Sample records for landscape analysis techniques

  1. Proceedings of our national landscape: a conference on applied techniques for analysis and management of the visual resource [Incline Village, Nev., April 23-25, 1979

    Treesearch

    Gary H. Elsner; Richard C. Smardon; technical coordinators

    1979-01-01

    These 104 papers were presented at "Our National Landscape: A Conference on Applied Techniques for Analysis and Management of the Visual Resource," Incline Village, Nevada, April 23-25, 1979. Included in this proceedings are state-of-the-art papers on landscape planning. Emphasis is upon planning the visual aspects of the large and wildland areas of the...

  2. Advanced fitness landscape analysis and the performance of memetic algorithms.

    PubMed

    Merz, Peter

    2004-01-01

    Memetic algorithms (MAs) have demonstrated very effective in combinatorial optimization. This paper offers explanations as to why this is so by investigating the performance of MAs in terms of efficiency and effectiveness. A special class of MAs is used to discuss efficiency and effectiveness for local search and evolutionary meta-search. It is shown that the efficiency of MAs can be increased drastically with the use of domain knowledge. However, effectiveness highly depends on the structure of the problem. As is well-known, identifying this structure is made easier with the notion of fitness landscapes: the local properties of the fitness landscape strongly influence the effectiveness of the local search while the global properties strongly influence the effectiveness of the evolutionary meta-search. This paper also introduces new techniques for analyzing the fitness landscapes of combinatorial problems; these techniques focus on the investigation of random walks in the fitness landscape starting at locally optimal solutions as well as on the escape from the basins of attractions of current local optima. It is shown for NK-landscapes and landscapes of the unconstrained binary quadratic programming problem (BQP) that a random walk to another local optimum can be used to explain the efficiency of recombination in comparison to mutation. Moreover, the paper shows that other aspects like the size of the basins of attractions of local optima are important for the efficiency of MAs and a local search escape analysis is proposed. These simple analysis techniques have several advantages over previously proposed statistical measures and provide valuable insight into the behaviour of MAs on different kinds of landscapes.

  3. Revegetation for aesthetics

    Treesearch

    Bernard M. Slick

    1980-01-01

    Surface mining is changing the landscape character of forests in the East. Aesthetic visual aspects of the landscape are considered in the analysis, planning, and design of revegetation strategies. Application of landscape architectural design techniques in the revegetation of surface-mined lands, as well as knowledge of biological characteristics, will enhance the...

  4. Information Landscaping: Information Mapping, Charting, Querying and Reporting Techniques for Total Quality Knowledge Management.

    ERIC Educational Resources Information Center

    Tsai, Bor-sheng

    2003-01-01

    Total quality management and knowledge management are merged and used as a conceptual model to direct and develop information landscaping techniques through the coordination of information mapping, charting, querying, and reporting. Goals included: merge citation analysis and data mining, and apply data visualization and information architecture…

  5. Setting technical standards for visual assessment procedures

    Treesearch

    Kenneth H. Craik; Nickolaus R. Feimer

    1979-01-01

    Under the impetus of recent legislative and administrative mandates concerning analysis and management of the landscape, governmental agencies are being called upon to adopt or develop visual resource and impact assessment (VRIA) systems. A variety of techniques that combine methods of psychological assessment and landscape analysis to serve these purposes is being...

  6. Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oesterling, Patrick; Heine, Christian; Weber, Gunther H.

    2012-05-04

    Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity.We propose to split data analysis into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase performs topological analysis to support accurate and non-overlapping presentation of the high-dimensional cluster structure as a topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and shape reflect cluster coherence, size, and stability, respectively. A second local analysis phasemore » utilizes this global structural knowledge to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual clutter in established geometric visualizations and permits a clearer, more thorough data analysis. In conclusion, this analysis complements the global topological perspective and enables the user to study subspaces or geometric properties, such as shape.« less

  7. Efficient retrieval of landscape Hessian: Forced optimal covariance adaptive learning

    NASA Astrophysics Data System (ADS)

    Shir, Ofer M.; Roslund, Jonathan; Whitley, Darrell; Rabitz, Herschel

    2014-06-01

    Knowledge of the Hessian matrix at the landscape optimum of a controlled physical observable offers valuable information about the system robustness to control noise. The Hessian can also assist in physical landscape characterization, which is of particular interest in quantum system control experiments. The recently developed landscape theoretical analysis motivated the compilation of an automated method to learn the Hessian matrix about the global optimum without derivative measurements from noisy data. The current study introduces the forced optimal covariance adaptive learning (FOCAL) technique for this purpose. FOCAL relies on the covariance matrix adaptation evolution strategy (CMA-ES) that exploits covariance information amongst the control variables by means of principal component analysis. The FOCAL technique is designed to operate with experimental optimization, generally involving continuous high-dimensional search landscapes (≳30) with large Hessian condition numbers (≳104). This paper introduces the theoretical foundations of the inverse relationship between the covariance learned by the evolution strategy and the actual Hessian matrix of the landscape. FOCAL is presented and demonstrated to retrieve the Hessian matrix with high fidelity on both model landscapes and quantum control experiments, which are observed to possess nonseparable, nonquadratic search landscapes. The recovered Hessian forms were corroborated by physical knowledge of the systems. The implications of FOCAL extend beyond the investigated studies to potentially cover other physically motivated multivariate landscapes.

  8. Geographic information analysis: An ecological approach for the management of wildlife on the forest landscape

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1995-01-01

    This document is a summary of the project funded by NAGw-1460 as part of the Earth Observation Commericalization/Applications Program (EOCAP) directed by NASA's Earth Science and Applications Division. The goal was to work with several agencies to focus on forest structure and landscape characterizations for wildlife habitat applications. New analysis techniques were used in remote sensing and landscape ecology with geographic information systems (GIS). The development of GIS and the emergence of the discipline of landscape ecology provided us with an opportunity to study forest and wildlife habitat resources from a new perspective. New techniques were developed to measure forest structure across scales from the canopy to the regional level. This paper describes the project team, technical advances, and technology adoption process that was used. Reprints of related refereed journal articles are in the Appendix.

  9. Fundamental Study about the Landscape Estimation and Analysis by CG

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshio; Miyagoshi, Takashi; Takamatsu, Mamoru; Sassa, Kazuhiro

    In recent years, the color of advertising signboards or vending machines on the streets should be harmonized with the surrounding landscape. In this study, we investigated how the colors (red and white) of the vending machines virtually installed by CG would affect the traditional landscape. 20 subjects estimated landscape samples in Hida-Furukawa by the SD technique. The result of our experiment shows that the vending machines have great influence on the surrounding landscape. On the other hand, we have confirmed that they can harmonize with the circumference landscape by the color to use.

  10. Preliminary GIS analysis of the agricultural landscape of Cuyo Cuyo, Department of Puno, Peru

    NASA Technical Reports Server (NTRS)

    Winterhalder, Bruce; Evans, Tom

    1991-01-01

    Computerized analysis of a geographic database (GIS) for Cuyo Cuyo, (Dept. Puno, Peru) is used to correlate the agricultural production zones of two adjacent communities to altitude, slope, aspect, and other geomorphological features of the high-altitude eastern escarpment landscape. The techniques exemplified will allow ecological anthropologists to analyze spatial patterns at regional scales with much greater control over the data.

  11. Analysis of Environmental Data and Landscape Characterization on Multiple WetlandTypes Using Water Level Loggers and GIS Techniques in Tampa, FL

    EPA Science Inventory

    To better characterize the relationships between both adjacent hydrology/ precipitation and nutrient processing with groundwater level fluctuations, continuous water level data are being collected across three dominant wetland types, each with varied landscape characteristics. Th...

  12. RS- and GIS-based study on landscape pattern change in the Poyang Lake wetland area, China

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoling; Li, Hui; Bao, Shuming; Wu, Zhongyi; Fu, Weijuan; Cai, Xiaobin; Zhao, Hongmei; Guo, Peng

    2006-10-01

    As wetland has been recognized as an important component of ecosystem, it is received ever-increasing attention worldwide. Poyang Lake wetlands, the international wetlands and the largest bird habitat in Asia, play an important role in biodiversity and ecologic protection. However, with the rapid economic growth and urbanization, landscape patterns in the wetlands have dramatically changed in the past three decades. To better understand the wetland landscape dynamics, remote sensing, geographic information system technologies, and the FRAGSTATS landscape analysis program were used to measure landscape patterns. Statistical approach was employed to illustrate the driving forces. In this study, Landsat images (TM and ETM+) from 1989 and 2000 were acquired for the wetland area. The landscapes in the wetland area were classified as agricultural land, urban, wetland, forest, grassland, unused land, and water body using a combination of supervised and unsupervised classification techniques integrated with Digital Elevation Model (DEM). Landscape indices, which are popular for the quantitative analysis of landscape pattern, were then employed to analyze the landscape pattern changes between the two dates in a GIS. From this analysis an understanding of the spatial-temporal patterns of landscape evolution was generated. The results show that wetland area was reduced while fragmentation was increased over the study period. Further investigation was made to examine the relationship between landscape metrics and some other parameters such as urbanization to address the driving forces for those changes. The urban was chosen as center to conduct buffer analysis in a GIS to study the impact of human-induced activities on landscape pattern dynamics. It was found that the selected parameters were significantly correlated with the landscape metrics, which may well indicate the impact of human-induced activities on the wetland landscape pattern dynamics and account for the driving forces.

  13. Geographic techniques and recent applications of remote sensing to landscape-water quality studies

    USGS Publications Warehouse

    Griffith, J.A.

    2002-01-01

    This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.

  14. Landscape Characterization of Arctic Ecosystems Using Data Mining Algorithms and Large Geospatial Datasets

    NASA Astrophysics Data System (ADS)

    Langford, Z. L.; Kumar, J.; Hoffman, F. M.

    2015-12-01

    Observations indicate that over the past several decades, landscape processes in the Arctic have been changing or intensifying. A dynamic Arctic landscape has the potential to alter ecosystems across a broad range of scales. Accurate characterization is useful to understand the properties and organization of the landscape, optimal sampling network design, measurement and process upscaling and to establish a landscape-based framework for multi-scale modeling of ecosystem processes. This study seeks to delineate the landscape at Seward Peninsula of Alaska into ecoregions using large volumes (terabytes) of high spatial resolution satellite remote-sensing data. Defining high-resolution ecoregion boundaries is difficult because many ecosystem processes in Arctic ecosystems occur at small local to regional scales, which are often resolved in by coarse resolution satellites (e.g., MODIS). We seek to use data-fusion techniques and data analytics algorithms applied to Phased Array type L-band Synthetic Aperture Radar (PALSAR), Interferometric Synthetic Aperture Radar (IFSAR), Satellite for Observation of Earth (SPOT), WorldView-2, WorldView-3, and QuickBird-2 to develop high-resolution (˜5m) ecoregion maps for multiple time periods. Traditional analysis methods and algorithms are insufficient for analyzing and synthesizing such large geospatial data sets, and those algorithms rarely scale out onto large distributed- memory parallel computer systems. We seek to develop computationally efficient algorithms and techniques using high-performance computing for characterization of Arctic landscapes. We will apply a variety of data analytics algorithms, such as cluster analysis, complex object-based image analysis (COBIA), and neural networks. We also propose to use representativeness analysis within the Seward Peninsula domain to determine optimal sampling locations for fine-scale measurements. This methodology should provide an initial framework for analyzing dynamic landscape trends in Arctic ecosystems, such as shrubification and disturbances, and integration of ecoregions into multi-scale models.

  15. Solutions for characterising natural landscapes in New Zealand using geographical information systems.

    PubMed

    Brabyn, Lars

    2005-07-01

    This paper explores solutions for characterising naturalness in relation to visual landscapes using Geographical Information System (GIS). It is argued that planners need to identify natural landscapes and monitor changes in their extent. Just like the indices that have been developed to describe the state of the economy, indices need to be developed that monitor the state of natural landscapes. The complications in characterising natural landscapes are outlined but it is argued that there is a need to develop definitions of natural landscapes that can be operationalised with a GIS. This will have the advantages of the efficiency of the technology and that the definition will be explicit and the implementation will be independent of the operator. Several GIS solutions are provided and these are an analysis of landcover, a density analysis of roads and utilities, and an analysis of property sizes. The analysis of property sizes is sensitive to many human modifications of the landscape because many developments begin with the subdivision of properties. However, it is argued in this paper that no one definition will suffice and that all three methods provide different, yet important, insights into natural landscape character. An aggregate classification of naturalness based on the majority value of the indices is demonstrated as well as a range of techniques for expressing the uncertainty of the aggregate classification.

  16. The 4DILAN Project (4TH Dimension in Landscape and Artifacts Analyses)

    NASA Astrophysics Data System (ADS)

    Chiabrando, F.; Naretto, M.; Sammartano, G.; Sambuelli, L.; Spanò, A.; Teppati Losè, L.

    2017-05-01

    The project is part of the wider application and subsequent spread of innovative digital technologies involving robotic systems. Modern society needs knowledge and investigation of the environment and of the related built landscape; therefore it increasingly requires new types of information. The goal can be achieved through the innovative integration of methods to set new analysis strategies for the knowledge of the built heritage and cultural landscape. The experimental cooperation between different disciplines and the related tools and techniques, which this work suggests for the analysis of the architectural heritage and the historical territory, are the following: - 3D metric survey techniques with active and passive sensors - the latter operating in both terrestrial mode and by aerial pointof view. In some circumstances, beyond the use of terrestrial LiDAR, even the newest mobile mapping system using SLAMtechnology (simultaneous localization and mapping) has been tested. - Techniques of non-destructive investigation, such as geophysical analysis of the subsoil and built structures, in particularGPR (Ground Penetrating Radar) techniques. - Historic and stratigraphic surveys carried out primarily through the study and interpretation of documentary sources,cartography and historical iconography, closely related to the existing data or latent material. The experience through the application of these techniques of investigation connected to the built spaces and to the manmade environments has been achieved with the aim of improving the ability to analyse the occurred transformations/layers over time and no longer directly readable or interpretable on manufactured evidence.

  17. Integration of geological remote-sensing techniques in subsurface analysis

    USGS Publications Warehouse

    Taranik, James V.; Trautwein, Charles M.

    1976-01-01

    Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.

  18. Development of a reproducible method for determining quantity of water and its configuration in a marsh landscape

    USGS Publications Warehouse

    Suir, Glenn M.; Evers, D. Elaine; Steyer, Gregory D.; Sasser, Charles E.

    2013-01-01

    Coastal Louisiana is a dynamic and ever-changing landscape. From 1956 to 2010, over 3,734 km2 of Louisiana's coastal wetlands have been lost due to a combination of natural and human-induced activities. The resulting landscape constitutes a mosaic of conditions from highly deteriorated to relatively stable with intact landmasses. Understanding how and why coastal landscapes change over time is critical to restoration and rehabilitation efforts. Historically, changes in marsh pattern (i.e., size and spatial distribution of marsh landmasses and water bodies) have been distinguished using visual identification by individual researchers. Difficulties associated with this approach include subjective interpretation, uncertain reproducibility, and laborious techniques. In order to minimize these limitations, this study aims to expand existing tools and techniques via a computer-based method, which uses geospatial technologies for determining shifts in landscape patterns. Our method is based on a raster framework and uses landscape statistics to develop conditions and thresholds for a marsh classification scheme. The classification scheme incorporates land and water classified imagery and a two-part classification system: (1) ratio of water to land, and (2) configuration and connectivity of water within wetland landscapes to evaluate changes in marsh patterns. This analysis system can also be used to trace trajectories in landscape patterns through space and time. Overall, our method provides a more automated means of quantifying landscape patterns and may serve as a reliable landscape evaluation tool for future investigations of wetland ecosystem processes in the northern Gulf of Mexico.

  19. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of landscape ecological processes.

  20. [Application of 3S techniques in ecological landscape planning of Harbin suburb].

    PubMed

    Fan, Wenyi; Gong, Wenfeng; Liu, Dandan; Zhou, Hongze; Zhu, Ning

    2005-12-01

    With the image data (SPOT), soil utilization map (1:50000) and other related materials of Harbin, and under the support of GIS, RS and GPS techniques, this paper obtained the landscape pattern of Harbin suburb and the Digital Elevation Model (DEM) of Harbin. Indices including mean patch area, landscape dominance, mean slope, mean altitude, and fragmentation degree were selected and synthetically analyzed, with the ecological landscape planning made by DEM model. The results showed that 3S techniques could help to decide typical landscape types. The landscape type database was established, and the landscape type thematic map was generated, with land use status and landscape distribution, physiognomy, and land use types combined. The ecological landscape planning was described in large scale with the image data and DEM combined, and the landscape structure of Harbin suburb was reflected directly with the ecological landscape planning and DEM combined, which improved the ecological function in this region, and provided scientific bases to the healthy development in urban-rural integration area.

  1. The spatial relationship between human activities and C, N, P, S in soil based on landscape geochemical interpretation.

    PubMed

    Yu, Huan; He, Zheng-Wei; Kong, Bo; Weng, Zhong-Yin; Shi, Ze-Ming

    2016-04-01

    The development and formation of chemical elements in soil are affected not only by parent material, climate, biology, and topology factors, but also by human activities. As the main elements supporting life on earth system, the C, N, P, S cycles in soil have been altered by human activity through land-use change, agricultural intensification, and use of fossil fuels. The present study attempts to analyze whether and how a connection can be made between macroscopical control and microcosmic analysis, to estimate the impacts of human activities on C, N, P, S elements in soil, and to determine a way to describe the spatial relationship between C, N, P, S in soil and human activities, by means of landscape geochemical theories and methods. In addition, the disturbances of human activities on C, N, P, S are explored through the analysis of the spatial relationship between human disturbed landscapes and element anomalies, thereby determining the diversified rules of the effects. The study results show that the rules of different landscapes influencing C, N, P, S elements are diversified, and that the C element is closely related to city landscapes; furthermore, the elements N, P, and S are shown to be closely related to river landscapes; the relationships between mine landscapes and the elements C, N, P, S are apparent; the relationships between the elements C, N, P, S and road landscapes are quite close, which shows that road landscapes have significant effects on these elements. Therefore, the conclusion is drawn that the response mechanism analysis of human disturbance and soil chemical element aggregation is feasible, based on the landscape geochemical theories and methods. The spatial information techniques, such as remote sensing and geographic information systems, are effective for research on soil element migration.

  2. Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts

    USGS Publications Warehouse

    Lent, R.M.; Waldron, M.C.; Rader, J.C.

    1998-01-01

    A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.

  3. Reconsideration of dynamic force spectroscopy analysis of streptavidin-biotin interactions.

    PubMed

    Taninaka, Atsushi; Takeuchi, Osamu; Shigekawa, Hidemi

    2010-05-13

    To understand and design molecular functions on the basis of molecular recognition processes, the microscopic probing of the energy landscapes of individual interactions in a molecular complex and their dependence on the surrounding conditions is of great importance. Dynamic force spectroscopy (DFS) is a technique that enables us to study the interaction between molecules at the single-molecule level. However, the obtained results differ among previous studies, which is considered to be caused by the differences in the measurement conditions. We have developed an atomic force microscopy technique that enables the precise analysis of molecular interactions on the basis of DFS. After verifying the performance of this technique, we carried out measurements to determine the landscapes of streptavidin-biotin interactions. The obtained results showed good agreement with theoretical predictions. Lifetimes were also well analyzed. Using a combination of cross-linkers and the atomic force microscope that we developed, site-selective measurement was carried out, and the steps involved in bonding due to microscopic interactions are discussed using the results obtained by site-selective analysis.

  4. The propagation of varied timescale perturbations in landscapes

    NASA Astrophysics Data System (ADS)

    Bingham, N.; Johnson, K. N.; Bookhagen, B.; Chadwick, O.

    2016-12-01

    The classic assumption of steady-state landscapes greatly simplifies models of earth-surface processes. Theoretically, steady-state denotes time independence, but in real landscapes steady-state requires a timescale over which to assume (or document) no change. In the past, poor spatiotemporal resolution of eroding landscapes necessitated that shorter timescale perturbations be ignored in favor of regional formulations of rock uplift = erosion, 105, 6 years. Now, novel techniques and technologies provide an opportunity to define local landscape response to various timescales of perturbations; thus, allowing us to consider multiple steady-states on adjacent watersheds or even along a single watershed. This study seeks to identify the physical propagation of varied timescale perturbations in landscapes in order to provide an updated geomorphic context for interpreting critical zone processes. At our study site - Santa Cruz Island (SCI), CA - perturbations include sea level and climate fluctuations over 105 years coupled with pulses of overgrazing and extreme storm events during the last 200 years. Comprehensive knickpoint location maps and dated marine and fill terraces tighten the spatiotemporal constraints on erosion for SCI. In addition, the island hosts a wide range of lithologies, allowing us to compare lithologic effects on landscape response to perturbations. Our study uses lidar point clouds and high resolution (0.25 and 1 m) digital elevation model analysis to segment landscapes by the degree of their response to perturbations. Landscape response is measured by increases in topographic roughness. We ascertain roughness by analyzing the changes in different terrain attributes on multiple spatial scales: catchment, sub-catchments and individual hillslopes. Terrain attributes utilized include slope, curvature, local relief, flowpath length and contributing catchment area. Statistical analysis of these properties indicates narrower ranges in values for regions of relative stability compared to unstable areas. This updated assessment of landscape response leads to a more detailed and nuanced definition of steady-state across landscapes, enabling a finer resolution of process understanding with the critical zone. The classic assumption of steady-state landscapes greatly simplifies models of earth-surface processes. Theoretically, steady-state denotes time independence, but in real landscapes steady-state requires a timescale over which to assume (or document) no change. In the past, poor spatiotemporal resolution of eroding landscapes necessitated that shorter timescale perturbations be ignored in favor of regional formulations of rock uplift = erosion, 105, 6 years. Now, novel techniques and technologies provide an opportunity to define local landscape response to various timescales of perturbations; thus, allowing us to consider multiple steady-states on adjacent watersheds or even along a single watershed. This study seeks to identify the physical propagation of varied timescale perturbations in landscapes in order to provide an updated geomorphic context for interpreting critical zone processes. At our study site - Santa Cruz Island (SCI), CA - perturbations include sea level and climate fluctuations over 105 years coupled with pulses of overgrazing and extreme storm events during the last 200 years. Comprehensive knickpoint location maps and dated marine and fill terraces tighten the spatiotemporal constraints on erosion for SCI. In addition, the island hosts a wide range of lithologies, allowing us to compare lithologic effects on landscape response to perturbations. Our study uses lidar point clouds and high resolution (0.25 and 1 m) digital elevation model analysis to segment landscapes by the degree of their response to perturbations. Landscape response is measured by increases in topographic roughness. We ascertain roughness by analyzing the changes in different terrain attributes on multiple spatial scales: catchment, sub-catchments and individual hillslopes. Terrain attributes utilized include slope, curvature, local relief, flowpath length and contributing catchment area. Statistical analysis of these properties indicates narrower ranges in values for regions of relative stability compared to unstable areas. This updated assessment of landscape response leads to a more detailed and nuanced definition of steady-state across landscapes, enabling a finer resolution of process understanding with the critical zone.

  5. Geomorphology applied to landscape analysis for planning and management of natural spaces. Case study: Las Batuecas-S. de Francia and Quilamas natural parks, (Salamanca, Spain).

    PubMed

    Martínez-Graña, A M; Silva, P G; Goy, J L; Elez, J; Valdés, V; Zazo, C

    2017-04-15

    Geomorphology is fundamental to landscape analysis, as it represents the main parameter that determines the land spatial configuration and facilitates reliefs classification. The goal of this article is the elaboration of thematic maps that enable the determination of different landscape units and elaboration of quality and vulnerability synthetic maps for landscape fragility assessment prior to planning human activities. For two natural spaces, the final synthetic maps were created with direct (visual-perceptual features) and indirect (cartographic models and 3D simulations) methods from thematic maps with GIS technique. This enabled the creation of intrinsic and extrinsic landscape quality maps showing sectors needing most preservation, as well as intrinsic and extrinsic landscape fragility maps (environment response capacity or vulnerability towards human actions). The resulting map shows absorption capacity for areas of maximum and/or minimum human intervention. Sectors of high absorption capacity (minimum need for preservation) are found where the incidence of human intervention is minimum: escarpment bottoms, fitted rivers, sinuous high lands with thick vegetation coverage and valley interiors, or those areas with high landscape quality, low fragility and high absorption capacity, whose average values are found across lower hillsides of some valleys, and sectors with low absorption capacity (areas needing most preservation) found mainly in the inner parts of natural spaces: peaks and upper hillsides, synclines flanks and scattered areas. For the integral analysis of landscape, a mapping methodology has been set. It comprises a valid criterion for rational and sustainable planning, management and protection of natural spaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Identification of functional corridors with movement characteristics of brown bears on the Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Graves, T.A.; Farley, S.; Goldstein, M.I.; Servheen, C.

    2007-01-01

    We identified primary habitat and functional corridors across a landscape using Global Positioning System (GPS) collar locations of brown bears (Ursus arctos). After deriving density, speed, and angular deviation of movement, we classified landscape function for a group of animals with a cluster analysis. We described areas with high amounts of sinuous movement as primary habitat patches and areas with high amounts of very directional, fast movement as highly functional bear corridors. The time between bear locations and scale of analysis influenced the number and size of corridors identified. Bear locations should be collected at intervals ???6 h to correctly identify travel corridors. Our corridor identification technique will help managers move beyond the theoretical discussion of corridors and linkage zones to active management of landscape features that will preserve connectivity. ?? 2007 Springer Science+Business Media, Inc.

  7. Associations between forest characteristics and socio-economic development: a case study from Portugal.

    PubMed

    Ribeiro, Sónia Carvalho; Lovett, Andrew

    2009-07-01

    The integration of socio-economic and environmental objectives is a major challenge in developing strategies for sustainable landscapes. We investigated associations between socio-economic variables, landscape metrics and measures of forest condition in the context of Portugal. The main goals of the study were to 1) investigate relationships between forest conditions and measures of socio-economic development at national and regional scales, 2) test the hypothesis that a systematic variation in forest landscape metrics occurs according to the stage of socio-economic development and, 3) assess the extent to which landscape metrics can inform strategies to enhance forest sustainability. A ranking approach and statistical techniques such as Principal Component Analysis were used to achieve these objectives. Relationships between socio-economic characteristics, landscape metrics and measures of forest condition were only significant in the regional analysis of municipalities in Northern Portugal. Landscape metrics for different tree species displayed significant variations across socio-economic groups of municipalities and these differences were consistent with changes in characteristics suggested by the forest transition model. The use of metrics also helped inform place-specific strategies to improve forest management, though it was also apparent that further work was required to better incorporate differences in forest functions into sustainability planning.

  8. Change analysis in the United Arab Emirates: An investigation of techniques

    USGS Publications Warehouse

    Sohl, Terry L.

    1999-01-01

    Much of the landscape of the United Arab Emirates has been transformed over the past 15 years by massive afforestation, beautification, and agricultural programs. The "greening" of the United Arab Emirates has had environmental consequences, however, including degraded groundwater quality and possible damage to natural regional ecosystems. Personnel from the Ground- Water Research project, a joint effort between the National Drilling Company of the Abu Dhabi Emirate and the U.S. Geological Survey, were interested in studying landscape change in the Abu Dhabi Emirate using Landsat thematic mapper (TM) data. The EROs Data Center in Sioux Falls, South Dakota was asked to investigate land-cover change techniques that (1) provided locational, quantitative, and qualitative information on landcover change within the Abu Dhabi Emirate; and (2) could be easily implemented by project personnel who were relatively inexperienced in remote sensing. A number of products were created with 1987 and 1996 Landsat TM data using change-detection techniques, including univariate image differencing, an "enhanced" image differencing, vegetation index differencing, post-classification differencing, and changevector analysis. The different techniques provided products that varied in levels of adequacy according to the specific application and the ease of implementation and interpretation. Specific quantitative values of change were most accurately and easily provided by the enhanced image-differencing technique, while the change-vector analysis excelled at providing rich qualitative detail about the nature of a change. 

  9. Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero.

    PubMed

    Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra

    2006-03-16

    The mapping of enthalpy landscapes is complicated by the coupling of particle position and volume coordinates. To address this issue, we have developed a new split-step eigenvector-following technique for locating minima and transition points in an enthalpy landscape at absolute zero. Each iteration is split into two steps in order to independently vary system volume and relative atomic coordinates. A separate Lagrange multiplier is used for each eigendirection in order to provide maximum flexibility in determining step sizes. This technique will be useful for mapping the enthalpy landscapes of bulk systems such as supercooled liquids and glasses.

  10. Systems biology: A tool for charting the antiviral landscape.

    PubMed

    Bowen, James R; Ferris, Martin T; Suthar, Mehul S

    2016-06-15

    The host antiviral programs that are initiated following viral infection form a dynamic and complex web of responses that we have collectively termed as "the antiviral landscape". Conventional approaches to studying antiviral responses have primarily used reductionist systems to assess the function of a single or a limited subset of molecules. Systems biology is a holistic approach that considers the entire system as a whole, rather than individual components or molecules. Systems biology based approaches facilitate an unbiased and comprehensive analysis of the antiviral landscape, while allowing for the discovery of emergent properties that are missed by conventional approaches. The antiviral landscape can be viewed as a hierarchy of complexity, beginning at the whole organism level and progressing downward to isolated tissues, populations of cells, and single cells. In this review, we will discuss how systems biology has been applied to better understand the antiviral landscape at each of these layers. At the organismal level, the Collaborative Cross is an invaluable genetic resource for assessing how genetic diversity influences the antiviral response. Whole tissue and isolated bulk cell transcriptomics serves as a critical tool for the comprehensive analysis of antiviral responses at both the tissue and cellular levels of complexity. Finally, new techniques in single cell analysis are emerging tools that will revolutionize our understanding of how individual cells within a bulk infected cell population contribute to the overall antiviral landscape. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Discriminating trpzip2 and trpzip4 peptides’ folding landscape using the two-dimensional infrared spectroscopy: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tianmin; Zhang, Ruiting; Li, Huanhuan

    2014-02-07

    We analyzed, based on the theoretical spectroscopic modeling, how the differences in the folding landscapes of two β-hairpin peptides trpzip2 and trpzip4 are reflected in their thermal unfolding infrared measurements. The isotope-edited equilibrium FTIR and two dimensional infrared spectra of the two peptides were calculated, using the nonlinear exciton propagation method, at a series of temperatures. The spectra calculations were based on the configuration distributions generated using the GB{sup OBC} implicit solvent MD simulation and the integrated tempering sampling technique. Conformational analysis revealed the different local thermal stabilities for these two peptides, which suggested the different folding landscapes. Our studymore » further suggested that the ellipticities of the isotope peaks in the coherent IR signals are more sensitive to these local stability differences compared with other spectral features such as the peak intensities. Our technique can thus be combined with the relevant experimental measurements to achieve a better understanding of the peptide folding behaviors.« less

  12. Landscape level analysis of disturbance regimes in protected areas of Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Krishna, P. Hari; Reddy, C. Sudhakar; Singh, Randeep; Jha, C. S.

    2014-04-01

    There is an urgent need to identify the human influence on landscape as disturbance regimes was realized for prioritization of the protected areas. The present study has attempted to describe the landscape level assessment of fragmentation and disturbance index in protected areas of Rajasthan using remote sensing and GIS techniques. Geospatial analysis of disturbance regimes indicates 61.75% of the total PAs are under moderate disturbance index followed by 28.64% and 9.61% under low and high respectively. Among the 28 protected areas- National Chambal WLS, Jaisamand WLS, Kumbhalgarh WLS, Sawai Man Singh WLS, Kailadevi WLS and Bandh Baratha WLS are representing high level of disturbance. The present study has emphasized the moderate to low disturbance regimes in protected areas, which infer low biotic pressure and conservation effectiveness of PA network in Rajasthan. The spatial information generated on PAs is of valuable use for forest management and developing conservation strategies.

  13. Landscape analysis of urban growth patterns in Seremban, Malaysia, using spatio-temporal data

    NASA Astrophysics Data System (ADS)

    Aburas, Maher M.; Abdullah, Sabrina H.; Ramli, Mohammad F.; As'shari, Zulfa H.

    2016-06-01

    Urban growth is one of the major issues that have played a significant role in destroying the ecosystem in recent years. Landscape analysis is an important technique widely used to evaluate urban growth patterns. In this study, four land-use maps from 1984, 1990, 2000, and 2010 have been used to analyze an urban landscape. The values of a built-up area were initially computed using a geographic information system environment based on the spatial gradient approach. Mathematical matrices were then used to determine the amount of change in urban patches in each direction. Results of the number of patches, landscape shape index, aggregation index, and total edges confirmed that the urban patches in Seremban, Malaysia, have become more dispersed from 2000 to 2010. The urban patches have also become more continuous, especially in the north-western part of Seremban as a result of the urban development in the Nilai District. These results indicate the necessity to create new policies in the city to protect the sustainability of the land use of Seremban.

  14. A Transient Landscape: Geospatial Analysis and Numerical Modeling of Coastal Geomorphology in the Outer Banks, North Carolina

    NASA Astrophysics Data System (ADS)

    Hardin, Eric Jon

    Coastal landscapes can be relentlessly dynamic---owing to wave energy, tidal cycles, extreme weather events, and perpetual coastal winds. In these settings, the ever-changing landscape can threaten assets and infrastructure, necessitating costly measures to mitigate associated risks and to repair or maintain the changing landscape. Mapping and monitoring of terrain change, identification of areas susceptible to dramatic change, and understanding the processes that drive landscape change are critical for the development of responsible coastal management strategies and policies. Over the past two decades, LiDAR mapping has been conducted along the U.S. east coast (including the Outer Banks, North Carolina) on a near annual basis---generating a rich time series of topographic data with unprecedented accuracy, resolution, and extent. This time series has captured the response of the landscape to episodic storms, daily forcing of wind and waves, and anthropogenic activities. This work presents raster-based geospatial techniques developed to gain new insights into coastal geomorphology from the time series of available LiDAR. Per-cell statistical techniques derive information that is typically not obtained through the techniques traditionally employed by coastal scientists and engineers. Application of these techniques to study sites along the Outer Banks, NC, revealed substantial spatial and temporal variations in terrain change. Additionally, they identify the foredunes as being the most geomorphologically dynamic coastal features. In addition to per-cell statistical analysis, an approach is presented for the extraction of the dune ridge and dune toe (two features that are essential to standard vulnerability assessment). The approach employs a novel application of least cost path analysis and a physics-based model of an elastic sheet. The spatially distributed nature of the approach achieves a high level of automation and repeatability that semi-automated methods and manual digitization lack. Furthermore, the approach can be fully implemented with standard Geographic Information System (GIS) functionality, resulting in efficiency and ease of implementation. With this approach, a raster-based implementation of the U.S. Geological Survey (USGS) storm impact scale (designed to assess storm vulnerability of barrier islands) was developed. Vulnerability of 4km of the Outer Banks to Hurricane Isabel (2003) was assessed. The demonstrated approach produced vulnerability mapping at the high resolution of the input Digital Elevation Model (DEM)---providing results at the scale needed for local management, in contrast to the USGS approach, which is designed for continental scale vulnerability assessment. However, geospatial techniques cannot fully explain the observed geomorphology. Therefore, we present the Smoothed Particle Hydrodynamics (SPH) implementation of the Sauermann model for wind-driven sand transport. The SPH implementation enables the full nonlinearity of the model to be applied to complex scenarios that are typical of coastal landscapes. Through application of the SPH model and Computational Fluid Dynamics (CFD) modeling of the windborne surface shear stress (which drives sand transport), we present the sediment flux at two study sites along the Outer Banks. Scenarios were tested that involved steady-state surface shear stress as well as scenarios with intermittent variations in the surface shear stress. Results showed that intermittency in the surface shear stress has the potential to greatly influence the resulting flux. However, the degree to which intermittency does alter the flux is highly dependent on wind characteristics and wind direction relative to the orientation of salient topographic features.

  15. Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.

    2016-04-01

    Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project investigates the complex landscape dynamics between geological and ecological processes. This is done through cross-correlation of mapping results and implementation of modelling techniques that simulate geological and ecological processes in order to extrapolate the landscape evolution

  16. Threshold and resilience management of coupled urbanization and water environmental system in the rapidly changing coastal region.

    PubMed

    Li, Yangfan; Li, Yi; Wu, Wei

    2016-01-01

    The concept of thresholds shows important implications for environmental and resource management. Here we derived potential landscape thresholds which indicated abrupt changes in water quality or the dividing points between exceeding and failing to meet national surface water quality standards for a rapidly urbanizing city on the Eastern Coast in China. The analysis of landscape thresholds was based on regression models linking each of the seven water quality variables to each of the six landscape metrics for this coupled land-water system. We found substantial and accelerating urban sprawl at the suburban areas between 2000 and 2008, and detected significant nonlinear relations between water quality and landscape pattern. This research demonstrated that a simple modeling technique could provide insights on environmental thresholds to support more-informed decision making in land use, water environmental and resilience management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Geometry analysis for landscape fragmentation in coastal areas of China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianhai; Yu, Ning; Mu, Hongdu; Tuo, Tao

    2017-08-01

    In recent years, the continuous expansion of urban-transport networks in China has aggravated the fragmentation of regional landscapes and led to the degradation of multiple ecological functions. In this study, Geographic Information System (GIS) techniques, patch size of fragmentation geometry were used to identify and monitor spatial distribution patterns of landscape fragmentation due to urban-transport networks in Fujian Province. This network has caused serious damage to regional ecological functions, and risks to the persistence of animal populations and biodiversity. This analysis revealed that the smallest patch class (0-15 km2) occurred with a much greater frequency than all other larger patch sizes. In the coastal cities of Xiamen, Zhangzhou and Quanzhou, the percentage of the number of patches less than 300 km2 was higher than in the western cities of Nanping, Sanming and Longyan, and the percentage of the area of patches less than 300 km2 was also higher. Based on a holistic identification of the structure of the network and its landscape division, we found that: Fujian Province has a spatial pattern of landscape fragmentation, with less fragmentation in western and northern regions, and most fragmentation in southern and eastern regions. Coastal regions and areas close to the main transport routes were more seriously fragmented and contained most of the small patches.

  18. Control landscapes are almost always trap free: a geometric assessment

    NASA Astrophysics Data System (ADS)

    Russell, Benjamin; Rabitz, Herschel; Wu, Re-Bing

    2017-05-01

    A proof is presented that almost all closed, finite dimensional quantum systems have trap free (i.e. free from local optima) landscapes for a large and physically general class of circumstances, which includes qubit evolutions in quantum computing. This result offers an explanation for why gradient-based methods succeed so frequently in quantum control. The role of singular controls is analyzed using geometric tools in the case of the control of the propagator, and thus in the case of observables as well. Singular controls have been implicated as a source of landscape traps. The conditions under which singular controls can introduce traps, and thus interrupt the progress of a control optimization, are discussed and a geometrical characterization of the issue is presented. It is shown that a control being singular is not sufficient to cause control optimization progress to halt, and sufficient conditions for a trap free landscape are presented. It is further shown that the local surjectivity (full rank) assumption of landscape analysis can be refined to the condition that the end-point map is transverse to each of the level sets of the fidelity function. This mild condition is shown to be sufficient for a quantum system’s landscape to be trap free. The control landscape is shown to be trap free for all but a null set of Hamiltonians using a geometric technique based on the parametric transversality theorem. Numerical evidence confirming this analysis is also presented. This new result is the analogue of the work of Altifini, wherein it was shown that controllability holds for all but a null set of quantum systems in the dipole approximation. These collective results indicate that the availability of adequate control resources remains the most physically relevant issue for achieving high fidelity control performance while also avoiding landscape traps.

  19. Impacts of Intensified Agriculture Developments on Marsh Wetlands

    PubMed Central

    Luan, Zhaoqing; Zhou, Demin

    2013-01-01

    A spatiotemporal analysis on the changes in the marsh landscape in the Honghe National Nature Reserve, a Ramsar reserve, and the surrounding farms in the core area of the Sanjiang Plain during the past 30 years was conducted by integrating field survey work with remote sensing techniques. The results indicated that intensified agricultural development had transformed a unique natural marsh landscape into an agricultural landscape during the past 30 years. Ninety percent of the natural marsh wetlands have been lost, and the areas of the other natural landscapes have decreased very rapidly. Most dry farmland had been replaced by paddy fields during the progressive change of the natural landscape to a farm landscape. Attempts of current Chinese institutions in preserving natural wetlands have achieved limited success. Few marsh wetlands have remained healthy, even after the establishment of the nature reserve. Their ecological qualities have been declining in response to the increasing threats to the remaining wetland habitats. Irrigation projects play a key role in such threats. Therefore, the sustainability of the natural wetland ecosystems is being threatened by increased regional agricultural development which reduced the number of wetland ecotypes and damaged the ecological quality. PMID:24027441

  20. Analyzing Human-Landscape Interactions: Tools That Integrate

    NASA Astrophysics Data System (ADS)

    Zvoleff, Alex; An, Li

    2014-01-01

    Humans have transformed much of Earth's land surface, giving rise to loss of biodiversity, climate change, and a host of other environmental issues that are affecting human and biophysical systems in unexpected ways. To confront these problems, environmental managers must consider human and landscape systems in integrated ways. This means making use of data obtained from a broad range of methods (e.g., sensors, surveys), while taking into account new findings from the social and biophysical science literatures. New integrative methods (including data fusion, simulation modeling, and participatory approaches) have emerged in recent years to address these challenges, and to allow analysts to provide information that links qualitative and quantitative elements for policymakers. This paper brings attention to these emergent tools while providing an overview of the tools currently in use for analysis of human-landscape interactions. Analysts are now faced with a staggering array of approaches in the human-landscape literature—in an attempt to bring increased clarity to the field, we identify the relative strengths of each tool, and provide guidance to analysts on the areas to which each tool is best applied. We discuss four broad categories of tools: statistical methods (including survival analysis, multi-level modeling, and Bayesian approaches), GIS and spatial analysis methods, simulation approaches (including cellular automata, agent-based modeling, and participatory modeling), and mixed-method techniques (such as alternative futures modeling and integrated assessment). For each tool, we offer an example from the literature of its application in human-landscape research. Among these tools, participatory approaches are gaining prominence for analysts to make the broadest possible array of information available to researchers, environmental managers, and policymakers. Further development of new approaches of data fusion and integration across sites or disciplines pose an important challenge for future work in integrating human and landscape components.

  1. The influence of landscape features on road development in a loess region, China.

    PubMed

    Bi, Xiaoli; Wang, Hui; Zhou, Rui

    2011-10-01

    Many ecologists focus on the effects of roads on landscapes, yet few consider how landscapes affect road systems. In this study, therefore, we quantitatively evaluated how land cover, topography, and building density affected the length density, node density, spatial pattern, and location of roads in Dongzhi Yuan, a typical loess region in China. Landscape factors and roads were mapped using images from SPOT satellite (Système Probatoire d'Observation de la Terre), initiated by the French space agency and a digital elevation model (DEM). Detrended canonical correspondence analysis (DCCA), a useful ordination technique to explain species-environment relations in community ecology, was applied to evaluate the ways in which landscapes may influence roads. The results showed that both farmland area and building density were positively correlated with road variables, whereas gully density and the coefficient of variation (CV of DEM) showed negative correlations. The CV of DEM, farmland area, grassland area, and building density explained variation in node density, length density, and the spatial pattern of roads, whereas gully density and building density explained variation in variables representing road location. In addition, node density, rather than length density, was the primary road variable affected by landscape variables. The results showed that the DCCA was effective in explaining road-landscape relations. Understanding these relations can provide information for landscape managers and transportation planners.

  2. [Impacts of farmland consolidation on farmland landscape].

    PubMed

    Deng, Jinsong; Wang, Ke; Li, Jun; Xu, Junfeng; Shen, Zhangquan; Gao, Yurong

    2006-01-01

    Farmland consolidation is the act of regulating, improving, and comprehensively renovating the structure, quality, and layout of field, water, road, forestry, and village in the countryside in a certain area by means of administration, economy, law, and engineering techniques according to the goal and usage defined by land use planning, so as to improve farmland use rate and its output rate, to increase farmland area, and to achieve better productive, living, and ecological environment. Recently, farmland consolidation has been carried out all over the country, especially in its economy-developed regions. But, unscientific planning and unsuitable farmland consolidation engineering have negative effects on field ecological system. In this paper, based on the technology of GIS and RS, the basic theories and methods of landscape ecology and a compositive grading method were applied to analysis the dynamics of farmland landscape fragmentation in Tongxiang county. The results showed that the farmland landscape fragmentation in this county was strongly affected by consolidation. More attention should be paid to the protection of farmland landscape during consolidation, and to avoid or decrease the negative effects resulted from unscientific planning and unsuitable farmland consolidation engineering.

  3. Imaging energy landscapes with concentrated diffusing colloidal probes

    NASA Astrophysics Data System (ADS)

    Bahukudumbi, Pradipkumar; Bevan, Michael A.

    2007-06-01

    The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).

  4. An incremental economic analysis of establishing early successional habitat for biodiversity

    Treesearch

    Slayton W. Hazard-Daniel; Patrick Hiesl; Susan C. Loeb; Thomas J. Straka

    2017-01-01

    Early successional habitat (ESH) is an important component of natural landscapes and is crucial to maintaining biodiversity. ESH also impacts endangered species. The extent of forest disturbances resulting in ESH has been diminishing, and foresters have developed timber management regimes using standard silvicultural techniques that...

  5. Placement of riparian forest buffers to improve water quality

    Treesearch

    Mark D. Tomer; Michael G. Dosskey; Michael R. Burkart; David E. James; Matthew J. Helmers; Dean E. Eisenhauer

    2005-01-01

    Riparian forest buffers can improve stream water quality, provided they intercept and remove contaminants from surface runoff and/or shallow groundwater. Soils, topography, hydrology, and surficial geology detemine the capability of forest buffers to intercept and treat these flows. This paper describes landscape analysis techniques for identifying and mapping...

  6. Practical issues of hyperspectral imaging analysis of solid dosage forms.

    PubMed

    Amigo, José Manuel

    2010-09-01

    Hyperspectral imaging techniques have widely demonstrated their usefulness in different areas of interest in pharmaceutical research during the last decade. In particular, middle infrared, near infrared, and Raman methods have gained special relevance. This rapid increase has been promoted by the capability of hyperspectral techniques to provide robust and reliable chemical and spatial information on the distribution of components in pharmaceutical solid dosage forms. Furthermore, the valuable combination of hyperspectral imaging devices with adequate data processing techniques offers the perfect landscape for developing new methods for scanning and analyzing surfaces. Nevertheless, the instrumentation and subsequent data analysis are not exempt from issues that must be thoughtfully considered. This paper describes and discusses the main advantages and drawbacks of the measurements and data analysis of hyperspectral imaging techniques in the development of solid dosage forms.

  7. Mapping specificity landscapes of RNA-protein interactions by high throughput sequencing.

    PubMed

    Jankowsky, Eckhard; Harris, Michael E

    2017-04-15

    To function in a biological setting, RNA binding proteins (RBPs) have to discriminate between alternative binding sites in RNAs. This discrimination can occur in the ground state of an RNA-protein binding reaction, in its transition state, or in both. The extent by which RBPs discriminate at these reaction states defines RBP specificity landscapes. Here, we describe the HiTS-Kin and HiTS-EQ techniques, which combine kinetic and equilibrium binding experiments with high throughput sequencing to quantitatively assess substrate discrimination for large numbers of substrate variants at ground and transition states of RNA-protein binding reactions. We discuss experimental design, practical considerations and data analysis and outline how a combination of HiTS-Kin and HiTS-EQ allows the mapping of RBP specificity landscapes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Incorporating Resource Protection Constraints in an Analysis of Landscape Fuel-Treatment Effectiveness in the Northern Sierra Nevada, CA, USA.

    PubMed

    Dow, Christopher B; Collins, Brandon M; Stephens, Scott L

    2016-03-01

    Finding novel ways to plan and implement landscape-level forest treatments that protect sensitive wildlife and other key ecosystem components, while also reducing the risk of large-scale, high-severity fires, can prove to be difficult. We examined alternative approaches to landscape-scale fuel-treatment design for the same landscape. These approaches included two different treatment scenarios generated from an optimization algorithm that reduces modeled fire spread across the landscape, one with resource-protection constrains and one without the same. We also included a treatment scenario that was the actual fuel-treatment network implemented, as well as a no-treatment scenario. For all the four scenarios, we modeled hazardous fire potential based on conditional burn probabilities, and projected fire emissions. Results demonstrate that in all the three active treatment scenarios, hazardous fire potential, fire area, and emissions were reduced by approximately 50 % relative to the untreated condition. Results depict that incorporation of constraints is more effective at reducing modeled fire outputs, possibly due to the greater aggregation of treatments, creating greater continuity of fuel-treatment blocks across the landscape. The implementation of fuel-treatment networks using different planning techniques that incorporate real-world constraints can reduce the risk of large problematic fires, allow for landscape-level heterogeneity that can provide necessary ecosystem services, create mixed forest stand structures on a landscape, and promote resilience in the uncertain future of climate change.

