-24

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The charmore » obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.« less

  2. Fast Pyrolysis of Poplar Using a Captive Sample Reactor: Effects of Inorganic Salts on Primary Pyrolysis Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukarakate, C.; Robichaud, D.; Donohoe, B.

    2012-01-01

    We have constructed a captive sample reactor (CSR) to study fast pyrolysis of biomass. The reactor uses a stainless steel wire mesh to surround biomass materials with an isothermal environment by independent controlling of heating rates and pyrolysis temperatures. The vapors produced during pyrolysis are immediately entrained and transported in He carrier gas to a molecular beam mass spectrometer (MBMS). Formation of secondary products is minimized by rapidly quenching the sample support with liquid nitrogen. A range of alkali and alkaline earth metal (AAEM) and transition metal salts were tested to study their effect on composition of primary pyrolysis products.more » Multivariate curve resolution (MCR) analysis of the MBMS data shows that transition metal salts enhance pyrolysis of carbohydrates and AAEM salts enhances pyrolysis of lignin. This was supported by performing similar separate studies on cellulose, hemicellulose and extracted lignin. The effect of salts on char formation is also discussed.« less

  3. Formate-assisted pyrolysis

    DOEpatents

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  4. Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis

    DOE PAGES

    Johansson, Ann-Christine; Lisa, Kristiina; Sandström, Linda; ...

    2016-12-06

    Pyrolysis oil is a complex mixture of different chemical compounds with a wide range of molecular weights and boiling points. Due to its complexity, an efficient fractionation of the oil may be a more promising approach of producing liquid fuels and chemicals than treating the whole oil. In this work a sampling system based on fractional condensation was attached to a cyclone pyrolysis pilot plant to enable separation of the produced pyrolysis vapors into five oil fractions. The sampling system was composed of cyclonic condensers and coalescing filters arranged in series. Our objective was to characterize the oil fractions producedmore » from three different Nordic feedstocks and suggest possible applications. The oil fractions were thoroughly characterized using several analytical techniques including water content; elemental composition; heating value, and chemical compound group analysis using solvent fractionation, quantitative 13C NMR and 1H NMR and GC x GC - TOFMS. The results show that the oil fractions significantly differ from each other both in chemical and physical properties. The first fractions and the fraction composed of aerosols were highly viscous and contained larger energy-rich compounds of mainly lignin-derived material. The middle fraction contained medium-size compounds with relatively high concentration of water, sugars, alcohols, hydrocarbonyls and acids and finally the last fraction contained smaller molecules such as water, aldehydes, ketones and acids. But, the properties of the respective fractions seem independent on the studied feedstock types, i.e. the respective fractions produced from different feedstock are rather similar. Furthermore, this promotes the possibility to vary the feedstock depending on availability while retaining the oil properties. Possible applications of the five fractions vary from oil for combustion and extraction of the pyrolytic lignin in the early fractions to extraction of sugars from the early and middle

  5. Fractional condensation of pyrolysis vapors produced from Nordic feedstocks in cyclone pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, Ann-Christine; Lisa, Kristiina; Sandström, Linda

    Pyrolysis oil is a complex mixture of different chemical compounds with a wide range of molecular weights and boiling points. Due to its complexity, an efficient fractionation of the oil may be a more promising approach of producing liquid fuels and chemicals than treating the whole oil. In this work a sampling system based on fractional condensation was attached to a cyclone pyrolysis pilot plant to enable separation of the produced pyrolysis vapors into five oil fractions. The sampling system was composed of cyclonic condensers and coalescing filters arranged in series. Our objective was to characterize the oil fractions producedmore » from three different Nordic feedstocks and suggest possible applications. The oil fractions were thoroughly characterized using several analytical techniques including water content; elemental composition; heating value, and chemical compound group analysis using solvent fractionation, quantitative 13C NMR and 1H NMR and GC x GC - TOFMS. The results show that the oil fractions significantly differ from each other both in chemical and physical properties. The first fractions and the fraction composed of aerosols were highly viscous and contained larger energy-rich compounds of mainly lignin-derived material. The middle fraction contained medium-size compounds with relatively high concentration of water, sugars, alcohols, hydrocarbonyls and acids and finally the last fraction contained smaller molecules such as water, aldehydes, ketones and acids. But, the properties of the respective fractions seem independent on the studied feedstock types, i.e. the respective fractions produced from different feedstock are rather similar. Furthermore, this promotes the possibility to vary the feedstock depending on availability while retaining the oil properties. Possible applications of the five fractions vary from oil for combustion and extraction of the pyrolytic lignin in the early fractions to extraction of sugars from the early and middle

  6. Chemistry of decomposition of freshwater wetland sedimentary organic material during ramped pyrolysis

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Rosenheim, B. E.

    2011-12-01

    Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (μmol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary

  7. Pyrolysis technologies for municipal solid waste: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn; Yin, Lijie; Wang, Huan

    2014-12-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis inmore » regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.« less

  8. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin

    2015-11-17

    The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis.

  9. Carbon isotope analyses of n-alkanes released from rapid pyrolysis of oil asphaltenes in a closed system.

    PubMed

    Chen, Shasha; Jia, Wanglu; Peng, Ping'an

    2016-08-15

    Carbon isotope analysis of n-alkanes produced by the pyrolysis of oil asphaltenes is a useful tool for characterizing and correlating oil sources. Low-temperature (320-350°C) pyrolysis lasting 2-3 days is usually employed in such studies. Establishing a rapid pyrolysis method is necessary to reduce the time taken for the pretreatment process in isotope analyses. One asphaltene sample was pyrolyzed in sealed ampoules for different durations (60-120 s) at 610°C. The δ(13) C values of the pyrolysates were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The molecular characteristics and isotopic signatures of the pyrolysates were investigated for the different pyrolysis durations and compared with results obtained using the normal pyrolysis method, to determine the optimum time interval. Several asphaltene samples derived from various sources were analyzed using this method. The asphaltene pyrolysates of each sample were similar to those obtained by the flash pyrolysis method on similar samples. However, the molecular characteristics of the pyrolysates obtained over durations longer than 90 s showed intensified secondary reactions. The carbon isotopic signatures of individual compounds obtained at pyrolysis durations less than 90 s were consistent with those obtained from typical low-temperature pyrolysis. Several asphaltene samples from various sources released n-alkanes with distinct carbon isotopic signatures. This easy-to-use pyrolysis method, combined with a subsequent purification procedure, can be used to rapidly obtain clean n-alkanes from oil asphaltenes. Carbon isotopic signatures of n-alkanes released from oil asphaltenes from different sources demonstrate the potential application of this method in 'oil-oil' and 'oil-source' correlations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Flash Vacuum Pyrolysis: Techniques and Reactions.

    PubMed

    Wentrup, Curt

    2017-11-20

    Flash vacuum pyrolysis (FVP) had its beginnings in the 1940s and 1950s, mainly through mass spectrometric detection of pyrolytically formed free radicals. In the 1960s many organic chemists started performing FVP experiments with the purpose of isolating new and interesting compounds and understanding pyrolysis processes. Meanwhile, many different types of apparatus and techniques have been developed, and it is the purpose of this review to present the most important methods as well as a survey of typical reactions and observations that can be achieved with the various techniques. This includes preparative FVP, chemical trapping reactions, matrix isolation, and low temperature spectroscopy of reactive intermediates and unstable molecules, the use of online mass, photoelectron, microwave, and millimeterwave spectroscopies, gas-phase laser pyrolysis, pulsed pyrolysis with supersonic jet expansion, very low pressure pyrolysis for kinetic investigations, solution-spray and falling-solid FVP for involatile compounds, and pyrolysis over solid supports and reagents. Moreover, the combination of FVP with matrix isolation and photochemistry is a powerful tool for investigations of reaction mechanism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rock samples analysis with the pyrolysis system of the Mars Organic Molecule Analyzer (MOMA)

    NASA Astrophysics Data System (ADS)

    Steininger, H.; Goetz, W.; Goesmann, F.

    2012-12-01

    The Mars Organic Molecule Analyzer (MOMA) is a combined pyrolysis gas chromatograph mass spectrometer (GC-MS) and laser desorption mass spectrometer (LD-MS). It will be the key instrument of the ESA/Roscosmos ExoMars 2018 mission to search for extinct and extant life. Additionally the instrument will be able to detect the organic background which has possibly been delivered to Mars by meteorites. Several samples containing a wide range of organic molecules have been tested with a flight analog injection system. The results of the tests were compared to results obtained by a commercial pyrolysis system, the Pyrola pyrolysis unit. The first experimental setup (Pyrola unit) consists of a small quartz tube with an electrically heated platinum filament. A constant helium flow transports the volatilized compounds through an injection needle directly into the injector of the GC. The whole system is heated to 175°C. The second experimental setup (flight analog injection system) consists of a 6 mm diameter platinum oven connected to a microvalve plate to route the gas from the oven to the GC. The microvalves can be switched electrically. The volatiles are subsequently trapped in a cold trap consisting of a Tenax filed tube. Heating this tube releases the volatiles and injects them through an injection needle into the GC. A Varian 4000 GC-MS with RTX-5 column was used to separate and analyze the volatiles generated from both experimental setups. During the experiments several natural rock samples with a broad content of organic material have been analyzed. The sample material was crushed and ground. To obtain comparable results the same amount of sample was used in both setups. Lower temperatures were used in the flight analog injection system due to restrictions of the reusable oven. Lower temperatures normally lead to only a slight decrease in the very heavy and non-volatile compounds but do not change the overall appearance of the chromatogram. Significant differences in

  12. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis.

    PubMed

    Casoni, Andrés I; Zunino, Josefina; Piccolo, María C; Volpe, María A

    2016-09-01

    The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood.

    PubMed

    Chen, Dengyu; Li, Yanjun; Deng, Minsi; Wang, Jiayang; Chen, Miao; Yan, Bei; Yuan, Qiqiang

    2016-08-01

    Torrefaction of pine wood was performed in a tube furnace at three temperatures (220, 250, and 280°C) for 30min. Then catalytic pyrolysis of raw and torrefied pine wood was performed using HZSM-5 catalyst in a fixed-bed pyrolysis reactor at 550°C for 15min. Torrefaction pretreatment and catalytic pyrolysis have an very important effect on the yield, property, and energy distribution of pyrolysis products. The results showed that the yield of biochar rapidly increased, while that of bio-oil decreased with increasing torrefaction temperature. The oxy-compound content of bio-oil, such as acids and aldehydes, sharply decreased. However, the aromatic hydrocarbon content not only increased but also further promoted by HZSM-5 catalyst. With highest mass yields and energy yields, biochar was also the very important product of pyrolysis. The oxygen content in biomass was mainly removed in the form of CO2 and H2O, leading to increasing CO2 content in non-condensable gas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    PubMed Central

    2014-01-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis. PMID:25136282

  15. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst.

    PubMed

    Lee, Hyung Won; Choi, Suek Joo; Park, Sung Hoon; Jeon, Jong-Ki; Jung, Sang-Chul; Kim, Sang Chai; Park, Young-Kwon

    2014-01-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis.

  16. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Won; Choi, Suek Joo; Park, Sung Hoon; Jeon, Jong-Ki; Jung, Sang-Chul; Kim, Sang Chai; Park, Young-Kwon

    2014-08-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro- d-galactitol and 1,5-anhydro- d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis.

  17. Effluent Gas Flux Characterization During Pyrolysis of Chicken Manure

    NASA Astrophysics Data System (ADS)

    Clark, S. C.; Ryals, R.; Miller, D. J.; Mullen, C. A.; Pan, D.; Zondlo, M. A.; Boateng, A. A.; Hastings, M. G.

    2017-12-01

    Pyrolysis is a viable option for the production of agricultural resources from diverted organic waste streams and renewable bioenergy. This high temperature thermochemical process yields material with beneficial reuses, including bio-oil and biochar. Gaseous forms of carbon (C) and nitrogen (N) are also emitted during pyrolysis. The effluent mass emission rates from pyrolysis are not well characterized, thus limiting proper evaluation of the environmental benefits or costs of pyrolysis products. We present the first comprehensive suite of C and N mass emission rate measurements of a biomass pyrolysis process using chicken manure as feedstock to produce biochar and bio-oil. Two chicken manure fast pyrolysis experiments were conducted at controlled temperature ranges of 450 - 485 °C and 550 - 585 °C. Mass emission rates of N2O, NO, CO, CO2, CH4 and NH3 were measured using trace gas analyzers. Based on the system mass balance, 23-25% of the total mass of the manure feedstock was emitted as gas, while 52-55% and 23% were converted to bio-oil and biochar, respectively. CO2 and NH3 were the dominant gaseous species by mass, accounting for 58 - 65% of total C mass emitted and 99% of total reactive N mass emitted, respectively. Our gas flux measurements suggest that 1.4 to 2.7 g NH3 -N would be produced from the pyrolysis of one kg of manure. Conservatively scaling up these NH3 pyrolysis emissions in the Chesapeake Bay Watershed, where an estimated 8.64 billion kg of poultry manure is applied to agricultural soils every year, as much as 1.2 x 107 kg of NH3 could be emitted into the atmosphere annually, increasing the potential impact of atmospheric N deposition without a mechanism to capture the gas exhaust during pyrolysis. However, this is considerably less than the potential emissions from NH3 volatilization of raw chicken manure applications, which can be 20-60% of total N applied, and amount to 3.4 x 107 - 1.0 x 108 kg NH3-N yr-1. Pyrolysis has the potential to

  18. Conventional and fast pyrolysis of automobile shredder residues (ASR).

    PubMed

    Zolezzi, Marcello; Nicolella, Cristiano; Ferrara, Sebastiano; Iacobucci, Cesare; Rovatti, Mauro

    2004-01-01

    This work aims at comparing performance and product yields in conventional pyrolysis and fast pyrolysis of automotive shredded residues. In both processes, carbon conversion to gaseous and liquid products was more than 80%. Gas production was maximised in conventional pyrolysis (about 35% by weight of the initial ASR weight), while fast pyrolysis led to an oil yield higher than 55%. Higher heating values (HHV) of both conventional pyrolysis gas and fast pyrolysis oil increased from 8.8 to 25.07 MJ/Nm3 and from 28.8 and 36.27 MJ/kg with increasing pyrolysis temperature. Copyright 2004 Elsevier Ltd.

  19. Pyrolysis process for producing fuel gas

    NASA Technical Reports Server (NTRS)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  20. Co-pyrolysis of sewage sludge and manure.

    PubMed

    Ruiz-Gómez, Nadia; Quispe, Violeta; Ábrego, Javier; Atienza-Martínez, María; Murillo, María Benita; Gea, Gloria

    2017-01-01

    The management and valorization of residual organic matter, such as sewage sludge and manure, is gaining interest because of the increasing volume of these residues, their localized generation and the related problems. The anaerobic digestion of mixtures of sewage sludge and manure could be performed due to the similarities between both residues. The purpose of this study is to evaluate the feasibility of the co-pyrolysis of sewage sludge (SS) and digested manure (DM) as a potential management technology for these residues. Pyrolysis of a sewage sludge/manure blend (50:50%) was performed at 525°C in a stirred batch reactor under N 2 atmosphere. The product yields and some characteristics of the product were analyzed and compared to the results obtained in the pyrolysis of pure residues. Potential synergetic and antagonist effects during the co-pyrolysis process were evaluated. Although sewage sludge and manure seem similar in nature, there are differences in their pyrolysis product properties and distribution due to their distinct ash and organic matter composition. For the co-pyrolysis of SS and DM, the product yields did not show noticeable synergistic effects with the exception of the yields of organic compounds, being slightly higher than the predicted average, and the H 2 yield, being lower than expected. Co-pyrolysis of SS and DM could be a feasible management alternative for these residues in locations where both residues are generated, since the benefits and the drawbacks of the co-pyrolysis are similar to those of the pyrolysis of each residue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Design of pyrolysis reactor for production of bio-oil and bio-char simultaneously

    NASA Astrophysics Data System (ADS)

    Aladin, Andi; Alwi, Ratna Surya; Syarif, Takdir

    2017-05-01

    The residues from the wood industry are the main contributors to biomass waste in Indonesia. The conventional pyrolysis process, which needs a large energy as well as to produce various toxic chemical to the environment. Therefore, a pyrolysis unit on the laboratory scale was designed that can be a good alternative to achieve zero-waste and low energy cost. In this paper attempts to discuss design and system of pyrolysis reactor to produce bio-oil and bio-char simultaneously.

  2. Analytical pyrolysis mass spectrometry: new vistas opened by temperature-resolved in-source PYMS

    NASA Astrophysics Data System (ADS)

    Boon, Jaap J.

    1992-09-01

    Analytical pyrolysis mass spectrometry (PYMS) is introduced and its applications to the analysis of synthetic polymers, biopolymers, biomacromolecular systems and geomacromolecules are critically reviewed. Analytical pyrolysis inside the ionisation chamber of a mass spectrometer, i.e. in-source PYMS, gives a complete inventory of the pyrolysis products evolved from a solid sample. The temperature-resolved nature of the experiment gives a good insight into the temperature dependence of the volatilisation and pyrolytic dissociation processes. Chemical ionisation techniques appear to be especially suitable for the analysis of oligomeric fragments released in early stages of the pyrolysis of polymer systems. Large oligomeric fragments were observed for linear polymers such as cellulose (pentadecamer), polyhydroxyoctanoic acid (tridecamer) and polyhydroxybutyric acid (heneicosamer). New in-source PYMS data are presented on artists' paints, the plant polysaccharides cellulose and xyloglucan, several microbial polyhydroxyalkanoates, wood and enzyme-digested wood, biodegraded roots and a fossil cuticle of Miocene age. On-line and off-line pyrolysis chromatography mass spectrometric approaches are also discussed. New data presented on high temperature gas chromatography--mass spectrometry of deuterio-reduced permethylated pyrolysates of cellulose lead to a better understanding of polysaccharide dissociation mechanisms. Pyrolysis as an on-line sample pretreatment method for organic macromolecules in combination with MS techniques is a very challenging field of mass spectrometry. Pyrolytic dissociation and desorption is not at all a chaotic process but proceeds according to very specific mechanisms.

  3. Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonakou, E.V.; Kalogiannis, K.G.; Stephanidis, S.D.

    Highlights: • Thermal and catalytic pyrolysis is a powerful method for recycling of WEEEs. • Liquid products obtained from the pyrolysis of PC or HIPS found in waste CDs are very different. • Mainly phenols are obtained from pyrolysis PC based wastes while aromatics from HIPS. • Use of MgO catalyst increases the amount of phenols from CD recycling compared to ZSM-5. • Use of MgO or ZSM-5 catalysts reduces the amount of styrene recovered from HIPS. - Abstract: Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or variousmore » useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds.« less

  4. A review of the toxicity of biomass pyrolysis liquids formed at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diebold, J P

    1997-04-01

    The scaleup of biomass fast pyrolysis systems to large pilot and commercial scales will expose an increasingly large number of personnel to potential health hazards, especially during the evaluation of the commercial use of the pyrolysis condensates. Although the concept of fast pyrolysis to optimize liquid products is relatively new, low-temperature pyrolysis processes have been used over the aeons to produce charcoal and liquid by-products, e.g., smoky food flavors, food preservatives, and aerosols containing narcotics, e.g., nicotine. There are a number of studies in the historical literature that concern the hazards of acute and long-term exposure to smoke and tomore » the historical pyrolysis liquids formed at low temperatures. The reported toxicity of smoke, smoke food flavors, and fast pyrolysis oils is reviewed. The data found for these complex mixtures suggest that the toxicity may be less than that of the individual components. It is speculated that there may be chemical reactions that take place that serve to reduce the toxicity during aging. 81 refs.« less

  5. Electrochemical and/or microbiological treatment of pyrolysis wastewater.

    PubMed

    Silva, José R O; Santos, Dara S; Santos, Ubiratan R; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Schneider, Jaderson K; Krause, Laiza C; López, Jorge A; Hernández-Macedo, Maria L

    2017-10-01

    Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Methods for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-06-30

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  7. Mass spectrometric studies of fast pyrolysis of cellulose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degenstein, John; Hurt, Matt; Murria, Priya

    2015-01-01

    A fast pyrolysis probe/linear quadrupole ion trap mass spectrometer combination was used to study the primary fast pyrolysis products (those that first leave the hot pyrolysis surface) of cellulose, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, as well as of cellobiosan, cellotriosan, and cellopentosan, at 600°C. Similar products with different branching ratios were found for the oligosaccharides and cellulose, as reported previously. However, identical products (with the exception of two) with similar branching ratios were measured for cellotriosan (and cellopentosan) and cellulose. This result demonstrates that cellotriosan is an excellent small-molecule surrogate for studies of the fast pyrolysis of cellulose andmore » also that most fast pyrolysis products of cellulose do not originate from the reducing end. Based on several observations, the fast pyrolysis of cellulose is suggested to initiate predominantly via two competing processes: the formation of anhydro-oligosaccharides, such as cellobiosan, cellotriosan, and cellopentosan (major route), and the elimination of glycolaldehyde (or isomeric) units from the reducing end of oligosaccharides formed from cellulose during fast pyrolysis.« less

  8. Catalytic Pyrolysis of Waste Plastic Mixture

    NASA Astrophysics Data System (ADS)

    Sembiring, Ferdianta; Wahyu Purnomo, Chandra; Purwono, Suryo

    2018-03-01

    Inorganic waste especially plastics still become a major problem in many places. Low biodegradability of this materials causes the effort in recycling become very difficult. Most of the municipal solid waste (MSW) recycling facilities in developing country only use composting method to recover the organic fraction of the waste, while the inorganic fraction is still untreated. By pyrolysis, plastic waste can be treated to produce liquid fuels, flammable gas and chars. Reduction in volume and utilization of the liquid and gas as fuel are the major benefits of the process. By heat integration actually this process can become a self-sufficient system in terms of energy demand. However, the drawback of this process is usually due to the diverse type of plastic in the MSW creating low grade of liquid fuel and harmful gases. In this study, the mixture of plastics i.e. polypropylene (PP) and polyethylene terephthalate (PET) is treated using pyrolysis with catalyst in several operating temperature. PET is problematic to be treated using pyrolysis due to wax-like byproduct in liquid which may cause pipe clogging. The catalyst is the mixture of natural zeolite and bentonite which is able to handle PP and PET mixture feed to produce high grade liquid fuels in terms of calorific value and other fuel properties.

  9. Comprehensive model for predicting elemental composition of coal pyrolysis products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricahrds, Andrew P.; Shutt, Tim; Fletcher, Thomas H.

    Large-scale coal combustion simulations depend highly on the accuracy and utility of the physical submodels used to describe the various physical behaviors of the system. Coal combustion simulations depend on the particle physics to predict product compositions, temperatures, energy outputs, and other useful information. The focus of this paper is to improve the accuracy of devolatilization submodels, to be used in conjunction with other particle physics models. Many large simulations today rely on inaccurate assumptions about particle compositions, including that the volatiles that are released during pyrolysis are of the same elemental composition as the char particle. Another common assumptionmore » is that the char particle can be approximated by pure carbon. These assumptions will lead to inaccuracies in the overall simulation. There are many factors that influence pyrolysis product composition, including parent coal composition, pyrolysis conditions (including particle temperature history and heating rate), and others. All of these factors are incorporated into the correlations to predict the elemental composition of the major pyrolysis products, including coal tar, char, and light gases.« less

  10. Confined-Pyrolysis as an Experimental Method for Hydrothermal Organic Synthesis

    NASA Technical Reports Server (NTRS)

    Leif, Roald N.; Simoneit, Bernd R. T.

    1995-01-01

    A closed pyrolysis system has been developed as a tool for studying the reactions of organic compounds under extreme hydrothermal conditions. Small high pressure stainless steel vessels in which the ratio of sediment or sample to water has been adjusted to eliminate the headspace at peak experimental conditions confines the organic components to the bulk solid matrix and eliminates the partitioning of the organic compounds away from the inorganic components during the experiment. Confined pyrolysis experiments were performed to simulate thermally driven catagenetic changes in sedimentary organic matter using a solids to water ratio of 3.4 to 1. The extent of alteration was measured by monitoring the steroid and triterpenoid biomarkers and polycyclic aromatic hydrocarbon distributions. These pyrolysis experiments duplicated the hydrothermal transformations observed in nature. Molecular probe experiments using alkadienes, alkenes and alkanes in H2O and D2O elucidated the isomerization and hydrogenation reactions of aliphatic and the competing oxidative reactions occurring under hydrothermal conditions. This confined pyrolysis technique is being applied to test experiments on organic synthesis of relevance to chemical evolution for the origin of life.

  11. Vacuum pyrolysis of waste tires with basic additives.

    PubMed

    Zhang, Xinghua; Wang, Tiejun; Ma, Longlong; Chang, Jie

    2008-11-01

    Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na2CO3, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 degrees C to 600 degrees C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 degrees C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 degrees C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) approximately 205 degrees C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na2CO3 addition. Pyrolysis gas was mainly composed of H2, CO, CH4, CO2, C2H4 and C2H6. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

  12. Ex-situ catalytic pyrolysis of wastewater sewage sludge - A micro-pyrolysis study.

    PubMed

    Wang, Kaige; Zheng, Yan; Zhu, Xifeng; Brewer, Catherine E; Brown, Robert C

    2017-05-01

    Concerns over increasing amounts of sewage sludge and unsustainability of current disposal methods have led to development of alternative routes for sludge management. The large amount of organics in sewage sludge makes it potential feedstock for energy or fuel production via thermochemical pathways. In this study, ex-situ catalytic pyrolysis using HZSM-5 catalyst was explored for the production of olefinic and aromatic hydrocarbons and nutrient-rich char from sewage sludge. The optimal pyrolysis and catalysis temperatures were found to be 500°C and 600°C, respectively. Carbon yields of hydrocarbons from sewage sludge were higher than for lignocellulose; yield differences were attributed to the high extractives content in the sludge. Full recovery of most inorganic elements were found in the char, which suggests that catalyst deactivation maybe alleviated through ex-situ catalytic pyrolysis. Most of the nitrogen was retained in the char while 31.80% was released as ammonia, which suggests a potential for nitrogen recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Lance Awender; Brandvold, Timothy A.

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed throughmore » the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.« less

  14. Pyrolysis processing for solid waste resource recovery

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A. (Inventor); Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  15. Catalytic fast pyrolysis of lignocellulosic biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectivelymore » convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.« less

  16. Methods for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Brandvold, Timothy A.

    2015-07-14

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method comprising the steps of diluting the biomass-derived pyrolysis oil with a phenolic-containing diluent to form a diluted pyoil-phenolic feed is provided. The diluted pyoil-phenolic feed is contacted with a deoxygenating catalyst in the presence of hydrogen at hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  17. Development of advanced technologies for biomass pyrolysis

    NASA Astrophysics Data System (ADS)

    Xu, Ran

    The utilization of biomass resources as a renewable energy resource is of great importance in responding to concerns over the protection of the environment and the security of energy supply. This PhD research focuses on the investigation of the conversion of negative value biomass residues into value-added fuels through flash pyrolysis. Pyrolysis Process Study. A pilot plant bubbling fluidized bed pyrolyzer has been set up and extensively used to thermally crack various low or negative value agricultural, food and biofuel processing residues to investigate the yields and quality of the liquid [bio-oil] and solid (bio-char] products. Another novel aspect of this study is the establishment of an energy balance from which the thermal self-sustainability of the pyrolysis process can be assessed. Residues such as grape skins and mixture of grape skins and seeds, dried distiller's grains from bio-ethanol plants, sugarcane field residues (internal bagasse, external and whole plant) have been tested. The pyrolysis of each residue has been carried out at temperatures ranging from 300 to 600°C and at different vapor residence times, to determine its pyrolysis behavior including yields and the overall energy balance. The thermal sustainability of the pyrolysis process has been estimated by considering the energy contribution of the product gases and liquid bio-oll in relation to the pyrolysis heat requirements. The optimum pyrolysis conditions have been identified in terms of maximizing the liquid blo-oil yield, energy density and content of the product blo-oil, after ensuring a self-sustainable process by utilizing the product gases and part of char or bio-oil as heat sources. Adownflow pyrolyzer has also been set up. Preliminary tests have been conducted using much shorter residence times. Bio-oil Recovery. Bio-oil recovery from the pyrolysis unit includes condensation followed by demisting. A blo-oil cyclonic condensing system is designed A nearly tangential entry forces

  18. Coal liquefaction with subsequent bottoms pyrolysis

    DOEpatents

    Walchuk, George P.

    1978-01-01

    In a coal liquefaction process wherein heavy bottoms produced in a liquefaction zone are upgraded by coking or a similar pyrolysis step, pyrolysis liquids boiling in excess of about 1000.degree. F. are further reacted with molecular hydrogen in a reaction zone external of the liquefaction zone, the resulting effluent is fractionated to produce one or more distillate fractions and a bottoms fraction, a portion of this bottoms fraction is recycled to the reaction zone, and the remaining portion of the bottoms fraction is recycled to the pyrolysis step.

  19. Processes for converting lignocellulosics to reduced acid pyrolysis oil

    DOEpatents

    Kocal, Joseph Anthony; Brandvold, Timothy A

    2015-01-06

    Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.

  20. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue.

    PubMed

    Li, Hao; Mahyoub, Samah Awadh Ali; Liao, Wenjie; Xia, Shuqian; Zhao, Hechuan; Guo, Mengya; Ma, Peisheng

    2017-01-01

    The magnetic biochars were easily fabricated by thermal pyrolysis of Fe(NO 3 ) 3 and distillation residue derived from rice straw pyrolysis oil at 400, 600 and 800°C. The effects of pyrolysis temperature on characteristics of magnetic biochars as well as adsorption capacity for aromatic contaminants (i.e., anisole, phenol and guaiacol) were investigated carefully. The degree of carbonization of magnetic biochars become higher as pyrolysis temperature increasing. The magnetic biochar reached the largest surface area and pore volume at the pyrolysis temperature of 600°C due to pores blocking in biochar during pyrolysis at 800°C. Based on batch adsorption experiments, the used adsorbent could be magnetically separated and the adsorption capacity of anisole on magnetic biochars was stronger than that of phenol and guaiacol. The properties of magnetic biochar, including surface area, pore volume, aromaticity, grapheme-like-structure and iron oxide (γ-Fe 2 O 3 ) particles, showed pronounced effects on the adsorption performance of aromatic contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reprint of: Pyrolysis technologies for municipal solid waste: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn; Yin, Lijie; Wang, Huan

    2015-03-15

    Highlights: • MSW pyrolysis reactors, products and environmental impacts are reviewed. • MSW pyrolysis still has to deal with flue gas emissions and products’ contamination. • Definition of standardized products is suggested to formalize MSW pyrolysis technology. • Syngas is recommended to be the target product for single MSW pyrolysis technology. - Abstract: Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis inmore » regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO{sub 2} and NH{sub 3}, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested.« less

  2. Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis.

    PubMed

    Chen, Nanwei; Ren, Jie; Ye, Ziwei; Xu, Qizhi; Liu, Jingyong; Sun, Shuiyu

    2016-12-01

    This study was carried out to investigate the kinetics of coffee industrial residue (CIR) pyrolysis, the effect of pyrolysis factors on yield of bio-oil component and components separation of bio-oil. The kinetics of CIR pyrolysis was analyzed using distributed activation energy model (DAEM), based on the experiments in thermogravimetric analyzer (TGA), and it indicated that the average of activation energy (E) is 187.86kJ·mol -1 . The bio-oils were prepared from CIR pyrolysis in vacuum tube furnace, and its components were determined by gas chromatography/mass spectrometry (GC-MS). Among pyrolysis factors, pyrolysis temperature is the most influential factor on components yield of bio-oil, directly concerned with the volatilization and yield of components (palmitic acid, linoleic acid, oleic acid, octadecanoic acid and caffeine). Furthermore, a new method (sequencing temperature-raising pyrolysis) was put forward and applied to the components separation of bio-oil. Based on experiments, a solution of components separation of bio-oil was come out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Chapter 8: Pyrolysis of Biomass for Aviation Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, David J; Jenkins, Rhodri W.; Sutton, Andrew D.

    2016-07-15

    Pyrolysis, the breaking down of organic material using heat and the absence of oxygen, is a method that has been widely researched for the production of liquid fuels. In this chapter, we review the feedstocks typically used for pyrolysis, the properties and the composition of the liquid fraction (termed 'bio-oil') obtained, the studies in which pyrolysis has been used in an attempt to increase the bio-oil yield, and how the bio-oil has been upgraded to fuel-like molecules. We also discuss the viability of pyrolysis to produce jet fuel hydrocarbons.

  4. An Optically Accessible Pyrolysis Microreactor

    NASA Astrophysics Data System (ADS)

    Baraban, Joshua H.; David, Donald E.; Ellison, Barney; Daily, John W.

    2016-06-01

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions. (This work has been published in J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily. An Optically Accessible Pyrolysis Micro-Reactor. Review of Scientific Instruments, 87(1):014101, 2016.)

  5. Desulfurized gas production from vertical kiln pyrolysis

    DOEpatents

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  6. Morphological characteristics of waste polyethylene/polypropylene plastics during pyrolysis and representative morphological signal characterizing pyrolysis stages.

    PubMed

    Wang, H; Chen, D; Yuan, G; Ma, X; Dai, X

    2013-02-01

    In this work, the morphological characteristics of waste polyethylene (PE)/polypropylene (PP) plastics during their pyrolysis process were investigated, and based on their basic image changing patterns representative morphological signals describing the pyrolysis stages were obtained. PE and PP granules and films were used as typical plastics for testing, and influence of impurities was also investigated. During pyrolysis experiments, photographs of the testing samples were taken sequentially with a high-speed infrared camera, and the quantitative parameters that describe the morphological characteristics of these photographs were explored using the "Image Pro Plus (v6.3)" digital image processing software. The experimental results showed that plastics pyrolysis involved four stages: melting, two stages of decomposition which are characterized with bubble formation caused by volatile evaporating, and ash deposition; and each stage was characterized with its own phase changing behaviors and morphological features. Two stages of decomposition are the key step of pyrolysis since they took up half or more of the reaction time; melting step consumed another half of reaction time in experiments when raw materials were heated up from ambient temperatures; and coke-like deposition appeared as a result of decomposition completion. Two morphological signals defined from digital image processing, namely, pixel area of the interested reaction region and bubble ratio (BR) caused by volatile evaporating were found to change regularly with pyrolysis stages. In particular, for all experimental scenarios with plastics films and granules, the BR curves always exhibited a slowly drop as melting started and then a sharp increase followed by a deep decrease corresponding to the first stage of intense decomposition, afterwards a second increase - drop section corresponding to the second stage of decomposition appeared. As ash deposition happened, the BR dropped to zero or very low

  7. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, Zia; Chadwell, Brad; Taha, Rachid

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  8. Effects of Nonequilibrium Chemistry and Darcy-Forchheimer Pyrolysis Flow for Charring Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Milos, Frank S.

    2013-01-01

    The fully implicit ablation and thermal response code simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid.This work describes new modeling capabilities that are added to a special version of code. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Two groups of parametric studies of the phenolic impregnated carbon ablator are performed. In the first group, an Orion flight environment for a proposed lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results indicate that the presence of chemical nonequilibrium pyrolysis gas flow does not significantly alter the in-depth thermal response performance predicted using the chemical equilibrium gas model.

  9. Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry.

    PubMed

    Li, Kai; Zhang, Liqiang; Zhu, Liang; Zhu, Xifeng

    2017-06-01

    The cornstalk and chlorella were selected as the representative of lignocelulosic and algal biomass, and the pyrolysis experiments of them were carried out using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The physicochemical properties of samples and the pyrolytic product distribution were presented. And then the compositional differences between the two kinds of pyrolytic products were studied, the relevant pyrolysis mechanisms were analyzed systematically. Pyrolytic vapor from lignocellulosic biomass contained more phenolic and carbonyl compounds while that from algal biomass contained more long-chain fatty acids, nitrogen-containing compounds and fewer carbonyl compounds. Maillard reaction is conducive to the conversion of carbonyl compounds to nitrogenous heterocyclic compounds with better thermal stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed.

    PubMed

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-06

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  11. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    PubMed Central

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294

  12. Rapid habitability assessment of Mars samples by pyrolysis-FTIR

    NASA Astrophysics Data System (ADS)

    Gordon, Peter R.; Sephton, Mark A.

    2016-02-01

    Pyrolysis Fourier transform infrared spectroscopy (pyrolysis FTIR) is a potential sample selection method for Mars Sample Return missions. FTIR spectroscopy can be performed on solid and liquid samples but also on gases following preliminary thermal extraction, pyrolysis or gasification steps. The detection of hydrocarbon and non-hydrocarbon gases can reveal information on sample mineralogy and past habitability of the environment in which the sample was created. The absorption of IR radiation at specific wavenumbers by organic functional groups can indicate the presence and type of any organic matter present. Here we assess the utility of pyrolysis-FTIR to release water, carbon dioxide, sulfur dioxide and organic matter from Mars relevant materials to enable a rapid habitability assessment of target rocks for sample return. For our assessment a range of minerals were analyzed by attenuated total reflectance FTIR. Subsequently, the mineral samples were subjected to single step pyrolysis and multi step pyrolysis and the products characterised by gas phase FTIR. Data from both single step and multi step pyrolysis-FTIR provide the ability to identify minerals that reflect habitable environments through their water and carbon dioxide responses. Multi step pyrolysis-FTIR can be used to gain more detailed information on the sources of the liberated water and carbon dioxide owing to the characteristic decomposition temperatures of different mineral phases. Habitation can be suggested when pyrolysis-FTIR indicates the presence of organic matter within the sample. Pyrolysis-FTIR, therefore, represents an effective method to assess whether Mars Sample Return target rocks represent habitable conditions and potential records of habitation and can play an important role in sample triage operations.

  13. Estimation of risks by chemicals produced during laser pyrolysis of tissues

    NASA Astrophysics Data System (ADS)

    Weber, Lothar W.; Spleiss, Martin

    1995-01-01

    Use of laser systems in minimal invasive surgery results in formation of laser aerosol with volatile organic compounds of possible health risk. By use of currently identified chemical substances an overview on possibly associated risks to human health is given. The class of the different identified alkylnitriles seem to be a laser specific toxicological problem. Other groups of chemicals belong to the Maillard reaction type, the fatty acid pyrolysis type, or even the thermally activated chemolysis. In relation to the available different threshold limit values the possible exposure ranges of identified substances are discussed. A rough estimation results in an exposure range of less than 1/100 for almost all substances with given human threshold limit values without regard of possible interactions. For most identified alkylnitriles, alkenes, and heterocycles no threshold limit values are given for lack of, until now, practical purposes. Pyrolysis of anaesthetized organs with isoflurane gave no hints for additional pyrolysis products by fragment interactions with resulting VOCs. Measurements of pyrolysis gases resulted in detection of small amounts of NO additionally with NO2 formation at plasma status.

  14. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  15. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  16. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Anthe; Geier, Manfred; Dedrick, Daniel E.

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspendedmore » in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.« less

  17. Pyrolysis of humic and fulvic acids

    USGS Publications Warehouse

    Wershaw, R. L.; Bohner, G.E.

    1969-01-01

    Pyrolysis of humic and fulvic acids isolated from a North Carolina soil yields a variety of aromatic, heterocyclic and straight chain organ compounds. The pyrolysis products identified by gas chromatography and mass spectrometry indicate that humic and fulvic acids have aromatic and polysaccharide structures in their molecules. ?? 1969.

  18. Effects of feedstock characteristics on microwave-assisted pyrolysis - A review.

    PubMed

    Zhang, Yaning; Chen, Paul; Liu, Shiyu; Peng, Peng; Min, Min; Cheng, Yanling; Anderson, Erik; Zhou, Nan; Fan, Liangliang; Liu, Chenghui; Chen, Guo; Liu, Yuhuan; Lei, Hanwu; Li, Bingxi; Ruan, Roger

    2017-04-01

    Microwave-assisted pyrolysis is an important approach to obtain bio-oil from biomass. Similar to conventional electrical heating pyrolysis, microwave-assisted pyrolysis is significantly affected by feedstock characteristics. However, microwave heating has its unique features which strongly depend on the physical and chemical properties of biomass feedstock. In this review, the relationships among heating, bio-oil yield, and feedstock particle size, moisture content, inorganics, and organics in microwave-assisted pyrolysis are discussed and compared with those in conventional electrical heating pyrolysis. The quantitative analysis of data reported in the literature showed a strong contrast between the conventional processes and microwave based processes. Microwave-assisted pyrolysis is a relatively new process with limited research compared with conventional electrical heating pyrolysis. The lack of understanding of some observed results warrant more and in-depth fundamental research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Co-pyrolysis characteristics of microalgae Isochrysis and Chlorella: Kinetics, biocrude yield and interaction.

    PubMed

    Zhao, Bingwei; Wang, Xin; Yang, Xiaoyi

    2015-12-01

    Co-pyrolysis characteristics of Isochrysis (high lipid) and Chlorella (high protein) were investigated qualitatively and quantitatively based on DTG curves, biocrude yield and composition by individual pyrolysis and co-pyrolysis. DTG curves in co-pyrolysis have been compared accurately with those in individual pyrolysis. An interaction has been detected at 475-500°C in co-pyrolysis based on biocrude yields, and co-pyrolysis reaction mechanism appear three-dimensional diffusion in comparison with random nucleation followed by growth in individual pyrolysis based on kinetic analysis. There is no obvious difference in the maximum biocrude yields for individual pyrolysis and co-pyrolysis, but carboxylic acids (IC21) decreased and N-heterocyclic compounds (IC12) increased in co-pyrolysis. Simulation results of biocrude yield by Components Biofuel Model and Kinetics Biofuel Model indicate that the processes of co-pyrolysis comply with those of individual pyrolysis in solid phase by and large. Variation of percentage content in co-pyrolysis and individual pyrolysis biocrude indicated interaction in gas phase. Copyright © 2015. Published by Elsevier Ltd.

  20. Vacuum Pyrolysis and Related ISRU Techniques

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Pomeroy, Brian R.; Banks, Ian S.; Benz, Alexis

    2007-01-01

    A number of ISRU-related techniques have been developed at NASA Goddard Space Flight Center. The focus of the team has been on development of the vacuum pyrolysis technique for the production of oxygen from the lunar regolith. However, a number of related techniques have also been developed, including solar concentration, solar heating of regolith, resistive heating of regolith, sintering, regolith boiling, process modeling, parts manufacturing, and instrumentation development. An initial prototype system was developed to vaporize regolith simulants using a approx. l square meter Fresnel lens. This system was successfully used to vaporize quantities of approx. lg, and both mass spectroscopy of the gasses produced and Scanning Electron Microscopy (SEM) of the slag were done to show that oxygen was produced. Subsequent tests have demonstrated the use of a larger system With a 3.8m diameter reflective mirror to vaporize the regolith. These results and modeling of the vacuum pyrolysis reaction have indicated that the vaporization of the oxides in the regolith will occur at lower temperature for stronger vacuums. The chemical modeling was validated by testing of a resistive heating system that vaporized quantities of approx. 10g of MLS-1A. This system was also used to demonstrate the sintering of regolith simulants at reduced temperatures in high vacuum. This reduction in the required temperature prompted the development of a small-scale resistive heating system for application as a scientific instrument as well as a proof-of principle experiment for oxygen production.

  1. Small-scale hydrous pyrolysis of macromolecular material in meteorites

    NASA Astrophysics Data System (ADS)

    Sephton, M. A.; Pillinger, C. T.; Gilmour, I.

    1998-12-01

    The hydrous pyrolysis method, usually performed on several hundred grams of terrestrial rock sample, has been scaled down to accommodate less than two grams of meteorite sample. This technique makes full use of the high yields associated with hydrous pyrolysis experiments and permits the investigation of the meteorite macromolecular material, the major organic component in carbonaceous meteorites. The hydrous pyrolysis procedure transforms the high molecular weight macromolecular material into low molecular weight fragments. The released entities can then be extracted with supercritical fluid extraction. In contrast to the parent structure, the pyrolysis products are amenable for analysis by gas chromatography-based techniques. When subjected to hydrous pyrolysis, two carbonaceous chondrites (Orgueil and Cold Bokkeveld) released generally similar products, which consisted of abundant volatile aromatic and alkyl-substituted aromatic compounds. These results revealed the ability of small-scale hydrous pyrolysis to dissect extraterrestrial macromolecular material and thereby reveal its organic constitution.

  2. Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Simanungkalit, Sabar P.; Kiky Corneliasari, S.

    2017-01-01

    Fast pyrolysis process of palm fronds has been conducted in the fluidized bed reactor to yield bio-oil product (pyrolysis oil). The process employed sea sand as the heat transfer medium. The objective of this study is to design of the fluidized bed rector, to conduct fast pyrolysis process to product bio-oil from palm fronds, and to characterize the feed and bio-oil product. The fast pyrolysis process was conducted continuously with the feeding rate around 500 g/hr. It was found that the biomass conversion is about 35.5% to yield bio-oil, however this conversion is still minor. It is suggested due to the heating system inside the reactor was not enough to decompose the palm fronds as a feedstock. Moreover, the acids compounds ware mostly observed on the bio-oil product.

  3. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar

    USDA-ARS?s Scientific Manuscript database

    In this study, we used a commercial pilot-scale pyrolysis reactor system to produce combustible gas and biochar at 620 degrees Celsium from three sources (chicken litter, swine solids, mixture of swine solids with rye grass). Pyrolysis of swine solids produced gas with the greatest higher heating va...

  4. High-resolution mass spectrometric analysis of biomass pyrolysis vapors

    DOE PAGES

    Christensen, Earl; Evans, Robert J.; Carpenter, Daniel

    2017-01-19

    Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot bemore » resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.« less

  5. Effects of torrefaction and densification on switchgrass pyrolysis products

    DOE PAGES

    Yang, Zixu; Sarkar, Madhura; Kumar, Ajay; ...

    2014-12-01

    Abstract The pyrolysis behaviors of four types of pretreated switchgrass (torrefied at 230 and 270 °C, densification, and torrefaction at 270 ºC followed by densification) were studied at three temperatures (500, 600, 700 ºC) using a pyroprobe attached to a gas chromatogram mass spectroscopy (Py-GC/MS). The torrefaction of switchgrass improved its oxygen to carbon ratio and energy content. Contents of anhydrous sugars and phenols in pyrolysis products of torrefied switchgrass were higher than those in pyrolysis products of raw switchgrass. As the torrefaction temperature increased from 230 to 270 °C, the contents of anhydrous sugars and phenols in pyrolysis productsmore » increased whereas content of guaiacols decreased. High pyrolysis temperature (600 and 700 °C as compared to 500 °C) enhanced decomposition of lignin and anhydrous sugars, leading to increase in phenols, aromatics and furans. Densification enhanced depolymerization of cellulose and hemicellulose during pyrolysis.« less

  6. Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell.