  9. Analysis of changes in farm pond network connectivity in the peri-urban landscape of the Taoyuan area, Taiwan.

    PubMed

    Huang, Shu-Li; Lee, Ying-Chieh; Budd, William W; Yang, Min-Chia

    2012-04-01

    The farm pond system for irrigation is the most prominent feature in the Taoyuan area, Taiwan, giving the region a unique landscape and hydrological character. Although this area had more than 3,290 ponds in the 1970s, fewer than 1,800 now remain. This study analyzes changes in irrigation farm ponds and the canal network landscape in the Taoyuan area. The spatial and temporal changes to ponds and the canal network on the Taoyuan plain were examined graphically for each spatial unit (2,765 m × 2,525 m) using aerial photographs for 1979 and 2005. Landscape metrics were calculated to analyze landscape change associated with increased urbanization. Landscape indices of connectivity and circuitry were utilized to describe changes in the configuration of ponds and canal networks. The total length of canals and total number of ponds in the study area decreased significantly during 1979-2005. The average values of connectivity indices (γ- and α-index) also decreased during 1979-2005, reflecting degradation of canal networks due to urban sprawl. A multivariate technique was applied to portion the study area into three zones according to changes to land cover, ponds, and canal networks. The effects of urban sprawl on the spatial pattern of ponds and canal networks are discussed.

  10. How vegetation and sediment transport feedbacks drive landscape change in the Everglades and wetlands worldwide

    USGS Publications Warehouse

    Larsen, Laurel G.; Harvey, Judson W.

    2010-01-01

    Mechanisms reported to promote landscape self‐organization cannot explain vegetation patterning oriented parallel to flow. Recent catastrophic shifts in Everglades landscape pattern and ecological function highlight the need to understand the feedbacks governing these ecosystems. We modeled feedback between vegetation, hydrology, and sediment transport on the basis of a decade of experimentation. Results from more than 100 simulations showed that flows just sufficient to redistribute sediment from sparsely vegetated sloughs to dense ridges were needed for an equilibrium patterned landscape oriented parallel to flow. Surprisingly, although vegetation heterogeneity typically conveys resilience, in wetlands governed by flow/sediment feedbacks it indicates metastability, whereby the landscape is prone to catastrophic shifts. Substantial increases or decreases in flow relative to the equilibrium condition caused an expansion of emergent vegetation and loss of open‐water areas that was unlikely to revert upon restoration of the equilibrium hydrology. Understanding these feedbacks is critical in forecasting wetland responses to changing conditions and designing management strategies that optimize ecosystem services, such as carbon sequestration or habitat provision. Our model and new sensitivity analysis techniques address these issues and make it newly apparent that simply returning flow to predrainage conditions in the Everglades may not be sufficient to restore historic landscape patterns and processes.

  11. The Q-Sort method: use in landscape assessment research and landscape planning

    Treesearch

    David G. Pitt; Ervin H. Zube

    1979-01-01

    The assessment of visual quality inherently involves the measurement of perceptual response to landscape. The Q-Sort Method is a psychometric technique which produces reliable and valid interval measurements of people's perceptions of landscape visual quality as depicted in photographs. It is readily understood by participants across a wide range of age groups and...

  12. Methods to prioritize placement of riparian buffers for improved water quality

    Treesearch

    Mark D. Tomer; Michael G. Dosskey; Michael R. Burkart; David E. James; Matthew J. Helmers; Dean E. Eisenhauer

    2008-01-01

    Agroforestry buffers in riparian zones can improve stream water quality, provided they intercept and remove contaminants from surface runoff and/or shallow groundwater. Soils, topography, surficial geology, and hydrology determine the capability of forest buffers to intercept and treat these flows. This paper describes two landscape analysis techniques for identifying...

  13. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated.

    PubMed

    Ivanov, Sergei D; Grant, Ian M; Marx, Dominik

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  14. Uncovering Embedded Face Threat Mitigation in Landscape Architecture Critique Feedback

    ERIC Educational Resources Information Center

    Housley Gaffney, Amy L.

    2015-01-01

    Receiving public feedback on academic work may threaten students' face, particularly when such feedback is critical. One way that feedback may be cushioned is through face-threat mitigation techniques. I analyzed the use of such techniques in the feedback given by faculty and professionals to landscape architecture students as preparation for…

  15. [Limitations of landscape pattern analysis based on landscape indices: a case study of Lize-jian wetland in Yilan of Taiwan Province, China].

    PubMed

    Lin, Meng-lung; Cao, Yu; Wang, Shin

    2008-01-01

    In this paper, the Lizejian wetland landscape patterns in northeastern Taiwan of China were established by landscape indices and aerial photo interpretation, and a parallel analysis was made on them. The results showed that landscape indices could only indicate the landscape geometric characteristics of the wetland at patch and landscape levels, but could not present its spatial and functional characteristics observed from aerial photos. Combining aerial photo interpretation with landscape indices could be helpful to the holistic understanding of Lizejian wetland' s landscape structure and function, and improve the landscape pattern analysis. The new method for assessing landscape structure from a holistic point of view would play an important role in future landscape ecology research.

  16. Multivariate landscape trajectory analysis: An example using simulation modeling of American marten habitat change under four timber harvest scenarios

    Treesearch

    Samuel A. Cushman; Kevin McGarigal

    2007-01-01

    Integrating temporal variabilily into spatial analyses is one of the abiding challenges in landscape ecology. In this chapter we use landscape trajectory analysis to assess changes in landscape patterns over time. Landscape trajectory analysis is an approach to quantify changes in landscape structure over time. There are three key concepts which underlie the...

  17. Titan's Impact Cratering Record: Erosion of Ganymedean (and other) Craters on a Wet Icy Landscape

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Moore, J.; Howard, A.

    2012-04-01

    We examine the cratering record of Titan from the perspective of icy satellites undergoing persistent landscape erosion. First we evaluate whether Ganymede (and Callisto) or the smaller low-gravity neighboring icy satellites of Saturn are the proper reference standard for evaluating Titan’s impact crater morphologies, using topographic and morphometric measurements (Schenk, 2002; Schenk et al. (2004) and unpublished data). The special case of Titan’s largest crater, Minrva, is addressed through analysis of large impact basins such as Gilgamesh, Lofn, Odysseus and Turgis. Second, we employ a sophisticated landscape evolution and modification model developed for study of martian and other planetary landforms (e.g., Howard, 2007). This technique applies mass redistribution principles due to erosion by impact, fluvial and hydrological processes to a planetary landscape. The primary advantage of our technique is the possession of a limited but crucial body of areal digital elevation models (DEMs) of Ganymede (and Callisto) impact craters as well as global DEM mapping of Saturn’s midsize icy satellites, in combination with the ability to simulate rainfall and redeposition of granular material to determine whether Ganymede craters can be eroded to resemble Titan craters and the degree of erosion required. References: Howard, A. D., “Simulating the development of martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing”, Geomorphology, 91, 332-363, 2007. Schenk, P. "Thickness constraints on the icy shells of the galilean satellites from impact crater shapes". Nature, 417, 419-421, 2002. Schenk, P.M., et al. "Ages and interiors: the cratering record of the Galilean satellites". In: Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004.

  18. Classification and spatial analysis of eastern hemlock health using remote sensing and GIS

    Treesearch

    Laurent R. Bonneau; Kathleen S. Shields; Daniel L. Civco; David R. Mikus

    2000-01-01

    Over the past decade hemlock stands in southern Connecticut have undergone significant decline coincident with the arrival in 1985 of an exotic insect pest, the hemlock woolly adelgid (Adelges tsugae Annand). The objective of this study was to evaluate image enhancement techniques for rating the health of hemlocks at the landscape level using...

  19. Remote Sensing as a Landscape Epidemiologic Tool to Identify Villages at High Risk for Malaria Transmission

    NASA Technical Reports Server (NTRS)

    Beck, Louisa R.; Rodriquez, Mario H.; Dister, Sheri W.; Rodriquez, Americo D.; Rejmankova, Eliska; Ulloa, Armando; Meza, Rosa A.; Roberts, Donald R.; Paris, Jack F.; Spanner, Michael A.; hide

    1994-01-01

    A landscape approach using remote sensing and Geographic Information System (GIS) technologies was developed to discriminate between villages at high and low risk for malaria transmission, as defined by adult Anopheles albimanus abundance. Satellite data for an area in southern Chiapas, Mexico were digitally processed to generate a map of landscape elements. The GIS processes were used to determine the proportion of mapped landscape elements surrounding 40 villages where An. albimanus data had been collected. The relationships between vector abundance and landscape element proportions were investigated using stepwise discriminant analysis and stepwise linear regression. Both analyses indicated that the most important landscape elements in terms of explaining vector abundance were transitional swamp and unmanaged pasture. Discriminant functions generated for these two elements were able to correctly distinguish between villages with high ind low vector abundance, with an overall accuracy of 90%. Regression results found both transitional swamp and unmanaged pasture proportions to be predictive of vector abundance during the mid-to-late wet season. This approach, which integrates remotely sensed data and GIS capabilities to identify villages with high vector-human contact risk, provides a promising tool for malaria surveillance programs that depend on labor-intensive field techniques. This is particularly relevant in areas where the lack of accurate surveillance capabilities may result in no malaria control action when, in fact, directed action is necessary. In general, this landscape approach could be applied to other vector-borne diseases in areas where: 1. the landscape elements critical to vector survival are known and 2. these elements can be detected at remote sensing scales.

  20. Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology

    PubMed Central

    2014-01-01

    Pollinator decline has been linked to landscape change, through both habitat fragmentation and the loss of habitat suitable for the pollinators to live within. One method for exploring why landscape change should affect pollinator populations is to combine individual-level behavioural ecological techniques with larger-scale landscape ecology. A modelling framework is described that uses spatially-explicit individual-based models to explore the effects of individual behavioural rules within a landscape. The technique described gives a simple method for exploring the effects of the removal of wild corridors, and the creation of wild set-aside fields: interventions that are common to many national agricultural policies. The effects of these manipulations on central-place nesting pollinators are varied, and depend upon the behavioural rules that the pollinators are using to move through the environment. The value of this modelling framework is discussed, and future directions for exploration are identified. PMID:24795848

  1. Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology.

    PubMed

    Rands, Sean A

    2014-01-01

    Pollinator decline has been linked to landscape change, through both habitat fragmentation and the loss of habitat suitable for the pollinators to live within. One method for exploring why landscape change should affect pollinator populations is to combine individual-level behavioural ecological techniques with larger-scale landscape ecology. A modelling framework is described that uses spatially-explicit individual-based models to explore the effects of individual behavioural rules within a landscape. The technique described gives a simple method for exploring the effects of the removal of wild corridors, and the creation of wild set-aside fields: interventions that are common to many national agricultural policies. The effects of these manipulations on central-place nesting pollinators are varied, and depend upon the behavioural rules that the pollinators are using to move through the environment. The value of this modelling framework is discussed, and future directions for exploration are identified.

  2. Monte Carlo method for computing density of states and quench probability of potential energy and enthalpy landscapes.

    PubMed

    Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra; Raghavan, Srikanth

    2007-05-21

    The thermodynamics and kinetics of a many-body system can be described in terms of a potential energy landscape in multidimensional configuration space. The partition function of such a landscape can be written in terms of a density of states, which can be computed using a variety of Monte Carlo techniques. In this paper, a new self-consistent Monte Carlo method for computing density of states is described that uses importance sampling and a multiplicative update factor to achieve rapid convergence. The technique is then applied to compute the equilibrium quench probability of the various inherent structures (minima) in the landscape. The quench probability depends on both the potential energy of the inherent structure and the volume of its corresponding basin in configuration space. Finally, the methodology is extended to the isothermal-isobaric ensemble in order to compute inherent structure quench probabilities in an enthalpy landscape.

  3. Assessment of visual landscape quality using IKONOS imagery.

    PubMed

    Ozkan, Ulas Yunus

    2014-07-01

    The assessment of visual landscape quality is of importance to the management of urban woodlands. Satellite remote sensing may be used for this purpose as a substitute for traditional survey techniques that are both labour-intensive and time-consuming. This study examines the association between the quality of the perceived visual landscape in urban woodlands and texture measures extracted from IKONOS satellite data, which features 4-m spatial resolution and four spectral bands. The study was conducted in the woodlands of Istanbul (the most important element of urban mosaic) lying along both shores of the Bosporus Strait. The visual quality assessment applied in this study is based on the perceptual approach and was performed via a survey of expressed preferences. For this purpose, representative photographs of real scenery were used to elicit observers' preferences. A slide show comprising 33 images was presented to a group of 153 volunteers (all undergraduate students), and they were asked to rate the visual quality of each on a 10-point scale (1 for very low visual quality, 10 for very high). Average visual quality scores were calculated for landscape. Texture measures were acquired using the two methods: pixel-based and object-based. Pixel-based texture measures were extracted from the first principle component (PC1) image. Object-based texture measures were extracted by using the original four bands. The association between image texture measures and perceived visual landscape quality was tested via Pearson's correlation coefficient. The analysis found a strong linear association between image texture measures and visual quality. The highest correlation coefficient was calculated between standard deviation of gray levels (SDGL) (one of the pixel-based texture measures) and visual quality (r = 0.82, P < 0.05). The results showed that perceived visual quality of urban woodland landscapes can be estimated by using texture measures extracted from satellite data in combination with appropriate modelling techniques.

  4. Numerical modeling of eastern connecticut's visual resources

    Treesearch

    Daniel L. Civco

    1979-01-01

    A numerical model capable of accurately predicting the preference for landscape photographs of selected points in eastern Connecticut is presented. A function of the social attitudes expressed toward thirty-two salient visual landscape features serves as the independent variable in predicting preferences. A technique for objectively assigning adjectives to landscape...

  5. Canadian SAR remote sensing for the Terrestrial Wetland Global Change Research Network (TWGCRN)

    USGS Publications Warehouse

    Kaya, Shannon; Brisco, Brian; Cull, Andrew; Gallant, Alisa L.; Sadinski, Walter J.; Thompson, Dean

    2010-01-01

    The Canada Centre for Remote Sensing (CCRS) has more than 30 years of experience investigating the use of SAR remote sensing for many applications related to terrestrial water resources. Recently, CCRS scientists began contributing to the Terrestrial Wetland Global Change Research Network (TWGCRN), a bi-national research network dedicated to assessing impacts of global change on interconnected wetland-upland landscapes across a vital portion of North America. CCRS scientists are applying SAR remote sensing to characterize wetland components of these landscapes in three ways. First, they are using a comprehensive set of RADARSAT-2 SAR data collected during April to September 2009 to extract multi-temporal surface water information for key TWGCRN study landscapes in North America. Second, they are analyzing polarimetric RADARSAT-2 data to determine areas where double-bounce represents the primary scattering mechanism and is indicative of flooded vegetation in these landscapes. Third, they are testing advanced interferometric SAR techniques to estimate water levels with RADARSAT-2 Fine Quad polarimetric image pairs. The combined information from these three SAR analysis activities will provide TWGCRN scientists with an integrated view and monitoring capability for these dynamic wetland-upland landscapes. These data are being used in conjunction with other remote sensing and field data to study interactions between landscape and animal (birds and amphibians) responses to climate/global change.

  6. Inflation in random Gaussian landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masoumi, Ali; Vilenkin, Alexander; Yamada, Masaki, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: Masaki.Yamada@tufts.edu

    2017-05-01

    We develop analytic and numerical techniques for studying the statistics of slow-roll inflation in random Gaussian landscapes. As an illustration of these techniques, we analyze small-field inflation in a one-dimensional landscape. We calculate the probability distributions for the maximal number of e-folds and for the spectral index of density fluctuations n {sub s} and its running α {sub s} . These distributions have a universal form, insensitive to the correlation function of the Gaussian ensemble. We outline possible extensions of our methods to a large number of fields and to models of large-field inflation. These methods do not suffer frommore » potential inconsistencies inherent in the Brownian motion technique, which has been used in most of the earlier treatments.« less

  7. Integrating machine learning techniques and high-resolution imagery to generate GIS-ready information for urban water consumption studies

    NASA Astrophysics Data System (ADS)

    Wolf, Nils; Hof, Angela

    2012-10-01

    Urban sprawl driven by shifts in tourism development produces new suburban landscapes of water consumption on Mediterranean coasts. Golf courses, ornamental, 'Atlantic' gardens and swimming pools are the most striking artefacts of this transformation, threatening the local water supply systems and exacerbating water scarcity. In the face of climate change, urban landscape irrigation is becoming increasingly important from a resource management point of view. This paper adopts urban remote sensing towards a targeted mapping approach using machine learning techniques and highresolution satellite imagery (WorldView-2) to generate GIS-ready information for urban water consumption studies. Swimming pools, vegetation and - as a subgroup of vegetation - turf grass are extracted as important determinants of water consumption. For image analysis, the complex nature of urban environments suggests spatial-spectral classification, i.e. the complementary use of the spectral signature and spatial descriptors. Multiscale image segmentation provides means to extract the spatial descriptors - namely object feature layers - which can be concatenated at pixel level to the spectral signature. This study assesses the value of object features using different machine learning techniques and amounts of labeled information for learning. The results indicate the benefit of the spatial-spectral approach if combined with appropriate classifiers like tree-based ensembles or support vector machines, which can handle high dimensionality. Finally, a Random Forest classifier was chosen to deliver the classified input data for the estimation of evaporative water loss and net landscape irrigation requirements.

  8. Exploratory and spatial data analysis (EDA-SDA) for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce-Matehuala, Mexico

    USGS Publications Warehouse

    Chiprés, J.A.; Castro-Larragoitia, J.; Monroy, M.G.

    2009-01-01

    The threshold between geochemical background and anomalies can be influenced by the methodology selected for its estimation. Environmental evaluations, particularly those conducted in mineralized areas, must consider this when trying to determinate the natural geochemical status of a study area, quantifying human impacts, or establishing soil restoration values for contaminated sites. Some methods in environmental geochemistry incorporate the premise that anomalies (natural or anthropogenic) and background data are characterized by their own probabilistic distributions. One of these methods uses exploratory data analysis (EDA) on regional geochemical data sets coupled with a geographic information system (GIS) to spatially understand the processes that influence the geochemical landscape in a technique that can be called a spatial data analysis (SDA). This EDA-SDA methodology was used to establish the regional background range from the area of Catorce-Matehuala in north-central Mexico. Probability plots of the data, particularly for those areas affected by human activities, show that the regional geochemical background population is composed of smaller subpopulations associated with factors such as soil type and parent material. This paper demonstrates that the EDA-SDA method offers more certainty in defining thresholds between geochemical background and anomaly than a numeric technique, making it a useful tool for regional geochemical landscape analysis and environmental geochemistry studies.

  9. Reliability and precision of pellet-group counts for estimating landscape-level deer density

    Treesearch

    David S. deCalesta

    2013-01-01

    This study provides hitherto unavailable methodology for reliably and precisely estimating deer density within forested landscapes, enabling quantitative rather than qualitative deer management. Reliability and precision of the deer pellet-group technique were evaluated in 1 small and 2 large forested landscapes. Density estimates, adjusted to reflect deer harvest and...

  10. Monitoring urban tree cover using object-based image analysis and public domain remotely sensed data

    Treesearch

    L. Monika Moskal; Diane M. Styers; Meghan Halabisky

    2011-01-01

    Urban forest ecosystems provide a range of social and ecological services, but due to the heterogeneity of these canopies their spatial extent is difficult to quantify and monitor. Traditional per-pixel classification methods have been used to map urban canopies, however, such techniques are not generally appropriate for assessing these highly variable landscapes....

  11. Energy landscape paving simulations of the trp-cage protein.

    PubMed

    Schug, Alexander; Wenzel, Wolfgang; Hansmann, Ulrich H E

    2005-05-15

    We evaluate the efficiency of multiple variants of energy landscape paving in all-atom simulations of the trp-cage protein using a recently developed new force field. Especially, we introduce a temperature-free variant of the method and demonstrate that it allows a fast scanning of the energy landscape. Nativelike structures are found in less time than by other techniques. The sampled low-energy configurations indicate a funnel-like energy landscape.

  12. Analysis of sea use landscape pattern based on GIS: a case study in Huludao, China.

    PubMed

    Suo, Anning; Wang, Chen; Zhang, Minghui

    2016-01-01

    This study aims to analyse sea use landscape patterns on a regional scale based on methods of landscape ecology integrated with sea use spatial characteristics. Several landscape-level analysis indices, such as the dominance index, complex index, intensivity index, diversity index and sea congruency index, were established using Geographic Information System (GIS) and applied in Huludao, China. The results indicated that sea use landscape analysis indices, which were created based on the characteristics of sea use spatial patterns using GIS, are suitable to quantitatively describe the landscape patterns of sea use. They are operable tools for the landscape analysis of sea use. The sea use landscape in Huludao was dominated by fishing use with a landscape dominance index of 0.724. The sea use landscape is a complex mosaic with high diversity and plenty of fishing areas, as shown by the landscape complex index of 27.21 and the landscape diversity index of 1.25. Most sea use patches correspond to the marine functional zonation plan and the sea use congruency index is 0.89 in the fishing zone and 0.92 in the transportation zone.

  13. Analysis of landscape character for visual resource management

    Treesearch

    Paul F. Anderson

    1979-01-01

    Description, classification and delineation of visual landscape character are initial steps in developing visual resource management plans. Landscape characteristics identified as key factors in visual landscape analysis include land cover/land use and landform. Landscape types, which are combinations of landform and surface features, were delineated for management...

  14. Developing a predictive understanding of landscape importance to the Punan-Pelancau of East Kalimantan, Borneo.

    PubMed

    Cunliffe, Robert N; Lynam, Timothy J P; Sheil, Douglas; Wan, Meilinda; Salim, Agus; Basuki, Imam; Priyadi, Hari

    2007-11-01

    In order for local community views to be incorporated into new development initiatives, their perceptions need to be clearly understood and documented in a format that is readily accessible to planners and developers. The current study sought to develop a predictive understanding of how the Punan Pelancau community, living in a forested landscape in East Kalimantan, assigns importance to its surrounding landscapes and to present these perceptions in the form of maps. The approach entailed the iterative use of a combination of participatory community evaluation methods and more formal modeling and geographic information system techniques. Results suggest that landscape importance is largely dictated by potential benefits, such as inputs to production, health, and houses. Neither land types nor distance were good predictors of landscape importance. The grid-cell method, developed as part of the study, appears to offer a simple technique to capture and present the knowledge of local communities, even where their relationship to the land is highly complex, as was the case for this particular community.

  15. [Recognition of landscape characteristic scale based on two-dimension wavelet analysis].

    PubMed

    Gao, Yan-Ni; Chen, Wei; He, Xing-Yuan; Li, Xiao-Yu

    2010-06-01

    Three wavelet bases, i. e., Haar, Daubechies, and Symlet, were chosen to analyze the validity of two-dimension wavelet analysis in recognizing the characteristic scales of the urban, peri-urban, and rural landscapes of Shenyang. Owing to the transform scale of two-dimension wavelet must be the integer power of 2, some characteristic scales cannot be accurately recognized. Therefore, the pixel resolution of images was resampled to 3, 3.5, 4, and 4.5 m to densify the scale in analysis. It was shown that two-dimension wavelet analysis worked effectively in checking characteristic scale. Haar, Daubechies, and Symle were the optimal wavelet bases to the peri-urban landscape, urban landscape, and rural landscape, respectively. Both Haar basis and Symlet basis played good roles in recognizing the fine characteristic scale of rural landscape and in detecting the boundary of peri-urban landscape. Daubechies basis and Symlet basis could be also used to detect the boundary of urban landscape and rural landscape, respectively.

  16. Numerical Study of Periodic Traveling Wave Solutions for the Predator-Prey Model with Landscape Features

    NASA Astrophysics Data System (ADS)

    Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok

    We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.

  17. Statistical performance and information content of time lag analysis and redundancy analysis in time series modeling.

    PubMed

    Angeler, David G; Viedma, Olga; Moreno, José M

    2009-11-01

    Time lag analysis (TLA) is a distance-based approach used to study temporal dynamics of ecological communities by measuring community dissimilarity over increasing time lags. Despite its increased use in recent years, its performance in comparison with other more direct methods (i.e., canonical ordination) has not been evaluated. This study fills this gap using extensive simulations and real data sets from experimental temporary ponds (true zooplankton communities) and landscape studies (landscape categories as pseudo-communities) that differ in community structure and anthropogenic stress history. Modeling time with a principal coordinate of neighborhood matrices (PCNM) approach, the canonical ordination technique (redundancy analysis; RDA) consistently outperformed the other statistical tests (i.e., TLAs, Mantel test, and RDA based on linear time trends) using all real data. In addition, the RDA-PCNM revealed different patterns of temporal change, and the strength of each individual time pattern, in terms of adjusted variance explained, could be evaluated, It also identified species contributions to these patterns of temporal change. This additional information is not provided by distance-based methods. The simulation study revealed better Type I error properties of the canonical ordination techniques compared with the distance-based approaches when no deterministic component of change was imposed on the communities. The simulation also revealed that strong emphasis on uniform deterministic change and low variability at other temporal scales is needed to result in decreased statistical power of the RDA-PCNM approach relative to the other methods. Based on the statistical performance of and information content provided by RDA-PCNM models, this technique serves ecologists as a powerful tool for modeling temporal change of ecological (pseudo-) communities.

  18. Landscape evolution of Antarctica

    USGS Publications Warehouse

    Jamieson, S.S.R.; Sugden, D.E.

    2007-01-01

    shelf before retreating to its present dimensions at ~13.5 Ma. Subsequent changes in ice extent have been forced mainly by sea-level change. Weathering rates of exposed bedrock have been remarkably slow at high elevations around the margin of East Antarctica under the hyperarid polar climate of the last ~13.5 Ma, offering potential for a long quantitative record of ice-sheet evolution with techniques such as cosmogenic isotope analysis

  19. Analysis of landscape fragmentation in the Peloncillo Mountains in relation to wildfire, prescribed burning, and cattle grazing

    Treesearch

    John Rogan; Kelley O' Neal; Stephen Yool

    2005-01-01

    This paper examined the application of state-of-the-art remote sensing image enhancement and classification techniques for mapping land cover change in the Peloncillo Mountains of Arizona and New Mexico. Spectrally enhanced images acquired August 1985, 1991, 1996, and 2000 were combined with environmental variables such as slope and aspect to map land cover...

  20. Assessment of optimal control mechanism complexity by experimental landscape Hessian analysis: fragmentation of CH2BrI

    NASA Astrophysics Data System (ADS)

    Xing, Xi; Rey-de-Castro, Roberto; Rabitz, Herschel

    2014-12-01

    Optimally shaped femtosecond laser pulses can often be effectively identified in adaptive feedback quantum control experiments, but elucidating the underlying control mechanism can be a difficult task requiring significant additional analysis. We introduce landscape Hessian analysis (LHA) as a practical experimental tool to aid in elucidating control mechanism insights. This technique is applied to the dissociative ionization of CH2BrI using shaped fs laser pulses for optimization of the absolute yields of ionic fragments as well as their ratios for the competing processes of breaking the C-Br and C-I bonds. The experimental results suggest that these nominally complex problems can be reduced to a low-dimensional control space with insights into the control mechanisms. While the optimal yield for some fragments is dominated by a non-resonant intensity-driven process, the optimal generation of other fragments maa difficult task requiring significant additionaly be explained by a non-resonant process coupled to few level resonant dynamics. Theoretical analysis and modeling is consistent with the experimental observations.

  1. Spatial landscape model to characterize biological diversity using R statistical computing environment.

    PubMed

    Singh, Hariom; Garg, R D; Karnatak, Harish C; Roy, Arijit

    2018-01-15

    Due to urbanization and population growth, the degradation of natural forests and associated biodiversity are now widely recognized as a global environmental concern. Hence, there is an urgent need for rapid assessment and monitoring of biodiversity on priority using state-of-art tools and technologies. The main purpose of this research article is to develop and implement a new methodological approach to characterize biological diversity using spatial model developed during the study viz. Spatial Biodiversity Model (SBM). The developed model is scale, resolution and location independent solution for spatial biodiversity richness modelling. The platform-independent computation model is based on parallel computation. The biodiversity model based on open-source software has been implemented on R statistical computing platform. It provides information on high disturbance and high biological richness areas through different landscape indices and site specific information (e.g. forest fragmentation (FR), disturbance index (DI) etc.). The model has been developed based on the case study of Indian landscape; however it can be implemented in any part of the world. As a case study, SBM has been tested for Uttarakhand state in India. Inputs for landscape ecology are derived through multi-criteria decision making (MCDM) techniques in an interactive command line environment. MCDM with sensitivity analysis in spatial domain has been carried out to illustrate the model stability and robustness. Furthermore, spatial regression analysis has been made for the validation of the output. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Human access and landscape structure effects on Andean forest bird richness

    NASA Astrophysics Data System (ADS)

    Aubad, Jorge; Aragón, Pedro; Rodríguez, Miguel Á.

    2010-07-01

    We analyzed the influence of human access and landscape structure on forest bird species richness in a fragmented landscape of the Colombian Andes. In Latin America, habitat loss and fragmentation are considered as the greatest threats to biodiversity because a large number of countryside villagers complement their food and incomes with the extraction of forest resources. Anthropogenic actions may also affect forest species by bird hunting or indirectly through modifying the structure of forest habitats. We surveyed 14 secondary cloud forest remnants to generate bird species richness data for each of them. We also quantified six landscape structure descriptors of forest patch size (patch area and core area), shape (perimeter of each fragment and the Patton's shape index) and isolation (nearest neighbor distance and edge contrast), and generated (using principal components analysis) a synthetic human influence variable based on the distance of each fragment to roads and villages, as well as the total slope of the fragments. Species richness was related to these variables using generalized linear models (GLMs) complemented with model selection techniques based on information theory and partial regression analysis. We found that forest patch size and accessibility were key drivers of bird richness, which increased toward largest patches, but decreased in those more accessible to humans and their potential disturbances. Both patch area and human access effects on forest bird species richness were complementary and similar in magnitude. Our results provide a basis for biodiversity conservation plans and initiatives of Andean forest diversity.

  3. Integrating Landsat Data and High-Resolution Imagery for Applied Conservation Assessment of Forest Cover in Latin American Heterogenous Landscapes

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Rueda, X.; Lambin, E.; Mendenhall, C. D.

    2012-12-01

    Large intact forested regions of the world are known to be critical to maintaining Earth's climate, ecosystem health, and human livelihoods. Remote sensing has been successfully implemented as a tool to monitor forest cover and landscape dynamics over broad regions. Much of this work has been done using coarse resolution sensors such as AVHRR and MODIS in combination with moderate resolution sensors, particularly Landsat. Finer scale analysis of heterogeneous and fragmented landscapes is commonly performed with medium resolution data and has had varying success depending on many factors including the level of fragmentation, variability of land cover types, patch size, and image availability. Fine scale tree cover in mixed agricultural areas can have a major impact on biodiversity and ecosystem sustainability but may often be inadequately captured with the global to regional (coarse resolution and moderate resolution) satellite sensors and processing techniques widely used to detect land use and land cover changes. This study investigates whether advanced remote sensing methods are able to assess and monitor percent tree canopy cover in spatially complex human-dominated agricultural landscapes that prove challenging for traditional mapping techniques. Our study areas are in high altitude, mixed agricultural coffee-growing regions in Costa Rica and the Colombian Andes. We applied Random Forests regression tree analysis to Landsat data along with additional spectral, environmental, and spatial variables to predict percent tree canopy cover at 30m resolution. Image object-based texture, shape, and neighborhood metrics were generated at the Landsat scale using eCognition and included in the variable suite. Training and validation data was generated using high resolution imagery from digital aerial photography at 1m to 2.5 m resolution. Our results are promising with Pearson's correlation coefficients between observed and predicted percent tree canopy cover of .86 (Costa Rica) and .83 (Colombia). The tree cover mapping developed here supports two distinct projects on sustaining biodiversity and natural and human capital: in Costa Rica the tree canopy cover map is utilized to predict bird community composition; and in Colombia the mapping is performed for two time periods and used to assess the impact of coffee eco-certification programs on the landscape. This research identifies ways to leverage readily available, high quality, and cost-free Landsat data or other medium resolution satellite data sources in combination with high resolution data, such as that frequently available through Google Earth, to monitor and support sustainability efforts in fragmented and heterogeneous landscapes.

  4. Contribution to understanding the post-mining landscape - Application of airborn LiDAR and historical maps at the example from Silesian Upland (Poland)

    NASA Astrophysics Data System (ADS)

    Gawior, D.; Rutkiewicz, P.; Malik, I.; Wistuba, M.

    2017-11-01

    LiDAR data provide new insights into the historical development of mining industry recorded in the topography and landscape. In the study on the lead ore mining in the 13th-17th century we identified remnants of mining activity in relief that are normally obscured by dense vegetation. The industry in Tarnowice Plateau was based on exploitation of galena from the bedrock. New technologies, including DEM from airborne LiDAR provide show that present landscape and relief of post-mining area under study developed during several, subsequent phases of exploitation when different techniques of exploitation were used and probably different types of ores were exploited. Study conducted on the Tarnowice Plateau proved that combining GIS visualization techniques with historical maps, among all geological maps, is a promising approach in reconstructing development of anthropogenic relief and landscape..

  5. Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama

    USGS Publications Warehouse

    Barthold, F.K.; Stallard, R.F.; Elsenbeer, H.

    2008-01-01

    Soils play a crucial role in biogeochemical cycles as spatially distributed sources and sinks of nutrients. Any spatial patterns depend on soil forming processes, our understanding of which is still limited, especially in regards to tropical rainforests. The objective of our study was to investigate the effects of landscape properties, with an emphasis on the geometry of the land surface, on the spatial heterogeneity of soil chemical properties, and to test the suitability of soil-landscape modeling as an appropriate technique to predict the spatial variability of exchangeable K and Mg in a humid tropical forest in Panama. We used a design-based, stratified sampling scheme to collect soil samples at 108 sites on Barro Colorado Island, Panama. Stratifying variables are lithology, vegetation and topography. Topographic variables were generated from high-resolution digital elevation models with a grid size of 5 m. We took samples from five depths down to 1 m, and analyzed for total and exchangeable K and Mg. We used simple explorative data analysis techniques to elucidate the importance of lithology for soil total and exchangeable K and Mg. Classification and Regression Trees (CART) were adopted to investigate importance of topography, lithology and vegetation for the spatial distribution of exchangeable K and Mg and with the intention to develop models that regionalize the point observations using digital terrain data as explanatory variables. Our results suggest that topography and vegetation do not control the spatial distribution of the selected soil chemical properties at a landscape scale and lithology is important to some degree. Exchangeable K is distributed equally across the study area indicating that other than landscape processes, e.g. biogeochemical processes, are responsible for its spatial distribution. Lithology contributes to the spatial variation of exchangeable Mg but controlling variables could not be detected. The spatial variation of soil total K and Mg is mainly influenced by lithology. ?? 2007 Elsevier B.V. All rights reserved.

  6. Protein free energy landscapes from long equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Piana-Agostinetti, Stefano

    Many computational techniques based on molecular dynamics (MD) simulation can be used to generate data to aid in the construction of protein free energy landscapes with atomistic detail. Unbiased, long, equilibrium MD simulations--although computationally very expensive--are particularly appealing, as they can provide direct kinetic and thermodynamic information on the transitions between the states that populate a protein free energy surface. It can be challenging to know how to analyze and interpret even results generated by this direct technique, however. I will discuss approaches we have employed, using equilibrium MD simulation data, to obtain descriptions of the free energy landscapes of proteins ranging in size from tens to thousands of amino acids.

  7. An Investigation of Automatic Change Detection for Topographic Map Updating

    NASA Astrophysics Data System (ADS)

    Duncan, P.; Smit, J.

    2012-08-01

    Changes to the landscape are constantly occurring and it is essential for geospatial and mapping organisations that these changes are regularly detected and captured, so that map databases can be updated to reflect the current status of the landscape. The Chief Directorate of National Geospatial Information (CD: NGI), South Africa's national mapping agency, currently relies on manual methods of detecting changes and capturing these changes. These manual methods are time consuming and labour intensive, and rely on the skills and interpretation of the operator. It is therefore necessary to move towards more automated methods in the production process at CD: NGI. The aim of this research is to do an investigation into a methodology for automatic or semi-automatic change detection for the purpose of updating topographic databases. The method investigated for detecting changes is through image classification as well as spatial analysis and is focussed on urban landscapes. The major data input into this study is high resolution aerial imagery and existing topographic vector data. Initial results indicate the traditional pixel-based image classification approaches are unsatisfactory for large scale land-use mapping and that object-orientated approaches hold more promise. Even in the instance of object-oriented image classification generalization of techniques on a broad-scale has provided inconsistent results. A solution may lie with a hybrid approach of pixel and object-oriented techniques.

  8. Landscape assessment of spatial Cs-137 connectivity patterns in arable land with gray loamy soils in the Bryansk Region (landscapes of the Opolje)

    NASA Astrophysics Data System (ADS)

    Linnik, Vitaly; Sokolov, Alexander; Saveliev, Anatoly; Mironenko, Iya

    2017-04-01

    As a result of the Chernobyl accident in 1986 landscapes of the Bryansk Region (Russia) were contaminated by Cs-137. In 1993 air-gamma survey with 100 m resolution was done in contaminated areas of the region, which revealed significant spatial heterogeneity of Cs-137 contamination. The initial "spotting" of contamination Cs-137, which in the spring of 1986 represented multi-scale complex patterns of contamination, was substantially transformed by 1993 as a result of erosion processes of various intensity. The purpose of this research was to obtain estimates of the transformation of initial Cs-137 patterns as influenced by different landscape factors. The study is based on the concept of sediment and hydrological connectivity. We apply GIS-based models considering lateral soil migration to analyze sediment cascade system. The study area is a test plot that has grey loamy soils (landscapes of the Opolje) with a size 10x16 km in the central part of the Bryansk Region, with more than 80% of the area under cultivation. Elevation levels are in the range of 140-210 m. Because of plowing, intense erosion processes have taken place. The slope angles in the lower parts of slopes reach 2-3 degrees. Maximum slopes in gullies reach 11,5 degrees. Cs-137 levels of contamination vary from 3,6 kBq/m2 to 35 3,6 kBq/m2. Over the past few decades the Cs-137 technique has been applied to determine net soil redistribution rates. It is applicable for medium long term (30 to 40 years) soil redistribution estimates. In this technique, the anthropogenic radionuclide Cs-137 is used as a sediment tracer from upland erosion studies to catchment sediment budgets, as well as to depositional areas in colluvial positions, valleys, river terraces, floodplains. The soil movement is primarily driven by water flow due to the gravity. The effect of gravity can be easily approximated using DEM derivatives. Cs-137 patterns have been investigated to estimate landscape connectivity and soil redistribution rates in different slope positions. In addition to the Cs-137 contamination, DEM parameters, such as slope angle, aspect, and different landscape indexes (wetness index etc.) have been estimated. Potential Cs-137 connectivity of hillslopes - floodplain or hillslopes -valley is characterized by lateral contributing area. To assess the relationship of Cs-137 with various landscape factors we used different statistical models. Analysis of the lateral redistribution of Cs-137 in the landscape is based on the assumption of primordial density in nonuniformity of Cs-137 deposition in different landscape positions. Relationship of Cs-137 connectivity for various landscape positions is presented. Fundamental differences of Cs-137 connectivity for slopes of southern and northern exposure are demonstrated.

  9. A methodology for creating greenways through multidisciplinary sustainable landscape planning.

    PubMed

    Pena, Selma Beatriz; Abreu, Maria Manuela; Teles, Rui; Espírito-Santo, Maria Dalila

    2010-01-01

    This research proposes a methodology for defining greenways via sustainable planning. This approach includes the analysis and discussion of culture and natural processes that occur in the landscape. The proposed methodology is structured in three phases: eco-cultural analysis; synthesis and diagnosis; and proposal. An interdisciplinary approach provides an assessment of the relationships between landscape structure and landscape dynamics, which are essential to any landscape management or land use. The landscape eco-cultural analysis provides a biophysical, dynamic (geomorphologic rate), vegetation (habitats from directive 92/43/EEC) and cultural characterisation. The knowledge obtained by this analysis then supports the definition of priority actions to stabilise the landscape and the management measures for the habitats. After the analysis and diagnosis phases, a proposal for the development of sustainable greenways can be achieved. This methodology was applied to a study area of the Azambuja Municipality in the Lisbon Metropolitan Area (Portugal). The application of the proposed methodology to the study area shows that landscape stability is crucial for greenway users in order to appreciate the landscape and its natural and cultural elements in a sustainable and healthy way, both by cycling or by foot. A balanced landscape will increase the value of greenways and in return, they can develop socio-economic activities with benefits for rural communities. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Forest landscape analysis and design: a process for developing and implementing land management objectives for landscape patterns.

    Treesearch

    Nancy Diaz; Dean Apostol

    1992-01-01

    This publication presents a Landscape Design and Analysis Process, along with some simple methods and tools for describing landscapes and their function. The information is qualitative in nature and highlights basic concepts, but does not address landscape ecology in great depth. Readers are encouraged to consult the list of selected references in Chapter 2 if they...

  11. Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model.

    PubMed

    Brunker, K; Hampson, K; Horton, D L; Biek, R

    2012-12-01

    Landscape epidemiology and landscape genetics combine advances in molecular techniques, spatial analyses and epidemiological models to generate a more real-world understanding of infectious disease dynamics and provide powerful new tools for the study of RNA viruses. Using dog rabies as a model we have identified how key questions regarding viral spread and persistence can be addressed using a combination of these techniques. In contrast to wildlife rabies, investigations into the landscape epidemiology of domestic dog rabies requires more detailed assessment of the role of humans in disease spread, including the incorporation of anthropogenic landscape features, human movements and socio-cultural factors into spatial models. In particular, identifying and quantifying the influence of anthropogenic features on pathogen spread and measuring the permeability of dispersal barriers are important considerations for planning control strategies, and may differ according to cultural, social and geographical variation across countries or continents. Challenges for dog rabies research include the development of metapopulation models and transmission networks using genetic information to uncover potential source/sink dynamics and identify the main routes of viral dissemination. Information generated from a landscape genetics approach will facilitate spatially strategic control programmes that accommodate for heterogeneities in the landscape and therefore utilise resources in the most cost-effective way. This can include the efficient placement of vaccine barriers, surveillance points and adaptive management for large-scale control programmes.

  12. An Analysis of the Landscaping Occupation.

    ERIC Educational Resources Information Center

    Stemple, Lynn L.; Dilley, John E.

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the landscape services occupation. Depending on the preparation and abilities of the individual student, he may enter the landscape area as (1) nursery worker, (2) landscape planter, (3) landscape…

  13. Landscape Vulnerability Analysis from Historic Lower Mississippi River Flood in 2011

    NASA Astrophysics Data System (ADS)

    Goodwell, A. E.; Zhu, Z.; Dutta, D.; Greenberg, J.; Kumar, P.; Garcia, M. H.; Rhoads, B. L.; Parker, G.; Berretta, D.; Holmes, R. R.

    2012-12-01

    This study presents the results of a landscape vulnerability analysis of the Birds Point New Madrid Floodway in southeastern Missouri. The U.S. Army Corps of Engineers intentionally inundated 500 square kilometers of agricultural floodplain in May of 2011 as an emergency flood control measure. We use pre-flood (2005) and post-flood (2011) high resolution Lidar data to establish the landscape impact of the levee breach on the floodplain. The Lidar DEMs were corrected for flight line errors using a Fourier filtering technique, and then subtracted to obtain a differential DEM of erosion and deposition patterns. We use soil erosion characteristics, AVIRIS remote sensing data, and 2D floodplain modeling to analyze the three components of vulnerability: sensitivity, exposure, and adaptive capacity. HydroSed2D (Liu, Landry and García 2008), a 2D flow model, is implemented to simulate flow depths and speeds, or flood exposure, over the entire floodway, as well as smaller sections at increased resolution using a nested grid. We classify woody vegetation based on AVIRIS remote sensing data, and represent vegetated regions in the model as varied values of the Manning's n coefficient. Soil erodibility, vegetation, topography, and flow characteristics are compared to observed landscape changes within the floodplain. Overall, the floodway showed a remarkable resilience to an extreme flood event. When compared to levee breaches on similar rivers in other floods, the lack of newly deposited sediment is noticeable and likely attributable to the presence of a substantial riparian corridor between the main channel of the Mississippi River and the floodway. Although many meander scars indicating former channels of the Mississippi River are apparent in the topography, only one, known as O'Bryan Ridge, experienced high volumes of erosion and deposition due to the flooding. The vulnerability analysis supports the hypothesis this high impact is due to a combination of vulnerability factors such as high flow speed, few localized patches of vegetation, and high soil erodibility at this ridge compared to other similar meander scars. The methodology of this analysis can be used to locate regions of high vulnerability in future floodplain management and flood control, and mitigate potentially catastrophic landscape change.

  14. Adipose-Derived Stem Cells in Aesthetic Surgery: A Mixed Methods Evaluation of the Current Clinical Trial, Intellectual Property, and Regulatory Landscape.

    PubMed

    Arshad, Zeeshaan; Halioua-Haubold, Celine-Lea; Roberts, Mackenna; Urso-Baiarda, Fulvio; Branford, Oliver A; Brindley, David A; Davies, Benjamin M; Pettitt, David

    2018-02-17

    Adipose tissue, which can be readily harvested via a number of liposuction techniques, offers an easily accessible and abundant source of adipose-derived stem cells (ASCs). Consequently, ASCs have become an increasingly popular reconstructive option and a novel means of aesthetic soft tissue augmentation. This paper examines recent advances in the aesthetic surgery field, extending beyond traditional review formats to incorporate a comprehensive analysis of current clinical trials, adoption status, and the commercialization pathway. Keyword searches were carried out on clinical trial databases to search for trials using ASCs for aesthetic indications. An intellectual property landscape was created using commercial software (Thomson Reuters Thomson Innovation, New York, NY). Analysis of who is claiming what in respect of ASC use in aesthetic surgery for commercial purposes was analyzed by reviewing the patent landscape in relation to these techniques. Key international regulatory guidelines were also summarized. Completed clinical trials lacked robust controls, employed small sample sizes, and lacked long-term follow-up data. Ongoing clinical trials still do not address such issues. In recent years, claims to intellectual property ownership have increased in the "aesthetic stem cell" domain, reflecting commercial interest in the area. However, significant translational barriers remain including regulatory challenges and ethical considerations. Further rigorous randomized controlled trials are required to delineate long-term clinical efficacy and safety. Providers should consider the introduction of patient reported outcome metrics to facilitate clinical adoption. Robust regulatory and ethical policies concerning stem cells and aesthetic surgery should be devised to discourage further growth of "stem cell tourism." © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  15. Approach to the health-risk management on municipal reclaimed water reused in landscape water system

    NASA Astrophysics Data System (ADS)

    Liu, X.; Li, J.; Liu, W.

    2008-12-01

    Water pollution and water heavily shortage are both main environmental conflicts in China. Reclaimed water reuse is an important approach to lessen water pollution and solve the water shortage crisis in the city. The heath risk of reclaimed water has become the focus of the public. It is impending to evaluate the health risk of reclaimed water with risk assessment technique. Considering the ways of the reclaimed water reused, it is studied that health risk produced by toxic pollutants and pathogenic microbes in the processes of reclaimed water reused in landscape water system. The pathogenic microbes monitoring techniques in wastewater and reclaimed water are discussed and the hygienic indicators, risk assessment methods, concentration limitations of pathogenic microbes for various reclaimed water uses are studied. The principle of health risk assessment is used to research the exposure level and the health risk of concerned people in a wastewater reuse project where the reclaimed water is applied for green area irrigation in a public park in Beijing. The exposure assessment method and model of various reclaimed water uses are built combining with Beijing reclaimed water project. Firstly the daily ingesting dose and lifetime average daily dose(LADD) of exposure people are provided via field work and monitoring analysis, which could be used in health risk assessment as quantitative reference. The result shows that the main risk comes from the pathology pollutants, the toxic pollutants, the eutrophication pollutants, pathogenic microbes and the secondary pollutants when municipal wastewater is reclaimed for landscape water. The major water quality limited should include pathogenic microbes, toxic pollutants, and heavy metals. Keywords: municipal wastewater, reclaimed water, landscape water, health risk

  16. Exploring and Describing the Spatial & Temporal Dynamics of Medushead in the Channeled Scablands of Eastern Washington Using Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Bateman, Timothy M.

    Medusahead is a harmful weed that is invading public lands in the West. The invasion is a serious concern to the public because it can reduce forage for livestock and wildlife, increase fire frequency, alter important ecosystem cycles (like water), reduce recreational activities, and produce landscapes that are aesthetically unpleasing. Invasions can drive up costs that generally require taxpayer's dollars. Medusahead seedlings typically spread to new areas by attaching itself to passing objects (e.g. vehicles, animals, clothing) where it can quickly begin to affect plants communities. To be effective, management plans need to be sustainable, informed, and considerate to invasion levels across large landscapes. Ecological remote sensing analysis is a method that uses airborne imagery, taken from drones, aircrafts, or satellites, to gather information about ecological systems. This Thesis strived to use remote sensing techniques to identify medusahead in the landscape and its changes through time. This was done for an extensive area of rangelands in the Channel Scabland region of eastern ashington. This Thesis provided results that would benefit land managers that include: 1) a dispersal map of medusahead, 2) a time line of medusahead cover through time, 3) 'high risk' dispersal areas, 4) climatic factors showing an influence on the time line of medusahead, 5) a strategy map that can be utilized by land managers to direct management needs. This Thesis shows how remote sensing applications can be used to detect medusahead in the landscape and understand its invasiveness through time. This information can help create sustainable and effective management plans so land managers can continue to protect and improve western public lands threatened by the invasion of medusahead.

  17. Determination of the ecological connectivity between landscape patches obtained using the knowledge engineer (expert) classification technique

    NASA Astrophysics Data System (ADS)

    Selim, Serdar; Sonmez, Namik Kemal; Onur, Isin; Coslu, Mesut

    2017-10-01

    Connection of similar landscape patches with ecological corridors supports habitat quality of these patches, increases urban ecological quality, and constitutes an important living and expansion area for wild life. Furthermore, habitat connectivity provided by urban green areas is supporting biodiversity in urban areas. In this study, possible ecological connections between landscape patches, which were achieved by using Expert classification technique and modeled with probabilistic connection index. Firstly, the reflection responses of plants to various bands are used as data in hypotheses. One of the important features of this method is being able to use more than one image at the same time in the formation of the hypothesis. For this reason, before starting the application of the Expert classification, the base images are prepared. In addition to the main image, the hypothesis conditions were also created for each class with the NDVI image which is commonly used in the vegetation researches. Besides, the results of the previously conducted supervised classification were taken into account. We applied this classification method by using the raster imagery with user-defined variables. Hereupon, to provide ecological connections of the tree cover which was achieved from the classification, we used Probabilistic Connection (PC) index. The probabilistic connection model which is used for landscape planning and conservation studies via detecting and prioritization critical areas for ecological connection characterizes the possibility of direct connection between habitats. As a result we obtained over % 90 total accuracy in accuracy assessment analysis. We provided ecological connections with PC index and we created inter-connected green spaces system. Thus, we offered and implicated green infrastructure system model takes place in the agenda of recent years.

  18. Identification of karst sinkholes in a forested karst landscape using airborne laser scanning data and water flow analysis

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Gallay, Michal; Bandura, Peter; Šašak, Ján

    2018-05-01

    Karst sinkholes (dolines) play an important role in a karst landscape by controlling infiltration of surficial water, air flow or spatial distribution of solar energy. These landforms also present a limiting factor for human activities in agriculture or construction. Therefore, mapping such geomorphological forms is vital for appropriate landscape management and planning. There are several mapping techniques available; however, their applicability can be reduced in densely forested areas with poor accessibility and visibility of the landforms. In such conditions, airborne laser scanning (ALS) provides means for efficient and accurate mapping of both land and landscape canopy surfaces. Taking the benefits of ALS into account, we present an innovative method for identification and evaluation of karst sinkholes based on numerical water flow modelling. The suggested method was compared to traditional techniques for sinkhole mapping which use topographic maps and digital terrain modelling. The approach based on simulation of a rainfall event very closely matched the reference datasets derived by manual inspection of the ALS digital elevation model and field surveys. However, our process-based approach provides advantage of assessing the magnitude how sinkholes influence concentration of overland water flow during extreme rainfall events. This was performed by calculating the volume of water accumulated in sinkholes during the simulated rainfall. In this way, the influence of particular sinkholes on underground geomorphological systems can be assessed. The method was demonstrated in a case study of Slovak Karst in the West Carpathians where extreme rainfalls or snow-thaw events occur annually. We identified three spatially contiguous groups of sinkholes with a different effect on overland flow concentration. These results are discussed in relation to the known underground hydrological systems.

  19. Quantitative study on spatio-temporal change of urban landscape pattern based on RS/GIS: a case of Xi'an metropolitan area in China

    NASA Astrophysics Data System (ADS)

    Chen, Meiwu; Zong, Yueguang; Ma, Qiang; Li, Jian

    2007-06-01

    The study on landscape pattern is an important field of urban land use and ecological change. Since 1990s, the widely accepted Patch-Corridor-Matrix model is generally used in qualitative description of landscape pattern. In recent years, quantitative evaluation on urban landscape dynamics is becoming hot in research. By making a critical review on existing research methods of landscape pattern, a new approach based on RS/GIS is put forward in this paper, comprising three steps, "General pattern characteristics - Gradient differentiation feature- Directional signature of the landscape", and we call it GGD. This method is applied to the case study of Xi'an metropolitan area in China. The result shows that the method is effective on quantitative study of urban landscape. The preparation of the method GGD is setting up research platform based on RS and GIS. By using the software of Geographical Information System (Arcgis9.0 & Erdas), the authors got the interpretation of remote sensing images of different years, and carried on the division of the landscape type of the research region. By calculating various index of landscape level with software Fragstats3.3 as an assistant tool and adopting three steps of GGD combined with landscape index, this paper can assesses the landscape spatial pattern of urban area: 1) General pattern characteristics analysis is to get transition probability of various landscape through Markov chain and to predict the landscape transformation by introducing CA model. The analysis emphasizes on total landscape structure and its change over time; 2) Gradient characteristic analysis, which makes gradient zone by taking city as a center outwardly with certain distance and contrastively analyzes the landscape index of each subarea, stresses the spatial character of landscape pattern, verifies urban morphology theories and provides the quantitative warranty for establishment of urban modality. Therefore, the analysis is useful for supervising urban expanding speed; 3)Direction characteristic analysis, which is setting up radiate strip on west-east, south-north, southwest-northeast and northwest-southeast and form certain width on each direction, can precisely and quantitatively indicate different characteristic of urban landscape at each development direction, and by combined with gradient analysis it is highly advantageous to the examination and planning of urban expanding direction. In the case study on Xi'an metropolitan area, remote sensing images of 1988 and 2005 Landsat-TM were handled, and the division of the landscape type of the region was also carried on. According to the above approach, the result was got and some valuable information was showed as follows: 1) The diversity of overall landscape of Xi'an metropolitan area tends to increase and the degree of fragmentation tends to deepen. With the increase of urbanization level, the visual component of landscape is more and more diversified, the shapes of landscape is more and more complicated and ecologically more and more fragmented. In the region where urbanization level is low, natural landscape is the main component of the landscape, the diversity of the landscape is low. And because landscape is seriously disturbed by human activities with urbanization, fragmentation of the landscape emerges periodically. 2) In the process of transect gradient analysis, the landscape pattern index can explore the urbanization gradient, and its trend to reduce gradually towards the suburban. The landscape of area with a high urbanization level is mainly man-created, and its patches show large number, small area, simple shape and higher landscape heterogeneity. The transect gradient analysis on different time series indicates the relationship between urbanization level and landscape pattern. The landscape of urban area suffers intensely from human being, and its pattern component and spatial collocation depends on the interference intensity to a large degree. In the area with a high urbanization level, its pattern component is more man-created and less natural landscape. The landscape collocation characteristic of its patches takes on a large number, little average area, simple shape and low polymerization degree. 3) Analysis of direction and gradient of Xi'an metropolitan area can quantitatively reflect influence of urbanization and characteristics of urban landscape in the main development axes of north-south and east. Result shows that the degree of internal integration between Xi'an city and Xianyang city is gradually enhanced with the quickly urbanization course in China.

  20. The walk is never random: subtle landscape effects shape gene flow in a continuous white-tailed deer population in the Midwestern United States

    USGS Publications Warehouse

    Robinson, Stacie J.; Samuel, Michael D.; Lopez, Davin L.; Shelton, Paul

    2012-01-01

    One of the pervasive challenges in landscape genetics is detecting gene flow patterns within continuous populations of highly mobile wildlife. Understanding population genetic structure within a continuous population can give insights into social structure, movement across the landscape and contact between populations, which influence ecological interactions, reproductive dynamics or pathogen transmission. We investigated the genetic structure of a large population of deer spanning the area of Wisconsin and Illinois, USA, affected by chronic wasting disease. We combined multiscale investigation, landscape genetic techniques and spatial statistical modelling to address the complex questions of landscape factors influencing population structure. We sampled over 2000 deer and used spatial autocorrelation and a spatial principal components analysis to describe the population genetic structure. We evaluated landscape effects on this pattern using a spatial autoregressive model within a model selection framework to test alternative hypotheses about gene flow. We found high levels of genetic connectivity, with gradients of variation across the large continuous population of white-tailed deer. At the fine scale, spatial clustering of related animals was correlated with the amount and arrangement of forested habitat. At the broader scale, impediments to dispersal were important to shaping genetic connectivity within the population. We found significant barrier effects of individual state and interstate highways and rivers. Our results offer an important understanding of deer biology and movement that will help inform the management of this species in an area where overabundance and disease spread are primary concerns.

  1. Representing biophysical landscape interactions in soil models by bridging disciplines and scales.

    NASA Astrophysics Data System (ADS)

    van der Ploeg, M. J.; Carranza, C.; Teixeira da Silva, R.; te Brake, B.; Baartman, J.; Robinson, D.

    2017-12-01

    The combination of climate change, population growth and soil threats including carbon loss, biodiversity decline and erosion, increasingly confront the global community (Schwilch et al., 2016). One major challenge in studying processes involved in soil threats, landscape resilience, ecosystem stability, sustainable land management and resulting economic consequences, is that it is an interdisciplinary field (Pelletier et al., 2012). Less stringent scientific disciplinary boundaries are therefore important (Liu et al., 2007), because as a result of disciplinary focus, ambiguity may arise on the understanding of landscape interactions. This is especially true in the interaction between a landscape's physical and biological processes (van der Ploeg et al. 2012). Biophysical landscape interactions are those biotic and abiotic processes in a landscape that have an influence on the developments within and evolution of a landscape. An important aspect in biophysical landscape interactions is the differences in scale related to the various processes that play a role in these systems. Moreover, the interplay between the physical landscape and the occurring vegetation, which often co-evolve, and the resulting heterogeneity and emerging patterns are the reason why it is so challenging to establish a theoretical basis to describe biophysical processes in landscapes (e.g. te Brake et al. 2013, Robinson et al. 2016). Another complicating factor is the response of vegetation to changing environmental conditions, including a possible, and often unknown, time-lag (e.g. Metzger et al., 2009). An integrative description for modelling biophysical interactions has been a long standing goal in soil science (Vereecken et al., 2016). We need the development of soil models that are more focused on networks, connectivity and feedbacks incorporating the most important aspects of our detailed mechanistic modelling (Paola & Leeder, 2011). Additionally, remote sensing measurement techniques facilitate non-interfering observation of biophysical interactions on a landscape scale. A joint effort to connect Earth's (sub)surface processes by a combination of innovative big data-assimilation, measurement and modelling techniques will enable the scientific community to accurately address vital issues.

  2. Differentially Methylated Region-Representational Difference Analysis (DMR-RDA): A Powerful Method to Identify DMRs in Uncharacterized Genomes.

    PubMed

    Sasheva, Pavlina; Grossniklaus, Ueli

    2017-01-01

    Over the last years, it has become increasingly clear that environmental influences can affect the epigenomic landscape and that some epigenetic variants can have heritable, phenotypic effects. While there are a variety of methods to perform genome-wide analyses of DNA methylation in model organisms, this is still a challenging task for non-model organisms without a reference genome. Differentially methylated region-representational difference analysis (DMR-RDA) is a sensitive and powerful PCR-based technique that isolates DNA fragments that are differentially methylated between two otherwise identical genomes. The technique does not require special equipment and is independent of prior knowledge about the genome. It is even applicable to genomes that have high complexity and a large size, being the method of choice for the analysis of plant non-model systems.

  3. Visual unit analysis: a descriptive approach to landscape assessment

    Treesearch

    R. J. Tetlow; S. R. J. Sheppard

    1979-01-01

    Analysis of the visible attributes of landscapes is an important component of the planning process. When landscapes are at regional scale, economical and effective methodologies are critical. The Visual Unit concept appears to offer a logical and useful framework for description and evaluation. The concept subdivides landscape into coherent, spatially-defined units....

  4. Methods for integrated modeling of landscape change: Interior Northwest Landscape Analysis System.

    Treesearch

    Jane L. Hayes; Alan. A. Ager; R. James Barbour

    2004-01-01

    The Interior Northwest Landscape Analysis System (INLAS) links a number of resource, disturbance, and landscape simulations models to examine the interactions of vegetative succession, management, and disturbance with policy goals. The effects of natural disturbance like wildfire, herbivory, forest insects and diseases, as well as specific management actions are...

  5. Integrating spatially explicit representations of landscape perceptions into land change research

    USGS Publications Warehouse

    Dorning, Monica; Van Berkel, Derek B.; Semmens, Darius J.

    2017-01-01

    Purpose of ReviewHuman perceptions of the landscape can influence land-use and land-management decisions. Recognizing the diversity of landscape perceptions across space and time is essential to understanding land change processes and emergent landscape patterns. We summarize the role of landscape perceptions in the land change process, demonstrate advances in quantifying and mapping landscape perceptions, and describe how these spatially explicit techniques have and may benefit land change research.Recent FindingsMapping landscape perceptions is becoming increasingly common, particularly in research focused on quantifying ecosystem services provision. Spatial representations of landscape perceptions, often measured in terms of landscape values and functions, provide an avenue for matching social and environmental data in land change studies. Integrating these data can provide new insights into land change processes, contribute to landscape planning strategies, and guide the design and implementation of land change models.SummaryChallenges remain in creating spatial representations of human perceptions. Maps must be accompanied by descriptions of whose perceptions are being represented and the validity and uncertainty of those representations across space. With these considerations, rapid advancements in mapping landscape perceptions hold great promise for improving representation of human dimensions in landscape ecology and land change research.

  6. Detection of urban expansion in an urban-rural landscape with multitemporal QuickBird images

    PubMed Central

    Lu, Dengsheng; Hetrick, Scott; Moran, Emilio; Li, Guiying

    2011-01-01

    Accurately detecting urban expansion with remote sensing techniques is a challenge due to the complexity of urban landscapes. This paper explored methods for detecting urban expansion with multitemporal QuickBird images in Lucas do Rio Verde, Mato Grosso, Brazil. Different techniques, including image differencing, principal component analysis (PCA), and comparison of classified impervious surface images with the matched filtering method, were used to examine urbanization detection. An impervious surface image classified with the hybrid method was used to modify the urbanization detection results. As a comparison, the original multispectral image and segmentation-based mean-spectral images were used during the detection of urbanization. This research indicates that the comparison of classified impervious surface images with matched filtering method provides the best change detection performance, followed by the image differencing method based on segmentation-based mean spectral images. The PCA is not a good method for urban change detection in this study. Shadows and high spectral variation within the impervious surfaces represent major challenges to the detection of urban expansion when high spatial resolution images are used. PMID:21799706

  7. Voluntary Field Data Collection for Landscape Phenology and Surface Water Essential Climate Variable Research

    NASA Astrophysics Data System (ADS)

    Jones, J. W.; Hudson-Dunn, A.; Aquino, K.; Pasa, M.; Paez, F.

    2013-12-01

    The U.S. Geological Survey is developing techniques to monitor vegetation and surface water condition for improved resource management. Educational materials and data forms that allow volunteer Citizen Scientists to collect information on vegetation and surface water extent to enhance satellite and web camera data analyses (http://egsc.usgs.gov/shenandoah.html) have been developed, tested, and refined. Collection is focused on supplementing landscape phenology and surface water extent (SWE) essential climate variable (ECV) research. Low cost instrumentation, subject education, and measurement calibration techniques all have utility for multiple remote sensing and biophysical studies. Trials have been conducted with subjects ranging from elementary school-aged summer camp children to science major undergraduate and graduate students. Experiments were replicated in several project study areas in Virginia that are also phenology and SWE-ECV research sites. Analysis of volunteer responses and their narrative feedback have improved the ability to request and assess data from volunteers. Children ages 12 and over were able to provide reliable supplemental information for phenology and aquatic research. Finally, trial observation and subject feedback both confirmed that participation furthered volunteer interest in science.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently andmore » thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.« less

  9. Assessment of carbon in woody plants and soil across a vineyard-woodland landscape

    PubMed Central

    2011-01-01

    Background Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression. Results Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively. Conclusions This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation. PMID:22070870

  10. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed.

    PubMed

    Yang, Xiaojun

    2012-02-01

    Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its ecosystem services. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Identification of biogeochemical hot spots using time-lapse hydrogeophysics

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Loecke, T.; Burgin, A.

    2016-12-01

    The identification and monitoring of biogeochemical hot spots and hot moments is difficult using point based sampling techniques and sensors. Without proper monitoring and accounting of water, energy, and trace gas fluxes it is difficult to assess the environmental footprint of land management practices. One key limitation is optimal placement of sensors/chambers that adequately capture the point scale fluxes and thus a reasonable integration to landscape scale flux. In this work we present time-lapse hydrogeophysical imaging at an old agricultural field converted into a wetland mitigation bank near Dayton, Ohio. While the wetland was previously instrumented with a network of soil sensors and surface chambers to capture a suite of state variables and fluxes, we hypothesize that time-lapse hydrogeophysical imaging is an underutilized and critical reconnaissance tool for effective network design and landscape scaling. Here we combine the time-lapse hydrogeophysical imagery with the multivariate statistical technique of Empirical Orthogonal Functions (EOF) in order to isolate the spatial and temporal components of the imagery. Comparisons of soil core information (e.g. soil texture, soil carbon) from around the study site and organized within like spatial zones reveal statistically different mean values of soil properties. Moreover, the like spatial zones can be used to identify a finite number of future sampling locations, evaluation of the placement of existing sensors/chambers, upscale/downscale observations, all of which are desirable techniques for commercial use in precision agriculture. Finally, we note that combining the EOF analysis with continuous monitoring from point sensors or remote sensing products may provide a robust statistical framework for scaling observations through time as well as provide appropriate datasets for use in landscape biogeochemical models.

  12. Even the Upper End of the River Believes in the Ocean1

    EPA Science Inventory

    This article describes unique research that demonstrates how changes in the landscape impact water quality. To provide resource managers with tools, techniques, and information that helps improve understanding about how the landscape that surrounds a watershed impacts the qualit...

  13. [Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis.

    PubMed

    Yu, Ya Ping; Yin, Hai Wei; Kong, Fan Hua; Wang, Jing Jing; Xu, Wen Bin

    2016-07-01

    Based on ArcGIS, Erdas, GuidosToolbox, Conefor and other software platforms, using morphological spatial pattern analysis (MSPA) and landscape connectivity analysis methods, this paper quantitatively analysed the scale effect, edge effect and distance effect of the Nanjing urban green infrastructure network pattern in 2013 by setting different pixel sizes (P) and edge widths in MSPA analysis, and setting different dispersal distance thresholds in landscape connectivity analysis. The results showed that the type of landscape acquired based on the MSPA had a clear scale effect and edge effect, and scale effects only slightly affected landscape types, whereas edge effects were more obvious. Different dispersal distances had a great impact on the landscape connectivity, 2 km or 2.5 km dispersal distance was a critical threshold for Nanjing. When selecting the pixel size 30 m of the input data and the edge wide 30 m used in the morphological model, we could get more detailed landscape information of Nanjing UGI network. Based on MSPA and landscape connectivity, analysis of the scale effect, edge effect, and distance effect on the landscape types of the urban green infrastructure (UGI) network was helpful for selecting the appropriate size, edge width, and dispersal distance when developing these networks, and for better understanding the spatial pattern of UGI networks and the effects of scale and distance on the ecology of a UGI network. This would facilitate a more scientifically valid set of design parameters for UGI network spatiotemporal pattern analysis. The results of this study provided an important reference for Nanjing UGI networks and a basis for the analysis of the spatial and temporal patterns of medium-scale UGI landscape networks in other regions.

  14. Energy landscapes for machine learning

    NASA Astrophysics Data System (ADS)

    Ballard, Andrew J.; Das, Ritankar; Martiniani, Stefano; Mehta, Dhagash; Sagun, Levent; Stevenson, Jacob D.; Wales, David J.

    Machine learning techniques are being increasingly used as flexible non-linear fitting and prediction tools in the physical sciences. Fitting functions that exhibit multiple solutions as local minima can be analysed in terms of the corresponding machine learning landscape. Methods to explore and visualise molecular potential energy landscapes can be applied to these machine learning landscapes to gain new insight into the solution space involved in training and the nature of the corresponding predictions. In particular, we can define quantities analogous to molecular structure, thermodynamics, and kinetics, and relate these emergent properties to the structure of the underlying landscape. This Perspective aims to describe these analogies with examples from recent applications, and suggest avenues for new interdisciplinary research.

  15. Optimal dimensionality reduction of complex dynamics: the chess game as diffusion on a free-energy landscape.

    PubMed

    Krivov, Sergei V

    2011-07-01

    Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game--the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.

  16. Inferring genome-wide interplay landscape between DNA methylation and transcriptional regulation.

    PubMed

    Tang, Binhua; Wang, Xin

    2015-01-01

    DNA methylation and transcriptional regulation play important roles in cancer cell development and differentiation processes. Based on the currently available cell line profiling information from the ENCODE Consortium, we propose a Bayesian inference model to infer and construct genome-wide interaction landscape between DNA methylation and transcriptional regulation, which sheds light on the underlying complex functional mechanisms important within the human cancer and disease context. For the first time, we select all the currently available cell lines (>=20) and transcription factors (>=80) profiling information from the ENCODE Consortium portal. Through the integration of those genome-wide profiling sources, our genome-wide analysis detects multiple functional loci of interest, and indicates that DNA methylation is cell- and region-specific, due to the interplay mechanisms with transcription regulatory activities. We validate our analysis results with the corresponding RNA-sequencing technique for those detected genomic loci. Our results provide novel and meaningful insights for the interplay mechanisms of transcriptional regulation and gene expression for the human cancer and disease studies.

  17. Optimal dimensionality reduction of complex dynamics: The chess game as diffusion on a free-energy landscape

    NASA Astrophysics Data System (ADS)

    Krivov, Sergei V.

    2011-07-01

    Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game—the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.

  18. Modeling the relationship between landscape characteristics and water quality in a typical highly intensive agricultural small watershed, Dongting lake basin, south central China.

    PubMed

    Li, Hongqing; Liu, Liming; Ji, Xiang

    2015-03-01

    Understanding the relationship between landscape characteristics and water quality is critically important for estimating pollution potential and reducing pollution risk. Therefore, this study examines the relationship between landscape characteristics and water quality at both spatial and temporal scales. The study took place in the Jinjing River watershed in 2010; seven landscape types and four water quality pollutions were chosen as analysis parameters. Three different buffer areas along the river were drawn to analyze the relationship as a function of spatial scale. The results of a Pearson's correlation coefficient analysis suggest that "source" landscape, namely, tea gardens, residential areas, and paddy lands, have positive effects on water quality parameters, while forests exhibit a negative influence on water quality parameters because they represent a "sink" landscape and the sub-watershed level is identified as a suitable scale. Using the principal component analysis, tea gardens, residential areas, paddy lands, and forests were identified as the main landscape index. A stepwise multiple regression analysis was employed to model the relationship between landscape characteristics and water quality for each season. The results demonstrate that both landscape composition and configuration affect water quality. In summer and winter, the landscape metrics explained approximately 80.7 % of the variance in the water quality variables, which was higher than that for spring and fall (60.3 %). This study can help environmental managers to understand the relationships between landscapes and water quality and provide landscape ecological approaches for water quality control and land use management.

  19. Thermokarst Characteristics and Distribution in a Transitional Arctic Biome: New Discoveries and Possible Monitoring Directions in a Climate Change Scenario

    NASA Astrophysics Data System (ADS)

    Balser, A. W.; Gooseff, M. N.; Jones, J. B.; Bowden, W. B.; Sanzone, D. M.; Allen, A.; Larouche, J. R.

    2006-12-01

    In arctic regions, climate warming is leading to permafrost melting and wide-scale ecosystem alteration. A prominent pathway of permafrost loss is through thermokarst, which includes the catastrophic loss of soil structure and rapid subsidence. The regional-scale distribution of thermokarst is poorly documented throughout arctic regions. Remote landscapes and a lack of reliable, regional-scale detection techniques severely hamper our understanding of past prevalence and present distribution patterns. Intensive field campaigns are providing key data to bolster our understanding of the distribution and the characteristics of thermokarst formation, and enabling comprehensive method studies to develop remotely-sensed detection techniques. The Noatak Valley in northwestern Alaska's Brooks Range mountains harbors a transitional landscape from arctic and alpine tundra to boreal forest, all contained in a single 7,000,000 acre watershed. Preliminary field investigations augmented by photogrammetric measurements in 2006 revealed consistent patterns in the distribution of classifiable thermokarst feature types in a 2300 square-mile study area in the middle Noatak basin. Four distinct classes of thermokarst show remarkably tight relationships with ambient slope and local landcover. These investigations tie to larger efforts to document past and present regional distribution, testing remotely sensed data analysis techniques for baseline metrics and a future monitoring scheme.

  20. [Applications of 2D and 3D landscape pattern indices in landscape pattern analysis of mountainous area at county level].

    PubMed

    Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na

    2012-05-01

    Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic change would be relatively accurate.

  1. Wildlife tradeoffs based on landscape models of habitat preference

    USGS Publications Warehouse

    Loehle, C.; Mitchell, M.S.; White, M.

    2000-01-01

    Wildlife tradeoffs based on landscape models of habitat preference were presented. Multiscale logistic regression models were used and based on these models a spatial optimization technique was utilized to generate optimal maps. The tradeoffs were analyzed by gradually increasing the weighting on a single species in the objective function over a series of simulations. Results indicated that efficiency of habitat management for species diversity could be maximized for small landscapes by incorporating spatial context.

  2. The effectiveness of cartographic visualisations in landscape archaeology

    NASA Astrophysics Data System (ADS)

    Fairbairn, David

    2018-05-01

    The use of maps and other geovisualisation methods has been longstanding in archaeology. Archaeologists employ advanced contemporary tools in their data collection, analysis and presentation. Maps can be used to render the `big data' commonly collected by archaeological prospection techniques, but are also fundamental output instru-ments for the dissemination of archaeological interpretation and modelling. This paper addresses, through case studies, alternate methods of geovisualisation in archaeology and identifies the efficiencies of each.

  3. Spectral-analysis-based extraction of land disturbances arising from oil and gas development in diverse landscapes

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Lantz, Nicholas; Guindon, Bert; Jiao, Xianfen

    2017-01-01

    Accurate and frequent monitoring of land surface changes arising from oil and gas exploration and extraction is a key requirement for the responsible and sustainable development of these resources. Petroleum deposits typically extend over large geographic regions but much of the infrastructure required for oil and gas recovery takes the form of numerous small-scale features (e.g., well sites, access roads, etc.) scattered over the landscape. Increasing exploitation of oil and gas deposits will increase the presence of these disturbances in heavily populated regions. An object-based approach is proposed to utilize RapidEye satellite imagery to delineate well sites and related access roads in diverse complex landscapes, where land surface changes also arise from other human activities, such as forest logging and agriculture. A simplified object-based change vector approach, adaptable to operational use, is introduced to identify the disturbances on land based on red-green spectral response and spatial attributes of candidate object size and proximity to roads. Testing of the techniques has been undertaken with RapidEye multitemporal imagery in two test sites located at Alberta, Canada: one was a predominant natural forest landscape and the other landscape dominated by intensive agricultural activities. Accuracies of 84% and 73%, respectively, have been achieved for the identification of well site and access road infrastructure of the two sites based on fully automated processing. Limited manual relabeling of selected image segments can improve these accuracies to 95%.

  4. Capability of applying morphometric parameters of relief in river basins for geomorphological zoning of a territory

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Yermolaev, O. P.

    2018-01-01

    Information about morphometric characteristics of relief is necessary for researches devoted to geographic characteristics of territory, its zoning, assessment of erosion processes, geoecological condition and others. For the Volga Federal District for the first time a spatial database of geomorphometric parameters 1: 200 000 scale was created, based on a river basin approach. Watersheds are used as a spatial units created by semi-automated method using the terrain and hydrological modeling techniques implemented in the TAS GIS and WhiteBox GIS. As input data DEMs SRTM and Aster GDEM and hydrographic network vectorized from topographic maps were used. Using DEM highlighted above for each river basin, basic morphometric relief characteristics such as mean height, slope steepness, slope length, height range, river network density and factor LS were calculated. Basins belonging to the geomorphological regions and landscape zones was determined, according to the map of geomorphological zoning and landscape map. Analysis of variance revealed a statistically significant relationship between these characteristics and geomorphological regions and landscape zones. Consequently, spatial trends of changes of analyzed morphometric characteristics were revealed.

  5. Factors affecting plant species composition of hedgerows: relative importance and hierarchy

    NASA Astrophysics Data System (ADS)

    Deckers, Bart; Hermy, Martin; Muys, Bart

    2004-07-01

    Although there has been a clear quantitative and qualitative decline in traditional hedgerow network landscapes during last century, hedgerows are crucial for the conservation of rural biodiversity, functioning as an important habitat, refuge and corridor for numerous species. To safeguard this conservation function, insight in the basic organizing principles of hedgerow plant communities is needed. The vegetation composition of 511 individual hedgerows situated within an ancient hedgerow network landscape in Flanders, Belgium was recorded, in combination with a wide range of explanatory variables, including a selection of spatial variables. Non-parametric statistics in combination with multivariate data analysis techniques were used to study the effect of individual explanatory variables. Next, variables were grouped in five distinct subsets and the relative importance of these variable groups was assessed by two related variation partitioning techniques, partial regression and partial canonical correspondence analysis, taking into account explicitly the existence of intercorrelations between variables of different factor groups. Most explanatory variables affected significantly hedgerow species richness and composition. Multivariate analysis showed that, besides adjacent land use, hedgerow management, soil conditions, hedgerow type and origin, the role of other factors such as hedge dimensions, intactness, etc., could certainly not be neglected. Furthermore, both methods revealed the same overall ranking of the five distinct factor groups. Besides a predominant impact of abiotic environmental conditions, it was found that management variables and structural aspects have a relatively larger influence on the distribution of plant species in hedgerows than their historical background or spatial configuration.

  6. A variational conformational dynamics approach to the selection of collective variables in metadynamics.

    PubMed

    McCarty, James; Parrinello, Michele

    2017-11-28

    In this paper, we combine two powerful computational techniques, well-tempered metadynamics and time-lagged independent component analysis. The aim is to develop a new tool for studying rare events and exploring complex free energy landscapes. Metadynamics is a well-established and widely used enhanced sampling method whose efficiency depends on an appropriate choice of collective variables. Often the initial choice is not optimal leading to slow convergence. However by analyzing the dynamics generated in one such run with a time-lagged independent component analysis and the techniques recently developed in the area of conformational dynamics, we obtain much more efficient collective variables that are also better capable of illuminating the physics of the system. We demonstrate the power of this approach in two paradigmatic examples.

  7. A variational conformational dynamics approach to the selection of collective variables in metadynamics

    NASA Astrophysics Data System (ADS)

    McCarty, James; Parrinello, Michele

    2017-11-01

    In this paper, we combine two powerful computational techniques, well-tempered metadynamics and time-lagged independent component analysis. The aim is to develop a new tool for studying rare events and exploring complex free energy landscapes. Metadynamics is a well-established and widely used enhanced sampling method whose efficiency depends on an appropriate choice of collective variables. Often the initial choice is not optimal leading to slow convergence. However by analyzing the dynamics generated in one such run with a time-lagged independent component analysis and the techniques recently developed in the area of conformational dynamics, we obtain much more efficient collective variables that are also better capable of illuminating the physics of the system. We demonstrate the power of this approach in two paradigmatic examples.

  8. Multi-Scale and Object-Oriented Analysis for Mountain Terrain Segmentation and Geomorphological Assessment

    NASA Astrophysics Data System (ADS)

    Marston, B. K.; Bishop, M. P.; Shroder, J. F.

    2009-12-01

    Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.

  9. Landscape Management: Field Operator.

    ERIC Educational Resources Information Center

    Smith, Carole A.

    These materials for a six-unit course were developed to prepare secondary and postsecondary students for entry-level positions in landscape management. The six units are on orientation, hand tools, light power equipment, water and watering techniques, planting and maintaining plant beds, and establishing and maintaining turf. The first section is…

  10. Landscape values in public decisions

    Treesearch

    Richard N. L. Andrews

    1979-01-01

    The National Environmental Policy Act requires all agencies to develop techniques to insure appropriate consideration of all environmental amenities and values, including those presently unquantified, by all federal agencies in all their activities. These obviously include the values associated with the landscape and its visual resources. The visual resource, however,...

  11. Spatial exposure-hazard and landscape models for assessing the impact of GM crops on non-target organisms.

    PubMed

    Leclerc, Melen; Walker, Emily; Messéan, Antoine; Soubeyrand, Samuel

    2018-05-15

    The cultivation of Genetically Modified (GM) crops may have substantial impacts on populations of non-target organisms (NTOs) in agroecosystems. These impacts should be assessed at larger spatial scales than the cultivated field, and, as landscape-scale experiments are difficult, if not impossible, modelling approaches are needed to address landscape risk management. We present an original stochastic and spatially explicit modelling framework for assessing the risk at the landscape level. We use techniques from spatial statistics for simulating simplified landscapes made up of (aggregated or non-aggregated) GM fields, neutral fields and NTO's habitat areas. The dispersal of toxic pollen grains is obtained by convolving the emission of GM plants and validated dispersal kernel functions while the locations of exposed individuals are drawn from a point process. By taking into account the adherence of the ambient pollen on plants, the loss of pollen due to climatic events, and, an experimentally-validated mortality-dose function we predict risk maps and provide a distribution giving how the risk varies within exposed individuals in the landscape. Then, we consider the impact of the Bt maize on Inachis io in worst-case scenarii where exposed individuals are located in the vicinity of GM fields and pollen shedding overlaps with larval emergence. We perform a Global Sensitivity Analysis (GSA) to explore numerically how our input parameters influence the risk. Our results confirm the important effects of pollen emission and loss. Most interestingly they highlight that the optimal spatial distribution of GM fields that mitigates the risk depends on our knowledge of the habitats of NTOs, and finally, moderate the influence of the dispersal kernel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability.

    PubMed

    Santos, José; Monteagudo, Ángel

    2017-03-27

    The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.

  13. Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China.

    PubMed

    Gong, Jian; Yang, Jianxin; Tang, Wenwu

    2015-11-09

    Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution-severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems.

  14. Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China

    PubMed Central

    Gong, Jian; Yang, Jianxin; Tang, Wenwu

    2015-01-01

    Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution—severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems. PMID:26569270

  15. Evaluating management risks using landscape trajectory analysis: a case study of California fisher

    Treesearch

    Craig M. Thompson; William J. Zielinski; Kathryn L. Purcell

    2011-01-01

    Ecosystem management requires an understanding of how landscapes vary in space and time, how this variation can be affected by management decisions or stochastic events, and the potential consequences for species. Landscape trajectory analysis, coupled with a basic knowledge of species habitat selection, offers a straightforward approach to ecological risk analysis and...

  16. Visualizing and quantifying microtopographic change of dryland landscapes from an unmanned aircraft system

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods: Soil and site stability are key attributes of assessing the health of dryland landscapes because these lands are susceptible to high rates of wind- and water-caused erosion. Field techniques for measuring and monitoring soil erosion in drylands are often labor intensive...

  17. US EPA'S LANDSCAPE ECOLOGY RESEARCH: ASSESSING TRENDS FOR WETLANDS AND SURFACE WATERS USING REMORE SENSING, GIS, AND FIELD-BASED TECHNIQUES

    EPA Science Inventory

    The US EPA, Environmental Sciences Division-Las Vegas is using a variety of geopspatical and statistical modeling approaches to locate and assess the complex functions of wetland ecosystems. These assessments involve measuring landscape characteristrics and change, at multiple s...

  18. LanDPro: Landscape Dynamics Program

    DTIC Science & Technology

    2012-09-18

    of Major Accomplishments............................................................... 7 1. Landscape history and response to land use change and...site potential using geologic, geomorphic, and geophysical techniques, U.S. Marine Corps Base Camp Pendleton, CA...safe, realistic military training environments while maximizing use for active training, DoD spends upwards of $100 million annually on land management

  19. A comparison of techniques for assessing farmland bumblebee populations.

    PubMed

    Wood, T J; Holland, J M; Goulson, D

    2015-04-01

    Agri-environment schemes have been implemented across the European Union in order to reverse declines in farmland biodiversity. To assess the impact of these schemes for bumblebees, accurate measures of their populations are required. Here, we compared bumblebee population estimates on 16 farms using three commonly used techniques: standardised line transects, coloured pan traps and molecular estimates of nest abundance. There was no significant correlation between the estimates obtained by the three techniques, suggesting that each technique captured a different aspect of local bumblebee population size and distribution in the landscape. Bumblebee abundance as observed on the transects was positively influenced by the number of flowers present on the transect. The number of bumblebees caught in pan traps was positively influenced by the density of flowers surrounding the trapping location and negatively influenced by wider landscape heterogeneity. Molecular estimates of the number of nests of Bombus terrestris and B. hortorum were positively associated with the proportion of the landscape covered in oilseed rape and field beans. Both direct survey techniques are strongly affected by floral abundance immediately around the survey site, potentially leading to misleading results if attempting to infer overall abundance in an area or on a farm. In contrast, whilst the molecular method suffers from an inability to detect sister pairs at low sample sizes, it appears to be unaffected by the abundance of forage and thus is the preferred survey technique.

  20. Extracting temporal and spatial information from remotely sensed data for mapping wildlife habitat: Tucson

    USGS Publications Warehouse

    Wallace, Cynthia S.A.; Advised by Marsh, Stuart E.

    2002-01-01

    The research accomplished in this dissertation used both mathematical and statistical techniques to extract and evaluate measures of landscape temporal dynamics and spatial structure from remotely sensed data for the purpose of mapping wildlife habitat. By coupling the landscape measures gleaned from the remotely sensed data with various sets of animal sightings and population data, effective models of habitat preference were created.Measures of temporal dynamics of vegetation greenness as measured by National Oceanographic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (AVHRR) satellite were used to effectively characterize and map season specific habitat of the Sonoran pronghorn antelope, as well as produce preliminary models of potential yellow-billed cuckoo habitat in Arizona. Various measures that capture different aspects of the temporal dynamics of the landscape were derived from AVHRR Normalized Difference Vegetation Index composite data using three main classes of calculations: basic statistics, standardized principal components analysis, and Fourier analysis. Pronghorn habitat models based on the AVHRR measures correspond visually and statistically to GIS-based models produced using data that represent detailed knowledge of ground-condition.Measures of temporal dynamics also revealed statistically significant correlations with annual estimates of elk population in selected Arizona Game Management Units, suggesting elk respond to regional environmental changes that can be measured using satellite data. Such relationships, once verified and established, can be used to help indirectly monitor the population.Measures of landscape spatial structure derived from IKONOS high spatial resolution (1-m) satellite data using geostatistics effectively map details of Sonoran pronghorn antelope habitat. Local estimates of the nugget, sill, and range variogram parameters calculated within 25 x 25-meter image windows describe the spatial autocorrelation of the image, permitting classification of all pixels into coherent units whose signature graphs exhibit a classic variogram shape. The variogram parameters captured in these signatures have been shown in previous studies to discriminate between different species-specific vegetation associations.The synoptic view of the landscape provided by satellite data can inform resource management efforts. The ability to characterize the spatial structure and temporal dynamics of habitat using repeatable remote sensing data allows closer monitoring of the relationship between a species and its landscape.

  1. Modeling Land Use/Cover Changes in an African Rural Landscape

    NASA Astrophysics Data System (ADS)

    Kamusoko, C.; Aniya, M.

    2006-12-01

    Land use/cover changes are analyzed in the Bindura district of Zimbabwe, Africa through the integration of data from a time series of Landsat imagery (1973, 1989 and 2000), a household survey and GIS coverages. We employed a hybrid supervised/unsupervised classification approach to generate land use/cover maps from which landscape metrics were calculated. Population and other household variables were derived from a sample of surveyed villages, while road accessibility and slope were obtained from topographic maps and digital elevation model, respectively. Markov-cellular automata modeling approach that incorporates Markov chain analysis, cellular automata and multi-criteria evaluation (MCE) / multi-objective allocation (MOLA) procedures was used to simulate land use/cover changes. A GIS-based MCE technique computed transition potential maps, whereas transition areas were derived from the 1973-2000 land use/cover maps using the Markov chain analysis. A 5 x 5 cellular automata filter was used to develop a spatially explicit contiguity- weighting factor to change the cells based on its previous state and those of its neighbors, while MOLA resolved land use/cover class allocation conflicts. The kappa index of agreement was used for model validation. Observed trends in land use/cover changes indicate that deforestation and the encroachment of cultivation in woodland areas is a continuous trend in the study area. This suggests that economic activities driven by agricultural expansion were the main causes of landscape fragmentation, leading to landscape degradation. Rigorous calibration of transition potential maps done by a MCE algorithm and Markovian transition probabilities produced accurate inputs for the simulation of land use/cover changes. Overall standard kappa index of agreement ranged from 0.73 to 0.83, which is sufficient for simulating land use/cover changes in the study area. Land use/cover simulations under the 1989 and 2000 scenario indicated further landscape degradation in the rural areas of the Bindura district. Keywords: Zimbabwe, land use/cover changes, landscape fragmentation, GIS, land use/cover change modeling, multi-criteria evaluation/multi-objective allocation procedures, Markov-cellular automata

  2. Selecting landscape metrics as indicators of spatial heterogeneity-A comparison among Greek landscapes

    NASA Astrophysics Data System (ADS)

    Plexida, Sofia G.; Sfougaris, Athanassios I.; Ispikoudis, Ioannis P.; Papanastasis, Vasilios P.

    2014-02-01

    This paper investigates the spatial heterogeneity of three landscapes along an altitudinal gradient and different human land use. The main aim was the identification of appropriate landscape indicators using different extents. ASTER image was used to create a land cover map consisting of three landscapes which differed in altitude and land use. A number of landscape metrics quantifying patch complexity, configuration, diversity and connectivity were derived from the thematic map at the landscape level. There were significant differences among the three landscapes regarding these four aspects of landscape heterogeneity. The analysis revealed a specific pattern of land use where lowlands are being increasingly utilized by humans (percentage of agricultural land = 65.84%) characterized by physical connectedness (high values of Patch Cohesion Index) and relatively simple geometries (low values of fractal dimension index). The landscape pattern of uplands was found to be highly diverse based upon the Shannon Diversity index. After selecting the scale (600 ha) where metrics values stabilized, it was shown that metrics were more correlated at the small scale of 60 ha. From the original 24 metrics, 14 individual metrics with high Spearman correlation coefficient and Variance Inflation Factor criterion were eliminated, leaving 10 representative metrics for subsequent analysis. Data reduction analysis showed that Patch Density, Area-Weighted Mean Fractal Dimension Index and Patch Cohesion Index are suitable to describe landscape patterns irrespective of the scale. A systematic screening of these metrics could enhance a deeper understanding of the results obtained by them and contribute to a sustainable landscape management of Mediterranean landscapes.

  3. Unraveling Landscape Complexity: Land Use/Land Cover Changes and Landscape Pattern Dynamics (1954-2008) in Contrasting Peri-Urban and Agro-Forest Regions of Northern Italy.

    PubMed

    Smiraglia, D; Ceccarelli, T; Bajocco, S; Perini, L; Salvati, L

    2015-10-01

    This study implements an exploratory data analysis of landscape metrics and a change detection analysis of land use and population density to assess landscape dynamics (1954-2008) in two physiographic zones (plain and hilly-mountain area) of Emilia Romagna, northern Italy. The two areas are characterized by different landscape types: a mixed urban-rural landscape dominated by arable land and peri-urban settlements in the plain and a traditional agro-forest landscape in the hilly-mountain area with deciduous and conifer forests, scrublands, meadows, and crop mosaic. Urbanization and, to a lesser extent, agricultural intensification were identified as the processes underlying landscape change in the plain. Land abandonment determining natural forestation and re-forestation driven by man was identified as the process of change most representative of the hilly-mountain area. Trends in landscape metrics indicate a shift toward more fragmented and convoluted patterns in both areas. Number of patches, the interspersion and juxtaposition index, and the large patch index are the metrics discriminating the two areas in terms of landscape patterns in 1954. In 2008, mean patch size, edge density, interspersion and juxtaposition index, and mean Euclidean nearest neighbor distance were the metrics with the most different spatial patterns in the two areas. The exploratory data analysis of landscape metrics contributed to link changes over time in both landscape composition and configuration providing a comprehensive picture of landscape transformations in a wealthy European region. Evidence from this study are hoped to inform sustainable land management designed for homogeneous landscape units in similar socioeconomic contexts.

  4. Strong field-matching effects in superconducting YBa2Cu3O7-δ films with vortex energy landscapes engineered via masked ion irradiation

    NASA Astrophysics Data System (ADS)

    Swiecicki, I.; Ulysse, C.; Wolf, T.; Bernard, R.; Bergeal, N.; Briatico, J.; Faini, G.; Lesueur, J.; Villegas, Javier E.

    2012-06-01

    We have developed a masked ion irradiation technique to engineer the energy landscape for vortices in oxide superconductors. This approach associates the possibility to design the landscape geometry at the nanoscale with the unique capability to adjust the depth of the energy wells for vortices. This enabled us to unveil the key role of vortex channeling in modulating the amplitude of the field matching effects with the artificial energy landscape, and to make the latter govern flux dynamics over an unusually wide range of temperatures and applied fields for high-temperature superconducting films.

  5. Quantifying the Energy Landscape Statistics in Proteins - a Relaxation Mode Analysis

    NASA Astrophysics Data System (ADS)

    Cai, Zhikun; Zhang, Yang

    Energy landscape, the hypersurface in the configurational space, has been a useful concept in describing complex processes that occur over a very long time scale, such as the multistep slow relaxations of supercooled liquids and folding of polypeptide chains into structured proteins. Despite extensive simulation studies, its experimental characterization still remains a challenge. To address this challenge, we developed a relaxation mode analysis (RMA) for liquids under a framework analogous to the normal mode analysis for solids. Using RMA, important statistics of the activation barriers of the energy landscape becomes accessible from experimentally measurable two-point correlation functions, e.g. using quasi-elastic and inelastic scattering experiments. We observed a prominent coarsening effect of the energy landscape. The results were further confirmed by direct sampling of the energy landscape using a metadynamics-like adaptive autonomous basin climbing computation. We first demonstrate RMA in a supercooled liquid when dynamical cooperativity emerges in the landscape-influenced regime. Then we show this framework reveals encouraging energy landscape statistics when applied to proteins.

  6. Landscape Builder: software for the creation of initial landscapes for LANDIS from FIA data

    Treesearch

    William Dijak

    2013-01-01

    I developed Landscape Builder to create spatially explicit landscapes as starting conditions for LANDIS Pro 7.0 and LANDIS II landscape forest simulation models from classified satellite imagery and Forest Inventory and Analysis (FIA) data collected over multiple years. LANDIS Pro and LANDIS II models project future landscapes by simulating tree growth, tree species...

  7. Application of Remote Sensing Techniques for Appraising Changes in Wildlife Habitat

    NASA Technical Reports Server (NTRS)

    Nelson, H. K.; Klett, A. T.; Johnston, J. E.

    1971-01-01

    An attempt was made to investigate the potential of airborne, multispectral, line scanner data acquisition and computer-implemented automatic recognition techniques for providing useful information about waterfowl breeding habitat in North Dakota. The spectral characteristics of the components of a landscape containing waterfowl habitat can be detected with airborne scanners. By analyzing these spectral characteristics it is possible to identify and map the landscape components through analog and digital processing methods. At the present stage of development multispectral remote sensing techniques are not ready for operational application to surveys of migratory bird habitat and other such resources. Further developments are needed to: (1) increase accuracy; (2) decrease retrieval and processing time; and (3) reduce costs.

  8. Modeling the impacts of phenological and inter-annual changes in landscape metrics on local biodiversity of agricultural lands of Eastern Ontario using multi-spatial and multi-temporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Alavi-Shoushtari, N.; King, D.

    2017-12-01

    Agricultural landscapes are highly variable ecosystems and are home to many local farmland species. Seasonal, phenological and inter-annual agricultural landscape dynamics have potential to affect the richness and abundance of farmland species. Remote sensing provides data and techniques which enable monitoring landscape changes in multiple temporal and spatial scales. MODIS high temporal resolution remote sensing images enable detection of seasonal and phenological trends, while Landsat higher spatial resolution images, with its long term archive enables inter-annual trend analysis over several decades. The objective of this study to use multi-spatial and multi-temporal remote sensing data to model the response of farmland species to landscape metrics. The study area is the predominantly agricultural region of eastern Ontario. 92 sample landscapes were selected within this region using a protocol designed to maximize variance in composition and configuration heterogeneity while controlling for amount of forest and spatial autocorrelation. Two sample landscape extents (1×1km and 3×3km) were selected to analyze the impacts of spatial scale on biodiversity response. Gamma diversity index data for four taxa groups (birds, butterflies, plants, and beetles) were collected during the summers of 2011 and 2012 within the cropped area of each landscape. To extract the seasonal and phenological metrics a 2000-2012 MODIS NDVI time-series was used, while a 1985-2012 Landsat time-series was used to model the inter-annual trends of change in the sample landscapes. The results of statistical modeling showed significant relationships between farmland biodiversity for several taxa and the phenological and inter-annual variables. The following general results were obtained: 1) Among the taxa groups, plant and beetles diversity was most significantly correlated with the phenological variables; 2) Those phenological variables which are associated with the variability in the start of season date across the sample landscapes and the variability in the corresponding NDVI values at that date showed the strongest correlation with the biodiversity indices; 3) The significance of the models improved when using 3×3km site extent both for MODIS and Landsat based models due most likely to the larger sample size over 3x3km.