    PubMed

    Alagu, R M; Sundaram, E Ganapathy; Natarajan, E

    2015-10-01

    Pyrolysis of Calophyllum inophyllum shell was performed in a fixed bed pyrolyser to produce pyrolytic oil. Both thermal (without catalysts) and catalytic pyrolysis process were conducted to investigate the effect of catalysts on pyrolysis yield and pyrolysis oil characteristics. The yield of pyrolytic oil through thermal pyrolysis was maximum (41% wt) at 425 °C for particle size of 1.18 mm and heating rate of 40 °C/min. In catalytic pyrolysis the pyrolytic oil yield was maximum (45% wt) with both zeolite and kaolin catalysts followed by Al2O3 catalyst (44% wt). The functional groups and chemical components present in the pyrolytic oil are identified by Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques. This study found that C. inophyllum shell is a potential new green energy source and that the catalytic pyrolysis process using zeolite catalyst improves the calorific value and acidity of the pyrolytic oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Vapor phase pyrolysis

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    The vapor phase pyrolysis process is designed exclusively for the lunar production of oxygen. In this concept, granulated raw material (soil) that consists almost entirely of metal oxides is vaporized and the vapor is raised to a temperature where it dissociates into suboxides and free oxygen. Rapid cooling of the dissociated vapor to a discrete temperature causes condensation of the suboxides, while the oxygen remains essentially intact and can be collected downstream. The gas flow path and flow rate are maintained at an optimum level by control of the pressure differential between the vaporization region and the oxygen collection system with the aid of the environmental vacuum.

  8. Review of NMR characterization of pyrolysis oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  9. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; ...

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  10. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar

    USDA-ARS?s Scientific Manuscript database

    In this study, we used a commercial pilot-scale, skid-mounted pyrolysis reactor system to produce combustible gas and biochar at 620ºC from three sources (chicken litter, swine solids, mixture of swine solids with rye grass). Pyrolysis of swine solids produced gas with the greatest higher heating va...

  11. Quality improvement of pyrolysis oil from waste rubber by adding sawdust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wen-liang; Chang, Jian-min, E-mail: cjianmin@bjfu.edu.cn; Cai, Li-ping

    Highlights: • Rubber-pyrolysis oil is difficult to be fuel due to high proportion of PAHs. • The efficiency of pyrolysis was increased as the percentage of sawdust increased. • The adding of sawdust improved pyrolysis oil quality by reducing the PAHs content. • Adding sawdust reduced nitrogen/sulfur in oil and was easier to convert to diesel. - Abstract: This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during themore » pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.« less

  12. Fates of Chemical Elements in Biomass during Its Pyrolysis.

    PubMed

    Liu, Wu-Jun; Li, Wen-Wei; Jiang, Hong; Yu, Han-Qing

    2017-05-10

    Biomass is increasingly perceived as a renewable resource rather than as an organic solid waste today, as it can be converted to various chemicals, biofuels, and solid biochar using modern processes. In the past few years, pyrolysis has attracted growing interest as a promising versatile platform to convert biomass into valuable resources. However, an efficient and selective conversion process is still difficult to be realized due to the complex nature of biomass, which usually makes the products complicated. Furthermore, various contaminants and inorganic elements (e.g., heavy metals, nitrogen, phosphorus, sulfur, and chlorine) embodied in biomass may be transferred into pyrolysis products or released into the environment, arousing environmental pollution concerns. Understanding their behaviors in biomass pyrolysis is essential to optimizing the pyrolysis process for efficient resource recovery and less environmental pollution. However, there is no comprehensive review so far about the fates of chemical elements in biomass during its pyrolysis. Here, we provide a critical review about the fates of main chemical elements (C, H, O, N, P, Cl, S, and metals) in biomass during its pyrolysis. We overview the research advances about the emission, transformation, and distribution of elements in biomass pyrolysis, discuss the present challenges for resource-oriented conversion and pollution abatement, highlight the importance and significance of understanding the fate of elements during pyrolysis, and outlook the future development directions for process control. The review provides useful information for developing sustainable biomass pyrolysis processes with an improved efficiency and selectivity as well as minimized environmental impacts, and encourages more research efforts from the scientific communities of chemistry, the environment, and energy.

  13. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.

    PubMed

    Kuppens, T; Cornelissen, T; Carleer, R; Yperman, J; Schreurs, S; Jans, M; Thewys, T

    2010-12-01

    The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Reprint of: Pyrolysis technologies for municipal solid waste: a review.

    PubMed

    Chen, Dezhen; Yin, Lijie; Wang, Huan; He, Pinjing

    2015-03-01

    Pyrolysis has been examined as an attractive alternative to incineration for municipal solid waste (MSW) disposal that allows energy and resource recovery; however, it has seldom been applied independently with the output of pyrolysis products as end products. This review addresses the state-of-the-art of MSW pyrolysis in regards to its technologies and reactors, products and environmental impacts. In this review, first, the influence of important operating parameters such as final temperature, heating rate (HR) and residence time in the reaction zone on the pyrolysis behaviours and products is reviewed; then the pyrolysis technologies and reactors adopted in literatures and scale-up plants are evaluated. Third, the yields and main properties of the pyrolytic products from individual MSW components, refuse-derived fuel (RDF) made from MSW, and MSW are summarised. In the fourth section, in addition to emissions from pyrolysis processes, such as HCl, SO2 and NH3, contaminants in the products, including PCDD/F and heavy metals, are also reviewed, and available measures for improving the environmental impacts of pyrolysis are surveyed. It can be concluded that the single pyrolysis process is an effective waste-to-energy convertor but is not a guaranteed clean solution for MSW disposal. Based on this information, the prospects of applying pyrolysis technologies to dealing with MSW are evaluated and suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Carbon nanoscrolls by pyrolysis of a polymer

    NASA Astrophysics Data System (ADS)

    Yadav, Prasad; Warule, Sambhaji; Jog, Jyoti; Ogale, Satishchandra

    2012-12-01

    3D network of carbon nanoscrolls was synthesized starting from pyrolysis of poly(acrylic acid-co-maleic acid) sodium salt. It is a catalyst-free process where pyrolysis of polymer leads to formation of carbon form and sodium carbonate. Upon water soaking of pyrolysis product, the carbon form undergoes self-assembly to form carbon nanoscrolls. The interlayer distance between the walls of carbon nanoscroll was found to be 0.34 nm and the carbon nanoscrolls exhibited a surface area of 188 m2/g as measured by the BET method.

  16. The pyrolysis of toluene and ethyl benzene

    NASA Technical Reports Server (NTRS)

    Sokolovskaya, V. G.; Samgin, V. F.; Kalinenko, R. A.; Nametkin, N. S.

    1987-01-01

    The pyrolysis of toluene at 850 to 950 C gave mainly H2, CH4, and benzene; PhEt at 650 to 750 C gave mainly H2, CH4, styrene, benzene, and toluene. The rate constants for PhEt pyrolysis were 1000 times higher than those for toluene pyrolysis; the chain initiation rate constants differed by the same factor. The activation energy differences were 46 kJ/mole for the total reaction and 54 kJ/mole for chain initiation. The chain length was evaluated for the PhEt case (10 + or - 2).

  17. Behavior of chlorine during coal pyrolysis

    USGS Publications Warehouse

    Shao, D.; Hutchinson, E.J.; Cao, H.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of chlorine in Illinois coals during pyrolysis was evaluated by combined thermo-gravimetry-Fourier transform infrared spectroscopy-ion chromatography (TG-FTIR-IC) techniques. It was found that more than 90% of chlorine in Illinois coals (IBC-103, 105, 106, and 109) was liberated as HCl gas during pyrolysis from 300 to 600??C, with the rate reaching a maximum at 440 ??C. Similarity of the HCl and NH3 release profiles during pyrolysis of IBC-109 supports the hypothesis that the chlorine in coal may be associated with nitrogen and the chlorine is probably bonded to the basic nitrogen sites on the inner walls of coal micropores. ?? 1994 American Chemical Society.

  18. Microwave pyrolysis of oily sludge with activated carbon.

    PubMed

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  19. Quality improvement of pyrolysis oil from waste rubber by adding sawdust.

    PubMed

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q

    2014-12-01

    This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG-FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis-gas chromatography (GC)-mass spectrometry (Py-GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Co-pyrolysis of rice straw and polypropylene using fixed-bed pyrolyzer

    NASA Astrophysics Data System (ADS)

    Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Mazlan, M. A.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.

    2016-11-01

    The present work encompasses the impact of temperature (450, 500, 550, 600 °C) on the properties of pyrolysis oil and on other product yield for the co-pyrolysis of Polypropylene (PP) plastics and rice straw. Co-pyrolysis of PP plastic and rice straw were conducted in a fixed-bed drop type pyrolyzer under an inert condition to attain maximum oil yield. Physically, the pyrolysis oil is dark-brown in colour with free flowing and has a strong acrid smell. Copyrolysis between these typically obtained in maximum pyrolysis oil yields up to 69% by ratio 1:1 at a maximum temperature of 550 °C. From the maximum yield of pyrolysis oil, characterization of pyrolysis product and effect of biomass type of the composition were evaluated. Pyrolysis oil contains a high water content of 66.137 wt.%. Furfural, 2- methylnaphthalene, tetrahydrofuran (THF), toluene and acetaldehyde were the major organic compounds found in pyrolysis oil of rice straw mixed with PP. Bio-char collected from co-pyrolysis of rice straw mixed with PP plastic has high calorific value of 21.190 kJ/g and also carbon content with 59.02 wt.% and could contribute to high heating value. The non-condensable gases consist of hydrogen, carbon monoxide, and methane as the major gas components.

  1. Reaction mechanisms in cellulose pyrolysis: a literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molton, P.M.; Demmitt, T.F.

    1977-08-01

    A bibliographic review of 195 references is presented outlining the history of the research into the mechanisms of cellulose pyrolysis. Topics discussed are: initial product identification, mechanism of initial formation of levoglucosan, from cellulose and from related compounds, decomposition of cellulose to other compounds, formation of aromatics, pyrolysis of levoglucosan, crosslinking of cellulose, pyrolytic reactions of cellulose derivatives, and the effects of inorganic salts on the pyrolysis mechanism. (JSR)

  2. Kinetics of scrap tyre pyrolysis under vacuum conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Gartzen; Aguado, Roberto; Olazar, Martin

    2009-10-15

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies themore » kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.« less

  3. Kinetics of scrap tyre pyrolysis under vacuum conditions.

    PubMed

    Lopez, Gartzen; Aguado, Roberto; Olazar, Martín; Arabiourrutia, Miriam; Bilbao, Javier

    2009-10-01

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12K in the reaction starting temperature. The kinetic constant at 503K for devolatilization of volatile additives at 0.25atm is 1.7 times higher than that at 1atm, and that corresponding to styrene-butadiene rubber at 723K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.

  4. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior.

    PubMed

    Zhang, Da-Lei; Zhang, Mei-Yi; Zhang, Chu-Hui; Sun, Ying-Jie; Sun, Xiao; Yuan, Xian-Zheng

    2016-03-15

    The pyrolysis treatment with biomass is a promising technology for the remediation of chromite-ore-processing residue (COPR). However, the mechanism of this process is still unclear. In this study, the behavior of pyrolysis reduction of Cr(VI) by cellulose, the main component of biomass, was elucidated. The results showed that the volatile fraction (VF) of cellulose, ie. gas and tar, was responsible for Cr(VI) reduction. All organic compounds, as well as CO and H2 in VF, potentially reduced Cr(VI). X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine-structure (EXAFS) spectroscopy confirmed the reduction of Cr(VI) to Cr(III) and the formation of amorphous Cr2O3. The remnant Cr(VI) content in COPR can be reduced below the detection limit (2 mg/kg) by the reduction of COPR particle and extension of reaction time between VF and COPR. This study provided a deep insight on the co-pyrolysis of cellulose with Cr(VI) in COPR and an ideal approach by which to characterize and optimize the pyrolysis treatment for COPR by other organics.

  5. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.

    PubMed

    Wang, Yuxin; He, Tao; Liu, Kaituo; Wu, Jinhu; Fang, Yunming

    2012-03-01

    Compared hydrodeoxygenation experimental studies of both model compounds and real bio-oil derived from biomass fast pyrolysis and catalytic pyrolysis was carried out over two different supported Pt catalysts. For the model compounds, the deoxygenation degree of dibenzofuran was higher than that of cresol and guaiacol over both Pt/Al(2)O(3) and the newly developed Pt supported on mesoporous zeolite (Pt/MZ-5) catalyst, and the deoxygenation degree of cresol over Pt/MZ-5 was higher than that over Pt/Al(2)O(3). The results indicated that hydrodeoxygenation become much easier upon oxygen reduction. Similar to model compounds study, the hydrodeoxygenation of the real bio-oil derived from catalytic pyrolysis was much easier than that from fast pyrolysis over both Pt catalysts, and the Pt/MZ-5 again shows much higher deoxygenation ability than Pt/Al(2)O(3). Clearly synergy between catalytic pyrolysis and bio-oil hydro-processing was found in this paper and this finding will lead an advanced biofuel production pathway in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Catalytic pyrolysis of waste furniture sawdust for bio-oil production.

    PubMed

    Uzun, Başak B; Kanmaz, Gülin

    2014-07-01

    In this study, the catalytic pyrolysis of waste furniture sawdust in the presence of ZSM-5, H-Y and MCM-41 (10 wt % of the biomass sample) was carried out in order to increase the quality of the liquid product at the various pyrolysis temperatures of 400, 450, 500 and 550(o)C. In the non-catalytic work, the maximum oil yield was obtained as 42% at 500(o)C in a fixed-bed reactor system. In the catalytic work, the maximum oil yield was decreased to 37.48, 30.04 and 29.23% in the presence of ZSM-5, H-Y and MCM-41, respectively. The obtained pyrolysis oils were analyzed by various spectroscopic and chromatographic techniques. It was determined that the use of a catalyst decreased acids and increased valuable organics found in the bio-oil. The removal of oxygen from bio-oil was confirmed with the results of the elemental analysis and gas chromatography-mass spectrometry. © The Author(s) 2014.

  7. An in-line micro-pyrolysis system to remove contaminating organic species for precise and accurate water isotope analysis by spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Panetta, R. J.; Hsiao, G.

    2011-12-01

    Trace levels of organic contaminants such as short alcohols and terpenoids have been shown to cause spectral interference in water isotope analysis by spectroscopic techniques. The result is degraded precision and accuracy in both δD and δ18O for samples such as beverages, plant extracts or slightly contaminated waters. An initial approach offered by manufacturers is post-processing software that analyzes spectral features to identify and flag contaminated samples. However, it is impossible for this software to accurately reconstruct the water isotope signature, thus it is primarily a metric for data quality. Here, we describe a novel in-line pyrolysis system (Micro-Pyrolysis Technology, MPT) placed just prior to the inlet of a cavity ring-down spectroscopy (CRDS) analyzer that effectively removes interfering organic molecules without altering the isotope values of the water. Following injection of the water sample, N2 carrier gas passes the sample through a micro-pyrolysis tube heated with multiple high temperature elements in an oxygen-free environment. The temperature is maintained above the thermal decomposition threshold of most organic compounds (≤ 900 oC), but well below that of water (~2000 oC). The main products of the pyrolysis reaction are non-interfering species such as elemental carbon and H2 gas. To test the efficacy and applicability of the system, waters of known isotopic composition were spiked with varying amounts of common interfering alcohols (methanol, ethanol, propanol, hexanol, trans-2-hexenol, cis-3-hexanol up to 5 % v/v) and common soluble plant terpenoids (carveol, linalool, geraniol, prenol). Spiked samples with no treatment to remove the organics show strong interfering absorption peaks that adversely affect the δD and δ18O values. However, with the MPT in place, all interfering absorption peaks are removed and the water absorption spectrum is fully restored. As a consequence, the δD and δ18O values also return to their original

  8. Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, M.R., E-mail: mrislam1985@yahoo.com; Joardder, M.U.H.; Hasan, S.M.

    2011-09-15

    In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants formore » the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.« less

  9. A comparison of fast and reactive pyrolysis with insitu derivatisation of fructose, inulin and Jerusalem artichoke (Helianthus tuberosus).

    PubMed

    Mattonai, Marco; Ribechini, Erika

    2018-08-09

    Reactive pyrolysis is a technique that provides mechanistic information by performing pyrolysis of the substrate in a sealed glass capsule at elevated temperature and pressure for relatively long time. This technique has already shown great potential for the analysis of biomass, favouring the formation of only the most thermostable compounds. In this work, both fast and reactive pyrolysis with on-line gas chromatography-mass spectrometry analysis (Py-GC/MS) are used to study fructose, inulin and Jerusalem artichoke tubers (Heliantus tuberosus). Interesting differences were found between the two systems, and became even more evident as the reaction time was increased. The most striking result was the formation of di-fructose dianhydrides (DFAs), a class of compounds with interesting biological activities. DFAs were obtained in high yields from reactive pyrolysis, but not from fast pyrolysis. Hypotheses on the pyrolysis mechanisms were made based upon the composition of the pyrolysates. This work describes for the first time the behaviour of fructans under reactive pyrolysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Rapid identification of bacteria with miniaturized pyrolysis/GC analysis

    NASA Astrophysics Data System (ADS)

    Morgan, Catherine H.; Mowry, Curtis; Manginell, Ronald P.; Frye-Mason, Gregory C.; Kottenstette, Richard J.; Lewis, Patrick

    2001-02-01

    Identification of bacteria and other biological moieties finds a broad range of applications in the environmental, biomedical, agricultural, industrial, and military arenas. Linking these applications are biological markers such as fatty acids, whose mass spectral profiles can be used to characterize biological samples and to distinguish bacteria at the gram-type, genera, and even species level. Common methods of sample analysis require sample preparation that is both lengthy and labor intensive, especially for whole cell bacteria. The background technique relied on here utilizes chemical derivatization of fatty acids to the more volatile fatty acid methyl esters (FAMEs), which can be separated on a gas chromatograph column or input directly into a mass spectrometer. More recent publications demonstrate improved sample preparation time with in situ derivatization of whole bacterial samples using pyrolysis at the inlet; although much faster than traditional techniques, these systems still rely on bench-top analytical equipment and individual sample preparation. Development of a miniaturized pyrolysis/GC instrument by this group is intended to realize the benefits of FAME identification of bacteria and other biological samples while further facilitating sample handling and instrument portability. The technologies being fabricated and tested have the potential of achieving pyrolysis and FAME separation on a very small scale, with rapid detection time (1-10 min from introduction to result), and with a modular sample inlet. Performance results and sensor characterization will be presented for the first phase of instrument development, encompassing the microfabricated pyrolysis and gas chromatograph elements.

  11. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.

    PubMed

    Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton

    2013-10-15

    Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.

  12. Thermal pyrolysis characteristics of macroalgae Cladophora glomerata.

    PubMed

    Gao, Wenhua; Chen, Kefu; Zeng, Jinsong; Xu, Jun; Wang, Bin

    2017-11-01

    The Cladophora glomerata (C. glomerata) is a kind of widely distributed macroalgae in the freshwater ecosystems. It primarily consists of carbohydrates that can be converted into biofuel by pyrolysis. In this study, thermogravimetric analysis (TGA) was used to investigate the thermal behavior and kinetics of C. glomerata during the pyrolysis process. The results showed that heating rates slightly affect the decomposition properties of C. glomerata; with the heating rates increasing, the maximum peak of weight loss rate shifted to higher temperatures. The activation energies of C. glomerata pyrolysis reaction were 244.25 and 238.07kJ/mol, respectively, as calculated by Friedman and Kissinger-Akahira-Sunose (KAS) methods. The pre-exponential factor and reaction order were determined by Coats-Redfern model, and applied to simulate the pyrolysis process of C. glomerata. The model calculated data and experimental data were consistent. This study could provide theoretical supports for designing C. glomerata conversion processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Acidity of biomass fast pyrolysis bio-oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oasmaa, Anja; Elliott, Douglas C.; Korhonen, Jaana

    2010-12-17

    The use of the TAN method for measuring the acidity of biomass fast pyrolysis bio-oil was evaluated. Suggestions for carrying out the analysis have been made. The TAN method by ASTM D664 or D3339 can be used for measuring the acidity of fast pyrolysis bio-oils and their hydrotreating products. The main difference between the methods is that ASTM D664 is specified for higher TAN values than ASTM D3339. Special focus should be placed on the interpretation of the TAN curves because they differ significantly from those of mineral oils. The curve for bio-oils is so gentle that the automatic detectionmore » may not observe the end point properly and derivatization should be used. The acidity of fast pyrolysis bio-oils is mainly derived (60-70%) from volatile acids. Other groups of compounds in fast pyrolysis bio-oils that influence acidity include phenolics, fatty and resin acids, and hydroxy acids.« less

  14. Understanding and Controlling Lignocellulosic Pyrolysis for the Production of Renewable Fuel and Chemical Precursors

    NASA Astrophysics Data System (ADS)

    Pecha, Michael Brennan

    Pyrolysis is a technology for producing fuels, chemicals, and engineered carbons from renewable feedstocks like lignocellulosic biomass. This work aims to address some of the scientific and technical hurdles that need to be overcome to control the products of pyrolysis. The first section aims to address knowledge gaps regarding primary pyrolysis reactions; in this study, pine wood was acid washed and small amounts of acid were impregnated into the biomass prior to pyrolysis. Results showed that the acid mitigated fragmentation reactions caused by residual metals and had further effect on production of sugars and oligomeric lignin products. The next section aims to address knowledge gaps regarding what reactions occur in the liquid intermediate phase in biomass pyrolysis; in these studies, a novel reactor system was built which could perform thin film fast pyrolysis studies at different pressures from 4 mbar to 1 atm with cellulose, milled wood lignin, and hybrid poplar wood. The reactor was carefully characterized to achieve comparable data between the different pressures. The use of vacuum allowed for control of the residence time of cellobiosan (one of cellulose oligomeric products) in the liquid intermediate. In the vacuum cellulose pyrolysis studies, a high resolution FT-ICR-MS was used for the first time to explore reaction chemistry for this system. The Van-Krevelen diagram of the resulting oligomeric products proved to be a powerful tool to study secondary reactions in the liquid intermediate. Our results show that the secondary reactions in the liquid intermediate are dominated by dehydration, fragmentation, and cross-linking reactions. The final section aims to address single particle external heat transfer problems; in this study, 500 microm long particles of pine and aspen poplar with realistic pore and surface morphologies were modeled in COMSOL to determine how microstructure effects the external heat transfer coefficients in the laminar flow regime

  15. Behavior of sulfur during coal pyrolysis

    USGS Publications Warehouse

    Shao, D.; Hutchinson, E.J.; Heidbrink, J.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of sulfur in Illinois coals during pyrolysis was evaluated by thermogravimetry/ Fourier transform-infrared spectroscopy (TG/FT-IR) techniques. SO2, COS, and H2S were major gaseous sulfur-containing products observed during coal pyrolysis. The release rates of the gaseous sulfur species showed several peaks within the temperature ranges, which were due to the emission of different forms of sulfur in coal. ?? 1994.

  16. Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS.

    PubMed

    Antonakou, E V; Kalogiannis, K G; Stephanidis, S D; Triantafyllidis, K S; Lappas, A A; Achilias, D S

    2014-12-01

    Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or various useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Integrated biomass pyrolysis with organic Rankine cycle for power generation

    NASA Astrophysics Data System (ADS)

    Nur, T. B.; Syahputra, A. W.

    2018-02-01

    The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used to generate power from waste heat available in industrial processes. Biomass pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. In the application, biomass pyrolysis can be divided into three main categories; slow, fast and flash pyrolysis mainly aiming at maximizing the products of bio-oil or biochar. The temperature of synthesis gas generated during processes can be used for Organic Rankine Cycle to generate power. The heat from synthesis gas during pyrolysis processes was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. In this study, the potential of the palm oil empty fruit bunch, palm oil shell, and tree bark have been used as fuel from biomass to generate electricity by integrated with ORC. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC system. Through Aspen Plus, this study analyses the influences on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum performance for different working conditions that are characteristics of different design parameters.

  18. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    DOEpatents

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  19. Experimental toxicology of pyrolysis and combustion hazards.

    PubMed Central

    Cornish, H H; Hahn, K J; Barth, M L

    1975-01-01

    Data are presented on the acute toxicity (mortality only) of the thermal degradation products of polymers obtained by two methods of degradation. One system utilized a slowly increasing temperature (5 degrees C/min) and gradual degradation of the polymer with the rats being exposed to degradation products as they were evolved. In this system the more toxic polymers included wool, polypropylene, poly(vinyl chloride), and urethane foam. The second system utilized conditions of rapid combustion and exposure of rats to the total products of combustion for a period of 4 hr. In this system the more toxic materials included red oak, cotton, acrylonitrile-butadiene-styrene (ABS), and styrene-acrylonitrile. It is of interest to note that the natural product wool is among the least toxic under these rapid combustion conditions and among the most toxic under slow pyrolysis conditions. Other materials also vary in the comparative toxicity of their thermal degradation products, depending upon the conditions of degradation and animal exposure. The two experimental techniques presented here may well represent the two extreme conditions of rapid combustion versus slow pyrolysis. Intermediate types of fire situations might be expected to result in relative acute toxicities somewhere between these two extremes. This report deals with acute toxicity on the basis of mortality data only and does not include other parameters of toxicity such as organ weights and histopathology. PMID:1175552

  20. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    PubMed

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  1. Self-activation of biochar from furfural residues by recycled pyrolysis gas.

    PubMed

    Yin, Yulei; Gao, Yuan; Li, Aimin

    2018-04-17

    Biochar samples with controllable specific surface area and mesopore ratio were self-activated from furfural residues by recycled pyrolysis gas. The objective of this study was to develop a new cyclic utilization method for the gas produced by pyrolysis. The influences of preparation parameters on the resulting biochar were studied by varying the pyrolysis-gas flow rate, activation time and temperature. Structural characterization of the produced biochar was performed by analysis of nitrogen adsorption isotherms at 77 K and scanning electron microscope (SEM). The pyrolysis gas compositions before and after activation were determined by a gas chromatograph. The results indicated that the surface area of the biochar was increased from 167 m 2 /g to 567 m 2 /g, the total pore volume increased from 0.121 cm 3 /g to 0.380 cm 3 /g, and the ratio of the mesopore pore volume to the total pore volume increased 17-39.7%. The CO volume fraction of the pyrolysis gas changed from 34.66 to 62.29% and the CO 2 volume fraction decreased from 48.26% to 12.17% under different conditions of pyrolysis-gas flow rate, activation time and temperature. The calorific values of pyrolysis gas changed from 8.82 J/cm 3 to 14.00 J/cm 3 , which were higher than those of conventional pyrolysis gases. The slower pyrolysis-gas flow rate and higher activation time increased the efficiency of the reaction between carbon and pyrolysis gas. These results demonstrated the feasibility of treatment of the furfural residues to produce microporous and mesoporous biochar. The pyrolysis gas that results from the activation process could be used as fuel. Overall, this new self-activation method meets the development requirements of cyclic economy and cleaner production. Copyright © 2018. Published by Elsevier Ltd.

  2. An optically accessible pyrolysis microreactor

    NASA Astrophysics Data System (ADS)

    Baraban, J. H.; David, D. E.; Ellison, G. Barney; Daily, J. W.

    2016-01-01

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  3. An optically accessible pyrolysis microreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraban, J. H.; Ellison, G. Barney; David, D. E.

    2016-01-15

    We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.

  4. Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation

    PubMed Central

    Dörsam, Stefan; Kirchhoff, Jennifer; Bigalke, Michael; Dahmen, Nicolaus; Syldatk, Christoph; Ochsenreither, Katrin

    2016-01-01

    Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar, both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar. For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil. PMID:28066378

  5. Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation.

    PubMed

    Dörsam, Stefan; Kirchhoff, Jennifer; Bigalke, Michael; Dahmen, Nicolaus; Syldatk, Christoph; Ochsenreither, Katrin

    2016-01-01

    Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar , both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar . For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil.

  6. Sulfur Transformation during Microwave and Conventional Pyrolysis of Sewage Sludge.

    PubMed

    Zhang, Jun; Zuo, Wei; Tian, Yu; Chen, Lin; Yin, Linlin; Zhang, Jie

    2017-01-03

    The sulfur distributions and evolution of sulfur-containing compounds in the char, tar and gas fractions were investigated during the microwave and conventional pyrolysis of sewage sludge. Increased accumulation of sulfur in the char and less production of H 2 S were obtained from microwave pyrolysis at higher temperatures (500-800 °C). Three similar conversion pathways were identified for the formation of H 2 S during microwave and conventional pyrolysis. The cracking of unstable mercaptan structure in the sludge contributed to the release of H 2 S below 300 °C. The decomposition of aliphatic-S compounds in the tars led to the formation of H 2 S (300-500 °C). The thermal decomposition of aromatic-S compounds in the tars generated H 2 S from 500 to 800 °C. However, the secondary decomposition of thiophene-S compounds took place only in conventional pyrolysis above 700 °C. Comparing the H 2 S contributions from microwave and conventional pyrolysis, the significant increase of H 2 S yields in conventional pyrolysis was mainly attributed to the decomposition of aromatic-S (increasing by 10.4%) and thiophene-S compounds (11.3%). Further investigation on the inhibition mechanism of H 2 S formation during microwave pyrolysis confirmed that, with the special heating characteristics and relative shorter residence time, microwave pyrolysis promoted the retention of H 2 S on CaO and inhibited the secondary cracking of thiophene-S compounds at higher temperatures.

  7. Chemical pyrolysis of E-waste plastics: Char characterization.

    PubMed

    Shen, Yafei; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2018-05-15

    This work studied the disposal of the non-metallic fraction from waste printed circuit board (NMF-WPCB) via the chemical pretreatments followed by pyrolysis. As a main heavy metal, the metallic Cu could be significantly removed by 92.4% using the HCl leaching process. Subsequently, the organic-Br in the brominated flame retardants (BFRs) plastics could be converted into HBr by pyrolysis. The alkali pretreatment was benefit for the Br fixation in the solid char. The Br fixation efficiency could reach up to 53.6% by the NaOH pretreatment followed by the pyrolysis process. The formed HBr could react with NaOH/KOH to generate the stabilized NaBr/KBr. Therefore, the integrated chemical pretreatment could be used for the eco-friendly disposal of the NMF-WPCB via pyrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Pyrolysis process for the treatment of food waste.

    PubMed

    Grycová, Barbora; Koutník, Ivan; Pryszcz, Adrian

    2016-10-01

    Different waste materials were pyrolysed in the laboratory pyrolysis unit to the final temperature of 800°C with a 10min delay at the final temperature. After the pyrolysis process a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The gas from the pyrolysis experiments was captured discontinuously into Tedlar gas sampling bags and the selected components were analyzed by gas chromatography (methane, ethene, ethane, propane, propene, hydrogen, carbon monoxide and carbon dioxide). The highest concentration of measured hydrogen (WaCe 61%vol.; WaPC 66%vol.) was analyzed at the temperature from 750 to 800°C. The heating values of the solid and liquid residues indicate the possibility of its further use for energy recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High quality fuel gas from biomass pyrolysis with calcium oxide.

    PubMed

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Influence of mineral matter on pyrolysis of palm oil wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haiping; Chen, Hanping; Zheng, Chuguang

    2006-09-15

    The influence of mineral matter on pyrolysis of biomass (including pure biomass components, synthesized biomass, and natural biomass) was investigated using a thermogravimetric analyzer (TGA). First, the mineral matter, KCl, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, CaMg(CO{sub 3}){sub 2}, Fe{sub 2}O{sub 3}, and Al{sub 2}O{sub 3}, was mixed respectively with the three main biomass components (hemicellulose, cellulose, and lignin) at a weight ratio (C/W) of 0.1 and its pyrolysis characteristics were investigated. Most of these mineral additives, except for K{sub 2}CO{sub 3}, demonstrated negligible influence. Adding K{sub 2}CO{sub 3} inhibited the pyrolysis of hemicellulose by lowering its mass loss ratemore » by 0.3 wt%/{sup o}C, while it enhanced the pyrolysis of cellulose by shifting the pyrolysis to a lower temperature. With increased K{sub 2}CO{sub 3} added, the weight loss of cellulose in the lower temperature zone (200-315 {sup o}C) increased greatly, and the activation energies of hemicellulose and cellulose pyrolysis decreased notably from 204 to 42 kJ/mol. Second, studies on the synthetic biomass of hemicellulose, cellulose, lignin, and K{sub 2}CO{sub 3} (as a representative of minerals) indicated that peaks of cellulose and hemicellulose pyrolysis became overlapped with addition of K{sub 2}CO{sub 3} (at C/W=0.05-0.1), due to the catalytic effect of K{sub 2}CO{sub 3} lowering cellulose pyrolysis to a lower temperature. Finally, a local representative biomass--palm oil waste (in the forms of original material and material pretreated through water washing or K{sub 2}CO{sub 3} addition)--was studied. Water washing shifted pyrolysis of palm oil waste to a higher temperature by 20 {sup o}C, while K{sub 2}CO{sub 3} addition lowered the peak temperature of pyrolysis by {approx}50{sup o}C. It was therefore concluded that the obvious catalytic effect of adding K{sub 2}CO{sub 3} might be attributed to certain fundamental changes in terms of chemical structure of

  11. Pyrolysis of carbonaceous materials with solvent quench recovery

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Knell, Everett W.; Mirza, Zia I.; Winter, Bruce L.

    1978-04-18

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue. Apparatus useful for practicing this process are disclosed.

  12. Kapton pyrolysis, the space environment and wiring requirements

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1994-01-01

    New Low Earth Orbit (LEO) requirements of space environment wiring are compared with traditional requirements. The pyrolysis of Kapton is reviewed for the LeRc vacuum chamber and the 1989 SSF. SEEB modeling of Kapton pyrolysis is also presented.

  13. Fast pyrolysis of oil palm shell (OPS)

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2015-04-01

    Biomass is an important renewable source of energy. Residues that are obtained from harvesting and agricultural products can be utilised as fuel for energy generation by conducting any thermal energy conversion technology. The conversion of biomass to bio oil is one of the prospective alternative energy resources. Therefore, in this study fast pyrolysis of oil palm shell was conducted. The main objective of this study was to find the optimum condition for high yield bio-oil production. The experiment was conducted using fixed-bed fluidizing pyrolysis system. The biomass sample was pyrolysed at variation temperature of 450°C - 650°C and at variation residence time of 0.9s - 1.35s. The results obtained were further discussed in this paper. The basic characteristic of the biomass sample was also presented here. The experiment shows that the optimum bio-oil yield was obtained at temperature of 500°C at residence time 1.15s.

  14. Producing Hydrogen by Plasma Pyrolysis of Methane

    NASA Technical Reports Server (NTRS)

    Atwater, James; Akse, James; Wheeler, Richard

    2010-01-01

    Plasma pyrolysis of methane has been investigated for utility as a process for producing hydrogen. This process was conceived as a means of recovering hydrogen from methane produced as a byproduct of operation of a life-support system aboard a spacecraft. On Earth, this process, when fully developed, could be a means of producing hydrogen (for use as a fuel) from methane in natural gas. The most closely related prior competing process - catalytic pyrolysis of methane - has several disadvantages: a) The reactor used in the process is highly susceptible to fouling and deactivation of the catalyst by carbon deposits, necessitating frequent regeneration or replacement of the catalyst. b) The reactor is highly susceptible to plugging by deposition of carbon within fixed beds, with consequent channeling of flow, high pressure drops, and severe limitations on mass transfer, all contributing to reductions in reactor efficiency. c) Reaction rates are intrinsically low. d) The energy demand of the process is high.

  15. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  16. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  17. Thermodynamic analyses of hydrogen production from sub-quality natural gas. Part I: Pyrolysis and autothermal pyrolysis

    NASA Astrophysics Data System (ADS)

    Huang, Cunping; T-Raissi, Ali

    Sub-quality natural gas (SQNG) is defined as natural gas whose composition exceeds pipeline specifications of nitrogen, carbon dioxide (CO 2) and/or hydrogen sulfide (H 2S). Approximately one-third of the U.S. natural gas resource is sub-quality gas [1]. Due to the high cost of removing H 2S from hydrocarbons using current processing technologies, SQNG wells are often capped and the gas remains in the ground. We propose and analyze a two-step hydrogen production scheme using SQNG as feedstock. The first step of the process involves hydrocarbon processing (via steam-methane reformation, autothermal steam-methane reformation, pyrolysis and autothermal pyrolysis) in the presence of H 2S. Our analyses reveal that H 2S existing in SQNG is stable and can be considered as an inert gas. No sulfur dioxide (SO 2) and/or sulfur trioxide (SO 3) is formed from the introduction of oxygen to SQNG. In the second step, after the separation of hydrogen from the main stream, un-reacted H 2S is used to reform the remaining methane, generating more hydrogen and carbon disulfide (CS 2). Thermodynamic analyses on SQNG feedstock containing up to 10% (v/v) H 2S have shown that no H 2S separation is required in this process. The Part I of this paper includes only thermodynamic analyses for SQNG pyrolysis and autothermal pyrolysis.

  18. Upgrading biomass pyrolysis bio-oil to renewable fuels.

    DOT National Transportation Integrated Search

    2015-01-01

    Fast pyrolysis is a process that can convert woody biomass to a crude bio-oil (pyrolysis oil). However, some of these compounds : contribute to bio-oil shelf life instability and difficulty in refining. Catalytic hydrodeoxygenation (HDO) of the bio-o...

  19. Physical pretreatment of biogenic-rich trommel fines for fast pyrolysis.

    PubMed

    Eke, Joseph; Onwudili, Jude A; Bridgwater, Anthony V

    2017-12-01

    Energy from Waste (EfW) technologies such as fluidized bed fast pyrolysis, are beneficial for both energy generation and waste management. Such technologies, however face significant challenges due to the heterogeneous nature, particularly the high ash contents of some municipal solid waste types e.g. trommel fines. A study of the physical/mechanical and thermal characteristics of these complex wastes is important for two main reasons; (a) to inform the design and operation of pyrolysis systems to handle the characteristics of such waste; (b) to control/modify the characteristics of the waste to fit with existing EFW technologies via appropriate feedstock preparation methods. In this study, the preparation and detailed characterisation of a sample of biogenic-rich trommel fines has been carried out with a view to making the feedstock suitable for fast pyrolysis based on an existing fluidized bed reactor. Results indicate that control of feed particle size was very important to prevent problems of dust entrainment in the fluidizing gas as well as to prevent feeder hardware problems caused by large stones and aggregates. After physical separation and size reduction, nearly 70wt% of the trommel fines was obtained within the size range suitable for energy recovery using the existing fast pyrolysis system. This pyrolyzable fraction could account for about 83% of the energy content of the 'as received' trommel fines sample. Therefore there was no significant differences in the thermochemical properties of the raw and pre-treated feedstocks, indicating that suitably prepared trommel fines samples can be used for energy recovery, with significant reduction in mass and volume of the original waste. Consequently, this can lead to more than 90% reduction in the present costs of disposal of trommel fines in landfills. In addition, the recovered plastics and textile materials could be used as refuse derived fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Toxicity of pyrolysis gases from polyether sulfone

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Olcomendy, E. M.

    1979-01-01

    A sample of polyether sulfone was evaluated for toxicity of pyrolysis gases, using the toxicity screening test method developed at the University of San Francisco. Animal response times were relatively short at pyrolysis temperatures of 600 to 800 C, with death occurring within 6 min. The principal toxicant appeared to be a compound other than carbon monoxide.

  1. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass.

    PubMed

    Wang, Nan; Tahmasebi, Arash; Yu, Jianglong; Xu, Jing; Huang, Feng; Mamaeva, Alisa

    2015-08-01

    Microwave (MW) pyrolysis of algal and lignocellulosic biomass samples were studied using a modified domestic oven. The pyrolysis temperature was recorded continuously by inserting a thermocouple into the samples. Temperatures as high as 1170 and 1015°C were achieved for peanut shell and Chlorella vulgaris. The activation energy for MW pyrolysis was calculated by Coats-Redfern method and the values were 221.96 and 214.27kJ/mol for peanut shell and C. vulgaris, respectively. Bio-oil yields reached to 27.7wt.% and 11.0wt.% during pyrolysis of C. vulgaris and peanut shell, respectively. The bio-oil samples from pyrolysis were analyzed by a gas chromatography-mass spectrometry (GC-MS). Bio-oil from lignocellulosic biomass pyrolysis contained more phenolic compounds while that from microalgae pyrolysis contained more nitrogen-containing species. Fourier transform infrared spectroscopy (FTIR) analysis results showed that concentration of OH, CH, CO, OCH3, and CO functional groups in char samples decreased significantly after pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Silane-Pyrolysis Reactor With Nonuniform Heating

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1991-01-01

    Improved reactor serves as last stage in system processing metallurgical-grade silicon feedstock into silicon powder of ultrahigh purity. Silane pyrolized to silicon powder and hydrogen gas via homogeneous decomposition reaction in free space. Features set of individually adjustable electrical heaters and purge flow of hydrogen to improve control of pyrolysis conditions. Power supplied to each heater set in conjunction with flow in reactor to obtain desired distribution of temperature as function of position along reactor.

  3. Validation Results for Core-Scale Oil Shale Pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation.more » Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.« less

  4. Whole Microorganisms Studied by Pyrolysis-Gas Chromatography-Mass Spectrometry: Significance for Extraterrestrial Life Detection Experiments 1

    PubMed Central

    Simmonds, Peter G.

    1970-01-01

    Pyrolysis-gas chromatography-mass spectrometric studies of two microorganisms, Micrococcus luteus and Bacillus subtilis var. niger, indicate that the majority of thermal fragments originate from the principal classes of bio-organic matter found in living systems such as protein and carbohydrate. Furthermore, there is a close qualitative similarity between the type of pyrolysis products found in microorganisms and the pyrolysates of other biological materials. Conversely, there is very little correlation between microbial pyrolysates and comparable pyrolysis studies of meteoritic and fossil organic matter. These observations will aid in the interpretation of a soil organic analysis experiment to be performed on the surface of Mars in 1975. The science payload of this landed mission will include a combined pyrolysis-gas chromatography-mass spectrometry instrument as well as several “direct biology experiments” which are designed to search for extraterrestrial life. PMID:16349890

  5. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism.

    PubMed

    Wang, Huihui; Wang, Xin; Cui, Yanshan; Xue, Zhongcai; Ba, Yuxin

    2018-05-11

    Slow pyrolysis of bamboo was conducted at 400-600 °C and pyrolysis products were characterized with FTIR, BET, XRD, SEM, EDS and GC to establish a pyrolysis product yield prediction model and biochar formation mechanism. Pyrolysis biochar yield was predicted based on content of cellulose, hemicellulose and lignin in biomass with their carbonization index of 0.20, 0.35 and 0.45. The formation mechanism of porous structure in pyrolysis biochar was established based on its physicochemical property evolution and emission characteristics of pyrolysis gas. The main components (cellulose, hemicellulose and lignin) had different pyrolysis or chemical reaction pathways to biochar. Lignin had higher aromatic structure, which resulted higher biochar yield. It was the main biochar precursor during biomass pyrolysis. Cellulose was likely to improve porous structure of pyrolysis biochar due to its high mass loss percentage. Higher pyrolysis temperatures (600 °C) promoted inter- and intra-molecular condensation reactions and aromaticity in biochar. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Solar coal gasification reactor with pyrolysis gas recycle

    DOEpatents

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  7. Magnetic carbon nanostructures: microwave energy-assisted pyrolysis vs. conventional pyrolysis.

    PubMed

    Zhu, Jiahua; Pallavkar, Sameer; Chen, Minjiao; Yerra, Narendranath; Luo, Zhiping; Colorado, Henry A; Lin, Hongfei; Haldolaarachchige, Neel; Khasanov, Airat; Ho, Thomas C; Young, David P; Wei, Suying; Guo, Zhanhu

    2013-01-11

    Magnetic carbon nanostructures from microwave assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shells from conventional heating, different carbon shell morphologies including nanotubes, nanoflakes and amorphous carbon were observed. Crystalline iron and cementite were observed in the magnetic core, different from a single cementite phase from the conventional process.

  8. Simulating Biomass Fast Pyrolysis at the Single Particle Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciesielski, Peter; Wiggins, Gavin; Daw, C Stuart

    2017-07-01

    Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level ofmore » structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.« less

  9. Structural analysis of pyrolytic lignins isolated from switchgrass fast pyrolysis oil

    USDA-ARS?s Scientific Manuscript database

    Structural characterization of lignin extracted from the bio-oil produced by fast pyrolysis of switchgrass (Panicum virgatum) is reported. This new information is important to understanding the utility of lignin as a chemical feedstock in a pyrolysis based biorefinery. Pyrolysis induces a variety of...

  10. Comparison of the pyrolysis behavior of lignins from different tree species.

    PubMed

    Wang, Shurong; Wang, Kaige; Liu, Qian; Gu, Yueling; Luo, Zhongyang; Cen, Kefa; Fransson, Torsten

    2009-01-01

    Despite the increasing importance of biomass pyrolysis, little is known about the pyrolysis behavior of lignin--one of the main components of biomass--due to its structural complexity and the difficulty in its isolation. In the present study, we extracted lignins from Manchurian ash (Fraxinus mandschurica) and Mongolian Scots pine (Pinus sylvestris var. mongolica) using the Bjorkman procedure, which has little effect on the structure of lignin. Fourier transform infrared (FTIR) spectrometry was used to characterize the microstructure of the Bjorkman lignins, i.e., milled wood lignins (MWLs), from the different tree species. The pyrolysis characteristics of MWLs were investigated using a thermogravimetric analyzer, and the release of the main volatile and gaseous products of pyrolysis were detected by FTIR spectroscopy. During the pyrolysis process, MWLs underwent thermo-degradation over a wide temperature range. Manchurian ash MWL showed a much higher thermal degradation rate than Mongolian Scots pine MWL in the temperature range from 290-430 degrees C. High residue yields were achieved at 37 wt.% for Mongolian Scots pine MWL and 26 wt.% for Manchurian ash MWL. In order to further investigate the mechanisms of lignin pyrolysis, we also analyzed the FTIR profiles for the main pyrolysis products (CO(2), CO, methane, methanol, phenols and formaldehyde) and investigated the variation in pyrolysis products between the different MWLs.

  11. Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1995-01-01

    A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.

  12. Experimental study on the heat transfer characteristics of waste printed circuit boards pyrolysis.

    PubMed

    Ma, Hongting; Du, Na; Lin, Xueyin; Li, Chen; Lai, Junwen; Li, Zihao

    2018-08-15

    In order to study the appropriate and advanced technology for recycling waste printed circuit boards (PCBs), a fixed bed pyrolysis device with stirring function has been designed and developed. The effect of rotating speed on the temperature distribution and mass change in the pyrolysis process of FR-4 PCB has been analyzed. The heat transfer and pyrolysis characteristics of different granular layers with and without stirring have been investigated. The results indicate that the stirring can change the main way of heat transfer from conduction to convection in the PCB layers. As the increase of rotating speed, the temperature rising rate of material at the bottom of the pyrolysis furnace gradually decreases, while the heating rate is increasing at the upper layer, and the temperature difference between the upper and bottom layers is gradually reduced. When the rotating speed varies from 0r/min to 18r/min, the weight loss of the material increases from 3.97% to 6.76%, and the overall pyrolysis degree is improved. During the pyrolysis process, the material layer can be divided into three zones along the vertical direction, namely complete pyrolysis zone, partial pyrolysis zone and non-pyrolysis zone. As the rotating speed is 0r/min, the thickness of each zones is 6cm, 6cm and 3cm, respectively. However, when the rotating speed is increased to 18r/min, the non-pyrolysis zone disappears, and the thickness of complete pyrolysis zone and partial pyrolysis zone increase to 9cm and 6cm, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. [Bio-oil production from biomass pyrolysis in molten salt].

    PubMed

    Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

    2011-03-01

    In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt.

  14. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis.

    PubMed

    Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao

    2016-12-01

    Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H 2 O, CH 4 , CO, and CO 2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H 2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH 4 and CO 2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolada, M.C.; Zabaniotou, A.A., E-mail: azampani@auth.gr

    2014-02-15

    Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current statusmore » of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.« less

  16. Pyrolysis of tyre powder using microwave thermogravimetric analysis: Effect of microwave power.

    PubMed

    Song, Zhanlong; Yang, Yaqing; Zhou, Long; Zhao, Xiqiang; Wang, Wenlong; Mao, Yanpeng; Ma, Chunyuan

    2017-02-01

    The pyrolytic characteristics of tyre powder treated under different microwave powers (300, 500, and 700 W) were studied via microwave thermogravimetric analysis. The product yields at different power levels were studied, along with comparative analysis of microwave pyrolysis and conventional pyrolysis. The feedstock underwent preheating, intense pyrolysis, and final pyrolysis in sequence. The main and secondary weight loss peaks observed during the intense pyrolysis stage were attributed to the decomposition of natural rubbers and synthetic rubbers, respectively. The total mass loss rates, bulk temperatures, and maximum temperatures were distinctively higher at higher powers. However, the maximum mass loss rate (0.005 s -1 ), the highest yields of liquid product (53%), and the minimum yields of residual solid samples (43.83%) were obtained at 500 W. Compared with conventional pyrolysis, microwave pyrolysis exhibited significantly different behaviour with faster reaction rates, which can decrease the decomposition temperatures of both natural and synthetic rubber by approximately 110 °C-140 °C.

  17. Volatile Analysis by Pyrolysis of Regolith (Vapor) for Planetary Resource Prospecting

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Malespin, C. A.; Ten Kate, I. L.; Mcadam, A.; Getty, S. A.; Mumm, E.; Franz, H. B.; Southard, A. E.; Bleacher, J. E.; Mahaffy, P. R.

    2016-01-01

    Measuring the chemical composition of planetary bodies and their atmospheres is key to understanding the formation of the Solar System and the evolution of the planets and their moons. In situ volatile measurements enable a ground-truth assessment of the distribution and abundance of resources such as water-ice and oxygen, important for a sustained human presence on the Moon and beyond. The Volatile Analysis by Pyrolysis of Regolith (VAPoR) instrument is a compact pyrolysis mass spectrometer designed to detect volatiles released from solid samples that are heated to elevated temperatures and is one technique that should be considered for resource prospecting on the Moon, Mars, and asteroids.

  18. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.

    PubMed

    Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett

    2013-09-01

    Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Pyrolysis chemistry of polycarbosilane polymer precursors to ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Qi

    , likely facilitated by the Si-OH-induced attack on the Si-CHsb2-Si linkages. In addition, the microstructure of the gels and their pyrolytic products was investigated by Nsb2 adsorption-desorption test (the BET test). The results suggested that the investigated samples are microporous solids with relatively high surface areas even at 1000sp°C, indicating the potential interest of these samples as microporous materials. Finally, a mixture system was synthesized by introducing oxygen into the (SiHsb2CHsb2), polymer purposely to obtain a model (SiHsb2CHsb2rbracksb{n}rbrack Si(O)CHsb2rbracksb{m} system which has a variable and controllable amount of oxygen. This was the intermediate case between the two extremes. In this system, the pyrolysis mechanisms which worked in the two extreme cases also operated here along with a new mechanism resulting the formation of part of the total Hsb2 between Si-OH and Si-H groups.

  20. Finding the chemistry in biomass pyrolysis: Millisecond chemical kinetics and visualization

    NASA Astrophysics Data System (ADS)

    Krumm, Christoph

    Biomass pyrolysis is a promising thermochemical method for producing fuels and chemicals from renewable sources. Development of a fundamental understanding of biomass pyrolysis chemistry is difficult due to the multi-scale and multi-phase nature of the process; biomass length scales span 11 orders of magnitude and pyrolysis phenomena include solid, liquid, and gas phase chemistry in addition to heat and mass transfer. These complexities have a significant effect on chemical product distributions and lead to variability between reactor technologies. A major challenge in the study of biomass pyrolysis is the development of kinetic models capable of describing hundreds of millisecond-scale reactions of biomass into lower molecular weight products. In this work, a novel technique for studying biomass pyrolysis provides the first- ever experimental determination of kinetics and rates of formation of the primary products from cellulose pyrolysis, providing insight into the millisecond-scale chemical reaction mechanisms. These findings highlight the importance of heat and mass transport limitations for cellulose pyrolysis chemistry and are used to identify the length scales at which transport limitations become relevant during pyrolysis. Through this technique, a transition is identified, known as the reactive melting point, between low and high temperature depolymerization. The transition between two mechanisms of cellulose decompositions unifies the mechanisms that govern low temperature char formation, intermediate pyrolysis conditions, and high temperature gas formation. The conditions under which biomass undergoes pyrolysis, including modes of heat transfer, have been shown to significantly affect the distribution of biorenewable chemical and fuel products. High-speed photography is used to observe the liftoff of initially crystalline cellulose particles when impinged on a heated surface, known as the Leidenfrost effect for room-temperature liquids. Order

  1. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers

    PubMed Central

    Jiang, Xiaoyan; Lu, Qiang; Hu, Bin; Liu, Ji; Dong, Changqing; Yang, Yongping

    2017-01-01

    In order to understand the pyrolysis mechanism of β-O-4 type lignin dimers, a pyrolysis model is proposed which considers the effects of functional groups (hydroxyl, hydroxymethyl and methoxyl) on the alkyl side chain and aromatic ring. Furthermore, five specific β-O-4 type lignin dimer model compounds are selected to investigate their integrated pyrolysis mechanism by density functional theory (DFT) methods, to further understand and verify the proposed pyrolysis model. The results indicate that a total of 11 pyrolysis mechanisms, including both concerted mechanisms and homolytic mechanisms, might occur for the initial pyrolysis of the β-O-4 type lignin dimers. Concerted mechanisms are predominant as compared with homolytic mechanisms throughout unimolecular decomposition pathways. The competitiveness of the eleven pyrolysis mechanisms are revealed via different model compounds, and the proposed pyrolysis model is ranked in full consideration of functional groups effects. The proposed pyrolysis model can provide a theoretical basis to predict the reaction pathways and products during the pyrolysis process of β-O-4 type lignin dimers. PMID:29120350

  2. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.

    PubMed

    Jiang, Xiaoyan; Lu, Qiang; Hu, Bin; Liu, Ji; Dong, Changqing; Yang, Yongping

    2017-11-09

    In order to understand the pyrolysis mechanism of β- O -4 type lignin dimers, a pyrolysis model is proposed which considers the effects of functional groups (hydroxyl, hydroxymethyl and methoxyl) on the alkyl side chain and aromatic ring. Furthermore, five specific β- O -4 type lignin dimer model compounds are selected to investigate their integrated pyrolysis mechanism by density functional theory (DFT) methods, to further understand and verify the proposed pyrolysis model. The results indicate that a total of 11 pyrolysis mechanisms, including both concerted mechanisms and homolytic mechanisms, might occur for the initial pyrolysis of the β- O -4 type lignin dimers. Concerted mechanisms are predominant as compared with homolytic mechanisms throughout unimolecular decomposition pathways. The competitiveness of the eleven pyrolysis mechanisms are revealed via different model compounds, and the proposed pyrolysis model is ranked in full consideration of functional groups effects. The proposed pyrolysis model can provide a theoretical basis to predict the reaction pathways and products during the pyrolysis process of β- O -4 type lignin dimers.

  3. Pyrolysis kinetic and product analysis of different microalgal biomass by distributed activation energy model and pyrolysis-gas chromatography-mass spectrometry.

    PubMed

    Yang, Xuewei; Zhang, Rui; Fu, Juan; Geng, Shu; Cheng, Jay Jiayang; Sun, Yuan

    2014-07-01

    To assess the energy potential of different microalgae, Chlorella sorokiniana and Monoraphidium were selected for studying the pyrolytic behavior at different heating rates with the analytical method of thermogravimetric analysis (TG), distributed activation energy model (DAEM) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Results presented that Monoraphidium 3s35 showed superiority for pyrolysis at low heating rate. Calculated by DAEM, during the conversion rate range from 0.1 to 0.7, the activation energies of C. sorokiniana 21 were much lower than that of Monoraphidium 3s35. Both C. sorokiniana 21 and Monoraphidium 3s35 can produce certain amount (up to 20.50%) of alkane compounds, with 9-Octadecyne (C18H34) as the primary compound. Short-chain alkanes (C7-C13) with unsaturated carbon can be released in the pyrolysis at 500°C for both microalgal biomass. It was also observed that the pyrolysis of C. sorokiniana 21 released more alcohol compounds, while Monoraphidium 3s35 produced more saccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Microwave-assisted co-pyrolysis of pretreated lignin and soapstock for upgrading liquid oil: Effect of pretreatment parameters on pyrolysis behavior.

    PubMed

    Duan, Dengle; Ruan, Roger; Lei, Hanwu; Liu, Yuhuan; Wang, Yunpu; Zhang, Yayun; Zhao, Yunfeng; Dai, Leilei; Wu, Qiuhao; Zhang, Shumei

    2018-06-01

    The co-pyrolysis of pretreated lignin and soapstock was carried out to upgrade vapors under microwave irradiation. Results showed that the yield of 29.92-42.21 wt% of upgraded liquid oil was achieved under varied pretreatment conditions. Char yield decreased from 32.44 wt% for untreated control to 24.35 wt% for the 150 °C pretreated samples. The increased temperature, irradiation time and acid concentration were conducive to decrease the relative contents of phenols and oxygenates in liquid oils. The main components of the liquid oil were gasoline fraction (mono-aromatics and C5-C12 aliphatics), which ranged from 57.38 to 71.98% under various pretreatment conditions. Meanwhile, the diesel fraction (C12+ aliphatics) ranged from 13.16 to 22.62% from co-pyrolysis of pretreated lignin and soapstock, comparing with 10.18% of C12+ aliphatics from co-pyrolysis of non-pretreated lignin and soapstock. A possible mechanism was proposed for co-pyrolysis of pretreated lignin and soapstock for upgraded liquid oils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Co-pyrolysis of polypropylene waste with Brazilian heavy oil.

    PubMed

    Assumpção, Luiz C F N; Carbonell, Montserrat M; Marques, Mônica R C

    2011-01-01

    To evaluate the chemical recycling of plastic residues, co-pyrolysis of polypropylene (PP) waste with Brazilian crude oil was evaluated varying the temperature (400°C to 500°C) and the amount of PP fed to the reactor. The co-pyrolysis of plastic waste in an inert atmosphere provided around 80% of oil pyrolytic, and of these, half represent the fraction of diesel oil. This study can be used as a reference in chemical recycling of plastics, specially associated with plastics co-pyrolysis.

  6. Rapid detection of bacteria with miniaturized pyrolysis-gas chromatographic analysis

    NASA Astrophysics Data System (ADS)

    Mowry, Curtis; Morgan, Catherine H.; Baca, Quentin; Manginell, Ronald P.; Kottenstette, Richard J.; Lewis, Patrick; Frye-Mason, Gregory C.

    2002-02-01

    Rapid detection and identification of bacteria and other pathogens is important for many civilian and military applications. The profiles of biological markers such as fatty acids can be used to characterize biological samples or to distinguish bacteria at the gram-type, genera, and even species level. Common methods for whole cell bacterial analysis are neither portable nor rapid, requiring lengthy, labor intensive sample preparation and bench-scale instrumentation. These methods chemically derivatize fatty acids to produce more volatile fatty acid methyl esters (FAMEs) that can be separated and analyzed by a gas chromatograph (GC)/mass spectrometer. More recent publications demonstrate decreased sample preparation time with in situ derivatization of whole bacterial samples using pyrolysis/derivatization. Ongoing development of miniaturized pyrolysis/GC instrumentation by this department capitalizes on Sandia advances in the field of microfabricated chemical analysis systems ((mu) ChemLab). Microdevices include rapidly heated stages capable of pyrolysis or sample concentration, gas chromatography columns, and surface acoustic wave (SAW) sensor arrays. We will present results demonstrating the capabilities of these devices toward fulfilling the goal of portable, rapid detection and early warning of the presence of pathogens in air or water.

  7. Tabletop Femtosecond VUV Photoionization and PEPICO Detection of Microreactor Pyrolysis Products.

    PubMed

    Couch, David E; Buckingham, Grant T; Baraban, Joshua H; Porterfield, Jessica P; Wooldridge, Laura A; Ellison, G Barney; Kapteyn, Henry C; Murnane, Margaret M; Peters, William K

    2017-07-20

    We report the combination of tabletop vacuum ultraviolet photoionization with photoion-photoelectron coincidence spectroscopy for sensitive, isomer-specific detection of nascent products from a pyrolysis microreactor. Results on several molecules demonstrate two essential capabilities that are very straightforward to implement: the ability to differentiate isomers and the ability to distinguish thermal products from dissociative ionization. Here, vacuum ultraviolet light is derived from a commercial tabletop femtosecond laser system, allowing data to be collected at 10 kHz; this high repetition rate is critical for coincidence techniques. The photoion-photoelectron coincidence spectrometer uses the momentum of the ion to identify dissociative ionization events and coincidence techniques to provide a photoelectron spectrum specific to each mass, which is used to distinguish different isomers. We have used this spectrometer to detect the pyrolysis products that result from the thermal cracking of acetaldehyde, cyclohexene, and 2-butanol. The photoion-photoelectron spectrometer can detect and identify organic radicals and reactive intermediates that result from pyrolysis. Direct comparison of laboratory and synchrotron data illustrates the advantages and potential of this approach.

  8. Tabletop Femtosecond VUV Photoionization and PEPICO Detection of Microreactor Pyrolysis Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, David E.; Buckingham, Grant T.; Baraban, Joshua H.

    Here, we report the combination of tabletop vacuum ultraviolet photoionization with photoion--photoelectron coincidence spectroscopy for sensitive, isomer-specific detection of nascent products from a pyrolysis microreactor. Results on several molecules demonstrate two essential capabilities that are very straightforward to implement: the ability to differentiate isomers, and to distinguish thermal products from dissociative ionization. We derive vacuum ultraviolet light is from a commercial tabletop femtosecond laser system, allowing data to be collected at 10 kHz; this high repetition rate is critical for coincidence techniques. The photoion—photoelectron coincidence spectrometer uses the momentum of the ion to identify dissociative ionization events, and coincidence techniquesmore » to provide a photoelectron spectrum specific to each mass, which is used to distinguish different isomers. We also have used this spectrometer to detect the pyrolysis products that result from the thermal cracking of acetaldehyde, cyclohexene, and 2-butanol. The photoion—photoelectron spectrometer can detect and identify organic radicals and reactive intermediates that result from pyrolysis. Direct comparison of laboratory and synchrotron data illustrate the advantages and potential of this approach.« less

  9. Tabletop Femtosecond VUV Photoionization and PEPICO Detection of Microreactor Pyrolysis Products

    DOE PAGES

    Couch, David E.; Buckingham, Grant T.; Baraban, Joshua H.; ...

    2017-06-29

    Here, we report the combination of tabletop vacuum ultraviolet photoionization with photoion--photoelectron coincidence spectroscopy for sensitive, isomer-specific detection of nascent products from a pyrolysis microreactor. Results on several molecules demonstrate two essential capabilities that are very straightforward to implement: the ability to differentiate isomers, and to distinguish thermal products from dissociative ionization. We derive vacuum ultraviolet light is from a commercial tabletop femtosecond laser system, allowing data to be collected at 10 kHz; this high repetition rate is critical for coincidence techniques. The photoion—photoelectron coincidence spectrometer uses the momentum of the ion to identify dissociative ionization events, and coincidence techniquesmore » to provide a photoelectron spectrum specific to each mass, which is used to distinguish different isomers. We also have used this spectrometer to detect the pyrolysis products that result from the thermal cracking of acetaldehyde, cyclohexene, and 2-butanol. The photoion—photoelectron spectrometer can detect and identify organic radicals and reactive intermediates that result from pyrolysis. Direct comparison of laboratory and synchrotron data illustrate the advantages and potential of this approach.« less

  10. Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass.

    PubMed

    Zhou, Xiehong; Jia, Hanzhong; Qu, Chengtun; Fan, Daidi; Wang, Chuanyi

    2017-02-01

    Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and its kinetics and efficiency are expected to be affected by additives. In the present study, the pyrolysis parameters, including heating rate, final pyrolysis temperature, and pyrolysis time of oily sludge in the presence of agricultural biomass, apricot shell, were systematically explored. As a result, maximum oil recovery is achieved when optimizing the pyrolysis conditionas15 K/min, 723 K, and 3 h for heating rate, final pyrolysis temperature, and pyrolysis time, respectively. Thermogravimetric experiments of oily sludge samples in the presence of various biomasses conducted with non-isothermal temperature programmes suggest that the pyrolysis process contains three stages, and the main decomposition reaction occurs in the range of 400-740 K. Taking Flynn-Wall-Ozawa analysis of the derivative thermogravimetry and thermogravimetry results, the activation energy (E a ) values for the pyrolysis of oily sludge in the presence and absence of apricot shell were derived to be 35.21 and 39.40 kJ mol -1 , respectively. The present work supports that the presence of biomass promotes the pyrolysis of oily sludge, implying its great potential as addictive in the industrial pyrolysis of oily sludge.

  11. Auto shredder residue recycling: Mechanical separation and pyrolysis.

    PubMed

    Santini, Alessandro; Passarini, Fabrizio; Vassura, Ivano; Serrano, David; Dufour, Javier; Morselli, Luciano

    2012-05-01

    Directive 2000/53/EC sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a "waste-to-chemicals" perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Catalytic pyrolysis characteristics of scrap printed circuit boards by TG-FTIR.

    PubMed

    Zhao, Chunhu; Zhang, Xiaoping; Shi, Lin

    2017-03-01

    In the present work, pyrolysis and catalytic pyrolysis of waste printed circuit boards (WPCBs) was carried out in the coupling of Thermo Gravimetric Analysis and Fourier Transform Infrared Spectroscopy (TG-FTIR) under nitrogen atmosphere. The reaction temperature was increased from 30 to 700°C, while the heating rates were varied from 10 to 40°C/min. Experimental results show that the effect of catalyst on the WPCBs particles pyrolysis was significance. Compared with another two combustion-supporting agents (MgO, CaO), the whole pyrolysis process was optimized when the catalyst ZSM-5 was added into the WPCBs particles. The distributed activation energy model (DAEM) was used to analyze the kinetic parameters of the WPCBs pyrolysis. It was found that values of frequency factor (k 0 ) changed with different activation energy (E) values during pyrolysis process. The activation energy values range from 129.15 to 280.53kJ/mol, and the frequency factor values range from 9.02×10 10 to 4.21×10 22 s -1 . The generated major products for the catalytic pyrolysis of WPCBs were H 2 , CO 2 , CO, H 2 O, phenols and aromatics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Scrap tyre pyrolysis: Modified chemical percolation devolatilization (M-CPD) to describe the influence of pyrolysis conditions on product yields.

    PubMed

    Tan, Vincent; De Girolamo, Anthony; Hosseini, Tahereh; Alhesan, Jameel Aljariri; Zhang, Lian

    2018-03-16

    This paper attempts to develop a modified chemical percolation devolatilization (M-CPD) model that can include heat transfer, primary pyrolysis and the secondary cracking reactions of volatiles together to describe the pyrolysis of waste scrap tyre chip, as well as to examine the influence of operating conditions on the scrap tyre pyrolysis product yields. Such a study has yet to be conducted in the past, thereby leading to a large knowledge gap failing to understand the pyrolysis of the coarse feedstock appropriately. To validate the developed model, a number of operating parameters including reactor configurations, carrier gas compositions (argon and argon blended with CO 2 and/or steam), scrap tyre chip size (0.5-15.0 mm), terminal pyrolysis temperature (400-800 °C) and heating rate (10 °C/min and 110 °C/min) were examined in a lab-scale fixed-bed pyrolyser, with a particular focus on the secondary cracking extents of the liquid tar. Through both experimental investigation and modelling approach, it was found that significant secondary cracking extent occurred upon the increase in the feedstock size, heating rate and residence time. Upon the fast pyrolysis, the average temperature gap between the centres of the coarse particle and reactor wall could reach a maximum of 115 °C for the tyre chips of 6-15 mm. Consequently, its primary volatiles underwent the secondary cracking reaction at an overall extent of 17% at a terminal temperature of 600 °C and a fast heating rate of 110 °C/min. Consequently, the yield of light gases including methane was increased remarkably. The flow rate of inert carrier gas was also influential in the secondary cracking, in which a maximum tar yield (54 wt%) was reached at a carrier gas flow rate of 1.5  L/min. This indicates the occurrence of secondary cracking has been largely minimised. At a pyrolysis temperature of 600 °C, the addition of CO 2 in the carrier gas had an insignificant effect on the product

  14. Process for minimizing solids contamination of liquids from coal pyrolysis

    DOEpatents

    Wickstrom, Gary H.; Knell, Everett W.; Shaw, Benjamin W.; Wang, Yue G.

    1981-04-21

    In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

  15. Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis.

    PubMed

    Mallick, Debarshi; Poddar, Maneesh Kumar; Mahanta, Pinakeswar; Moholkar, Vijayanand S

    2018-08-01

    This study reports pyrolysis kinetics of biomass blends using isoconversional methods, viz. Friedman, FWO and KAS. Blends of three biomasses, viz. saw dust, bamboo dust and rice husk, were used. Extractives and volatiles in biomass and minerals in ash had marked influence on enhancement of reaction kinetics during co-pyrolysis, as indicated by reduction in activation energy and increase in decomposition intensity. Pyrolysis kinetics of saw dust and rice husk accelerated (positive synergy), while that of bamboo dust decelerated after blending (negative synergy). Predominant reaction mechanism of all biomass blends was 3-D diffusion in lower conversion range (α ≤ 0.5), while for α ≥ 0.5 pyrolysis followed random nucleation (or nucleation and growth mechanism). Higher reaction order for pyrolysis of blends of rice husk with saw dust and bamboo dust was attributed to catalytic effect of minerals in ash. Positive ΔH and ΔG was obtained for pyrolysis of all biomass blends. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Fluidized bed catalytic pyrolysis of eucalyptus over hzsm-5: effect of acid density and gallium modification on catalyst deactivation

    USDA-ARS?s Scientific Manuscript database

    Catalytic fast pyrolysis of eucalyptus wood was performed on a continuous laboratory scale fluidized bed fast pyrolysis system. Catalytic activity was monitored from use of fresh catalyst up to a cumulative biomass to catalyst ratio (B/C) of 4/1 over extruded pellets of three different ZSM-5 catalys...

  17. Thiophenic Sulfur Compounds Released During Coal Pyrolysis

    PubMed Central

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-01-01

    Abstract Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography–mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  18. Co-processing of olive bagasse with crude rapeseed oil via pyrolysis.

    PubMed

    Uçar, Suat; Karagöz, Selhan

    2017-05-01

    The co-pyrolysis of olive bagasse with crude rapeseed oil at different blend ratios was investigated at 500ºC in a fixed bed reactor. The effect of olive bagasse to crude rapeseed oil ratio on the product distributions and properties of the pyrolysis products were comparatively investigated. The addition of crude rapeseed oil into olive bagasse in the co-pyrolysis led to formation of upgraded biofuels in terms of liquid yields and properties. While the pyrolysis of olive bagasse produced a liquid yield of 52.5 wt %, the highest liquid yield of 73.5 wt % was obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4. The bio-oil derived from olive bagasse contained 5% naphtha, 10% heavy naphtha, 30% gas oil, and 55% heavy gas oil. In the case of bio-oil obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil at a blend ratio of 1:4, the light naphtha, heavy naphtha, and light gas oil content increased. This is an indication of the improved characteristics of the bio-oil obtained from the co-processing. The heating value of bio-oil from the pyrolysis of olive bagasse alone was 34.6 MJ kg -1 and the heating values of bio-oils obtained from the co-pyrolysis of olive bagasse with crude rapeseed oil ranged from 37.6 to 41.6 MJ kg -1 . It was demonstrated that the co-processing of waste biomass with crude plant oil is a good alternative to improve bio-oil yields and properties.

  19. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components

    USDA-ARS?s Scientific Manuscript database

    Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil product. Py/GC-MS was employed to study the catalytic fast pyrolysis of lignocellulosic biomass samples comprising oak, corn...

  20. Dual fluidized bed design for the fast pyrolysis of biomass

    USDA-ARS?s Scientific Manuscript database

    A mechanism for the transport of solids between fluidised beds in dual fluidised bed systems for the fast pyrolysis of biomass process was selected. This mechanism makes use of an overflow standpipe to transport solids from the fluidised bed used for the combustion reactions to a second fluidised be...

  1. Biotechnological Perspectives of Pyrolysis Oil for a Bio-Based Economy.

    PubMed

    Arnold, Stefanie; Moss, Karin; Henkel, Marius; Hausmann, Rudolf

    2017-10-01

    Lignocellulosic biomass is an important feedstock for a potential future bio-based economy. Owing to its compact structure, suitable decomposition technologies will be necessary to make it accessible for biotechnological conversion. While chemical and enzymatic hydrolysis are currently established methods, a promising alternative is provided by fast pyrolysis. The main resulting product thereof, referred to as pyrolysis oil, is an energy-rich and easily transportable liquid. Many of the identified constituents of pyrolysis oil, however, have previously been reported to display adverse effects on microbial growth. In this Opinion we discuss relevant biological, biotechnological, and technological challenges that need to be addressed to establish pyrolysis oil as a reliable microbial feedstock for a bio-based economy of the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Method and apparatus for producing pyrolysis oil having improved stability

    DOEpatents

    Baird, Lance A.; Brandvold, Timothy A.; Muller, Stefan

    2016-12-27

    Methods and apparatus to improve hot gas filtration to reduce the liquid fuel loss caused by prolonged residence time at high temperatures are described. The improvement can be obtained by reducing the residence time at elevated temperature by reducing the temperature of the pyrolysis vapor, by reducing the volume of the pyrolysis vapor at the elevated temperature, by increasing the volumetric flow rate at constant volume of the pyrolysis vapor, or by doing a combination of these.

  3. Predicting properties of gas and solid streams by intrinsic kinetics of fast pyrolysis of wood

    DOE PAGES

    Klinger, Jordan; Bar-Ziv, Ezra; Shonnard, David; ...

    2015-12-12

    Pyrolysis has the potential to create a biocrude oil from biomass sources that can be used as fuel or as feedstock for subsequent upgrading to hydrocarbon fuels or other chemicals. The product distribution/composition, however, is linked to the biomass source. This work investigates the products formed from pyrolysis of woody biomass with a previously developed chemical kinetics model. Different woody feedstocks reported in prior literature are placed on a common basis (moisture, ash, fixed carbon free) and normalized by initial elemental composition through ultimate analysis. Observed product distributions over the full devolatilization range are explored, reconstructed by the model, andmore » verified with independent experimental data collected with a microwave-assisted pyrolysis system. These trends include production of permanent gas (CO, CO 2), char, and condensable (oil, water) species. Elementary compositions of these streams are also investigated. As a result, close agreement between literature data, model predictions, and independent experimental data indicate that the proposed model/method is able to predict the ideal distribution from fast pyrolysis given reaction temperature, residence time, and feedstock composition.« less

  4. Charcoal from the pyrolysis of rapeseed plant straw-stalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaosmanoglu, F.; Tetik, E.

    1999-07-01

    Charcoal is an important product of pyrolysis of biomass sources. Charcoal can be used for domestic, agricultural, metallurgical, and chemical purposes. In this study different characteristics of charcoal, one of the rape seed plant straw-stalk pyrolysis product, was researched and presented as candidates.

  5. Preparation, properties, and bonding utilization of pyrolysis bio-oil

    USDA-ARS?s Scientific Manuscript database

    The rapid increase in energy consumption, limited fossil fuel resource, and environmental concerns have stimulated the research need for biomass-derived fuels and chemicals. Pyrolysis is a thermal degradation process of biomass in the absence of oxygen. The liquid product from pyrolysis is known as ...

  6. Development of bio-fuel from palm frond via fast pyrolysis

    NASA Astrophysics Data System (ADS)

    Solikhah, M. D.; Raksodewanto, A. A.; Kismanto, A.; Karuana, F.; Heryana, Y.; Riza; Pratiwi, F. T.

    2017-05-01

    In order to fulfill the fuel demand in the future, Indonesia has to find a sustainable alternative for its energy. Energy source in the form of biomass is a promising alternative since its availability is abundance in this tropical country. Biomass can be converted into liquid fuel via fast pyrolysis by contacting the solid biomass into hot medium in the absence of oxygen. Hot sand is the common heat carrier for fast pyrolysis purposes but it is very abrasive and required high pyrolysis temperature (450-600 °C). This paper will discuss on the equipment design and experiment of fast pyrolysis of palm frond using high boiling point thermal oil as heat carrier. Experiments show that by using thermal oil as heat carrier, bio-oil can be produced at lower pyrolysis temperature of 350 °C, compared to the one using hot sand as heating carrier. The yield of bio-oil production is 36.4 % of biomass feeding. The water content of bio-oil is 52.77 % mass while heating value is 10.25 MJ/kg.

  7. Mass spectrometric studies of trimethylindium pyrolysis

    NASA Technical Reports Server (NTRS)

    Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B.

    1988-01-01

    The kinetics of the pyrolysis of trimethylindium (TMIn) in He, D2, and H2 carriers was investigated using the atmospheric pressure flow-tube apparatus described by Larsen et al. (1987) and a time-of-flight mass spectrometer. The rate constant for the pyrolysis of TMIn in He was found to be comparable to that found by Jacko and Price (1964) for TMIn in toluene carrier (a radical scavenger), indicating that TMIn decomposes in He not by radical attack of methyl groups, but by homolytic fission. The decomposition of TMIn is enhanced in D2 and H2 carriers, where the principal products are CH3D and C2H6, and CH4 and C2H6, respectively, indicating that the reaction pathway in these carriers is different from those in He and toluene. The pyrolysis in H2 and D2 is attributed to a radical attack by H or D on TMIn. A reaction mechanism involving a short-lived hypervalent DTMIn species was proposed and was tested using numerical modeling techniques.

  8. Understanding the Behavior of the Oligomeric Fractions During Pyrolysis Oils Upgrading

    NASA Astrophysics Data System (ADS)

    Stankovikj, Filip

    presented; the O content reduced from 6 to 2%, which correlated well with the additional water formed. The water formation increased with stabilization temperature (3 to 10%), dominated by repolymerization instead deoxygenation. This last study presents a methodological framework for analysis of pyrolysis oils hydrotreatment; it simplifies modeling of these systems, vital for further understanding of bio-oil upgrading.

  9. Effects of Non-Equilibrium Chemistry and Darcy-Forchheimer Flow of Pyrolysis Gas for a Charring Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Milos, Frank S.

    2011-01-01

    The Fully Implicit Ablation and Thermal Response code, FIAT, simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid. This work describes new modeling capabilities that are added to a special version of FIAT. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite-rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Parametric studies are performed using this enhanced version of FIAT. Two groups of analyses of Phenolic Impregnated Carbon Ablator (PICA) are presented. In the first group, an Orion flight environment for a proposed Lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on PICA material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results are presented, discussed, and compared with those predicted by the baseline PICA/FIAT ablation and thermal response model developed by the Orion Thermal Protection System Advanced Development Project.

  10. Production and characterization of chars from cherry pulp via pyrolysis.

    PubMed

    Pehlivan, E; Özbay, N; Yargıç, A S; Şahin, R Z

    2017-12-01

    Pyrolysis is an eco-friendly process to achieve valuable products like bio-oil, char and gases. In the last decades, biochar production from pyrolysis of a wide variety of industrial and agricultural wastes become popular, which can be utilized as adsorbent instead of the expensive activated carbons. In this study, cherry pulp was pyrolyzed in a fixed bed tubular reactor at five different temperatures (400, 500,550, 600 and 700 °C) and three different heating rates (10, 100 and 200 °C/min) to obtain biochar. Proximate, ultimate, nitrogen adsorption/desorption isotherms, scanning electron microscopy, thermogravimetric analysis, x-ray fluorescence, x-ray diffraction, and Fourier transform infrared spectroscopy were performed on cherry pulp and its chars to examine the chemical alterations after the pyrolysis process. Biochar yields were decreased with increasing pyrolysis temperature and heating rate, based on experimental results. Porous biochars are carbon rich and includes high potassium content. The aromaticity of biochars increased and O/C mass ratio reduced with an increase in the pyrolysis temperature as a result of the development of compact aromatic structure in char. Pyrolysis provides a promising conversion procedure for the production of high energy density char which has promising applications in existing coal-fired boilers without any upgrading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Oxidative and inert pyrolysis on-line coupled to gas chromatography with mass spectrometric detection: On the pyrolysis products of tobacco additives.

    PubMed

    Paschke, Meike; Hutzler, Christoph; Henkler, Frank; Luch, Andreas

    2016-11-01

    According to European legislation, tobacco additives may not increase the toxicity or the addictive potency of the product, but there is an ongoing debate on how to reliably characterize and measure such properties. Further, too little is known on pyrolysis patterns of tobacco additives to assume that no additional toxicological risks need to be suspected. An on-line pyrolysis technique was used and coupled to gas chromatography-mass spectrometry (GC/MS) to identify the pattern of chemical species formed upon thermal decomposition of 19 different tobacco additives like raw cane sugar, licorice or cocoa. To simulate the combustion of a cigarette it was necessary to perform pyrolysis at inert conditions as well as under oxygen supply. All individual additives were pyrolyzed under inert or oxidative conditions at 350, 700 and 1000°C, respectively, and the formation of different toxicants was monitored. We observed the generation of vinyl acrylate, fumaronitrile, methacrylic anhydride, isobutyric anhydride and 3-buten-2-ol exclusively during pyrolysis of tobacco additives. According to the literature, these toxicants so far remained undetectable in tobacco or tobacco smoke. Further, the formation of 20 selected polycyclic aromatic hydrocarbons (PAHs) with molecular weights of up to 278Da was monitored during pyrolysis of cocoa in a semi-quantitative approach. It was shown that the adding of cocoa to tobacco had no influence on the relative amounts of the PAHs formed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Zone heating for fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1987-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower reaction zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  13. Reliable Characterization for Pyrolysis Bio-Oils Leads to Enhanced

    Science.gov Websites

    Upgrading Methods | NREL Reliable Characterization for Pyrolysis Bio-Oils Leads to Enhanced Upgrading Methods Science and Technology Highlights Highlights in Research & Development Reliable Characterization for Pyrolysis Bio-Oils Leads to Enhanced Upgrading Methods Key Research Results Achievement As co

  14. Microwave pyrolysis using self-generated pyrolysis gas as activating agent: An innovative single-step approach to convert waste palm shell into activated carbon

    NASA Astrophysics Data System (ADS)

    Yek, Peter Nai Yuh; Keey Liew, Rock; Shahril Osman, Mohammad; Chung Wong, Chee; Lam, Su Shiung

    2017-11-01

    Waste palm shell (WPS) is a biomass residue largely available from palm oil industries. An innovative microwave pyrolysis method was developed to produce biochar from WPS while the pyrolysis gas generated as another product is simultaneously used as activating agent to transform the biochar into waste palm shell activated carbon (WPSAC), thus allowing carbonization and activation to be performed simultaneously in a single-step approach. The pyrolysis method was investigated over a range of process temperature and feedstock amount with emphasis on the yield and composition of the WPSAC obtained. The WPSAC was tested as dye adsorbent in removing methylene blue. This pyrolysis approach provided a fast heating rate (37.5°/min) and short process time (20 min) in transforming WPS into WPSAC, recording a product yield of 40 wt%. The WPSAC was detected with high BET surface area (≥ 1200 m2/g), low ash content (< 5 wt%), and high pore volume (≥ 0.54 cm3/g), thus recording high adsorption efficiency of 440 mg of dye/g. The desirable process features (fast heating rate, short process time) and the recovery of WPSAC suggest the exceptional promise of the single-step microwave pyrolysis approach to produce high-grade WPSAC from WPS.

  15. Effect of dry torrefaction on kinetics of catalytic pyrolysis of sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Daniyanto, Sutijan, Deendarlianto, Budiman, Arief

    2015-12-01

    Decreasing world reserve of fossil resources (i.e. petroleum oil, coal and natural gas) encourage discovery of renewable resources as subtitute for fossil resources. Biomass is one of the main natural renewable resources which is promising resource as alternate resources to meet the world's energy needs and raw material to produce chemical platform. Conversion of biomass, as source of energy, fuel and biochemical, is conducted using thermochemical process such as pyrolysis-gasification process. Pyrolysis step is an important step in the mechanism of pyrolysis - gasification of biomass. The objective of this study is to obtain the kinetic reaction of catalytic pyrolysis of dry torrified sugarcane bagasse which used Ca and Mg as catalysts. The model of kinetic reaction is interpreted using model n-order of single reaction equation of biomass. Rate of catalytic pyrolysis reaction depends on the weight of converted biomass into char and volatile matters. Based on TG/DTA analysis, rate of pyrolysis reaction is influenced by the composition of biomass (i.e. hemicellulose, cellulose and lignin) and inorganic component especially alkali and alkaline earth metallic (AAEM). From this study, it has found two equations rate of reaction of catalytic pyrolysis in sugarcane bagasse using catalysts Ca and Mg. First equation is equation of pyrolysis reaction in rapid zone of decomposition and the second equation is slow zone of decomposition. Value of order reaction for rapid decomposition is n > 1 and for slow decomposition is n<1. Constant and order of reactions for catalytic pyrolysis of dry-torrified sugarcane bagasse with presence of Ca tend to higher than that's of presence of Mg.

  16. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    NASA Astrophysics Data System (ADS)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  17. Method of producing pyrolysis gases from carbon-containing materials

    DOEpatents

    Mudge, Lyle K.; Brown, Michael D.; Wilcox, Wayne A.; Baker, Eddie G.

    1989-01-01

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  18. Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin

    PubMed Central

    Windt, Michael; Ziegler, Bernhard; Appelt, Jörn; Saake, Bodo; Meier, Dietrich; Bridgwater, Anthony

    2017-01-01

    Abstract The transformation of lignocellulosic biomass into bio‐based commodity chemicals is technically possible. Among thermochemical processes, fast pyrolysis, a relatively mature technology that has now reached a commercial level, produces a high yield of an organic‐rich liquid stream. Despite recent efforts to elucidate the degradation paths of biomass during pyrolysis, the selectivity and recovery rates of bio‐compounds remain low. In an attempt to clarify the general degradation scheme of biomass fast pyrolysis and provide a quantitative insight, the use of fast pyrolysis microreactors is combined with spectroscopic techniques (i.e., mass spectrometry and NMR spectroscopy) and mixtures of unlabeled and 13C‐enriched materials. The first stage of the work aimed to select the type of reactor to use to ensure control of the pyrolysis regime. A comparison of the chemical fragmentation patterns of “primary” fast pyrolysis volatiles detected by using GC‐MS between two small‐scale microreactors showed the inevitable occurrence of secondary reactions. In the second stage, liquid fractions that are also made of primary fast pyrolysis condensates were analyzed by using quantitative liquid‐state 13C NMR spectroscopy to provide a quantitative distribution of functional groups. The compilation of these results into a map that displays the distribution of functional groups according to the individual and main constituents of biomass (i.e., hemicelluloses, cellulose and lignin) confirmed the origin of individual chemicals within the fast pyrolysis liquids. PMID:28644517

  19. Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin.

    PubMed

    Carrier, Marion; Windt, Michael; Ziegler, Bernhard; Appelt, Jörn; Saake, Bodo; Meier, Dietrich; Bridgwater, Anthony

    2017-08-24

    The transformation of lignocellulosic biomass into bio-based commodity chemicals is technically possible. Among thermochemical processes, fast pyrolysis, a relatively mature technology that has now reached a commercial level, produces a high yield of an organic-rich liquid stream. Despite recent efforts to elucidate the degradation paths of biomass during pyrolysis, the selectivity and recovery rates of bio-compounds remain low. In an attempt to clarify the general degradation scheme of biomass fast pyrolysis and provide a quantitative insight, the use of fast pyrolysis microreactors is combined with spectroscopic techniques (i.e., mass spectrometry and NMR spectroscopy) and mixtures of unlabeled and 13 C-enriched materials. The first stage of the work aimed to select the type of reactor to use to ensure control of the pyrolysis regime. A comparison of the chemical fragmentation patterns of "primary" fast pyrolysis volatiles detected by using GC-MS between two small-scale microreactors showed the inevitable occurrence of secondary reactions. In the second stage, liquid fractions that are also made of primary fast pyrolysis condensates were analyzed by using quantitative liquid-state 13 C NMR spectroscopy to provide a quantitative distribution of functional groups. The compilation of these results into a map that displays the distribution of functional groups according to the individual and main constituents of biomass (i.e., hemicelluloses, cellulose and lignin) confirmed the origin of individual chemicals within the fast pyrolysis liquids. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Catalytic pyrolysis-GC/MS of lignin from several sources

    USDA-ARS?s Scientific Manuscript database

    Lignin from four different sources extracted by various methods were pyrolyzed at 650 degree C using analytical pyrolysis methods, py-GC/MS. Pyrolysis was carried out in the absence and presence of two heterogeneous catalysts , an acidic zeolite (HZSM-5) catalyst and a mixed metal oxide catalyst (Co...

  1. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review.

    PubMed

    Yang, Xiaoning; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng

    2013-02-01

    Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of

  2. Pyrolysis Model Development for a Multilayer Floor Covering

    PubMed Central

    McKinnon, Mark B.; Stoliarov, Stanislav I.

    2015-01-01

    Comprehensive pyrolysis models that are integral to computational fire codes have improved significantly over the past decade as the demand for improved predictive capabilities has increased. High fidelity pyrolysis models may improve the design of engineered materials for better fire response, the design of the built environment, and may be used in forensic investigations of fire events. A major limitation to widespread use of comprehensive pyrolysis models is the large number of parameters required to fully define a material and the lack of effective methodologies for measurement of these parameters, especially for complex materials. The work presented here details a methodology used to characterize the pyrolysis of a low-pile carpet tile, an engineered composite material that is common in commercial and institutional occupancies. The studied material includes three distinct layers of varying composition and physical structure. The methodology utilized a comprehensive pyrolysis model (ThermaKin) to conduct inverse analyses on data collected through several experimental techniques. Each layer of the composite was individually parameterized to identify its contribution to the overall response of the composite. The set of properties measured to define the carpet composite were validated against mass loss rate curves collected at conditions outside the range of calibration conditions to demonstrate the predictive capabilities of the model. The mean error between the predicted curve and the mean experimental mass loss rate curve was calculated as approximately 20% on average for heat fluxes ranging from 30 to 70 kW·m−2, which is within the mean experimental uncertainty. PMID:28793556

  3. Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading

    DOE PAGES

    Iisa, Kristiina; Robichaud, David J.; Watson, Michael J.; ...

    2017-11-24

    Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalyticmore » fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. In conclusion, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.« less

  4. Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina; Robichaud, David J.; Watson, Michael J.

    Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalyticmore » fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. In conclusion, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.« less

  5. Molecular Structure and Reactivity in the Pyrolysis of Aldehydes

    NASA Astrophysics Data System (ADS)

    Sias, Eric; Cole, Sarah; Sowards, John; Warner, Brian; Wright, Emily; McCunn, Laura R.

    2016-06-01

    The effect of alkyl chain structure on pyrolysis mechanisms has been investigated in a series of aldehydes. Isovaleraldehyde, CH_3CH(CH_3)CH_2CHO, and pivaldehyde, (CH_3)_3CCHO, were subject to thermal decomposition in a resistively heated SiC tubular reactor at 800-1200 °C. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Carbon monoxide and isobutene were major products from each of the aldehydes, which is consistent with what is known from previous studies of unbranched alkyl-chain aldehydes. Other products observed include vinyl alcohol, propene, acetylene, and ethylene, revealing complexities to be considered in the pyrolysis of large, branched-chain aldehydes.