  9. Managing landscape connectivity for a fragmented area using spatial analysis model at town scale

    NASA Astrophysics Data System (ADS)

    Liu, Shiliang; Dong, Yuhong; Fu, Wei; Zhang, Zhaoling

    2009-10-01

    Urban growth has great effect on land uses of its suburbs. The habitat loss and fragmentation in those areas are a main threat to conservation of biodiversity. Enhancing landscape functional connectivity is usually an effective way to maintain high biodiversity level in disturbed area. Taking a small town in Beijing as an example, we designed potential landscape corridors based on identification of landscape element quality and "least-cost" path analysis. We described a general approach to establish the corridor network in such fragmented area at town scale. The results showed that landscape elements position has various effects on landscape suitability. Small forest patches and other green lands such as meadow, shrub, even farmland could be a potential stepping-stone or corridor for animal movements. Also, the analysis reveals that critical areas should be managed to facilitate the movement of dispersers among habitat patches.

  10. Landscape Characteristics and Variations in Longitudinal Stream Flow Contribution in two Headwater Semi-Arid Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Shakespeare, B.; Gooseff, M. N.

    2005-12-01

    Understanding what role particular catchment attributes (slope, aspect, landcover, and contributing area) play in the contribution of stream flow is important for land management decisions, especially in the semi-arid western areas of the United States. Our study site is paired small catchments (approximately 9 and 11 km2) in the headwaters of the Weber drainage basin in Northern Utah. These catchments are surrounded by Wasatch formation with loamy textured soils. One catchment is predominantly underlain by quartzite while the other catchment is mostly underlain by limestone. We measured lateral flow gains every 200 to 400 meters using salt dilution gauging techniques throughout the ~5 km long streams. These measurements were taken synoptically 3 times during the seasonal discharge recession (summer 2005). The flows ranged spatially from 4 L s-1 to 55 L s-1 and varied temporally by as much as 50% when comparing the same reaches. Using GIS software, landscape analysis of slope, aspect, contributing area, topographic convergence, riparian and hillslope area, and landcover was performed for each of the delineated stream reach contributing areas. The results were tested for correlations between lateral flow gains measured in the field and different landscape characteristics. Each of the synoptic events was compared with each other to explore effects of seasonal recession on the relationships between flow gain and landscape characteristics.

  11. Influence of Landscape Coverage on Measuring Spatial and Length Properties of Rock Fracture Networks: Insights from Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhuo; Lei, Qinghua

    2018-01-01

    Natural fractures are ubiquitous in the Earth's crust and often deeply buried in the subsurface. Due to the difficulty in accessing to their three-dimensional structures, the study of fracture network geometry is usually achieved by sampling two-dimensional (2D) exposures at the Earth's surface through outcrop mapping or aerial photograph techniques. However, the measurement results can be considerably affected by the coverage of forests and other plant species over the exposed fracture patterns. We quantitatively study such effects using numerical simulation. We consider the scenario of nominally isotropic natural fracture systems and represent them using 2D discrete fracture network models governed by fractal and length scaling parameters. The groundcover is modelled as random patches superimposing onto the 2D fracture patterns. The effects of localisation and total coverage of landscape patches are further investigated. The fractal dimension and length exponent of the covered fracture networks are measured and compared with those of the original non-covered patterns. The results show that the measured length exponent increases with the reduced localisation and increased coverage of landscape patches, which is more evident for networks dominated by very large fractures (i.e. small underlying length exponent). However, the landscape coverage seems to have a minor impact on the fractal dimension measurement. The research findings of this paper have important implications for field survey and statistical analysis of geological systems.

  12. Stable Carbon Isotope Ratios of Individual Pollen Grains as a Proxy for C3- Versus C4-Grass Abundance in Paleorecords: A Validation Study

    NASA Astrophysics Data System (ADS)

    Nelson, D. M.; Hu, F.; Pearson, A.

    2007-12-01

    C3 and C4 grasses have distinct influences on major biogeochemical processes and unique responses to important environmental controls. Difficulties in distinguishing between these two functional groups of grasses have hindered paleoecological studies of grass-dominated ecosystems. We recently developed a technique to analyze the stable carbon isotope composition of individual grass-pollen grains using a spooling- wire microcombustion device interfaced with an isotope-ratio mass spectrometer (Nelson et al. 2007). This technique holds promise for improving C3 and C4 grass reconstructions. It requires ~90% fewer grains than typical methods and avoids assumptions associated with mixing models. However, our previous work was based on known C3 and C4 grasses from herbarium specimens and field collections and the technique had not been test using geological samples. To test the ability of this technique to reproduce the abundance of C3 and C4 grasses on the landscape, we measured δ13C values of >1500 individual grains of grass pollen isolated from the surface sediments of 10 North American lakes that span a large gradient of C3 and C4 grass abundance. Results indicate a strong positive correlation (r=0.94) between % C4-grass pollen (derived from classifying δ13C values from single grains as C3 and C4) and the literature-reported abundance of C4 grasses on the landscape. However, the measured % C4-grass pollen shows some deviation from the actual abundance at sites with high proportions of C4 grasses. This is likely caused by uncertainty in the magnitude, composition, and variability of the analytical blank associated with these measurements. Correcting for this deviation using regression analysis improves the estimation of the abundance of C4 grasses on the landscape. Comparison of the % C4-grass pollen with C/N and δ13C measurements of total organic matter in the same lake-sediment samples illustrates the distinct advantage of grass-pollen δ13C as a proxy for distinguishing C3 and C4 shifts. At 9 of the 10 sites C/N values indicate that surface-sediment organic matter was derived primarily from aquatic production. At the one site where organic matter was produced primarily by vascular plants the δ13C value (-29.3°) suggests organic matter derived exclusively from C3 plants. However, ~80% of the grasses on the landscape at this site are C4 grasses. The C3- like bulk-sediment δ13C value likely represents woody species, which comprise >90% of the pollen spectra. Thus δ13C analysis of single grains of grass pollen offers a new tool to classify grass pollen into two major functional groups and promises to advance our understanding of grassland ecology and evolution. Reference Nelson, D.M., Hu, F.S., Mikucki, J., Tian, J., and Pearson, A., 2007, Carbon isotopic analysis of individual pollen grains from C3 and C4 grasses using a spooling wire microcombustion interface: Geochimica et Cosmochimica Acta, v. 71, p. 4005-4014.

  13. Use and misuse of landscape indices

    Treesearch

    Harbin Li; Jianguo Wu

    2004-01-01

    Landscape ecology has generated much excitement in the past two decades. One reason was that it brought spatial analysis and modeling to the forefront of ecological research. However, high expectations for landscape analysis to improve our understanding and prediction of ecological processes have largely been unfulfilled. We identified three kinds of critical issues:...

  14. Fire management over large landscapes: a hierarchical approach

    Treesearch

    Kenneth G. Boykin

    2008-01-01

    Management planning for fires becomes increasingly difficult as scale increases. Stratification provides land managers with multiple scales in which to prepare plans. Using statistical techniques, Geographic Information Systems (GIS), and meetings with land managers, we divided a large landscape of over 2 million acres (White Sands Missile Range) into parcels useful in...

  15. Landscape silviculture for late-successional reserve management

    Treesearch

    S Hummel; R.J. Barbour

    2007-01-01

    The effects of different combinations of multiple, variable-intensity silvicultural treatments on fire and habitat management objectives were evaluated for a ±6,000 ha forest reserve using simulation models and optimization techniques. Our methods help identify areas within the reserve where opportunities exist to minimize conflict between the dual landscape objectives...

  16. Floodplains as a source of fine sediment in grazed landscapes: Tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    NASA Astrophysics Data System (ADS)

    Yu, Mingjing; Rhoads, Bruce L.

    2018-05-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on eroding floodplain surfaces and channel banks within heavily grazed reaches of the stream.

  17. Measurement of energy landscape roughness of folded and unfolded proteins

    PubMed Central

    Milanesi, Lilia; Waltho, Jonathan P.; Hunter, Christopher A.; Shaw, Daniel J.; Beddard, Godfrey S.; Reid, Gavin D.; Dev, Sagarika; Volk, Martin

    2012-01-01

    The dynamics of protein conformational changes, from protein folding to smaller changes, such as those involved in ligand binding, are governed by the properties of the conformational energy landscape. Different techniques have been used to follow the motion of a protein over this landscape and thus quantify its properties. However, these techniques often are limited to short timescales and low-energy conformations. Here, we describe a general approach that overcomes these limitations. Starting from a nonnative conformation held by an aromatic disulfide bond, we use time-resolved spectroscopy to observe nonequilibrium backbone dynamics over nine orders of magnitude in time, from picoseconds to milliseconds, after photolysis of the disulfide bond. We find that the reencounter probability of residues that initially are in close contact decreases with time following an unusual power law that persists over the full time range and is independent of the primary sequence. Model simulations show that this power law arises from subdiffusional motion, indicating a wide distribution of trapping times in local minima of the energy landscape, and enable us to quantify the roughness of the energy landscape (4–5 kBT). Surprisingly, even under denaturing conditions, the energy landscape remains highly rugged with deep traps (>20 kBT) that result from multiple nonnative interactions and are sufficient for trapping on the millisecond timescale. Finally, we suggest that the subdiffusional motion of the protein backbone found here may promote rapid folding of proteins with low contact order by enhancing contact formation between nearby residues. PMID:23150572

  18. Bayesian inference for the spatio-temporal invasion of alien species.

    PubMed

    Cook, Alex; Marion, Glenn; Butler, Adam; Gibson, Gavin

    2007-08-01

    In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.

  19. An unbiased adaptive sampling algorithm for the exploration of RNA mutational landscapes under evolutionary pressure.

    PubMed

    Waldispühl, Jérôme; Ponty, Yann

    2011-11-01

    The analysis of the relationship between sequences and structures (i.e., how mutations affect structures and reciprocally how structures influence mutations) is essential to decipher the principles driving molecular evolution, to infer the origins of genetic diseases, and to develop bioengineering applications such as the design of artificial molecules. Because their structures can be predicted from the sequence data only, RNA molecules provide a good framework to study this sequence-structure relationship. We recently introduced a suite of algorithms called RNAmutants which allows a complete exploration of RNA sequence-structure maps in polynomial time and space. Formally, RNAmutants takes an input sequence (or seed) to compute the Boltzmann-weighted ensembles of mutants with exactly k mutations, and sample mutations from these ensembles. However, this approach suffers from major limitations. Indeed, since the Boltzmann probabilities of the mutations depend of the free energy of the structures, RNAmutants has difficulties to sample mutant sequences with low G+C-contents. In this article, we introduce an unbiased adaptive sampling algorithm that enables RNAmutants to sample regions of the mutational landscape poorly covered by classical algorithms. We applied these methods to sample mutations with low G+C-contents. These adaptive sampling techniques can be easily adapted to explore other regions of the sequence and structural landscapes which are difficult to sample. Importantly, these algorithms come at a minimal computational cost. We demonstrate the insights offered by these techniques on studies of complete RNA sequence structures maps of sizes up to 40 nucleotides. Our results indicate that the G+C-content has a strong influence on the size and shape of the evolutionary accessible sequence and structural spaces. In particular, we show that low G+C-contents favor the apparition of internal loops and thus possibly the synthesis of tertiary structure motifs. On the other hand, high G+C-contents significantly reduce the size of the evolutionary accessible mutational landscapes.

  20. Modeling brook trout presence and absence from landscape variables using four different analytical methods

    USGS Publications Warehouse

    Steen, Paul J.; Passino-Reader, Dora R.; Wiley, Michael J.

    2006-01-01

    As a part of the Great Lakes Regional Aquatic Gap Analysis Project, we evaluated methodologies for modeling associations between fish species and habitat characteristics at a landscape scale. To do this, we created brook trout Salvelinus fontinalis presence and absence models based on four different techniques: multiple linear regression, logistic regression, neural networks, and classification trees. The models were tested in two ways: by application to an independent validation database and cross-validation using the training data, and by visual comparison of statewide distribution maps with historically recorded occurrences from the Michigan Fish Atlas. Although differences in the accuracy of our models were slight, the logistic regression model predicted with the least error, followed by multiple regression, then classification trees, then the neural networks. These models will provide natural resource managers a way to identify habitats requiring protection for the conservation of fish species.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Jim; Penuelas, J.; Guenther, Alex B.

    To survey landscape-scale fluxes of biogenic gases, a100-meterTeflon tube was attached to a tethered balloon as a sampling inlet for a fast response Proton Transfer Reaction Mass Spectrometer (PTRMS). Along with meteorological instruments deployed on the tethered balloon and at 3-mand outputs from a regional weather model, these observations were used to estimate landscape scale biogenic volatile organic compound fluxes with two micrometeorological techniques: mixed layer variance and surface layer gradients. This highly mobile sampling system was deployed at four field sites near Barcelona to estimate landscape-scale BVOC emission factors in a relatively short period (3 weeks). The two micrometeorologicalmore » techniques agreed within the uncertainty of the flux measurements at all four sites even though the locations had considerable heterogeneity in species distribution and complex terrain. The observed fluxes were significantly different than emissions predicted with an emission model using site-specific emission factors and land-cover characteristics. Considering the wide range in reported BVOC emission factors of VOCs for individual vegetation species (more than an order of magnitude), this flux estimation technique is useful for constraining BVOC emission factors used as model inputs.« less

  2. [Landscape pattern gradient dynamics and desakota features in rapid urbanization area: a case study in Panyu of Guangzhou].

    PubMed

    Yu, Long-Sheng; Fu, Yi-Fu; Yu, Huai-Yi; Li, Zhi-Qin

    2011-01-01

    In order to understand the landscape pattern gradient dynamics and desakota features in rapid urbanization area, this paper took the rapidly urbanizing Panyu District of Guangzhou City as a case, and analyzed its land use and land cover data, based on four Landsat TM images from 1990 to 2008. With the combination of gradient analysis and landscape pattern analysis, and by using the landscape indices in both class and landscape scales, the spatial dynamics and desakota feature of this rapidly urbanizing district were quantified. In the study district, there was a significant change in the landscape pattern, and a typical desakota feature presented along buffer gradient zones. Urban landscape increased and expanded annually, accompanied with serious fragmentation of agricultural landscape. The indices patch density, contagion, and landscape diversity, etc., changed regularly in the urbanization gradient, and the peak of landscape indices appeared in the gradient zone of 4-6 km away from the urban center. The landscape patterns at time series also reflected the differences among the dynamics in different gradient zones. The landscape pattern in desakota region was characterized by complex patch shape, high landscape diversity and fragmentation, and remarkable landscape dynamics. The peaks of landscape indices spread from the urban center to border areas, and desakota region was expanding gradually. The general trend of spatiotemporal dynamics in desakota region and its driving forces were discussed, which could be benefit to the regional land use policy-making and sustainable development planning.

  3. Impact of natural climate change and historical land use on vegetation cover and geomorphological process dynamics in the Serra dos Órgãos mountain range in Rio de Janeiro State, Brazil

    NASA Astrophysics Data System (ADS)

    Nehren, U.; Sattler, D.; Heinrich, J.

    2010-03-01

    The Serra dos Órgãos mountain range in the hinterland of Rio de Janeiro contains extensive remnants of the Atlantic Forest (Mata Atlântica) biome, which once covered about 1.5 million km² from Northeast to South Brazil and further inland to Paraguay and Argentina. As a result of historical deforestation and recent land use intensification processes today only 5 to 8% of the original Atlantic Forest remains. Despite the dramatic habitat loss and a high degree of forest fragmentation, the remnants are among the Earth’s most diverse habitats in terms of species richness. Furthermore, they are characterized by a high level of endemism. Therefore, the biome is considered a "hotspot of biodiversity". In the last years many efforts have been taken to investigate the Mata Atlântica biome in different spatial and time scales and from different scientific perspectives. We are working in the Atlantic Forest of Rio de Janeiro since 2004 and focus in our research particularly on Quaternary landscape evolution and landscape history. By means of landscape and soil archives we reconstruct changes in the landscape system, which are mainly the result of Quaternary climate variability, young tectonic uplift and human impact. The findings throw light on paleoecological conditions in the Late Quaternary and the impact of pre-colonial and colonial land use practices on these landscapes. In this context, a main focus is set on climate and human-driven changes of the vegetation cover and its consequences for the geomorphological process dynamics, in particular erosion and sedimentation processes. Research methods include geomorphological field studies, interpretation of satellite images, physical and chemical sediment and soil analyses as well as relative and absolute dating (Feo/Fed ratio and 14C dating). For the Late Quaternary landscape evolution, the findings are compared with results from paleoclimatic and paloecological investigations in Southeast and South Brazil using other dating techniques, such as pollen analysis. The impact of early civilizations on deforestation, forest fragmentation and geomorphological process dynamics is estimated on the basis of archaeological and anthropological findings. Furthermore, historical sources, such as written documents, maps, paintings and photographs, were collected and analysed to get a more detailed picture of the younger landscape history. As a result we present a landscape genetic model for the Late Quaternary in the Serra dos Órgãos mountain range and the Guanabara Basin. Based on a functional analysis of the natural process dynamics we reconstruct the human impact on the vegetation cover and related erosion and sedimentation processes in different time periods. According to this, the polycyclic climate fluctuations in the Pleistocene emerge as periods of stability and instability in the landscape system. During dry and cool periods of the Ice Ages forests drew back and erosion processes increased, causing higher erosion and deposition rates on slopes and stronger incision of river beds, accompanied by a deposition of gravels. The colluvial soils presently found in the mountain region were mainly deposited during the last instability period in the Late Pleistocene (Wisconsin) and Early Holocene. With the return of rainforests from their retreats under wetter climate conditions in the mid Holocene, slopes were stabilized under a dense vegetation cover. In the Late Holocene erosion conditions changed again with human deforestation and land use, which led to high erosion rates in the mountainous landscape. Concerning the human impact on rainforests and geomorphological process dynamics we give an overview of the pre-historical (Sambaqui, Tupi) and historical (colonial exploitation cycles) landscape transformation and degradation processes for different landscape units within the Serra dos Órgãos and its floodplains. The results not only give a detailed picture of historical land use patterns and landscape degradation processes, but also contribute to the understanding of recent changes in the landscape system. Thus, landscape genetic and historical analysis is essential for assessing the present landscape status with respect to degradation, stability, resilience and land use potentials, and moreover it is a reference for the development of future scenarios.

  4. Building and Characterizing Volcanic Landscapes with a Numerical Landscape Evolution Model and Spectral Techniques

    NASA Astrophysics Data System (ADS)

    Richardson, P. W.; Karlstrom, L.

    2016-12-01

    The competition between constructional volcanic processes such as lava flows, cinder cones, and tumuli compete with physical and chemical erosional processes to control the morphology of mafic volcanic landscapes. If volcanic effusion rates are high, these landscapes are primarily constructional, but over the timescales associated with hot spot volcanism (1-10 Myr) and arcs (10-50 Myr), chemical and physical erosional processes are important. For fluvial incision to occur, initially high infiltration rates must be overcome by chemical weathering or input of fine-grained sediment. We investigate lava flow resurfacing, using a new lava flow algorithm that can be calibrated for specific flows and eruption magnitude/frequency relationships, into a landscape evolution model to complete two modeling experiments to investigate the interplay between volcanic resurfacing and fluvial incision. We use a stochastic spatial vent distribution calibrated from the Hawaiian eruption record to resurface a synthetically produced ocean island. In one experiment, we investigate the consequences of including time-dependent channel incision efficiency. This effectively mimics the behavior of transient hydrological development of lava flows. In the second experiment, we explore the competition between channel incision and lava flow resurfacing. The relative magnitudes of channel incision versus lava flow resurfacing are captured in landscape topography. For example, during the shield building period for ocean islands, effusion rates are high and the signature of lava flow resurfacing dominates. In contrast, after the shield building phase, channel incision begins and eventually dominates the topographic signature. We develop a dimensionless ratio of resurfacing rate to erosion rate to characterize the transition between these processes. We use spectral techniques to characterize volcanic features and to pinpoint the transition between constructional and erosional morphology on modeled landscapes and on the Big Island of Hawaii.

  5. Analysis of Employment Flow of Landscape Architecture Graduates in Agricultural Universities

    ERIC Educational Resources Information Center

    Yao, Xia; He, Linchun

    2012-01-01

    A statistical analysis of employment flow of landscape architecture graduates was conducted on the employment data of graduates major in landscape architecture in 2008 to 2011. The employment flow of graduates was to be admitted to graduate students, industrial direction and regional distribution, etc. Then, the features of talent flow and factors…

  6. The Archeological Record at Bull Shoals Lake and Norfork Lake Arkansas and Missouri

    DTIC Science & Technology

    1993-06-01

    geomorphological analysis of the landscape within the project areas, a review of previously gathered data about the nature and distribution of the...effort. These included a reconnaissance level geomorphological analysis of the landscape within the project areas, a review of previously gathered data...1989) which sought to integrate the description of the archeological record with a geomorphological analysis of the landscape within the areas directly

  7. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States

    USGS Publications Warehouse

    Lee, Soo-Rang; Jo, Yeong-Seok; Park, Chan-Ho; Friedman, Jonathan M.; Olson, Matthew S.

    2018-01-01

    Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.

  8. Landscape predictors of pathogen prevalence and range contractions in US bumblebees.

    PubMed

    McArt, Scott H; Urbanowicz, Christine; McCoshum, Shaun; Irwin, Rebecca E; Adler, Lynn S

    2017-11-29

    Several species of bumblebees have recently experienced range contractions and possible extinctions. While threats to bees are numerous, few analyses have attempted to understand the relative importance of multiple stressors. Such analyses are critical for prioritizing conservation strategies. Here, we describe a landscape analysis of factors predicted to cause bumblebee declines in the USA. We quantified 24 habitat, land-use and pesticide usage variables across 284 sampling locations, assessing which variables predicted pathogen prevalence and range contractions via machine learning model selection techniques. We found that greater usage of the fungicide chlorothalonil was the best predictor of pathogen ( Nosema bombi ) prevalence in four declining species of bumblebees. Nosema bombi has previously been found in greater prevalence in some declining US bumblebee species compared to stable species. Greater usage of total fungicides was the strongest predictor of range contractions in declining species, with bumblebees in the northern USA experiencing greater likelihood of loss from previously occupied areas. These results extend several recent laboratory and semi-field studies that have found surprising links between fungicide exposure and bee health. Specifically, our data suggest landscape-scale connections between fungicide usage, pathogen prevalence and declines of threatened and endangered bumblebees. © 2017 The Author(s).

  9. Descriptive approaches to landscape analysis

    Treesearch

    R. Burton Litton Jr.

    1979-01-01

    Descriptive landscape analyses include various procedures used to document visual/scenic resources. Historic and regional examples of landscape description represent desirable insight for contemporary professional inventory work. Routed and areal landscape inventories are discussed as basic tools. From them, qualitative and quantitative evaluations can be developed...

  10. Watershed Planning within a Quantitative Scenario Analysis Framework.

    PubMed

    Merriam, Eric R; Petty, J Todd; Strager, Michael P

    2016-07-24

    There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework. Sites are first selected for inclusion within the watershed assessment by identifying sites that fall along independent gradients and combinations of known stressors. Field and laboratory techniques are then used to obtain data on the physical, chemical, and biological effects of multiple land use activities. Multiple linear regression analysis is then used to produce landscape-based cumulative effects models for predicting aquatic conditions. Lastly, methods for incorporating cumulative effects models within a scenario analysis framework for guiding management and regulatory decisions (e.g., permitting and mitigation) within actively developing watersheds are discussed and demonstrated for 2 sub-watersheds within the mountaintop mining region of central Appalachia. The watershed assessment and management approach provided herein enables resource managers to facilitate economic and development activity while protecting aquatic resources and producing opportunity for net ecological benefits through targeted remediation.

  11. The derivation of scenic utility functions and surfaces and their role in landscape management

    Treesearch

    John W. Hamilton; Gregory J. Buhyoff; J. Douglas Wellman

    1979-01-01

    This paper outlines a methodological approach for determining relevant physical landscape features which people use in formulating judgments about scenic utility. This information, coupled with either empirically derived or rationally stipulated regression techniques, may be used to produce scenic utility functions and surfaces. These functions can provide a means for...

  12. Combining Silviculture and Landscape Architecture to Enhance the Roadside View

    Treesearch

    Philip M. McDonald; R. Burton Litton Jr.

    1998-01-01

    On a high-quality site in the mixed conifer forest of northern California, understory and overstory vegetation along a 3-mile paved county road were manipulated to enhance the view for the traveler. Traditional silvicultural cutting methods and landscape architectural techniques were blended to give contrast and variability to the vegetation along both sides of the...

  13. The role of the landscape architect in applied forest landscape management: a case study on process

    Treesearch

    Wayne Tlusty

    1979-01-01

    Land planning allocations are often multi-resource concepts, with visual quality objectives addressing the appropriate level of visual resource management. Current legislation and/or regulations often require interdisciplinary teams to implement planning decisions. A considerable amount of information is currently avail-able on visual assessment techniques both for...

  14. INTEGRATING A LANDSCAPE HYDROLOGIC ANALYSIS FOR WATERSHED ASSESSMENT

    EPA Science Inventory

    Methods to provide linkages between a hydrologic modeling tool (AGW A) and landscape assessment tool (A TtILA) for determining the vulnerability of semi-arid landscapes to natural and human-induced landscape pattern changes have been developed. The objective of this study is to ...

  15. Integrating landscape analysis and planning: a multi-scale approach for oriented management of tourist recreation.

    PubMed

    de Aranzabal, Itziar; Schmitz, María F; Pineda, Francisco D

    2009-11-01

    Tourism and landscape are interdependent concepts. Nature- and culture-based tourism are now quite well developed activities and can constitute an excellent way of exploiting the natural resources of certain areas, and should therefore be considered as key objectives in landscape planning and management in a growing number of countries. All of this calls for careful evaluation of the effects of tourism on the territory. This article focuses on an integrated spatial method for landscape analysis aimed at quantifying the relationship between preferences of visitors and landscape features. The spatial expression of the model relating types of leisure and recreational preferences to the potential capacity of the landscape to meet them involves a set of maps showing degrees of potential visitor satisfaction. The method constitutes a useful tool for the design of tourism planning and management strategies, with landscape conservation as a reference.

  16. Geospatial Analysis of Atmospheric Haze Effect by Source and Sink Landscape

    NASA Astrophysics Data System (ADS)

    Yu, T.; Xu, K.; Yuan, Z.

    2017-09-01

    Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD) of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN) and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents atmospheric haze pollution; For Wuhan City, the method of adjusting the built-up area slightly and planning the non-built-up areas reasonably can be taken to reduce atmospheric haze pollution.

  17. Roads in landscape modeling: a case study of a road data layer and use in the interior northwest landscape analysis system.

    Treesearch

    Marti Aitken; Jane L. Hayes

    2006-01-01

    Roads are important ecological features of forest landscapes, but their cause-and effect relationships with other ecosystem components are only recently becoming included in integrated landscape analyses. Simulation models can help us to understand how forested landscapes respond over time to disturbance and socioeconomic factors, and potentially to address the...

  18. Landscape preference assessment of Louisiana river landscapes: a methodological study

    Treesearch

    Michael S. Lee

    1979-01-01

    The study pertains to the development of an assessment system for the analysis of visual preference attributed to Louisiana river landscapes. The assessment system was utilized in the evaluation of 20 Louisiana river scenes. Individuals were tested for their free choice preference for the same scenes. A statistical analysis was conducted to examine the relationship...

  19. Landscape patterns from mathematical morphology on maps with contagion

    Treesearch

    Kurt Riitters; Peter Vogt; Pierre Soille; Christine Estreguil

    2009-01-01

    The perceived realism of simulated maps with contagion (spatial autocorrelation) has led to their use for comparing landscape pattern metrics and as habitat maps for modeling organism movement across landscapes. The objective of this study was to conduct a neutral model analysis of pattern metrics defined by morphological spatial pattern analysis (MSPA) on maps with...

  20. Heritage landscape structure analysis in surrounding environment of the Grand Canal Yangzhou section

    NASA Astrophysics Data System (ADS)

    Xu, Huan

    2018-03-01

    The Yangzhou section of the Grand Canal is selected for a case study in this paper. The ZY-3 satellite images of 2016 are adopted as the data source. RS and GIS are used to analyze the landscape classification of the surrounding landscape of the Grand Canal, and the classification results are precisely evaluated. Next, the overall features of the landscape pattern are analyzed. The results showed that the overall accuracy is 82.5% and the Kappa coefficient is 78.17% in the Yangzhou section. The producer’s accuracy of the water landscape is the highest, followed by that of the other landscape, farmland landscape, garden and forest landscape, architectural landscape. The user’s accuracy of different landscape types can be ranked in a descending order, as the water landscape, farmland landscape, road landscape, architectural landscape, other landscape, garden and forest landscape. The farmland landscape and the architectural landscape are the top advantageous landscape types of the heritage site. The research findings can provide basic data for landscape protection, management and sustainable development of the Grand Canal Yangzhou section.

  1. [Quantitative analysis of landscape patterns at the juncture of Shaanxi, Shanxi and Inner Mongolia, based on remote sensing data--taking Yulin sheet TM image as an example].

    PubMed

    Li, Tuansheng

    2004-03-01

    Based on the TM image of Yulin sheet and with the help of ERDAS, ARC/INFO and ARC/VIEW software, the landscape of Yulin sheet was classified. Using the spatial pattern analysis software FRAGSTATS of the vector version, a set of landscape indices were calculated at three scale levels of patches, classes and landscape. The results showed that landscape pattern indices could be successfully used in characterizing the spatial pattern of the studied area. However, this study should be further extended to the landscape of the same area in other period to analyze its dynamic change. FRAGSTATS was a good software, but should be improved by adding some indices such as PD2 developed by us.

  2. Longwave infrared observation of urban landscapes

    NASA Technical Reports Server (NTRS)

    Goward, S. N.

    1981-01-01

    An investigation is conducted regarding the feasibility to develop improved methods for the identification and analysis of urban landscapes on the basis of a utilization of longwave infrared observations. Attention is given to landscape thermal behavior, urban thermal properties, modeled thermal behavior of pavements and buildings, and observed urban landscape thermal emissions. The differential thermal behavior of buildings, pavements, and natural areas within urban landscapes is found to suggest that integrated multispectral solar radiant reflectance and terrestrial radiant emissions data will significantly increase potentials for analyzing urban landscapes. In particular, daytime satellite observations of the considered type should permit better identification of urban areas and an analysis of the density of buildings and pavements within urban areas. This capability should enhance the utility of satellite remote sensor data in urban applications.

  3. [Spatial scale effect of urban land use landscape pattern in Shanghai City].

    PubMed

    Xu, Li-Hua; Yue, Wen Ze; Cao, Yu

    2007-12-01

    Based on geographic information system (GIS) and remote sensing (RS) techniques, the landscape classes of urban land use in Shanghai City were extracted from SPOT images with 5 m spatial resolution in 2002, and then, the classified data were applied to quantitatively explore the change patterns of several basic landscape metrics at different scales. The results indicated that landscape metrics were sensitive to grain- and extent variance. Urban landscape pattern was spatially dependent. In other words, different landscape metrics showed different responses to scale. The resolution of 40 m was an intrinsic observing scale for urban landscape in Shanghai City since landscape metrics showed random characteristics while the grain was less than 40 m. The extent of 24 km was a symbol scale in a series of extents, which was consistent with the boundary between urban built-up area and suburban area in Shanghai City. As a result, the extent of 12 km away from urban center would be an intrinsic handle scale for urban landscape in Shanghai City. However, due to the complexity of urban structure and asymmetry of urban spatial expansion, the intrinsic handle scale was not regular extent, and the square with size of 24 km was just an approximate intrinsic extent for Shanghai City.

  4. Hyperspace geography: visualizing fitness landscapes beyond 4D.

    PubMed

    Wiles, Janet; Tonkes, Bradley

    2006-01-01

    Human perception is finely tuned to extract structure about the 4D world of time and space as well as properties such as color and texture. Developing intuitions about spatial structure beyond 4D requires exploiting other perceptual and cognitive abilities. One of the most natural ways to explore complex spaces is for a user to actively navigate through them, using local explorations and global summaries to develop intuitions about structure, and then testing the developing ideas by further exploration. This article provides a brief overview of a technique for visualizing surfaces defined over moderate-dimensional binary spaces, by recursively unfolding them onto a 2D hypergraph. We briefly summarize the uses of a freely available Web-based visualization tool, Hyperspace Graph Paper (HSGP), for exploring fitness landscapes and search algorithms in evolutionary computation. HSGP provides a way for a user to actively explore a landscape, from simple tasks such as mapping the neighborhood structure of different points, to seeing global properties such as the size and distribution of basins of attraction or how different search algorithms interact with landscape structure. It has been most useful for exploring recursive and repetitive landscapes, and its strength is that it allows intuitions to be developed through active navigation by the user, and exploits the visual system's ability to detect pattern and texture. The technique is most effective when applied to continuous functions over Boolean variables using 4 to 16 dimensions.

  5. A Critique of Patch-Based Landscape Indicators for Detection of Temporal Change in Fragmentation

    EPA Science Inventory

    Since O’Neill et al. (1988), analysis of landscape indicators based on measurements from land-cover maps has been a core area of research in landscape ecology. Landscape indicator research has focused on development of new measurements, statistical properties, and indictor behav...

  6. 3D FISH to analyse gene domain-specific chromatin re-modeling in human cancer cell lines.

    PubMed

    Kocanova, Silvia; Goiffon, Isabelle; Bystricky, Kerstin

    2018-06-01

    Fluorescence in situ hybridization (FISH) is a common technique used to label DNA and/or RNA for detection of a genomic region of interest. However, the technique can be challenging, in particular when applied to single genes in human cancer cells. Here, we provide a step-by-step protocol for analysis of short (35 kb-300 kb) genomic regions in three dimensions (3D). We discuss the experimental design and provide practical considerations for 3D imaging and data analysis to determine chromatin folding. We demonstrate that 3D FISH using BACs (Bacterial Artificial Chromosomes) or fosmids can provide detailed information of the architecture of gene domains. More specifically, we show that mapping of specific chromatin landscapes informs on changes associated with estrogen stimulated gene activity in human breast cancer cell lines. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Interaction of Soil Heavy Metal Pollution with Industrialisation and the Landscape Pattern in Taiyuan City, China

    PubMed Central

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning. PMID:25251460

  8. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China.

    PubMed

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.

  9. The semantic differential in landscape research

    Treesearch

    H. E. Echelberger

    1979-01-01

    On-site reactions of groups of viewers to six timber harvesting procedures were measured by direct and indirect measuring techniques. Using the direct technique, groups recorded their overall impressions of harvested tracts on five-point scales ranging from very favorable to very unfavorable. For the indirect technique, semantic differential procedures were used....

  10. Exploring the fitness landscape of poliovirus

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Acevedo, Ashely; Andino, Raul; Tang, Chao

    2012-02-01

    RNA viruses are known to display extraordinary adaptation capabilities to different environments, due to high mutation rates. Their very dynamical evolution is captured by the quasispecies concept, according to which the viral population forms a swarm of genetic variants linked through mutation, which cooperatively interact at a functional level and collectively contribute to the characteristics of the population. The description of the viral fitness landscape becomes paramount towards a more thorough understanding of the virus evolution and spread. The high mutation rate, together with the cooperative nature of the quasispecies, makes it particularly challenging to explore its fitness landscape. I will present an investigation of the dynamical properties of poliovirus fitness landscape, through both the adoption of new experimental techniques and theoretical models.

  11. Study of City Landscape Heritage Using Lidar Data and 3d-City Models

    NASA Astrophysics Data System (ADS)

    Rubinowicz, P.; Czynska, K.

    2015-04-01

    In contemporary town planning protection of urban landscape is a significant issue. It regards especially those cities, where urban structures are the result of ages of evolution and layering of historical development process. Specific panoramas and other strategic views with historic city dominants can be an important part of the cultural heritage and genius loci. Other hand, protection of such expositions introduces limitations for future based city development. Digital Earth observation techniques creates new possibilities for more accurate urban studies, monitoring of urbanization processes and measuring of city landscape parameters. The paper examines possibilities of application of Lidar data and digital 3D-city models for: a) evaluation of strategic city views, b) mapping landscape absorption limits, and c) determination protection zones, where the urbanization and buildings height should be limited. In reference to this goal, the paper introduces a method of computational analysis of the city landscape called Visual Protection Surface (VPS). The method allows to emulate a virtual surface above the city including protection of a selected strategic views. The surface defines maximum height of buildings in such a way, that no new facility can be seen in any of selected views. The research includes also analyses of the quality of simulations according the form and precision of the input data: airborne Lidar / DSM model and more advanced 3D-city models (incl. semantic of the geometry, like in CityGML format). The outcome can be a support for professional planning of tall building development. Application of VPS method have been prepared by a computer program developed by the authors (C++). Simulations were carried out on an example of the city of Dresden.

  12. Supplementing land-use statistics with landscape metrics: some methodological considerations.

    PubMed

    Herzog, F; Lausch, A

    2001-11-01

    Landscape monitoring usually relies on land-use statistics which reflect the share of land-sue/land cover types. In order to understand the functioning of landscapes, landscape pattern must be considered as well. Indicators which address the spatial configuration of landscapes are therefore needed. The suitability of landscape metrics, which are computed from the type, geometry and arrangement of patches, is examined. Two case studies in a surface mining region show that landscape metrics capture landscape structure but are highly dependent on the data model and on the methods of data analysis. For landscape metrics to become part of policy-relevant sets of environmental indicators, standardised procedures for their computation from remote sensing images must be developed.

  13. Analyzing landscape changes in the Bafa Lake Nature Park of Turkey using remote sensing and landscape structure metrics.

    PubMed

    Esbah, Hayriye; Deniz, Bulent; Kara, Baris; Kesgin, Birsen

    2010-06-01

    Bafa Lake Nature Park is one of Turkey's most important legally protected areas. This study aimed at analyzing spatial change in the park environment by using object-based classification technique and landscape structure metrics. SPOT 2X (1994) and ASTER (2005) images are the primary research materials. Results show that artificial surfaces, low maqui, garrigue, and moderately high maqui covers have increased and coniferous forests, arable lands, permanent crop, and high maqui covers have decreased; coniferous forest, high maqui, grassland, and saline areas are in a disappearance stage of the land transformation; and the landscape pattern is more fragmented outside the park boundaries. The management actions should support ongoing vegetation regeneration, mitigate transformation of vegetation structure to less dense and discontinuous cover, control the dynamics at the agricultural-natural landscape interface, and concentrate on relatively low but steady increase of artificial surfaces.

  14. Landscape maps as an aid to management of scenic mountain areas

    Treesearch

    Roland Baumgartner

    1979-01-01

    Before any question about wise management decisions concerning the visual resource of our environment can be answered, it is necessary to conduct a detailed analysis to determine the integral visual inventory of landscape, as it impresses any involved person. With this method of landscape analysis researchers and planners can specify the potential of any region with an...

  15. A factor analysis of landscape pattern and structure metrics

    Treesearch

    Kurt H. Riitters; R.V. O' Neill; C.T. Hunsaker; James D. Wickham; D.H. Yankee; S.P. Timmins; K.B. Jones; B.L. Jackson

    1995-01-01

    Fifty-five metrics of landscape pattern and structure were calculated for 85 maps of land use and land cover. A multivariate factor analysis was used to identify the common axes (or dimensions) of pattern and structure which were measured by a reduced set of 26 metrics. The first six factors explained about 87% of the variation in the 26 landscape metrics. These...

  16. Anticipating forest and range land development in central Oregon (USA) for landscape analysis, with an example application involving mule deer

    Treesearch

    Jeffrey D. Kline; Alissa Moses; Theresa Burcsu

    2010-01-01

    Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide...

  17. Multitemporal spatial pattern analysis of Tulum's tropical coastal landscape

    NASA Astrophysics Data System (ADS)

    Ramírez-Forero, Sandra Carolina; López-Caloca, Alejandra; Silván-Cárdenas, José Luis

    2011-11-01

    The tropical coastal landscape of Tulum in Quintana Roo, Mexico has a high ecological, economical, social and cultural value, it provides environmental and tourism services at global, national, regional and local levels. The landscape of the area is heterogeneous and presents random fragmentation patterns. In recent years, tourist services of the region has been increased promoting an accelerate expansion of hotels, transportation and recreation infrastructure altering the complex landscape. It is important to understand the environmental dynamics through temporal changes on the spatial patterns and to propose a better management of this ecological area to the authorities. This paper addresses a multi-temporal analysis of land cover changes from 1993 to 2000 in Tulum using Thematic Mapper data acquired by Landsat-5. Two independent methodologies were applied for the analysis of changes in the landscape and for the definition of fragmentation patterns. First, an Iteratively Multivariate Alteration Detection (IR-MAD) algorithm was used to detect and localize land cover change/no-change areas. Second, the post-classification change detection evaluated using the Support Vector Machine (SVM) algorithm. Landscape metrics were calculated from the results of IR-MAD and SVM. The analysis of the metrics indicated, among other things, a higher fragmentation pattern along roadways.

  18. Evaluating forest product potential as part of planning ecological restoration treatments on forested landscapes

    Treesearch

    R. James Barbour; Ryan Singleton; Douglas A. Maguire

    2007-01-01

    As landscape-scale assessments and modeling become a more common method for evaluating alternatives in integrated resource management, new techniques are needed to display and evaluate outcomes for large numbers of stands over long periods. In this proof of concept, we evaluate the potential to provide financial support for silvicultural treatments by selling timber...

  19. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture.

    PubMed

    M'Gonigle, Leithen K; Ponisio, Lauren C; Cutler, Kerry; Kremen, Claire

    2015-09-01

    Widespread evidence of pollinator declines has led to policies supporting habitat restoration including in agricultural landscapes. Yet, little is yet known about the effectiveness of these restoration techniques for promoting stable populations and communities of pollinators, especially in intensively managed agricultural landscapes. Introducing floral resources, such as flowering hedgerows, to enhance intensively cultivated agricultural landscapes is known to increase the abundances of native insect pollinators in and around restored areas. Whether this is a result of local short-term concentration at flowers or indicative of true increases in the persistence and species richness of these communities remains unclear. It is also unknown whether this practice supports species of conservation concern (e.g., those with more specialized dietary requirements). Analyzing occupancies of native bees and syrphid flies from 330 surveys across 15 sites over eight years, we found that hedgerow restoration promotes rates of between-season persistence and colonization as compared with unrestored field edges. Enhanced persistence and colonization, in turn, led to the formation of more species-rich communities. We also find that hedgerows benefit floral resource specialists more than generalists, emphasizing the value of this restoration technique for conservation in agricultural landscapes.

  20. Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change.

    PubMed

    Johnson, Jeremy S; Gaddis, Keith D; Cairns, David M; Konganti, Kranti; Krutovsky, Konstantin V

    2017-03-01

    Untangling alternative historic dispersal pathways in long-lived tree species is critical to better understand how temperate tree species may respond to climatic change. However, disentangling these alternative pathways is often difficult. Emerging genomic technologies and landscape genetics techniques improve our ability to assess these pathways in natural systems. We address the question to what degree have microrefugial patches and long-distance dispersal been responsible for the colonization of mountain hemlock ( Tsuga mertensiana ) on the Alaskan Kenai Peninsula. We used double-digest restriction-associated DNA sequencing (ddRADseq) to identify genetic variants across eight mountain hemlock sample sites on the Kenai Peninsula, Alaska. We assessed genetic diversity and linkage disequilibrium using landscape and population genetics approaches. Alternative historic dispersal pathways were assessed using discriminant analysis of principle components and electrical circuit theory. A combination of decreasing diversity, high gene flow, and landscape connectivity indicates that mountain hemlock colonization on the Kenai Peninsula is the result of long-distance dispersal. We found that contemporary climate best explained gene flow patterns and that isolation by resistance was a better model explaining genetic variation than isolation by distance. Our findings support the conclusion that mountain hemlock colonization is the result of several long-distance dispersal events following Pleistocene glaciation. The high dispersal capability suggests that mountain hemlock may be able to respond to future climate change and expand its range as new habitat opens along its northern distribution. © 2017 Botanical Society of America.

  1. Indicators of hydrological, biogeochemical and ecological integrity for estimating potential loss of ecosystem services from wetlands on domesticated landscapes

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Aldred, D.; Spargo, A.; Bayley, S.

    2012-12-01

    Wetlands are being lost at an alarming rate in the prairie pothole landscape of North America. The full consequence of this loss is not fully understood or recognized due to (1) inadequate or incomplete wetland inventories (with mapping emphasizing permanent and not ephemeral wetlands, and only capturing "easy to observe" wetland area defined by open water and not the true dynamic wetland extent defined by saturated soils), and (2) lack of appropriate theoretical frameworks to assess the functions and benefits of these wetlands. We present a theoretical framework that integrates indicators to estimate functions and benefits of wetland integrity in central Alberta. We establish indicators using the principles that are representative of the dominant processes operating on the landscape, are simple and are scalable. While some of these indicators may be widely recognized, their implementation is often not comprehensive or complete. First, we develop an automated method for fine scale mapping of permanent and ephemeral wetlands from a fusion of high-resolution elevation data and aerial photography. Second, we estimate historic wetland loss over the past 50 years during which intensive domestication of the landscape occurred by modeling the distribution of wetlands in an undisturbed landscape using area-frequency power functions and calculating the difference in the actual wetland inventory. Third, we define relative wetland assessment units using cluster analysis of hydrological and ecological variables, including climate, geology, topography, soils and land use/land covers. Fourth, for each assessment unit we define indicators of functions and benefits of aquatic ecosystem services including water storage (surface and subsurface), phosphorus retention, nitrate removal, sediment retention, ecological health/biodiversity and human use, and then use practical strategies rooted in the fusion of digital terrain analysis and remote sensing techniques to measure and monitor these indicators over the past years. For a time series of wetlands loss we derive these indicators of functions and benefits to estimate changes in the provision of specific aquatic ecosystem services on the landscape. Last, we develop formulae for integrating these indicators to determine whether a specific wetland or wetland complex should be prioritized for conservation, exemplifying potential trade-offs among ecosystem services in setting conservation targets on this wetland dominated landscapes. The proposed theoretical framework evolved from close collaboration between scientists and resource managers, and will inform those engaged in developing wetland policies for a broad range of jurisdictions.

  2. Free Energy Landscape of Protein-Protein Encounter Resulting from Brownian Dynamics Simulations of Barnase:Barstar.

    PubMed

    Spaar, Alexander; Helms, Volkhard

    2005-07-01

    Over the past years Brownian dynamics (BD) simulations have been proven to be a suitable tool for the analysis of protein-protein association. The computed rates and relative trends for protein mutants and different ionic strength are generally in good agreement with experimental results, e.g. see ref 1. By design, BD simulations correspond to an intensive sampling over energetically favorable states, rather than to a systematic sampling over all possible states which is feasible only at rather low resolution. On the example of barnase and barstar, a well characterized model system of electrostatically steered diffusional encounter, we report here the computation of the 6-dimensional free energy landscape for the encounter process of two proteins by a novel, careful analysis of the trajectories from BD simulations. The aim of these studies was the clarification of the encounter state. Along the trajectories, the individual positions and orientations of one protein (relative to the other) are recorded and stored in so-called occupancy maps. Since the number of simulated trajectories is sufficiently high, these occupancy maps can be interpreted as a probability distribution which allows the calculation of the entropy landscape by the use of a locally defined entropy function. Additionally, the configuration dependent electrostatic and desolvation energies are recorded in separate maps. The free energy landscape of protein-protein encounter is finally obtained by summing the energy and entropy contributions. In the free energy profile along the reaction path, which is defined as the path along the minima in the free energy landscape, a minimum shows up suggesting this to be used as the definition of the encounter state. This minimum describes a state of reduced diffusion velocity where the electrostatic attraction is compensated by the repulsion due to the unfavorable desolvation of the charged residues and the entropy loss due to the increasing restriction of the motional freedom. In the simulations the orientational degrees of freedom at the encounter state are found to be less restricted than the translational degrees of freedom. Therefore, the orientational alignment of the two binding partners seems to take place beyond this free energy minimum. The free energy profiles along the reaction pathway are compared for different ionic strength and temperature. This novel analysis technique facilitates mechanistic interpretation of protein-protein encounter pathways which should be useful for interpretation of experimental results as well.

  3. Quantitative Connection Between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryo-EM and smFRET Investigations of the Ribosome

    PubMed Central

    Frank, Joachim; Gonzalez, Ruben L.

    2015-01-01

    At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describes transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy and single-molecule fluorescence resonance energy transfer studies of the bacterial ribosomal pretranslocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pretranslocation complex, which are observed in a cryogenic electron microscopy study, may not be observed in several single-molecule fluorescence resonance energy transfer studies. PMID:25785884

  4. Quantitative Connection between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryogenic Electron Microscopy and Single-Molecule Fluorescence Resonance Energy Transfer Investigations of the Ribosome.

    PubMed

    Thompson, Colin D Kinz; Sharma, Ajeet K; Frank, Joachim; Gonzalez, Ruben L; Chowdhury, Debashish

    2015-08-27

    At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describe transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies of the bacterial ribosomal pre-translocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pre-translocation complex, which are observed in a cryo-EM study, may not be observed in several smFRET studies.