  6. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethyleneterephthalate and polyethylene to sequentially recover

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1998-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  7. Synthesis of Bio-aromatics from Black Liquors Using Catalytic Pyrolysis

    PubMed Central

    2018-01-01

    Bio-aromatics (benzene, toluene, xylenes, BTX) were prepared by the catalytic pyrolysis of six different black liquors using both in situ and ex situ approaches. A wide range of catalysts was screened and conditions were optimized in microscale reactors. Up to 7 wt % of BTX, based on the organic fraction of the black liquors, was obtained for both the in situ and ex situ pyrolysis (T = 500–600 °C) using a Ga-modified H-ZSM-5 catalyst. The in situ catalytic pyrolysis of black liquors from hardwood paper mills afforded slightly higher yields of aromatics/BTX than softwood black liquors, a trend that could be confirmed by the results obtained in the ex situ catalytic pyrolysis. An almost full deoxygenation of the lignin and carbohydrate fraction was achieved and both organic fractions were converted to a broad range of (substituted) aromatics. The zeolite catalyst used was remarkably stable and even after 100 experiments in batch mode with intermittent oxidative catalyst regeneration, the yields and selectivity toward BTX remained similar. The ex situ pyrolysis of black liquor has potential for large-scale implementation in a paper mill without disturbing the paper production process. PMID:29607268

  8. Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, J.; Elgowainy, A.; Palou-Rivera, I.

    The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. Atmore » one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil

  9. Lunar oxygen production by pyrolysis of regolith

    NASA Technical Reports Server (NTRS)

    Senior, Constance L.

    1991-01-01

    Oxygen represents one of the most desirable products of lunar mining and manufacturing. Among the many processes which have been proposed for oxygen production, pyrolysis stands out as one which is uncomplicated and easy to bootstrap. Pyrolysis or vapor-phase reduction involves heating regolith to temperatures sufficient to allow partial decomposition and vaporization. Some metal oxides give up oxygen upon heating, either in the gas phase to form reduced gaseous species or in the condensed phase to form a metallic phase. Based on preliminary experiments and equilibrium calculations, the temperatures needed for pyrolysis are expected to be in the range of 2000 to 2200 K, giving total gas pressures of 0.001 to 0.1 torr. Bulk regolith can be used as a feedstock without beneficiation with concentrated solar radiation supplying most of energy needed. Further, selective condensation of metal-containing species from the gas phase may yield metallic iron and silicon as byproducts.

  10. Specialists' workshop on fast pyrolysis of biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with asmore » much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)« less

  11. TG-FTIR analysis on pyrolysis and combustion of marine sediment

    NASA Astrophysics Data System (ADS)

    Oudghiri, Fatiha; Allali, Nabil; Quiroga, José María; Rodríguez-Barroso, María Rocío

    2016-09-01

    In this paper, the pyrolysis and combustion of sediment have been compared using thermogravimetric analysis (TG) coupled with Fourier transform infrared spectrometry (TG-FTIR) analysis. The TG results showed that both the pyrolysis and combustion of sediment presented four weight loss stages, each. The evolving gaseous products during pyrolysis were H2O, CO2 and hydrocarbons, while combustion yielded considerable amounts of CO2, in addition to H2O, CO, Cdbnd C, Cdbnd O and NH3. Comparing the pyrolysis and combustion TG-FTIR curves, it is possible to evaluate the effect of oxygen presence in the temperature range of 200-600 °C, which increases the volatilisation rate of organic matter in sediment. For the better detection of organic and inorganic matter in sediment by TG-FTIR analysis it is recommended to work in combustion mode of sediment.

  12. Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Ford, T.; Sacco, E.; Black, J.; Kelley, T.; Goodacre, R.; Berkeley, R. C.; Mitchell, R.

    1991-01-01

    Exopolymers from a diverse collection of marine and freshwater bacteria were characterized by pyrolysis-mass spectrometry (Py-MS). Py-MS provides spectra of pyrolysis fragments that are characteristic of the original material. Analysis of the spectra by multivariate statistical techniques (principal component and canonical variate analysis) separated these exopolymers into distinct groups. Py-MS clearly distinguished characteristic fragments, which may be derived from components responsible for functional differences between polymers. The importance of these distinctions and the relevance of pyrolysis information to exopolysaccharide function in aquatic bacteria is discussed.

  13. The Preparation of Silicon-Containing Ceramics by Organosilicon Polymer Pyrolysis

    DTIC Science & Technology

    1988-06-25

    polymer , of composition [(CH3SiHNH)a(CH3SiNb]m, gives a black solid, a mixture of SiC , Si3N4, and some free carbon, on pyrolysis ...nitride (eq. 1) [7] is a possibility. 5 Si3N 4(s) + C (s) , 3 SiC (s) +2 N2(g) (1) The study of the pyrolysis products of preceramic polymers is not...approximately one, pyrolysis of the product polymer gave a black ceramic solid in 84% yield which analysis showed to have a formal composition (1 SiC +

  14. Method for preventing plugging in the pyrolysis of agglomerative coals

    DOEpatents

    Green, Norman W.

    1979-01-23

    To prevent plugging in a pyrolysis operation where an agglomerative coal in a nondeleteriously reactive carrier gas is injected as a turbulent jet from an opening into an elongate pyrolysis reactor, the coal is comminuted to a size where the particles under operating conditions will detackify prior to contact with internal reactor surfaces while a secondary flow of fluid is introduced along the peripheral inner surface of the reactor to prevent backflow of the coal particles. The pyrolysis operation is depicted by two equations which enable preselection of conditions which insure prevention of reactor plugging.

  15. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.

    PubMed

    Ansah, Emmanuel; Wang, Lijun; Shahbazi, Abolghasem

    2016-10-01

    The thermogravimetric and calorimetric characteristics during pyrolysis of wood, paper, textile and polyethylene terephthalate (PET) plastic in municipal solid wastes (MSW), and co-pyrolysis of biomass-derived and plastic components with and without torrefaction were investigated. The active pyrolysis of the PET plastic occurred at a much higher temperature range between 360°C and 480°C than 220-380°C for the biomass derived components. The plastic pyrolyzed at a heating rate of 10°C/min had the highest maximum weight loss rate of 18.5wt%/min occurred at 420°C, followed by 10.8wt%/min at 340°C for both paper and textile, and 9.9wt%/min at 360°C for wood. At the end of the active pyrolysis stage, the final mass of paper, wood, textile and PET was 28.77%, 26.78%, 21.62% and 18.31%, respectively. During pyrolysis of individual MSW components at 500°C, the wood required the least amount of heat at 665.2J/g, compared to 2483.2J/g for textile, 2059.4J/g for paper and 2256.1J/g for PET plastic. The PET plastic had much higher activation energy of 181.86kJ/mol, compared to 41.47kJ/mol for wood, 50.01kJ/mol for paper and 36.65kJ/mol for textile during pyrolysis at a heating rate of 10°C/min. H2O and H2 peaks were observed on the MS curves for the pyrolysis of three biomass-derived materials but there was no obvious H2O and H2 peaks on the MS curves of PET plastic. There was a significant interaction between biomass and PET plastic during co-pyrolysis if the biomass fraction was dominant. The amount of heat required for the co-pyrolysis of the biomass and plastic mixture increased with the increase of plastic mass fraction in the mixture. Torrefaction at a proper temperature and time could improve the grindability of PET plastic. The increase of torrefaction temperature and time did not affect the temperature where the maximum pyrolytic rates occurred for both biomass and plastic but decreased the maximum pyrolysis rate of biomass and increased the maximum pyrolysis

  16. In-vial pyrolysis (PyroVial) with pre- and post-sample treatment combined with different chromatographic techniques.

    PubMed

    Tienpont, Bart; David, Frank; Pereira, Alberto; Sandra, Pat

    2011-11-18

    A new generic pyrolysis unit (PyroVial) is presented. Pyrolysis is carried out in a 2 mL autosampler vial placed in a XYZ robot for automated pyrolysis as well as for pre- and post-pyrolysis treatment of the sample. Analysis of the volatiles is performed by headspace analysis while the semi- and non-volatiles are extracted from the pyrolysate with an organic solvent. The features of the PyroVial are such that all chromatographic techniques can be applied. The pyrolysis unit is discussed in terms of its technical features and its performance is illustrated with applications including conventional pyrolysis, in situ and post-pyrolysis derivatization, reaction pyrolysis and catalytic cracking. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Catalytic hydroprocessing of fast pyrolysis oils: Impact of biomass feedstock on process efficiency

    DOE PAGES

    Carpenter, Daniel; Westover, Tyler; Howe, Daniel; ...

    2016-12-01

    Here, we report here on an experimental study to produce refinery-ready fuel blendstocks via catalytic hydrodeoxygenation (upgrading) of pyrolysis oil using several biomass feedstocks and various blends. Blends were tested along with the pure materials to determine the effect of blending on product yields and qualities. Within experimental error, oil yields from fast pyrolysis and upgrading are shown to be linear functions of the blend components. Switchgrass exhibited lower fast pyrolysis and upgrading yields than the woody samples, which included clean pine, oriented strand board (OSB), and a mix of pinon and juniper (PJ). The notable exception was PJ, formore » which the poor upgrading yield of 18% was likely associated with the very high viscosity of the PJ fast pyrolysis oil (947 cp). The highest fast pyrolysis yield (54% dry basis) was obtained from clean pine, while the highest upgrading yield (50%) was obtained from a blend of 80% clean pine and 20% OSB (CP 8OSB 2). For switchgrass, reducing the fast pyrolysis temperature to 450 degrees C resulted in a significant increase to the pyrolysis oil yield and reduced hydrogen consumption during hydrotreating, but did not directly affect the hydrotreating oil yield. The water content of fast pyrolysis oils was also observed to increase linearly with the summed content of potassium and sodium, ranging from 21% for clean pine to 37% for switchgrass. Multiple linear regression models demonstrate that fast pyrolysis is strongly dependent upon the contents lignin and volatile matter as well as the sum of potassium and sodium.« less

  18. Nitrogen dioxide produced by self-sustained pyrolysis of nitrous oxide

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.

    1965-01-01

    Apparatus is developed for achieving continuous self-sustaining pyrolysis reaction in the production of nitrogen dioxide from nitrous oxide. The process becomes self-sustaining because of the exothermic reaction and the regenerative heating of the gases in the pyrolysis chamber.

  19. Removal of PCDD/Fs, PCP and mercury from sediments: Thermal oxidation versus pyrolysis.

    PubMed

    Chang, Moo-Been; Hsu, Yen-Chen; Chang, Shu-Hao

    2018-05-07

    A continuous pilot-scale system (CPS) equipped with effective air pollution control devices (APCDs) is used for remediating the sediments contaminated with PCDD/Fs, PCP and Hg simultaneously. The removal efficiencies of these three pollutants in sediments collected from seawater pond and river, respectively, are evaluated via thermal treatment processes. PAHs and CBz formed during thermal oxidation and pyrolysis are also analyzed for better understanding the behaviors of chlorinated organic compounds. Experimental results indicate that low-molecular-weight PAHs are closely related to the formation of CBz, PCDD/Fs, and CPs, while low chlorinated PCDD/Fs and CBz are predominant in flue gas with thermal oxidation. However, the PM concentration is higher in thermal oxidation than pyrolysis due to the higher air flow rate of thermal oxidation. It may bring more particles out of the furnace and have a greater potential to form PCDD/Fs within APCDs. Besides, the high air flow also dilutes the Hg vapor in flue gas and would require more energy to condense and collect Hg with the quench tower. Furthermore, for removal of total amount of PCDD/Fs, pyrolysis is better than thermal oxidation. Thus, pyrolysis is more suitable for remediating the contaminated sediment. The removal efficiencies of PCDD/Fs, PCP and Hg in sediments achieved with pyrolysis increase with increasing operating temperature and retention time in CPS. Overall, the residual concentrations of PCDD/Fs and PCP in river sediment are higher than that in seawater-pond sediment since significant formation of tar is observed due to higher organic matter content in river sediment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology.

    PubMed

    Hu, Guangji; Li, Jianbing; Zhang, Xinying; Li, Yubao

    2017-05-01

    The treatment of waste biomass (sawdust) through co-pyrolysis with refinery oily sludge was carried out in a fixed-bed reactor. Response surface method was applied to evaluate the main and interaction effects of three experimental factors (sawdust percentage in feedstock, temperature, and heating rate) on pyrolysis oil and char yields. It was found that the oil and char yields increased with sawdust percentage in feedstock. The interaction between heating rate and sawdust percentage as well as between heating rate and temperature was significant on the pyrolysis oil yield. The higher heating value of oil originated from sawdust during co-pyrolysis at a sawdust/oily sludge ratio of 3:1 increased by 5 MJ/kg as compared to that during sawdust pyrolysis alone, indicating a synergistic effect of co-pyrolysis. As a result, petroleum sludge can be used as an effective additive in the pyrolysis of waste biomass for improving its energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Co-pyrolysis mechanism of seaweed polysaccharides and cellulose based on macroscopic experiments and molecular simulations.

    PubMed

    Wang, Shuang; Xia, Zhen; Hu, Yamin; He, Zhixia; Uzoejinwa, Benjamin Bernard; Wang, Qian; Cao, Bin; Xu, Shanna

    2017-03-01

    Co-pyrolysis conversion of seaweed (Enteromorpha clathrat and Sargassum fusiforme) polysaccharides and cellulose has been investigated. From the Py-GC/MS results, Enteromorpha clathrata (EN) polysaccharides pyrolysis mainly forms furans; while the products of Sargassum fusiforme (SA) polysaccharides pyrolysis are mainly acid esters. The formation mechanisms of H 2 O, CO 2 , and SO 2 during the pyrolysis of seaweed polysaccharides were analyzed using the thermogravimetric-mass spectrometry. Meanwhile the pyrolysis of seaweed polysaccharide based on the Amber and the ReaxFF force fields, has also been proposed and simulated respectively. The simulation results coincided with the experimental results. During the fast pyrolysis, strong synergistic effects among cellulose and seaweed polysaccharide molecules have been simulated. By comparing the experimental and simulation value, it has been found that co-pyrolysis could increase the number of molecular fragments, increase the pyrolysis conversion rate, and increase gas production rate at the middle temperature range. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Basic studies on the pyrolysis of lignin compounds

    Treesearch

    Byung-ho Hwang

    2003-01-01

    By pyrolyzing lignin model compounds 1-lV at 315°C, an investigation was carried out with some results. In the pyrolysis of lignin model compound I and 11, 0.47 mol of guaiacol, 0.57 mol of dimethoxyphenol (DMP), and 0.12 and 0.23 mol of dimethoxyaceton ophenone (DMAP) were produced respectively. In the pyrolysis of lignin model compound lll and lV, 0.26 mol of...

  3. Biochar from Biosolids Pyrolysis: A Review.

    PubMed

    Paz-Ferreiro, Jorge; Nieto, Aurora; Méndez, Ana; Askeland, Matthew Peter James; Gascó, Gabriel

    2018-05-10

    Ever increasing volumes of biosolids (treated sewage sludge) are being produced by municipal wastewater facilities. This is a consequence of the continued expansion of urban areas, which in turn require the commissioning of new treatment plants or upgrades to existing facilities. Biosolids contain nutrients and energy which can be used in agriculture or waste-to-energy processes. Biosolids have been disposed of in landfills, but there is an increasing pressure from regulators to phase out landfilling. This article performs a critical review on options for the management of biosolids with a focus on pyrolysis and the application of the solid fraction of pyrolysis (biochar) into soil.

  4. Biochar from Biosolids Pyrolysis: A Review

    PubMed Central

    Nieto, Aurora; Méndez, Ana; Askeland, Matthew Peter James; Gascó, Gabriel

    2018-01-01

    Ever increasing volumes of biosolids (treated sewage sludge) are being produced by municipal wastewater facilities. This is a consequence of the continued expansion of urban areas, which in turn require the commissioning of new treatment plants or upgrades to existing facilities. Biosolids contain nutrients and energy which can be used in agriculture or waste-to-energy processes. Biosolids have been disposed of in landfills, but there is an increasing pressure from regulators to phase out landfilling. This article performs a critical review on options for the management of biosolids with a focus on pyrolysis and the application of the solid fraction of pyrolysis (biochar) into soil. PMID:29748488

  5. Pyrolysis-high resolution gas chromatography and pyrolysis gas chromatography-mass spectrometry of kerogens and kerogen precursors

    NASA Technical Reports Server (NTRS)

    Van De Meent, D.; Brown, S. C.; Philp, R. P.; Simoneit, B. R. T.

    1980-01-01

    A series of kerogens and kerogen precursors isolated from DSDP samples, oil shales and recent algal mats have been examined by Curie point pyrolysis-high resolution gas chromatography and gas chromatography-mass spectrometry. This study has shown that the three main types of kerogens (marine, terrestrial and mixtures of both) can be characterized using these techniques. The marine (algal) kerogens yield principally aliphatic products and the terrestrial kerogens yield more aromatic and phenolic products with some n-alkanes and n-alkenes. The yields of n-alkanes and n-alkenes increase and phenols decrease with increasing geologic age, however, pyrolysis-GC cannot be used to characterize the influence of short term diagenesis on the kerogen structure.

  6. Investigation of solid organic waste processing by oxidative pyrolysis

    NASA Astrophysics Data System (ADS)

    Kolibaba, O. B.; Sokolsky, A. I.; Gabitov, R. N.

    2017-11-01

    A thermal analysis of a mixture of municipal solid waste (MSW) of the average morphological composition and its individual components was carried out in order to develop ways to improve the efficiency of its utilization for energy production in thermal reactors. Experimental studies were performed on a synchronous thermal analyzer NETZSCH STA 449 F3 Jupiter combined with a quadrupole mass spectrometer QMC 403. Based on the results of the experiments, the temperature ranges of the pyrolysis process were determined as well as the rate of decrease of the mass of the sample of solid waste during the drying and oxidative pyrolysis processes, the thermal effects accompanying these processes, as well as the composition and volumes of gases produced during oxidative pyrolysis of solid waste and its components in an atmosphere with oxygen content of 1%, 5%, and 10%. On the basis of experimental data the dependences of the yield of gas on the moisture content of MSW were obtained under different pyrolysis conditions under which a gas of various calorific values was produced.

  7. Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-10-20

    Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.

  8. Recent developments in fast pyrolysis of ligno-cellulosic materials.

    PubMed

    Kersten, Sascha; Garcia-Perez, Manuel

    2013-06-01

    Pyrolysis is a thermochemical process to convert ligno-cellulosic materials into bio-char and pyrolysis oil. This oil can be further upgraded or refined for electricity, transportation fuels and chemicals production. At the time of writing, several demonstration factories are considered worldwide aiming at maturing the technology. Research is focusing on understanding the underlying processes at all relevant scales, ranging from the chemistry of cell wall deconstruction to optimization of pyrolysis factories, in order to produce better quality oils for targeted uses. Among the several bio-oil applications that are currently investigated the production and fermentation of pyrolytic sugars explores the promising interface between thermochemistry and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Requirements for transportation of fast pyrolysis bio-oil in Finland

    NASA Astrophysics Data System (ADS)

    Karhunen, Antti; Laihanen, Mika; Ranta, Tapio

    2016-11-01

    The purpose of this paper is to discuss the requirements and challenges of pyrolysis oil's transportation in Finland. Pyrolysis oil is a new type of renewable liquid fuel that can be utilised in applications such as heat and electricity production. It has never been transported on a large scale in Finland. Possible options are transport by road, rail and waterway. The most significant requirements in its transportation are created by acidity and high density of pyrolysis oil, which impose requirements for the materials and transport equipment. The study described here shows that constant domestic transportation of pyrolysis oil is most reasonably operated with tank trucks. Rail-based transport may have potential for domestic fixed routes, and transport by water could be utilised in exporting. All transportation methods have limitations and advantages relative to each other. Ultimately, the production site and end-user's locations will determine the most suitable transport method.

  10. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.

    PubMed

    Hassan, H; Lim, J K; Hameed, B H

    2016-12-01

    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Characterization of typical heavy metals in pyrolysis MSWI fly ash.

    PubMed

    Xu, Tengtun; Wang, Li'ao; Zeng, Yunmin; Zhao, Xue; Wang, Lei; Zhan, Xinyuan; Li, Tong; Yang, Lu

    2018-06-07

    Thermal treatment methods are used extensively in the process of municipal solid waste incineration fly ash. However, the characterization of heavy metals during this process should be understood more clearly in order to control secondary pollution. In this paper, the content, speciation and leaching toxicity of mercury (Hg), plumbum (Pb), cadmium (Cd) and zinc (Zn) in fly ash treated under different temperatures and time were firstly analysed as pre-tests. Later, pilot-scale pyrolysis equipment was used to explore the concentration and speciation changes in the heavy metals of fly ash. Finally, the phase constitution and microstructure changes in fly ash were compared before and after pyrolysis using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The results showed that (a) The appropriate processing temperature was between 400°C and 450°C, and the processing time should be 1 h. (b) The stability of heavy metals in fly ash increased after pyrolysis. (c) XRD and SEM results indicated that phase constitution changed a little, but the microstructure varied to a porous structure similar to that of a coral reef after pyrolysis. These results suggest that pyrolysis could be an effective method in controlling heavy metal pollution in fly ash.

  12. Computational Studies of Pyrolysis and Upgrading of Bio-oils: Virtual Special Issue

    DOE PAGES

    Xiong, Qingang; Robichaud, David J.

    2017-03-23

    As research activities continue, our understanding of biomass pyrolysis has been significantly elevated and we sought to arrange this Virtual Special Issue (VSI) in ACS Sustainable Chemistry & Engineering to report recent progress on computational and experimental studies of biomass pyrolysis. Beyond highlighting the five national laboratories' advancements, prestigious researchers in the field of biomass pyrolysis have been invited to report their most recent activities.

  13. Pyrolysis of automotive shredder residue in a bench scale rotary kiln.

    PubMed

    Notarnicola, Michele; Cornacchia, Giacinto; De Gisi, Sabino; Di Canio, Francesco; Freda, Cesare; Garzone, Pietro; Martino, Maria; Valerio, Vito; Villone, Antonio

    2017-07-01

    Automotive shredder residue (ASR) can create difficulties when managing, with its production increasing. It is made of different type of plastics, foams, elastomers, wood, glasses and textiles. For this reason, it is complicated to dispose of in a cost effective way, while also respecting the stringent environmental restrictions. Among thermal treatments, pyrolysis seems to offer an environmentally attractive method for the treatment of ASR; it also allows for the recovery of valuable secondary materials/fuels such as pyrolysis oils, chars, and gas. While, there is a great deal of significant research on ASR pyrolysis, the literature on higher scale pyrolysis experiments is limited. To improve current literature, the aim of the study was to investigate the pyrolysis of ASR in a bench scale rotary kiln. The Italian ASR was separated by dry-sieving into two particle size fractions: d<30mm and d>30mm. Both the streams were grounded, pelletized and then pyrolyzed in a continuous bench scale rotary kiln at 450, 550 and 650°C. The mass flow rate of the ASR pellets was 200-350g/h and each test ran for about 4-5h. The produced char, pyrolysis oil and syngas were quantified to determine product distribution. They were thoroughly analyzed with regard to their chemical and physical properties. The results show how higher temperatures increase the pyrolysis gas yield (44wt% at 650°C) as well as its heating value. The low heating value (LHV) of syngas ranges between 18 and 26MJ/Nm 3 dry. The highest pyrolysis oil yield (33wt.%) was observed at 550°C and its LHV ranges between 12.5 and 14.5MJ/kg. Furthermore, only two out of the six produced chars respect the LHV limit set by the Italian environmental regulations for landfilling. The obtained results in terms of product distribution and their chemical-physical analyses provide useful information for plant scale-up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOEpatents

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  15. Steam Pyrolysis of Polyimides: Effects of Steam on Raw Material Recovery.

    PubMed

    Kumagai, Shogo; Hosaka, Tomoyuki; Kameda, Tomohito; Yoshioka, Toshiaki

    2015-11-17

    Aromatic polyimides (PIs) have excellent thermal stability, which makes them difficult to recycle, and an effective way to recycle PIs has not yet been established. In this work, steam pyrolysis of the aromatic PI Kapton was performed to investigate the recovery of useful raw materials. Steam pyrolysis significantly enhanced the gasification of Kapton at 900 °C, resulting in 1963.1 mL g(-1) of a H2 and CO rich gas. Simultaneously, highly porous activated carbon with a high BET surface area was recovered. Steam pyrolysis increased the presence of polar functional groups on the carbon surface. Thus, it was concluded that steam pyrolysis shows great promise as a recycling technique for the recovery of useful synthetic gases and activated carbon from PIs without the need for catalysts and organic solvents.

  16. Study on the Inference Factors of Huangling Coking Coal Pyrolysis

    NASA Astrophysics Data System (ADS)

    Du, Meili; Yang, Zongyi; Fan, Jinwen

    2018-01-01

    In order to reasonably and efficiently utilize Huangling coking coal resource, coal particle, heating rate, holding time, pyrolysis temperature and others factors were dicussed for the influence of those factor on Huangling coking coal pyrolysis products. Several kinds of coal blending for coking experiments were carried out with different kinds of coal such as Huangling coking coal, Xida coal with high ash low sufur, Xinghuo fat coal with hign sulfur, Zhongxingyi coking coal with high sulfur, Hucun lean coal, mixed meager and lean coal. The results shown that the optimal coal particle size distribution was 0.5~1.5mm, the optimal heating rate was 8°C/min, the optimal holding time was 15min, the optimal pyrolysis temperature was 800°C for Huangling coking coal pyrolysis, the tar yield increased from 4.7% to 11.2%. The maximum tar yield of coal blending for coking under the best single factor experiment condition was 10.65% when the proportio of Huangling coking coal was 52%.

  17. Co-pyrolysis of rice straw and Polyethylene Terephthalate (PET) using a fixed bed drop type pyrolyzer

    NASA Astrophysics Data System (ADS)

    Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.

    2017-10-01

    In this work, co-pyrolysis of rice straw and polyethylene terephthalate (PET) was carried out at different temperatures (450,500,550, and 600°C) at ratio 1:1 by using fixed bed drop-type pyrolyzer. The purpose of this work is to determine the effect of pyrolysis temperature on the product yield. As the temperature increased, the pyrolysis oil increased until it reaches certain high temperature (600°C), the pyrolysis oil decreased as of more NCG were produced. The temperature 550°C is considered as the optimum pyrolysis temperature since it produced the highest amount of pyrolysis oil with 36 wt.%. In pyrolysis oil, the calorific value (13.98kJ/g) was low because of the presence of high water content (52.46 wt.%). Main chemicals group from pyrolysis oil were an aldehyde, ketones, acids, aromatics, and phenol and all compound have abundant of hydrogen and carbon were identified. Co-pyrolysis of rice straw and PET produced a higher amount of carbon oxides and recycling back the NCG could increase liquid and char yields.

  18. Pyrolysis of softwood carbohydrates in a fluidized bed reactor.

    PubMed

    Aho, Atte; Kumar, Narendra; Eränen, Kari; Holmbom, Bjarne; Hupa, Mikko; Salmi, Tapio; Murzin, Dmitry Yu

    2008-09-01

    In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood), was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5 degrees C/min) was applied to the heating until a reactor temperature of 460 degrees C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure.

  19. Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor

    PubMed Central

    Aho, Atte; Kumar, Narendra; Eränen, Kari; Holmbom, Bjarne; Hupa, Mikko; Salmi, Tapio; Murzin, Dmitry Yu.

    2008-01-01

    In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood), was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5 °C/min) was applied to the heating until a reactor temperature of 460 °C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure. PMID:19325824

  20. Thermogravimetric analysis and fast pyrolysis of Milkweed.

    PubMed

    Kim, Seung-Soo; Agblevor, Foster A

    2014-10-01

    Pyrolysis of Milkweed was carried out in a thermogravimetric analyzer and a bubbling fluidized bed reactor. Total liquid yield of Milkweed pyrolysis was between 40.74% and 44.19 wt% between 425 °C and 550 °C. The gas yield increased from 27.90 wt% to 33.33 wt% with increasing reaction temperature. The higher heating values (HHV) of the Milkweed bio-oil were relatively high (30.33-32.87 MJ/kg) and varied with reaction temperature, feeding rate and fluidization velocity. The selectivity for CO2 was highest within non-condensable gases, and the molar ratio of CO2/CO was about 3 at the different reaction conditions. The (13)C NMR analysis, of the bio-oil showed that the relative concentration carboxylic group and its derivatives was higher at 425 °C than 475 °C, which resulted in slightly higher oxygen content in bio-oil. The pH of aqueous phase obtained at 475 °C was 7.37 which is the highest reported for any lignocellulosic biomass pyrolysis oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of hydrothermal treatment on the pyrolysis behavior of Chinese fan palm.

    PubMed

    Yao, Zhongliang; Ma, Xiaoqian

    2018-01-01

    The effect of hydrothermal treatment (HTT) on Chinese fan palm pyrolysis was investigated. It indicated that HTT could effectively remove a large portion of alkali/alkaline earth metals and disrupt the chemical structure to a certain extent. HTT delayed the initial decomposition temperature but accelerated the pyrolysis process completely. HTT also increased the relative contents of both sugars and hydrocarbons in pyrolysis. At 210°C, HTT had the most significant promotion effect on the sugars formation with the relative content of 30.58%. While, The relative content of phenols, acids, furans, aldehydes, esters and CO 2 decreased more or less after HTT. With increasing pyrolysis temperature, the relative content of most groups of chemicals except hydrocarbons decreased. Response contours were analyzed to find the optimal reaction conditions for generating acids, phenols, sugars and hydrocarbons, respectively. The results indicated both pyrolysis temperature and HTT temperature had distinct influence on relative contents of products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.

    PubMed

    Zhang, Yaning; Fan, Liangliang; Liu, Shiyu; Zhou, Nan; Ding, Kuan; Peng, Peng; Anderson, Erik; Addy, Min; Cheng, Yanling; Liu, Yuhuan; Li, Bingxi; Snyder, John; Chen, Paul; Ruan, Roger

    2018-07-01

    The controversial synergistic effect between brown coal and biomass during co-pyrolysis deserves further investigation. This study detailed the oil production from microwave-assisted co-pyrolysis of brown coal (BC) and corn stover (CS) at different CS/BC ratios (0, 0.33, 0.50, 0.67, and 1) and pyrolysis temperatures (500, 550, and 600 °C). The results showed that a higher CS/BC ratio resulted in higher oil yield, and a higher pyrolysis temperature increased oil yield for brown coal and coal/corn mixtures. Corn stover and brown coal showed different pyrolysis characteristics, and positive synergistic effect on oil yield was observed only at CS/BC ratio of 0.33 and pyrolysis temperature of 600 °C. Oils from brown coal mainly included hydrocarbons and phenols whereas oils from corn stover and coal/corn mixtures were dominated by ketones, phenols, and aldehydes. Positive synergistic effects were observed for ketones, aldehydes, acids, and esters whereas negative synergistic effects for hydrocarbons, phenols and alcohols. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS.

    PubMed

    Liang, Fang; Wang, Ruijuan; Hongzhong, Xiang; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2018-05-01

    This study was carried out to investigate pyrolysis characteristics of moso bamboo (Phyllostachys pubescens), including outer layer (OB), middle layer (MB) and inner layer (IB) and bamboo leaves (BL), through TG-FTIR and Py-GC/MS. The results showed that 70% of weight loss occurred at rapid pyrolysis stage with temperature of 200-400 °C. With increase in heating rate, pyrolysis process shifted toward higher temperature. IB, OB, MB and BL had a different activation energy at different conversion rates. BL had a higher activation energy than IB, OB and MB. The volatiles of bamboo was complicated with 2-30 of C atoms. IB, OB and MB mainly released benzofuran, hydroxyacetaldehyde and 2-Pentanone. BL released furan, acetic acid and phenol. The main pyrolysis products included H 2 O, CH 4 , CO 2 , CO, carboxylic acids, NO, NO 2 . Pyrolysis products of IB was the most and that of BL was the lowest. MB had the lowest pyrolysis temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Improved Pyrolysis Micro reactor Design via Computational Fluid Dynamics Simulations

    DTIC Science & Technology

    2017-05-23

    Dynamics Simulations Ghanshyam L. Vaghjiani Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524-7013 Air Force...Aerospace Systems Directorate Air Force Research Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil IMPROVED...PYROLYSIS MICRO-REACTOR DESIGN VIA COMPUTATIONAL FLUID DYNAMICS SIMULATIONS Ghanshyam L. Vaghjiani* DISTRIBUTION A: Approved for public release

  5. A steady state model of agricultural waste pyrolysis: A mini review.

    PubMed

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types. © The Author(s) 2016.

  6. Autocatalytic Pyrolysis of Wastewater Biosolids for Product Upgrading.

    PubMed

    Liu, Zhongzhe; McNamara, Patrick; Zitomer, Daniel

    2017-09-05

    The main goals for sustainable water resource recovery include maximizing energy generation, minimizing adverse environmental impacts, and recovering beneficial resources. Wastewater biosolids pyrolysis is a promising technology that could help facilities reach these goals because it produces biochar that is a valuable soil amendment as well as bio-oil and pyrolysis gas (py-gas) that can be used for energy. The raw bio-oil, however, is corrosive; therefore, employing it as fuel is challenging using standard equipment. A novel pyrolysis process using wastewater biosolids-derived biochar (WB-biochar) as a catalyst was investigated to decrease bio-oil and increase py-gas yield for easier energy recovery. WB-biochar catalyst increased the py-gas yield nearly 2-fold, while decreasing bio-oil production. The catalyzed bio-oil also contained fewer constituents based on GC-MS and GC-FID analyses. The energy shifted from bio-oil to py-gas, indicating the potential for easier on-site energy recovery using the relatively clean py-gas. The metals contained in wastewater biosolids played an important role in upgrading pyrolysis products. The Ca and Fe in WB-biochar reduced bio-oil yield and increased py-gas yield. The py-gas energy increase may be especially useful at water resource recovery facilities that already combust anaerobic digester biogas for energy since it may be possible to blend biogas and py-gas for combined use.

  7. Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating.

    PubMed

    Wang, Huamin; Elliott, Douglas C; French, Richard J; Deutch, Steve; Iisa, Kristiina

    2016-12-25

    Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.

  8. Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating

    PubMed Central

    Wang, Huamin; Elliott, Douglas C.; French, Richard J.; Deutch, Steve; Iisa, Kristiina

    2016-01-01

    Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research. PMID:28060311

  9. Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules.

    PubMed

    Dias, Pablo; Javimczik, Selene; Benevit, Mariana; Veit, Hugo

    2017-02-01

    Photovoltaic (PV) modules contain both valuable and hazardous materials, which makes its recycling meaningful economically and environmentally. In general, the recycling of PV modules starts with the removal of the polymeric ethylene-vinyl acetate (EVA) resin using pyrolysis, which assists in the recovery of materials such as silicon, copper and silver. The pyrolysis implementation, however, needs improvement given its importance. In this study, the polymers in the PV modules were characterized by Fourier transform infrared spectroscopy (FTIR) and the removal of the EVA resin using pyrolysis has been studied and optimized. The results revealed that 30min pyrolysis at 500°C removes >99% of the polymers present in photovoltaic modules. Moreover, the behavior of different particle size milled modules during the pyrolysis process was evaluated. It is shown that polymeric materials tend to remain at a larger particle size and thus, this fraction has the greatest mass loss during pyrolysis. A thermo gravimetric analysis (TGA) performed in all polymeric matter revealed the optimum pyrolysis temperature is around 500°C. Temperatures above 500°C continue to degrade matter, but mass loss rate is 6.25 times smaller. This study demonstrates the use of pyrolysis can remove >99% of the polymeric matter from PV modules, which assists the recycling of this hazardous waste and avoids its disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Novel Precursor Approached for CMC Derived by Polymer Pyrolysis

    DTIC Science & Technology

    1994-02-15

    to remove signals from probe polymer materials. C. Pyrolysis Methods The conversion of polymeric PMVS to SiC -containing ceramic was studied by... Composite Fabrication Methods Ceramic matrix composites with different matrix compositions were fabricated using the Polymer Impregnation- Pyrolysis (PIP...Pyrolyzed composites were re- infiltrated with the appropriate polymer matrix source under vacuum, and cured in an autoclave under 100 psi overpressure of N2

  11. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models.

    PubMed

    Li, Zhengqi; Zhao, Wei; Meng, Baihong; Liu, Chunlong; Zhu, Qunyi; Zhao, Guangbo

    2008-11-01

    With heating rates of 20, 50 and 100 K min(-1), the thermal decomposition of corn straw samples (corn stalks skins, corn stalks cores, corn bracts and corn leaves) were studied using thermogravimetric analysis. The maximum pyrolysis rates increased with the heating rate increasing and the temperature at the peak pyrolysis rate also increased. Assuming the addition of three independent parallel reactions, corresponding to three pseudocomponents linked to the hemicellulose, cellulose and lignin, two different three-pseudocomponent models were used to simulate the corn straw pyrolysis. Model parameters of pyrolysis were given. It was found that the three-pseudocomponent model with n-order kinetics was more accurate than the model with first-order kinetics at most cases. It showed that the model with n-order kinetics was more accurate to describe the pyrolysis of the hemicellulose.

  12. Pressurized entrained-flow pyrolysis of microalgae: Enhanced production of hydrogen and nitrogen-containing compounds.

    PubMed

    Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong

    2018-05-01

    Pressurized entrained-flow pyrolysis of Chlorella vulgaris microalgae was investigated. The impact of pressure on the yield and composition of pyrolysis products were studied. The results showed that the concentration of H 2 in bio-gas increased sharply with increasing pyrolysis pressure, while those of CO, CO 2 , CH 4 , and C 2 H 6 were dramatically decreased. The concentration of H 2 reached 88.01 vol% in bio-gas at 900 °C and 4 MPa. Higher pressures promoted the hydrogen transfer to bio-gas. The bio-oils derived from pressurized pyrolysis were rich in nitrogen-containing compounds and PAHs. The highest concentration of nitrogen-containing compounds in bio-oil was achieved at 800 °C and 1 MPa. Increasing pyrolysis pressure promoted the formation of nitrogen-containing compounds such as indole, quinoline, isoquinoline and phenanthridine. Higher pyrolysis pressures led to increased sphericity, enhanced swelling, and higher carbon order of bio-chars. Pressurized pyrolysis of biomass has a great potential for poly-generation of H 2 , nitrogen containing compounds and bio-char. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Pyrolysis process for the treatment of scrap tyres: preliminary experimental results.

    PubMed

    Galvagno, S; Casu, S; Casabianca, T; Calabrese, A; Cornacchia, G

    2002-01-01

    The aim of this work is the evaluation, on a pilot scale, of scrap tyre pyrolysis process performance and the characteristics of the products under different process parameters, such as temperature, residence time, pressure, etc. In this frame, a series of tests were carried out at varying process temperatures between 550 and 680 degrees C, other parameters being equal. Pyrolysis plant process data are collected by an acquisition system; scrap tyre samples used for the treatment, solid and liquid by-products and produced syngas were analysed through both on-line monitoring (for gas) and laboratory analyses. Results show that process temperature, in the explored range, does not seem to seriously influence the volatilisation reaction yield, at least from a quantitative point of view, while it observably influences the distribution of the volatile fraction (liquid and gas) and by-products characteristics.

  14. Chemical yields from low-temperature pyrolysis of CCA-treated wood

    Treesearch

    Qirong Fu; Dimitris Argyropolous; Lucian Lucia; David Tilotta; Stan Lebow

    2009-01-01

    Low-temperature pyrolysis offers a feasible option for wood-waste management and the recovery of a variety of useful chemicals. The effect of chromated copper arsenate (CCA) wood preservative on the yield and composition of various pyrolysis products was investigated in the present research. A novel quantitative 31P nuclear magnetic resonance (...

  15. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Lai, Mei-Hsiu; Chen, Ting-Chien; Ma, Sen-Yi

    2007-10-01

    A pyrolysis method was employed to recycle the metals and brominated compounds blended into printed circuit boards. This research investigated the effect of particle size and process temperature on the element composition of IC boards and pyrolytic residues, liquid products, and water-soluble ionic species in the exhaust, with the overall goal being to identify the pyrolysis conditions that will have the least impact on the environment. Integrated circuit (IC) boards were crushed into 5-40 mesh (0.71-4.4mm), and the crushed particles were pyrolyzed at temperatures ranging from 200 to 500 degrees C. The thermal decomposition kinetics were measured by a thermogravimetric (TG) analyzer. The composition of pyrolytic residues was analyzed by Energy Dispersive X-ray Spectrometer (EDS), Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). In addition, the element compositions of liquid products were analyzed by ICP-AES and ICP-MS. Pyrolytic exhaust was collected by a water-absorption system in an ice-bath cooler, and IC analysis showed that the absorbed solution comprised 11 ionic species. Based on the pyrolytic kinetic parameters of TG analysis and pyrolytic residues at various temperatures for 30 min, the effect of particle size was insignificant in this study, and temperature was the key factor for the IC board pyrolysis. Two stages of decomposition were found for IC board pyrolysis under nitrogen atmosphere. The activation energy was 38-47 kcal/mol for the first-stage reaction and 5.2-9.4 kcal/mol for the second-stage reaction. Metal content was low in the liquid by-product of the IC board pyrolysis process, which is an advantage in that the liquid product could be used as a fuel. Brominate and ammonium were the main water-soluble ionic species of the pyrolytic exhaust. A plan for their safe and effective disposal must be developed if the pyrolytic recycling process is to be applied to IC boards.

  16. Mechanistic study of the influence of pyrolysis conditions on potassium speciation in biochar "preparation-application" process.

    PubMed

    Tan, Zhongxin; Liu, Liyun; Zhang, Limei; Huang, Qiaoyun

    2017-12-01

    Biochar samples produced from rice straw by pyrolysis at different temperatures (400°C and 800°C) and under different atmospheres (N 2 and CO 2 ) were applied to lettuce growth in a 'preparation-application' system. The conversion of potassium in the prepared biochar and the effect of the temperature used for pyrolysis on the bioavailability of potassium in the biochar were investigated. Root samples from lettuce plants grown with and without application of biochar were assayed by X-ray photoelectron spectroscopy (XPS). The optimal conditions for preparation of biochar to achieve the maximum bioavailability of potassium (i.e. for returning biochar to soil) were thus determined. Complex-K, a stable speciation of potassium in rice straw, was transformed into potassium sulfate, potassium nitrate, potassium nitrite, and potassium chloride after oxygen-limited pyrolysis. The aforementioned ionic-state potassium species can be directly absorbed and used by plants. Decomposition of the stable speciation of potassium during the pyrolysis process was more effective at higher temperature, whereas the pyrolysis atmosphere (CO 2 and N 2 ) had little effect on the quality of the biochar. Based on the potassium speciation in the biochar, the preparation cost, and the plant growth and rigor after the application of returning biochar to soil, 400°C and CO 2 atmosphere were the most appropriate conditions for preparation of biochar. Copyright © 2017. Published by Elsevier B.V.

  17. Effect of rice husk ash mass on sustainability pyrolysis zone of fixed bed downdraft gasifier with capacity of 10 kg/hour

    NASA Astrophysics Data System (ADS)

    Surjosatyo, Adi; Haq, Imaduddin; Dafiqurrohman, Hafif; Gibran, Felly Rihlat

    2017-03-01

    The formation of pyrolysis sustainability (Sustainable Pyrolysis) is the objective of the gasification process. Pyrolysis zone in the gasification process is the result of the endothermic reaction that get heat from oxidation (combustion) of the fuel with oxygen, where cracking biomass rice husk result of such as charcoal, water vapor, steam tar, and gas - gas (CO, H 2, CH 4, CO 2 and N 2) and must be maintained at a pyrolysis temperature to obtain results plentiful gas (producer gas) or syngas (synthetic gas). Obtaining continuously syngas is indicated by flow rate (discharge) producer gas well and the consistency of the flame on the gas burner, it is highly influenced by the gasification process and the operation of the gasifier and the mass balance (mass balance) between the feeding rate of rice husk with the disposal of ash (ash removal). In experiments conducted is using fixed bed gasifier type downdraft capacity of 10 kg/h. Besides setting the mass of rice husks into the gasifier and disposal arrangements rice husk ash may affect the sustainability of the pyrolysis process, but tar produced during the gasification process causes sticky rice husk ash in the plenum gasifier. Modifications disposal system rice husk ash can facilitate the arrangement of ash disposal then could control the temperature pyrolysis with pyrolysis at temperatures between 500-750 ° C. The experimental study was conducted to determine the effect of mass quantities of rice husk ash issued against sustainability pyrolysis temperature which is obtained at each time disposal of rice husk ash to produce 60-90 grams of ash issued. From some experimental phenomena is expected to be seen pyrolysis and its effect on the flow rate of syngas and the stability of the flame on the gas burner so that this research can find a correlation to obtain performance (performance) gasifier optimal.

  18. Liquid–Liquid Equilibrium Measurements for Model Systems Related to Catalytic Fast Pyrolysis of Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir

    Here in this paper we report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement ismore » seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.« less

  19. Liquid–Liquid Equilibrium Measurements for Model Systems Related to Catalytic Fast Pyrolysis of Biomass

    DOE PAGES

    Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir; ...

    2016-11-02

    Here in this paper we report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement ismore » seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.« less

  20. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect.

    PubMed

    Chen, Wei; Chen, Yingquan; Yang, Haiping; Xia, Mingwei; Li, Kaixu; Chen, Xu; Chen, Hanping

    2017-12-01

    Co-pyrolysis of biomass has a potential to change the quality of pyrolytic bio-oil. In this work, co-pyrolysis of bamboo, a typical lignocellulosic biomass, and Nannochloropsis sp. (NS), a microalgae, was carried out in a fixed bed reactor at a range of mixing ratio of NS and bamboo, to find out whether the quality of pyrolytic bio-oil was improved. A significant improvement on bio-oil after co-pyrolysis of bamboo and NS was observed that bio-oil yield increased up to 66.63wt% (at 1:1) and the content of long-chain fatty acids in bio-oil also dramatically increased (the maximum up to 50.92% (13.57wt%) at 1:1) whereas acetic acid, O-containing species, and N-containing compounds decreased greatly. Nitrogen transformation mechanism during co-pyrolysis also was explored. Results showed that nitrogen in microalgae preferred to transform into solid char and gas phase during co-pyrolysis, while more pyrrolic-N and quaternary-N generated with diminishing protein-N and pyridinic-N in char. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Review of the pyrolysis platform for coproducing bio-oil and biochar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laird, David A.; Brown, Robert C.; Amonette, James E.

    2009-09-01

    Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a distributed network of small pyrolysis plants, would be compatible with existing agriculture and forestry infrastructure. Bio-oil can be used as a fuel in existing industrial boilers. Biochar can be used with existing infrastructure as a replacement for pulverized coal; however, use of biochar as a soil amendment results in significant environmental and agronomic benefits. Soil application of biocharmore » is a means of sequestering large amounts of C and may have other greenhouse gas benefits. Preliminary reports of the impact of soil biochar applications on crop yields indicate that biochar quality is very important. Biochar is an effective adsorbent for both nutrients and organic contaminants, hence the presence of biochar in soils has been shown to improve water quality in column leaching and field lysimeter studies and it is anticipated to do the same for agricultural watersheds. The pyrolysis platform for producing bio-oil and biochar from biomass appears to be a practical, effective, and environmentally sustainable means of producing large quantities of renewable bioenergy while simultaneously reducing emissions of greenhouse gases. At the present time, the pyrolysis platform is economically marginal because markets for bio-oil and biochar are highly competitive. However, if the USA adopts a program for controlling greenhouse gases, the pyrolysis platform would be highly competitive.« less

  2. Methane Pyrolysis and Disposing Off Resulting Carbon

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Rapp, D.; Rahotgi, N. K.

    1999-01-01

    Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is a waste of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduce the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (i) recover hydrogen from the excess methane produced by the S/E process, (ii) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (iii) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. The goals of a research program on recovery of hydrogen from methane are (in descending priority order): 1) Study the kinetics of pyrolysis to arrive at a pyrolysis reactor design that produces high yields in a confined volume at the lowest possible operating temperature; 2) Study the kinetics of carbon burnoff to determine whether high yields can be obtained in a confined volume at acceptable operating temperatures; and 3) Investigate catalytic techniques for depositing carbon as a fine soot which can be physically separated from the reactor. In the JPL program, we have made significant

  3. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.

    PubMed

    Wang, Xun; Hu, Mian; Hu, Wanyong; Chen, Zhihua; Liu, Shiming; Hu, Zhiquan; Xiao, Bo

    2016-11-01

    Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethylene-terephthalate and polyethylene to sequentially recover [monomers

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1998-10-13

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feed stream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  5. Adding nickel formate in alkali lignin to increase contents of alkylphenols and aromatics during fast pyrolysis.

    PubMed

    Geng, Jing; Wang, Wen-Liang; Yu, Yu-Xiang; Chang, Jian-Min; Cai, Li-Ping; Shi, Sheldon Q

    2017-03-01

    The composition of pyrolysis vapors obtained from alkali lignin pyrolysis with the additive of nickel formate was examined using the pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). Characterization of bio-chars was performed using X-ray diffraction (XRD). Results showed that the nickel formate significantly increased liquid yield, simplified the types of alkali lignin pyrolysis products and increased individual component contents. The additive of nickel formate increased contents of alkylphenols and aromatics from alkali lignin pyrolysis. With an increase in temperature, a greater amount of the relative contents can be achieved. The nickel formate was thermally decomposed to form hydrogen, resulting in hydrodeoxygenation of alkali lignin during pyrolysis. It was also found that Ni is in favor of producing alkylphenols. The analysis based on the experimental result provided evidences used to propose reaction mechanism for pyrolysis of nickel formate-assisted alkali lignin. Copyright © 2016. Published by Elsevier Ltd.

  6. Detecting Pyrolysis Products from Bacteria on Mars

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Schubert, Michael; Botta, Oliver; Kminek, Gerhard; Bada, Jeffrey L.

    2001-01-01

    A pyrolysis/sublimation technique was developed to isolate volatile amine compounds from a Mars soil analogue inoculated with approx. 10 billion Escherichia coli cells. In this technique, the inoculated soil is heated to 500 C for several seconds at Martian ambient pressure and the sublimate, collected by a cold finger, then analyzed using high performance liquid chromatography. Methylamine and ethylamine, produced from glycine and alanine decarboxylation, were the most abundant amine compounds detected after pyrolysis of the cells. A heating cycle similar to that utilized in our experiment was also used to release organic compounds from the Martian soil in the 1976 Viking gas chromatography/mass spectrometry (GC/MS) pyrolysis experiment. The Viking GC/MS did not detect any organic compounds of Martian origin above a level of a few parts per billion in the Martian surface soil. Although the Viking GC/MS instruments were not specifically designed to search for the presence of living cells on Mars, our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected.

  7. Co-pyrolysis of swine manure with agricultural plastic waste: laboratory-scale study.

    PubMed

    Ro, Kyoung S; Hunt, Patrick G; Jackson, Michael A; Compton, David L; Yates, Scott R; Cantrell, Keri; Chang, SeChin

    2014-08-01

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25%m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the (1)H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations. Published by Elsevier Ltd.

  8. Pyrolysis-combustion 14C dating of soil organic matter

    USGS Publications Warehouse

    Wang, Hongfang; Hackley, Keith C.; Panno, S.V.; Coleman, D.D.; Liu, J.C.-L.; Brown, J.

    2003-01-01

    Radiocarbon (14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (??13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and ??13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and ??13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  9. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and (31)P NMR analysis.

    PubMed

    Xu, Gang; Zhang, You; Shao, Hongbo; Sun, Junna

    2016-11-01

    Phosphorus (P) recycling or reuse by pyrolyzing crop residue has recently elicited increased research interest. However, the effects of feedstock and pyrolysis conditions on P species have not been fully understood. Such knowledge is important in identifying the agronomic and environmental uses of biochar. Residues of three main Chinese agricultural crops and the biochars (produced at 300°C-600°C) derived from these crops were used to determine P transformations during pyrolysis. Hedley sequential fractionation and (31)P NMR analyses were used in the investigation. Our results showed that P transformation in biochar was significantly affected by pyrolysis temperature regardless of feedstock (Wheat straw, maize straw and peanut husk). Pyrolysis treatment transformed water soluble P into a labile (NaHCO3-Pi) or semi-labile pool (NaOH-Pi) and into a stable pool (Dil. HCl P and residual-P). At the same time, organic P was transformed into inorganic P fractions which was identified by the rapid decomposition of organic P detected with solution (31)P NMR. The P transformation during pyrolysis process suggested more stable P was formed at a higher pyrolysis temperature. This result was also evidenced by the presence of less soluble or stable P species, such as such as poly-P, crandallite (CaAl3(OH)5(PO4)2) and Wavellite (Al3(OH)3(PO4)2·5H2O), as detected by solid-state (31)P NMR in biochars formed at a higher pyrolysis temperature. Furthermore, a significant proportion of less soluble pyrophosphate was identified by solution (2%-35%) and solid-state (8%-53%) (31)P NMR, which was also responsible for the stable P forms at higher pyrolysis temperature although their solubility or stability requires further investigation. Results suggested that a relatively lower pyrolysis temperature retains P availability regardless of feedstock during pyrolysis process. Copyright © 2016. Published by Elsevier B.V.

  10. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.

    PubMed

    Dong, Jun; Tang, Yuanjun; Nzihou, Ange; Chi, Yong; Weiss-Hortala, Elsa; Ni, Mingjiang

    2018-06-01

    Municipal solid waste (MSW) pyrolysis and gasification are in development, stimulated by a more sustainable waste-to-energy (WtE) option. Since comprehensive comparisons of the existing WtE technologies are fairly rare, this study aims to conduct a life cycle assessment (LCA) using two sets of data: theoretical analysis, and case studies of large-scale commercial plants. Seven systems involving thermal conversion (pyrolysis, gasification, incineration) and energy utilization (steam cycle, gas turbine/combined cycle, internal combustion engine) are modeled. Theoretical analysis results show that pyrolysis and gasification, in particular coupled with a gas turbine/combined cycle, have the potential to lessen the environmental loadings. The benefits derive from an improved energy efficiency leading to less fossil-based energy consumption, and the reduced process emissions by syngas combustion. Comparison among the four operating plants (incineration, pyrolysis, gasification, gasification-melting) confirms a preferable performance of the gasification plant attributed to syngas cleaning. The modern incineration is superior over pyrolysis and gasification-melting at present, due to the effectiveness of modern flue gas cleaning, use of combined heat and power (CHP) cycle, and ash recycling. The sensitivity analysis highlights a crucial role of the plant efficiency and pyrolysis char land utilization. The study indicates that the heterogeneity of MSW and syngas purification technologies are the most relevant impediments for the current pyrolysis/gasification-based WtE. Potential development should incorporate into all process aspects to boost the energy efficiency, improve incoming waste quality, and achieve efficient residues management. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds

    DOE PAGES

    Xiong, Qingang; Zhang, Jingchao; Wiggins, Gavin; ...

    2015-12-03

    We report results from computational simulations of an experimental, lab-scale bubbling bed biomass pyrolysis reactor that include a distributed activation energy model (DAEM) for the kinetics. In this study, we utilized multiphase computational fluid dynamics (CFD) to account for the turbulent hydrodynamics, and this was combined with the DAEM kinetics in a multi-component, multi-step reaction network. Our results indicate that it is possible to numerically integrate the coupled CFD–DAEM system without significantly increasing computational overhead. It is also clear, however, that reactor operating conditions, reaction kinetics, and multiphase flow dynamics all have major impacts on the pyrolysis products exiting themore » reactor. We find that, with the same pre-exponential factors and mean activation energies, inclusion of distributed activation energies in the kinetics can shift the predicted average value of the exit vapor-phase tar flux and its statistical distribution, compared to single-valued activation-energy kinetics. Perhaps the most interesting observed trend is that increasing the diversity of the DAEM activation energies appears to increase the mean tar yield, all else being equal. As a result, these findings imply that accurate resolution of the reaction activation energy distributions will be important for optimizing biomass pyrolysis processes.« less

  12. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell.

    PubMed

    Gao, Yun; Yang, Yi; Qin, Zhanbin; Sun, Yi

    2016-01-01

    Coconut is a high-quality agricultural product of the Asia-Pacific region. In this paper, coconut shell which mainly composed of cellulose, hemicellulose, lignin was used as a raw material for coconut shell oil from coconut shell pyrolysis. The influence of the pyrolysis temperature, heating rate and particle size on coconut oil yield was investigated, and the effect of heating rate on coconut oil components was discussed. Experimental results show that the maximum oil yield of 75.74 wt% (including water) were obtained under the conditions that the final pyrolysis temperature 575 °C, heating rate 20 °C/min, coconut shell diameter about 5 mm. Thermal gravimetric analysis was used and it can be seen that coconut shell pyrolysis process can be divided into three stages: water loss, pyrolysis and pyrocondensation. The main components of coconut-shell oil are water (about 50 wt%), aromatic, phenolic, acid, ketone and ether containing compounds.

  13. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae.

    PubMed

    Hu, Zhifeng; Ma, Xiaoqian; Chen, Chunxiang

    2012-03-01

    The microwave-assisted pyrolysis of Chlorella vulgaris was carried out under different microwave power levels, catalysts and contents of activated carbon and solid residue. The products, pyrolysis temperature and temperature rising rate were analyzed in order to obtain the optimal conditions. The results indicated that the higher the microwave power level was, the higher the maximum temperature rising rate and pyrolysis temperature were. The maximum bio-oil yield (35.83 wt.%) and gas yield (52.37%) were achieved under the microwave power of 1500 W and 2250 W, respectively. And 2250 W was the optimal power to obtain bio-fuel product. High microwave power level and catalyst can enhance the production of gas. Catalysts can promote the pyrolysis of C. vulgaris, and activated carbon was the best among the tested catalysts followed by the solid residue. The optimal content of activated carbon is 5% with the maximum bio-fuel yield of 87.47%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effects of biopretreatment on pyrolysis behaviors of corn stalk by methanogen.

    PubMed

    Wang, Tipeng; Ye, Xiaoning; Yin, Jun; Lu, Qiang; Zheng, Zongming; Dong, Changqing

    2014-07-01

    The study investigated the effects of methanogen pretreatment on pyrolysis behaviors of corn stalk (CS) by using Py-GC/MS analysis and thermogravimetric analysis. Results indicated that biopretreatment changed considerably the pyrolysis behaviors of CS from four weight loss stages to two weight loss stages. Increasing biopretreatment time from 5 days to 25 days enhanced the kinds and contents of chemicals in volatile products. In pyrolysis products, the contents of sugars, linear ketones and furans decreased from 1.43%, 12.60% and 7.38% to 1.25%, 10.22% and 3.25%, respectively, and the contents of phenols increased from 15.08% to 27.84%. The most content change from 6.83% to 13.63% indicated that methanogen pretreatment improved the pyrolysis selectivity of CS to product the 4-VP, but it was disadvantageous to 5-hydroxymethyl furfural, levoglucose and furfural. The changes of chemical compositions and structure of CS after biopretreatment were the main reason of the differences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Life cycle analysis of fuel production from fast pyrolysis of biomass.

    PubMed

    Han, Jeongwoo; Elgowainy, Amgad; Dunn, Jennifer B; Wang, Michael Q

    2013-04-01

    A well-to-wheels (WTW) analysis of pyrolysis-based gasoline was conducted and compared with petroleum gasoline. To address the variation and uncertainty in the pyrolysis pathways, probability distributions for key parameters were developed with data from literature. The impacts of two different hydrogen sources for pyrolysis oil upgrading and of two bio-char co-product applications were investigated. Reforming fuel gas/natural gas for H2 reduces WTW GHG emissions by 60% (range of 55-64%) compared to the mean of petroleum fuels. Reforming pyrolysis oil for H2 increases the WTW GHG emissions reduction up to 112% (range of 97-126%), but reduces petroleum savings per unit of biomass used due to the dramatic decline in the liquid fuel yield. Thus, the hydrogen source causes a trade-off between GHG reduction per unit fuel output and petroleum displacement per unit biomass used. Soil application of biochar could provide significant carbon sequestration with large uncertainty. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review.

    PubMed

    Bach, Quang-Vu; Chen, Wei-Hsin

    2017-12-01

    Pyrolysis is a promising route for biofuels production from microalgae at moderate temperatures (400-600°C) in an inert atmosphere. Depending on the operating conditions, pyrolysis can produce biochar and/or bio-oil. In practice, knowledge for thermal decomposition characteristics and kinetics of microalgae during pyrolysis is essential for pyrolyzer design and pyrolysis optimization. Recently, the pyrolysis kinetics of microalgae has become a crucial topic and received increasing interest from researchers. Thermogravimetric analysis (TGA) has been employed as a proven technique for studying microalgae pyrolysis in a kinetic control regime. In addition, a number of kinetic models have been applied to process the TGA data for kinetic evaluation and parameters estimation. This paper aims to provide a state-of-the art review on recent research activities in pyrolysis characteristics and kinetics of various microalgae. Common kinetic models predicting the thermal degradation of microalgae are examined and their pros and cons are illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Site-Specific Pyrolysis Induced Cleavage at Aspartic Acid Residue in Peptides and Proteins

    PubMed Central

    Zhang, Shaofeng; Basile, Franco

    2011-01-01

    A simple and site-specific non-enzymatic method based on pyrolysis has been developed to cleave peptides and proteins. Pyrolytic cleavage was found to be specific and rapid as it induced a cleavage at the C-terminal side of aspartic acid in the temperature range of 220–250 °C in 10 seconds. Electrospray Ionization (ESI) mass spectrometry (MS) and tandem-MS (MS/MS) were used to characterize and identify pyrolysis cleavage products, confirming that sequence information is conserved after the pyrolysis process in both peptides and protein tested. This suggests that pyrolysis-induced cleavage at aspartyl residues can be used as a rapid protein digestion procedure for the generation of sequence specific protein biomarkers. PMID:17388620

  18. 40 CFR 721.10579 - Carbon black derived from the pyrolysis of rubber tire shreds (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pyrolysis of rubber tire shreds (generic). 721.10579 Section 721.10579 Protection of Environment... pyrolysis of rubber tire shreds (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as carbon black derived from the pyrolysis of...

  19. Performance of rotary kiln reactor for the elephant grass pyrolysis.

    PubMed

    De Conto, D; Silvestre, W P; Baldasso, C; Godinho, M

    2016-10-01

    The influence of process conditions (rotary speed/temperature) on the performance of a rotary kiln reactor for non-catalytic pyrolysis of a perennial grass (elephant grass) was investigated. The product yields, the production of non-condensable gases as well as the biochar properties were evaluated. The maximum H2 yield was close to that observed for catalytic pyrolysis processes, while the bio-oil yield was higher than reported for pyrolysis of other biomass in rotary kiln reactors. A H2/CO ratio suitable for Fischer-Tropsch synthesis (FTS) was obtained. The biochars presented an alkaline pH (above 10) and interesting contents of nutrients, as well as low electrical conductivity, indicating a high potential as soil amendment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Biomass conversion to produce hydrocarbon liquid fuel via hot-vapor filtered fast pyrolysis and catalytic hydrotreating

    DOE PAGES

    Wang, Huamin; Elliott, Douglas C.; French, Richard J.; ...

    2016-12-25

    Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and themore » processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. As a result, the protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.« less

  1. Biomass conversion to produce hydrocarbon liquid fuel via hot-vapor filtered fast pyrolysis and catalytic hydrotreating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huamin; Elliott, Douglas C.; French, Richard J.

    Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and themore » processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. As a result, the protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.« less

  2. Concentration-response data on toxicity of pyrolysis gases from some natural and synthetic polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Huttlinger, N. V.

    1978-01-01

    Concentration-response data are presented on the toxic effects of the pyrolysis gases from some natural and synthetic polymers, using the toxicity screening test method developed at the University of San Francisco. The pyrolysis gases from wool, red oak, Douglas fir, polycaprolactam, polyether sulfone, polyaryl sulfone, and polyphenylene sulfide appeared to exhibit the concentration-response relationships commonly encountered in toxicology. Carbon monoxide seemed to be an important toxicant in the pyrolysis gases from red oak, Douglas fir, and polycaprolactam, but did not appear to have been the principal toxicant in the pyrolysis gases from polyether sulfone and polyphenylene sulfide.

  3. Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis

    DOE PAGES

    Neupane, Sneha; Adhikari, Sushil; Wang, Zhouhong; ...

    2015-01-27

    Torrefaction has been shown to improve the chemical composition of bio-oils produced from fast pyrolysis by lowering its oxygen content and enhancing the aromatic yield. A Py-GC/MS study was employed to investigate the effect of torrefaction temperatures (225, 250 and 275 °C) and residence times (15, 30 and 45 min) on product distribution from non-catalytic and H +ZSM-5 catalyzed pyrolysis of pinewood. During torrefaction, structural transformations in biomass constitutive polymers: hemicellulose, cellulose and lignin took place, which were evaluated using component analysis, solid state CP/MAS 13C NMR and XRD techniques. Torrefaction caused deacetylation and decomposition of hemicellulose, cleavage of arylmore » ether linkages and demethoxylation of lignin, degradation of cellulose and an overall increase in aromaticity of biomass, all of which affected the product yield from pyrolysis of torrefied biomass. For non-catalytic pyrolysis, selectivity of phenolic compounds increased with an increase in torrefaction severity while that of furan compounds decreased. In the case of catalytic pyrolysis, the sample torrefied at 225 °C-30 min and 250 °C-15 min resulted in a significant increase in aromatic hydrocarbon (HC) and also total carbon yield (approx. 1.6 times higher) as compared to catalytic pyrolysis of non-torrefied pine. Cleavage of aryl ether linkages and demethoxylation in lignin due to torrefaction caused increased yield of phenolic compounds, which in the presence of a catalyst were dehydrated to form aromatic HC.« less

  4. Biomass pyrolysis for biochar or energy applications? A life cycle assessment.

    PubMed

    Peters, Jens F; Iribarren, Diego; Dufour, Javier

    2015-04-21

    The application of biochar as a soil amendment is a potential strategy for carbon sequestration. In this paper, a slow pyrolysis system for generating heat and biochar from lignocellulosic energy crops is simulated and its life-cycle performance compared with that of direct biomass combustion. The use of the char as biochar is also contrasted with alternative use options: cofiring in coal power plants, use as charcoal, and use as a fuel for heat generation. Additionally, the influence on the results of the long-term stability of the biochar in the soil, as well as of biochar effects on biomass yield, is evaluated. Negative greenhouse gas emissions are obtained for the biochar system, indicating a significant carbon abatement potential. However, this is achieved at the expense of lower energy efficiency and higher impacts in the other assessed categories when compared to direct biomass combustion. When comparing the different use options of the pyrolysis char, the most favorable result is obtained for char cofiring substituting fossil coal, even assuming high long-term stability of the char. Nevertheless, a high sensitivity to biomass yield increase is found for biochar systems. In this sense, biochar application to low-quality soils where high yield increases are expected would show a more favorable performance in terms of global warming.

  5. Methane Pyrolysis and Disposing Off Resulting Carbon

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Rapp, D.; Rahotgi, N. K.

    1999-01-01

    Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is wasteful of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduced the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (1) recover hydrogen from the excess methane produced by the S/E process, (2) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (3) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. Hydrogen may be obtained from methane by pyrolysis in the temperature range 10000-12000C. The main reaction products are hydrogen and carbon, though very small amounts of higher hydrocarbons, including aromatic hydrocarbons are formed. The conversion efficiency is about 95% at 12000C. One needs to distinguish between thermodynamic equilibrium conversion and conversion limited by kinetics in a finite reactor.

  6. Method for Hot Real-Time Analysis of Pyrolysis Vapors at Pilot Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomeroy, Marc D

    Pyrolysis oils contain more than 400 compounds, up to 60% of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during quenching and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors at the pilot scale, many challenges must be overcome.

  7. Pyrolysis and gasification of meat-and-bone-meal: energy balance and GHG accounting.

    PubMed

    Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas

    2013-11-01

    Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used - eventually after upgrading - for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600-1000kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Catalytic fast pyrolysis of durian rind using silica-alumina catalyst: Effects of pyrolysis parameters.

    PubMed

    Tan, Y L; Abdullah, A Z; Hameed, B H

    2018-05-18

    Silica-alumina catalyst was prepared and used in the catalytic fast pyrolysis of durian rind in a drop-type two-stage reactor. The effects of catalytic temperature (400 °C-600 °C) and catalyst-to-durian rind ratio (1:30-3:30) were evaluated. Bio-oil yield was increased with increased catalytic temperature due to considerable dehydration process, but it was reduced with high catalyst loading due to the overcracking of organics into light gases. Silica-alumina catalyst possessed good selectivity and the products changed according to the temperature. The major components in bio-oil were hydrocarbons, furan derivatives, and aromatic compounds at 400 °C, 500 °C, and 600 °C, respectively. The hydrogen and carbon contents of bio-oil were reduced with high catalyst loading due to the overcracking of organics, and the deoxygenation process became unfavorable. The silica-alumina catalyst worked well in catalytic fast pyrolysis of durian rind, and the condition may be adjusted based on the desired products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-06-14

    A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.

  10. Controlled catalystic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.

  11. Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density.

    PubMed

    Cho, Jung Sang; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2016-02-01

    In the synthesis of hydroxyapatite powders by spray pyrolysis, control of the particle size was investigated by varying the initial concentration of the precursor solution and the pyrolysis temperature. Calcium phosphate solutions (Ca/P ratio of 1.67) with a range of concentrations from 0.1 to 2.0 mol/L were prepared by dissolving calcium nitrate tetrahydrate and diammonium hydrogen phosphate in deionized water and subsequently adding nitric acid. Hydroxyapatite powders were then synthesized by spray pyrolysis at 900°C and at 1500°C, using these calcium phosphate precursor solutions, under the fixed carrier gas flow rate of 10 L/min. The particle size decreased as the precursor concentration decreased and the spray pyrolysis temperature increased. Sinterability tests conducted at 1100°C for 1 h showed that the smaller and denser the particles were, the higher the relative densities were of sintered hydroxyapatite disks formed from these particles. The practical implication of these results is that highly sinterable small and dense hydroxyapatite particles can be synthesized by means of spray pyrolysis using a low-concentration precursor solution and a high pyrolysis temperature under a fixed carrier gas flow rate. © 2015 Wiley Periodicals, Inc.

  12. Pyrolysis of polyolefins for increasing the yield of monomers' recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaj, Pawel J., E-mail: pawel@mse.kth.se; Kaminsky, W.; Buzeto, F.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Thermal and catalytic pyrolysis of mixed polyolefins in fluidized bed has been studied. Black-Right-Pointing-Pointer We tested applicability of a commercial Ziegler-Natta catalyst (Z-N: TiCl{sub 4}/MgCl{sub 2}). Black-Right-Pointing-Pointer The catalyst has a strong influence on product distribution, increasing gas fraction. Black-Right-Pointing-Pointer At 650 Degree-Sign C the monomer generation increased by 55% when the catalyst was used. Black-Right-Pointing-Pointer We showed the concept of treatment of mixed polyolefins without a need of separation. - Abstract: Pyrolysis of plastic waste is an alternative way of plastic recovery and could be a potential solution for the increasing stream of solid waste. The objectivemore » of this work was to increase the yield the gaseous olefins (monomers) as feedstock for polymerization process and to test the applicability of a commercial Ziegler-Natta (Z-N): TiCl{sub 4}/MgCl{sub 2} for cracking a mixture of polyolefins consisted of 46% wt. of low density polyethylene (LDPE), 30% wt. of high density polyethylene (HDPE) and 24% wt. of polypropylene (PP). Two sets of experiments have been carried out at 500 and 650 Degree-Sign C via catalytic pyrolysis (1% of Z-N catalyst) and at 650 and 730 Degree-Sign C via only-thermal pyrolysis. These experiments have been conducted in a lab-scale, fluidized quartz-bed reactor of a capacity of 1-3 kg/h at Hamburg University. The results revealed a strong influence of temperature and presence of catalyst on the product distribution. The ratios of gas/liquid/solid mass fractions via thermal pyrolysis were: 36.9/48.4/15.7% wt. and 42.4/44.7/13.9% wt. at 650 and 730 Degree-Sign C while via catalytic pyrolysis were: 6.5/89.0/4.5% wt. and 54.3/41.9/3.8% wt. at 500 and 650 Degree-Sign C, respectively. At 650 Degree-Sign C the monomer generation increased by 55% up to 23.6% wt. of total pyrolysis products distribution while the catalyst was added

  13. Supercritical water pyrolysis of sewage sludge.

    PubMed

    Ma, Wenchao; Du, Guiyue; Li, Jian; Fang, Yuanhao; Hou, Li'an; Chen, Guanyi; Ma, Degang

    2017-01-01

    Municipal sewage sludge (SS) from wastewater treatment plant containing high water content (>85wt.%), lead to the difficulty of co-combustion with MSW or coal due to the high cost of drying. This study explores an alternative method by supercritical water (SCW) pyrolysis of sewage sludge (SS) in a high pressure reaction vessel. The effects of temperature and moisture content of SS on yield and composition of the products (bio-oil, bio char and non-condensable gas) were studied. A temperature of 385°C and moisture content of 85wt.% were found to be the optimum conditions for the maximum bio-oil production of 37.23wt.%, with a higher heating value of 31.08MJ/kg. In the optimum condition, the yields of aliphatic hydrocarbon and phenols were about 29.23wt.% and 12.51wt.%, respectively. The physical and chemical properties of bio-char were analyzed by using XRF and BET. Results of GC analyses of NCG showed that it has the maximum HHV of 13.39MJ/m 3 at 445°C and moisture content of 85wt.%. The reaction path from SS to bio-oil through SCW pyrolysis was given. Moreover, carbon balance was calculated for the optimal condition, and finding out that 64.27wt.% of the carbon content was transferred from SS to bio-oil. Finally, this work demonstrates that the SCW pyrolysis is a promising disposal method for SS. Copyright © 2016. Published by Elsevier Ltd.

  14. Life cycle assessment of microalgae to biofuel: Thermochemical processing through hydrothermal liquefaction or pyrolysis

    NASA Astrophysics Data System (ADS)

    Bennion, Edward P.

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae-to-biofuel process through life cycle assessment. A system boundary of a "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development, and a comparison of results to literature.

  15. Study on vacuum pyrolysis of coffee industrial residue for bio-oil production

    NASA Astrophysics Data System (ADS)

    Chen, Nanwei; Ren, Jie; Ye, Ziwei; Xu, Qizhi; Liu, Jingyong; Sun, Shuiyu

    2017-03-01

    Coffee industrial residue (CIR) is a biomass with high volatile content (64.94 wt.%) and heating value (21.3 MJ·kg-1). This study was carried out to investigate the pyrolysis condition and products of CIR using thermogravimetric analyser (TGA) and vacuum tube furnace. The influence of pyrolysis temperature, time, pressure and heating rate on the yield of pyrolysis products were discussed. There was an optimal pyrolysis condition: CIR was heated from normal temperature to 400 °C for 60 min, with 10 °C·min-1 heating rate and a pressure of 30 kPaabs. In this condition, the yields of bio-oil, char and non-condensable gas were 42.29, 33.14 and 24.57 wt.%, respectively. The bio-oil contained palmitic acid (47.48 wt.%), oleic acid (17.45 wt.%), linoleic acid (11.34 wt.%), octadecanoic acid (7.62 wt.%) and caffeine (5.18 wt.%).

  16. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogensmore » were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.« less

  17. Investigating pyrolysis/incineration as a method of resource recovery from solid waste

    NASA Technical Reports Server (NTRS)

    Robertson, Bobby J.; Lemay, Christopher S.

    1993-01-01

    Pyrolysis/incineration (P/I) is a physicochemical method for the generation of recoverable resources from solid waste materials such as inedible plant biomass (IPB), paper, plastics, cardboard, etc. P/I permits the collection of numerous gases with a minimal amount of solid residue. Pyrolysis, also known as starved air incineration, is usually conducted at relatively high temperatures (greater than 500 deg C) in the absence of oxygen. Incineration is conducted at lower temperatures in the presence of oxygen. The primary purpose of this study was to design, construct, and test a model P/I. The system design includes safety requirements for temperature and pressure. The objectives of this study were: (1) to design and construct a P/I system for incorporation with the Hybrid Regenerative Water Recovery System; (2) to initiate testing of the P/I system; (3) to collect and analyze P/I system data; (4) to consider test variables; and (5) to determine the feasibility of P/I as an effective method of resource recovery. A P/I system for the recovery of reuseable resources from solid waste materials was designed, constructed, and tested. Since a large amount of inedible plant biomass (IPB) will be generated in a space-based habitat on the lunar surface and Mars, IPB was the primary waste material tested in the system. Analysis of the effluent gases was performed to determine which gases could be used in a life support system.

  18. Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils

    DOEpatents

    Agblevor, Foster A.; Besler-Guran, Serpil

    2001-01-01

    A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.

  19. Kinetic study of solid waste pyrolysis using distributed activation energy model.

    PubMed

    Bhavanam, Anjireddy; Sastry, R C

    2015-02-01

    The pyrolysis characteristics of municipal solid waste, agricultural residues such as ground nut shell, cotton husk and their blends are investigated using non-isothermal thermogravimetric analysis (TGA) with in a temperature range of 30-900 °C at different heating rates of 10 °C, 30 °C and 50 °C/min in inert atmosphere. From the thermograms obtained from TGA, it is observed that the maximum rate of degradation occurred in the second stage of the pyrolysis process for all the solid wastes. The distributed activation energy model (DAEM) is used to study the pyrolysis kinetics of the solid wastes. The kinetic parameters E (activation energy), k0 (frequency factor) are calculated from this model. It is found that the range of activation energies for agricultural residues are lower than the municipal solid waste. The activation energies for the municipal solid waste pyrolysis process drastically decreased with addition of agricultural residues. The proposed DAEM is successfully validated with TGA experimental data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The use of tyre pyrolysis oil in diesel engines.

    PubMed

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  1. Co-pyrolysis of biomass and plastic wastes: investigation of apparent kinetic parameters and stability of pyrolysis oils

    NASA Astrophysics Data System (ADS)

    Fekhar, B.; Miskolczi, N.; Bhaskar, T.; Kumar, J.; Dhyani, V.

    2018-05-01

    This work is dedicated to the co-pyrolysis of real waste high density polyethylene (HDPE) and biomass (rice straw) obtained from agriculture. Mixtures of raw materials were pyrolyzed in their 0%/100%, 30%/70%, 50%/50%, 70%/30%, 100%/0% ratios using a thermograph. The atmosphere was nitrogen, and a constant heating rate was used. Based on weight loss and DTG curves, the apparent reaction kinetic parameters (e.g., activation energy) were calculated using first-order kinetic approach and Arrhenius equation. It was found that decomposition of pure plastic has approximately 280 kJ/mol activation energy, while that of was considerably less in case of biomass. Furthermore, HDPE decomposition takes by one stage, while that of biomass was three stages. The larger amount of raw materials (100 g) were also pyrolyzed in the batch rig at 550°C to obtain products for analysis focussing to their long-term application. Pyrolysis oils were investigated by Fourier transformed infrared spectroscopy and standardized methods, such as density, viscosity, boiling range determination. It was concluded, that higher plastic ratio in raw material had the advantageous effect to the pyrolysis oil long-term application. E.g., the concentration of oxygenated compounds, such as aldehydes, ketones, carboxylic acids or even phenol and its derivate could be significantly decreased, which had an advantageous effect to their corrosion property. Lower average molecular weight, viscosity, and density were measured as a function of plastic content.

  2. Reducing the bioavailability and leaching potential of lead in contaminated water hyacinth biomass by phosphate-assisted pyrolysis.

    PubMed

    Shi, Lingna; Wang, Lijun; Zhang, Tao; Li, Jianfa; Huang, Xiaoyi; Cai, Jing; Lü, Jinhong; Wang, Yue

    2017-10-01

    For the purpose of safe disposal of biomass contaminated by biosorption of heavy metals, phosphate-assisted pyrolysis of water hyacinth biomass contaminated by lead (Pb) was tried to reduce the bioavailability and leaching potential of Pb, using direct pyrolysis without additive as a control method. Direct pyrolysis of the contaminated biomass at low temperatures (300 and 400°C) could reduce the bioavailability of Pb, but the leaching potential of Pb was increased with the rising pyrolysis temperature. While phosphate-assisted pyrolysis significantly enhanced the recovery and stability of Pb in the char. Specifically, the percentages of bioavailable Pb and leachable Pb in the chars obtained by phosphate-assisted pyrolysis at low temperatures were reduced to less than 5% and 7%, respectively. The sequential extraction test indicated the transformation of Pb into more stable fractions after phosphate-assisted pyrolysis, which was related to the formation of Pb phosphate minerals including pyromorphite and lead-substituted hydroxyapatite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.

    PubMed

    Liu, Tingting; Liu, Zhengang; Zheng, Qingfu; Lang, Qianqian; Xia, Yu; Peng, Nana; Gai, Chao

    2018-01-01

    The heavy metals distribution during hydrothermal carbonization (HTC) of sewage sludge, and pyrolysis of the resultant hydrochar was investigated and compared with raw sludge pyrolysis. The results showed that HTC reduced exchangeable/acid-soluble and reducible fraction of heavy metals and lowered the potential risk of heavy metals in sewage sludge. The pyrolysis favored the transformation of extracted/mobile fraction of heavy metals to residual form especially at high temperature, immobilizing heavy metals in the chars. Compared to the chars from raw sludge pyrolysis, the chars derived from hydrochar pyrolysis was more alkaline and had lower risk and less leachable heavy metals, indicating that pyrolysis imposed more positive effect on immobilization of heavy metals for the hydrochar than for sewage sludge. The present study demonstrated that HTC is a promising pretreatment prior to pyrolysis from the perspective of immobilization of heavy metals in sewage sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp.

    PubMed

    Wang, Xin; Sheng, Lili; Yang, Xiaoyi

    2017-04-01

    Microalgal components were isolated gradually to get lipid-rich, protein-rich and carbohydrate-rich components. The aim of this work was to study pyrolysis mechanism of microalgae by real isolated real algae components. Thermogrametric analysis (DTG) curve of microalgae was fitted by single pyrolysis curves of protein, lipid and carbohydrate except special zones, which likely affected by cell disruption and hydrolysis mass loss. Experimental microalgae liquefaction without water index N was 0.6776, 0.3861 and 0.2856 for isolated lipid, protein and carbohydrate. Pyrolysis pathways of lipid are decarboxylation, decarbonylation, fragmentation of glycerin moieties and steroid to form hydrocarbons, carboxylic acids and esters. Pyrolysis pathways of protein are decarboxylation, deamination, hydrocarbon residue fragmentation, dimerization and fragmentation of peptide bonds to form amide/amines/nitriles, esters, hydrocarbons and N-heterocyclic compounds, especially diketopiperazines (DKPs). Pyrolysis pathways of carbohydrate are dehydrated reactions and further fragmentation to form ketones and aldehyde, decomposition of lignin to form phenols, and fragmentation of lipopolysaccharides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Study on the combined sewage sludge pyrolysis and gasification process: mass and energy balance.

    PubMed

    Wang, Zhonghui; Chen, Dezhen; Song, Xueding; Zhao, Lei

    2012-12-01

    A combined pyrolysis and gasification process for sewage sludge was studied in this paper for the purpose of its safe disposal with energy self-balance. Three sewage sludge samples with different dry basis lower heat values (LHV(db)) were used to evaluate the constraints on this combined process. Those samples were pre-dried and then pyrolysed within the temperature range of 400-550 degrees C. Afterwards, the char obtained from pyrolysis was gasified to produce fuel gas. The experimental results showed that the char yield ranged between 37.28 and 53.75 wt% of the dry sludge and it changed with ash content, pyrolysis temperature and LHV(db) of the sewage sludge. The gas from char gasification had a LHV around 5.31-5.65 MJ/Nm3, suggesting it can be utilized to supply energy in the sewage sludge drying and pyrolysis process. It was also found that energy balance in the combined process was affected by the LHV(db) of sewage sludge, moisture content and pyrolysis temperature. Higher LHV(db), lower moisture content and higher pyrolysis temperature benefit energy self-balance. For sewage sludge with a moisture content of 80 wt%, LHV(db) of sewage sludge should be higher than 18 MJ/kg and the pyrolysis temperature should be higher than 450 degrees C to maintain energy self-sufficiency when volatile from the pyrolysis process is the only energy supplier; when the LHV(db) was in the range of 14.65-18 MJ/kg, energy self-balance could be maintained in this combined process with fuel gas from char gasification as a supplementary fuel; auxiliary fuel was always needed if the LHV(db) was lower than 14.65 MJ/kg.

  6. Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja

    An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with themore » 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.« less

  7. Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple.

    PubMed

    Prathiba, R; Shruthi, M; Miranda, Lima Rose

    2018-06-01

    Pyrolysis process was experimented using two types of heating source, namely conventional and microwave. Polystyrene (PS) plastic waste was used as feedstock in a batch reactor for both the conventional (slow pyrolysis) and microwave pyrolysis. The effect of activated carbon to polystyrene ratio on (i) yield of oil, gas and residues (ii) reaction temperature (iii) reaction time were studied. Quality of oil from pyrolysis of polystyrene were assessed for the possible applicability in fuel production. Microwave power of 450 W and polymer to activated carbon ratio of 10:1, resulted in the highest oil yield of 93.04 wt.% with a higher heating value of 45 MJ kg -1 and a kinematic viscosity of 2.7 cSt. Microwave heating when compared to conventional heating method, exhibits a reaction temperature and time of 330 °C in 5.5 min, whereas in conventional heating system it was 418 °C in 60 min. The gas chromatography-mass spectrometry analysis of liquid oil from microwave pyrolysis predominantly yields alkenes of 8.44 wt.%, α-methyl styrene 0.96 wt.%, condensed ring aromatics 23.21 wt.% and benzene derivatives 26.77 wt.% when the polystyrene to activated carbon ratio was 10:1. Significant factor of using microwave heating is the amount of energy converted (kWh) is lesser than conventional heating. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation.

    PubMed

    Zhou, Yihui; Wu, Wenbiao; Qiu, Keqiang

    2010-11-01

    In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Co-pyrolysis of swine manure with agricultural plastic waste: Laboratory-scale study

    USDA-ARS?s Scientific Manuscript database

    Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does no...

  10. Application of pyrolysis to recycling organics from waste tantalum capacitors.

    PubMed

    Niu, Bo; Chen, Zhenyang; Xu, Zhenming

    2017-08-05

    Tantalum capacitors (TCs) are widely used in electronic appliances. The rapid replacement of electronic products results in generating large amounts of waste TCs (WTCs). WTCs, rich in valuable tantalum, are considered as high quality tantalum resources for recycling. However, environmental pollution will be caused if the organics of WTCs were not properly disposed. Therefore, effectively recycling the organics of WTCs is significant for recovering the valuable parts. This study proposed an argon (Ar) pyrolysis process to recycle the organics from WTCs. The organic decomposition kinetic was first analyzed by thermogravimetry. The results showed that the organics were decomposed in two major steps and the average activation energy was calculated to 234kJ/mol. Then, the suitable pyrolysis parameters were determined as 550°C, 30min and 100ml/min. The organics were effectively decomposed and converted to oils (mainly contained phenol homologs and benzene homologs) and gases (some hydrocarbon). These pyrolysis products could be reutilized as energy sources. Moreover, based on the products and bond energy theory, the pyrolysis mechanisms of the organics were also discussed. Finally, a reasonable technological process for products utilization was presented. This study contributes to the efficient recycling the organics before valuable material recovery from WTCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Pyrolysis and Matrix-Isolation FTIR of Acetoin

    NASA Astrophysics Data System (ADS)

    Cole, Sarah; Ellis, Martha; Sowards, John; McCunn, Laura R.

    2017-06-01

    Acetoin, CH_3C(O)CH(OH)CH_3, is an additive used in foods and cigarettes as well as a common component of biomass pyrolysate during the production of biofuels, yet little is known about its thermal decomposition mechanism. In order to identify thermal decomposition products of acetoin, a gas-phase mixture of approximately 0.3% acetoin in argon was subject to pyrolysis in a resistively heated SiC microtubular reactor at 1100-1500 K. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Many products were observed in analysis of the spectra, including acetylene, propyne, ethylene, and vinyl alcohol. These results provide clues to the overall mechanism of thermal decomposition and are important for predicting emissions from many industrial and residential processes.

  12. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria.

    PubMed

    Hu, Mian; Chen, Zhihua; Guo, Dabin; Liu, Cuixia; Xiao, Bo; Hu, Zhiquan; Liu, Shiming

    2015-02-01

    The pyrolysis process of two microalgae, Chlorella pyrenoidosa (CP) and bloom-forming cyanobacteria (CB) was examined by thermo-gravimetry to investigate their thermal decomposition behavior under non-isothermal conditions. It has found that the pyrolysis of both microalgae consists of three stages and stage II is the major mass reduction stage with mass loss of 70.69% for CP and 64.43% for CB, respectively. The pyrolysis kinetics of both microalgae was further studied using single-step global model (SSGM) and distributed activation energy model (DAEM). The mean apparent activation energy of CP and CB in SSGM was calculated as 143.71 and 173.46 kJ/mol, respectively. However, SSGM was not suitable for modeling pyrolysis kinetic of both microalgae due to the mechanism change during conversion. The DAEM with 200 first-order reactions showed an excellent fit between simulated data and experimental results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Production of activated carbon by using pyrolysis process in an ammonia atmosphere

    NASA Astrophysics Data System (ADS)

    Indayaningsih, N.; Destyorini, F.; Purawiardi, R. I.; Insiyanda, D. R.; Widodo, H.

    2017-04-01

    Activated carbon is materials that have wide applications, including supercapacitor materials, absorbent in chemical industry, and absorbent material in the chemical industry. This study has carried out for the manufacturing of activated carbon from inexpensive materials through efficient processes. Carbon material was made from coconut fibers through pyrolysis process at temperature of 650, 700, 750 and 800°C. Aim of this study was to obtain carbon material that has a large surface area. Pyrolysis process is carried out in an inert atmosphere (N2 gas) at a temperature of 450°C for 30 minutes, followed by pyrolysis process in an ammonia atmosphere at 800°C for 2 hours. The pyrolysis results showed that the etching process in ammonia is occurred; as it obtained some greater surface area when compared with the pyrolisis process in an atmosphere by inert gas only. The resulted activated carbon also showed to have good properties in surface area and total pore volume.

  14. Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41.

    PubMed

    Chi, Yongchao; Xue, Junjie; Zhuo, Jiankun; Zhang, Dahu; Liu, Mi; Yao, Qiang

    2018-08-15

    Fast pyrolysis is one of the most economical and efficient technologies to convert biomass to bio-oil and valuable chemical products. Co-pyrolysis with hydrogen rich materials such as plastics over zeolite catalysts is one of the significant solutions to various problems of bio-oil such as high oxygen content, low heat value and high acid content. This paper studied pyrolysis of cellulose and polypropylene (PP) separately and co-pyrolysis of cellulose and PP over MCM-41 and Al-MCM-41. The pyrolysis over different heating rates (10K/min, 20K/min, 30K/min) was studied by Thermogravimetry Analysis (TGA) and kinetic parameters were obtained by Coats-Redfern method and isoconversion method. TG and DTG data shows that the two catalysts advance the pyrolysis reaction of PP significantly and reduce its peak temperature of DTG curve from 458°C to 341°C. The activation energy of pyrolysis of PP also has a remarkable reduction over the two catalysts. Py-GC/MS method was used to obtain the product distribution of pyrolysis of cellulose and PP separately and co-pyrolysis of cellulose and PP over MCM-41 and Al-MCM-41 at constant temperature of 650°C. Experiment results proved that co-pyrolysis with PP bring significant changes to the product distribution of cellulose. Oxygenated compounds such as furans are decreased, while yields of olefins and aromatics increase greatly. The yield of furans increases with the catalysis of MCM-41 as for the pyrolysis of cellulose and co-pyrolysis, while the yield of olefins and aromatics both experience significant growth over Al-MCM-41, which can be explained by the abundant acid centers in Al-MCM-41. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production.

    PubMed

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan; Jones, Susanne; Brown, Robert; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging technologies for biofuel production: in situ and ex situ catalytic pyrolysis. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $1.11 per liter with a standard deviation of 0.29, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($1.13 per liter and 0.21 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic uncertainty than in situ pyrolysis compensating for a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Physicochemical evolution during rice straw and coal co-pyrolysis and its effect on co-gasification reactivity.