  5. The impact of peasant and industrialized agricultural systems on high productive loess soils in Central Europe

    NASA Astrophysics Data System (ADS)

    Schneider, Christian; Heinrich, Jürgen

    2017-04-01

    The study analyzes the impact of a peasant and an industrialized agricultural land use system on soil degradation in two loess landscapes. The comparative method aims to test the hypothesis that different agricultural systems cause distinct differences in soil properties that can be documented by geo-chemical soil analysis. The two loess landscapes under investigation show great similarities in natural geo-ecological properties. Nevertheless, the land use system makes a significant difference in both research areas. The Polish Proszowice Plateau is characterized by traditional small-scale peasant agriculture. Small plots and fragmented ownership make it difficult to conjointly manage soil erosion. However, the Middle Saxonian Loess Region in Germany represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in the large-scale, high-input farming system. To identify representative small catchments for soil sampling relief heterogeneity analyses and a cluster analysis were performed to bridge scales between the landscape and the sub-catchment level. Geo-physical and geo-chemical laboratory techniques were used to analyze major soil properties. A total number of 346 sites were sampled and analyzed for geo-ecological, geomorphological, and pedological features. The results show distinct differences in soil properties between the two loess landscapes strongly influenced by agricultural use. However, despite big differences in agricultural management great similarities can also be found especially for mean soil organic carbon contents and plant nutrient values. At the same time, the greater variability of the soil mosaic is depicted by a higher variance of almost all soil properties common to traditional land use systems. Topsoils on arable land at the Proszowice Plateau also show a wider C/N ratio. Therefore, the soils there are less prone to degradation through mineralization of humic substances. The wider ratio is mainly caused by lower inputs of N-fertilizers, at least since 1990. At the same time, soil cultivation techniques and atmospheric deposits are not likely to make a significant difference. The topsoil horizons on arable lands at the Proszowice Plateau do not show significant differences in plant available nutrients like phosphorus, despite much lower P-inputs through mineral fertilizers since 1990. This is because of the high P-sorption capacity of the loess soils. Therefore, a long legacy effect of previous comparatively high mineral P-inputs between the 1960s and 80s can be observed. A similar effect occurs in the Middle Saxonian Loess Region. In contrast to the assumption of many scholars small-scale farming at the Proszowice Plateau has not lead to an under-supply of plant nutrients. The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.

  6. A meta-analysis of crop pest and natural enemy response to landscape complexity.

    PubMed

    Chaplin-Kramer, Rebecca; O'Rourke, Megan E; Blitzer, Eleanor J; Kremen, Claire

    2011-09-01

    Many studies in recent years have investigated the relationship between landscape complexity and pests, natural enemies and/or pest control. However, no quantitative synthesis of this literature beyond simple vote-count methods yet exists. We conducted a meta-analysis of 46 landscape-level studies, and found that natural enemies have a strong positive response to landscape complexity. Generalist enemies show consistent positive responses to landscape complexity across all scales measured, while specialist enemies respond more strongly to landscape complexity at smaller scales. Generalist enemy response to natural habitat also tends to occur at larger spatial scales than for specialist enemies, suggesting that land management strategies to enhance natural pest control should differ depending on whether the dominant enemies are generalists or specialists. The positive response of natural enemies does not necessarily translate into pest control, since pest abundances show no significant response to landscape complexity. Very few landscape-scale studies have estimated enemy impact on pest populations, however, limiting our understanding of the effects of landscape on pest control. We suggest focusing future research efforts on measuring population dynamics rather than static counts to better characterise the relationship between landscape complexity and pest control services from natural enemies. © 2011 Blackwell Publishing Ltd/CNRS.

  7. Landscape Character of Pongkor Mining Ecotourism Area

    NASA Astrophysics Data System (ADS)

    Kusumoarto, A.; Gunawan, A.; Machfud; Hikmat, A.

    2017-10-01

    Pongkor Mining Ecotourism Area has a diverse landscape character as a potential landscape resources for the development of ecotourism destination. This area is part of the Mount of Botol Resort, Halimun Salak National Park (HSNP). This area also has a fairly high biodiversity. This study aims to identify and analysis the category of landscape character in the Pongkor Mining Ecotourism Area for the development of ecotourism destination. This study used a descriptive approach through field surveys and interviews, was carried out through two steps : 1) identify the landscape character, and 2) analysis of the landscape character. The results showed that in areas set aside for ecotourism destination in Pongkor Mining, landscape character category scattered forests, tailing ponds, river, plain, and the built environment. The Category of landscape character most dominant scattered in the area is forest, here is the river, plain, tailing ponds, the built environment, and plain. The landscape character in a natural environment most preferred for ecotourism activities. The landscape character that spread in the natural environment and the built environment is a potential that must be protected and modified such as elimination of incongruous element, accentuation of natural form, alteration of the natural form, intensification and enhanced visual quality intensively to be developed as a ecotourism destination area.

  8. [Land use and land cover charnge (LUCC) and landscape service: Evaluation, mapping and modeling].

    PubMed

    Song, Zhang-jian; Cao, Yu; Tan, Yong-zhong; Chen, Xiao-dong; Chen, Xian-peng

    2015-05-01

    Studies on ecosystem service from landscape scale aspect have received increasing attention from researchers all over the world. Compared with ecosystem scale, it should be more suitable to explore the influence of human activities on land use and land cover change (LUCC), and to interpret the mechanisms and processes of sustainable landscape dynamics on landscape scale. Based on comprehensive and systematic analysis of researches on landscape service, this paper firstly discussed basic concepts and classification of landscape service. Then, methods of evaluation, mapping and modeling of landscape service were analyzed and concluded. Finally, future trends for the research on landscape service were proposed. It was put forward that, exploring further connotation and classification system of landscape service, improving methods and quantitative indicators for evaluation, mapping and modelling of landscape service, carrying out long-term integrated researches on landscape pattern-process-service-scale relationships and enhancing the applications of theories and methods on landscape economics and landscape ecology are very important fields of the research on landscape service in future.

  9. A framework to assess landscape structural capacity to provide regulating ecosystem services in West Africa.

    PubMed

    Inkoom, Justice Nana; Frank, Susanne; Greve, Klaus; Fürst, Christine

    2018-03-01

    The Sudanian savanna landscapes of West Africa are amongst the world's most vulnerable areas to climate change impacts. Inappropriate land use and agriculture management practices continuously impede the capacity of agricultural landscapes to provide ecosystem services (ES). Given the absence of practical assessment techniques to evaluate the landscape's capacity to provide regulating ES in this region, the goal of this paper is to propose an integrative assessment framework which combines remote sensing, geographic information systems, expert weighting and landscape metrics-based assessment. We utilized Analytical Hierarchical Process and Likert scale for the expert weighting of landscape capacity. In total, 56 experts from several land use and landscape management related departments participated in the assessment. Further, we adapted the hemeroby concept to define areas of naturalness while landscape metrics including Patch Density, Shannon's Diversity, and Shape Index were utilized for structural assessment. Lastly, we tested the reliability of expert weighting using certainty measurement rated by experts themselves. Our study focused on four regulating ES including flood control, pest and disease control, climate control, and wind erosion control. Our assessment framework was tested on four selected sites in the Vea catchment area of Ghana. The outcome of our study revealed that highly heterogeneous landscapes have a higher capacity to provide pest and disease control, while less heterogeneous landscapes have a higher potential to provide climate control. Further, we could show that the potential capacities to provide ecosystem services are underestimated by 15% if landscape structural aspects assessed through landscape metrics are not considered. We conclude that the combination of adapted land use and an optimized land use pattern could contribute considerably to lower climate change impacts in West African agricultural landscapes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Relationship between tourism development and vegetated landscapes in Luya Mountain Nature Reserve, Shanxi, China.

    PubMed

    Cheng, Zhan-Hong; Zhang, Jin-Tun

    2005-09-01

    The relationship between tourism development and vegetated landscapes is analyzed for the Luya Mountain Nature Reserve (LMNR), Shanxi, China, in this study. Indices such as Sensitive Level (SL), Landscape Importance Value (LIV), information index of biodiversity (H'), Shade-tolerant Species Proportion (SSP), and Tourism Influencing Index (TII) are used to characterize vegetated landscapes, the impact of tourism, and their relationship. Their relationship is studied by Two-Way Indicator Species Analysis (TWINSPAN) and Detrended Correspondence Analysis (DCA). TWINSPAN gives correct and rapid partition to the classification, and DCA ordination shows the changing tendency of all vegetation types based on tourism development. These results reflect the ecological relationship between tourism development and vegetated landscapes. In Luya Mountain Nature Reserve, most plant communities are in good or medium condition, which shows that these vegetated landscapes can support more tourism. However, the occurrence of the bad condition shows that there is a severe contradiction between tourism development and vegetated landscapes.

  11. Mapping the dengue scientific landscape worldwide: a bibliometric and network analysis.

    PubMed

    Mota, Fabio Batista; Fonseca, Bruna de Paula Fonseca E; Galina, Andréia Cristina; Silva, Roseli Monteiro da

    2017-05-01

    Despite the current global trend of reduction in the morbidity and mortality of neglected diseases, dengue's incidence has increased and occurrence areas have expanded. Dengue also persists as a scientific and technological challenge since there is no effective treatment, vaccine, vector control or public health intervention. Combining bibliometrics and social network analysis methods can support the mapping of dengue research and development (R&D) activities worldwide. The aim of this paper is to map the scientific scenario related to dengue research worldwide. We use scientific publication data from Web of Science Core Collection - articles indexed in Science Citation Index Expanded (SCI-EXPANDED) - and combine bibliometrics and social network analysis techniques to identify the most relevant journals, scientific references, research areas, countries and research organisations in the dengue scientific landscape. Our results show a significant increase of dengue publications over time; tropical medicine and virology as the most frequent research areas and biochemistry and molecular biology as the most central area in the network; USA and Brazil as the most productive countries; and Mahidol University and Fundação Oswaldo Cruz as the main research organisations and the Centres for Disease Control and Prevention as the most central organisation in the collaboration network. Our findings can be used to strengthen a global knowledge platform guiding policy, planning and funding decisions as well as to providing directions to researchers and institutions. So that, by offering to the scientific community, policy makers and public health practitioners a mapping of the dengue scientific landscape, this paper has aimed to contribute to upcoming debates, decision-making and planning on dengue R&D and public health strategies worldwide.

  12. Romantic versus scientific perspective: the ruins of Radlin palace in Wielkopolska region in the light of remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Wilgocka, Aleksandra; Ruciński, Dominik; RÄ czkowski, Włodzimierz

    2015-06-01

    Although ruins of palace in Radlin, localized in Wielkopolska Region (Poland), could have been a great inspiration for romantic landscape painters, they were hardly considered as the subject of artistic interest. Nevertheless they stand as a marker in a landscape as a romantic background for the village on one hand and a memento for the neighbouring graveyard on another. Small scale excavations carried out in late 1950s with historical maps and analysis of still standing remains gave a general idea about wings order, localisation of main entrance and communication routs inside courtyard. Those early research thereby were the first step to change the meaning of this place from romantic to more scientific. New remote sensing technology allows move even further into scientific direction. The ruins in Radlin have been included into project ArchEO - archaeological applications of Earth Observation techniques. The main aim of the project in case of Radlin is an attempt to answer the question to what extent very high resolution optical satellite imagery might allow better understanding the spatial structure of the place. The various processing techniques were applied to facilitate the detection of archaeological features' impact on the vegetation condition. It enabled to assess the usefulness of satellite based data in recognizing specific archaeological remains. Thus, potential and limitations of satellite imagery versus other sources of spatial information like historic maps, excavation results, aerial photographs and Lidar will be discussed.

  13. Analysis of open-pit mines using high-resolution topography from UAV

    NASA Astrophysics Data System (ADS)

    Chen, Jianping; Li, Ke; Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    Among the anthropogenic topographic signatures on the Earth, open-pit mines deserve a great importance, since they significantly affect the Earth's surface and its related processes (e.g. erosion, pollution). Their geomorphological analysis, therefore, represents a real challenge for the Earth science community. The purpose of this research is to characterize the open-pit mining features using a recently published landscape metric, the Slope Local Length of Auto-Correlation (SLLAC) (Sofia et al., 2014), and high-resolution DEMs (Digital Elevation Models) derived from drone surveyed topography. The research focuses on two main case studies of iron mines located in the Beijing district (P.R. China). The main topographic information (Digital Surface Models, DSMs) was derived using Unmanned Aerial Vehicle (UAV) and the Structure from Motion (SfM) photogrammetric technique. The results underline the effectiveness of the adopted methodologies and survey techniques in the characterization of the main geomorphic features of the mines. Thanks to the SLLAC, the terraced area given by multi-benched sideways-moving method for the iron extraction is automatically depicted, and using some SLLAC derived parameters, the related terraces extent is automatically estimated. The analysis of the correlation length orientation, furthermore, allows to identify the terraces orientation respect to the North, and to understand as well the shape of the open-pit area. This provides a basis for a large scale and low cost topographic survey for a sustainable environmental planning and, for example, for the mitigation of environmental anthropogenic impact due to mining. References Sofia G., Marinello F, Tarolli P. 2014. A new landscape metric for the identification of terraced sites: the Slope Local Length of Auto-Correlation (SLLAC). ISPRS Journal of Photogrammetry and Remote Sensing, doi:10.1016/j.isprsjprs.2014.06.018

  14. GenomeLandscaper: Landscape analysis of genome-fingerprints maps assessing chromosome architecture.

    PubMed

    Ai, Hannan; Ai, Yuncan; Meng, Fanmei

    2018-01-18

    Assessing correctness of an assembled chromosome architecture is a central challenge. We create a geometric analysis method (called GenomeLandscaper) to conduct landscape analysis of genome-fingerprints maps (GFM), trace large-scale repetitive regions, and assess their impacts on the global architectures of assembled chromosomes. We develop an alignment-free method for phylogenetics analysis. The human Y chromosomes (GRCh.chrY, HuRef.chrY and YH.chrY) are analysed as a proof-of-concept study. We construct a galaxy of genome-fingerprints maps (GGFM) for them, and a landscape compatibility among relatives is observed. But a long sharp straight line on the GGFM breaks such a landscape compatibility, distinguishing GRCh38p1.chrY (and throughout GRCh38p7.chrY) from GRCh37p13.chrY, HuRef.chrY and YH.chrY. We delete a 1.30-Mbp target segment to rescue the landscape compatibility, matching the antecedent GRCh37p13.chrY. We re-locate it into the modelled centromeric and pericentromeric region of GRCh38p10.chrY, matching a gap placeholder of GRCh37p13.chrY. We decompose it into sub-constituents (such as BACs, interspersed repeats, and tandem repeats) and trace their homologues by phylogenetics analysis. We elucidate that most examined tandem repeats are of reasonable quality, but the BAC-sized repeats, 173U1020C (176.46 Kbp) and 5U41068C (205.34 Kbp), are likely over-repeated. These results offer unique insights into the centromeric and pericentromeric regions of the human Y chromosomes.

  15. Can Landscape Evolution Models (LEMs) be used to reconstruct palaeo-climate and sea-level histories?

    NASA Astrophysics Data System (ADS)

    Leyland, J.; Darby, S. E.

    2011-12-01

    Reconstruction of palaeo-environmental conditions over long time periods is notoriously difficult, especially where there are limited or no proxy records from which to extract data. Application of landscape evolution models (LEMs) for palaeo-environmental reconstruction involves hindcast modeling, in which simulation scenarios are configured with specific model variables and parameters chosen to reflect a specific hypothesis of environmental change. In this form of modeling, the environmental time series utilized are considered credible when modeled and observed landscape metrics converge. Herein we account for the uncertainties involved in evaluating the degree to which the model simulations and observations converge using Monte Carlo analysis of reduced complexity `metamodels'. The technique is applied to a case study focused on a specific set of gullies found on the southwest coast of the Isle of Wight, UK. A key factor controlling the Holocene evolution of these coastal gullies is the balance between rates of sea-cliff retreat (driven by sea-level rise) and headwards incision caused by knickpoint migration (driven by the rate of runoff). We simulate these processes using a version of the GOLEM model that has been modified to represent sea-cliff retreat. A Central Composite Design (CCD) sampling technique was employed, enabling the trajectories of gully response to different combinations of driving conditions to be modeled explicitly. In some of these simulations, where the range of bedrock erodibility (0.03 to 0.04 m0.2 a-1) and rate of sea-level change (0.005 to 0.0059 m a-1) is tightly constrained, modeled gully forms conform closely to those observed in reality, enabling a suite of climate and sea-level change scenarios which plausibly explain the Holocene evolution of the Isle of Wight gullies to be identified.

  16. Assessment of Acacia koa forest health across environmental gradients in Hawai'i using fine resolution remote sensing and GIS.

    PubMed

    Morales, Rodolfo Martinez; Idol, Travis; Friday, James B

    2011-01-01

    Koa (Acacia koa) forests are found across broad environmental gradients in the Hawai'ian Islands. Previous studies have identified koa forest health problems and dieback at the plot level, but landscape level patterns remain unstudied. The availability of high-resolution satellite images from the new GeoEye1 satellite offers the opportunity to conduct landscape-level assessments of forest health. The goal of this study was to develop integrated remote sensing and geographic information systems (GIS) methodologies to characterize the health of koa forests and model the spatial distribution and variability of koa forest dieback patterns across an elevation range of 600-1,000 m asl in the island of Kaua'i, which correspond to gradients of temperature and rainfall ranging from 17-20 °C mean annual temperature and 750-1,500 mm mean annual precipitation. GeoEye1 satellite imagery of koa stands was analyzed using supervised classification techniques based on the analysis of 0.5-m pixel multispectral bands. There was clear differentiation of native koa forest from areas dominated by introduced tree species and differentiation of healthy koa stands from those exhibiting dieback symptoms. The area ratio of healthy koa to koa dieback corresponded linearly to changes in temperature across the environmental gradient, with koa dieback at higher relative abundance in warmer areas. A landscape-scale map of healthy koa forest and dieback distribution demonstrated both the general trend with elevation and the small-scale heterogeneity that exists within particular elevations. The application of these classification techniques with fine spatial resolution imagery can improve the accuracy of koa forest inventory and mapping across the islands of Hawai'i. Such findings should also improve ecological restoration, conservation and silviculture of this important native tree species.

  17. Final Environmental Assessment for Planned Growth Hulrburd Field, Florida

    DTIC Science & Technology

    2009-08-01

    Banana Shrub Fragrant flowers . Nerium oleander Oleander Tough evergreen, blooms all summer. Osmanthus fragrans Tea Olive Very fragrant blooms in...possible. landscaping techniques involving native or exotic species approved in the Master List of Trees, Shrubs, and Accent Flowers for Use in the... flowers for landscape use on Hurlburt Field • Vertebrate Faunal Species Possible on Hurlburt Field • Listing of the endangered fauna potentially

  18. Exploring the Energy Landscapes of Protein Folding Simulations with Bayesian Computation

    PubMed Central

    Burkoff, Nikolas S.; Várnai, Csilla; Wells, Stephen A.; Wild, David L.

    2012-01-01

    Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence (marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and the expectation value of thermodynamic observables at any temperature, through a simple post processing of the output. Previous applications of the algorithm have yielded large efficiency gains over other sampling techniques, including parallel tempering. In this article, we describe a parallel implementation of the nested sampling algorithm and its application to the problem of protein folding in a Gō-like force field of empirical potentials that were designed to stabilize secondary structure elements in room-temperature simulations. We demonstrate the method by conducting folding simulations on a number of small proteins that are commonly used for testing protein-folding procedures. A topological analysis of the posterior samples is performed to produce energy landscape charts, which give a high-level description of the potential energy surface for the protein folding simulations. These charts provide qualitative insights into both the folding process and the nature of the model and force field used. PMID:22385859

  19. Exploring the energy landscapes of protein folding simulations with Bayesian computation.

    PubMed

    Burkoff, Nikolas S; Várnai, Csilla; Wells, Stephen A; Wild, David L

    2012-02-22

    Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence (marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and the expectation value of thermodynamic observables at any temperature, through a simple post processing of the output. Previous applications of the algorithm have yielded large efficiency gains over other sampling techniques, including parallel tempering. In this article, we describe a parallel implementation of the nested sampling algorithm and its application to the problem of protein folding in a Gō-like force field of empirical potentials that were designed to stabilize secondary structure elements in room-temperature simulations. We demonstrate the method by conducting folding simulations on a number of small proteins that are commonly used for testing protein-folding procedures. A topological analysis of the posterior samples is performed to produce energy landscape charts, which give a high-level description of the potential energy surface for the protein folding simulations. These charts provide qualitative insights into both the folding process and the nature of the model and force field used. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Chapter 4: Overview of the vegetation management treatment economic analysis module in the integrated landscape assessment project

    Treesearch

    Xiaoping Zhou; Miles A. Hemstrom

    2014-01-01

    Forest land provides various ecosystem services, including timber, biomass, and carbon sequestration. Estimating trends in these ecosystem services is essential for assessing potential outcomes of landscape management scenarios. However, the state-and transition models used in the Integrated Landscape Assessment Project for simulating landscape changes over time do not...

  1. Geographic applications of ERTS-1 data to landscape change

    NASA Technical Reports Server (NTRS)

    Rehder, J. B.

    1973-01-01

    The analysis of landscape change requires large area coverage on a periodic basis in order to analyze aggregate changes over an extended period of time. To date, only the ERTS program can provide this capability. Three avenues of experimentation and analysis are being used in the investigation: (1) a multi-scale sampling procedure utilizing aircraft imagery for ground truth and control; (2) a densitometric and computer analytical experiment for the analysis of gray tone signatures, comparisons and ultimately for landscape change detection and monitoring; and (3) an ERTS image enhancement procedure for the detection and analysis of photomorphic regions.

  2. A comparison of regression methods for model selection in individual-based landscape genetic analysis.

    PubMed

    Shirk, Andrew J; Landguth, Erin L; Cushman, Samuel A

    2018-01-01

    Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate-induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time. Landscape genetic analysis provides an empirical means to infer landscape factors influencing gene flow and thereby inform such conservation actions. However, there are currently many methods available for model selection in landscape genetics, and considerable uncertainty as to which provide the greatest accuracy in identifying the true landscape model influencing gene flow among competing alternative hypotheses. In this study, we used population genetic simulations to evaluate the performance of seven regression-based model selection methods on a broad array of landscapes that varied by the number and type of variables contributing to resistance, the magnitude and cohesion of resistance, as well as the functional relationship between variables and resistance. We also assessed the effect of transformations designed to linearize the relationship between genetic and landscape distances. We found that linear mixed effects models had the highest accuracy in every way we evaluated model performance; however, other methods also performed well in many circumstances, particularly when landscape resistance was high and the correlation among competing hypotheses was limited. Our results provide guidance for which regression-based model selection methods provide the most accurate inferences in landscape genetic analysis and thereby best inform connectivity conservation actions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  3. Landscape Hazards in Yukon Communities: Geological Mapping for Climate Change Adaptation Planning

    NASA Astrophysics Data System (ADS)

    Kennedy, K.; Kinnear, L.

    2010-12-01

    Climate change is considered to be a significant challenge for northern communities where the effects of increased temperature and climate variability are beginning to affect infrastructure and livelihoods (Arctic Climate Impact Assessment, 2004). Planning for and adapting to ongoing and future changes in climate will require the identification and characterization of social, economic, cultural, political and biophysical vulnerabilities. This pilot project addresses physical landscape vulnerabilities in two communities in the Yukon Territory through community-scale landscape hazard mapping and focused investigations of community permafrost conditions. Landscape hazards are identified by combining pre-existing data from public utilities and private-sector consultants with new geophysical techniques (ground penetrating radar and electrical resistivity), shallow drilling, surficial geological mapping, and permafrost characterization. Existing landscape vulnerabilities are evaluated based on their potential for hazard (low, medium or high) under current climate conditions, as well as under future climate scenarios. Detailed hazard maps and landscape characterizations for both communities will contribute to overall adaptation plans and allow for informed development, planning and mitigation of potentially threatening hazards in and around the communities.

  4. Applicability of Hydrologic Landscapes for Model Calibration ...

    EPA Pesticide Factsheets

    The Pacific Northwest Hydrologic Landscapes (PNW HL) at the assessment unit scale has provided a solid conceptual classification framework to relate and transfer hydrologically meaningful information between watersheds without access to streamflow time series. A collection of techniques were applied to the HL assessment unit composition in watersheds across the Pacific Northwest to aggregate the hydrologic behavior of the Hydrologic Landscapes from the assessment unit scale to the watershed scale. This non-trivial solution both emphasizes HL classifications within the watershed that provide that majority of moisture surplus/deficit and considers the relative position (upstream vs. downstream) of these HL classifications. A clustering algorithm was applied to the HL-based characterization of assessment units within 185 watersheds to help organize watersheds into nine classes hypothesized to have similar hydrologic behavior. The HL-based classes were used to organize and describe hydrologic behavior information about watershed classes and both predictions and validations were independently performed with regard to the general magnitude of six hydroclimatic signature values. A second cluster analysis was then performed using the independently calculated signature values as similarity metrics, and it was found that the six signature clusters showed substantial overlap in watershed class membership to those in the HL-based classes. One hypothesis set forward from thi

  5. Long-term Evaluation of Landuse Changes On Landscape Water Balance - A Case Study From North-east Germany

    NASA Astrophysics Data System (ADS)

    Wegehenkel, M.

    In this paper, long-term effects of different afforestation scenarios on landscape wa- ter balance will be analyzed taking into account the results of a regional case study. This analysis is based on using a GIS-coupled simulation model for the the spatially distributed calculation of water balance.For this purpose, the modelling system THE- SEUS with a simple GIS-interface will be used. To take into account the special case of change in forest cover proportion, THESEUS was enhanced with a simple for- est growth model. In the regional case study, model runs will be performed using a detailed spatial data set from North-East Germany. This data set covers a mesoscale catchment located at the moraine landscape of North-East Germany. Based on this data set, the influence of the actual landuse and of different landuse change scenarios on water balance dynamics will be investigated taking into account the spatial distributed modelling results from THESEUS. The model was tested using different experimen- tal data sets from field plots as well as obsverded catchment discharge. Additionally to such convential validation techniques, remote sensing data were used to check the simulated regional distribution of water balance components like evapotranspiration in the catchment.

  6. Beyond modern landscape features: New insights in the archaeological area of Tiwanaku in Bolivia from satellite data

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Masini, Nicola

    2014-02-01

    The aim of this paper is to investigate the cultural landscape of the archaeological area of Tiwanaku (Bolivia) using multiscale, multispectral and multitemporal satellite data. Geospatial analysis techniques were applied to the satellite data sets in order to enhance and map traces of past human activities and perform a spatial characterization of environmental and cultural patterns. In particular, in the Tiwanaku area, the approach based on local indicators of spatial autocorrelation (LISA) applied to ASTER data allowed us to identify traces of a possible ancient hydrographic network with a clear spatial relation with the well-known moat surrounding the core of the monumental area. The same approach applied to QuickBird data, allowed us to identify numerous traces of archaeological interest, in Mollo Kontu mound, less investigated than the monumental area. Some of these traces were in perfect accordance with the results of independent studies, other were completely unknown. As a whole, the detected features, composing a geometric pattern with roughly North-South orientation, closely match those of the other residential contexts at Tiwanaku. These new insights, captured from ASTER and QuickBird data processing, suggested new questions on the ancient landscape and provided important information for planning future field surveys and archaeogeophyical investigations.

  7. Geographic applications of ERTS-A imagery to rural landscape change

    NASA Technical Reports Server (NTRS)

    Rehder, J. B. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. The study area, centered on Knoxville, Tennessee, encompasses nearly 20,000 square miles. The Knoxville Test Site, an 11 x 21 mile area over the city of Knoxville and the western portion of Knox County, has been chosen for the analysis of landscape change detection associated with urban growth. The second area, the Cumberland Plateau Test Site, exhibits landscape change through forest alterations and landform disturbances associated with strip mining in the area and was so chosen for its sharp contrasts in physical and human phenomena as well as its change dynamics. Accomplishments since reception of ERTS-1 imagery include: (1) basic cataloging and classifying of the data into a filling system; (2) a densitometer analysis; (3) first look analysis; and (4) preparation of results from the project. Examples of all four bands of the MSS have been received and analyses reveal distinctive positive and negative reactions. Band 5 has been found to be best for landscape analysis of contrasts between urban and rural landscapes, and band 7 for topographic features and water surfaces. Preliminary results are summarized.

  8. Landscape features impact connectivity between soil populations: a comparative study of gene flow in earthworms.

    PubMed

    Dupont, L; Torres-Leguizamon, M; René-Corail, P; Mathieu, J

    2017-06-01

    Landscape features are known to alter the spatial genetic variation of aboveground organisms. Here, we tested the hypothesis that the genetic structure of belowground organisms also responds to landscape structure. Microsatellite markers were used to carry out a landscape genetic study of two endogeic earthworm species, Allolobophora chlorotica (N = 440, eight microsatellites) and Aporrectodea icterica (N = 519, seven microsatellites), in an agricultural landscape in the North of France, where landscape features were characterized with high accuracy. We found that habitat fragmentation impacted genetic variation of earthworm populations at the local scale. A significant relationship was observed between genetic diversity (H e , A r ) and several landscape features in A. icterica populations and A. chlorotica. Moreover, a strong genetic differentiation between sites was observed in both species, with a low degree of genetic admixture and high F st values. The landscape connectivity analysis at the regional scale, including isolation by distance, least-cost path and cost-weighted distance approaches, showed that genetic distances were linked to landscape connectivity in A. chlorotica. This indicates that the fragmentation of natural habitats has shaped their dispersal patterns and local effective population sizes. Landscape connectivity analysis confirmed that a priori favourable habitats such as grasslands may constitute dispersal corridors for these species. © 2017 John Wiley & Sons Ltd.

  9. Multiset singular value decomposition for joint analysis of multi-modal data: application to fingerprint analysis

    NASA Astrophysics Data System (ADS)

    Emge, Darren K.; Adalı, Tülay

    2014-06-01

    As the availability and use of imaging methodologies continues to increase, there is a fundamental need to jointly analyze data that is collected from multiple modalities. This analysis is further complicated when, the size or resolution of the images differ, implying that the observation lengths of each of modality can be highly varying. To address this expanding landscape, we introduce the multiset singular value decomposition (MSVD), which can perform a joint analysis on any number of modalities regardless of their individual observation lengths. Through simulations, the inter modal relationships across the different modalities which are revealed by the MSVD are shown. We apply the MSVD to forensic fingerprint analysis, showing that MSVD joint analysis successfully identifies relevant similarities for further analysis, significantly reducing the processing time required. This reduction, takes this technique from a laboratory method to a useful forensic tool with applications across the law enforcement and security regimes.

  10. Landscape dynamics analysis of the Yongding River watershed (Mentougou section) by multi-temporal Landsat imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhu; Yu, Changqing; Qi, Jiaguo; Zhang, Zili; Shi, Qinshan

    2007-11-01

    The problem of efficient use of multi-temporal remotely sensed data for land-cover and landscape pattern dynamics has already considerable attention in landscape ecology and some other disciplines. This research develops and tests a methodological approach to monitor and analysis landscape dynamics change of Yongding river watershed (Mentougou section) as study area from 1988 to 2005, The result shows that the OIF is the best method of optimal bands selection in Landsat TM remote sensing data, TM3, 4, 5 bands is optimal band combination ;the Mentougou Reach of Yongding river watershed landscape changed significantly in terms of its composition over the period 1988-2005, The total landscape patches of study area in 2005 are more those in 1988,2001, Mean patch size(MPS)decreased sharply, Number of patches(NP) increased sharply, The landscape pattern takes on the fragmentation trends under the effect on the human activity. The forest (woodland and shrubland)are the main landscape matrix. with a significant decrease in croplands and a increase in built-up (residential, urban land) and industrial minerals mining land(coal, open-pit)over the 17 years, And the underlying socio-economic and other drivers of landscape change in study area are discussed.

  11. Landscape metrics for three-dimension urban pattern recognition

    NASA Astrophysics Data System (ADS)

    Liu, M.; Hu, Y.; Zhang, W.; Li, C.

    2017-12-01

    Understanding how landscape pattern determines population or ecosystem dynamics is crucial for managing our landscapes. Urban areas are becoming increasingly dominant social-ecological systems, so it is important to understand patterns of urbanization. Most studies of urban landscape pattern examine land-use maps in two dimensions because the acquisition of 3-dimensional information is difficult. We used Brista software based on Quickbird images and aerial photos to interpret the height of buildings, thus incorporating a 3-dimensional approach. We estimated the feasibility and accuracy of this approach. A total of 164,345 buildings in the Liaoning central urban agglomeration of China, which included seven cities, were measured. Twelve landscape metrics were proposed or chosen to describe the urban landscape patterns in 2- and 3-dimensional scales. The ecological and social meaning of landscape metrics were analyzed with multiple correlation analysis. The results showed that classification accuracy compared with field surveys was 87.6%, which means this method for interpreting building height was acceptable. The metrics effectively reflected the urban architecture in relation to number of buildings, area, height, 3-D shape and diversity aspects. We were able to describe the urban characteristics of each city with these metrics. The metrics also captured ecological and social meanings. The proposed landscape metrics provided a new method for urban landscape analysis in three dimensions.

  12. [Application of land economic ecological niche in landscape pattern analysis at county level: A case study of Jinghe County in Xinjiang, China].

    PubMed

    Yu, Hai-yang; Zhang, Fei; Wang, Juan; Zhou, Mei

    2015-12-01

    The theory of land economic ecological niche was used to analyze the regional landscape pattern in this article, with an aim to provide a new method for the characterization and representation of landscape pattern. The Jinghe County region, which is ecologically fragile, was selected as an example for the study, and the Landsat images of 1990, 1998, 2011 and 2013 were selected as remote sensing data. The land economic ecological niche of land use types calculated by ecostate-ecorole theory, combined with landscape ecology theory, was discussed in application of land economic ecological niche in county landscape pattern analysis. The results showed that, during the study period, the correlations between land economic ecological niche of farmland, construction land, and grassland with the parameters, including landscape patch number (NP), aggregated index (AI), fragmented index (FN) and fractal dimension (FD), were significant. Regional landscape was driven by the changes of land economic ecological niche, and the trend of economic development could be represented by land economic ecological niche change in Jinghe County. Land economic ecological niche was closely related with the land use types which could yield direct economic benefits, which could well explain the landscape pattern characteristics in Jinghe County when combined with the landscape indices.

  13. Understanding the Factors that Influence Perceptions of Post-Wildfire Landscape Recovery Across 25 Wildfires in the Northwestern United States.

    PubMed

    Kooistra, C; Hall, T E; Paveglio, T; Pickering, M

    2018-01-01

    Disturbances such as wildfire are important features of forested landscapes. The trajectory of changes following wildfires (often referred to as landscape recovery) continues to be an important research topic among ecologists and wildfire scientists. However, the landscape recovery process also has important social dimensions that may or may not correspond to ecological or biophysical perspectives. Perceptions of landscape recovery may affect people's attitudes and behaviors related to forest and wildfire management. We explored the variables that influence people's perceptions of landscape recovery across 25 fires that occurred in 2011 or 2012 in the United States of Washington, Oregon, Idaho, and Montana and that represented a range of fire behavior characteristics and landscape impacts. Residents near each of the 25 fires were randomly selected to receive questionnaires about their experiences with the nearby fire, including perceived impacts and how the landscape had recovered since the fire. People generally perceived landscapes as recovering, even though only one to two years had passed. Regression analysis suggested that perceptions of landscape recovery were positively related to stronger beliefs about the ecological role of fire and negatively related to loss of landscape attachment, concern about erosion, increasing distance from the fire perimeter, and longer lasting fires. Hierarchical linear modeling (HLM) analysis indicated that the above relationships were largely consistent across fires. These findings highlight that perceptions of post-fire landscape recovery are influenced by more than vegetation changes and include emotional and cognitive factors. We discuss the management implications of these findings.

  14. Understanding the Factors that Influence Perceptions of Post-Wildfire Landscape Recovery Across 25 Wildfires in the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Kooistra, C.; Hall, T. E.; Paveglio, T.; Pickering, M.

    2018-01-01

    Disturbances such as wildfire are important features of forested landscapes. The trajectory of changes following wildfires (often referred to as landscape recovery) continues to be an important research topic among ecologists and wildfire scientists. However, the landscape recovery process also has important social dimensions that may or may not correspond to ecological or biophysical perspectives. Perceptions of landscape recovery may affect people's attitudes and behaviors related to forest and wildfire management. We explored the variables that influence people's perceptions of landscape recovery across 25 fires that occurred in 2011 or 2012 in the United States of Washington, Oregon, Idaho, and Montana and that represented a range of fire behavior characteristics and landscape impacts. Residents near each of the 25 fires were randomly selected to receive questionnaires about their experiences with the nearby fire, including perceived impacts and how the landscape had recovered since the fire. People generally perceived landscapes as recovering, even though only one to two years had passed. Regression analysis suggested that perceptions of landscape recovery were positively related to stronger beliefs about the ecological role of fire and negatively related to loss of landscape attachment, concern about erosion, increasing distance from the fire perimeter, and longer lasting fires. Hierarchical linear modeling (HLM) analysis indicated that the above relationships were largely consistent across fires. These findings highlight that perceptions of post-fire landscape recovery are influenced by more than vegetation changes and include emotional and cognitive factors. We discuss the management implications of these findings.

  15. Calculating landscape surface area from digital elevation models

    Treesearch

    Jeff S. Jenness

    2004-01-01

    There are many reasons to want to know the true surface area of the landscape, especially in landscape analysis and studies of wildlife habitat. Surface area provides a better estimate of the land area available to an animal than planimetric area, and the ratio of this surface area to planimetric area provides a useful measure of topographic roughness of the landscape...

  16. Analysis of Landscape Structure in the Southeastern Missouri Ozarks

    Treesearch

    Ming Xu; Sari C. Saunders; Jiquan. Chen

    1997-01-01

    We characterized the landscape structure within and surrounding the MOFEP study sites using Landsat TM data and GIS databases. Up to 31 percent of the landscape was within Iiparian zones. Road density was 1.4 km/km2 within the landscape but reached 2.0 km/km2 within 40-m stream buffers. More than 99 percent of the region...

  17. [Landscape and ecological genomics].

    PubMed

    Tetushkin, E Ia

    2013-10-01

    Landscape genomics is the modern version of landscape genetics, a discipline that arose approximately 10 years ago as a combination of population genetics, landscape ecology, and spatial statistics. It studies the effects of environmental variables on gene flow and other microevolutionary processes that determine genetic connectivity and variations in populations. In contrast to population genetics, it operates at the level of individual specimens rather than at the level of population samples. Another important difference between landscape genetics and genomics and population genetics is that, in the former, the analysis of gene flow and local adaptations takes quantitative account of landforms and features of the matrix, i.e., hostile spaces that separate species habitats. Landscape genomics is a part of population ecogenomics, which, along with community genomics, is a major part of ecological genomics. One of the principal purposes of landscape genomics is the identification and differentiation of various genome-wide and locus-specific effects. The approaches and computation tools developed for combined analysis of genomic and landscape variables make it possible to detect adaptation-related genome fragments, which facilitates the planning of conservation efforts and the prediction of species' fate in response to expected changes in the environment.

  18. Adaptive Classification of Landscape Process and Function: An Integration of Geoinformatics and Self-Organizing Maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andre M.

    2009-07-17

    The advanced geospatial information extraction and analysis capabilities of a Geographic Information System (GISs) and Artificial Neural Networks (ANNs), particularly Self-Organizing Maps (SOMs), provide a topology-preserving means for reducing and understanding complex data relationships in the landscape. The Adaptive Landscape Classification Procedure (ALCP) is presented as an adaptive and evolutionary capability where varying types of data can be assimilated to address different management needs such as hydrologic response, erosion potential, habitat structure, instrumentation placement, and various forecast or what-if scenarios. This paper defines how the evaluation and analysis of spatial and/or temporal patterns in the landscape can provide insight intomore » complex ecological, hydrological, climatic, and other natural and anthropogenic-influenced processes. Establishing relationships among high-dimensional datasets through neurocomputing based pattern recognition methods can help 1) resolve large volumes of data into a structured and meaningful form; 2) provide an approach for inferring landscape processes in areas that have limited data available but exhibit similar landscape characteristics; and 3) discover the value of individual variables or groups of variables that contribute to specific processes in the landscape. Classification of hydrologic patterns in the landscape is demonstrated.« less

  19. Unsupervised Change Detection for Geological and Ecological Monitoring via Remote Sensing: Application on a Volcanic Area

    NASA Astrophysics Data System (ADS)

    Falco, N.; Pedersen, G. B. M.; Vilmunandardóttir, O. K.; Belart, J. M. M. C.; Sigurmundsson, F. S.; Benediktsson, J. A.

    2016-12-01

    The project "Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS)" aims at providing fast and reliable mapping and monitoring techniques on a big spatial scale with a high temporal resolution of the Icelandic landscape. Such mapping and monitoring will be crucial to both mitigate and understand the scale of processes and their often complex interlinked feedback mechanisms.In the EMMIRS project, the Hekla volcano area is one of the main sites under study, where the volcanic eruptions, extreme weather and human activities had an extensive impact on the landscape degradation. The development of innovative remote sensing approaches to compute earth observation variables as automatically as possible is one of the main tasks of the EMMIRS project. Furthermore, a temporal remote sensing archive is created and composed by images acquired by different sensors (Landsat, RapidEye, ASTER and SPOT5). Moreover, historical aerial stereo photos allowed decadal reconstruction of the landscape by reconstruction of digital elevation models. Here, we propose a novel architecture for automatic unsupervised change detection analysis able to ingest multi-source data in order to detect landscape changes in the Hekla area. The change detection analysis is based on multi-scale analysis, which allows the identification of changes at different level of abstraction, from pixel-level to region-level. For this purpose, operators defined in mathematical morphology framework are implemented to model the contextual information, represented by the neighbour system of a pixel, allowing the identification of changes related to both geometrical and spectral domains. Automatic radiometric normalization strategy is also implemented as pre-processing step, aiming at minimizing the effect of different acquisition conditions. The proposed architecture is tested on multi-temporal data sets acquired over different time periods coinciding with the last three eruptions (1980-1981, 1991, 2000) occurred on Hekla volcano. The results reveal emplacement of new lava flows and the initial vegetation succession, providing insightful information on the evolving of vegetation in such environment. Shadow and snow patch changes are resolved in post-processing by exploiting the available spectral information.

  20. Dimensions of landscape preferences from pairwise comparisons

    Treesearch

    F. González Bernaldez; F. Parra

    1979-01-01

    Analysis of landscape preferences allows the detection of major dimensions as:(1) the opposition between "natural and humanized", (comprising features like vegetation cover, cultivation, pattern of landscape elements, artifacts, excavations, etc.); (2) polarity "precision/ambiguity" (involving opposition between: predominance of straight, vertical...

  1. Geographic applications of ERTS-1 imagery to rural landscape change in eastern Tennessee

    NASA Technical Reports Server (NTRS)

    Rehder, J. B. (Principal Investigator); Omalley, J. R.

    1973-01-01

    There are no author-identified significant results in this report. A multistage sampling experiment was conducted using low (10,000') and high (60,000') altitude aircraft imagery in comparison with orbital (560 miles) ERTS imagery. Although the aircraft data provide detailed landscape observations similar to ground truth data, they cover relatively small areas per image frame for irregular static slices of time. By comparison, ERTS provides repetitive observations in a regional perspective for broad areal coverage. Microdensitometric and computer techniques are being used to analyze the ERTS imagery for gray tone signatures, comparisons, and ultimately for landscape change detection.

  2. Characterizing RNA Dynamics at Atomic Resolution Using Solution-state NMR Spectroscopy

    PubMed Central

    Bothe, Jameson R.; Nikolova, Evgenia N.; Eichhorn, Catherine D.; Chugh, Jeetender; Hansen, Alexandar L.; Al-Hashimi, Hashim M.

    2012-01-01

    Many recently discovered non-coding RNAs do not fold into a single native conformation, but rather, sample many different conformations along their free energy landscape to carry out their biological function. Unprecedented insights into the RNA dynamic structure landscape are provided by solution-state NMR techniques that measure the structural, kinetic, and thermodynamic characteristics of motions spanning picosecond to second timescales at atomic resolution. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering. PMID:22036746

  3. Dynamics of ecosystem service values in response to landscape pattern changes from 1995 to 2005 in Guangzhou, Southern China

    Treesearch

    Yanqiong Ye; Jia' en Zhang; Lili Chen; Ying Ouyang; Prem Parajuli

    2015-01-01

    This study analyzed the landscape pattern changes, the dynamics of the ecosystem service values (ESVs) and the spatial distribution of ESVs from 1995 to 2005 in Guangzhou, which is the capital of Guangdong Province and a regional central city in South China. Remote sensing data and geographic information system techniques, in conjunction with spatial metrics, were used...

  4. Mobile capture of remote points of interest using line of sight modelling

    NASA Astrophysics Data System (ADS)

    Meek, Sam; Priestnall, Gary; Sharples, Mike; Goulding, James

    2013-03-01

    Recording points of interest using GPS whilst working in the field is an established technique in geographical fieldwork, where the user's current position is used as the spatial reference to be captured; this is known as geo-tagging. We outline the development and evaluation of a smartphone application called Zapp that enables geo-tagging of any distant point on the visible landscape. The ability of users to log or retrieve information relating to what they can see, rather than where they are standing, allows them to record observations of points in the broader landscape scene, or to access descriptions of landscape features from any viewpoint. The application uses the compass orientation and tilt of the phone to provide data for a line of sight algorithm that intersects with a Digital Surface Model stored on the mobile device. We describe the development process and design decisions for Zapp present the results of a controlled study of the accuracy of the application, and report on the use of Zapp for a student field exercise. The studies indicate the feasibility of the approach, but also how the appropriate use of such techniques will be constrained by current levels of precision in mobile sensor technology. The broader implications for interactive query of the distant landscape and for remote data logging are discussed.

  5. Learning free energy landscapes using artificial neural networks.

    PubMed

    Sidky, Hythem; Whitmer, Jonathan K

    2018-03-14

    Existing adaptive bias techniques, which seek to estimate free energies and physical properties from molecular simulations, are limited by their reliance on fixed kernels or basis sets which hinder their ability to efficiently conform to varied free energy landscapes. Further, user-specified parameters are in general non-intuitive yet significantly affect the convergence rate and accuracy of the free energy estimate. Here we propose a novel method, wherein artificial neural networks (ANNs) are used to develop an adaptive biasing potential which learns free energy landscapes. We demonstrate that this method is capable of rapidly adapting to complex free energy landscapes and is not prone to boundary or oscillation problems. The method is made robust to hyperparameters and overfitting through Bayesian regularization which penalizes network weights and auto-regulates the number of effective parameters in the network. ANN sampling represents a promising innovative approach which can resolve complex free energy landscapes in less time than conventional approaches while requiring minimal user input.

  6. Learning free energy landscapes using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Sidky, Hythem; Whitmer, Jonathan K.

    2018-03-01

    Existing adaptive bias techniques, which seek to estimate free energies and physical properties from molecular simulations, are limited by their reliance on fixed kernels or basis sets which hinder their ability to efficiently conform to varied free energy landscapes. Further, user-specified parameters are in general non-intuitive yet significantly affect the convergence rate and accuracy of the free energy estimate. Here we propose a novel method, wherein artificial neural networks (ANNs) are used to develop an adaptive biasing potential which learns free energy landscapes. We demonstrate that this method is capable of rapidly adapting to complex free energy landscapes and is not prone to boundary or oscillation problems. The method is made robust to hyperparameters and overfitting through Bayesian regularization which penalizes network weights and auto-regulates the number of effective parameters in the network. ANN sampling represents a promising innovative approach which can resolve complex free energy landscapes in less time than conventional approaches while requiring minimal user input.

  7. A gradient analysis on urban sprawl and urban landscape pattern between 1985 and 2000 in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Dai, Erfu; Wu, Zhuo; Du, Xiaodian

    2017-04-01

    Urbanization is an irreversible trend worldwide, especially in rapidly developing China. Accelerated urbanization has resulted in rapid urban sprawl and urban landscape pattern changes. Quantifying the spatiotemporal dynamics of urban land use and landscape pattern not only can reveal the characteristics of social transfer and economic development, but also can provide insights into the driving mechanisms of land use changes. In this study, we integrated remote sensing (RS), geographic information system (GIS), landscape metrics, and gradient analysis to quantitatively compare the spatiotemporal dynamics of land use, urban sprawl, and landscape pattern for nine cities in the Pearl River Delta from 1985‒2000. For the whole study region, urbanization was obvious. The results show an increase in urban buildup land and shrinkage of cropland in the Pearl River Delta. However, the nine cities differed greatly in terms of the process and magnitude of urban sprawl for both the spatial and temporal dimensions. This was most evident for the cities of Guangzhou and Shenzhen. Gradient analysis on urban landscape changes could deepen understanding of the stages of urban development and provide a scientific foundation for future urban planning and land management strategies in China.

  8. Evaluating Post-Fire Forest Resilience Using GIS and Multi-Criteria Analysis: An Example from Cape Sounion National Park, Greece

    NASA Astrophysics Data System (ADS)

    Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios

    2011-03-01

    Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.

  9. Evaluating post-fire forest resilience using GIS and multi-criteria analysis: an example from Cape Sounion National Park, Greece.

    PubMed

    Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios

    2011-03-01

    Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.

  10. Using IBMs to Investigate Spatially-dependent Processes in Landscape Genetics Theory

    EPA Science Inventory

    Much of landscape and conservation genetics theory has been derived using non-spatialmathematical models. Here, we use a mechanistic, spatially-explicit, eco-evolutionary IBM to examine the utility of this theoretical framework in landscapes with spatial structure. Our analysis...

  11. Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy.

    PubMed

    Yu, Zhoulu; Wang, Yaohui; Deng, Jinsong; Shen, Zhangquan; Wang, Ke; Zhu, Jinxia; Gan, Muye

    2017-06-06

    Accurately quantifying the variation of urban green space is the prerequisite for fully understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of urban green space is still insufficient due to multiple challenges that remain in mapping green spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to demonstrate an analysis methodology that integrates sub-pixel mapping technology and landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric analysis was then employed to characterize the variation pattern of urban green space patches. Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of urban greenness occurred in the city core from 2002 to 2013, characterized by the significant increase of small-sized green space patches. The green space network has been formed as a consequence of new urban greening strategies in Hangzhou. These strategies have greatly fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis further revealed a distinct pattern of urban green space landscape variation in the process of urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our approach revealed the subtle variation of urban green space patches which are otherwise easy to overlook. Findings from this study will help us to refine our understanding of the evolution of heterogeneous urban environments.

  12. Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy

    PubMed Central

    Yu, Zhoulu; Wang, Yaohui; Deng, Jinsong; Shen, Zhangquan; Wang, Ke; Zhu, Jinxia; Gan, Muye

    2017-01-01

    Accurately quantifying the variation of urban green space is the prerequisite for fully understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of urban green space is still insufficient due to multiple challenges that remain in mapping green spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to demonstrate an analysis methodology that integrates sub-pixel mapping technology and landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric analysis was then employed to characterize the variation pattern of urban green space patches. Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of urban greenness occurred in the city core from 2002 to 2013, characterized by the significant increase of small-sized green space patches. The green space network has been formed as a consequence of new urban greening strategies in Hangzhou. These strategies have greatly fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis further revealed a distinct pattern of urban green space landscape variation in the process of urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our approach revealed the subtle variation of urban green space patches which are otherwise easy to overlook. Findings from this study will help us to refine our understanding of the evolution of heterogeneous urban environments. PMID:28587309

  13. Influence of increasing active-layer depth and continued permafrost degradation on carbon, water and energy fluxes over two forested permafrost landscapes in the Taiga Plains, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Baltzer, J.; Chasmer, L. E.; Detto, M.; Marsh, P.; Quinton, W. L.

    2012-12-01

    Recent research suggests an increase in active-layer depth (ALD) in the continuous permafrost zone and degradation of the discontinuous permafrost zone into seasonally frozen. Increasing ALD and continued permafrost degradation will have far-reaching consequences for northern ecosystems including altered regional hydrology and the exposure of additional soil organic carbon (C) to microbial decomposition. These changes might cause positive or negative net feedbacks to the climate system by altering important land surface properties and/or by releasing stored soil organic C to the atmosphere as CO2 and/or CH4. Knowledge gaps exist regarding the links between increasing ALD and/or permafrost degradation, regional hydrology, vegetation composition and structure, land surface properties, and CO2 and CH4 sink-source strengths. The goal of our interdisciplinary project is to shed light on these links by providing a mechanistic understanding of permafrost-thawing consequences for hydrological, ecophysiological and biogeochemical processes at two forested permafrost landscapes in the Taiga Plains, NWT, Canada: Scotty Creek and Havikpak Creek in the discontinuous and in the continuous permafrost zones, respectively (Fig.). The sites will be equipped with identical sets of instrumentation (start: 2013), to measure landscape-scale net exchanges of CO2, CH4, water and energy with the eddy covariance technique. These measurements will be complemented by repeated surveys of surface and frost table topography and vegetation, by land cover-type specific fluxes of CO2 and CH4 measured with a static chamber technique, and by remote sensing-based footprint analysis. With this research we will address the following questions: What is the net effect of permafrost thawing-induced biophysical and biogeochemical feedbacks to the climate system? How do these two different types of feedback differ between the discontinuous and continuous permafrost zones? Is the decrease (increase) in net CO2 (CH4) exchange measured over mostly tundra sites in the continuous permafrost zone generalizable to forested landscapes in both the discontinuous and continuous permafrost zones? With this contribution, we report on the project status, present its objectives and hypotheses, and outline its timeline and sampling design.

  14. The visual-landscape analysis during the integration of high-rise buildings within the historic urban environment

    NASA Astrophysics Data System (ADS)

    Akristiniy, Vera A.; Dikova, Elena A.

    2018-03-01

    The article is devoted to one of the types of urban planning studies - the visual-landscape analysis during the integration of high-rise buildings within the historic urban environment for the purposes of providing pre-design and design studies in terms of preserving the historical urban environment and the implementation of the reconstructional resource of the area. In the article formed and systematized the stages and methods of conducting the visual-landscape analysis taking into account the influence of high-rise buildings on objects of cultural heritage and valuable historical buildings of the city. Practical application of the visual-landscape analysis provides an opportunity to assess the influence of hypothetical location of high-rise buildings on the perception of a historically developed environment and optimal building parameters. The contents of the main stages in the conduct of the visual - landscape analysis and their key aspects, concerning the construction of predicted zones of visibility of the significant historically valuable urban development objects and hypothetically planned of the high-rise buildings are revealed. The obtained data are oriented to the successive development of the planning and typological structure of the city territory and preservation of the compositional influence of valuable fragments of the historical environment in the structure of the urban landscape. On their basis, an information database is formed to determine the permissible urban development parameters of the high-rise buildings for the preservation of the compositional integrity of the urban area.

  15. Landscape characterization integrating expert and local spatial knowledge of land and forest resources.

    PubMed

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.

  16. Landscape Characterization Integrating Expert and Local Spatial Knowledge of Land and Forest Resources

    NASA Astrophysics Data System (ADS)

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.

  17. Geospatial tools for landscape character assessment in Cyprus

    NASA Astrophysics Data System (ADS)

    Symons, N. P.; Vogiatzakis, I. N.; Griffiths, G. H.; Warnock, S.; Vassou, V.; Zomeni, M.; Trigkas, V.

    2013-08-01

    The development of Landscape Typologies in Europe relies upon advances in geospatial tools and increasing availability of digital datasets. Landscape Character Assessment (LCA) is a technique used to classify, describe and understand the combined physical, ecological and cultural characteristics of a landscape. LCA uses a range of data sources to identify and describe areas of common character and can operate at a range of scales i.e.national and regional and local. The paper describes the steps taken to develop an island wide landscape typology for Cyprus, based on the use of GIS and remote sensing tools. The methodology involved integrating physiographical, ecological and cultural information about the Cypriot landscape. Datasets on the cultural attributes (e.g. settlement and field patterns) were not available, so they were created de novo based on information from topographical maps (for settlement dispersion and density) and medium resolution satellite imagery from Google Earth, from which a number of distinctive field patterns could be distinguished. The mapping work is carried out on two levels using a hierarchical approach. The first level at a 1:100, 000 scale has been completed resulting in a map with 17 distinct landscape types. The second level is under way with the view of producing a more detailed landscape typology at 1:50, 000 scale which will incorporate the cultural aspects of the island. This is the first time that such a typology has been produced for Cyprus and it is expected to provide an invaluable tool for landscape planning and management.

  18. Incorporating resource protection constraints in an analysis of landscape fuel-treatment effectiveness in the northern Sierra Nevada, CA, USA

    Treesearch

    Christopher B. Dow; Brandon M. Collins; Scott L. Stephens

    2016-01-01

    Finding novel ways to plan and implement landscape-level forest treatments that protect sensitive wildlife and other key ecosystem components, while also reducing the risk of large-scale, high-severity fires, can prove to be difficult. We examined alternative approaches to landscape-scale fuel-treatment design for the same landscape. These approaches included two...

  19. Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks

    USGS Publications Warehouse

    Hoos, A.B.; McMahon, G.

    2009-01-01

    Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States - higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.

  20. Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks

    USGS Publications Warehouse

    Hoos, Anne B.; McMahon, Gerard

    2009-01-01

    Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States—higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.

  1. Ecological Sensitivity Evaluation of Tourist Region Based on Remote Sensing Image - Taking Chaohu Lake Area as a Case Study

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Li, W. J.; Yu, J.; Wu, C. Z.

    2018-04-01

    Remote sensing technology is of significant advantages for monitoring and analysing ecological environment. By using of automatic extraction algorithm, various environmental resources information of tourist region can be obtained from remote sensing imagery. Combining with GIS spatial analysis and landscape pattern analysis, relevant environmental information can be quantitatively analysed and interpreted. In this study, taking the Chaohu Lake Basin as an example, Landsat-8 multi-spectral satellite image of October 2015 was applied. Integrated the automatic ELM (Extreme Learning Machine) classification results with the data of digital elevation model and slope information, human disturbance degree, land use degree, primary productivity, landscape evenness , vegetation coverage, DEM, slope and normalized water body index were used as the evaluation factors to construct the eco-sensitivity evaluation index based on AHP and overlay analysis. According to the value of eco-sensitivity evaluation index, by using of GIS technique of equal interval reclassification, the Chaohu Lake area was divided into four grades: very sensitive area, sensitive area, sub-sensitive areas and insensitive areas. The results of the eco-sensitivity analysis shows: the area of the very sensitive area was 4577.4378 km2, accounting for about 37.12 %, the sensitive area was 5130.0522 km2, accounting for about 37.12 %; the area of sub-sensitive area was 3729.9312 km2, accounting for 26.99 %; the area of insensitive area was 382.4399 km2, accounting for about 2.77 %. At the same time, it has been found that there were spatial differences in ecological sensitivity of the Chaohu Lake basin. The most sensitive areas were mainly located in the areas with high elevation and large terrain gradient. Insensitive areas were mainly distributed in slope of the slow platform area; the sensitive areas and the sub-sensitive areas were mainly agricultural land and woodland. Through the eco-sensitivity analysis of the study area, the automatic recognition and analysis techniques for remote sensing imagery are integrated into the ecological analysis and ecological regional planning, which can provide a reliable scientific basis for rational planning and regional sustainable development of the Chaohu Lake tourist area.

  2. INTRODUCTION TO THE LANDSCAPE ANALYSIS TOOLS ARCVIEW EXTENSION

    EPA Science Inventory

    Geographic Information Systems (GIS) have become a powerful tool in the field of landscape ecology. A common application of GIS is the generation of landscape indicators, which are quantitative measurements of the status or potential health of an area (e.g. watershed or county). ...

  3. A hierarchical approach to forest landscape pattern characterization.

    PubMed

    Wang, Jialing; Yang, Xiaojun

    2012-01-01

    Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.

  4. Landscape‐level patterns in fawn survival across North America

    USGS Publications Warehouse

    Gingery, Tess M.; Diefenbach, Duane R.; Wallingford, Bret D.; Rosenberry, Christopher S.

    2018-01-01

    A landscape‐level meta‐analysis approach to examining early survival of ungulates may elucidate patterns in survival not evident from individual studies. Despite numerous efforts, the relationship between fawn survival and habitat characteristics remains unclear and there has been no attempt to examine trends in survival across landscape types with adequate replication. In 2015–2016, we radiomarked 98 white‐tailed deer (Odocoileus virginianus) fawns in 2 study areas in Pennsylvania. By using a meta‐analysis approach, we compared fawn survival estimates from across North America using published data from 29 populations in 16 states to identify patterns in survival and cause‐specific mortality related to landscape characteristics, predator communities, and deer population density. We modeled fawn survival relative to percentage of agricultural land cover and deer density. Estimated average survival to 3–6 months of age was 0.414 ± 0.062 (SE) in contiguous forest landscapes (no agriculture) and for every 10% increase in land area in agriculture, fawn survival increased 0.049 ± 0.014. We classified cause‐specific mortality as human‐caused, natural (excluding predation), and predation according to agriculturally dominated, forested, and mixed (i.e., both agricultural and forest cover) landscapes. Predation was the greatest source of mortality in all landscapes. Landscapes with mixed forest and agricultural cover had greater proportions and rates of human‐caused mortalities, and lower proportions and rates of mortality due to predators, when compared to forested landscapes. Proportion and rate of natural deaths did not differ among landscapes. We failed to detect any relationship between fawn survival and deer density. The results highlight the need to consider multiple spatial scales when accounting for factors that influence fawn survival. Furthermore, variation in mortality sources and rates among landscapes indicate the potential for altered landscape mosaics to influence fawn survival rates. Wildlife managers can use the meta‐analysis to identify factors that will facilitate comparisons of results among studies and advance a better understanding of patterns in fawn survival.

  5. ANALYTICAL TOOL INTERFACE FOR LANDSCAPE ASSESSMENTS (ATIILA): AN ARCVIEW EXTENSION FOR THE ANALYSIS OF LANDSCAPE PATTERNS, COMPOSITION, AND STRUCTURE

    EPA Science Inventory

    Environmental management practices are trending away from simple, local- scale assessments toward complex, multiple-stressor regional assessments. Landscape ecology provides the theory behind these assessments while geographic information systems (GIS) supply the tools to impleme...

  6. Thinking big: linking rivers to landscapes

    Treesearch

    Joan O’Callaghan; Ashley E. Steel; Kelly M. Burnett

    2012-01-01

    Exploring relationships between landscape characteristics and rivers is an emerging field, enabled by the proliferation of satellite date, advances in statistical analysis, and increased emphasis on large-scale monitoring. Landscapes features such as road networks, underlying geology, and human developments, determine the characteristics of the rivers flowing through...

  7. Application of Partial Least Square (PLS) Regression to Determine Landscape-Scale Aquatic Resources Vulnerability in the Ozark Mountains

    EPA Science Inventory

    Partial least squares (PLS) analysis offers a number of advantages over the more traditionally used regression analyses applied in landscape ecology, particularly for determining the associations among multiple constituents of surface water and landscape configuration. Common dat...

  8. R-based Tool for a Pairwise Structure-activity Relationship Analysis.

    PubMed

    Klimenko, Kyrylo

    2018-04-01

    The Structure-Activity Relationship analysis is a complex process that can be enhanced by computational techniques. This article describes a simple tool for SAR analysis that has a graphic user interface and a flexible approach towards the input of molecular data. The application allows calculating molecular similarity represented by Tanimoto index & Euclid distance, as well as, determining activity cliffs by means of Structure-Activity Landscape Index. The calculation is performed in a pairwise manner either for the reference compound and other compounds or for all possible pairs in the data set. The results of SAR analysis are visualized using two types of plot. The application capability is demonstrated by the analysis of a set of COX2 inhibitors with respect to Isoxicam. This tool is available online: it includes manual and input file examples. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mapping Candidate Ecological Restoration Areas Using Morphological Spatial Pattern Analysis (MSPA)

    EPA Science Inventory

    Morphological Spatial Pattern Analysis (MSPA) has been widely adopted by landscape ecologists over the past decade. A few examples of its many uses include: 1) quantifying landscape indicators and fragmentation in continental forest assessments, 2) explaining interior-exterior p...

  10. Applications of ERTS-1 data to landscape change in eastern Tennessee

    NASA Technical Reports Server (NTRS)

    Rehder, J. B. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The analysis of landscape change in eastern Tennessee from ERTS-1 data is being derived from three avenues of experimentation and analysis: (1) a multi-stage sampling procedure utilizing ground and aircraft imagery for ground truth and control; (2) a densitometric and computer analytical experiment for the analysis of gray tone signatures and comparisons for landscape change detection and monitoring; and (3) an ERTS image enhancement procedure for the detection and analysis of photomorphic regions. Significant results include: maps of strip mining changes and forest inventory, watershed identification and delimitation, and agricultural regions derived from spring plowing patterns appearing on the ERTS-1 imagery.

  11. An approach to analyzing the intensity of the daytime surface urban heat island effect at a local scale.

    PubMed

    Xu, Shenlai

    2009-04-01

    A landscape index LI is proposed to evaluate the intensity of the daytime surface urban heat island (SUHI) effect at a local scale. Three aspects of this landscape index are crucial: the source landscape, the sink landscape, and the contribution of source and sink landscapes to the intensity of the SUHI. Source and sink landscape types are identified using the thermo-band of Landsat 7 with a spatial resolution of 60 m, along with appropriate threshold values for the Normalized Difference Vegetation Index, Modified Normalized Difference Water Index, and Normalized Difference Built-up Index. The landscape index was defined as the ratio of the contributions of the source and sink landscapes to the intensity of the SUHI. The intensity of the daytime SUHI is assessed with the help of the landscape index. Our analysis indicates the landscape index can be used to evaluate and compare the intensity of the daytime SUHI for different areas.

  12. Assisting Australian indigenous resource management and sustainable utilization of species through the use of GIS and environmental modeling techniques.

    PubMed

    Gorman, Julian; Pearson, Diane; Whitehead, Peter

    2008-01-01

    Information on distribution and relative abundance of species is integral to sustainable management, especially if they are to be harvested for subsistence or commerce. In northern Australia, natural landscapes are vast, centers of population few, access is difficult, and Aboriginal resource centers and communities have limited funds and infrastructure. Consequently defining distribution and relative abundance by comprehensive ground survey is difficult and expensive. This highlights the need for simple, cheap, automated methodologies to predict the distribution of species in use, or having potential for use, in commercial enterprise. The technique applied here uses a Geographic Information System (GIS) to make predictions of probability of occurrence using an inductive modeling technique based on Bayes' theorem. The study area is in the Maningrida region, central Arnhem Land, in the Northern Territory, Australia. The species examined, Cycas arnhemica and Brachychiton diversifolius, are currently being 'wild harvested' in commercial trials, involving sale of decorative plants and use as carving wood, respectively. This study involved limited and relatively simple ground surveys requiring approximately 7 days of effort for each species. The overall model performance was evaluated using Cohen's kappa statistics. The predictive ability of the model for C. arnhemica was classified as moderate and for B. diversifolius as fair. The difference in model performance can be attributed to the pattern of distribution of these species. C. arnhemica tends to occur in a clumped distribution due to relatively short distance dispersal of its large seeds and vegetative growth from long-lived rhizomes, while B. diversifolius seeds are smaller and more widely dispersed across the landscape. The output from analysis predicts trends in species distribution that are consistent with independent on-site sampling for each species and therefore should prove useful in gauging the extent of resource availability. However, some caution needs to be applied as the models tend to over predict presence which is a function of distribution patterns and of other variables operating in the landscape such as fire histories which were not included in the model due to limited availability of data.

  13. Historic Landscape Inventory for Marietta National Cemetery

    DTIC Science & Technology

    2017-11-14

    development context, a description of current conditions, and an analysis of changes over time to the cultural landscape. All landscape features were...Factors ..................................................................................................... xxiv 1 Methodology ...yards 0.9144 meters ERDC/CERL TR-17-41 1 1 Methodology 1.1 Background The U.S. Congress codified the National Historic Preservation Act of

  14. Chapter 10: Geographic information system landscape analysis using GTR 220 concepts

    Treesearch

    M. North; R.M. Boynton; P.A. Stine; K.F. Shipley; E.C. Underwood; N.E. Roth; J.H. Viers; J.F. Quinn

    2012-01-01

    Forest Service General Technical Report "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests" (hereafter GTR 220) (North et al. 2009) emphasizes increasing forest heterogeneity throughout a range of spatial scales including within-stand microsites, individual stands, watersheds, and entire landscapes. For fuels reduction, various landscape...

  15. ANALYSIS OF LANDSCAPE AND WATER QUALITY IN THE NEW YORK CATSKILL - DELAWARE WATERSHED (1973-1998)

    EPA Science Inventory

    The primary goal of this study is to improve risk assessment through the development of methods and tools for characterization of landscape and water resource change. Exploring the relationship between landscape pattern and water quality in the Catskill-Delaware basins will impro...

  16. Application of Partial Least Squares (PLS) Regression to Determine Landscape-Scale Aquatic Resource Vulnerability in the Ozark Mountains

    EPA Science Inventory

    Partial least squares (PLS) analysis offers a number of advantages over the more traditionally used regression analyses applied in landscape ecology to study the associations among constituents of surface water and landscapes. Common data problems in ecological studies include: s...

  17. Repeated holdout Cross-Validation of Model to Estimate Risk of Lyme Disease by Landscape Attributes

    EPA Science Inventory

    We previously modeled Lyme disease (LD) risk at the landscape scale; here we evaluate the model's overall goodness-of-fit using holdout validation. Landscapes were characterized within road-bounded analysis units (AU). Observed LD cases (obsLD) were ascertained per AU. Data were ...

  18. Effects of Hydrocarbon Extraction on Landscapes of the Appalachian Basin

    USGS Publications Warehouse

    Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Kalaly, Siddiq S.

    2015-09-30

    The need for energy resources has created numerous economic opportunities for hydrocarbon extraction in the Appalachian basin. The development of alternative energy natural gas resources from deep-shale drilling techniques, along with conventional natural gas extraction methods, has created a flurry of wells, roads, pipelines, and related infrastructure across many parts of the region. An unintended and sometimes overlooked consequence of these activities is their effect on the structure and function of the landscape and ecosystems. The collective effect of over 100,000 hydrocarbon extraction permits for oil, coal bed methane, Marcellus and Utica Shale natural gas wells, and other types of hydrocarbon gases and their associated infrastructure has saturated much of the landscape and disturbed the natural environment in the Appalachian basin. The disturbance created by the sheer magnitude of the development of these collective wells and infrastructure directly affects how the landscape and ecosystems function and how they provide ecological goods and services. 

  19. Exploring the complex free-energy landscape of the simplest glass by rheology.

    PubMed

    Jin, Yuliang; Yoshino, Hajime

    2017-04-11

    For amorphous solids, it has been intensely debated whether the traditional view on solids, in terms of the ground state and harmonic low energy excitations on top of it, such as phonons, is still valid. Recent theoretical developments of amorphous solids revealed the possibility of unexpectedly complex free-energy landscapes where the simple harmonic picture breaks down. Here we demonstrate that standard rheological techniques can be used as powerful tools to examine nontrivial consequences of such complex free-energy landscapes. By extensive numerical simulations on a hard sphere glass under quasistatic shear at finite temperatures, we show that above the so-called Gardner transition density, the elasticity breaks down, the stress relaxation exhibits slow, and ageing dynamics and the apparent shear modulus becomes protocol-dependent. Being designed to be reproducible in laboratories, our approach may trigger explorations of the complex free-energy landscapes of a large variety of amorphous materials.

  20. Exploring the complex free-energy landscape of the simplest glass by rheology

    NASA Astrophysics Data System (ADS)

    Jin, Yuliang; Yoshino, Hajime

    2017-04-01

    For amorphous solids, it has been intensely debated whether the traditional view on solids, in terms of the ground state and harmonic low energy excitations on top of it, such as phonons, is still valid. Recent theoretical developments of amorphous solids revealed the possibility of unexpectedly complex free-energy landscapes where the simple harmonic picture breaks down. Here we demonstrate that standard rheological techniques can be used as powerful tools to examine nontrivial consequences of such complex free-energy landscapes. By extensive numerical simulations on a hard sphere glass under quasistatic shear at finite temperatures, we show that above the so-called Gardner transition density, the elasticity breaks down, the stress relaxation exhibits slow, and ageing dynamics and the apparent shear modulus becomes protocol-dependent. Being designed to be reproducible in laboratories, our approach may trigger explorations of the complex free-energy landscapes of a large variety of amorphous materials.

  1. [Relationships of wetland landscape fragmentation with climate change in middle reaches of Heihe River, China].

    PubMed

    Jiang, Peng-Hui; Zhao, Rui-Feng; Zhao, Hai-Li; Lu, Li-Peng; Xie, Zuo-Lun

    2013-06-01

    Based on the 1975-2010 multi-temporal remotely sensed TM and ETM images and meteorological data, in combining with wavelet analysis, trend surface simulation, and interpolation method, this paper analyzed the meteorological elements' spatial distribution and change characteristics in the middle reaches of Heihe River, and elucidated the process of wetland landscape fragmentation in the study area by using the landscape indices patch density (PD), mean patch size (MPS), and patch shape fragment index (FS). The relationships between the wetland landscape fragmentation and climate change were also approached through correlation analysis and multiple stepwise regression analysis. In 1975-2010, the overall distribution patterns of precipitation and temperature in the study area were low precipitation in high temperature regions and high precipitation in low temperature regions, and the main characteristics of climate change were the conversion from dry to wet and from cold to warm. In the whole study period, the wetland landscape fragmentation was mainly manifested in the decrease of MPS, with a decrement of 48.95 hm2, and the increase of PD, with an increment of 0.006 ind x hm(-2).

  2. Population genetic structure in a social landscape: barley in a traditional Ethiopian agricultural system

    PubMed Central

    Samberg, Leah H; Fishman, Lila; Allendorf, Fred W

    2013-01-01

    Conservation strategies are increasingly driven by our understanding of the processes and patterns of gene flow across complex landscapes. The expansion of population genetic approaches into traditional agricultural systems requires understanding how social factors contribute to that landscape, and thus to gene flow. This study incorporates extensive farmer interviews and population genetic analysis of barley landraces (Hordeum vulgare) to build a holistic picture of farmer-mediated geneflow in an ancient, traditional agricultural system in the highlands of Ethiopia. We analyze barley samples at 14 microsatellite loci across sites at varying elevations and locations across a contiguous mountain range, and across farmer-identified barley types and management strategies. Genetic structure is analyzed using population-based and individual-based methods, including measures of population differentiation and genetic distance, multivariate Principal Coordinate Analysis, and Bayesian assignment tests. Phenotypic analysis links genetic patterns to traits identified by farmers. We find that differential farmer management strategies lead to markedly different patterns of population structure across elevation classes and barley types. The extent to which farmer seed management appears as a stronger determinant of spatial structure than the physical landscape highlights the need for incorporation of social, landscape, and genetic data for the design of conservation strategies in human-influenced landscapes. PMID:24478796

  3. Monitoring and Management of a Sensitive Resource: A Landscape-level Approach with Amphibians

    DTIC Science & Technology

    2001-03-01

    Results show that each technique is effective for a portion of the amphibian community and that the use of multiple techniques is essential to any...combinations of species. These results show that multiple techniques are needed for a full assessment of amphibian populations and communities at...against which future assessments of amphibian populations and communities on each installation can be evaluated. The standardized techniques used in FY

  4. Stonehenge's Greater Cursus

    NASA Astrophysics Data System (ADS)

    Burley, Paul; Mooers, Howard D.

    2016-01-01

    Archaeological investigations have emphasized relationships between solar and lunar phenomena and architectural features of prehistoric sites located on the Stonehenge ritual landscape. However, no over-riding landscape design has been identified to explain the purpose of placing hundreds of Neolithic through Iron Age burial sites upon the landscape. Our research and analysis shows the mid-4th millennium BC (mid-Neolithic) landscape represents an 'above, so below' cosmo-geographical relationship. Type, shape, size and orientation of specific elements (such as long barrows, henges, cursus and topography) created a hierotopy representing the Winter Hexagon asterism, Milky Way, ecliptic and other stellar features. The resulting pattern of ritual sites represents translocation of the astronomical Otherworld - the Spirit World - onto the plain. Results of the analysis create a new paradigm of purpose for the built landscape circa 3500 BC, and identifies the reason why Stonehenge is located where it is with respect to other contemorary monuments.

  5. Analysis of umbu (Spondias tuberosa Arruda (Anacardiaceae)) in different landscape management regimes: a process of incipient domestication?

    PubMed

    Lins Neto, Ernani Machado de Freitas; Peroni, Nivaldo; Maranhão, Christine Maria Carneiro; Maciel, Maria Inês Sucupira; de Albuquerque, Ulysses Paulino

    2012-07-01

    Plant domestication is an evolutionary process guided by human groups who modify the landscape for their needs. The objective of this study was to evaluate the phenotypic variations between populations of Spondias tuberosa Arruda (umbuzeiro) when subjected to different local landscape management strategies. The influence of the landscape management system on these populations was evaluated in five identified regional units (mountains, base of mountains, pastures, cultivated areas and home gardens). Ten individuals were randomly selected from each region and subjected to morphological and chemical fruit analysis. The diversity index, based on Simpson's index, was determined for the different populations. We then evaluated the morphological differences between the individual fruits from the distinct landscape areas. We observed no significant differences in morphological diversity between the areas studied. Our data suggest that the umbuzeiro specimens in this region may be in the process of incipient domestication.

  6. Project visual analysis for the Allegheny National Forest

    Treesearch

    Gary W. Kell

    1979-01-01

    The Project Visual Analysis is a landscape assessment procedure involving forest vegetative manipulation. A logical step by step analysis leads the user to a specific set of landscape management guidelines to be used as an aid in designing a project or in evaluating whether the proposed project impacts will meet visual objectives. Key elements within the procedure are...

  7. Socioeconomic Context and the Food Landscape in Texas: Results from Hotspot Analysis and Border/Non-Border Comparison of Unhealthy Food Environments

    PubMed Central

    Salinas, Jennifer J.; Abdelbary, Bassent; Klaas, Kelly; Tapia, Beatriz; Sexton, Ken

    2014-01-01

    Purpose: The purpose of this paper is to describe the food landscape of Texas using the CDC’s Modified Retail Food Environment (mRFEI) and to make comparisons by border/non-border. Methods: The Modified Retail Food Environment index (mRFEI (2008)) is an index developed by the CDC that measures what percent of the total food vendors in a census track sell healthy food. The range of values is 0 (unhealthy areas with limited access to fruits and vegetables) to (100—Healthy). These data were linked to 2010 US Census socioeconomic and ethnic concentration data. Spatial analysis and GIS techniques were applied to assess the differences between border and non-border regions. Variables of interest were mRFEI score, median income, total population, percent total population less than five years, median age, % receiving food stamps, % Hispanic, and % with a bachelor degree. Results: Findings from this study reveal that food environment in Texas tends to be characteristic of a “food desert”. Analysis also demonstrates differences by border/non-border location and percent of the population that is foreign born and by percent of families who receive food stamps. Conclusions: Identifying the relationship between socioeconomic disparity, ethnic concentration and mRFEI score could be a fundamental step in improving health in disadvantage communities, particularly those on the Texas-Mexico border. PMID:24865399

  8. Investigating the causality of changes in the landscape pattern of Lake Urmia basin, Iran using remote sensing and time series analysis.

    PubMed

    Mehrian, Majid Ramezani; Hernandez, Raul Ponce; Yavari, Ahmad Reza; Faryadi, Shahrzad; Salehi, Esmaeil

    2016-08-01

    Lake Urmia is the second largest hypersaline lake in the world in terms of surface area. In recent decades, the drop in water level of the lake has been one of the most important environmental issues in Iran. At present, the entire basin is threatened due to abrupt decline of the lake's water level and the consequent increase in salinity. Despite the numerous studies, there is still an ambiguity about the main cause of this environmental crisis. This paper is an attempt to detect the changes in the landscape structure of the main elements of the whole basin using remote sensing techniques and analyze the results against climate data with time series analysis for the purpose of achieving a more clarified illustration of processes and trends. Trend analysis of the different affecting factors indicates that the main cause of the drastic dry out of the lake is the huge expansion of irrigated agriculture in the basin between 1999 and 2014. The climatological parameters including precipitation and temperature cannot be the main reasons for reduced water level in the lake. The results show how the increase in irrigated agricultural area without considering the water resources limits can lead to a regional disaster. The approach used in this study can be a useful tool to monitor and assess the causality of environmental disaster.

  9. Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, June 14–16, 2011, Portland, Oregon

    Treesearch

    Becky K. Kerns; Ayn J. Shlisky; Colin J. Daniel

    2012-01-01

    The first ever Landscape State-and-Transition Simulation Modeling Conference was held from June 14–16, 2011, in Portland Oregon. The conference brought together over 70 users of state-and-transition simulation modeling tools—the Vegetation Dynamics Development Tool (VDDT), the Tool for Exploratory Landscape Analysis (TELSA) and the Path Landscape Model. The goal of the...

  10. Terraced landscape: from an old best practice to a rising land abandoned-related soil erosion risk

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Preti, Federico; Romano, Nunzio

    2013-04-01

    Among the most evident landscape signatures of human fingerprint during the Holocene, the terraces related to agricultural activities deserve a great importance. Landscape terracing probably represents one of the oldest best practice primarily for crop production, but also for mitigating soil erosion and stabilizing hillslopes in landforms dominated by steep slopes. This technique is widely used in various parts of the world even under different environmental conditions. In some zones, terraced landscapes, because of their history and locations, can also be considered a historical heritage and a sort of "cultural landscape" to preserve, an absolutely value for tourism. To preserve their original role of soil erosion prevention, terraces should be properly designed built according to specific and sustainable engineering rules. Then, their maintenance is the most critical issue to deal with. It is well known from literature that terraced landscapes subject to abandonment would result in an increasing of terrace failure and related land degradation. If not maintained, a progressively increasing of gully erosion affects the structure of the walls. The results of this process is the increasing of connectivity and runoff. During the last few years and partly because of changing in the society perspective and migration toward metropolitan areas, some Countries have been affected by a serious and wider land abandonment with an increasing of soil erosion and derived landslide risk. Italy is one example. In this work, we consider three typical case studies of a terraced landscape where the lack of maintenance characterizing the last few years, increased the landslide risk with several problems to the population. The first case study is located along the renowed "Amalfi Coast" (a portion of land located near Salerno, southern Italy), the second is placed in the north of Toscana (a region located in Central Italy), and the third one along the so-called "Cinque Terre" (a region located near La Spezia, in Central Italy). The goals are to present the state of the art of such issue by integrating historical and cultural point of views, to land use and hydrogeomorphological analysis, also through remotely sensed technologies such LiDAR. Only with a fully integrated approach it is possible to mitigate such problem, planning new sustainable soil conservation practices, and at the same way maintaining agricultural activities.

  11. Vortex energy landscape from real space imaging analysis of YBa2Cu3O7 with different defect structures

    NASA Astrophysics Data System (ADS)

    Luccas, R. F.; Granados, X.; Obradors, X.; Puig, T.

    2014-10-01

    A methodology based on real space vortex image analysis is presented able to estimate semi-quantitatively the relevant energy densities of an arbitrary array of vortices, map the interaction energy distributions and evaluate the pinning energy associated to particular defects. The combined study using nanostructuration tools, a vortex visualization technique and the energy method is seen as an opportunity to estimate vortex pinning potentials strengths. Particularly, spatial distributions of vortex energy densities induced by surface nanoindented scratches are evaluated and compared to those of twin boundaries. This comparative study underlines the remarkable role of surface nanoscratches in pinning vortices and its potentiality in the design of novel devices for pinning and guiding vortex motion.

  12. An ex-post evaluation approach to assess the impacts of accomplished urban structure shift on landscape connectivity.

    PubMed

    Huang, Junlong; He, Jianhua; Liu, Dianfeng; Li, Chun; Qian, Jing

    2018-05-01

    Many studies have been conducted to evaluate the effects of different urban structures on landscape connectivity, and most of them rely on the comparison approach or ex-ante scenario analysis. However, we still lack an ex-post method to capture the consequences of accomplished urban structure shift (from monocentric to polycentric), which is guided by the land use planning. To fill this gap, we develop an ex-post evaluation approach which integrates counterfactual analysis and landscape graphs. Counterfactual analysis is combined with cellular automata simulation model, to uncover what the city might look like, if it had continued to expand in a monocentric structure; and the landscape graphs enable us to reveal the possible landscape connectivity in actual and counterfactual scenarios. We select Nanjing city as the study area and 4 target species, to delve into the varying impacts of the urban structure shift on different taxonomic groups. Our case study demonstrates that: (1) the impact of urban structure shift is more relevant to the long disperser; (2) the actual landscape (polycentric) would facilitate the bird's dispersal, while (3) forest mammals have higher connectivity in the counterfactual scenario (monocentric), and the possible reasons are discussed. Finally, we demonstrate that the urban structure shift might not necessarily cause the connectivity decline, on condition that the key connectivity providers are identified by integrating ecological network analysis into the land use planning, and well preserved in the shift. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spatial assessment of landscape ecological connectivity in different urban gradient.

    PubMed

    Park, Sohyun

    2015-07-01

    Urbanization has resulted in remnant natural patches within cities that often have no connectivity among themselves and to natural reserves outside the urban area. Protecting ecological connectivity in fragmented urban areas is becoming crucial in maintaining urban biodiversity and securing critical habitat levels and configurations under continual development pressures. Nevertheless, few studies have been undertaken for urban landscapes. This study aims to assess ecological connectivity for a group of species that represent the urban desert landscape in the Phoenix metropolitan area and to compare the connectivity values along the different urban gradient. A GIS-based landscape connectivity model which relies upon ecological connectivity index (ECI) was developed and applied to this region. A GIS-based concentric buffering technique was employed to delineate conceptual boundaries for urban, suburban, and rural zones. The research findings demonstrated that urban habitats and potential habitat patches would be significantly influenced by future urban development. Particularly, the largest loss of higher connectivity would likely to be anticipated in the "in-between areas" where urban, suburban, and rural zones overlap one another. The connectivity maps would be useful to provide spatial identification regarding connectivity patterns and vulnerability for urban and suburban activities in this area. This study provides planners and landscape architects with a spatial guidance to minimize ecological fragmentation, which ultimately leads to urban landscape sustainability. This study suggests that conventional planning practices which disregard the ecological processes in urban landscapes need to integrate landscape ecology into planning and design strategies.

  14. A regional classification of the effectiveness of depressional wetlands at mitigating nitrogen transport to surface waters in the Northern Atlantic Coastal Plain

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.; LaMotte, Andrew E.; Sekellick, Andrew J.

    2013-01-01

    Nitrogen from nonpoint sources contributes to eutrophication, hypoxia, and related ecological degradation in Atlantic Coastal Plain streams and adjacent coastal estuaries such as Chesapeake Bay and Pamlico Sound. Although denitrification in depressional (non-riparian) wetlands common to the Coastal Plain can be a significant landscape sink for nitrogen, the effectiveness of individual wetlands at removing nitrogen varies substantially due to varying hydrogeologic, geochemical, and other landscape conditions, which are often poorly or inconsistently mapped over large areas. A geographic model describing the spatial variability in the likely effectiveness of depressional wetlands in watershed uplands at mitigating nitrogen transport from nonpoint sources to surface waters was constructed for the Northern Atlantic Coastal Plain (NACP), from North Carolina through New Jersey. Geographic and statistical techniques were used to develop the model. Available medium-resolution (1:100,000-scale) stream hydrography was used to define 33,799 individual watershed catchments in the study area. Sixteen landscape metrics relevant to the occurrence of depressional wetlands and their effectiveness as nitrogen sinks were defined for each catchment, based primarily on available topographic and soils data. Cluster analysis was used to aggregate the 33,799 catchments into eight wetland landscape regions (WLRs) based on the value of three principal components computed for the 16 original landscape metrics. Significant differences in topography, soil, and land cover among the eight WLRs demonstrate the effectiveness of the clustering technique. Results were used to interpret the relative likelihood of depressional wetlands in each WLR and their likely effectiveness at mitigating nitrogen transport from upland source areas to surface waters. The potential effectiveness of depressional wetlands at mitigating nitrogen transport varies substantially over different parts of the NACP. Depressional wetlands are common in three WLRs covering 32 percent of the area, and have a relatively high potential to mitigate nitrogen transport from nonpoint sources. Conversely, 37 percent of the study area includes rolling hills with relatively high slope and relief, and little likelihood of depressional wetlands. The remainder of the Coastal Plain includes relatively flat watersheds with moderate to low relative likelihood of nitrogen mitigation. The delineation of WLRs in this model should be useful for targeting wetland conservation or restoration efforts, and for estimating the effects of depressional wetlands on the regional nitrogen budget, but should be considered in light of limitations and assumptions inherent in the model.

  15. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices.

    PubMed

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R 2 ) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  16. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices

    NASA Astrophysics Data System (ADS)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B.

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination ( R 2) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  17. Moving Target Techniques: Cyber Resilience throught Randomization, Diversity, and Dynamism

    DTIC Science & Technology

    2017-03-03

    Moving Target Techniques: Cyber Resilience through Randomization, Diversity, and Dynamism Hamed Okhravi and Howard Shrobe Overview: The static...nature of computer systems makes them vulnerable to cyber attacks. Consider a situation where an attacker wants to compromise a remote system running... cyber resilience that attempts to rebalance the cyber landscape is known as cyber moving target (MT) (or just moving target) techniques. Moving target

  18. Relationships between landscape pattern and land surface temperature and their applications to the study of West Nile Virus: As case studies in cities of Indianapolis and Chicago, United States

    NASA Astrophysics Data System (ADS)

    Liu, Hua

    A new synthesis of remote sensing and landscape ecology approaches was developed to establish relationships between the landscape patterns and land surface temperatures (LST) in the city of Indianapolis, Indiana, United States. Land use and land cover (LULC) and LST images were derived from Terra Satellite's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. An analytical procedure using landscape metrics was developed, applying configuration analysis of landscape patterns and land surface temperature zones. Detailed landscape pattern analyses at the landscape and class scales were conducted using landscape metrics in the City of Indianapolis. The effects of spatial resolution on the identification of the relationship were examined in the same city. The best level of equalization between the LULC and LST maps was determined based on minimum distance analysis in landscape metrics space. The analyses of relationships between the landscape patterns and land surface temperatures, and scaling effects were applied to the spread of West Nile Virus (WNV) in the City of Chicago, Illinois. Results show that urban, forest, and grassland were the main landscape components in Indianapolis. They possessed relatively higher fractal dimensions but lower spatial aggregation levels in April 5, 2004, June 16, 2001, and October 3, 2000, but not in February 6, 2006. Obvious seasonal differences existed with the most distinct landscape pattern detected on February 6, 2006. Urban was the dominant LULC type in high-temperature zones, while water and vegetation mainly fell in low-temperature zones. For each individual date, the metrics of LST zones apparently corresponded to the metrics of LULC types. In the study of scaling-up effect analysis, Patch Percentage, Patch Density, and Landscape Shape index were found to be able to effectively quantify the spatial changes of LULC types and temperature zones at different scales without contradiction. Urban, forest, and grassland in each season were more easily affected by the process in Patch Density and Landscape Shape index. Ninety meters was believed to be the optimal spatial resolution to examine relationships between landscape patterns and LSTs in the City of Indianapolis. In the study of the spread of West Nile Virus in the City of Chicago, WNV was found to have been spread throughout all of Cook County since 2001. Landscape factors, like landscape aggregation index and areas of urban, grass, and water showed a strong correlation with the number of WNV infections. Socioeconomic conditions, like population above 65 years old also showed a strong relationship with the spread of WNV in Cook County. Thermal conditions of water had a lower but still significant correlation to the spread of WNV. This research offers an opportunity to explore the mechanism of interaction between urban landscape patterns and land surface temperatures at different spatial scales, and show the effects of landscape pattern and land surface temperature on the spread of West Nile Virus. This study can be useful for urban planning and environmental management practices in the studied areas. It also contributes to public health management and protection.

  19. State of the Art of the Landscape Architecture Spatial Data Model from a Geospatial Perspective

    NASA Astrophysics Data System (ADS)

    Kastuari, A.; Suwardhi, D.; Hanan, H.; Wikantika, K.

    2016-10-01

    Spatial data and information had been used for some time in planning or landscape design. For a long time, architects were using spatial data in the form of topographic map for their designs. This method is not efficient, and it is also not more accurate than using spatial analysis by utilizing GIS. Architects are sometimes also only accentuating the aesthetical aspect for their design, but not taking landscape process into account which could cause the design could be not suitable for its use and its purpose. Nowadays, GIS role in landscape architecture has been formalized by the emergence of Geodesign terminology that starts in Representation Model and ends in Decision Model. The development of GIS could be seen in several fields of science that now have the urgency to use 3 dimensional GIS, such as in: 3D urban planning, flood modeling, or landscape planning. In this fields, 3 dimensional GIS is able to support the steps in modeling, analysis, management, and integration from related data, that describe the human activities and geophysics phenomena in more realistic way. Also, by applying 3D GIS and geodesign in landscape design, geomorphology information can be better presented and assessed. In some research, it is mentioned that the development of 3D GIS is not established yet, either in its 3D data structure, or in its spatial analysis function. This study literature will able to accommodate those problems by providing information on existing development of 3D GIS for landscape architecture, data modeling, the data accuracy, representation of data that is needed by landscape architecture purpose, specifically in the river area.

  20. An assessment of landscape changes in Mediterranean region. A case study of Algarve, southern Portugal.

    NASA Astrophysics Data System (ADS)

    Fernandez, Helena; Martins, Fernando; Valín, Maria Isabel; Moreno, Ângela; Pedras, Celestina

    2014-05-01

    Currently, the application of remote sensing techniques is a key factor for the planning and land management to ensure a sustainable development of the regions. Algarve, the most southern region of Portugal is characterized by its Mediterranean climate. This climate is described by irregular precipitation throughout the year with drought during summer months. The regional climate has a profound influence on its particular vegetation and wildlife turning it in a unique habitat for many species. Since the 1970s, increases in tourism have greatly affected the coastal region. This has led to great landscape pressure and urban growth, resulting in population increases due to local economic prosperity. Across Algarve, in recent decades, lawns areas have grown dramatically. Landscape water use has increased mainly because homeowners seldom pay the 'true' cost of water. Continued expansion of water supply is not, therefore, a viable management option in the future, particularly given the anticipated increase in the frequency and severity of droughts in Portugal. There's a need to change the perception of landscape relative to water consumption. Algarve needs a sustainable, 'demand-led' approach to water resource management, focusing on conserving water and using it more efficiently. The water resources available in the Algarve are limited, and decisions regarding sustainability must consider the environment. The aim of this study is to apply the remote sensing techniques to analyse the landscape changes in three municipalities of Algarve (Portugal): Albufeira, Loulé and Faro. The three Landsat images, from April 9th 1973 (Landsat1), March 23th 1989 (Landsat5) and April 26th 2013 (Landsat8) were used. The images were classified based on the radiometric information and the Normalized Difference Vegetation Index (NDVI). These range of dates of the Landsat images used allowed for the differentiation between classes of the landscape. Land use and water resources are closely linked with each other and with regional climate. The understanding of the interconnecting relations involved in this system is an essential step for elaborating public policies that can effectively lead to the sustainable use of water resources. This study could contribute to a better characterization of the region allowing the developing policies and measures for sustainable management regional landscapes. Keywords: Water resources, Land use, Landscape dynamics, Remote sensing

  1. A sustainable landscape ecosystem design: a case study.

    PubMed

    Huang, Lei-Chang; Ye, Shu-Hong; Gu, Xun; Cao, Fu-Cun; Fan, Zheng-Qiu; Wang, Xiang-Rong; Wu, Ya-Sheng; Wang, Shou-Bing

    2010-05-01

    Landscape planning is clearly ecologically and socially relevant. Concern about sustainability between human and environment is now a driving paradigm for this professional. However, the explosion of the sustainable landscape in China is a very recent phenomenon. What is the sustainable landscape? How is this realized in practice? In this article, on the basis of the reviews of history and perplexities of Chinese landscape and nature analysis of sustainable landscape, the ecothinking model, an implemental tool for sustainable landscape, was developed, which applies ecothinking in vision, culture, conservation and development of site, and the process of public participation for a harmonious relationship between human and environment. And a case study of the south entrance of TongNiuling Scenic Area was carried out, in which the most optimum scenario was chosen from among three models according to the ecothinking model, to illustrate the construction of the ecothinking model and how to achieve a sustainable landscape.

  2. ASSESSING THE PREDICTIVE CAPABILITY OF LANDSCAPE SAMPLING UNITS OF VARYING SCALE IN THE ANALYSIS OF ESTUARINE CONDITION

    EPA Science Inventory

    Landscape structure metrics are often used to predict water and sediment quality of lakes, streams, and estuaries; however, the sampling units used to generate the landscape metrics are often at an irrelevant spatial scale. They are either too large (i.e., an entire watershed) or...

  3. Predicting landscape connectivity for the Asian elephant in its largest remaining subpopulation

    Treesearch

    J.-P. Puyravaud; Samuel Cushman; P. Davidar; D. Madappa

    2016-01-01

    Landscape connectivity between protected areas is crucial for the conservation of megafauna. But often, corridor identification relies on expert knowledge that is subjective and not spatially synoptic. Landscape analysis allows generalization of expert knowledge when satellite tracking or genetic data are not available. The Nilgiri Biosphere Reserve in southern India...

  4. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure.

    Treesearch

    Kevin McGarigal; Barbara J. Marks

    1995-01-01

    This report describes a program, FRAGSTATS, developed to quantify landscape structure. FRAGSTATS offers a comprehensive choice of landscape metrics and was designed to be as versatile as possible. The program is almost completely automated and thus requires little technical training. Two separate versions of FRAGSTATS exist: one for vector images and one for raster...

  5. Phenotypic and genotypic analysis of a U.S. native fine-leaved Festuca population portends its potential use for low-input urban landscapes

    USDA-ARS?s Scientific Manuscript database

    Continued reduction in limited natural resources worldwide increasingly necessitates the incorporation of low maintenance and input plant materials into urban landscapes. Although some fine-leaved Festuca grass species have been utilized in formal gardens and native urban landscapes because of thei...

  6. Landscape-level analysis of mountain goat population connectivity in Washington and southern British Columbia

    Treesearch

    Leslie C. Parks; David O. Wallin; Samuel A. Cushman; Brad H. McRae

    2015-01-01

    Habitat fragmentation and habitat loss diminish population connectivity, reducing genetic diversity and increasing extinction risk over time. Improving connectivity is widely recommended to preserve the long-term viability of populations, but this requires accurate knowledge of how landscapes influence connectivity. Detectability of landscape effects on gene...