    PubMed

    Wei, Juntao; Gong, Yan; Guo, Qinghua; Ding, Lu; Wang, Fuchen; Yu, Guangsuo

    2017-03-01

    Physicochemical evolution (i.e. pore structure variation, carbon structure change and active AAEM transformation) during rice straw (RS) and Shenfu bituminous coal (SF) co-pyrolysis was quantitatively determined in this work. Moreover, the corresponding char gasification was conducted using a thermogravimetric analyzer (TGA) and relative reactivity was proposed to quantify the co-pyrolysis impact on co-gasification reactivity. The results showed that the development of pore structure in co-pyrolyzed chars was first inhibited and then enhanced with the decrease of SF proportion. The promotion effect of co-pyrolysis on order degree of co-pyrolyzed chars gradually weakened with increasing RS proportion. Co-pyrolysis mainly enhanced active K transformation in co-pyrolyzed chars and the promotion effect was alleviated with increasing RS proportion. The inhibition effect of co-pyrolysis on co-gasification reactivity weakened with increasing RS proportion and gasification temperature, which was mainly attributed to the combination of carbon structure evolution and active AAEM transformation in co-pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    PubMed

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  18. The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy.

    PubMed

    Li, Wenqin; Dang, Qi; Brown, Robert C; Laird, David; Wright, Mark M

    2017-10-01

    This study evaluated the impact of biomass properties on the pyrolysis product yields, economic and environmental performance for the pyrolysis-biochar-bioenergy platform. We developed and applied a fast pyrolysis, feedstock-sensitive, regression-based chemical process model to 346 different feedstocks, which were grouped into five types: woody, stalk/cob/ear, grass/plant, organic residue/product and husk/shell/pit. The results show that biomass ash content of 0.3-7.7wt% increases biochar yield from 0.13 to 0.16kg/kg of biomass, and decreases biofuel yields from 87.3 to 40.7 gallons per tonne. Higher O/C ratio (0.88-1.12) in biomass decreases biochar yield and increases biofuel yields within the same ash content level. Higher ash content of biomass increases minimum fuel selling price (MFSP), while higher O/C ratio of biomass decreases MFSP within the same ash content level. The impact of ash and O/C ratio of biomass on GHG emissions are not consistent for all feedstocks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Production of valuable hydrocarbons by flash pyrolysis of oil shale

    DOEpatents

    Steinberg, M.; Fallon, P.T.

    1985-04-01

    A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

  20. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis

    NASA Astrophysics Data System (ADS)

    Bu, Hongling; Yuan, Peng; Liu, Hongmei; Liu, Dong; Liu, Jinzhong; He, Hongping; Zhou, Junming; Song, Hongzhe; Li, Zhaohui

    2017-09-01

    The stability and persistence of organic matter (OM) in source rocks are of great significance for hydrocarbon generation and the global carbon cycle. Clay-OM associations commonly occur in sedimentation and diagenesis processes and can influence the pyrolytic behaviors of OM. In this study, clay-OM complexes, i.e., interlayer clay-OM complexes and clay-OM mixture, were prepared and exposed to high-pressure pyrolysis conditions in confined gold capsule reactors to assess variations in OM pyrolysis products in the presence of clay minerals. Three model organic compounds, octadecanoic acid (OA), octadecy trimethyl ammonium bromide (OTAB), and octadecylamine (ODA), were employed and montmorillonite (Mt) was selected as the representative clay mineral. The solid acidity of Mt plays a key role in affecting the amount and composition of the pyrolysis gases generated by the clay-OM complexes. The Brønsted acid sites significantly promote the cracking of hydrocarbons through a carbocation mechanism and the isomerization of normal hydrocarbons. The Lewis acid sites are primarily involved in the decarboxylation reaction during pyrolysis and are responsible for CO2 generation. Mt exhibits either a catalysis effect or pyrolysis-inhibiting during pyrolysis of a given OM depending on the nature of the model organic compound and the nature of the clay-OM complexation. The amounts of C1-5 hydrocarbons and CO2 that are released from the Mt-OA and Mt-ODA complexes were higher than those of the parent OA and ODA, respectively, indicating a catalysis effect of Mt. In contrast, the amount of C1-5 hydrocarbons produced from the pyrolysis of Mt-OTAB complexes was lower than that of OTAB, which we attribute to an inhibiting effect of Mt. This pyrolysis-inhibiting effect works through the Hoffmann elimination that is promoted by the catalysis of the Brønsted acid sites of Mt, therefore releasing smaller amounts of gas hydrocarbons than the nucleophilic reaction that is induced by the

  1. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimin; Goldberg, Marshall

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output frommore » total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.« less

  2. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis.

    PubMed

    Gao, Meiqi; Wang, Yulong; Dong, Jie; Li, Fan; Xie, Kechang

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants. They have attracted considerable attention due to their severe potential carcinogenic, mutagenic and genotoxic effects on human health. In this study, five different rank coals from China were pyrolyzed using pyro-probe CDS 5250 and the release behavior of 16 PAHs under different pyrolysis conditions were studied by Gas Chromatography-Mass Spectrometer (GC-MS). The structural characteristics of the five coals were determined by Cross-Polarization/Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS (13)C NMR) spectroscopy, and then the factors influencing the formation of PAHs during coal pyrolysis were discussed together with the coal structural data. It was shown that the amount of PAHs generated during coal pyrolysis was largely related to coal rank and followed the order of medium metamorphic coal > low metamorphic coal > high metamorphic coal. The amount of total PAHs varied as the temperature was increased from 400 °C to 1200 °C, which showed a trend of first increasing and then decreasing, with the maximum value at 800 °C. Moreover, the species of PAHs released varied with pyrolysis temperatures. When the temperature was lower than 800 °C, the small ring PAHs were the most abundant, while the proportion of heavy rings increased at higher temperature. The results indicate that the formation of PAHs during coal pyrolysis depends on the structure of the coal. The species and amounts of PAHs generated during coal pyrolysis are closely related to the contents of protonated aromatic carbons and bridging ring junction aromatic carbons present in the coal structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Numerical Approach to Wood Pyrolysis in Considerating Heat Transfer in Reactor Chamber

    NASA Astrophysics Data System (ADS)

    Idris, M.; Novalia, U.

    2017-03-01

    Pyrolysis is the decomposition process of solid biomass into gas, tar and charcoal through thermochemical methods. The composition of biomass consists of cellulose hemi cellulose and lignin, which each will decompose at different temperatures. Currently pyrolysis has again become an important topic to be discussed. Many researchers make and install the pyrolysis reactor to convert biomass waste into clean energy hardware that can be used to help supply energy that has a crisis. Additionally the clean energy derived from biomass waste is a renewable energy, in addition to abundant source also reduce exhaust emissions of fossil energy that causes global warming. Pyrolysis is a method that has long been known by humans, but until now little is known about the phenomenon of the pyrolysis process that occurs in the reactor. One of the Pyrolysis’s phenomena is the heat transfer process from the temperature of the heat source in the reactor and heat the solid waste of biomass. The solid waste of biomass question in this research is rubber wood obtained from one of the company’s home furnishings. Therefore, this study aimed to describe the process of heat transfer in the reactor during the process. ANSYS software was prepared to make the simulation of heat transfer phenomena at the pyrolysis reactor. That’s the numerical calculation carried out for 1200 seconds. Comparison of temperature performed at T1, T2 and T3 to ensure that thermal conductivity is calculated by numerical accordance with experimental data. The distribution of temperature in the reactor chamber specifies the picture that excellent heat conduction effect of the wood near or attached to wooden components, cellulose, hemicellulose and lignin down into gas.

  4. Chapter 8: Pyrolysis Mechanisms of Lignin Model Compounds Using a Heated Micro-Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, David J.; Nimlos, Mark R.; Ellison, G. Barney

    2015-10-03

    Lignin is an important component of biomass, and the decomposition of its thermal deconstruction products is important in pyrolysis and gasification. In this chapter, we investigate the unimolecular pyrolysis chemistry through the use of singly and doubly substituted benzene molecules that are model compounds representative of lignin and its primary pyrolysis products. These model compounds are decomposed in a heated micro-reactor, and the products, including radicals and unstable intermediates, are measured using photoionization mass spectrometry and matrix isolation infrared spectroscopy. We show that the unimolecular chemistry can yield insight into the initial decomposition of these species. At pyrolysis and gasificationmore » severities, singly substituted benzenes typically undergo bond scission and elimination reactions to form radicals. Some require radical-driven chain reactions. For doubly substituted benzenes, proximity effects of the substituents can change the reaction pathways.« less

  5. Thermal behavior of vehicle plastic blends contained acrylonitrile-butadiene-styrene (ABS) in pyrolysis using TG-FTIR.

    PubMed

    Liu, Guicai; Liao, Yanfen; Ma, Xiaoqian

    2017-03-01

    As important plastic blends in End-of-Life vehicles (ELV), pyrolysis profiles of ABS/PVC, ABS/PA6 and ABS/PC were investigated using thermogravimetric-Fourier transform infrared spectrometer (TG-FTIR). Also, CaCO 3 was added as plastic filler to discuss its effects on the pyrolysis of these plastics. The results showed that the interaction between ABS and PVC made PVC pyrolysis earlier and HCl emission slightly accelerated. The mixing of ABS and PA6 made their decomposition temperature closer, and ketones in PA6 pyrolysis products were reduced. The presence of ABS made PC pyrolysis earlier, and phenyl compounds in PC pyrolysis products could be transferred into alcohol or H 2 O. The interaction between ABS and other polymers in pyrolysis could be attributed to the intermolecular radical transfer, and free radicals from the polymer firstly decomposed led to a fast initiation the decomposition of the other polymer. As plastic filler, CaCO 3 promoted the thermal decomposition of PA6 and PC, and had no obvious effects on ABS and PVC pyrolysis process. Also, CaCO 3 made the pyrolysis products from PA6 and PC further decomposed into small-molecule compounds like CO 2 . The kinetics analysis showed that isoconversional method like Starink method was more suitable for these polymer blends. Starink method showed the average activation energy of ABS50/PVC50, ABS50/PA50 and ABS50/PC50 was 186.63kJ/mol, 239.61kJ/mol and 248.95kJ/mol, respectively, and the interaction among them could be reflected by the activation energy variation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pyrolysis-crystallinity relationships in cellulose

    Treesearch

    M. Weinstein; A. Broido

    1970-01-01

    During pyrolysis of pure cellulose, the Crystallinity Index (Crl) remained fairly constant over more than 50% weight loss before dropping rapidly as the X-ray pattern deteriorated. With samples first treated with trace quantities of inorganic salts, heating first increased the Crl—the results implying a preferentially catalyzed decomposition of the amorphous regions....

  7. Oxygen production by pyrolysis of lunar regolith

    NASA Technical Reports Server (NTRS)

    Senior, Constance L.

    1991-01-01

    Oxygen was identified as the most important product of initial lunar materials processing efforts. A source of oxygen on the Moon provides an alternative to the costly transport of propellant to the Moon or to low earth orbit. Pyrolysis, or vapor-phase reduction, involves heating a feedstock to temperatures sufficient to decompose the constituent metal oxides and release oxygen. The process relies on the vaporization of metal oxides in the form of reduced suboxides or atomic species. The reduced species must then be condensed without re-oxidizing, yielding oxygen in the gas phase. The feasibility of obtaining oxygen from common lunar minerals was demonstrated using solar furnace experiments. These results are discussed together with chemical equilibrium models which were extended to include the multicomponent oxides used in experiments. For the first time, both experiments and theoretical models dealt with the complex oxides that make up potential lunar feedstocks. Two major conclusions are drawn from this preliminary work. First, unbeneficiated regolith is a suitable feedstock for pyrolysis. Second, the process can operate at moderate temperatures, circa 2000 K, which could be supplied by direct solar or electrical energy. In addition to these advantages in choice of feedstock and energy source, the pyrolysis process requires no chemicals or reagents, making it an attractive process for lunar oxygen production.

  8. Oil production by entrained pyrolysis of biomass and processing of oil and char

    DOEpatents

    Knight, James A.; Gorton, Charles W.

    1990-01-02

    Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

  9. Pyrolysis bio-oil upgrading to renewable fuels.

    DOT National Transportation Integrated Search

    2014-01-01

    This study aims to upgrade woody biomass pyrolysis bio-oil into transportation fuels by catalytic hydrodeoxygenation : (HDO) using nanospring (NS) supported catalyst via the following research objectives: (1) develop nanospring-based : catalysts (nan...

  10. Indirect heating pyrolysis of oil shale

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1978-09-26

    Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

  11. Producing Quantum Dots by Spray Pyrolysis

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius

    2006-01-01

    An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.

  12. Clay-sewage sludge co-pyrolysis. A TG-MS and Py-GC study on potential advantages afforded by the presence of clay in the pyrolysis of wastewater sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischia, Marco, E-mail: marco.ischia@ing.unitn.it; Maschio, Roberto Dal; Grigiante, Maurizio

    2011-01-15

    Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC). Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, atmore » temperatures of approx. 450-500 deg. C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis. Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.« less

  13. Characterization of herb residue and high ash-containing paper sludge blends from fixed bed pyrolysis.

    PubMed

    Li, Tiantao; Guo, Feiqiang; Li, Xiaolei; Liu, Yuan; Peng, Kuangye; Jiang, Xiaochen; Guo, Chenglong

    2018-04-10

    High ash-containing paper sludge which is rich in various metal oxides is employed in herb residue pyrolysis to enhance the yield of fuel gas and reduce tar yield in a drop tube fixed bed reactor. Effects of heat treatment temperature and blending ratio of paper sludge on the yields and composition of pyrolysis products (gas, tar and char) were investigated. Results indicate that paper sludge shows a significantly catalytic effect during the pyrolysis processes of herb residue, accelerating the pyrolysis reactions. The catalytic effect resulted in an increase in gas yield but a decrease in tar yield. The catalytic effect degree is affected by the paper sludge proportions, and the strongest catalytic effect of paper sludge is noted at its blending ratio of 50%. At temperature lower than 900 °C, the catalytic effect of paper sludge in the pyrolysis of herb residue promotes the formation of H 2 and CO 2 , inhibits the formation of CH 4 , but shows slight influence on the formations of CO, while the formation of the four gas components was all promoted at 900 °C. SEM results of residue char show that ash particles from paper sludge adhere to the surface of the herb residue char after pyrolysis, which may promote the pyrolysis process of herb residue for more gas releasing. FT-IR results indicate that most functional groups disappear after pyrolysis. The addition of paper sludge promotes deoxidisation and aromatization reactions of hetero atoms tars, forming heavier polycyclic aromatic hydrocarbons and leading to tar yield decrease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. An algorithm for the kinetics of tire pyrolysis under different heating rates.

    PubMed

    Quek, Augustine; Balasubramanian, Rajashekhar

    2009-07-15

    Tires exhibit different kinetic behaviors when pyrolyzed under different heating rates. A new algorithm has been developed to investigate pyrolysis behavior of scrap tires. The algorithm includes heat and mass transfer equations to account for the different extents of thermal lag as the tire is heated at different heating rates. The algorithm uses an iterative approach to fit model equations to experimental data to obtain quantitative values of kinetic parameters. These parameters describe the pyrolysis process well, with good agreement (r(2)>0.96) between the model and experimental data when the model is applied to three different brands of automobile tires heated under five different heating rates in a pure nitrogen atmosphere. The model agrees with other researchers' results that frequencies factors increased and time constants decreased with increasing heating rates. The model also shows the change in the behavior of individual tire components when the heating rates are increased above 30 K min(-1). This result indicates that heating rates, rather than temperature, can significantly affect pyrolysis reactions. This algorithm is simple in structure and yet accurate in describing tire pyrolysis under a wide range of heating rates (10-50 K min(-1)). It improves our understanding of the tire pyrolysis process by showing the relationship between the heating rate and the many components in a tire that depolymerize as parallel reactions.

  15. Life cycle assessment of biochar application in Vietnam using two pyrolysis technologies

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ali; Cowie, Annette; Mai, Thi Lan Anh; Anaya de la Rosa, Ruy; Kristiansen, Paul; Brandão, Miguel; Joseph, Stephen

    2016-04-01

    This study presents a comparative analysis of the environmental impacts of biochar systems in Vietnam using household scale and district scale pyrolysis technologies. At the household scale, pyrolytic cook-stoves were assumed to be used by households to produce biochar. The pyrolytic cook-stoves burn pyrolysis gases and use the heat for cooking. At the district scale, the BIGchar 2200 unit, a continuous operation system, is utilised to convert rice husk to biochar. This unit allows for easy capture of produced gases, which can be used to generate energy products, adding value to biochar production and decreasing environmental costs through the displacement of fossil fuels. The biochar produced from each system was assumed to be applied to paddy rice fields. Results from Life Cycle Assessment showed that biochar production at the both scales for application to the soil significantly improved environmental performance of 1 Mg of rice husk relative to the reference scenario (open burning of husk) across a range of impacts including climate change (CC), particulate matter and non-renewable energy (NRE) use. Net carbon abatement of biochar systems ranged from 355 to 427 kg CO2-eq Mg-1 of spring rice husk at the household scale and district scale, respectively. The district scale offered greater carbon abatement primarily due to the higher rate of LPG displaced by this unit.

  16. Fate of bromine in pyrolysis of printed circuit board wastes.

    PubMed

    Chien, Y C; Wang, H P; Lin, K S; Huang, Y J; Yang, Y W

    2000-02-01

    Behavior of Br in pyrolysis of the printed circuit board waste with valuable copper and oil recycling has been studied in the present work. Experimentally, pyrolysis of the printed circuit board waste generated approximately 40.6% of oils, 24.9% of noncondensible gases and 34.5% of solid residues that enriched in copper (90-95%). The cuts of the oils produced from pyrolysis of the printed circuit board waste into weighted boiling fraction were primarily light naphtha and heavy gas oil. Approximately 72.3% of total Br in the printed circuit board waste were found in product gas mainly as HBr and bromobenzene. However, by extended X-ray absorption fine structural (EXAFS) spectroscopy, Cu-O and Cu-(O)-Cu species with bond distance of 1.87 and 2.95 A, respectively, were observed in the solid residues. Essentially, no Cu-Br species was found.

  17. Biomass pyrolysis liquid to citric acid via 2-step bioconversion.

    PubMed

    Yang, Zhiguang; Bai, Zhihui; Sun, Hongyan; Yu, Zhisheng; Li, Xingxing; Guo, Yifei; Zhang, Hongxun

    2014-12-31

    The use of fossil carbon sources for fuels and petrochemicals has serious impacts on our environment and is unable to meet the demand in the future. A promising and sustainable alternative is to substitute fossil carbon sources with microbial cell factories converting lignocellulosic biomass into desirable value added products. However, such bioprocesses require tolerance to inhibitory compounds generated during pretreatment of biomass. In this study, the process of sequential two-step bio-conversion of biomass pyrolysis liquid containing levoglucosan (LG) to citric acid without chemical detoxification has been explored, which can greatly improve the utilization efficiency of lignocellulosic biomass. The sequential two-step bio-conversion of corn stover pyrolysis liquid to citric acid has been established. The first step conversion by Phanerochaete chrysosporium (P. chrysosporium) is desirable to decrease the content of other compounds except levoglucosan as a pretreatment for the second conversion. The remaining levoglucosan in solution was further converted into citric acid by Aspergillus niger (A. niger) CBX-209. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology. Under experimental conditions, levoglucosan yield is 12% based on the feedstock and the citric acid yield can reach 82.1% based on the levoglucosan content in the pyrolysis liquid (namely 82.1 g of citric acid per 100 g of levoglucosan). The study shows that P. chrysosporium and A. niger have the potential to be used as production platforms for value-added products from pyrolyzed lignocellulosic biomass. Selected P. chrysosporium is able to decrease the content of other compounds except levoglucosan and levoglucosan can be further converted into citric acid in the residual liquids by A. niger. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology.

  18. Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature.

    PubMed

    Domene, X; Enders, A; Hanley, K; Lehmann, J

    2015-04-15

    Seven contrasting feedstocks were subjected to slow pyrolysis at low (300 or 350°C) and high temperature (550 or 600°C), and both biochars and the corresponding feedstocks tested for short-term ecotoxicity using basal soil respiration and collembolan reproduction tests. After a 28-d incubation, soil basal respiration was not inhibited but stimulated by additions of feedstocks and biochars. However, variation in soil respiration was dependent on both feedstock and pyrolysis temperature. In the last case, respiration decreased with pyrolysis temperature (r=-0.78; p<0.0001, n=21) and increased with a higher volatile matter content (r=0.51; p<0.017), these two variables being correlated (r=-0.86, p<0.0001). Collembolan reproduction was generally unaffected by any of the additions, but when inhibited, it was mostly influenced by feedstock, and generally without any influence of charring itself and pyrolysis temperature. Strong inhibition was only observed in uncharred food waste and resulting biochars. Inhibition effects were probably linked to high soluble Na and NH4 concentrations when both feedstocks and biochars were considered, but mostly to soluble Na when only biochars were taken into account. The general lack of toxicity of the set of slow pyrolysis biochars in this study at typical field application rates (≤20 Mg ha(-1)) suggests a low short-term toxicity risk. At higher application rates (20-540 Mg ha(-1)), some biochars affected collembolan reproduction to some extent, but only strongly in the food waste biochars. Such negative impacts were not anticipated by the criteria set in currently available biochar quality standards, pointing out the need to consider ecotoxicological criteria either explicitly or implicitly in biochar characterization schemes or in management recommendations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A novel approach of solid waste management via aromatization using multiphase catalytic pyrolysis of waste polyethylene.

    PubMed

    Gaurh, Pramendra; Pramanik, Hiralal

    2018-01-01

    A new and innovative approach was adopted to increase the yield of aromatics like, benzene, toluene and xylene (BTX) in the catalytic pyrolysis of waste polyethylene (PE). The BTX content was significantly increased due to effective interaction between catalystZSM-5 and target molecules i.e., lower paraffins within the reactor. The thermal and catalytic pyrolysis both were performed in a specially designed semi-batch reactor at the temperature range of 500 °C-800 °C. Catalytic pyrolysis were performed in three different phases within the reactor batch by batch systematically, keeping the catalyst in A type- vapor phase, B type- liquid phase and C type- vapor and liquid phase (multiphase), respectively. Total aromatics (BTX) of 6.54 wt% was obtained for thermal pyrolysis at a temperature of 700 °C. In contrary, for the catalytic pyrolysis A, B and C types reactor arrangement, the aromatic (BTX) contents were progressively increased, nearly 6 times from 6.54 wt% (thermal pyrolysis) to 35.06 wt% for C-type/multiphase (liquid and vapor phase). The pyrolysis oil were characterized using GC-FID, FT-IR, ASTM distillation and carbon residue test to evaluate its end use and aromatic content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics.

    PubMed

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-10-01

    The thermal conversion characteristics, kinetics, and thermodynamics of agricultural residues, rape straw (RS) and wheat bran (WB), were investigated under non-isothermal conditions. TGA experiments showed that the pyrolysis characteristics of RS were quite different from those of WB. As reflected by the comprehensive devolatilization index, when the heating rate increased from 10 to 30Kmin -1 , the pyrolysis performance of RS and WB were improved 5.27 and 5.96 times, respectively. The kinetic triplets of the main pyrolysis process of agricultural residues were calculated by the Starink method and the integral master-plots method. Kinetic analysis results indicated that the most potential kinetic models for the pyrolysis of RS and WB were D 2 and F 2.7 , respectively. The thermodynamic parameters (ΔH, ΔG, and ΔS) were determined by the activated complex theory. The positive ΔH, positive ΔG, and negative ΔS at characteristic temperatures validated that the pyrolysis of agricultural residues was endothermic and non-spontaneous. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of a pyrolysis waste recovery model with designs, test plans, and applications for space-based habitats

    NASA Technical Reports Server (NTRS)

    Roberson, Bobby J.

    1992-01-01

    Extensive literature searches revealed the numerous advantages of using pyrolysis as a means of recovering usable resources from inedible plant biomass, paper, plastics, other polymers, and human waste. A possible design of a pyrolysis reactor with test plans and applications for use on a space-based habitat are proposed. The proposed system will accommodate the wastes generated by a four-person crew while requiring solar energy as the only power source. Waste materials will be collected and stored during the 15-day lunar darkness periods. Resource recovery will occur during the daylight periods. Usable gases such as methane and hydrogen and a solid char will be produced while reducing the mass and volume of the waste to almost infinitely small levels. The system will be operated economically, safely, and in a non-polluting manner.

  2. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hui; Energy Research Institute, University of Leeds, Leeds LS2 9JT; Wu, Chunfei, E-mail: c.wu@leeds.ac.uk

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. Themore » results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.« less

  3. Online study on the co-pyrolysis of coal and corn with vacuum ultraviolet photoionization mass spectrometry.

    PubMed

    Weng, Jun-Jie; Liu, Yue-Xi; Zhu, Ya-Nan; Pan, Yang; Tian, Zhen-Yu

    2017-11-01

    With the aim to support the experimental tests in a circulating fluidized bed pilot plant, the pyrolysis processes of coal, corn, and coal-corn blend have been studied with an online pyrolysis photoionization time-of-flight mass spectrometry (Py-PI-TOFMS). The mass spectra at different temperatures (300-800°C) as well as time-evolved profiles of selected species were measured. The pyrolysis products such as alkanes, alkenes, phenols, aromatics, as well as nitrogen- and sulfur-containing species were detected. As temperature rises, the relative ion intensities of high molecular weight products tend to decrease, while those of aromatics increase significantly. During the co-pyrolysis, coal can promote the reaction temperature of cellulose in corn. Time-evolved profiles demonstrate that coal can affect pyrolysis rate of cellulose, hemicellulose, and lignin of corn in blend. This work shows that Py-PI-TOFMS is a powerful approach to permit a better understanding of the mechanisms underlying the co-pyrolysis of coal and biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Boyan; Ou, Longwen; Dang, Qi

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on exmore » situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.« less

  5. Effect of torrefaction pretreatment on the pyrolysis of rubber wood sawdust analyzed by Py-GC/MS.

    PubMed

    Chen, Wei-Hsin; Wang, Chao-Wen; Kumar, Gopalakrishnan; Rousset, Patrick; Hsieh, Tzu-Hsien

    2018-07-01

    The aim of this study was to investigate the effect of torrefaction on the pyrolysis of rubber wood sawdust (RWS) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Three typical torrefaction temperatures (200, 250, and 300 °C) and pyrolysis temperatures (450, 500, and 550 °C) were considered. The results suggested that only diethyl phthalate, belonging to esters, was detected at the torrefaction temperatures of 200 and 250 °C, revealing hemicellulose degradation. With the torrefaction temperature of 300 °C, esters, aldehydes, and phenols were detected, suggesting the predominant decomposition of hemicellulose and lignin. The double-shot pyrolysis indicated that the contents of oxy-compounds such as acids and aldehydes in pyrolysis bio-oil decreased with rising torrefaction temperature, implying that increasing torrefaction severity abated oxygen content in the bio-oil. With the torrefaction temperature of 300 °C, relatively more cellulose was retained in the biomass because the carbohydrate content in the pyrolysis bio-oil increased significantly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment.

    PubMed

    Sun, Daquan; Hale, Lauren; Kar, Gourango; Soolanayakanahally, Raju; Adl, Sina

    2018-03-01

    Phosphorus ore extraction for soil fertilization supports the demand of modern agriculture, but extractable resource limitations, due to scarcity, impose a P reuse and recycling research agenda. Here we propose to integrate biochar production (pyrogenic carbon) with municipal and agricultural waste management systems, to recover and reuse phosphorous that would otherwise be lost from the ecological food web. A meta-analysis and available data on total P in biochar indicated that P-enriched feedstocks include animal manure, human excreta, and plant-biomass collected from P-polluted sites. Phosphorus in biochar could participate in P equilibriums in soils and is expected to supply P. The release, sorption and desorption of P by biochar will codetermine the potential of P replenishment by biochar and P loss from biochar-amended soils. Abiotic and biotic factors are expected to affect sorption/desorption of P between biochar and soil aggregates, and P acquisition by plants. Chemical extraction, using acid or alkaline solutions, is considered as a means for P retrieval from high P biochar, especially for biochar with high heavy metal contents. To bridge the gap between academia and practice, this paper proposes future development for phosphorus acclamation by pyrolysis: 1) identification of high-P bio-waste for pyrolysis; 2) retrieval of P by using biochar as soil amendment or by chemical leaching; 3) biochar modification by inorganic nutrients, P solubilizing microorganisms and other organic matter; and 4) compatible pyrolysis equipment fit to the current waste management context, such as households, and waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source.

    PubMed

    Li, Kai; Zhu, Changpeng; Zhang, Liqiang; Zhu, Xifeng

    2016-06-01

    The current study presents the pyrolysis characteristics of rice husk impregnated with different kinds of ammonia source (ammonium acetate, urea, ammonium sulfate and ammonium dihydrogen phosphate) in a fixed bed reactor. The introduction of ammonia source in pyrolysis process achieved the conversation from carbonyl compounds to nitrogenous heterocyclic compounds. The liquid product of urea-impregnated biomass has higher content of nitrogenous heterocyclic compounds (8.35%) and phenols (30.4%). For ammonium sulfate and ammonium dihydrogen phosphate-impregnated biomass, the quantity of compounds in liquid products reduces remarkably, and the gas products are rich in CO and H2. All the solid products of pyrolysis have great potential application in biochar-based fertilizer and activated carbon for their high N content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Integration of decentralized torrefaction with centralized catalytic pyrolysis to produce green aromatics from coffee grounds.

    PubMed

    Chai, Li; Saffron, Christopher M; Yang, Yi; Zhang, Zhongyu; Munro, Robert W; Kriegel, Robert M

    2016-02-01

    The aim of this work was to integrate decentralized torrefaction with centralized catalytic pyrolysis to convert coffee grounds into the green aromatic precursors of terephthalic acid, namely benzene, toluene, ethylbenzene, and xylenes (BTEX). An economic analysis of this bioproduct system was conducted to examine BTEX yields, biomass costs and their sensitivities. Model predictions were verified experimentally using pyrolysis GC/MS to quantify BTEX yields for raw and torrefied biomass. The production cost was minimized when the torrefier temperature and residence time were 239°C and 34min, respectively. This optimization study found conditions that justify torrefaction as a pretreatment for making BTEX, provided that starting feedstock costs are below $58 per tonne. Copyright © 2015. Published by Elsevier Ltd.

  9. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Hanwu; Ren, Shoujie; Wang, Lu

    2011-05-01

    Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to find out the effect of process variables on the biofuel (bio-oil and syn- gas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5–50.3 wt.% of the biomass. Biochar yields were 23.5–62.2% depending on the pyrolysis conditions. The energy con- tent of DDGS bio-oils was 28 MJ/kg obtained atmore » the 650 oC and 8 min, which was about 66.7% of the heat- ing value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline.« less

  10. Effect of high-pressure on pine sawdust pyrolysis: Products distribution and characteristics

    NASA Astrophysics Data System (ADS)

    Xu, Baiqing; Li, Aimin

    2017-08-01

    In this work, the pressurized pyrolysis of pine sawdust was performed with a self-made pressurized pyrolysis reactor to investigatethe influence of pyrolysis pressure in the range of 0-5 MPa on products distribution and characteristics. The combustion feature and microstructure of bio-char had analyzed by thermogravimetric (TG) and scanning electron microscopy (SEM), respectively. Elemental analyzer and Fourier transform infrared spectroscopy (FTIR) were used to confirm the identities of bio-oil. The results indicated the pressure had a notable impact on the biomass pyrolysis, which promoted the secondary cracking of bio-oil to produce more gaseous products and bio-char. The minimum bio-oil yield of 20.24% was obtained at the pressure of 5 MPa. Furthermore, the pressure improved the products characteristics. The increasing of pressure was favour to the deoxygenation and dehydrogenation reactions of bio-oil, which led to the increase of CH4, H2 and CO2 in gas. At the same time, under the influence of pressure, the surface structure and compactedness of the bio-char were obviously improved.

  11. Chemical and ecotoxicological properties of three bio-oils from pyrolysis of biomasses.

    PubMed

    Campisi, Tiziana; Samorì, Chiara; Torri, Cristian; Barbera, Giuseppe; Foschini, Anna; Kiwan, Alisar; Galletti, Paola; Tagliavini, Emilio; Pasteris, Andrea

    2016-10-01

    In view of the potential use of pyrolysis-based technologies, it is crucial to understand the environmental hazards of pyrolysis-derived products, in particular bio-oils. Here, three bio-oils were produced from fast pyrolysis of pine wood and intermediate pyrolysis of corn stalk and poultry litter. They were fully characterized by chemical analysis and tested for their biodegradability and their ecotoxicity on the crustacean Daphnia magna and the green alga Raphidocelis subcapitata. These tests were chosen as required by the European REACH regulation. These three bio-oils were biodegradable, with 40-60% of biodegradation after 28 days, and had EC50 values above 100mgL(-1) for the crustacean and above 10mgL(-1) for the alga, showing low toxicity to the aquatic life. The toxic unit approach was applied to verify whether the observed toxicity could be predicted from the data available for the substances detected in the bio-oils. The predicted values largely underestimated the experimental values. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production.

    PubMed

    Lei, Hanwu; Ren, Shoujie; Wang, Lu; Bu, Quan; Julson, James; Holladay, John; Ruan, Roger

    2011-05-01

    Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to find out the effect of process variables on the biofuel (bio-oil and syngas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5-50.3 wt.% of the biomass. Biochar yields were 23.5-62.2% depending on the pyrolysis conditions. The energy content of DDGS bio-oils was 28 MJ/kg obtained at the 650°C and 8 min, which was about 66.7% of the heating value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The Influence of Process Conditions on the Chemical Composition of Pine Wood Catalytic Pyrolysis Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, J.; Agblevor, F. A.; Beis, S. H.

    Pine wood samples were used as model feedstock to study the properties of catalytic fast pyrolysis oils. The influence of two commercial zeolite catalysts (BASF and SudChem) and pretreatment of the pine wood with sodium hydroxide on pyrolysis products were investigated. The pyrolysis oils were first fractionated using column chromatography and characterized using GC-MS. Long chain aliphatic hydrocarbons, levoglucosan, aldehydes and ketones, guaiacols/syringols, and benzenediols were the major compounds identified in the pyrolysis oils. The catalytic pyrolysis increased the polycyclic hydrocarbons fraction. Significant decreases in phthalate derivatives using SudChem and long chain aliphatics using BASF catalyst were observed. Significant amountsmore » of aromatic heterocyclic hydrocarbons and benzene derivatives were formed, respectively, using BASF and SudChem catalysts. Guaiacyl/syringyl and benzenediols derivatives were partly suppressed by the zeolite catalysts, while the sodium hydroxide treatment enriched phenolic derivatives. Zeolite catalyst and sodium hydroxide were employed together; they showed different results for each catalyst.« less

  14. The Influence of Process Conditions on the Chemical Composition of Pine Wood Catalytic Pyrolysis Oils

    DOE PAGES

    Pereira, J.; Agblevor, F. A.; Beis, S. H.

    2012-01-01

    Pine wood samples were used as model feedstock to study the properties of catalytic fast pyrolysis oils. The influence of two commercial zeolite catalysts (BASF and SudChem) and pretreatment of the pine wood with sodium hydroxide on pyrolysis products were investigated. The pyrolysis oils were first fractionated using column chromatography and characterized using GC-MS. Long chain aliphatic hydrocarbons, levoglucosan, aldehydes and ketones, guaiacols/syringols, and benzenediols were the major compounds identified in the pyrolysis oils. The catalytic pyrolysis increased the polycyclic hydrocarbons fraction. Significant decreases in phthalate derivatives using SudChem and long chain aliphatics using BASF catalyst were observed. Significant amountsmore » of aromatic heterocyclic hydrocarbons and benzene derivatives were formed, respectively, using BASF and SudChem catalysts. Guaiacyl/syringyl and benzenediols derivatives were partly suppressed by the zeolite catalysts, while the sodium hydroxide treatment enriched phenolic derivatives. Zeolite catalyst and sodium hydroxide were employed together; they showed different results for each catalyst.« less

  15. Pyrolysis process and apparatus

    DOEpatents

    Lee, Chang-Kuei

    1983-01-01

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  16. Formation characteristics of aerosol particles from pulverized coal pyrolysis in high-temperature environments.

    PubMed

    Chen, Wei-Hsin; Du, Shan-Wen; Yang, Hsi-Hsien; Wu, Jheng-Syun

    2008-05-01

    The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400 degrees C are considered. Experimental observations indicate that when the reaction temperature is 1000 degrees C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400 degrees C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000 degrees C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400 degrees C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000 degrees C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400 degrees C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases.

  17. Environmental impact of pyrolysis of mixed WEEE plastics part 2: Life cycle assessment.

    PubMed

    Alston, Sue M; Arnold, J Cris

    2011-11-01

    Waste electrical and electronic equipment (WEEE) contains up to 25% plastics. Extraction of higher quality fractions for recycling leaves a mix of plastic types contaminated with other materials, requiring the least environmentally harmful disposal route. Data from trials of pyrolysis, described in part 1 of this paper set, were used in a life cycle assessment of the treatment of WEEE plastics. Various levels of recycling of the sorted fraction were considered, and pyrolysis was compared with incineration (with energy recovery) and landfill for disposal of the remainder. Increased recycling gave reduced environmental impact in almost all categories considered, although inefficient recycling decreased that benefit. Significant differences between pyrolysis, incineration and landfill were seen in climate change impacts, carbon sent to landfill, resources saved, and radiation. There was no overall "best" option. Landfill had the least short-term impact on climate change so could be a temporary means of sequestering carbon. Incineration left almost no carbon to landfill, but produced the most greenhouse gases. Pyrolysis or incineration saved most resources, with the balance depending on the source of electricity replaced by incineration. Pyrolysis emerged as a strong compromise candidate since the gases and oils produced could be used as fuels and so provided significant resource saving without high impact on climate change or landfill space.

  18. Kinetic Modelling of the Pyrolysis of Biomass for the Development of Charcoal Briquette

    NASA Astrophysics Data System (ADS)

    Idris, Y. R.; Bayu, H. T.; Wintoko, J.; Murachman, B.; Yuliansyah, A. T.; Purwono, S.

    2017-06-01

    Waste of biomass can be utilized as an energy alternative such as a charcoal briquette. In the waste of biomass, there is carbon element bonded in the cellulose which can be utilized as an energy source of solid fuel. Charcoal briquette from waste of biomass can be developed via pyrolysis process. Terminalia Catappa L. and Myristica fragrans (nutmeg seeds shells) shells were used as raw material for the manufacture of charcoal briquettes. Pyrolysis process took place under isothermal conditions at a temperature of 350°C, 400°C, 450°C, 500°C, and 550°C with variation of times were 30 minutes, 60 minutes and 90 minutes. During the pyrolysis process, there were three main components observed, namely liquid (bio oil), gases and solids (char). Data obtained for measuring the kinetics of liquids and gases were taken in interval of 5 minutes. The results showed that the rise in temperature will increase the rate of pyrolysis process and increase the yield of gases and liquids as well as lowering the yield for solid. The best fitted kinetic model is the representation of biomass pyrolysis process involving secondary decomposition of the liquid. The results of briquette development showed that these two biomasses can be used as raw material of energy alternative.

  19. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    USGS Publications Warehouse

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  20. Low temperature isothermal pyrolysis of cellulose

    Treesearch

    A. Broido; M. Weinstein

    1971-01-01

    By providing continuous weight measurement, thermogravimetry, even for isothermal experiments, offers a major advantage over the classical methods of determining weight-change curves in complex pyrolysis reactions. Thus, even minor weight changes, readily detectable on a continuous record, furnish clues concerning the reaction sequences and indicate conditions under...

  1. Thermokinetic analysis and product characterization of Medium Density Fiberboard pyrolysis.

    PubMed

    Aslan, Dilan Irmak; Özoğul, Buğçe; Ceylan, Selim; Geyikçi, Feza

    2018-06-01

    This study investigates the pyrolysis of Medium Density Fiberboard (MDF) as a potential waste management solution. Thermal behaviour of MDF was analysed via TG/DSC. The primary decomposition step occurred between 190 °C and 425 °C. Evolved gaseous products over this step were evaluated by a FTIR spectrometer coupled with TGA. Peaks for phenolic, alcohols and aldehydes were detected at the maximum decomposition temperature. Py-GC/MS analysis revealed phenols, ketones and cyclic compounds as the primary non-condensable pyrolysis products. The kinetics of pyrolysis were investigated by the widely applied Distributed Activation Energy Model, resulting in an average activation energy and pre-exponential factor of 127.40 kJ mol -1 and 8.4E+11. The results of this study suggest that pyrolyzing MDF could potentially provide renewable fuels and prevent environmental problems related with MDF disposal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Pyrolysis of a waste from the grinding of scrap tyres.

    PubMed

    Fernández, A M; Barriocanal, C; Alvarez, R

    2012-02-15

    The fibres that are used to reinforce tyres can be recovered as a waste in the process of grinding of scrap tyres. In this paper beneficiation through pyrolysis is studied since the fibres are made up of polymers with a small amount of rubber because the latter is difficult to separate. The experiments were performed at three temperatures (400, 550 and 900°C) in a horizontal oven. The three products - gas, oil and char - obtained from the pyrolysis were investigated. The composition of the gas was analyzed by means of gas chromatography. The oil was studied by gas chromatography and infrared spectroscopy. The char porous structure was determined by N(2) adsorption. In addition, the topography of the chars was studied by means of scanning electron microscopy (SEM). The products resulting from the pyrolysis of the fibres were compared with those obtained from scrap rubber. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Synthesis of carbon nanomaterials from different pyrolysis techniques: a review

    NASA Astrophysics Data System (ADS)

    Umer Zahid, Muhammad; Pervaiz, Erum; Hussain, Arshad; Shahzad, Muhammad Imran; Niazi, Muhammad Bilal Khan

    2018-05-01

    In the current age, the significance of carbon-based nanomaterials for many applications has made the efforts for the facile synthesis methods from abundantly available wastes in a cost-effective way. Pyrolysis in a broad spectrum is commonly employed for the synthesis of carbon nanostructures by thermally treating the organic waste. The mechanism of growth of the nanoparticles determines the functional distribution of nanoparticles based on the growing size, medium, and physio-chemical properties. Carbon nanomaterial’s growth is a complicated process which is profoundly influenced by temperature, catalyst, and type of precursor. Nowadays, significant progress has been made in improving nanomaterial’s growth techniques, opening new paths for commercial production of carbon-based nanomaterials. The most promising are the methods involving hydrocarbon-rich organic waste as the feed source. In this review, synthesis of carbon-based nanomaterials, specifically carbon nanotubes (CNTs), Carbon nanofibers (CNFs) and Graphene (G) are discussed by different pyrolysis techniques. Furthermore, the review explores recent advancements made in the context of pyrolysis.

  4. Pyrolysis kinetics of algal consortia grown using swine manure wastewater.

    PubMed

    Sharara, Mahmoud A; Holeman, Nathan; Sadaka, Sammy S; Costello, Thomas A

    2014-10-01

    In this study, pyrolysis kinetics of periphytic microalgae consortia grown using swine manure slurry in two seasonal climatic patterns in northwest Arkansas were investigated. Four heating rates (5, 10, 20 and 40 °C min(-1)) were used to determine the pyrolysis kinetics. Differences in proximate, ultimate, and heating value analyses reflected variability in growing substrate conditions, i.e., flocculant use, manure slurry dilution, and differences in diurnal solar radiation and air temperature regimes. Peak decomposition temperature in algal harvests varied with changing the heating rate. Analyzing pyrolysis kinetics using differential and integral isoconversional methods (Friedman, Flynn-Wall-Ozawa, and Kissinger-Akahira-Sunose) showed strong dependency of apparent activation energy on the degree of conversion suggesting parallel reaction scheme. Consequently, the weight loss data in each thermogravimetric test was modeled using independent parallel reactions (IPR). The quality of fit (QOF) for the model ranged between 2.09% and 3.31% indicating a good agreement with the experimental data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mathematical modeling of the heat transfer during pyrolysis process used for end-of-life tires treatment

    NASA Astrophysics Data System (ADS)

    Zheleva, I.; Georgiev, I.; Filipova, M.; Menseidov, D.

    2017-10-01

    Mathematical modeling of the heat transfer during the pyrolysis process used for the treatment of the End-of-Lifetires (EOLT) is presented in this paper. The pyrolysis process is 3D and non-stationary and because of this it is very complicated for modeling and studying. To simplify the modeling here a hierarchy of 2D models for the temperature which describe the non-stationary heat transfer in such a pyrolysis station is created. An algorithm for solving the model equations, based on MATLAB software is developed. The results for the temperature for some characteristic periods of operation of pyrolysis station are presented and commented in the paper. The results from this modeling can be used in the real pyrolysis station for more precise displacement of measurement devices and for designing of automated management of the process.

  6. A study of pyrolysis of oil shale of the Leningrad deposit by solid heat carrier

    NASA Astrophysics Data System (ADS)

    Gerasimov, G. Ya; Khaskhachikh, V. V.; Potapov, O. P.

    2017-11-01

    The investigation of the oil shale pyrolysis with a solid heat carrier was carried out using the experimental retorting system that simulates the Galoter industrial process. This system allows verifying both fractional composition of the oil shale and solid heat carrier, and their ratio and temperature. The oil shale of the Leningradsky deposit was used in the work, and quartz sand was used as the solid heat carrier. It is shown that the yield of the shale oil under the pyrolysis with solid heat carrier exceeds by more than 20% the results received in the standard Fisher retort. Using ash as the solid heat carrier results in a decrease in the yield of oil and gas with simultaneous increase in the amount of the solid residue. This is due to the chemical interaction of the acid components of the vapor-gas mixture with the oxides of alkaline-earth metals that are part of the ash.

  7. Directed assembly of nanoparticles to isolated diatom valves using the non-wetting characteristics after pyrolysis

    NASA Astrophysics Data System (ADS)

    Jantschke, A.; Fischer, C.; Hensel, R.; Braun, H.-G.; Brunner, E.

    2014-09-01

    A novel strategy for a directed nanoparticle coupling to isolated Stephanopyxis turris valves is presented. After pyrolysis, the valves exhibit incomplete wetting due to their characteristic T-shaped profiles as a prerequisite for a regioselective coupling reaction. A micromanipulation system allows for precise handling and their immobilization onto an adhesive substrate and manipulation into arrays.A novel strategy for a directed nanoparticle coupling to isolated Stephanopyxis turris valves is presented. After pyrolysis, the valves exhibit incomplete wetting due to their characteristic T-shaped profiles as a prerequisite for a regioselective coupling reaction. A micromanipulation system allows for precise handling and their immobilization onto an adhesive substrate and manipulation into arrays. Electronic supplementary information (ESI) available: BET surface area, TG/DTA measurements, HIM images and a video of an array of six valves of S. turris in a wetting experiment as well as a 3D animation based on CLSM measurements. See DOI: 10.1039/c4nr02662d

  8. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  9. Analysis of Titan tholin pyrolysis products by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry.