  7. Chapter 6. Landscape Analysis for Habitat Monitoring

    Treesearch

    Samuel A. Cushman; Kevin McGarigal; Kevin S. McKelvey; Christina D. Vojta; Claudia M. Regan

    2013-01-01

    The primary objective of this chapter is to describe standardized methods for measur¬ing and monitoring attributes of landscape pattern in support of habitat monitoring. This chapter describes the process of monitoring categorical landscape maps in which either selected habitat attributes or different classes of habitat quality are represented as different patch types...

  8. Prescribing habitat layouts: Analysis of optimal placement for landscape planning [Chapter 23

    Treesearch

    Curtis H. Flather; Michael Bevers; John Hof

    2002-01-01

    Physical restructuring of landscapes by humans is a prominent stress on ecological systems (Rapport et al. 1985). Landscape restructuring occurs primarily through land-use conversions or alteration of native habitats through natural resource management. A common faunal response to such land-use intensification is an increased dominance of opportunistic species leading...

  9. Tools for understanding landscapes: combining large-scale surveys to characterize change. Chapter 9.

    Treesearch

    W. Keith Moser; Janine Bolliger; Don C. Bragg; Mark H. Hansen; Mark A. Hatfield; Timothy A. Nigh; Lisa A. Schulte

    2008-01-01

    All landscapes change continuously. Since change is perceived and interpreted through measures of scale, any quantitative analysis of landscapes must identify and describe the spatiotemporal mosaics shaped by large-scale structures and processes. This process is controlled by core influences, or "drivers," that shape the change and affect the outcome...

  10. Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki

    2004-04-01

    We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.

  11. Relating landscape characteristics to non-point source pollution in mine waste-located watersheds using geospatial techniques.

    PubMed

    Xiao, Huaguo; Ji, Wei

    2007-01-01

    Landscape characteristics of a watershed are important variables that influence surface water quality. Understanding the relationship between these variables and surface water quality is critical in predicting pollution potential and developing watershed management practices to eliminate or reduce pollution risk. To understand the impacts of landscape characteristics on water quality in mine waste-located watersheds, we conducted a case study in the Tri-State Mining District which is located in the conjunction of three states (Missouri, Kansas and Oklahoma). Severe heavy metal pollution exists in that area resulting from historical mining activities. We characterized land use/land cover over the last three decades by classifying historical multi-temporal Landsat imagery. Landscape metrics such as proportion, edge density and contagion were calculated based on the classified imagery. In-stream water quality data over three decades were collected, including lead, zinc, iron, cadmium, aluminum and conductivity which were used as key water quality indicators. Statistical analyses were performed to quantify the relationship between landscape metrics and surface water quality. Results showed that landscape characteristics in mine waste-located watersheds could account for as much as 77% of the variation of water quality indicators. A single landscape metric alone, such as proportion of mine waste area, could be used to predict surface water quality; but its predicting power is limited, usually accounting for less than 60% of the variance of water quality indicators.

  12. Repeat Photography of Alaskan Glaciers and Landscapes as Both Art and as a Means of Communicating Climat Change

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.

    2013-12-01

    For nearly 15 years, I have used repeat photography of Alaskan glaciers and landscapes to communicate to fellow scientists, policymakers, the media, and society that Alaskan glaciers and landscapes have been experiencing significant change in response to post-Little Ice Age climate change. I began this pursuit after being contacted by a U.S. Department of the Interior senior official who requested unequivocal and unambiguous documentation that climate change was real and underway. After considering several options as to how best respond to this challenge, I decided that if a picture is worth a thousand words, then a pair of photographs, both with the same field of view, spanning a century or more, and showing dramatic differences, would speak volumes to documenting that dynamic climate change is occurring over a very broad region of Alaska. To me, understating the obvious with photographic pairs was the best mechanism to present irrefutable, unambiguous, nonjudgmental, as well as unequivocal visual documentation that climate change was both underway and real. To date, more than 150 pairs that meet these criteria have been produced. What has surprised me most is that the many of the photographs contained in the pairs present beautiful images of stark, remote landscapes that convey the majestic nature of this dynamic region with its unique topography and landscapes. Typically, over periods of just several decades, the photographed landscapes change from black and white to blue and green. White ice becomes blue water and dark rock becomes lush vegetation. Repeat photography is a technique in which a historical photograph and a modern photograph, both having the same field of view, are compared and contrasted to quantitatively and qualitatively determine their similarities and differences. I have used this technique from both ground-based photo stations and airborne platforms at Alaskan locations in Kenai Fjords National Park, Glacier Bay National Park and Preserve, Wrangell-St. Elias National Park and Preserve, Denali National Park and Preserve, the northern and northwestern Prince William Sound area of the Chugach National Forest, and the Mendenhall Glacier area of the Tongass National Forest to document and determine the extent of changing glaciers and landscapes. The use of repeat photography to document temporal change is not new. It originated as a glacier-monitoring technique in the European Alps more than 150 years ago. What is unique in this Alaskan application of repeat photography is the systematic approach being used to obtain photographic documentation of glacier and landscape change for every glacier-hosting fiord in western southcentral Alaska, as well as at many Alaskan valley glacier sites. What is also unique is the development of an annotated website which presents many pairs of these photographs as well as ancillary materials to help convey the basics of Alaskan glaciers and climate change. The website, titled 'Glacier and Landscape Change in Response to Changing Climate', (http://www.usgs.gov/climate_landuse/glaciers/) was awarded the 2010 USGS Shoemaker External Communications Award.

  13. [Spatial characteristics analysis of Huizhou-Styled Village based on ideal ecosystem model and 3D landscape indices: A case in Chengkan, China].

    PubMed

    Yao, Meng Yuan; Yan, Shi Jiang; Wu, Yan Lan

    2016-12-01

    Huizhou-Styled Village is a typical representative of the traditional Chinese ancient villages. It preserves plentiful information of the regional culture and ecological connotation. The Huizhou-Style is the apotheosis of harmony between the Chinese ancient people and nature. The research and protection of Huizhou-Styled Village plays a very important role in fields of ecology, geography, architecture and esthetics. This paper took Chengkan Village of Anhui Province as an exa-mple, and proposed a new model of ideal ecosystem oriented in theories of Feng-shui and psychological field. The new method of characterizing 3D landscape index was introduced to explore the spatial patterns of Huizhou-Styled Village and the functionality of the composited landscape components in a quantitative way. The results indicated that, Chengkan Village showed a spatially composited pattern of "mountain-forest-village-river-forest". It formed an ideal settlement ring structure with human architecture in the center and natural landscape around in the horizontal and vertical horizons. The traditional method based on the projection distance caused the deviation of the landscape index, such as underestimating the area and distance of landscape patch. The 3D landscape index of average patch area was 6.7% higher than the 2D landscape index. The increasing rate ofarea proportion in 3D index was 1.0% higher than that of 2D index in forest lands. Area proportion of the other landscapes decreased, especially the artificial landscapes like construction and cropland landscapes. The area and perimeter metric were underestimated, whereas the shape metric and the diversity metric were overestimated. This caused the underestimation of the dominance of natural patches was underestimated and the overestimation of the dominance of artificial patches during the analysis of landscape pattern. The 3D landscape index showed that the natural elements and their combination in Chengkan Village ecosystem reflected better ecological function, the key elements and the composited landscape ecosystem preserved higher stability, connectivity and aggregation. The quantitative confirmation showed that the Huizhou-Styled Village represented by Chengkan Village is an ideal ecosystem.

  14. Protein functional landscapes, dynamics, allostery: a tortuous path towards a universal theoretical framework.

    PubMed

    Zhuravlev, Pavel I; Papoian, Garegin A

    2010-08-01

    Energy landscape theories have provided a common ground for understanding the protein folding problem, which once seemed to be overwhelmingly complicated. At the same time, the native state was found to be an ensemble of interconverting states with frustration playing a more important role compared to the folding problem. The landscape of the folded protein - the native landscape - is glassier than the folding landscape; hence, a general description analogous to the folding theories is difficult to achieve. On the other hand, the native basin phase volume is much smaller, allowing a protein to fully sample its native energy landscape on the biological timescales. Current computational resources may also be used to perform this sampling for smaller proteins, to build a 'topographical map' of the native landscape that can be used for subsequent analysis. Several major approaches to representing this topographical map are highlighted in this review, including the construction of kinetic networks, hierarchical trees and free energy surfaces with subsequent structural and kinetic analyses. In this review, we extensively discuss the important question of choosing proper collective coordinates characterizing functional motions. In many cases, the substates on the native energy landscape, which represent different functional states, can be used to obtain variables that are well suited for building free energy surfaces and analyzing the protein's functional dynamics. Normal mode analysis can provide such variables in cases where functional motions are dictated by the molecule's architecture. Principal component analysis is a more expensive way of inferring the essential variables from the protein's motions, one that requires a long molecular dynamics simulation. Finally, the two popular models for the allosteric switching mechanism, 'preexisting equilibrium' and 'induced fit', are interpreted within the energy landscape paradigm as extreme points of a continuum of transition mechanisms. Some experimental evidence illustrating each of these two models, as well as intermediate mechanisms, is presented and discussed.

  15. Hacked Landscapes: Tensions, Borders, and Positionality in Spatial Literacy

    ERIC Educational Resources Information Center

    Schmidt, Sandra J.

    2017-01-01

    By focusing on critical geographies, landscape, and spatial literacy, this article evaluates a semester-long spatial justice project conducted in a preservice teacher education program. The analysis recognizes the limitations of reading the products literally as a means of comprehending spatial representation. It expands the analysis by hacking…

  16. Predicting landslide vegetation in patches on landscape gradients in Puerto Rico

    USGS Publications Warehouse

    Myster, R.W.; Thomlinson, J.R.; Larsen, M.C.

    1997-01-01

    We explored the predictive value of common landscape characteristics for landslide vegetative stages in the Luquillo Experimental Forest of Puerto Rico using four different analyses. Maximum likelihood logistic regression showed that aspect, age, and substrate type could be used to predict vegetative structural stage. In addition it showed that the structural complexity of the vegetation was greater in landslides (1) facing the southeast (away from the dominant wind direction of recent hurricanes), (2) that were older, and (3) that had volcaniclastic rather than dioritic substrate. Multiple regression indicated that both elevation and age could be used to predict the current vegetation, and that vegetation complexity was greater both at lower elevation and in older landslides. Pearson product-moment correlation coefficients showed that (1) the presence of volcaniclastic substrate in landslides was negatively correlated with aspect, age, and elevation, (2) that road association and age were positively correlated, and (3) that slope was negatively correlated with area. Finally, principal components analysis showed that landslides were differentiated on axes defined primarily by age, aspect class, and elevation in the positive direction, and by volcaniclastic substrate in the negative direction. Because several statistical techniques indicated that age, aspect, elevation, and substrate were important in determining vegetation complexity on landslides, we conclude that landslide succession is influenced by variation in these landscape traits. In particular, we would expect to find more successional development on landslides which are older, face away from hurricane winds, are at lower elevation, and are on volcaniclastic substrate. Finally, our results lead into a hierarchical conceptual model of succession on landscapes where the biota respond first to either gradients or disturbance depending on their relative severity, and then to more local biotic mechanisms such as dispersal, predation and competition.

  17. Rural Land Use Change during 1986–2002 in Lijiang, China, Based on Remote Sensing and GIS Data

    PubMed Central

    Peng, Jian; Wu, Jiansheng; Yin, He; Li, Zhengguo; Chang, Qing; Mu, Tianlong

    2008-01-01

    As a local environmental issue with global importance, land use/land cover change (LUCC) has always been one of the key issues in geography and environmental studies with the expansion of regional case studies. While most of LUCC studies in China have focused on urban land use change, meanwhile, compared with the rapid change of urban land use in the coastal areas of eastern China, slow but distinct rural land use changes have also occurred in the mountainous areas of western China since the late 1980s. In this case through a study in Lijiang County of Yunnan Province, with the application of remote sensing data and geographic information system techniques, the process of rural land use change in mountain areas of western China was monitored through extensive statistical analysis of detailed regional data. The results showed significant increases in construction land, paddy field and dry land, and a decrease in dense forest land and waste grassland between 1986 and 2002. The conversions between dense forest land and sparse forest land, grassland, waste grassland and dry land were the primary processes of rural land use change. Sparse forest land had the highest rate of land use change, with glacier or snow-capped land the lowest; while human settlement and rural economic development were found to be the main driving forces of regional difference in the integrated land use change rate among the 24 towns of Lijiang County. Quantified through landscape metrics, spatial patterns of rural land use change were represented as an increase in landscape diversity and landscape fragmentation, and the regularization of patch shapes, suggesting the intensification of human disturbances and degradation of ecological quality in the rural landscape. PMID:27873983

  18. Floodplains as a source of fine sediment in grazed landscapes: tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    NASA Astrophysics Data System (ADS)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2017-12-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.

  19. Rural Land Use Change during 1986-2002 in Lijiang, China, Based on Remote Sensing and GIS Data.

    PubMed

    Peng, Jian; Wu, Jiansheng; Yin, He; Li, Zhengguo; Chang, Qing; Mu, Tianlong

    2008-12-11

    As a local environmental issue with global importance, land use/land cover change (LUCC) has always been one of the key issues in geography and environmental studies with the expansion of regional case studies. While most of LUCC studies in China have focused on urban land use change, meanwhile, compared with the rapid change of urban land use in the coastal areas of eastern China, slow but distinct rural land use changes have also occurred in the mountainous areas of western China since the late 1980s. In this case through a study in Lijiang County of Yunnan Province, with the application of remote sensing data and geographic information system techniques, the process of rural land use change in mountain areas of western China was monitored through extensive statistical analysis of detailed regional data. The results showed significant increases in construction land, paddy field and dry land, and a decrease in dense forest land and waste grassland between 1986 and 2002. The conversions between dense forest land and sparse forest land, grassland, waste grassland and dry land were the primary processes of rural land use change. Sparse forest land had the highest rate of land use change, with glacier or snow-capped land the lowest; while human settlement and rural economic development were found to be the main driving forces of regional difference in the integrated land use change rate among the 24 towns of Lijiang County. Quantified through landscape metrics, spatial patterns of rural land use change were represented as an increase in landscape diversity and landscape fragmentation, and the regularization of patch shapes, suggesting the intensification of human disturbances and degradation of ecological quality in the rural landscape.

  20. Rehabilitating agricultural streams in Australia with wood: a review.

    PubMed

    Lester, Rebecca E; Boulton, Andrew J

    2008-08-01

    Worldwide, the ecological condition of streams and rivers has been impaired by agricultural practices such as broadscale modification of catchments, high nutrient and sediment inputs, loss of riparian vegetation, and altered hydrology. Typical responses include channel incision, excessive sedimentation, declining water quality, and loss of in-stream habitat complexity and biodiversity. We review these impacts, focusing on the potential benefits and limitations of wood reintroduction as a transitional rehabilitation technique in these agricultural landscapes using Australian examples. In streams, wood plays key roles in shaping velocity and sedimentation profiles, forming pools, and strengthening banks. In the simplified channels typical of many agricultural streams, wood provides habitat for fauna, substrate for biofilms, and refuge from predators and flow extremes, and enhances in-stream diversity of fish and macroinvertebrates.Most previous restoration studies involving wood reintroduction have been in forested landscapes, but some results might be extrapolated to agricultural streams. In these studies, wood enhanced diversity of fish and macroinvertebrates, increased storage of organic material and sediment, and improved bed and bank stability. Failure to meet restoration objectives appeared most likely where channel incision was severe and in highly degraded environments. Methods for wood reintroduction have logistical advantages over many other restoration techniques, being relatively low cost and low maintenance. Wood reintroduction is a viable transitional restoration technique for agricultural landscapes likely to rapidly improve stream condition if sources of colonists are viable and water quality is suitable.

  1. Land use-based landscape planning and restoration in mine closure areas.

    PubMed

    Zhang, Jianjun; Fu, Meichen; Hassani, Ferri P; Zeng, Hui; Geng, Yuhuan; Bai, Zhongke

    2011-05-01

    Landscape planning and restoration in mine closure areas is not only an inevitable choice to sustain mining areas but also an important path to maximize landscape resources and to improve ecological function in mine closure areas. The analysis of the present mine development shows that many mines are unavoidably facing closures in China. This paper analyzes the periodic impact of mining activities on landscapes and then proposes planning concepts and principles. According to the landscape characteristics in mine closure areas, this paper classifies available landscape resources in mine closure areas into the landscape for restoration, for limited restoration and for protection, and then summarizes directions for their uses. This paper establishes the framework of spatial control planning and design of landscape elements from "macro control, medium allocation and micro optimization" for the purpose of managing and using this kind of special landscape resources. Finally, this paper applies the theories and methods to a case study in Wu'an from two aspects: the construction of a sustainable land-use pattern on a large scale and the optimized allocation of typical mine landscape resources on a small scale.

  2. Changing Libraries: Facilitating Self-Reflection and Action Research on Organizational Change in Academic Libraries

    ERIC Educational Resources Information Center

    Whitworth, Andrew; Torras I Calvo, Maria Carme; Moss, Bodil; Amlesom Kifle, Nazareth; Blåsternes, Terje

    2014-01-01

    Visualization and mapping techniques can build a dynamic picture of information practices, including action research, within libraries, raising awareness of how the information landscape at each library may both support and retard research into the library's information practices. These techniques have implications for researchers as they generate…

  3. Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow.

    PubMed

    van Strien, Maarten J; Keller, Daniela; Holderegger, Rolf; Ghazoul, Jaboury; Kienast, Felix; Bolliger, Janine

    2014-03-01

    For conservation managers, it is important to know whether landscape changes lead to increasing or decreasing gene flow. Although the discipline of landscape genetics assesses the influence of landscape elements on gene flow, no studies have yet used landscape-genetic models to predict gene flow resulting from landscape change. A species that has already been severely affected by landscape change is the large marsh grasshopper (Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in Switzerland. From transects drawn between all population pairs within maximum dispersal distance (< 3 km), we calculated several measures of landscape composition as well as some measures of habitat configuration. Additionally, a complete sampling of all populations in our study area allowed incorporating measures of population topology. These measures together with the landscape metrics formed the predictor variables in linear models with gene flow as response variable (F(ST) and mean pairwise assignment probability). With a modified leave-one-out cross-validation approach, we selected the model with the highest predictive accuracy. With this model, we predicted gene flow under several landscape-change scenarios, which simulated construction, rezoning or restoration projects, and the establishment of a new population. For some landscape-change scenarios, significant increase or decrease in gene flow was predicted, while for others little change was forecast. Furthermore, we found that the measures of population topology strongly increase model fit in landscape genetic analysis. This study demonstrates the use of predictive landscape-genetic models in conservation and landscape planning.

  4. Grassland Aboveground Biomass in Inner Mongolia: Dynamics (2001-2016) and Driving force

    NASA Astrophysics Data System (ADS)

    Li, F.; Zeng, Y.; Chen, J.; Wu, B.

    2017-12-01

    Plant biomass is the most critical measure of carbon stored in an ecosystem, yet it remains imprecisely modeled for many terrestrial biomes. This lack of modeling capacity for biomass and its change through time and space has impeded scientists from making headway concerning issues in the geographic and social sciences. Satellite remote sensing techniques excel at detecting changes in the Earth's surface; however, accurate estimates of biomass for the heterogeneous biome landscapes based on remote sensing techniques are few and far between, which has led to many repetitive studies. Here, we argued that our ability to assess biomass in a heterogeneous landscape using satellite remote sensing techniques would be effectively enhanced through a stratification of landscapes, i.e homogenizing landscapes. Specifically, above-ground biomass (AGB) for an extended heterogeneous grassland biome over the entirety of Inner Mongolia during the past 16 years (2001-2016) was explored using remote sensing time series data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Massive and extensive in-situ measurement AGB data and pure vegetation index (PVI) models, developed from normal remote sensing vegetation indices such as the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI), were highlighted in the accomplishment of this study. Taking into full consideration the landscape heterogeneity for the grassland biome over Inner Mongolia, we achieved a series of AGB models with high R2 (>0.85) and low RMSE ( 20.85 g/m2). The total average amount of fresh AGB for the entirety of Inner Mongolia grasslands over the past 16 years was estimated as 87 Tg with an inter-annual standard deviation of 9 Tg. Overall, the grassland AGB for Inner Mongolia increased sporadically. We found that the dynamics of AGB in the grassland biome of Inner Mongolia were substantially dominated by variation in precipitation despite the accommodation of a huge population of livestock in this area over the past few decades. Concerning the production of grassland AGB for the future, we emphasized that the impacts of the frequently warming-drying climate associated with climate change across the Mongolia Plateau should be paid more attention.

  5. A multiscale analysis of gene flow for the New England cottontail, an imperiled habitat specialist in a fragmented landscape

    PubMed Central

    Fenderson, Lindsey E; Kovach, Adrienne I; Litvaitis, John A; O'Brien, Kathleen M; Boland, Kelly M; Jakubas, Walter J

    2014-01-01

    Landscape features of anthropogenic or natural origin can influence organisms' dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2–36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both barriers and facilitators of dispersal for an early successional habitat specialist in a fragmented landscape. PMID:24963381

  6. A multiscale analysis of gene flow for the New England cottontail, an imperiled habitat specialist in a fragmented landscape.

    PubMed

    Fenderson, Lindsey E; Kovach, Adrienne I; Litvaitis, John A; O'Brien, Kathleen M; Boland, Kelly M; Jakubas, Walter J

    2014-05-01

    Landscape features of anthropogenic or natural origin can influence organisms' dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2-36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both barriers and facilitators of dispersal for an early successional habitat specialist in a fragmented landscape.

  7. Dynamical analysis of cellular ageing by modeling of gene regulatory network based attractor landscape.

    PubMed

    Chong, Ket Hing; Zhang, Xiaomeng; Zheng, Jie

    2018-01-01

    Ageing is a natural phenomenon that is inherently complex and remains a mystery. Conceptual model of cellular ageing landscape was proposed for computational studies of ageing. However, there is a lack of quantitative model of cellular ageing landscape. This study aims to investigate the mechanism of cellular ageing in a theoretical model using the framework of Waddington's epigenetic landscape. We construct an ageing gene regulatory network (GRN) consisting of the core cell cycle regulatory genes (including p53). A model parameter (activation rate) is used as a measure of the accumulation of DNA damage. Using the bifurcation diagrams to estimate the parameter values that lead to multi-stability, we obtained a conceptual model for capturing three distinct stable steady states (or attractors) corresponding to homeostasis, cell cycle arrest, and senescence or apoptosis. In addition, we applied a Monte Carlo computational method to quantify the potential landscape, which displays: I) one homeostasis attractor for low accumulation of DNA damage; II) two attractors for cell cycle arrest and senescence (or apoptosis) in response to high accumulation of DNA damage. Using the Waddington's epigenetic landscape framework, the process of ageing can be characterized by state transitions from landscape I to II. By in silico perturbations, we identified the potential landscape of a perturbed network (inactivation of p53), and thereby demonstrated the emergence of a cancer attractor. The simulated dynamics of the perturbed network displays a landscape with four basins of attraction: homeostasis, cell cycle arrest, senescence (or apoptosis) and cancer. Our analysis also showed that for the same perturbed network with low DNA damage, the landscape displays only the homeostasis attractor. The mechanistic model offers theoretical insights that can facilitate discovery of potential strategies for network medicine of ageing-related diseases such as cancer.

  8. Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises

    PubMed Central

    Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143

  9. Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.

    PubMed

    Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.

  10. Possible steps in the evolutionary development of bird navigation

    NASA Technical Reports Server (NTRS)

    Bellrose, F. C.

    1972-01-01

    Hypotheses are presented to explain the evolutionary development of navigational ability in migratory birds. Areas of discussion to describe the possible techniques are: (1) sun compass, (2) bicoordinate navigation, (3) star compass, (4) wind cues, (5) earth magnetic field, and (6) landscape features. It is concluded that landscape is the single most important cue for orientation of nonmigratory birds. The long range migratory birds appear to use a combination of cues with the relative importance of the cue dependent upon the species of the bird involved.

  11. Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011

    NASA Astrophysics Data System (ADS)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2017-12-01

    The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying yearly burned areas allowed to identify areas with high fire recurrence.

  12. Coevolutionary modeling of protein sequences: Predicting structure, function, and mutational landscapes

    NASA Astrophysics Data System (ADS)

    Weigt, Martin

    Over the last years, biological research has been revolutionized by experimental high-throughput techniques, in particular by next-generation sequencing technology. Unprecedented amounts of data are accumulating, and there is a growing request for computational methods unveiling the information hidden in raw data, thereby increasing our understanding of complex biological systems. Statistical-physics models based on the maximum-entropy principle have, in the last few years, played an important role in this context. To give a specific example, proteins and many non-coding RNA show a remarkable degree of structural and functional conservation in the course of evolution, despite a large variability in amino acid sequences. We have developed a statistical-mechanics inspired inference approach - called Direct-Coupling Analysis - to link this sequence variability (easy to observe in sequence alignments, which are available in public sequence databases) to bio-molecular structure and function. In my presentation I will show, how this methodology can be used (i) to infer contacts between residues and thus to guide tertiary and quaternary protein structure prediction and RNA structure prediction, (ii) to discriminate interacting from non-interacting protein families, and thus to infer conserved protein-protein interaction networks, and (iii) to reconstruct mutational landscapes and thus to predict the phenotypic effect of mutations. References [1] M. Figliuzzi, H. Jacquier, A. Schug, O. Tenaillon and M. Weigt ''Coevolutionary landscape inference and the context-dependence of mutations in beta-lactamase TEM-1'', Mol. Biol. Evol. (2015), doi: 10.1093/molbev/msv211 [2] E. De Leonardis, B. Lutz, S. Ratz, S. Cocco, R. Monasson, A. Schug, M. Weigt ''Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction'', Nucleic Acids Research (2015), doi: 10.1093/nar/gkv932 [3] F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. Marks, C. Sander, R. Zecchina, J.N. Onuchic, T. Hwa, M. Weigt, ''Direct-coupling analysis of residue co-evolution captures native contacts across many protein families'', Proc. Natl. Acad. Sci. 108, E1293-E1301 (2011).

  13. Comparative Rural Landscapes: A Conceptual Geographic Model.

    ERIC Educational Resources Information Center

    Steinbrink, John E.

    The geography unit is designed for use in upper elementary grades. The unit objective is to help the student learn facts about the landscapes of the United States, the Netherlands, Australia, Russia, and Central Africa, and acquire generic ideas which he can apply to the analysis and comparison of other landscapes. The unit is an attempt to apply…

  14. Editorial: What do we mean by "landscape"?

    Treesearch

    Paul H. Gobster; Wei-Ning Xiang

    2012-01-01

    As a prelude to revising the Aims and Scope of Landscape and Urban Planning (LAND), our last editorial discussed the journal’s "intellectual landscape" as revealed by an analysis of conceptual and proximal relationships between articles published in LAND and 50 other research journals. The six conceptual themes we identified--ecology, planning and management...

  15. Application of Hyperspectral Vegetation Indices to Detect Variations in High Leaf Area Index Temperate Shrub Thicket Canopies

    DTIC Science & Technology

    2011-01-01

    sensing an attractive technique for estimating LAI. Many vegetation indices, such as Normalized Difference Vegetation Index ( NDVI ), tend to saturate at...little or no improvement over NDVI . Furthermore, indirect ground-sampling techniques often used to evaluate the potential of vegetation indices also...landscapes makes remote sensing an attractive technique for estimating LAI. Many vegetation indices, such as Normalized Difference Vegetation Index ( NDVI

  16. Simulating forest landscape disturbances as coupled human and natural systems

    USGS Publications Warehouse

    Wimberly, Michael; Sohl, Terry L.; Liu, Zhihua; Lamsal, Aashis

    2015-01-01

    Anthropogenic disturbances resulting from human land use affect forest landscapes over a range of spatial and temporal scales, with diverse influences on vegetation patterns and dynamics. These processes fall within the scope of the coupled human and natural systems (CHANS) concept, which has emerged as an important framework for understanding the reciprocal interactions and feedbacks that connect human activities and ecosystem responses. Spatial simulation modeling of forest landscape change is an important technique for exploring the dynamics of CHANS over large areas and long time periods. Landscape models for simulating interactions between human activities and forest landscape dynamics can be grouped into two main categories. Forest landscape models (FLMs) focus on landscapes where forests are the dominant land cover and simulate succession and natural disturbances along with forest management activities. In contrast, land change models (LCMs) simulate mosaics of different land cover and land use classes that include forests in addition to other land uses such as developed areas and agricultural lands. There are also several examples of coupled models that combine elements of FLMs and LCMs. These integrated models are particularly useful for simulating human–natural interactions in landscapes where human settlement and agriculture are expanding into forested areas. Despite important differences in spatial scale and disciplinary scope, FLMs and LCMs have many commonalities in conceptual design and technical implementation that can facilitate continued integration. The ultimate goal will be to implement forest landscape disturbance modeling in a CHANS framework that recognizes the contextual effects of regional land use and other human activities on the forest ecosystem while capturing the reciprocal influences of forests and their disturbances on the broader land use mosaic.

  17. A consistent positive association between landscape simplification and insecticide use across the Midwestern US from 1997 through 2012

    DOE PAGES

    Meehan, Timothy D.; Gratton, Claudio

    2015-10-27

    During 2007, counties across the Midwestern US with relatively high levels of landscape simplification (i.e., widespread replacement of seminatural habitats with cultivated crops) had relatively high crop-pest abundances which, in turn, were associated with relatively high insecticide application. These results suggested a positive relationship between landscape simplification and insecticide use, mediated by landscape effects on crop pests or their natural enemies. A follow-up study, in the same region but using different statistical methods, explored the relationship between landscape simplification and insecticide use between 1987 and 2007, and concluded that the relationship varied substantially in sign and strength across years. Here,more » we explore this relationship from 1997 through 2012, using a single dataset and two different analytical approaches. We demonstrate that, when using ordinary least squares (OLS) regression, the relationship between landscape simplification and insecticide use is, indeed, quite variable over time. However, the residuals from OLS models show strong spatial autocorrelation, indicating spatial structure in the data not accounted for by explanatory variables, and violating a standard assumption of OLS. When modeled using spatial regression techniques, relationships between landscape simplification and insecticide use were consistently positive between 1997 and 2012, and model fits were dramatically improved. We argue that spatial regression methods are more appropriate for these data, and conclude that there remains compelling correlative support for a link between landscape simplification and insecticide use in the Midwestern US. We discuss the limitations of inference from this and related studies, and suggest improved data collection campaigns for better understanding links between landscape structure, crop-pest pressure, and pest-management practices.« less

  18. A consistent positive association between landscape simplification and insecticide use across the Midwestern US from 1997 through 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehan, Timothy D.; Gratton, Claudio

    During 2007, counties across the Midwestern US with relatively high levels of landscape simplification (i.e., widespread replacement of seminatural habitats with cultivated crops) had relatively high crop-pest abundances which, in turn, were associated with relatively high insecticide application. These results suggested a positive relationship between landscape simplification and insecticide use, mediated by landscape effects on crop pests or their natural enemies. A follow-up study, in the same region but using different statistical methods, explored the relationship between landscape simplification and insecticide use between 1987 and 2007, and concluded that the relationship varied substantially in sign and strength across years. Here,more » we explore this relationship from 1997 through 2012, using a single dataset and two different analytical approaches. We demonstrate that, when using ordinary least squares (OLS) regression, the relationship between landscape simplification and insecticide use is, indeed, quite variable over time. However, the residuals from OLS models show strong spatial autocorrelation, indicating spatial structure in the data not accounted for by explanatory variables, and violating a standard assumption of OLS. When modeled using spatial regression techniques, relationships between landscape simplification and insecticide use were consistently positive between 1997 and 2012, and model fits were dramatically improved. We argue that spatial regression methods are more appropriate for these data, and conclude that there remains compelling correlative support for a link between landscape simplification and insecticide use in the Midwestern US. We discuss the limitations of inference from this and related studies, and suggest improved data collection campaigns for better understanding links between landscape structure, crop-pest pressure, and pest-management practices.« less

  19. The uses of ERTS-I imagery in the analysis of landscape change

    NASA Technical Reports Server (NTRS)

    Rehder, J. B.

    1974-01-01

    Analysis of ERTS-I imagery to delimit, map, and monitor photomorphic regions of landscape dynamics is illustrated. Satellite observations were made over strip mining areas on the Cumberland Plateau of Tennessee; agricultural regions in Tennessee, Kentucky, and portions of northern Alabama and Mississippi; urban-suburban growth areas in Knoxville; and flooded areas within the Mississippi River floodplain. Production and analysis of maps of these areas made from ERTS imagery and RB-57 high altitude aircraft imagery are described and compared. The difficulties encountered in analyzing landscape change in or near urban areas are enumerated (small area size, extreme density of settlement, high reflectance characteristics), and the significance of the results of this investigation is noted.

  20. Geographic applications of ERTS-1 imagery to landscape change. [Mississippi River and Great Smoky Mountains of Tennessee and North Carolina

    NASA Technical Reports Server (NTRS)

    Rehder, J. B. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 has proven to be an effective earth-orbiting monitor of landscape change. Its regional coverage for large areal monitoring has been effective for the detection and mapping of agricultural plowing regions, for general forest cover mapping, for flood mapping, for strip mine mapping, and for short-lived precipitation mapping patterns. Paramount to the entire study has been the temporal coverage provided by ERTS. Without the cyclic coverage on an 18 day basis, temporal coverage would have been inadequate for the detection and mapping of strip mining landscape change, the analysis of agricultural landscape change based on plowing patterns, the analysis of urban-suburban growth changes, and the mapping of the Mississippi River floods. Cost benefits from ERTS are unquestionably superior to aircraft systems in regard to large regional coverage and cyclic temporal parameters. For the analysis of landscape change in large regions such as statewide areas or even areas of 10,000 square miles, ERTS is of cost benefit consideration. Not only does the cost of imagery favor ERTS but the reduction of man-hours using ERTS has been in the magnitude of 1:10.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wales, D. J., E-mail: dw34@cam.ac.uk

    This perspective focuses on conceptual and computational aspects of the potential energy landscape framework. It has two objectives: first to summarise some key developments of the approach and second to illustrate how such techniques can be applied using a specific example that exploits knowledge of pathways. Recent developments in theory and simulation within the landscape framework are first outlined, including methods for structure prediction, analysis of global thermodynamic properties, and treatment of rare event dynamics. We then develop a connection between the kinetic transition network treatment of dynamics and a potential of mean force defined by a reaction coordinate. Themore » effect of projection from the full configuration space to low dimensionality is illustrated for an atomic cluster. In this example, where a relatively successful structural order parameter is available, the principal change in cluster morphology is reproduced, but some details are not faithfully represented. In contrast, a profile based on configurations that correspond to the discrete path defined geometrically retains all the barriers and minima. This comparison provides insight into the physical origins of “friction” effects in low-dimensionality descriptions of dynamics based upon a reaction coordinate.« less

  2. Cost-effectiveness landscape analysis of treatments addressing xerostomia in patients receiving head and neck radiation therapy

    PubMed Central

    Sasportas, Laura S.; Hosford, Andrew T.; Sodini, Maria A.; Waters, Dale J.; Zambricki, Elizabeth A.; Barral, Joëlle K.; Graves, Edward E.; Brinton, Todd J.; Yock, Paul G.; Le, Quynh-Thu; Sirjani, Davud

    2014-01-01

    Head and neck (H&N) radiation therapy (RT) can induce irreversible damage to the salivary glands thereby causing long-term xerostomia or dry mouth in 68%–85% of the patients. Not only does xerostomia significantly impair patients’ quality-of-life (QOL) but it also has important medical sequelae, incurring high medical and dental costs. In this article, we review various measures to assess xerostomia and evaluate current and emerging solutions to address this condition in H&N cancer patients. These solutions typically seek to accomplish 1 of the 4 objectives: (1) to protect the salivary glands during RT, (2) to stimulate the remaining gland function, (3) to treat the symptoms of xerostomia, or (4) to regenerate the salivary glands. For each treatment, we assess its mechanisms of action, efficacy, safety, clinical utilization, and cost. We conclude that intensity-modulated radiation therapy is both the most widely used prevention approach and the most cost-effective existing solution and we highlight novel and promising techniques on the cost-effectiveness landscape. PMID:23643579

  3. Assessment of Acacia Koa Forest Health across Environmental Gradients in Hawai‘i Using Fine Resolution Remote Sensing and GIS

    PubMed Central

    Morales, Rodolfo Martinez; Idol, Travis; Friday, James B.

    2011-01-01

    Koa (Acacia koa) forests are found across broad environmental gradients in the Hawai‘ian Islands. Previous studies have identified koa forest health problems and dieback at the plot level, but landscape level patterns remain unstudied. The availability of high-resolution satellite images from the new GeoEye1 satellite offers the opportunity to conduct landscape-level assessments of forest health. The goal of this study was to develop integrated remote sensing and geographic information systems (GIS) methodologies to characterize the health of koa forests and model the spatial distribution and variability of koa forest dieback patterns across an elevation range of 600–1,000 m asl in the island of Kaua‘i, which correspond to gradients of temperature and rainfall ranging from 17–20 °C mean annual temperature and 750–1,500 mm mean annual precipitation. GeoEye1 satellite imagery of koa stands was analyzed using supervised classification techniques based on the analysis of 0.5-m pixel multispectral bands. There was clear differentiation of native koa forest from areas dominated by introduced tree species and differentiation of healthy koa stands from those exhibiting dieback symptoms. The area ratio of healthy koa to koa dieback corresponded linearly to changes in temperature across the environmental gradient, with koa dieback at higher relative abundance in warmer areas. A landscape-scale map of healthy koa forest and dieback distribution demonstrated both the general trend with elevation and the small-scale heterogeneity that exists within particular elevations. The application of these classification techniques with fine spatial resolution imagery can improve the accuracy of koa forest inventory and mapping across the islands of Hawai‘i. Such findings should also improve ecological restoration, conservation and silviculture of this important native tree species. PMID:22163920

  4. A landscape analysis plan

    Treesearch

    Nancy E. Fleenor

    2002-01-01

    A Landscape Analysis Plan (LAP) sets out broad guidelines for project development within boundaries of the Kings River Sustainable Forest Ecosystems Project. The plan must be a dynamic, living document, subject to change as new information arises over the course of this very long-term project (several decades). Two watersheds, each of 32,000 acres, were dedicated to...

  5. Comments on historical variation & desired condition as tools for terrestrial landscape analysis

    Treesearch

    Constance I. Millar

    1997-01-01

    Historic (natural or reference) variability and desired condition are key ecosystem-management concepts advocated in many approaches to terrestrial landscape analysis. Historical variation is considered to be a conservative indicator of sustainability. If current conditions are outside the range of historic values, management actions are described to realign the system...

  6. Inventory-based landscape-scale simulation of management effectiveness and economic feasibility with BioSum

    Treesearch

    Jeremy S. Fried; Larry D. Potts; Sara M. Loreno; Glenn A. Christensen; R. Jamie Barbour

    2017-01-01

    The Forest Inventory and Analysis (FIA)-based BioSum (Bioregional Inventory Originated Simulation Under Management) is a free policy analysis framework and workflow management software solution. It addresses complex management questions concerning forest health and vulnerability for large, multimillion acre, multiowner landscapes using FIA plot data as the initial...

  7. Landscape analysis software tools

    Treesearch

    Don Vandendriesche

    2008-01-01

    Recently, several new computer programs have been developed to assist in landscape analysis. The “Sequential Processing Routine for Arraying Yields” (SPRAY) program was designed to run a group of stands with particular treatment activities to produce vegetation yield profiles for forest planning. SPRAY uses existing Forest Vegetation Simulator (FVS) software coupled...

  8. Concept Landscapes: Aggregating Concept Maps for Analysis

    ERIC Educational Resources Information Center

    Mühling, Andreas

    2017-01-01

    This article presents "concept landscapes"--a novel way of investigating the state and development of knowledge structures in groups of persons using concept maps. Instead of focusing on the assessment and evaluation of single maps, the data of many persons is aggregated and data mining approaches are used in analysis. New insights into…

  9. A global meta-analysis on the ecological drivers of forest restoration success

    PubMed Central

    Crouzeilles, Renato; Curran, Michael; Ferreira, Mariana S.; Lindenmayer, David B.; Grelle, Carlos E. V.; Rey Benayas, José M.

    2016-01-01

    Two billion ha have been identified globally for forest restoration. Our meta-analysis encompassing 221 study landscapes worldwide reveals forest restoration enhances biodiversity by 15–84% and vegetation structure by 36–77%, compared with degraded ecosystems. For the first time, we identify the main ecological drivers of forest restoration success (defined as a return to a reference condition, that is, old-growth forest) at both the local and landscape scale. These are as follows: the time elapsed since restoration began, disturbance type and landscape context. The time elapsed since restoration began strongly drives restoration success in secondary forests, but not in selectively logged forests (which are more ecologically similar to reference systems). Landscape restoration will be most successful when previous disturbance is less intensive and habitat is less fragmented in the landscape. Restoration does not result in full recovery of biodiversity and vegetation structure, but can complement old-growth forests if there is sufficient time for ecological succession. PMID:27193756

  10. Experimental evidence of reorganizing landscape under changing climatic forcing

    NASA Astrophysics Data System (ADS)

    Singh, A.; Tejedor, A.; Zaliapin, I. V.; Reinhardt, L.; Foufoula-Georgiou, E.

    2015-12-01

    Quantification of the dynamics of landscape reorganization under changing climatic forcing is important to understand geomorphic transport laws under transient conditions, assess response of landscapes to external perturbations for future predictive modeling, and for interpreting past climate from stratigraphic record. For such an analysis, however, real landscape observations are limited. To this end, a series of controlled laboratory experiments on evolving landscape were conducted at the St. Anthony Falls laboratory at the University of Minnesota. High resolution elevation data at a temporal resolution of 5 mins and spatial resolution of 0.5 mm were collected as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5 times precipitation rate). Our results reveal rapid topographic re-organization under a five-fold increase in precipitation with the fluvial regime encroaching into the previously debris dominated regime, widening and aggradation of channels and valleys, and accelerated erosion happening at hillslope scales. To better understand the initiation of the observed reorganization, we perform a connectivity and clustering analysis of the erosional and depositional events, showing strikingly different spatial patterns on landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is renormalized to match the total volume of eroded and deposited sediment in TS. Our results suggest a regime shift in the behavior of transport processes on the landscape at the intermediate scales i.e., from supply-limited to transport-limited.

  11. A landscape ecology approach to assessing development impacts in the tropics: A geothermal energy example in Hawaii

    USGS Publications Warehouse

    Griffith, J.A.; Trettin, C.C.; O'Neill, R. V.

    2002-01-01

    Geographic information systems (GIS) are increasingly being used in environmental impact assessments (EIA) because GIS is useful for analysing spatial impacts of various development scenarios. Spatially representing these impacts provides another tool for landscape ecology in environmental and geographical investigations by facilitating analysis of the effects of landscape patterns on ecological processes and examining change over time. Landscape ecological principles are applied in this study to a hypothetical geothermal development project on the Island of Hawaii. Some common landscape pattern metrics were used to analyse dispersed versus condensed development scenarios and their effect on landscape pattern. Indices of fragmentation and patch shape did not appreciably change with additional development. The amount of forest to open edge, however, greatly increased with the dispersed development scenario. In addition, landscape metrics showed that a human disturbance had a greater simplifying effect on patch shape and also increased fragmentation than a natural disturbance. The use of these landscape pattern metrics can advance the methodology of applying GIS to EIA.

  12. Evolution, Energy Landscapes and the Paradoxes of Protein Folding

    PubMed Central

    Wolynes, Peter G.

    2014-01-01

    Protein folding has been viewed as a difficult problem of molecular self-organization. The search problem involved in folding however has been simplified through the evolution of folding energy landscapes that are funneled. The funnel hypothesis can be quantified using energy landscape theory based on the minimal frustration principle. Strong quantitative predictions that follow from energy landscape theory have been widely confirmed both through laboratory folding experiments and from detailed simulations. Energy landscape ideas also have allowed successful protein structure prediction algorithms to be developed. The selection constraint of having funneled folding landscapes has left its imprint on the sequences of existing protein structural families. Quantitative analysis of co-evolution patterns allows us to infer the statistical characteristics of the folding landscape. These turn out to be consistent with what has been obtained from laboratory physicochemical folding experiments signalling a beautiful confluence of genomics and chemical physics. PMID:25530262

  13. Extinction risk in successional landscapes subject to catastrophic disturbances.

    Treesearch

    David Boughton; Urmila Malvadkar

    2002-01-01

    We explore the thesis that stochasticity in successional-disturbance systems can be an agent of species extinction. The analysis uses a simple model of patch dynamics for seral stages in an idealized landscape; each seral stage is assumed to support a specialist biota. The landscape as a whole is characterized by a mean patch birth rate, mean patch size, and mean...

  14. Distribution of salmon-habitat potential relative to landscape characteristics and implications for conservation.

    Treesearch

    K.M. Burnett; G.H. Reeves; D.J. Miller; S. Clarke; K. Vance-Borland; K. Christiansen

    2007-01-01

    The geographic distribution of stream reaches with potential to support high-quality habitat for salmonids has bearing on the actual status of habitats and populations over broad spatial extents. As part of the Coastal Landscape Analysis and Modeling Study, we examined how salmon-habitat potential was distributed relative to current and future (+100 years) landscape...

  15. Pixel by pixel: the evolving landscapes of remote sensing.

    Treesearch

    Sally Duncan

    1999-01-01

    This issue of "Science Findings" focuses on remote sensing research and how it can be used to assess a landscape. The work of PNW Research Station scientists Tom Spies and Warren Cohen and their use of satellite technology in developing the coastal landscape analysis and modeling study (CLAMS) is featured. The CLAMS study area includes more than 5 million...

  16. Integrating natural disturbances and management activities to examine risks and opportunities in the central Oregon landscape analysis

    Treesearch

    Miles A. Hemstrom; James Merzenich; Theresa Burcsu; Janet Ohmann; Ryan Singleton

    2010-01-01

    We used state and transition models to integrate natural disturbances and management activities for a 275 000-ha landscape in the central Oregon Cascades. The landscape consists of a diverse mix of land ownerships, land use allocations, and environments. Three different management scenarios were developed from public input: (1) no management except wildfire suppression...

  17. Vegetation fire proneness in Europe

    NASA Astrophysics Data System (ADS)

    Pereira, Mário; Aranha, José; Amraoui, Malik

    2015-04-01

    Fire selectivity has been studied for vegetation classes in terms of fire frequency and fire size in a few European regions. This analysis is often performed along with other landscape variables such as topography, distance to roads and towns. These studies aims to assess the landscape sensitivity to forest fires in peri-urban areas and land cover changes, to define landscape management guidelines and policies based on the relationships between landscape and fires in the Mediterranean region. Therefore, the objectives of this study includes the: (i) analysis of the spatial and temporal variability statistics within Europe; and, (ii) the identification and characterization of the vegetated land cover classes affected by fires; and, (iii) to propose a fire proneness index. The datasets used in the present study comprises: Corine Land Cover (CLC) maps for 2000 and 2006 (CLC2000, CLC2006) and burned area (BA) perimeters, from 2000 to 2013 in Europe, provided by the European Forest Fire Information System (EFFIS). The CLC is a part of the European Commission programme to COoRdinate INformation on the Environment (Corine) and it provides consistent, reliable and comparable information on land cover across Europe. Both the CLC and EFFIS datasets were combined using geostatistics and Geographical Information System (GIS) techniques to access the spatial and temporal evolution of the types of shrubs and forest affected by fires. Obtained results confirms the usefulness and efficiency of the land cover classification scheme and fire proneness index which allows to quantify and to compare the propensity of vegetation classes and countries to fire. As expected, differences between northern and southern Europe are notorious in what concern to land cover distribution, fire incidence and fire proneness of vegetation cover classes. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by the project SUSTAINSYS: Environmental Sustainable Agro-Forestry Systems (NORTE-07-0124-FEDER-000044), financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), as well as by National Funds (PIDDAC) through the Portuguese Foundation for Science and Technology (FCT/MEC).

  18. Multi-sensory landscape assessment: the contribution of acoustic perception to landscape evaluation.

    PubMed

    Gan, Yonghong; Luo, Tao; Breitung, Werner; Kang, Jian; Zhang, Tianhai

    2014-12-01

    In this paper, the contribution of visual and acoustic preference to multi-sensory landscape evaluation was quantitatively compared. The real landscapes were treated as dual-sensory ambiance and separated into visual landscape and soundscape. Both were evaluated by 63 respondents in laboratory conditions. The analysis of the relationship between respondent's visual and acoustic preference as well as their respective contribution to landscape preference showed that (1) some common attributes are universally identified in assessing visual, aural and audio-visual preference, such as naturalness or degree of human disturbance; (2) with acoustic and visual preferences as variables, a multi-variate linear regression model can satisfactorily predict landscape preference (R(2 )= 0.740), while the coefficients of determination for a unitary linear regression model were 0.345 and 0.720 for visual and acoustic preference as predicting factors, respectively; (3) acoustic preference played a much more important role in landscape evaluation than visual preference in this study (the former is about 4.5 times of the latter), which strongly suggests a rethinking of the role of soundscape in environment perception research and landscape planning practice.