    PubMed

    McGuigan, Megan; Waite, J Hunter; Imanaka, Hiroshi; Sacks, Richard D

    2006-11-03

    The reddish brown haze that surrounds Titan, Saturn's largest moon, is thought to consist of tholin-like organic aerosols. Tholins are complex materials of largely unknown structure. The very high peak capacity and structured chromatograms obtained from comprehensive two-dimensional GC (GC x GC) are attractive attributes for the characterization of tholin pyrolysis products. In this report, GC x GC with time-of-flight MS detection and a flash pyrolysis inlet is used to characterize tholin pyrolysis products. Identified pyrolysis products include low-molecular-weight nitriles, alkyl substituted pyrroles, linear and branched hydrocarbons, alkyl-substituted benzenes and PAH compounds. The pyrolysis of standards found in tholin pyrolysate showed that little alteration occurred and thus these structures are likely present in the tholin material.

  10. A pyrolysis study for the thermal and kinetic characteristics of an agricultural waste with two different plastic wastes.

    PubMed

    Çepelioğullar, Özge; Pütün, Ayşe E

    2014-10-01

    In this study, thermochemical conversion of plastic wastes (PET and PVC) together with an agricultural waste (hazelnut shell) was investigated. In order to determine the thermal and kinetic behaviours, pyrolysis experiments were carried out from room temperature to 800 °C, with a heating rate of 10 °C min(-1) in the presence of a N2 atmosphere in a thermogravimetric analyzer. With the obtained thermogravimetric data, an appropriate temperature was specified for the pyrolysis of biomass-plastic wastes in a fixed-bed reactor. At the second step, pyrolysis experiments were carried out at the same conditions with the thermogravimetric analyzer, except the final temperature which was up to 500 °C in this case. After pyrolysis experiments, pyrolysis yields were calculated and characterization studies for bio-oil were investigated. Experimental results showed that co-pyrolysis has an important role in the determination of the pyrolysis mechanism and the process conditions while designing/implementing a thermochemical conversion method where biomass-plastic materials were preferred as raw materials. © The Author(s) 2014.

  11. Increased Oxygen Recovery from Sabatier Systems Using Plasma Pyrolysis Technology and Metal Hydride Separation

    NASA Technical Reports Server (NTRS)

    Greenwood, Zachary W.; Abney, Morgan B.; Perry, Jay L.; Miller, Lee A.; Dahl, Roger W.; Hadley, Neal M.; Wambolt, Spencer R.; Wheeler, Richard R.

    2015-01-01

    State-of-the-art life support carbon dioxide (CO2) reduction technology is based on the Sabatier reaction where less than 50% of the oxygen required for the crew is recovered from metabolic CO2. The reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by the limited availability of reactant hydrogen. This is further exacerbated when Sabatier methane (CH4) is vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover hydrogen has the potential to dramatically increase oxygen recovery and thus drastically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. Due to the highly unstable nature of acetylene, a separation system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of a full-scale Third Generation PPA is reported and investigations into metal hydride hydrogen separation technology is discussed.

  12. Thermal processing of paper sludge and characterisation of its pyrolysis products.

    PubMed

    Strezov, Vladimir; Evans, Tim J

    2009-05-01

    Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 degrees C/min were found to be CO and CO(2), contributing to almost 25% of the paper sludge dry weight loss at 500 degrees C. The hydrocarbons (CH(4), C(2)H(4), C(2)H(6)) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 degrees C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 degrees C had a calorific value of 13.3MJ/kg.

  13. Processing of uranium oxide and silicon carbide based fuel using polymer infiltration and pyrolysis

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek K.; Zunjarrao, Suraj C.; Singh, Raman P.

    2008-09-01

    Ceramic composite pellets consisting of uranium oxide, UO 2, contained within a silicon carbide matrix, were fabricated using a novel processing technique based on polymer infiltration and pyrolysis (PIP). In this process, particles of depleted uranium oxide, in the form of U 3O 8, were dispersed in liquid allylhydridopolycarbosilane (AHPCS), and subjected to pyrolysis up to 900 °C under a continuous flow of ultra high purity argon. The pyrolysis of AHPCS, at these temperatures, produced near-stoichiometric amorphous silicon carbide ( a-SiC). Multiple polymer infiltration and pyrolysis (PIP) cycles were performed to minimize open porosity and densify the silicon carbide matrix. Analytical characterization was conducted to investigate chemical interaction between U 3O 8 and SiC. It was observed that U 3O 8 reacted with AHPCS during the very first pyrolysis cycle, and was converted to UO 2. As a result, final composition of the material consisted of UO 2 particles contained in an a-SiC matrix. The physical and mechanical properties were also quantified. It is shown that this processing scheme promotes uniform distribution of uranium fuel source along with a high ceramic yield of the parent matrix.

  14. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis.

    PubMed

    Zhou, Hui; Long, YanQiu; Meng, AiHong; Li, QingHai; Zhang, YanGuo

    2015-04-01

    The interactions of nine typical municipal solid waste (MSW) fractions during pyrolysis were investigated using the thermogravimetric analyzer (TGA). To compare the mixture results with the calculation results of superposition of single fractions quantitatively, TG overlap ratio was introduced. There were strong interactions between orange peel and rice (overlap ratio 0.9736), and rice and poplar wood (overlap ratio 0.9774). The interactions of mixture experiments postponed the peak and lowered the peak value. Intense interactions between PVC and rice, poplar wood, tissue paper, wool, terylene, and rubber powder during co-pyrolysis were observed, and the pyrolysis at low temperature was usually promoted. The residue yield was increased when PVC was blended with rice, poplar wood, tissue paper, or rubber powder; while the residue yield was decreased when PVC was blended with wool. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity.

    PubMed

    Chen, Handing; Chen, Xueli; Qin, Yueqiang; Wei, Juntao; Liu, Haifeng

    2017-03-01

    The influence of torrefaction on the physicochemical characteristics of char during raw and water washed rice straw pyrolysis at 800-1200°C is investigated. Pore structure, aromaticity and gasification activity of pyrolysis chars are compared between raw and torrefied samples. For raw straw, BET specific surface area decreases with the increased torrefaction temperature at the same pyrolysis temperature and it approximately increases linearly with weight loss during pyrolysis. The different pore structure evolutions relate to the different volatile matters and pore structures between raw and torrefied straw. Torrefaction at higher temperature would bring about a lower graphitization degree of char during pyrolysis of raw straw. Pore structure and carbon crystalline structure evolutions of raw and torrefied water washed straw are different from these of raw straw during pyrolysis. For both raw and water washed straw, CO 2 gasification activities of pyrolysis chars are different between raw and torrefied samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR.

    PubMed

    Özsin, Gamzenur; Pütün, Ayşe Eren

    2017-06-01

    The objective of this study was to identify the pyrolysis of different bio-waste produced by food processing industry in a comprehensible manner. For this purpose, pyrolysis behaviors of chestnut shells (CNS), cherry stones (CS) and grape seeds (GS) were investigated by thermogravimetric analysis (TGA) combined with a Fourier-transform infrared (FT-IR) spectrometer and a mass spectrometer (MS). In order to make available theoretical groundwork for biomass pyrolysis, activation energies were calculated with the help of four different model-free kinetic methods. The results are attributed to the complex reaction schemes which imply parallel, competitive and complex reactions during pyrolysis. During pyrolysis, the evolution of volatiles was also characterized by FT-IR and MS. The main evolved gases were determined as H 2 O, CO 2 and hydrocarbons such as CH 4 and temperature dependent profiles of the species were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Pyrolysis-mass spectrometry/pattern recognition on a well-characterized suite of humic samples

    USGS Publications Warehouse

    MacCarthy, P.; DeLuca, S.J.; Voorhees, K.J.; Malcolm, R.L.; Thurman, E.M.

    1985-01-01

    A suite of well-characterized humic and fulvic acids of freshwater, soil and plant origin was subjected to pyrolysis-mass spectrometry and the resulting data were analyzed by pattern recognition and factor analysis. A factor analysis plot of the data shows that the humic acids and fulvic acids can be segregated into two distinct classes. Carbohydrate and phenolic components are more pronounced in the pyrolysis products of the fulvic acids, and saturated and unsaturated hydrocarbons contribute more to the humic acid pyrolysis products. A second factor analysis plot shows a separation which appears to be based primarily on whether the samples are of aquatic or soil origin. ?? 1985.

  18. Catalytic cracking of fast and tail gas reactive pyrolysis bio-oils over HZSM-5

    USDA-ARS?s Scientific Manuscript database

    While hydrodeoxygenation (HDO) of pyrolysis oil is well understood as an upgrading method, the high processing pressures associated with it alone justify the exploration of alternative upgrading solutions, especially those that could adapt pyrolysis oils into the existing refinery infrastructure. Ca...

  19. Hydrous pyrolysis of crude oil in gold-plated reactors

    USGS Publications Warehouse

    Curiale, J.A.; Lundegard, P.D.; Kharaka, Y.K.

    1992-01-01

    Crude oils from Iraq and California have been pyrolyzed under hydrous conditions at 200 and 300??C for time periods up to 210 days, in gold-plated reactors. Elemental (vanadium, nickel), stable isotopic (carbon), and molecular (n-alkanes, acyclic isoprenoids, steranes, terpanes and aromatic steroid hydrocarbons) analyses were made on the original and pyrolyzed oils. Various conventional crude oil maturity parameters, including 20S/(20S + 20R)-24-ethylcholestane ratios and the side-chain-length distribution of aliphatic and aromatic steroidal hydrocarbons, were measured in an effort to assess the modification of molecular maturity parameters in clay-free settings, similar to those encountered in "clean" reservoirs. Concentrations of vanadium and nickel in the Iraq oil decrease significantly and the V/(V + Ni) ratio decreases slightly, with increasing pyrolysis time/temperature. Whole oil carbon isotope ratios remain fairly constant during pyrolysis, as do hopane/sterane ratios and carbon number distribution of 5??(H),14??(H),17??(H),20R steranes. These latter three parameters are considered maturity-invariant. The ratios of short side-chain components to long side-chain components of the regular steranes [C21/(C21 + C29R)] and the triaromatic steroid hydrocarbons [C21/(C21 + C28)] vary systematically with increasing pyrolysis time, indicating that these parameters may be useful as molecular maturity parameters for crude oils in clay-free reservoir rocks. In addition, decreases in bisnorhopane/hopane ratio with increasing pyrolysis time, in a clay-free and kerogen-free environment, suggest that the distribution of these compounds is controlled by either differential thermal stabilities or preferential release from a higher-molecular weight portion of the oil. ?? 1992.

  20. Cleavage and crosslinking of polymeric coal structures during pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionizationmore » mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.« less

  1. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Nie, Jianlong; Jin, Baosheng; Shao, Shanshan; Xiao, Guomin

    2015-09-01

    Catalytic co-pyrolysis of black-liquor lignin and waste plastics (polyethylene, PE; polypropylene PP; polystyrene, PS) was conducted in a fluidized bed. The effects of temperature, plastic to lignin ratio, catalyst and plastic types on product distributions were studied. Both aromatic and olefin yields increased with increasing PE proportion. Petrochemical yield of co-pyrolysis of PE and lignin was LOSA-1 > spent FCC > Gamma-Al2O3 > sand. The petrochemical yield with LOSA-1 is 43.9% which is more than two times of that without catalyst. The feedstock for co-pyrolysis with lignin is polystyrene > polyethylene > polypropylene. Catalytic co-pyrolysis of black-liquor lignin with PS produced the maximum aromatic yield (55.3%), while co-pyrolysis with PE produced the maximum olefin yield (13%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.

    PubMed

    Tinwala, Farha; Mohanty, Pravakar; Parmar, Snehal; Patel, Anant; Pant, Kamal K

    2015-01-01

    Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Catalytic properties of mesoporous Al–La–Mn oxides prepared via spray pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Goun; Jung, Kyeong Youl; Lee, Choul-Ho

    Highlights: • Al–La–Mn oxides were prepared using spray pyrolysis. • Al–La–Mn oxides exhibit large and uniform pore sizes. • Mesoporous Al–La–Mn oxides were compared with those prepared by conventional precipitation. • Mesoporous Al–La–Mn oxides show superior activity in decomposition of hydrogen peroxide. - Abstract: Mesoporous Al–La–Mn oxides are prepared via spray pyrolysis and are applied to the catalytic decomposition of hydrogen peroxide. The characteristics of the mesoporous Al–La–Mn oxides are examined using N{sub 2} adsorption, X-ray diffraction, and X-ray fluorescence measurements. The surface area and pore size of the Al–La–Mn oxides prepared via spray pyrolysis are larger than those ofmore » the Al–La–Mn oxides prepared using a precipitation method. The catalytic performance of the materials during the decomposition of hydrogen peroxide is examined in a pulse-injection reactor. It is confirmed that the mesoporous Al–La–Mn oxides prepared via spray pyrolysis exhibit higher catalytic activity and stability in the decomposition of hydrogen peroxide than Al–La–Mn oxides prepared using a conventional precipitation method.« less

  4. Deactivation of Multilayered MFI Nanosheet Zeolite during Upgrading of Biomass Pyrolysis Vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Mengze; Mukarakate, Calvin; Iisa, Kristiina

    Here, the catalytic fast pyrolysis (CFP) of biomass is a promising technology for producing renewable transportation fuels and chemicals. MFI-type catalysts have shown promise for CFP because they produce gasoline range hydrocarbons from oxygenated pyrolysis compounds; however, rapid catalyst deactivation due to coking is one of the major technical barriers inhibiting the commercialization of this technology. Coke deposited on the surface of the catalysts blocks access to active sites in the micropores leading to rapid catalyst deactivation. Our strategy is to minimize rapid catalyst deactivation by adding mesoporosity through forming MFI nanosheet materials. The synthesized MFI nanosheet catalysts were fullymore » characterized and evaluated for cellulose pyrolysis vapor upgrading to produce olefins and aromatic hydrocarbons. The data obtained from pyrolysis-GCMS (py-GCMS), showed that fresh MFI nanosheets produced similar aromatic hydrocarbon and olefin yields compared to conventional HZSM-5. However, MFI nanosheets demonstrated a longer lifetime than HZSM-5 even though coke contents were also higher than for HZSM-5 because the mesopores enabled better accessibility to active acid sites. This conclusion was supported by results from post-reaction analysis of various spent catalysts collected at different points during the deactivation experiments.« less

  5. New applications of X-ray tomography in pyrolysis of biomass: Biochar imaging

    DOE PAGES

    Jones, Keith; Ramakrishnan, Girish; Uchimiya, Minori; ...

    2015-01-30

    We report on the first ever use of non-destructive micrometer-scale synchrotron-computed microtomography (CMT) for biochar material characterization as a function of pyrolysis temperature. This innovative approach demonstrated an increase in micron-sized marcropore fraction of the Cotton Hull (CH) sample, resulting in up to 29% sample porosity. We have also found that initial porosity development occurred at low temperatures (below 350°C) of pyrolysis, consistent with chemical composition of CH. This innovative technique can be highly complementary to traditional BET measurements, considering that Barrett–Joyner–Halenda (BJH) analysis of pore size distribution cannot detect these macropores. Such information can be of substantial relevance tomore » environmental applications, given that water retention by biochars added to soils is controlled by macropore characteristic among the other factors. In addition, complementing our data with SEM, EDX, and XRF characterization techniques allowed us to develop a better understanding of evolution of biochar properties during its production, such presence of metals and initial morphological features of biochar before pyrolysis. These results have significant implications for using biochar as a soil additive and for clarifying the mechanisms of biofuel production by pyrolysis.« less

  6. Value-added organonitrogen chemicals evolution from the pyrolysis of chitin and chitosan.

    PubMed

    Liu, Chao; Zhang, Huiyan; Xiao, Rui; Wu, Shubin

    2017-01-20

    Thermogravimetric characteristics of chitin and chitosan and their potentials to produce value-added organonitrogen chemicals were separately evaluated via TG/DSC-FTIR and Py-GC/MS. Results shown that chitin had the better thermal stability and higher activation energy than chitosan because of the abundant acetamido group. Furthermore, the dominated volatilization in active pyrolysis of chitin contributed to its endothermic property, whereas the charring in chitosan led to the exothermal. During fast pyrolysis, the acetamido group in chitin and chitosan was converted into acetic acid or acetamide. Typical products from chitosan pyrolysis were aza-heterocyclic chemicals, i.e. pyridines, pyrazines, and pyrroles, with the total selectivity of 50.50% at 600°C. Herein, selectivity of pyrazine compounds was up to 22.99%. These aza-heterocyclic chemicals came from the nucleophilic addition reaction of primary amine and carbonyl. However, main reaction during chitin pyrolysis was ring-opening degradation, which led to the formation of acetamido chemicals, especially acetamido acetaldehyde with the highest selectivity of 27.27% at 450°C. In summary, chitosan had the potential to produce aza-heterocyclic chemicals, and chitin to acetamido chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. New applications of X-ray tomography in pyrolysis of biomass: Biochar imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Keith; Ramakrishnan, Girish; Uchimiya, Minori

    We report on the first ever use of non-destructive micrometer-scale synchrotron-computed microtomography (CMT) for biochar material characterization as a function of pyrolysis temperature. This innovative approach demonstrated an increase in micron-sized marcropore fraction of the Cotton Hull (CH) sample, resulting in up to 29% sample porosity. We have also found that initial porosity development occurred at low temperatures (below 350°C) of pyrolysis, consistent with chemical composition of CH. This innovative technique can be highly complementary to traditional BET measurements, considering that Barrett–Joyner–Halenda (BJH) analysis of pore size distribution cannot detect these macropores. Such information can be of substantial relevance tomore » environmental applications, given that water retention by biochars added to soils is controlled by macropore characteristic among the other factors. In addition, complementing our data with SEM, EDX, and XRF characterization techniques allowed us to develop a better understanding of evolution of biochar properties during its production, such presence of metals and initial morphological features of biochar before pyrolysis. These results have significant implications for using biochar as a soil additive and for clarifying the mechanisms of biofuel production by pyrolysis.« less

  8. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis.

    PubMed

    Robinson, James Stephen; Baumann, Karen; Hu, Yongfeng; Hagemann, Philipp; Kebelmann, Lutz; Leinweber, Peter

    2018-01-01

    Strategies are needed to increase the sustainability of phosphorus (P) fertiliser management in agriculture. This paper reports on the potential of pyrolysis treatment to recycle P from renewable materials previously regarded as wastes. The study used K-edge X-ray absorption near-edge structure (XANES) spectroscopy to examine chemical forms of P in the waste feedstock materials and corresponding biochars (pyrolysis at 480-500 °C) of four ligno-cellulosic, plant-based residues and five relatively P-rich livestock and water-treatment by-products, to acquire information on changes in potential P fertiliser value. Pyrolysis enriched P in the biochars by factors of 1.3-4.3, thus offering wide-ranging P fertiliser potential. XANES spectroscopy revealed hydroxyapatite (HAP) as one of the dominant chemical P compounds in the feedstocks, ranging from 14% (rice husks) to 98% (animal bone) of total P. For most materials, pyrolysis increased the proportion of HAP, and pyrophosphates were generated in several cases. These alterations possibly lead to diversity in the P solubility characteristics of the biochars if used as soil amendments; this is an important property of environmentally sound P fertilisers.

  9. Deactivation of Multilayered MFI Nanosheet Zeolite during Upgrading of Biomass Pyrolysis Vapors

    DOE PAGES

    Xu, Mengze; Mukarakate, Calvin; Iisa, Kristiina; ...

    2017-05-02

    Here, the catalytic fast pyrolysis (CFP) of biomass is a promising technology for producing renewable transportation fuels and chemicals. MFI-type catalysts have shown promise for CFP because they produce gasoline range hydrocarbons from oxygenated pyrolysis compounds; however, rapid catalyst deactivation due to coking is one of the major technical barriers inhibiting the commercialization of this technology. Coke deposited on the surface of the catalysts blocks access to active sites in the micropores leading to rapid catalyst deactivation. Our strategy is to minimize rapid catalyst deactivation by adding mesoporosity through forming MFI nanosheet materials. The synthesized MFI nanosheet catalysts were fullymore » characterized and evaluated for cellulose pyrolysis vapor upgrading to produce olefins and aromatic hydrocarbons. The data obtained from pyrolysis-GCMS (py-GCMS), showed that fresh MFI nanosheets produced similar aromatic hydrocarbon and olefin yields compared to conventional HZSM-5. However, MFI nanosheets demonstrated a longer lifetime than HZSM-5 even though coke contents were also higher than for HZSM-5 because the mesopores enabled better accessibility to active acid sites. This conclusion was supported by results from post-reaction analysis of various spent catalysts collected at different points during the deactivation experiments.« less

  10. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    PubMed

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. © The Author(s) 2015.

  11. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.

    PubMed

    Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo

    2010-01-01

    The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.

  12. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOEpatents

    Durai-Swamy, Kandaswamy

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  13. Pyrolysis of furan in a microreactor

    NASA Astrophysics Data System (ADS)

    Urness, Kimberly N.; Guan, Qi; Golan, Amir; Daily, John W.; Nimlos, Mark R.; Stanton, John F.; Ahmed, Musahid; Ellison, G. Barney

    2013-09-01

    A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) rightleftharpoons α-carbene or β-carbene. The α-carbene fragments to CH2=C=O + HC≡CH while the β-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C≡CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.

  14. Conventional and microwave pyrolysis of a macroalgae waste from the Agar-Agar industry. Prospects for bio-fuel production.

    PubMed

    Ferrera-Lorenzo, N; Fuente, E; Bermúdez, J M; Suárez-Ruiz, I; Ruiz, B

    2014-01-01

    A comparative study of the pyrolysis of a macroalgae industrial solid waste (algae meal) in an electrical conventional furnace and in a microwave furnace has been carried out. It was found that the chars obtained from both pyrolyses are similar and show good properties for performing as a solid bio-fuel and as a precursor of activated carbon. Bio-oils from conventional pyrolysis have a greater number of phenolic, pyrrole and alkane compounds whereas benzene and pyridine compounds are more predominant in microwave pyrolysis with a major presence of light compounds. The bio-gas fraction from microwave pyrolysis presents a much higher syngas content (H2+CO), and a lower CO2 and CH4 proportion than that obtained by conventional pyrolysis. Yields are similar for both treatments with a slightly higher gas yield in the case of microwave pyrolysis due to the fact that microwave heating favors heterogeneous reactions between the gases and the char. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models.

    PubMed

    Janković, Bojan

    2011-10-01

    The non-isothermal pyrolysis kinetics of Acetocell (the organosolv) and Lignoboost® (kraft) lignins, in an inert atmosphere, have been studied by thermogravimetric analysis. Using isoconversional analysis, it was concluded that the apparent activation energy for all lignins strongly depends on conversion, showing that the pyrolysis of lignins is not a single chemical process. It was identified that the pyrolysis process of Acetocell and Lignoboost® lignin takes place over three reaction steps, which was confirmed by appearance of the corresponding isokinetic relationships (IKR). It was found that major pyrolysis stage of both lignins is characterized by stilbene pyrolysis reactions, which were subsequently followed by decomposition reactions of products derived from the stilbene pyrolytic process. It was concluded that non-isothermal pyrolysis of Acetocell and Lignoboost® lignins can be best described by n-th (n>1) reaction order kinetics, using the Weibull mixture model (as distributed reactivity model) with alternating shape parameters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Application of the 15N tracer method to study the effect of pyrolysis temperature and atmosphere on the distribution of biochar nitrogen in the biomass-biochar-plant system.

    PubMed

    Tan, Zhongxin; Ye, Zhixiong; Zhang, Limei; Huang, Qiaoyun

    2018-05-01

    Biochar nitrogen is key to improving soil fertility, but the distribution of biochar nitrogen in the biomass-biochar-plant system is still unclear. To provide clarity, the 15 N tracer method was utilised to study the distribution of biochar nitrogen in the biochar both before and after its addition to the soil. The results can be summarised as follows. 1) The retention rate of 15 N in biochar decreases from 45.23% to 20.09% with increasing pyrolysis temperature from 400 to 800°C in a CO 2 atmosphere. 2) The retention rate of 15 N in biochar prepared in a CO 2 atmosphere is higher than that prepared in a N 2 atmosphere when the pyrolysis temperature is below 600°C. 3) Not only can biochar N slowly facilitate the adsorption of N by plants but the addition of biochar to the soil can also promote the supply of soil nitrogen to the plant; in contrast, the direct return of wheat straw biomass to the soil inhibits the absorption of soil N by plants. 4) In addition, the distribution of nitrogen was clarified; that is, when biochar was prepared by the pyrolysis of wheat straw at 400°C in a CO 2 atmosphere, the biochar retained 45.23% N, and after the addition of this biochar to the soil, 39.99% of N was conserved in the biochar residue, 4.55% was released into the soil, and 0.69% was contained in the wheat after growth for 31days. Therefore, this study very clearly shows the distribution of nitrogen in the biomass-biochar-plant system. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Graphical Interface for the Study of Gas-Phase Reaction Kinetics: Cyclopentene Vapor Pyrolysis

    NASA Astrophysics Data System (ADS)

    Marcotte, Ronald E.; Wilson, Lenore D.

    2001-06-01

    The undergraduate laboratory experiment on the pyrolysis of gaseous cyclopentene has been modernized to improve safety, speed, and precision and to better reflect the current practice of physical chemistry. It now utilizes virtual instrument techniques to create a graphical computer interface for the collection and display of experimental data. An electronic pressure gauge has replaced the mercury manometer formerly needed in proximity to the 500 °C pyrolysis oven. Students have much better real-time information available to them and no longer require multiple lab periods to get rate constants and acceptable Arrhenius parameters. The time saved on manual data collection is used to give the students a tour of the computer interfacing hardware and software and a hands-on introduction to gas-phase reagent preparation using a research-grade high-vacuum system. This includes loading the sample, degassing it by the freeze-pump-thaw technique, handling liquid nitrogen and working through the logic necessary for each reconfiguration of the diffusion pump section and the submanifolds.

  18. Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis.

    PubMed

    Lin, Kuo-Hsiung; Chiang, Hung-Lung

    2014-04-30

    Non-metal fractions of waste printed circuit boards (PCBs) were thermally treated (200-500°C) under nitrogen atmosphere. Carbon, hydrogen, and nitrogen were determined by elemental analyzer, bromine by instrumental neutron activation analysis (INAA), phosphorus by energy dispersive X-ray spectrometer (EDX), and 29 trace elements by inductively coupled plasma atomic emission spectrometer (ICP-AES) and mass spectrometry (ICP-MS) for raw material and pyrolysis residues. Organic compositions of liquid oil were identified by GC (gas chromatography)-MS, trace element composition by ICP system, and 12 water-soluble ions by IC (ionic chromatography). Elemental content of carbon was >450 mg/g, oxygen 300 mg/g, bromine and hydrogen 60 mg/g, nitrogen 30 mg/g, and phosphorus 28 mg/g. Sulfur was trace in PCBs. Copper content was 25-28 mg/g, iron 1.3-1.7 mg/g, tin 0.8-1.0mg/g and magnesium 0.4-1.0mg/g; those were the main metals in the raw materials and pyrolytic residues. In the liquid products, carbon content was 68-73%, hydrogen was 10-14%, nitrogen was 4-5%, and sulfur was less than 0.05% at pyrolysis temperatures from 300 to 500°C. Phenol, 3-bromophenol, 2-methylphenol and 4-propan-2-ylphenol were major species in liquid products, accounting for >50% of analyzed organic species. Bromides, ammonium and phosphate were the main species in water sorption samples for PCB pyrolysis exhaust. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. CFD Modeling of a Laser-Induced Ethane Pyrolysis in a Wall-less Reactor

    NASA Astrophysics Data System (ADS)

    Stadnichenko, Olga; Snytnikov, Valeriy; Yang, Junfeng; Matar, Omar

    2014-11-01

    Ethylene, as the most important feedstock, is widely used in chemical industry to produce various rubbers, plastics and synthetics. A recent study found the IR-laser irradiation induced ethane pyrolysis yields 25% higher ethylene production rates compared to the conventional steam cracking method. Laser induced pyrolysis is initiated by the generation of radicals upon heating of the ethane, then, followed by ethane/ethylene autocatalytic reaction in which ethane is converted into ethylene and other light hydrocarbons. This procedure is governed by micro-mixing of reactants and the feedstock residence time in reactor. Under mild turbulent conditions, the turbulence enhances the micro-mixing process and allows a high yield of ethylene. On the other hand, the high flow rate only allows a short residence time in the reactor which causes incomplete pyrolysis. This work attempts to investigate the interaction between turbulence and ethane pyrolysis process using large eddy simulation method. The modelling results could be applied to optimize the reactor design and operating conditions. Skolkovo Foundation through the UNIHEAT Project.

  20. Effect of Ni-Co Ternary Molten Salt Catalysts on Coal Catalytic Pyrolysis Process

    NASA Astrophysics Data System (ADS)

    Cui, Xin; Qi, Cong; Li, Liang; Li, Yimin; Li, Song

    2017-08-01

    In order to facilitate efficient and clean utilization of coal, a series of Ni-Co ternary molten salt crystals are explored and the catalytic pyrolysis mechanism of Datong coal is investigated. The reaction mechanisms of coal are achieved by thermal gravimetric analyzer (TGA), and a reactive kinetic model is constructed. The microcosmic structure and macerals are observed by scanning electron microscope (SEM). The catalytic effects of ternary molten salt crystals at different stages of pyrolysis are analyzed. The experimental results show that Ni-Co ternary molten salt catalysts have the capability to bring down activation energy required by pyrolytic reactions at its initial phase. Also, the catalysts exert a preferable catalytic action on macromolecular structure decomposition and free radical polycondensation reactions. Furthermore, the high-temperature condensation polymerization is driven to decompose further with a faster reaction rate by the additions of Ni-Co ternary molten salt crystal catalysts. According to pyrolysis kinetic research, the addition of catalysts can effectively decrease the activation energy needed in each phase of pyrolysis reaction.

  1. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics.

    PubMed

    Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Wu, Joan; Chen, Shulin

    2016-11-01

    The present study aims to investigate the thermal decomposition behaviors and kinetics of biomass (cellulose/Douglas fir sawdust) and plastics (LDPE) in a non-catalytic and catalytic co-pyrolysis over ZSM-5 catalyst by using a thermogravimetric analyzer (TGA). It was found that there was a positive synergistic interaction between biomass and plastics according to the difference of weight loss (ΔW), which could decrease the formation of solid residue at the end of the experiment. The first order reaction model well fitted for both non-catalytic and catalytic co-pyrolysis of biomass with plastics. The activation energy (E) of Cellulose-LDPE-Catalyst and DF-LDPE-Catalyst are only 89.51 and 54.51kJ/mol, respectively. The kinetics analysis showed that adding catalyst doesn't change the decomposition mechanism. As a result, the kinetic study on catalytic co-pyrolysis of biomass with plastics was suggested that the catalytic co-pyrolysis is a promising technique that can significantly reduce the energy input. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A case study of pyrolysis of oil palm wastes in Malaysia

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2013-05-01

    Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.

  3. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    PubMed

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  4. Element and PAH constituents in the residues and liquid oil from biosludge pyrolysis in an electrical thermal furnace.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Lai, Nina; Shieh, Zhu-Xin

    2014-05-15

    Biosludge can be pyrolyzed to produce liquid oil as an alternative fuel. The content of five major elements, 22 trace elements and 16 PAHs was investigated in oven-dried raw material, pyrolysis residues and pyrolysis liquid products. Results indicated 39% carbon, 4.5% hydrogen, 4.2% nitrogen and 1.8% sulfur were in oven dried biosludge. Biosludge pyrolysis, carried out at temperatures from 400 to 800°C, corresponded to 34-14% weight in pyrolytic residues, 32-50% weight in liquid products and 31-40% weight in the gas phase. The carbon, hydrogen and nitrogen decreased and the sulfur content increased with an increase in the pyrolysis temperature at 400-800°C. NaP (2 rings) and AcPy (3 rings) were the major PAHs, contributing 86% of PAHs in oven-dried biosludge. After pyrolysis, the PAH content increased with the increase of pyrolysis temperature, which also results in a change in the PAH species profile. In pyrolysis liquid oil, NaP, AcPy, Flu and PA were the major species, and the content of the 16 PAHs ranged from 1.6 to 19 μg/ml at pyrolysis temperatures ranging from 400 to 800°C. Ca, Mg, Al, Fe and Zn were the dominant trace elements in the raw material and the pyrolysis residues. In addition, low toxic metal (Cd, V, Co, and Pb) content was found in the liquid oil, and its heat value was 7,800-9,500 kcal/kg, which means it can be considered as an alternative fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Pyrolysis Mass Spectrometry of Complex Organic Materials.

    ERIC Educational Resources Information Center

    Meuzelaar, Henk L. C.; And Others

    1984-01-01

    Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…

  6. Reinforcement of the bio-gas conversion from pyrolysis of wheat straw by hot caustic pre-extraction.

    PubMed

    Zhang, Lilong; Chen, Keli; He, Liang; Peng, Lincai

    2018-01-01

    Pyrolysis has attracted growing interest as a versatile means to convert biomass into valuable products. Wheat straw has been considered to be a promising biomass resource due to its low price and easy availability. However, most of the products obtained from wheat straw pyrolysis are usually of low quality. Hot soda extraction has the advantage of selective dissolution of lignin whilst retaining the carbohydrates. This can selectively convert biomass into high-quality desired products and suppress the formation of undesirable products. The aim of this study was to investigate the pyrolysis properties of wheat straw under different hot caustic pretreatment conditions. Compared with the untreated straw, a greater amount of gas was released and fewer residues were retained in the extracted wheat straw, which was caused by an increase in porosity. When the NaOH loading was 14%, the average pore size of the extracted straw increased by 12% and the cumulative pore volume increased by 157% compared with the untreated straw. The extracted straw obtained from the 14% NaOH extraction was clearly selective for pyrolysis products. On one hand, many lignin pyrolysis products disappeared, and only four main lignin-unit-pyrolysis products were retained. On the other hand, polysaccharide pyrolysis products were enriched. Both propanone and furfural have outstanding peak intensities that could account for approximately 30% of the total pyrolysis products. However, with the excessive addition of NaOH (i.e. > 22% w/w) during pretreatment, the conversion of bio-gas products decreased. Thermogravimetric and low-temperature nitrogen-adsorption analysis showed that the pore structure had been seriously destroyed, leading to the closing of the release paths of the bio-gas and thus increasing the re-polymerisation of small bio-gas molecules. After suitable extraction (14% NaOH loading extraction), a considerable amount (25%) of the soluble components dissolved out of the straw. This

  7. Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts

    USDA-ARS?s Scientific Manuscript database

    Fast pyrolysis is rapid heating in the absence of oxygen resulting in decomposition of organic material. When applied to biomass, it produces bio-oil, bio-char and gas. The Agricultural Research Service (ARS) of the USDA has studied fluidized-bed fast pyrolysis of several bimoass including perenni...

  8. Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors.

    PubMed

    Chen, Zhenyang; Niu, Bo; Zhang, Lingen; Xu, Zhenming

    2018-01-15

    Recycling rare metal tantalum from waste tantalum capacitors (WTCs) is significant to alleviate the shortage of tantalum resource. However, environmental problems will be caused if the organic materials from WTCs are improperly disposed. This study presented a promising vacuum pyrolysis technology to recycle the organic materials from WTCs. The organics removal rate could reach 94.32wt% according to TG results. The optimal parameters were determined as 425°C, 50Pa and 30min on the basis of response surface methodology (RSM). The oil yield and residual rate was 18.09wt% and 74.94wt%, respectively. All pyrolysis products can be recycled through a reasonable route. Besides, to deeply understand the pyrolysis process, the pyrolysis mechanism was also proposed based on the product and free radical theory. This paper provides an efficient process for recycling the organic material from WTCs, which can facilitate the following tantalum recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-06-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes.

  10. Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis

    PubMed Central

    Hemberger, Patrick; Custodis, Victoria B. F.; Bodi, Andras; Gerber, Thomas; van Bokhoven, Jeroen A.

    2017-01-01

    Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes. PMID:28660882

  11. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.

    PubMed

    Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui

    2014-02-01

    The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils.

  12. Photoluminescence in Spray Pyrolysis Deposited β-In2S3 Thin Films

    NASA Astrophysics Data System (ADS)

    Jayakrishnan, R.

    2018-04-01

    Spray pyrolysis deposited In2S3 thin films exhibit two prominent photoluminescent emissions. One of the emissions is green in color and centered at around ˜ 540 nm and the other is centered at around ˜ 690 nm and is red in color. The intensity of the green emission decreases when the films are subjected to annealing in air or vacuum. The intensity of red emission increases when films are air annealed and decreases when vacuum annealed. Vacuum annealing leads to an increase in work function whereas air annealing leads to a decrease in work function for this thin film system relative to the as deposited films indicating changes in space charge regions. Surface photovoltage analysis using a Kelvin probe leads to the conclusion that inversion of band bending occurs as a result of annealing. Correlating surface contact potential measurements using a Kelvin probe, x-ray photoelectron spectroscopy and photoluminescence, we conclude that the surface passivation plays a critical role in controlling the photoluminescence from the spray pyrolysis deposited for In2S3 thin films.

  13. Characteristics of the microwave pyrolysis and microwave CO2-assisted gasification of dewatered sewage sludge.

    PubMed

    Chun, Young Nam; Jeong, Byeo Ri

    2017-07-28

    Microwave drying-pyrolysis or drying-gasification characteristics were examined to convert sewage sludge into energy and resources. The gasification was carried out with carbon dioxide as a gasifying agent. The examination results were compared with those of the conventional heating-type electric furnace to compare both product characteristics. Through the pyrolysis or gasification, gas, tar, and char were generated as products. The produced gas was the largest component of each process, followed by the sludge char and the tar. During the pyrolysis process, the main components of the produced gas were hydrogen and carbon monoxide, with a small amount of hydrocarbons such as methane and ethylene. In the gasification process, however, the amount of carbon monoxide was greater than the amount of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene in light tar was generated from the pyrolysis or gasification. Ammonia and hydrogen cyanide, which are precursors of NO x , were also generated. In the microwave heating method, the sludge char produced by pyrolysis and gasification had pores in the mesopore range. This could be explained that the gas obtained from the microwave pyrolysis or gasification of the wet sewage sludge can be used as an alternative fuel, but the tar and NO x precursors in the produced gas should be treated. Sludge char can be used as a biomass solid fuel or as a tar removal adsorbent if necessary.

  14. Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process.

    PubMed

    Lewis, A J; Ren, S; Ye, X; Kim, P; Labbe, N; Borole, A P

    2015-11-01

    A new approach to hydrogen production using an integrated pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L anode-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50±3.2% to 76±0.5% while anode Coulombic efficiency ranged from 54±6.5% to 96±0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%, respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Biobased alkylphenols from lignins via a two-step pyrolysis - Hydrodeoxygenation approach.

    PubMed

    de Wild, P J; Huijgen, W J J; Kloekhorst, A; Chowdari, R K; Heeres, H J

    2017-04-01

    Five technical lignins (three organosolv, Kraft and soda lignin) were depolymerised to produce monomeric biobased aromatics, particularly alkylphenols, by a new two-stage thermochemical approach consisting of dedicated pyrolysis followed by catalytic hydrodeoxygenation (HDO) of the resulting pyrolysis oils. Pyrolysis yielded a mixture of guaiacols, catechols and, optionally, syringols in addition to alkylphenols. HDO with heterogeneous catalysts (Ru/C, CoMo/alumina, phosphided NiMO/C) effectively directed the product mixture towards alkylphenols by, among others, demethoxylation. Up to 15wt% monomeric aromatics of which 11wt% alkylphenols was obtained (on the lignin intake) with limited solid formation (<3wt% on lignin oil intake). For comparison, solid Kraft lignin was also directly hydrotreated for simultaneous depolymerisation and deoxygenation resulting in two times more alkylphenols. However, the alkylphenols concentration in the product oil is higher for the two-stage approach. Future research should compare direct hydrotreatment and the two-stage approach in more detail by techno-economic assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hydrogen production from switchgrass via a hybrid pyrolysis-microbial electrolysis process

    DOE PAGES

    Lewis, Alex J.; Ren, Shoujie; Ye, Philip; ...

    2015-06-30

    A new approach to hydrogen production using a hybrid pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50 3.2% to76 0.5% while anode coulombic efficiency ranged from 54 6.5% to 96 0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%,more » respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass.« less

  17. Effect of rate of pyrolysis on the textural properties of naturally-templated porous carbons from alginic acid.

    PubMed

    Marriott, Andrew S; Hunt, Andrew J; Bergström, Ed; Thomas-Oates, Jane; Clark, James H

    2016-09-01

    The effect of pyrolysis rate on the properties of alginic acid-derived carbonaceous materials, termed Starbon ® , was investigated. Thermal Gravimetry-IR was used to prepare porous carbons up to 800 °C at several rates and highlighted increased CO 2 production at higher pyrolysis rates. N 2 porosimetry of the resultant carbons shows how pyrolysis rate affects both the mesopore structure and thus surface area and surface energy. Surface capacity of these carbons was analysed by methylene blue dye adsorption. In general, as the rate of pyrolysis increased, the mesopore content and adsorbent capacity decreased. It is considered here that the rapid production of volatiles at these higher rates causes structural collapse of the non-templated pore network. The work here demonstrates that pyrolysis rate is a key variable which needs to be controlled to maximise the textural properties of Starbon ® required for adsorption applications.

  18. Estimating the Temperature Experienced by Biomass Particles during Fast Pyrolysis Using Microscopic Analysis of Biochars

    DOE PAGES

    Thompson, Logan C.; Ciesielski, Peter N.; Jarvis, Mark W.; ...

    2017-07-12

    Here, biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput method to investigate the thermal history experienced by large ensembles of particles during fast pyrolysis by imaging and quantitative image analysis. We present a correlation between the surface luminance (darkness) of the biochar particle and the highest temperature that it experienced during pyrolysis. Next, we apply this correlation to large,more » heterogeneous ensembles of char particles produced in a laminar entrained flow reactor (LEFR). The results are used to interpret the actual temperature distributions delivered by the reactor over a range of operating conditions.« less

  19. Product distribution from pyrolysis of wood and agricultural residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Blasi, C.; Signorelli, G.; Di Russo, C.

    1999-06-01

    The pyrolysis characteristics of agricultural residues (wheat straw, olive husks, grape residues, and rice husks) and wood chips have been investigated on a bench scale. The experimental system establishes the conditions encountered by a thin (4 {times} 10{sup {minus}2} m diameter) packed bed of biomass particles suddenly exposed in a high-temperature environment, simulated by a radiant furnace. Product yields (gases, liquids, and char) and gas composition, measured for surface bed temperatures in the range 650--1000 K, reproduce trends already observed for wood. However, differences are quantitatively large. Pyrolysis of agricultural residues is always associated with much higher solid yields (upmore » to a factor of 2) and lower liquid yields. Differences are lower for the total gas, and approximate relationships exist among the ratios of the main gas species yields, indicating comparable activation energies for the corresponding apparent kinetics of formation. However, while the ratios are about the same for wood chips, rice husks, and straw, much lower values are shown by olive and grape residues. Large differences have also been found in the average values of the specific devolatilization rates. The fastest (up to factors of about 1.5 with respect to wood) have been observed for wheat straw and the slowest (up to factors of 2) for grape residues.« less

  20. Relative toxicity of pyrolysis products of some foams and fabrics

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.

    1976-01-01

    A limited number of foams and fabrics was evaluated in the course of developing test procedures for determining the relative toxicity of materials. The principal variable studied, heating rate, did not affect the relative ranking of the materials tested. Two pyrolysis test procedures using the same basic approach but employing different sample weights, chamber volumes, laboratory animals, heating rates, and upper temperature limits, resulted in identical rankings of relative toxicity. The data obtained show that modification of conventional flexible polyurethane foams with flame retardants to comply with California upholstered furniture flammability regulations seems to consistently reduce toxicity under pyrolysis conditions.

  1. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    NASA Astrophysics Data System (ADS)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  2. Characterization of Source Signatures of Fine Roadway Particles by Pyrolysis-GC-MS

    NASA Astrophysics Data System (ADS)

    van Bergen, S. K.; Holmén, B. A.

    2001-12-01

    Fine particulate matter, defined as particles with an aerodynamic diameter less than 2.5 μ m (PM2.5), is of growing concern due to its detrimental effects on human health and the environment. Roadway traffic generates a significant fraction of PM2.5 in urban areas. Since exposure to fine particles derived from mobile sources commonly occurs, understanding the physicochemical processes that contribute to the generation, transport and atmospheric reactivity of roadway PM is important. Factors that influence the properties of roadway PM include: the mass, number and size distribution of the particles as well as their chemical composition. These factors are partially determined by the sources of the roadway particles. The focus of this effort is to identify unique organic chemical profiles of known roadway sources of PM using a new rapid characterization technique. A pyrolysis GC-MS analytical method is being developed to uniquely characterize the sources of roadway PM2.5 such as brake dust, tire wear, and direct emissions from diesel and gasoline engines. The source profiles will be used in conjunction with measurements of the composition of ambient roadway PM to determine the importance of the various roadway sources. The advantages of this technique over conventional solvent extractions include: smaller (mg) sample mass requirements, short extraction times and minimal sample handing. Preliminary two-step pyrolysis results will be presented for PM samples from individual sources and an ambient roadway. Specific analytical issues that will be discussed include: modifications of commercial pyrolysis hardware to improve reproducibility; desorption versus pyrolysis; developing appropriate pyrolysis programs for heterogenous sample materials; and method detection limits.

  3. Methods and apparatuses for deoxygenating pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Lance Awender; Brandvold, Timothy A.; Frey, Stanley Joseph

    Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactormore » effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.« less

  4. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char.

    PubMed

    Yuan, Shuai; Dai, Zheng-hua; Zhou, Zhi-jie; Chen, Xue-li; Yu, Guang-suo; Wang, Fu-chen

    2012-04-01

    Rapid pyrolysis of rice straw (RS) and Shenfu bituminous coal (SB) separately, and rapid co-pyrolysis of RS/SB blends (mass ratio 1:4, 1:4, and 4:1), were carried out in a high-frequency furnace which can ensure both high heating rate and satisfying contact of fuel particles. Synergies between RS and SB during rapid co-pyrolysis were investigated. Intrinsic and morphological structures of residual char from co-pyrolysis, and their effects on gasification characteristics were also studied. Synergies occurred during rapid co-pyrolysis of RS and SB (RS/SB=1:4) resulting in decreasing char yields and increasing volatile yields. Synergies also happened during gasification of the char derived from co-pyrolysis of RS and SB with mass ratio of 1:4. The increased mass ratio of RS to SB did not only weaken synergies during co-pyrolysis, but significantly reduced the gasification rates of the co-pyrolysis char compared to the calculated values. Results can help to optimize co-conversion process of biomass/coal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Analysis of good practices, barriers and drivers for ELTs pyrolysis industrial application.

    PubMed

    Zabaniotou, A; Antoniou, N; Bruton, G

    2014-11-01

    Boosting of eco-innovative solutions for End of Life Tyres (ELTs) management, under the principles of the EU Resource Efficiency Roadmap and the Waste Framework Directive, can not only diminish the environmental hazards and the consequent societal cost, but also result to the establishment of a novel perception regarding ELTs; thus, a valuable stock of resources that can be exploited. Despite the extensive scientific research of the previous years on ELTs depolymerisation via pyrolysis highlighting its eco-innovative characteristics, the use of pyrolysis to process scrap tyres has not yet achieved a broad commercial success, with economic viability and product standardization to constitute the primary impediments. More specifically, pyrolysis was not applied to an extensive industrial scale so far, due to deficient market analysis, legislative barriers, economic instability and sometimes public acceptance. All the above issues are addressed by the present study. Modifications on current EU legislation can prevent or reduce delays or derailment of efforts on pyrolysis, through its differentiation from incineration. The attainment of economic viability could be realized through the valorization of the pyrolytic char towards activated carbon production for environmental depollution applications; needless to say, the penetration on niche and well-organised markets is more than essential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping

    NASA Astrophysics Data System (ADS)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.

  7. Recycling of Zinc- and Lead-Bearing Residues with Pyrolysis Gas

    NASA Astrophysics Data System (ADS)

    Pichler, C.; Antrekowitsch, J.

    2015-09-01

    Efforts in the metallurgical industry for an approximation to the zero waste concept has led to many different investigations. Together with the greenhouse effect, CO2 emissions have caused additional costs for different process steps in the industry. For this reason, alternative carbon carriers have been sought, and charcoal was found to be an ideal substitute, due to its CO2 neutrality. In order to use it in the metallurgical industry, an optimization of the charcoal production through a carbonization process must be carried out. Beside the charcoal, pyrolysis gas also occurs during the heating of wood or agricultural wastes under the exclusion of air. Because of combustible compounds in this gas, it is possible to use it as a reduction agent instead of fossil carbon carriers. Together with the idea of preventing landfilling of metallurgical by-products, an investigation was carried out to treat zinc- and lead-containing materials. For this issue a special process concept was designed and developed. The main aspect was to recycle the zinc- and lead-containing Waelz slag, which results from the processing of steel mill dusts, in a vertical retort. Two different sizes of facilities were constructed to perform the reaction system of the solid Waelz slag with the gaseous reduction agent of pyrolysis gas.

  8. Catalytic and non-catalytic pyrolysis of biomass in non-inert environments for production of deoxygenated bio-oil and chemicals

    USDA-ARS?s Scientific Manuscript database

    Fast pyrolysis processes are among the most effective methods for liquefaction of lignocellulosic biomass. Catalytic fast pyrolysis (CFP) over HZSM-5 or other zeolites and/or utilization of reactive atmospheres such as in the non-catalytic Tail Gas Reactive Pyrolysis (TRGP) process, a recent patent...

  9. Acid monomer analysis in waterborne polymer systems by targeted labeling of carboxylic acid functionality, followed by pyrolysis - gas chromatography.

    PubMed

    Brooijmans, T; Okhuijsen, R; Oerlemans, I; Schoenmakers, P J; Peters, R

    2018-05-14

    Pyrolysis - gas chromatography - (PyGC) is a common method to analyse the composition of natural and synthetic resins. The analysis of acid functionality in, for example, waterborne polyacrylates and polyurethanes polymers has proven to be difficult due to solubility issues, inter- and intramolecular interaction effects, lack of detectability in chromatographic analysis, and lack of thermal stability. Conventional analytical techniques, such as PyGC, cannot be used for the direct detection and identification of acidic monomers, due to thermal rearrangements that take place during pyrolysis. To circumvent this, the carboxylic acid groups are protected prior to thermal treatment by reaction with 2-bromoacetophenone. Reaction conditions are investigated and optimised wrt. conversion measurements. The aproach is applied to waterborne polyacryalates and the results are discussed. This approach enables identification and (semi)quantitative analysis of different acid functionalities in waterborne polymers by PyGC. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Pyrolysis of polyethylene mixed with paper and wood: Interaction effects on tar, char and gas yields.

    PubMed

    Grieco, E M; Baldi, G

    2012-05-01

    In the present study the interactions between the main constituents of the refuse derived fuel (plastics, paper, and wood) during pyrolysis were studied. Binary mixtures of polyethylene-paper and polyethylene/sawdust have been transformed into pellets and pyrolyzed. Various mixtures with different composition were analyzed and pyrolysis products (tar, gas, and char) were collected. The mixtures of wood/PE and paper/PE have a different behavior. The wood/PE mixtures showed a much reduced interaction of the various compounds because the yields of pyrolysis products of the mixture can be predicted as linear combination of those of the pure components. On the contrary, a strong char yield increase was found at a low heating rate for paper/PE mixtures. In order to explain the results, the ability of wood and paper char to adsorb and convert the products of PE pyrolysis into was studied. Adsorption and desorption tests were performed on the char obtained by paper and wood by using n-hexadecane as a model compound for the heavy products of PE pyrolysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    PubMed

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  12. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA.

    PubMed

    Azizi, Kolsoom; Keshavarz Moraveji, Mostafa; Abedini Najafabadi, Hamed

    2017-11-01

    Thermal decomposition behavior and kinetics of microalgae Chlorella vulgaris, wood and polypropylene were investigated using thermogravimetric analysis (TGA). Experiments were carried out at heating rates of 10, 20 and 40°C/min from ambient temperature to 600°C. The results show that pyrolysis process of C. vulgaris and wood can be divided into three stages while pyrolysis of polypropylene occurs almost totally in one step. It is shown that wood can delay the pyrolysis of microalgae while microalgae can accelerate the pyrolysis of wood. The existence of polymer during the pyrolysis of microalgae or wood will lead to two divided groups of peaks in DTG curve of mixtures. The results showed that interaction is inhibitive rather than synergistic during the decomposition process of materials. Kinetics of process is studied by the Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The average E values obtained from FWO and KAS methods were 131.228 and 142.678kJ/mol, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Kinetics evaluation and thermal decomposition characteristics of co-pyrolysis of municipal sewage sludge and hazelnut shell.

    PubMed

    Zhao, Bing; Xu, Xinyang; Li, Haibo; Chen, Xi; Zeng, Fanqiang

    2018-01-01

    Hazelnut shell, as novel biomass, has lower ash content and abundant hydrocarbon, which can be utilized resourcefully with municipal sewage sludge (MSS) by co-pyrolyisis to decrease total content of pollution. The co-pyrolysis of MSS and hazelnut shell blend was analyzed by a method of multi-heating rates and different blend ratios with TG-DTG-MS under N 2 atmosphere. The apparent activation energy of co-pyrolysis was calculated by three iso-conversional methods. Satava-Sestak method was used to determine mechanism function G(α) of co-pyrolysis, and Lorentzian function was used to simulate multi-peaks curves. The results showed there were four thermal decomposition stages, and the biomass were cracked and evolved at different temperature ranges. The apparent activation energy increased from 123.99 to 608.15kJ/mol. The reaction mechanism of co-pyrolysis is random nucleation and nuclei growth. The apparent activation energy and mechanism function afford a theoretical groundwork for co-pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Recycling of organic materials and solder from waste printed circuit boards by vacuum pyrolysis-centrifugation coupling technology.

    PubMed

    Zhou, Yihui; Wu, WenBiao; Qiu, Keqiang

    2011-12-01

    Here, we focused on the recycling of waste printed circuit boards (WPCBs) using vacuum pyrolysis-centrifugation coupling technology (VPCT) aiming to obtain valuable feedstock and resolve environmental pollution. The two types of WPCBs were pyrolysed at 600°C for 30 min under vacuum condition. During the pyrolysis process, the solder of WPCBs was separated and recovered when the temperature range was 400-600°C, and the rotating drum was rotated at 1000 rpm for 10 min. The type-A of WPCBs pyrolysed to form an average of 67.91 wt.% residue, 27.84 wt.% oil, and 4.25 wt.% gas; and pyrolysis of the type-B of WPCBs led to an average mass balance of 72.22 wt.% residue, 21.57 wt.% oil, and 6.21 wt.% gas. The GC-MS and FT-IR analyses showed that the two pyrolysis oils consisted mainly of phenols and substituted phenols. The pyrolysis oil can be used for fuel or chemical feedstock for further processing. The recovered solder can be recycled directly and it can also be a good resource of lead and tin for refining. The pyrolysis residues contained various metals, glass fibers and other inorganic materials, which could be recovered after further treatment. The pyrolysis gases consisted mainly of CO, CO(2), CH(4), and H(2), which could be collected and recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Guayule (parthenium argentatum) pyrolysis biorefining: production of hydrocarbon compatible bio-oils from guayule bagasse via tail-gas reactive pyrolysis

    USDA-ARS?s Scientific Manuscript database

    Guayule (Parthenium argentatum) is a woody desert shrub grown in the southwestern United States as a source of natural rubber, organic resins, and high energy biofuel feedstock from crop residues. We used guayule bagasse, the residual biomass after latex extraction as feedstock in a pyrolysis proces...

  16. Benefit of the Use of GCxGC/MS Profiles for 1D GC/MS Data Treatment Illustrated by the Analysis of Pyrolysis Products from East Asian Handmade Papers

    NASA Astrophysics Data System (ADS)

    Han, Bin; Lob, Silvia; Sablier, Michel

    2018-06-01

    In this study, we report the use of pyrolysis-GCxGC/MS profiles for an optimized treatment of data issued from pyrolysis-GC/MS combined with the automatic deconvolution software Automated Mass Spectral Deconvolution and Identification System (AMDIS). The method was illustrated by the characterization of marker compounds of East Asian handmade papers through the examination of pyrolysis-GCxGC/MS data to get information which was used for manually identifying low concentrated and co-eluting compounds in 1D GC/MS data. The results showed that the merits of a higher separation power for co-eluting compounds and a better sensitivity for low concentration compounds offered by a GCxGC system can be used effectively for AMDIS 1D GC/MS data treatment: (i) the compound distribution in pyrolysis-GCxGC/MS profiles can be used as "peak finder" for manual check of low concentration and co-eluting compound identification in 1D GC/MS data, and (ii) pyrolysis-GCxGC/MS profiles can provide better quality mass spectra with observed higher match factors in the AMDIS automatic match process. The combination of 2D profile with AMDIS was shown to contribute efficiently to a better characterization of compound profiles in the chromatograms obtained by 1D analysis in focusing on the mass spectral identification. [Figure not available: see fulltext.

  17. Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Li

    Despite the great passion and endless efforts on development of renewable energy from biomass, the commercialization and scale up of biofuel production is still under pressure and facing challenges. New ideas and facilities are being tested around the world targeting at reducing cost and improving product value. Cutting edge technologies involving analytical chemistry, statistics analysis, industrial engineering, computer simulation, and mathematics modeling, etc. keep integrating modern elements into this classic research. One of those challenges of commercializing biofuel production is the complexity from chemical composition of biomass feedstock and the products. Because of this, feedstock selection and process optimization cannot be conducted efficiently. This dissertation attempts to further evaluate biomass thermal decomposition process using both traditional methods and advanced technique (Pyrolysis Molecular Beam Mass Spectrometry). Focus has been made on data base generation of thermal decomposition products from biomass at different temperatures, finding out the relationship between traditional methods and advanced techniques, evaluating process efficiency and optimizing reaction conditions, comparison of typically utilized biomass feedstock and new search on innovative species for economical viable feedstock preparation concepts, etc. Lab scale quartz tube reactors and 80il stainless steel sample cups coupled with auto-sampling system were utilized to simulate the complicated reactions happened in real fluidized or entrained flow reactors. Two main high throughput analytical techniques used are Near Infrared Spectroscopy (NIR) and Pyrolysis Molecular Beam Mass Spectrometry (Py-MBMS). Mass balance, carbon balance, and product distribution are presented in detail. Variations of thermal decomposition temperature range from 200°C to 950°C. Feedstocks used in the study involve typical hardwood and softwood (red oak, white oak, yellow poplar, loblolly pine

  18. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    PubMed

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The pyrolysis characteristics of moso bamboo

    Treesearch

    Zehui Jiang; Zhijia Liu; Benhua Fei; Zhiyong Cai; Yan Yu; Xing’e Liu

    2012-01-01

    In the research, thermogravimetry (TG), a combination of thermogravimetry and Fourier transform infrared spectrometer (TG–FTIR) and X-ray diffraction (XRD) were used to investigate pyrolysis characteristics of moso bamboo (Phyllostachys pubescens). The Flynn–Wall–Ozawa and Coats–Redfern (modified) methods were used to determine the apparent activation energy (

  20. Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis.

    PubMed

    Bernardo, Maria; Mendes, Sandra; Lapa, Nuno; Gonçalves, Margarida; Mendes, Benilde; Pinto, Filomena; Lopes, Helena; Fonseca, Isabel

    2013-11-01

    The effectiveness of chars from the co-pyrolysis of pine, used tires and plastic wastes for the removal of lead (Pb(2+)) from aqueous medium, was investigated. The chars were predominantly of macroporous nature, but the introduction of tires in the pyrolysis feedstock enhanced their mesoporous content as well as surface area. Pb(2+) sorption with the chars was a slow and unstable process in which sorption-desorption seems to be competing. The highest Pb(2+) removal (88%) was attained by the char resulting from the pyrolysis of a mixture composed by equal mass ratios of used tires and plastics, at 48 h of contact time. This char was also the one with the overall better performance for Pb(2+) sorption, achieving almost 100% of Pb(2+) removal on the study of the effect of adsorbent dose. Mixing the three raw materials for pyrolysis had no advantage for the resulting char concerning the removal efficiency of Pb(2+). The sorption mechanisms varied according to the pyrolysis feedstock: in chars from feedstock with pine, chemisorption involving complexation with oxygenated surface functional groups followed by cation exchange was the presumable mechanism. In tire rubber derived chars, cation exchange with Ca(2+), K(+), and Zn(2+) played the major role on Pb(2+) sorption. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Changes of chromium speciation and organic matter during low-temperature pyrolysis of tannery sludge.

    PubMed

    Zhou, Jianjun; Ma, Hongrui; Gao, Mao; Sun, Wenyue; Zhu, Chao; Chen, Xiangping

    2018-01-01

    The application or disposal of char derived from tannery sludge is directly influenced by the mobility and bioavailability of Cr during pyrolysis process. This study focused on the changes of Cr speciation and organic matter in tannery sludge during low-temperature pyrolysis (100-400 °C) to evaluate the toxicity of char in terms of the leaching possibility of Cr. The results showed that (1) lower char yield and more porous structure were observed after pyrolysis. (2) Higher pyrolysis temperature increased Cr content in the char; however, Cr in this case was converted into the residual fraction which minimized its bioavailability therefore lowers its potential risk to the environment. (3) Organic matters in the acid and alkali leachates were mainly humic acid-like substance, and condensed organic matter might appear at 200 °C and then destruct. (4) Despite the comparatively high content of Cr in the char, the leaching toxicity of char was within the security range according to the national standard of China. The Cr content in the acid and alkali leachates decreased to the range of 16.5-35.3 and 0.2-6.8 mg/L, respectively. It was suggested that the potential toxicity of tannery sludge from Cr could be reduced before utilization or disposal by pyrolysis, especially under 400 °C.

  2. Pyrolysis of flax straw: Characterization of char, liquid, and gas as fuel

    NASA Astrophysics Data System (ADS)

    Tushar, Mohammad Shahed Hasan Khan

    The demand for energy continues to outstrip its supply and necessitates the development of renewable energy options. Biomass has been recognized as a major renewable energy source to supplement the declining fossil fuel source of energy. It is the most popular form of renewable energy and, currently, biofuel production is becoming more promising. Being carbon neutral, readily available, and low in sulphur content makes biomass a very promising source of renewable energy. In the present research, both the isothermal and non-isothermal pressurized pyrolysis of flax straw is studied for the first time. In case of isothermal pyrolysis, the influence of pyrolysis temperature and reaction time on char yield and morphology was investigated. The applied pyrolysis temperature was varied between 300 and 500°C. The reaction time was varied from 15 to 60 min. The char yield was found to decrease as pyrolysis temperature and reaction time increased. The char structure and surface morphology were thoroughly investigated by means of x-ray diffraction (XRD), temperature-programmed oxidation (TPO), and scanning electron microscopy (SEM). The degree of porosity and graphitization increased as pyrolysis temperature and time increased. In fact, the experiment performed at 500°C for 1h duration did not yield any char; only residual ash could be obtained. The TPO studies on the char samples corroborated the XRD findings and showed the presence of two types of carbon, namely, amorphous filamentous carbon and graphitic carbon. A thermogravimetric analysis (TGA) of the char was performed to gain an understanding of combustion kinetics and reactivity. It implied that the reactivity of the char decreases as temperature increases, and this finding is well supported by the TPO, TGA, SEM, and XRD characterization data. Furthermore, an empirical global model was devised based on the power law to estimate activation energy and other kinetic parameters. For the non-isothermal pressurized

  3. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOEpatents

    Chum, H.L.; Evans, R.J.

    1992-08-04

    A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.

  4. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOEpatents

    Chum, Helena L.; Evans, Robert J.

    1992-01-01

    A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.

  5. Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cascarosa, Esther; Boldrin, Alessio, E-mail: aleb@env.dtu.dk; Astrup, Thomas

    Highlights: • GHG savings are in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were establishedmore » for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.« less

  6. Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu; Lei, Hanwu; Ren, Shoujie

    Microwave assisted catalytic pyrolysis was investigated to convert Douglas fir pellets to bio-oils by a ZSM-5 Zeolite catalyst. A central composite experimental design (CCD) was used to optimize the catalytic pyrolysis process. The effects of reaction time, temperature and catalyst to biomass ratio on the bio-oil, syngas, and biochar yields were determined. GC/MS analysis results showed that the bio-oil contained a series of important and useful chemical compounds. Phenols, guaiacols, and aromatic hydrocarbons were the most abundant compounds which were about 50-82 % in bio-oil depending on the pyrolysis conditions. Comparison between the bio-oils from microwave pyrolysis with and withoutmore » catalyst showed that the catalyst increased the content of aromatic hydrocarbons and phenols. A reaction pathway was proposed for microwave assisted catalyst pyrolysis of Douglas fir pellets.« less

  7. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor

    USDA-ARS?s Scientific Manuscript database

    A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The model system d...

  8. Apparatus for entrained coal pyrolysis

    DOEpatents

    Durai-Swamy, Kandaswamy

    1982-11-16

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  9. An Environmental and Economic Evaluation of Pyrolysis for Energy Generation in Taiwan with Endogenous Land Greenhouse Gases Emissions

    PubMed Central

    Kung, Chih-Chun; McCarl, Bruce A.; Chen, Chi-Chung

    2014-01-01

    Taiwan suffers from energy insecurity and the threat of potential damage from global climate changes. Finding ways to alleviate these forces is the key to Taiwan’s future social and economic development. This study examines the economic and environmental impacts when ethanol, conventional electricity and pyrolysis-based electricity are available alternatives. Biochar, as one of the most important by-product from pyrolysis, has the potential to provide significant environmental benefits. Therefore, alternative uses of biochar are also examined in this study. In addition, because planting energy crops would change the current land use pattern, resulting in significant land greenhouse gases (GHG) emissions, this important factor is also incorporated. Results show that bioenergy production can satisfy part of Taiwan’s energy demand, but net GHG emissions offset declines if ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, especially when land GHG emissions are endogenously incorporated. The results indicate that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if slow pyrolysis is applied. PMID:24619159

  10. An environmental and economic evaluation of pyrolysis for energy generation in Taiwan with endogenous land greenhouse gases emissions.

    PubMed

    Kung, Chih-Chun; McCarl, Bruce A; Chen, Chi-Chung

    2014-03-11

    Taiwan suffers from energy insecurity and the threat of potential damage from global climate changes. Finding ways to alleviate these forces is the key to Taiwan's future social and economic development. This study examines the economic and environmental impacts when ethanol, conventional electricity and pyrolysis-based electricity are available alternatives. Biochar, as one of the most important by-product from pyrolysis, has the potential to provide significant environmental benefits. Therefore, alternative uses of biochar are also examined in this study. In addition, because planting energy crops would change the current land use pattern, resulting in significant land greenhouse gases (GHG) emissions, this important factor is also incorporated. Results show that bioenergy production can satisfy part of Taiwan's energy demand, but net GHG emissions offset declines if ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, especially when land GHG emissions are endogenously incorporated. The results indicate that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if slow pyrolysis is applied.

  11. Reforming Biomass Derived Pyrolysis Bio-oil Aqueous Phase to Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukarakate, Calvin; Evans, Robert J.; Deutch, Steve

    Fast pyrolysis and catalytic fast pyrolysis (CFP) of biomass produce a liquid product stream comprised of various classes of organic compounds having different molecule size and polarity. This liquid, either spontaneously in the case of catalytic fast pyrolysis or by water addition for the non-catalytic process separates into a non-polar organic-rich fraction and a highly polar water-rich fraction. The organic fraction can be used as a blendstock or feedstock for further processing in a refinery while, in the CFP process design, the aqueous phase is currently sent to wastewater treatment, which results in a loss of residual biogenic carbon presentmore » in this stream. Our work focuses on the catalytic conversion of the biogenic carbon in pyrolysis aqueous phase streams to produce hydrocarbons using a vertical micro-reactor coupled to a molecular beam mass spectrometer (MBMS). Furthermore, the MBMS provides real-time analysis of products while also tracking catalyst deactivation. The catalyst used in this work was HZSM-5, which upgraded the oxygenated organics in the aqueous fraction to fuels comprising small olefins and aromatic hydrocarbons. During processing the aqueous bio-oil fraction the HZSM-5 catalyst exhibited higher activity and coke resistance than those observed in similar experiments using biomass or whole bio-oils. Reduced coking is likely due to ejection of coke precursors from the catalyst pores that was enhanced by excess process water available for steam stripping. The water reacted with coke precursors to form phenol, methylated phenols, naphthol, and methylated naphthols. Conversion data shows that up to 40 wt% of the carbon in the feed stream is recovered as hydrocarbons.« less

  12. Reforming Biomass Derived Pyrolysis Bio-oil Aqueous Phase to Fuels

    DOE PAGES

    Mukarakate, Calvin; Evans, Robert J.; Deutch, Steve; ...

    2017-01-07

    Fast pyrolysis and catalytic fast pyrolysis (CFP) of biomass produce a liquid product stream comprised of various classes of organic compounds having different molecule size and polarity. This liquid, either spontaneously in the case of catalytic fast pyrolysis or by water addition for the non-catalytic process separates into a non-polar organic-rich fraction and a highly polar water-rich fraction. The organic fraction can be used as a blendstock or feedstock for further processing in a refinery while, in the CFP process design, the aqueous phase is currently sent to wastewater treatment, which results in a loss of residual biogenic carbon presentmore » in this stream. Our work focuses on the catalytic conversion of the biogenic carbon in pyrolysis aqueous phase streams to produce hydrocarbons using a vertical micro-reactor coupled to a molecular beam mass spectrometer (MBMS). Furthermore, the MBMS provides real-time analysis of products while also tracking catalyst deactivation. The catalyst used in this work was HZSM-5, which upgraded the oxygenated organics in the aqueous fraction to fuels comprising small olefins and aromatic hydrocarbons. During processing the aqueous bio-oil fraction the HZSM-5 catalyst exhibited higher activity and coke resistance than those observed in similar experiments using biomass or whole bio-oils. Reduced coking is likely due to ejection of coke precursors from the catalyst pores that was enhanced by excess process water available for steam stripping. The water reacted with coke precursors to form phenol, methylated phenols, naphthol, and methylated naphthols. Conversion data shows that up to 40 wt% of the carbon in the feed stream is recovered as hydrocarbons.« less

  13. One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.

    2007-01-01

    The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.

  14. Pyrolysis characteristics and kinetics of acid tar waste from crude benzol refining: A thermogravimetry-mass spectrometry analysis.

    PubMed

    Chihobo, Chido H; Chowdhury, Arindrajit; Kuipa, Pardon K; Simbi, David J

    2016-12-01

    Pyrolysis is an attractive thermochemical conversion technology that may be utilised as a safe disposal option for acid tar waste. The kinetics of acid tar pyrolysis were investigated using thermogravimetry coupled with mass spectrometry under a nitrogen atmosphere at different heating rates of 10, 15 and 20 K min -1 The thermogravimetric analysis shows three major reaction peaks centred around 178 °C, 258 °C, and 336 °C corresponding to the successive degradation of water soluble lower molecular mass sulphonic acids, sulphonated high molecular mass hydrocarbons, and high molecular mass hydrocarbons. The kinetic parameters were evaluated using the iso-conversional Kissinger-Akahira-Sunose method. A variation in the activation energy with conversion revealed that the pyrolysis of the acid tar waste progresses through complex multi-step kinetics. Mass spectrometry results revealed a predominance of gases such as hydrogen, methane and carbon monoxide, implying that the pyrolysis of acid tar waste is potentially an energy source. Thus the pyrolysis of acid tar waste may present a viable option for its environmental treatment. There are however, some limitations imposed by the co-evolution of corrosive gaseous components for which appropriate considerations must be provided in both pyrolysis reactor design and selection of construction materials. © The Author(s) 2016.

  15. Analytical Pyrolysis-Chromatography: Something Old, Something New

    ERIC Educational Resources Information Center

    Bower, Nathan W.; Blanchet, Conor J. K.

    2010-01-01

    Despite a long history of use across multiple disciplines, analytical pyrolysis is rarely taught in undergraduate curricula. We briefly review some interesting applications and discuss the three types of analytical pyrolyzers available commercially. We also describe a low-cost alternative that can be used to teach the basic principles of…

  16. 3D Material Response Analysis of PICA Pyrolysis Experiments

    NASA Technical Reports Server (NTRS)

    Oliver, Brandon A.

    2017-01-01

    Primarily interested in improving ablation modeling for use in inverse reconstruction of flight environments on ablative heat shields. Ablation model is essentially a component of the heat flux sensor, so model uncertainties lead to measurement uncertainties. Non-equilibrium processes have been known to be significant in low density ablators for a long time, but increased accuracy requirements of the reconstruction process necessitates incorporating this physical effect. Attempting to develop a pyrolysis model for implementation in material response based on the PICA data produced by Bessire and Minton. Pyrolysis gas species molar yields as a function of temperature and heating rate. Several problems encountered while trying to fit Arrhenius models to the data led to further investigation of the experimental setup.

  17. Liquid hydrocarbon fuels obtained by the pyrolysis of soybean oils.

    PubMed

    Junming, Xu; Jianchun, Jiang; Yanju, Lu; Jie, Chen

    2009-10-01

    The pyrolysis reactions of soybean oils have been studied. The pyrolytic products were analyzed by GC-MS and FTIR and show the formation of olefins, paraffins, carboxylic acids and aldehydes. Several kinds of catalysts were compared. It was found that the amounts of carboxylic acids and aldehydes were significantly decreased by using base catalysts such as Na(2)CO(3) and K(2)CO(3). The low acid value pyrolytic products showed good cold flow properties and good solubility in diesel oil at low temperature. The results presented in this work have shown that the pyrolysis of soybean oils generates fuels that have chemical composition similar to petroleum based fuels.

  18. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    NASA Astrophysics Data System (ADS)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  19. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions.

    PubMed

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T

    2015-02-01

    The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Birth, Death and Transfiguration; The Synthesis of Preceramic Polymers, Their Pyrolysis and Their Conversion to Ceramics (Preprint)

    DTIC Science & Technology

    1989-05-31

    have been able to prepare preceramic polymers whose pyrolysis gives -99% SiC , -99.5% Si 3N 4 , or any mixture of the two by appropriate manipulation of...SYNTHESIS OF PRECERAMIC POLYMERS , THEIR PYROLYSIS AND THEIR CONVERSION TO CERAMICS by Dietmar Seyferth ELCTE D MAY 1 9 989 EEl To be published MAY U...CLASSIFICATION OF THIS PAGE All other editions are obsolete. BIRTH, DEATH AND TRANSFIGURATION: THE SYNTHESIS OF PRECERAMIC POLYMERS , THEIR PYROLYSIS

  1. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes.

    PubMed

    Wu, Chunfei; Nahil, Mohamad A; Miskolczi, Norbert; Huang, Jun; Williams, Paul T

    2014-01-01

    Producing both hydrogen and high-value carbon nanotubes (CNTs) derived from waste plastics is reported here using a pyrolysis-reforming technology comprising a two-stage reaction system, in the presence of steam and a Ni-Mn-Al catalyst. The waste plastics consisted of plastics from a motor oil container (MOC), commercial waste high density polyethylene (HDPE) and regranulated HDPE waste containing polyvinyl chloride (PVC). The results show that hydrogen can be produced from the pyrolysis-reforming process, but also carbon nanotubes are formed on the catalyst. However, the content of 0.3 wt.% polyvinyl chloride in the waste HDPE (HDPE/PVC) has been shown to poison the catalyst and significantly reduce the quantity and purity of CNTs. The presence of sulfur has shown less influence on the production of CNTs in terms of quantity and CNT morphologies. Around 94.4 mmol H2 g(-1) plastic was obtained for the pyrolysis-reforming of HDPE waste in the presence of the Ni-Mn-Al catalyst and steam at a reforming temperature of 800 °C. The addition of steam in the process results in an increase of hydrogen production and reduction of carbon yield; in addition, the defects of CNTs, for example, edge dislocations were found to be increased with the introduction of steam (from Raman analysis).

  2. Compound-specific stable carbon isotopic signature of carbohydrate pyrolysis products from C3 and C4 plants.

    PubMed

    González-Pérez, José A; Jiménez-Morillo, Nicasio T; de la Rosa, José M; Almendros, Gonzalo; González-Vila, Francisco J

    2016-02-01

    Pyrolysis-compound specific isotopic analysis (Py-CSIA: Py-GC-(FID)-C-IRMS) is a relatively novel technique that allows on-line quantification of stable isotope proportions in chromatographically separated products released by pyrolysis. Validation of the Py-CSIA technique is compulsory for molecular traceability in basic and applied research. In this work, commercial sucrose from C4 (sugarcane) and C3 (sugarbeet) photosystem plants and admixtures were studied using analytical pyrolysis (Py-GC/MS), bulk δ(13)C IRMS and δ(13)C Py-CSIA. Major pyrolysis compounds were furfural (F), furfural-5-hydroxymethyl (HMF) and levoglucosan (LV). Bulk and main pyrolysis compound δ(13)C (‰) values were dependent on plant origin: C3 (F, -24.65 ± 0.89; HMF, -22.07 ± 0.41‰; LV, -21.74 ± 0.17‰) and C4 (F, -14.35 ± 0.89‰; HMF, -11.22 ± 0.54‰; LV, -11.44 ± 1.26‰). Significant regressions were obtained for δ(13)C of bulk and pyrolysis compounds in C3 and C4 admixtures. Furfural (F) was found (13)C depleted with respect to bulk and HMF and LV, indicating the incorporation of the light carbon atom in position 6 of carbohydrates in the furan ring after pyrolysis. This is the first detailed report on the δ(13)C signature of major pyrolytically generated carbohydrate-derived molecules. The information provided by Py-CSIA is valuable for identifying source marker compounds of use in food science/fraud detection or in environmental research. © 2015 Society of Chemical Industry.

  3. Tire traces - discrimination and classification of pyrolysis-GC/MS profiles.

    PubMed

    Gueissaz, Line; Massonnet, Geneviève

    2013-07-10

    Tire traces can be observed on several crime scenes as vehicles are often used by criminals. The tread abrasion on the road, while braking or skidding, leads to the production of small rubber particles which can be collected for comparison purposes. This research focused on the statistical comparison of Py-GC/MS profiles of tire traces and tire treads. The optimisation of the analytical method was carried out using experimental designs. The aim was to determine the best pyrolysis parameters regarding the repeatability of the results. Thus, the pyrolysis factor effect could also be calculated. The pyrolysis temperature was found to be five time more important than time. Finally, a pyrolysis at 650°C during 15s was selected. Ten tires of different manufacturers and models were used for this study. Several samples were collected on each tire, and several replicates were carried out to study the variability within each tire (intravariability). More than eighty compounds were integrated for each analysis and the variability study showed that more than 75% presented a relative standard deviation (RSD) below 5% for the ten tires, thus supporting a low intravariability. The variability between the ten tires (intervariability) presented higher values and the ten most variant compounds had a RSD value above 13%, supporting their high potential of discrimination between the tires tested. Principal Component Analysis (PCA) was able to fully discriminate the ten tires with the help of the first three principal components. The ten tires were finally used to perform braking tests on a racetrack with a vehicle equipped with an anti-lock braking system. The resulting tire traces were adequately collected using sheets of white gelatine. As for tires, the intravariability for the traces was found to be lower than the intervariability. Clustering methods were carried out and the Ward's method based on the squared Euclidean distance was able to correctly group all of the tire traces

  4. Understanding the stability of pyrolysis tars from biomass in a view point of free radicals.

    PubMed

    He, Wenjing; Liu, Qingya; Shi, Lei; Liu, Zhenyu; Ci, Donghui; Lievens, Caroline; Guo, Xiaofen; Liu, Muxin

    2014-03-01

    Fast pyrolysis of biomass has attracted increasing attention worldwide to produce bio-tars that can be upgraded into liquid fuels and chemicals. However, the bio-tars are usually poor in quality and stability and are difficult to be upgraded. To better understand the nature of the bio-tars, this work reveals radical concentration of tars derived from pyrolysis of two kinds of biomass. The tars were obtained by condensing the pyrolysis volatiles in 3s. It shows that the tars contain large amounts of radicals, at a level of 10(16)spins/g, and are able to generate more radicals at temperatures of 573K or higher, reaching a level of 10(19)spins/g at 673K in less than 30min. The radical generation in the tar samples is attributed to the formation of THF insoluble matters (coke), which also contain radicals. The radical concentrations of the aqueous liquids obtained in pyrolysis are also studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    PubMed

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Acoustic and Petrophysical Evolution of Organic-Rich Chalk Following Maturation Induced by Unconfined Pyrolysis

    NASA Astrophysics Data System (ADS)

    Shitrit, Omri; Hatzor, Yossef H.; Feinstein, Shimon; Vinegar, Harold J.

    2017-12-01

    Thermal maturation is known to influence the rock physics of organic-rich rocks. While most studies were performed on low-porosity organic-rich shales, here we examine the effect of thermal maturation on a high-porosity organic-rich chalk. We compare the physical properties of native state immature rock with the properties at two pyrolysis-simulated maturity levels: early-mature and over-mature. We further evaluate the applicability of results from unconfined pyrolysis experiments to naturally matured rock properties. Special attention is dedicated to the elastic properties of the organic phase and the influence of bitumen and kerogen contents. Rock physics is studied based on confined petrophysical measurements of porosity, density and permeability, and measurements of bedding-normal acoustic velocities at estimated field stresses. Geochemical parameters like total organic carbon (TOC), bitumen content and thermal maturation indicators are used to monitor variations in density and volume fraction of each phase. We find that porosity increases significantly upon pyrolysis and that P wave velocity decreases in accordance. Solids density versus TOC relationships indicate that the kerogen increases its density from 1.43 to 1.49 g/cc at the immature and early-mature stages to 2.98 g/cc at the over-mature stage. This density value is unusually high, although increase in S wave velocity and backscatter SEM images of the over-mature samples verify that the over-mature kerogen is significantly denser and stiffer. Using the petrophysical and acoustic properties, the elastic moduli of the rock are estimated by two Hashin-Shtrikman (HS)-based models: "HS + BAM" and "HS kerogen." The "HS + BAM" model is calibrated to the post-pyrolysis measurements to describe the mechanical effect of the unconfined pyrolysis on the rock. The absence of compaction in the pyrolysis process causes the post-pyrolysis samples to be extremely porous. The "HS kerogen" model, which simulates a

  7. The stabilization of tannery sludge and the character of humic acid-like during low temperature pyrolysis.

    PubMed

    Ma, Hongrui; Gao, Mao; Hua, Li; Chao, Hao; Xu, Jing

    2015-11-01

    Tannery sludge contained plenty of organic matter, and the organic substance stability had direct impact on its derived chars' utilization. In this paper, the stabilization of tannery sludge and the variation of humic acid-like (HAL) extracted by different methods were investigated in a magnetic stirring reactor under low temperature pyrolysis of 100-400 °C. Results showed that the aromatic structure of pyrolysis chars increased with the increase of temperature and time. The char contained highly aromatic structure and relatively small dissolved organic matters (DOM) at 300 °C. The similar behaviors appeared in two HAL series by different extraction methods. The N content, H/C value, and aliphatic structures of HAL decreased with the increase of pyrolysis temperature, while the C/N value and aromatic structures increased with the rise of pyrolysis temperature. The composition and functional groups of HAL were similar with the purchased humic acid (HA). The fluorescence spectra revealed that two main peaks were found at Ex/Em = 239/363-368 nm and 283/359-368 nm in each HAL series from raw and 100 °C pyrolysis tannery sludge, representing a protein-like matter. The new peak appeared at Ex/Em = 263-283/388 nm in each HAL series from 200 °C pyrolysis tannery sludge-represented humic acid-like matter. The fluorescence intensity increased strongly compared to the other two peak intensity. Therefore, the humification of organic matter was increased by pyrolyzing. Notably, the HAL from 200 °C pyrolysis tannery sludge contained simple molecular structure, and the polycondensation increased but with a relative lower humification degree compared to soil HAL and purchased HA. Therefore, the sludge needs further oxidation. The humic substance was negligible by direct extraction when the temperature was 300 and 400 °C.

  8. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW).

    PubMed

    Al-Salem, S M; Antelava, A; Constantinou, A; Manos, G; Dutta, A

    2017-07-15

    Plastic plays an important role in our daily lives due to its versatility, light weight and low production cost. Plastics became essential in many sectors such as construction, medical, engineering applications, automotive, aerospace, etc. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. Hence, a sustainable and an efficient plastic waste treatment is essential to avoid such issues. Pyrolysis is a thermo-chemical plastic waste treatment technique which can solve such pollution problems, as well as, recover valuable energy and products such as oil and gas. Pyrolysis of plastic solid waste (PSW) has gained importance due to having better advantages towards environmental pollution and reduction of carbon footprint of plastic products by minimizing the emissions of carbon monoxide and carbon dioxide compared to combustion and gasification. This paper presents the existing techniques of pyrolysis, the parameters which affect the products yield and selectivity and identify major research gaps in this technology. The influence of different catalysts on the process as well as review and comparative assessment of pyrolysis with other thermal and catalytic plastic treatment methods, is also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis

    DOE PAGES

    Mukarakate, Calvin; Mittal, Ashutosh; Ciesielski, Peter N.; ...

    2016-07-19

    Here, cellulose is the primary biopolymer responsible for maintaining the structural and mechanical integrity of cell walls and, during the fast pyrolysis of biomass, may be restricting cell wall expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two physical properties of cellulose, its crystalline allomorph and degree of crystallinity, alter its performance during fast pyrolysis. We show that both crystal allomorph and relative crystallinity of cellulose impact the slate of primary products produced by fast pyrolysis. For both cellulose-I and cellulose-II, changes in crystallinity dramatically impact the fastmore » pyrolysis product portfolio. In both cases, only the most highly crystalline samples produced vapors dominated by levoglucosan. Cellulose-III, on the other hand, produces largely the same slate of products regardless of its relative crystallinity and produced as much or more levoglucosan at all crystallinity levels compared to cellulose-I or II. In addition to changes in products, the different cellulose allomorphs affected the viscoelastic properties of cellulose during rapid heating. Real-time hot-stage pyrolysis was used to visualize the transition of the solid material through a molten phase and particle shrinkage. SEM analysis of the chars revealed additional differences in viscoelastic properties and molten phase behavior impacted by cellulose crystallinity and allomorph. Regardless of relative crystallinity, the cellulose-III samples displayed the most obvious evidence of having transitioned through a molten phase.« less

  10. Release of hydrogen sulfide during microwave pyrolysis of sewage sludge: Effect of operating parameters and mechanism.

    PubMed

    Zhang, Jun; Zuo, Wei; Tian, Yu; Yin, Linlin; Gong, Zhenlong; Zhang, Jie

    2017-06-05

    The effects of sludge characteristics, pyrolysis temperature, heating rate and catalysts on the release of H 2 S and mechanism of H 2 S formation during sludge pyrolysis were investigated in a microwave heating reactor (MHR). The evolution of sulfur-containing compounds in the pyrolysis chars obtained at temperature range of 400-800°C was characterized by XPS. For a given temperature, the maximum concentration of H 2 S appeared at moisture content of 80%. Compared to the influence of heating rate on the H 2 S yields, pyrolysis temperature and catalyst played a more significant role on the release of H 2 S during microwave pyrolysis process. The H 2 S concentration increased with increasing temperature from 400°C to 800°C while decreased with increasing heating rate. Both the Nickel-based catalyst and Dolomite displayed significant desulfurization effect and Ni-based catalyst exhibited the larger desulfurization capability than that of Dolomite. The organic sulfur compounds accounted for about 60% of the total sulfur in the sludge which was the main reason for the formation of H 2 S. The mechanism analysis indicated that the cleavage reactions of mercaptan and aromatic-S compounds at temperatures below 600°C and the cracking reaction of sulfate above 700°C respectively were responsible for the H 2 S release during sludge pyrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  13. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-04-05

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.

  14. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  15. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  16. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1993-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  17. Performance of compact fast pyrolysis reactor with Auger-type modules for the continuous liquid biofuel production

    NASA Astrophysics Data System (ADS)

    Nishimura, Shun; Ebitani, Kohki

    2018-01-01

    Development of a compact fast pyrolysis reactor constructed using Auger-type technology to afford liquid biofuel with high yield has been an interesting concept in support of local production for local consumption. To establish a widely useable module package, details of the performance of the developing compact module reactor were investigated. This study surveyed the properties of as-produced pyrolysis oil as a function of operation time, and clarified the recent performance of the developing compact fast pyrolysis reactor. Results show that after condensation in the scrubber collector, e.g. approx. 10 h for a 25 kg/h feedstock rate, static performance of pyrolysis oil with approximately 20 MJ/kg (4.8 kcal/g) calorific values were constantly obtained after an additional 14 h. The feeding speed of cedar chips strongly influenced the time for oil condensation process: i.e. 1.6 times higher feeding speed decreased the condensation period by half (approx. 5 h in the case of 40 kg/h). Increasing the reactor throughput capacity is an important goal for the next stage in the development of a compact fast pyrolysis reactor with Auger-type modules.

  18. Co-pyrolysis behavior of fermentation residues with woody sawdust by thermogravimetric analysis and a vacuum reactor.

    PubMed

    Zheng, Yan; Zhang, Yimin; Xu, Jingna; Li, Xiayang; Charles Xu, Chunbao

    2017-12-01

    This study aimed at cost-effective utilization of fermentation residues (FR) from biogas project for bio-energy via co-pyrolysis of FR and woody sawdust (WS). In this study, a vacuum reactor was used to study the pyrolysis behaviors of individual and blend samples of FR and WS. Obvious synergistic effects were observed, resulting in a lower char yield but a higher gas yield. The presence of woody sawdust promoted the devolatilization of FR, and improved the syngas (H 2 and CO) content in the gaseous products. Compared to those of the char from pyrolysis of individual feedstock, co-pyrolysis of FR and WS in the vacuum reactor promoted the cracking reactions of large aromatic rings, enlarged the surface area and reduced the oxygenated groups of the resulted char. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Pyrolysis of Cyclopentadienone: Mechanistic Insights from a Direct Measurement of Product Branching Ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ormond, Thomas K.; Scheer, Adam M.; Nimlos, Mark R.

    2015-07-16

    The thermal decomposition of cyclopentadienone (C5H4-O) has been studied in a flash pyrolysis continuous flow microreactor. Passing dilute samples of o-phenylene sulfite (C6H4O2SO) in He through the microreactor at elevated temperatures yields a relatively clean source of C5H4-O. The pyrolysis of C5H4-O was investigated over the temperature range 1000-2000 K.

  20. Catalytic pyrolysis of car tire waste using expanded perlite.

    PubMed

    Kar, Y

    2011-08-01

    In this study, the non-catalytic and catalytic pyrolysis experiments were conducted on the sample of tire waste using expanded perlite as an additive material to determine especially the effect of temperature and catalyst-to-tire ratio on the products yields and the compositions and qualities of pyrolytic oils (NCPO and CPO). Non-catalytic studies, which were carried out under the certain conditions (a nitrogen flow of 100mL/min and a heating rate of 10°C/min), showed that the highest yield of pyrolytic oil (NCPO) was 60.02wt.% at 425°C. Then, the catalytic pyrolysis studies were carried out at catalyst-to-tire ratio range of 0.05-0.25 and the highest catalytic pyrolytic oil (CPO) yield was 65.11wt.% at the ratio of 0.10 with the yield increase of 8.48wt.% compared with the non-catalytic pyrolysis. Lastly, the pyrolytic oils were characterized with applying a various techniques such as elemental analyses and various chromatographic and spectroscopic techniques (GC-MS, (1)H NMR, FT-IR, etc.). The characterization results revealed that the pyrolytic oils which were complex mixtures of C(5)-C(15) organic compounds (predominantly aromatic compounds) and also the CPO compared to the NCPO was more similar to conventional fuels in view of the certain fuel properties. Copyright © 2011 Elsevier Ltd. All rights reserved.