  19. Landscape ecological security response to land use change in the tidal flat reclamation zone, China.

    PubMed

    Zhang, Runsen; Pu, Lijie; Li, Jianguo; Zhang, Jing; Xu, Yan

    2016-01-01

    As coastal development becomes a national strategy in Eastern China, land use and landscape patterns have been affected by reclamation projects. In this study, taking Rudong County, China as a typical area, we analyzed land use change and its landscape ecological security responses in the tidal flat reclamation zone. The results show that land use change in the tidal flat reclamation zone is characterized by the replacement of natural tidal flat with agricultural and construction land, which has also led to a big change in landscape patterns. We built a landscape ecological security evaluation system, which consists of landscape interference degree and landscape fragile degree, and then calculated the landscape ecological security change in the tidal flat reclamation zone from 1990 to 2008 to depict the life cycle in tidal flat reclamation. Landscape ecological security exhibited a W-shaped periodicity, including the juvenile stage, growth stage, and maturation stage. Life-cycle analysis demonstrates that 37 years is required for the land use system to transform from a natural ecosystem to an artificial ecosystem in the tidal flat reclamation zone.

  20. Estimating abundance of Sitka black-tailed deer using DNA from fecal pellets

    Treesearch

    Todd J. Brinkman; David K. Person; F. Stuart Chapin; Winston Smith; Kris J. Hundertmark

    2011-01-01

    Densely vegetated environments have hindered collection of basic population parameters on forest-dwelling ungulates. Our objective was to develop a mark-recapture technique that used DNA from fecal pellets to overcome constraints associated with estimating abundance of ungulates in landscapes where direct observation is difficult. We tested our technique on Sitka black...

  1. All in the Training: Techniques for Enhancing Karst Landscape Education through Show Cave Interpretation

    ERIC Educational Resources Information Center

    North, Leslie; van Beynen, Philip

    2016-01-01

    Despite the abundance of karst terrains and a universal lack of knowledge about the role they play in supplying freshwater resources, informal environmental education through guided show cave tours is poorly understood. This study evaluated techniques for educating cave guides on how to disseminate information about human-karst interactions to…

  2. Application of electroencephalographic techniques to the study of visual impact of renewable energies.

    PubMed

    Grima Murcia, M D; Sánchez Ferrer, Francisco; Sorinas, Jennifer; Ferrandez, J M; Fernandez, Eduardo

    2017-09-15

    Much is currently being studied on the negative visual impact associated to the installation of large wind turbines or photovoltaic farms. However, methodologies for quantitatively assessing landscape impact are scarce. In this work we used electroencephalographic (EEG) recordings to investigate the brain activity of 14 human volunteers when looking at the same landscapes with and without wind turbines, solar panels and nuclear power plants. Our results showed no significant differences for landscapes with solar power systems or without them, and the same happened for wind turbines, what was in agreement with their subjective scores. However, there were clear and significant differences when looking at landscapes with and without nuclear power plants. These differences were more pronounced around a time window of 376-407 msec and showed a clear right lateralization for the pictures containing nuclear power plants. Although more studies are still needed, these results suggest that EEG recordings can be a useful procedure for measuring visual impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Probing the Conformational Landscape of Polyether Building Blocks in Supersonic Jets

    NASA Astrophysics Data System (ADS)

    Bocklitz, Sebastian; Hewett, Daniel M.; Zwier, Timothy S.; Suhm, Martin A.

    2016-06-01

    Polyethylene oxides (Polyethylene glycoles) and their phenoxy-capped analogs represent a prominent class of important polymers that are highly used as precursor molecules in supramolecular reactions. After a detailed study on the simplest representative (1,2-dimethoxyethane) [1], we present results on oligoethylene oxides with increasing chain lengths obtained by spontaneous Raman scattering in a supersonic jet. Through variation of stagnation pressure, carrier gas, nozzle distance and temperature we gain information on the conformational landscape as well as the mutual interconversion of low energy conformers. The obtained results are compared to state-of-the-art quantum chemical calculations. Additionally, we present UV as well as IR-UV and UV-UV double resonance studies on 1-methoxy-2-phenoxyethane in a supersonic jet. These complementary techniques allow for conformationally selective electronic and vibrational spectra in a closely related conformational landscape. [1] S. Bocklitz, M. A. Suhm, Constraining the Conformational Landscape of a Polyether Building Block by Raman Jet Spectroscopy, Z. Phys. Chem. 2015, 229, 1625-1648.

  4. Landscape functionality of plant communities in the Impala Platinum mining area, Rustenburg.

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Tongway, D; van Rensburg, L

    2012-12-30

    The tremendous growth of the platinum mining industry in South Africa has affected the natural environment adversely. The waste produced by platinum mineral processing is alkaline, biologically sterile and has a low water-holding capacity. These properties in the environment may constitute dysfunctional areas that will create 'leaky' and dysfunctional landscapes, limiting biological development. Landscape Function Analysis (LFA) is a monitoring procedure that assesses the degradation of landscapes, as brought about by human, animal and natural activities, through rapidly assessing certain soil surface indicators which indicate the biophysical functionality of the system. The "Trigger-Transfer-Reserve-Pulse" (TTRP) conceptual framework forms the foundation for assessing landscape function when using LFA. The two main aspects of this framework are the loss of resources from the system and the utilisation of resources by the system. After a survey of landscape heterogeneity to reflect the spatial organisation of the landscape, soil surface indicators are assessed within different patch types (identifiable units that retains resources that pass through the system) and interpatches (units between patches where vital resources are not retained, but lost) to assess the capacity of patches with various physical properties in regulating the effectiveness of resource control in the landscape. Indices describing landscape organisation are computed by a spreadsheet analysis, as well as soil surface quality indices. When assembled in different combinations, three indices emerge that reflect soil productive potential, namely: the (1) surface stability, (2) infiltration capacity, and (3) the nutrient cycling potential of the landscape. In this study we compared the landscape functionality of natural thornveld areas, rehabilitated opencast mines and rehabilitated slopes of tailings dams in the area leased for mining in the Rustenburg area. Our results show that the rehabilitated areas had a higher total SSA functionality due to higher infiltration and nutrient cycling indices than the natural thornveld landscapes. The length of interpatches and the width of patches greatly influenced the landscape function of the studied areas. The natural thornveld areas had a marginally higher total patch area than the rehabilitated areas. Vegetated patches (grass-, sparse grass-, grassy forb-, and grassy shrub-patches) generally scored the highest functionality indices, whilst bare soil interpatches contributed to the landscape functionality of the various plant communities the least. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Landscape ecological security assessment based on projection pursuit in Pearl River Delta.

    PubMed

    Gao, Yang; Wu, Zhifeng; Lou, Quansheng; Huang, Huamei; Cheng, Jiong; Chen, Zhangli

    2012-04-01

    Regional landscape ecological security is an important issue for ecological security, and has a great influence on national security and social sustainable development. The Pearl River Delta (PRD) in southern China has experienced rapid economic development and intensive human activities in recent years. This study, based on landscape analysis, provides a method to discover the alteration of character among different landscape types and to understand the landscape ecological security status. Based on remotely sensed products of the Landsat 5 TM images in 1990 and the Landsat 7 ETM+ images in 2005, landscape classification maps of nine cities in the PRD were compiled by implementing Remote Sensing and Geographic Information System technology. Several indices, including aggregation, crush index, landscape shape index, Shannon's diversity index, landscape fragile index, and landscape security adjacent index, were applied to analyze spatial-temporal characteristics of landscape patterns in the PRD. A landscape ecological security index based on these outcomes was calculated by projection pursuit using genetic algorithm. The landscape ecological security of nine cities in the PRD was thus evaluated. The main results of this research are listed as follows: (1) from 1990 to 2005, the aggregation index, crush index, landscape shape index, and Shannon's diversity index of nine cities changed little in the PRD, while the landscape fragile index and landscape security adjacent index changed obviously. The landscape fragile index of nine cities showed a decreasing trend; however, the landscape security adjacent index has been increasing; (2) from 1990 to 2005, landscape ecology of the cities of Zhuhai and Huizhou maintained a good security situation. However, there was a relatively low value of ecological security in the cities of Dongguan and Foshan. Except for Foshan and Guangzhou, whose landscape ecological security situation were slightly improved, the cities had reduced values in landscape ecological security, with the most decreased number 0.52 in Zhaoqing. Results of this study offer important information for regional eco-construction and natural resource exploitation.

  6. CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics

    USGS Publications Warehouse

    Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.

    2016-01-01

    1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.

  7. Impact of scale on morphological spatial pattern of forest

    Treesearch

    Katarzyna Ostapowicz; Peter Vogt; Kurt H. Riitters; Jacek Kozak; Christine Estreguil

    2008-01-01

    Assessing and monitoring landscape pattern structure from multi-scale land-cover maps can utilize morphological spatial pattern analysis (MSPA), only if various influences of scale are known and taken into account. This paper lays part of the foundation for applying MSPA analysis in landscape monitoring by quantifying scale effects on six classes of spatial patterns...

  8. In silico modelling of directed evolution: Implications for experimental design and stepwise evolution.

    PubMed

    Wedge, David C; Rowe, William; Kell, Douglas B; Knowles, Joshua

    2009-03-07

    We model the process of directed evolution (DE) in silico using genetic algorithms. Making use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover and selection pressure on the performance of DE. A range of values of K, the epistatic interaction of the landscape, are considered, and high- and low-throughput modes of evolution are compared. Our findings suggest that for runs of or around ten generations' duration-as is typical in DE-there is little difference between the way in which DE needs to be configured in the high- and low-throughput regimes, nor across different degrees of landscape epistasis. In all cases, a high selection pressure (but not an extreme one) combined with a moderately high mutation rate works best, while crossover provides some benefit but only on the less rugged landscapes. These genetic algorithms were also compared with a "model-based approach" from the literature, which uses sequential fixing of the problem parameters based on fitting a linear model. Overall, we find that purely evolutionary techniques fare better than do model-based approaches across all but the smoothest landscapes.

  9. Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling

    USGS Publications Warehouse

    Van Linn, Peter F.; Nussear, Kenneth E.; Esque, Todd C.; DeFalco, Lesley A.; Inman, Richard D.; Abella, Scott R.

    2013-01-01

    Predicting wildfires that affect broad landscapes is important for allocating suppression resources and guiding land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk (interactions of fuel characteristics and environmental conditions conducive to wildfire) using satellite imagery, our model of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.

  10. Implementing landscape fragmentation as an indicator in the Swiss Monitoring System Of Sustainable Development (Monet).

    PubMed

    Jaeger, Jochen A G; Bertiller, René; Schwick, Christian; Müller, Kalin; Steinmeier, Charlotte; Ewald, Klaus C; Ghazoul, Jaboury

    2008-09-01

    There is an increasing need and interest in including indicators of landscape fragmentation in monitoring systems of sustainable landscape management. Landscape fragmentation due to transportation infrastructure and urban development threatens human and environmental well-being by noise and pollution from traffic, reducing the size and viability of wildlife populations, facilitating the spread of invasive species, and impairing the scenic and recreational qualities of the landscape. This paper provides the rationale, method, and data for including landscape fragmentation in monitoring systems, using as an example the Swiss Monitoring System of Sustainable Development (Monet). We defined and compared four levels of fragmentation analysis, or fragmentation geometries (FGs), each based on different fragmenting elements, e.g., only anthropogenic, or combinations of anthropogenic and natural elements. As each FG has specific strengths and weaknesses, the most appropriate choice of FG depends on the context and objectives of a study. We present data on the current degree of landscape fragmentation for the five ecoregions and 26 cantons in Switzerland for all four FGs. Our results show that the degree of landscape fragmentation as quantified by the effective mesh size method is strongly supported by the postulates and indicator selection criteria of Monet, and we identify the most suitable FG focusing on the land area below 2,100 m (e.g., excluding lakes) and allowing for an equitable comparison of fragmentation degrees among regions that differ in area covered by lakes and high mountains. For a more detailed analysis of landscape fragmentation in the context of environmental impact assessments and strategic environmental assessments, a combination of all four FGs may provide a more informative tool than any single FG.

  11. Analysis of Patent Databases Using VxInsight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYACK,KEVIN W.; WYLIE,BRIAN N.; DAVIDSON,GEORGE S.

    2000-12-12

    We present the application of a new knowledge visualization tool, VxInsight, to the mapping and analysis of patent databases. Patent data are mined and placed in a database, relationships between the patents are identified, primarily using the citation and classification structures, then the patents are clustered using a proprietary force-directed placement algorithm. Related patents cluster together to produce a 3-D landscape view of the tens of thousands of patents. The user can navigate the landscape by zooming into or out of regions of interest. Querying the underlying database places a colored marker on each patent matching the query. Automatically generatedmore » labels, showing landscape content, update continually upon zooming. Optionally, citation links between patents may be shown on the landscape. The combination of these features enables powerful analyses of patent databases.« less

  12. Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds.

    PubMed

    Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Faria, Deborah

    2016-01-01

    Biodiversity maintenance in human-altered landscapes (HALs) depends on the species turnover among localities, but the patterns and determinants of β-diversity in HALs are poorly known. In fact, declines, increases and neutral shifts in β-diversity have all been documented, depending on the landscape, ecological group and spatial scale of analysis. We shed some light on this controversy by assessing the patterns and predictors of bird β-diversity across multiple spatial scales considering forest specialist and habitat generalist bird assemblages. We surveyed birds from 144 point counts in 36 different forest sites across two landscapes with different amount of forest cover in the Brazilian Atlantic forest. We analysed β-diversity among points, among sites and between landscapes with multiplicative diversity partitioning of Hill numbers. We tested whether β-diversity among points was related to within-site variations in vegetation structure, and whether β-diversity among sites was related to site location and/or to differences among sites in vegetation structure and landscape composition (i.e. per cent forest and pasture cover surrounding each site). β-diversity between landscapes was lower than among sites and among points in both bird assemblages. In forest specialist birds, the landscape with less forest cover showed the highest β-diversity among sites (bird differentiation among sites), but generalist birds showed the opposite pattern. At the local scale, however, the less forested landscape showed the lowest β-diversity among points (bird homogenization within sites), independently of the bird assemblage. β-diversity among points was weakly related to vegetation structure, but higher β-diversity values were recorded among sites that were more isolated from each other, and among sites with higher differences in landscape composition, particularly in the less forested landscape. Our findings indicate that patterns of bird β-diversity vary across scales and are strongly related to landscape composition. Bird assemblages are shaped by both environmental filtering and dispersal limitation, particularly in less forested landscapes. Conservation and management strategies should therefore prevent deforestation in this biodiversity hotspot. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  13. Appendix E: Research papers. Use of remote sensing in landscape stratification for environmental impact assessment

    NASA Technical Reports Server (NTRS)

    Stanturf, J. A.; Heimbuch, D. G.

    1980-01-01

    A refinement to the matrix approach to environmental impact assessment is to use landscape units in place of separate environmental elements in the analysis. Landscape units can be delineated by integrating remotely sensed data and available single-factor data. A remote sensing approach to landscape stratification is described and the conditions under which it is superior to other approaches that require single-factor maps are indicated. Flowcharts show the steps necessary to develop classification criteria, delineate units and a map legend, and use the landscape units in impact assessment. Application of the approach to assessing impacts of a transmission line in Montana is presented to illustrate the method.

  14. Connectivity modeling and graph theory analysis predict recolonization in transient populations

    NASA Astrophysics Data System (ADS)

    Rognstad, Rhiannon L.; Wethey, David S.; Oliver, Hilde; Hilbish, Thomas J.

    2018-07-01

    Population connectivity plays a major role in the ecology and evolution of marine organisms. In these systems, connectivity of many species occurs primarily during a larval stage, when larvae are frequently too small and numerous to track directly. To indirectly estimate larval dispersal, ocean circulation models have emerged as a popular technique. Here we use regional ocean circulation models to estimate dispersal of the intertidal barnacle Semibalanus balanoides at its local distribution limit in Southwest England. We incorporate historical and recent repatriation events to provide support for our modeled dispersal estimates, which predict a recolonization rate similar to that observed in two recolonization events. Using graph theory techniques to describe the dispersal landscape, we identify likely physical barriers to dispersal in the region. Our results demonstrate the use of recolonization data to support dispersal models and how these models can be used to describe population connectivity.

  15. Multi-Resolution Analysis of LiDAR data for Characterizing a Stabilized Aeolian Landscape in South Texas

    NASA Astrophysics Data System (ADS)

    Barrineau, C. P.; Dobreva, I. D.; Bishop, M. P.; Houser, C.

    2014-12-01

    Aeolian systems are ideal natural laboratories for examining self-organization in patterned landscapes, as certain wind regimes generate certain morphologies. Topographic information and scale dependent analysis offer the opportunity to study such systems and characterize process-form relationships. A statistically based methodology for differentiating aeolian features would enable the quantitative association of certain surface characteristics with certain morphodynamic regimes. We conducted a multi-resolution analysis of LiDAR elevation data to assess scale-dependent morphometric variations in an aeolian landscape in South Texas. For each pixel, mean elevation values are calculated along concentric circles moving outward at 100-meter intervals (i.e. 500 m, 600 m, 700 m from pixel). The calculated average elevation values plotted against distance from the pixel of interest as curves are used to differentiate multi-scalar variations in elevation across the landscape. In this case, it is hypothesized these curves may be used to quantitatively differentiate certain morphometries from others like a spectral signature may be used to classify paved surfaces from natural vegetation, for example. After generating multi-resolution curves for all the pixels in a selected area of interest (AOI), a Principal Components Analysis is used to highlight commonalities and singularities between generated curves from pixels across the AOI. Our findings suggest that the resulting components could be used for identification of discrete aeolian features like open sands, trailing ridges and active dune crests, and, in particular, zones of deflation. This new approach to landscape characterization not only works to mitigate bias introduced when researchers must select training pixels for morphometric investigations, but can also reveal patterning in aeolian landscapes that would not be as obvious without quantitative characterization.

  16. Transcriptome Analysis Reveals Signature of Adaptation to Landscape Fragmentation

    PubMed Central

    Ikonen, Suvi; Auvinen, Petri; Paulin, Lars; Koskinen, Patrik; Holm, Liisa; Taipale, Minna; Duplouy, Anne; Ruokolainen, Annukka; Saarnio, Suvi; Sirén, Jukka; Kohonen, Jukka; Corander, Jukka; Frilander, Mikko J.; Ahola, Virpi; Hanski, Ilkka

    2014-01-01

    We characterize allelic and gene expression variation between populations of the Glanville fritillary butterfly (Melitaea cinxia) from two fragmented and two continuous landscapes in northern Europe. The populations exhibit significant differences in their life history traits, e.g. butterflies from fragmented landscapes have higher flight metabolic rate and dispersal rate in the field, and higher larval growth rate, than butterflies from continuous landscapes. In fragmented landscapes, local populations are small and have a high risk of local extinction, and hence the long-term persistence at the landscape level is based on frequent re-colonization of vacant habitat patches, which is predicted to select for increased dispersal rate. Using RNA-seq data and a common garden experiment, we found that a large number of genes (1,841) were differentially expressed between the landscape types. Hexamerin genes, the expression of which has previously been shown to have high heritability and which correlate strongly with larval development time in the Glanville fritillary, had higher expression in fragmented than continuous landscapes. Genes that were more highly expressed in butterflies from newly-established than old local populations within a fragmented landscape were also more highly expressed, at the landscape level, in fragmented than continuous landscapes. This result suggests that recurrent extinctions and re-colonizations in fragmented landscapes select a for specific expression profile. Genes that were significantly up-regulated following an experimental flight treatment had higher basal expression in fragmented landscapes, indicating that these butterflies are genetically primed for frequent flight. Active flight causes oxidative stress, but butterflies from fragmented landscapes were more tolerant of hypoxia. We conclude that differences in gene expression between the landscape types reflect genomic adaptations to landscape fragmentation. PMID:24988207

  17. Transcriptome analysis reveals signature of adaptation to landscape fragmentation.

    PubMed

    Somervuo, Panu; Kvist, Jouni; Ikonen, Suvi; Auvinen, Petri; Paulin, Lars; Koskinen, Patrik; Holm, Liisa; Taipale, Minna; Duplouy, Anne; Ruokolainen, Annukka; Saarnio, Suvi; Sirén, Jukka; Kohonen, Jukka; Corander, Jukka; Frilander, Mikko J; Ahola, Virpi; Hanski, Ilkka

    2014-01-01

    We characterize allelic and gene expression variation between populations of the Glanville fritillary butterfly (Melitaea cinxia) from two fragmented and two continuous landscapes in northern Europe. The populations exhibit significant differences in their life history traits, e.g. butterflies from fragmented landscapes have higher flight metabolic rate and dispersal rate in the field, and higher larval growth rate, than butterflies from continuous landscapes. In fragmented landscapes, local populations are small and have a high risk of local extinction, and hence the long-term persistence at the landscape level is based on frequent re-colonization of vacant habitat patches, which is predicted to select for increased dispersal rate. Using RNA-seq data and a common garden experiment, we found that a large number of genes (1,841) were differentially expressed between the landscape types. Hexamerin genes, the expression of which has previously been shown to have high heritability and which correlate strongly with larval development time in the Glanville fritillary, had higher expression in fragmented than continuous landscapes. Genes that were more highly expressed in butterflies from newly-established than old local populations within a fragmented landscape were also more highly expressed, at the landscape level, in fragmented than continuous landscapes. This result suggests that recurrent extinctions and re-colonizations in fragmented landscapes select a for specific expression profile. Genes that were significantly up-regulated following an experimental flight treatment had higher basal expression in fragmented landscapes, indicating that these butterflies are genetically primed for frequent flight. Active flight causes oxidative stress, but butterflies from fragmented landscapes were more tolerant of hypoxia. We conclude that differences in gene expression between the landscape types reflect genomic adaptations to landscape fragmentation.

  18. Narrated Landscape as Counterweight to Perception of Placelessness in Contemporary Urban Landscape: Re-Visioning Place in Gwangbok-Dong and Nampo-Dong, Busan, South Korea

    ERIC Educational Resources Information Center

    Lee, Sungkyung

    2009-01-01

    Although the contemporary commercial urban landscape is often assessed as placeless, this research proposes that even these seemingly anonymous places are repositories of thriving community values and meanings. Seeking a more complex reading, this research extends the scope of analysis from physical space to human use in order to reveal the…

  19. Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China

    PubMed Central

    Li, Haifeng; Chen, Wenbo; He, Wei

    2015-01-01

    Green space plays an important role in sustainable urban development and ecology by virtue of multiple environmental, recreational, and economic benefits. Constructing an effective and harmonious urban ecological network and maintaining a sustainable living environment in response to rapid urbanization are the key issues required to be resolved by landscape planners. In this paper, Nanchang City, China was selected as a study area. Based on a series of landscape metrics, the landscape pattern analysis of the current (in 2005) and planned (in 2020) green space system were, respectively, conducted by using FRAGSTATS 3.3 software. Considering the actual situation of the Nanchang urban area, a “one river and two banks, north and south twin cities” ecological network was constructed by using network analysis. Moreover, the ecological network was assessed by using corridor structure analysis, and the improvement of an ecological network on the urban landscape was quantitatively assessed through a comparison between the ecological network and green space system planning. The results indicated that: (1) compared to the green space system in 2005, the planned green space system in 2020 of the Nanchang urban area will decline in both districts (Changnan and Changbei districts). Meanwhile, an increase in patch density and a decrease in mean patch size of green space patches at the landscape level implies the fragmentation of the urban green space landscape. In other words, the planned green space system does not necessarily improve the present green space system; (2) the ecological network of two districts has high corridor density, while Changnan’s ecological network has higher connectivity, but Changbei’s ecological network is more viable from an economic point of view, since it has relatively higher cost efficiency; (3) decrease in patch density, Euclidean nearest neighbor distance, and an increase in mean patch size and connectivity implied that the ecological network could improve landscape connectivity greatly, as compared with the planned green space system. That is to say, the planned ecological network would reduce landscape fragmentation, and increase the shape complexity of green space patches and landscape connectivity. As a result, the quality of the urban ecological environment would be improved. PMID:26501298

  20. Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China.

    PubMed

    Li, Haifeng; Chen, Wenbo; He, Wei

    2015-10-15

    Green space plays an important role in sustainable urban development and ecology by virtue of multiple environmental, recreational, and economic benefits. Constructing an effective and harmonious urban ecological network and maintaining a sustainable living environment in response to rapid urbanization are the key issues required to be resolved by landscape planners. In this paper, Nanchang City, China was selected as a study area. Based on a series of landscape metrics, the landscape pattern analysis of the current (in 2005) and planned (in 2020) green space system were, respectively, conducted by using FRAGSTATS 3.3 software. Considering the actual situation of the Nanchang urban area, a "one river and two banks, north and south twin cities" ecological network was constructed by using network analysis. Moreover, the ecological network was assessed by using corridor structure analysis, and the improvement of an ecological network on the urban landscape was quantitatively assessed through a comparison between the ecological network and green space system planning. The results indicated that: (1) compared to the green space system in 2005, the planned green space system in 2020 of the Nanchang urban area will decline in both districts (Changnan and Changbei districts). Meanwhile, an increase in patch density and a decrease in mean patch size of green space patches at the landscape level implies the fragmentation of the urban green space landscape. In other words, the planned green space system does not necessarily improve the present green space system; (2) the ecological network of two districts has high corridor density, while Changnan's ecological network has higher connectivity, but Changbei's ecological network is more viable from an economic point of view, since it has relatively higher cost efficiency; (3) decrease in patch density, Euclidean nearest neighbor distance, and an increase in mean patch size and connectivity implied that the ecological network could improve landscape connectivity greatly, as compared with the planned green space system. That is to say, the planned ecological network would reduce landscape fragmentation, and increase the shape complexity of green space patches and landscape connectivity. As a result, the quality of the urban ecological environment would be improved.

  1. [Impacts of landscape patterns on heavy metal contamination of agricultural top soils in the Pearl River Delta, South China].

    PubMed

    Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong

    2015-04-01

    Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal pollution control and remediation, especially for agricultural soils in the PRD.

  2. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation.

    PubMed

    Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing

    2018-03-01

    Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.

  3. Remote sensing based approach for monitoring urban growth in Mexico city, Mexico: A case study

    NASA Astrophysics Data System (ADS)

    Obade, Vincent

    The world is experiencing a rapid rate of urban expansion, largely contributed by the population growth. Other factors supporting urban growth include the improved efficiency in the transportation sector and increasing dependence on cars as a means of transport. The problems attributed to the urban growth include: depletion of energy resources, water and air pollution; loss of landscapes and wildlife, loss of agricultural land, inadequate social security and lack of employment or underemployment. Aerial photography is one of the popular techniques for analyzing, planning and minimizing urbanization related problems. However, with the advances in space technology, satellite remote sensing is increasingly being utilized in the analysis and planning of the urban environment. This article outlines the strengths and limitations of potential remote sensing techniques for monitoring urban growth. The selected methods include: Principal component analysis, Maximum likelihood classification and "decision tree". The results indicate that the "classification tree" approach is the most promising for monitoring urban change, given the improved accuracy and smooth transition between the various land cover classes

  4. Dynamics and spatio-temporal variability of environmental factors in Eastern Australia using functional principal component analysis

    USGS Publications Warehouse

    Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.

    2010-01-01

    This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.

  5. Spatial analysis of falls in an urban community of Hong Kong

    PubMed Central

    Lai, Poh C; Low, Chien T; Wong, Martin; Wong, Wing C; Chan, Ming H

    2009-01-01

    Background Falls are an issue of great public health concern. This study focuses on outdoor falls within an urban community in Hong Kong. Urban environmental hazards are often place-specific and dependent upon the built features, landscape characteristics, and habitual activities. Therefore, falls must be examined with respect to local situations. Results This paper uses spatial analysis methods to map fall occurrences and examine possible environmental attributes of falls in an urban community of Hong Kong. The Nearest neighbour hierarchical (Nnh) and Standard Deviational Ellipse (SDE) techniques can offer additional insights about the circumstances and environmental factors that contribute to falls. The results affirm the multi-factorial nature of falls at specific locations and for selected groups of the population. Conclusion The techniques to detect hot spots of falls yield meaningful results that enable the identification of high risk locations. The combined use of descriptive and spatial analyses can be beneficial to policy makers because different preventive measures can be devised based on the types of environmental risk factors identified. The analyses are also important preludes to establishing research hypotheses for more focused studies. PMID:19291326

  6. Free-energy landscapes from adaptively biased methods: Application to quantum systems

    NASA Astrophysics Data System (ADS)

    Calvo, F.

    2010-10-01

    Several parallel adaptive biasing methods are applied to the calculation of free-energy pathways along reaction coordinates, choosing as a difficult example the double-funnel landscape of the 38-atom Lennard-Jones cluster. In the case of classical statistics, the Wang-Landau and adaptively biased molecular-dynamics (ABMD) methods are both found efficient if multiple walkers and replication and deletion schemes are used. An extension of the ABMD technique to quantum systems, implemented through the path-integral MD framework, is presented and tested on Ne38 against the quantum superposition method.

  7. A Landscape View of Agricultural Insecticide Use across the Conterminous US from 1997 through 2012

    DOE PAGES

    Meehan, Timothy D.; Gratton, Claudio; Zhang, Youjun

    2016-11-30

    Simplification of agricultural landscapes is expected to have positive effects on many crop pests and negative effects on their natural enemies, potentially leading to increased pest pressure, decreased crop yield, and increased insecticide use. While many intermediate links in this causal chain have empirical support, there is mixed evidence for ultimate relationships between landscape simplification, crop yield, and insecticide use, especially at large spatial and temporal scales. We explored relationships between landscape simplification (proportion of a county in harvested cropland) and insecticide use (proportion of harvested cropland treated with insecticides), using county-level data from the US Census of Agriculture andmore » a variety of standard and spatiotemporal regression techniques. The best model indicated that insecticide use across the US has increased between 1997 and 2012, was strongly dependent on the crops grown in a county, increased with average farm income and size, and increased with annual growing degree days. After accounting for those variables, and other unidentified spatial and temporal structure in the data, there remained a statistically significant, moderate, positive relationship between insecticide use and landscape simplification. Finally, these results lend general support to the causal chain outlined above, and to the notion that a landscape perspective is useful for managing ecosystem services that are provided by mobile organisms and valuable to agriculture.« less

  8. A Landscape View of Agricultural Insecticide Use across the Conterminous US from 1997 through 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehan, Timothy D.; Gratton, Claudio; Zhang, Youjun

    Simplification of agricultural landscapes is expected to have positive effects on many crop pests and negative effects on their natural enemies, potentially leading to increased pest pressure, decreased crop yield, and increased insecticide use. While many intermediate links in this causal chain have empirical support, there is mixed evidence for ultimate relationships between landscape simplification, crop yield, and insecticide use, especially at large spatial and temporal scales. We explored relationships between landscape simplification (proportion of a county in harvested cropland) and insecticide use (proportion of harvested cropland treated with insecticides), using county-level data from the US Census of Agriculture andmore » a variety of standard and spatiotemporal regression techniques. The best model indicated that insecticide use across the US has increased between 1997 and 2012, was strongly dependent on the crops grown in a county, increased with average farm income and size, and increased with annual growing degree days. After accounting for those variables, and other unidentified spatial and temporal structure in the data, there remained a statistically significant, moderate, positive relationship between insecticide use and landscape simplification. Finally, these results lend general support to the causal chain outlined above, and to the notion that a landscape perspective is useful for managing ecosystem services that are provided by mobile organisms and valuable to agriculture.« less

  9. Earth observation technologies in service to the cultural landscape of Cyprus: risk identification and assessment

    NASA Astrophysics Data System (ADS)

    Cuca, Branka; Tzouvaras, Marios; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.

    2016-08-01

    The Cultural landscapes are witnesses of "the creative genius, social development and the imaginative and spiritual vitality of humanity. They are part of our collective identity", as it is internationally defined and accepted (ICOMOSUNESCO). The need for their protection, management and inclusion in the territorial policies has already been widely accepted and pursued. There is a great number of risks to which the cultural landscapes are exposed, arising mainly from natural (both due to slow geo-physical phenomena as well as hazards) and anthropogenic causes (e.g. urbanisation pressure, agriculture, landscape fragmentation etc.). This paper explores to what extent Earth Observation (EO) technologies can contribute to identify and evaluate the risks to which Cultural Landscapes of Cyprus are exposed, taking into consideration specific phenomena, such as land movements and soil erosion. The research of the paper is illustrated as part of the activities carried out in the CLIMA project - "Cultural Landscape risk Identification, Management and Assessment". It aims to combine the fields of remote sensing technologies, including Sentinel data, and monitoring of cultural landscape for its improved protection and management. Part of this approach will be based on the use of InSAR techniques in order to monitor the temporal evolution of deformations through the detection and measurement of the effects of surface movements caused by various factors. The case study selected for Cyprus is the Nea Paphos archeological site and historical center of Paphos, which are listed as UNESCO World Heritage sites. The interdisciplinary approach adopted in this research was useful to identify major risks affecting the landscape of Cyprus and to classify the most suitable EO methods to assess and map such risks.

  10. Dynamics of Soil Organic Carbon and Microbial Biomass Carbon in Relation to Water Erosion and Tillage Erosion

    PubMed Central

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the 137Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of 137Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. 137Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the <0.002-mm clay shows that water erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion. PMID:23717530

  11. Process-Driven Ecological Modeling for Landscape Change Analysis

    NASA Astrophysics Data System (ADS)

    Altman, S.; Reif, M. K.; Swannack, T. M.

    2013-12-01

    Landscape pattern is an important driver in ecosystem dynamics and can control system-level functions such as nutrient cycling, connectivity, biodiversity and carbon sequestration. However, the links between process, pattern and function remain ambiguous. Understanding the quantitative relationship between ecological processes and landscape pattern across temporal and spatial scales is vital for successful management and implementation of ecosystem-level projects. We used remote sensing imagery to develop critical landscape metrics to understand the factors influencing landscape change. Our study area, a coastal area in southwest Florida, is highly dynamic with critically eroding beaches and a range of natural and developed land cover types. Hurricanes in 2004 and 2005 caused a breach along the coast of North Captiva Island that filled in by 2010. We used a time series of light detection and ranging (lidar) elevation data and hyperspectral imagery from 2006 and 2010 to determine land cover changes. Landscape level metrics used included: Largest Patch Index, Class Area, Area-weighted mean area, Clumpiness, Area-weighted Contiguity Index, Number of Patches, Percent of landcover, Area-weighted Shape. Our results showed 1) 27% increase in sand/soil class as the channel repaired itself and shoreline was reestablished, 2) 40% decrease in the mudflat class area due to conversion to sand/soil and water, 3) 30% increase in non-wetland vegetation class as a result of new vegetation around the repaired channel, and 4) the water class only slightly increased though there was a marked increase in the patch size area. Thus, the smaller channels disappeared with the infilling of the channel, leaving much larger, less complex patches behind the breach. Our analysis demonstrated that quantification of landscape pattern is critical to linking patterns to ecological processes and understanding how both affect landscape change. Our proof of concept indicated that ecological processes can correlate to landscape pattern and that ecosystem function changes significantly as pattern changes. However, the number of links between landscape metrics and ecological processes are highly variable. Extensively studied processes such as biodiversity can be linked to numerous landscape metrics. In contrast, correlations between sediment cycling and landscape pattern have only been evaluated for a limited number of metrics. We are incorporating these data into a relational database linking landscape and ecological patterns, processes and metrics. The database will be used to parameterize site-specific landscape evolution models projecting how landscape pattern will change as a result of future ecosystem restoration projects. The model is a spatially-explicit, grid-based model that projects changes in community composition based on changes in soil elevations. To capture scalar differences in landscape change, local and regional landscape metrics are analyzed at each time step and correlated with ecological processes to determine how ecosystem function changes with scale over time.

  12. Combinatorial vector fields and the valley structure of fitness landscapes.

    PubMed

    Stadler, Bärbel M R; Stadler, Peter F

    2010-12-01

    Adaptive (downhill) walks are a computationally convenient way of analyzing the geometric structure of fitness landscapes. Their inherently stochastic nature has limited their mathematical analysis, however. Here we develop a framework that interprets adaptive walks as deterministic trajectories in combinatorial vector fields and in return associate these combinatorial vector fields with weights that measure their steepness across the landscape. We show that the combinatorial vector fields and their weights have a product structure that is governed by the neutrality of the landscape. This product structure makes practical computations feasible. The framework presented here also provides an alternative, and mathematically more convenient, way of defining notions of valleys, saddle points, and barriers in landscape. As an application, we propose a refined approximation for transition rates between macrostates that are associated with the valleys of the landscape.

  13. Exploring the links between social metabolism and biodiversity distribution across landscape gradients: A regional-scale contribution to the land-sharing versus land-sparing debate.

    PubMed

    Marull, Joan; Tello, Enric; Bagaria, Guillem; Font, Xavier; Cattaneo, Claudio; Pino, Joan

    2018-04-01

    The debate about the relative merits of the 'land-sparing' and 'land-sharing' approaches to biodiversity conservation is usually addressed at local scale. Here, however, we undertake a regional-scale approach to this issue by exploring the association between the Human Appropriation of Net Primary Production (HANPP) and biodiversity components (plants, amphibians, reptiles, birds and mammals) across a gradient of human-transformed landscapes in Catalonia, Spain. We propose an Intermediate Disturbance Complexity (IDC) model to assess how human disturbance of the photosynthetic capacity affects the landscape patterns and processes that host biodiversity. This model enables us to explore the association between social metabolism (HANPP), landscape structure (composition and spatial configuration) and biodiversity (species richness) by using Negative Binomial Regression (NBR), Exploratory Factor Analysis (EFA) and Structural Equation Modelling (SEM). The empirical association between IDC and landscape complexity and HANPP in Catalonia confirms the expected values of the intermediate disturbance hypothesis. There is some increase in biodiversity when high IDC values correspond to landscape mosaics. NBR and EFA show positive associations between species richness and increasing values of IDC and forest cover for all biodiversity groups except birds. SEM shows that total biodiversity is positively determined by forest cover and, to a lesser extent, by HANPP, and that both factors are negatively associated with each other. The results suggest that 'natural' landscapes (i.e. those dominated by forests) and agroforestry mosaics (i.e. heterogeneous landscapes characterized by a set of land uses possessing contrasting disturbances) provide a synergetic contribution to biodiversity conservation. This 'virtuous triangle' consisting of forest cover, HANPP and biodiversity illustrates the complex human-nature relationships that exist across landscape gradients of human transformation. This energy-landscape integrated analysis provides a robust assessment of the ecological impact of land-use policies at regional scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Constraining processes of landscape change with combined in situ cosmogenic 14C-10Be analysis

    NASA Astrophysics Data System (ADS)

    Hippe, Kristina

    2017-10-01

    Reconstructing Quaternary landscape evolution today frequently builds upon cosmogenic-nuclide surface exposure dating. However, the study of complex surface exposure chronologies on the 102-104 years' timescale remains challenging with the commonly used long-lived radionuclides (10Be, 26Al, 36Cl). In glacial settings, key points are the inheritance of nuclides accumulated in a rock surface during a previous exposure episode and (partial) shielding of a rock surface after the main deglaciation event, e.g. during phases of glacier readvance. Combining the short-lived in situ cosmogenic 14C isotope with 10Be dating provides a valuable approach to resolve and quantify complex exposure histories and burial episodes within Lateglacial and Holocene timescales. The first studies applying the in situ14C-10Be pair have demonstrated the great benefit from in situ14C analysis for unravelling complex glacier chronologies in various glacial environments worldwide. Moreover, emerging research on in situ14C in sedimentary systems highlights the capacity of combined in situ14C-10Be analysis to quantify sediment transfer times in fluvial catchments or to constrain changes in surface erosion rates. Nevertheless, further methodological advances are needed to obtain truly routine and widely available in situ14C analysis. Future development in analytical techniques has to focus on improving the analytical reproducibility, reducing the background level and determining more accurate muonic production rates. These improvements should allow extending the field of applications for combined in situ14C-10Be analysis in Earth surface sciences and open up a number of promising applications for dating young sedimentary deposits and the quantification of recent changes in surface erosion dynamics.

  15. Monitoring, analyzing and simulating of spatial-temporal changes of landscape pattern over mining area

    NASA Astrophysics Data System (ADS)

    Liu, Pei; Han, Ruimei; Wang, Shuangting

    2014-11-01

    According to the merits of remotely sensed data in depicting regional land cover and Land changes, multi- objective information processing is employed to remote sensing images to analyze and simulate land cover in mining areas. In this paper, multi-temporal remotely sensed data were selected to monitor the pattern, distri- bution and trend of LUCC and predict its impacts on ecological environment and human settlement in mining area. The monitor, analysis and simulation of LUCC in this coal mining areas are divided into five steps. The are information integration of optical and SAR data, LULC types extraction with SVM classifier, LULC trends simulation with CA Markov model, landscape temporal changes monitoring and analysis with confusion matrixes and landscape indices. The results demonstrate that the improved data fusion algorithm could make full use of information extracted from optical and SAR data; SVM classifier has an efficient and stable ability to obtain land cover maps, which could provide a good basis for both land cover change analysis and trend simulation; CA Markov model is able to predict LULC trends with good performance, and it is an effective way to integrate remotely sensed data with spatial-temporal model for analysis of land use / cover change and corresponding environmental impacts in mining area. Confusion matrixes are combined with landscape indices to evaluation and analysis show that, there was a sustained downward trend in agricultural land and bare land, but a continues growth trend tendency in water body, forest and other lands, and building area showing a wave like change, first increased and then decreased; mining landscape has undergone a from small to large and large to small process of fragmentation, agricultural land is the strongest influenced landscape type in this area, and human activities are the primary cause, so the problem should be pay more attentions by government and other organizations.

  16. Juggling land retirement objectives on an agricultural landscape: coordination, conflict, or compromise?

    PubMed

    Marshall, Elizabeth P; Homans, Frances R

    2006-07-01

    Strategic land retirement in agricultural settings has been used as one way to achieve a combination of social objectives, which include ameliorating water quality problems and enhancing existing systems of wildlife habitat. This study uses a simulation model operating on a virtual landscape, along with the compromise programming method, to illustrate the implications of alternative weighting schemes for the long-term performance of the landscape toward various objectives. The analysis suggests that particular spatial patterns may be related to how various objectives are weighted. The analysis also illustrates the inevitable trade-offs among objectives, although it may be tempting to present retirement strategies as "win-win."

  17. Cinematic Landscapes of Teaching: Lessons from a Narrative of Classic Film

    ERIC Educational Resources Information Center

    Cary, Lisa J.; Reifel, Stuart

    2005-01-01

    The purpose of this inquiry was to utilize the concept of "landscapes of teaching" in the analysis of a classic film about a venerated teacher, "Goodbye, Mr. Chips" (1939). First, the aim of the analysis is to provide insights into teacher development and to discuss the sacred and mystical dimensions of teaching (Craig, 1995). Second, the analysis…

  18. Chapter 1: A Framework for the Development and Application of INLAS: the Interior Northwest Landscape Analysis System

    Treesearch

    R. James Barbour; Alan A. Ager; Jane L. Hayes

    2004-01-01

    The Interior Northwest Landscape Analysis System is a partnership among researchers and natural resource managers from both the public and private sectors. The project is an effort to increase our understanding of the role of vegetative succession, natural disturbance, and management actions at the watershed scale. The effort will advance the development and...

  19. Changes in landscape patterns and associated forest succession on the western slope of the Rocky Mountains, Colorado

    Treesearch

    Daniel J. Manier; Richard D. Laven

    2001-01-01

    Using repeat photography, we conducted a qualitative and quantitative analysis of changes in forest cover on the western slope of the Rocky Mountains in Colorado. For the quantitative analysis, both images in a pair were classified using remote sensing and geographic information system (GIS) technologies. Comparisons were made using three landscape metrics: total...

  20. Observations and Impacts of Permafrost Thaw in the Lower Yukon River Basin and Yukon Delta Region: the Importance of Local Knowledge

    NASA Astrophysics Data System (ADS)

    Herman-Mercer, N. M.; Elder, K.; Toohey, R.; Mutter, E. A.

    2015-12-01

    In regions of the arctic and subarctic baseline measurements of permafrost dynamics are lacking and scientific research can be especially expensive when remote sensing techniques are utilized. This research demonstrated the importance of local observations, a powerful tool for understanding landscape change, such as permafrost dynamics. Fifty-five interviews were recently conducted with community members in four villages of the lower Yukon River Basin and Yukon Delta to understand local environmental and landscape changes and the impacts these changes may be having on the lives and livelihoods of these communities. The interviews were semi-structured and focused on many climate and landscape change factors including knowledge of permafrost in their community or the surrounding landscape. All positive respondents stated that they believe the permafrost is thawing. The research revealed that residents of the arctic and subarctic interact with permafrost in a variety of ways. Some people utilize permafrost to store food resources and have found that they have to dig deeper presently than in their youth in order to find ground cold enough. Others are involved in digging graves and report encountering easier excavation in recent years. Subsistence hunters and gatherers travel long distances by snowmobile and boat, and have noticed slumping ground, eroding river banks and coast lines, as well as land that seems to be rising. Finally, all residents of the arctic and subarctic interact with permafrost in terms of the stability of their homes and other infrastructure. Many interview participants complained of their houses leaning and needing more frequent adjustment than in the past. Indigenous residents of the arctic and subarctic have intimate relationships with their landscape owing to their subsistence lifestyle and are also connected to the landscape of the past through the teachings of their elders. Further, arctic and subarctic communities will sustain the majority of the impacts of permafrost degradation as the infrastructure of their communities is affected. Local residents have much to add to the study of permafrost in the arctic and subarctic. Ultimately, arctic and subarctic research will benefit most from the careful integration of local observations and physical science techniques.

  1. Coupling records of fluvial activity from the last interglacial-glacial cycle with climate forcing using both geochronology and numerical modelling

    NASA Astrophysics Data System (ADS)

    Briant, Rebecca; Mottram, Gareth; Wainwright, John

    2010-05-01

    River systems are a critical component of the landscape. An understanding of their response to variations in the Earth's climate is vital in light of the expected changes in global climate (e.g. 1.8 to 4.8°C temperature rise) that are forecast to occur over the next c. 100 years. Over the longer term, it becomes increasingly likely that the changes we will see may even be of a magnitude for which the most appropriate analogue we have is the glacial-interglacial scale (c. 10°C temperature change) and other climate changes typical of the Quaternary period (last 2 million years). Therefore it is crucial to apply our understanding of climate-driven changes during the Quaternary to future projections of both climate and landscape change, especially since landscape instability is a key characteristic of the Quaternary. Linking river activity to climate requires both the recognition of potentially climate-driven changes within the fluvial sedimentary record and the linkage of these to external climate records using various geochronological techniques. To this end, this paper firstly presents results from the Welland catchment, Fenland Basin where climatically-driven phases of river activity have been identified using detailed sedimentological analysis and palaeontological environmental reconstruction. Dating of these using radiocarbon and optically-stimulated luminescence dating has shown broad correspondence to external climate fluctuations at a marine isotope substage scale over the last interglacial-glacial cycle (MIS 5d onwards). The precision and accuracy of the two different age techniques varies in different parts of this time period and this will be discussed. Limitations in the precision of these geochronological techniques have prompted the use of a further, complementary to improve understanding of these sequences, i.e. ensemble numerical modeling. The rationale behind this approach is that river response to climate can be traced within the model and validated against the known geological record. If the known geological record can be replicated, then the detailed linkages between climate and river activity shown in the model can be used understand to the relationships between climate change and river activity more clearly. This paper will present the results of three-dimensional cellular automata modeling of the Welland catchment, compare them to the geological record, and draw out what this means for our understanding of earth surface processes.

  2. Effects of landscape features on waterbird use of rice fields

    USGS Publications Warehouse

    King, S.; Elphick, C.S.; Guadagnin, D.; Taft, O.; Amano, T.

    2010-01-01

    Literature is reviewed to determine the effects of landscape features on waterbird use of fields in regions where rice (Oryza sativa) is grown. Rice-growing landscapes often consist of diverse land uses and land cover, including rice fields, irrigation ditches, other agricultural fields, grasslands, forests and natural wetlands. Numerous studies indicate that local management practices, such as water depth and timing of flooding and drawdown, can strongly influence waterbird use of a given rice field. However, the effects of size and distribution of rice fields and associated habitats at a landscape scale have received less attention. Even fewer studies have focused on local and landscape effects simultaneously. Habitat connectivity, area of rice, distance to natural wetlands, and presence and distance to unsuitable habitat can be important parameters influencing bird use of rice fields. However, responses to a given landscape vary with landscape structure, scale of analysis, among taxa and within taxa among seasons. A lack of multi-scale studies, particularly those extending beyond simple presence and abundance of a given species, and a lack of direct tests comparing the relative importance of landscape features with in-field management activities limits understanding of the importance of landscape in these systems and hampers waterbird conservation and management.

  3. Dynamic Changes of Landscape Pattern and Vulnerability Analysis in Qingyi River Basin

    NASA Astrophysics Data System (ADS)

    Li, Ziwei; Xie, Chaoying; He, Xiaohui; Guo, Hengliang; Wang, Li

    2017-11-01

    Environmental vulnerability research is one of the core areas of global environmental change research. Over the past 10 years, ecologically fragile zones or transition zones had been significantly affected by environmental degradation and climate change and human activities. In this paper, we analyzed the spatial and temporal changes of landscape pattern and landscape vulnerability degree in Qingyi River Basin by calculating the landscape sensitivity index and landscape restoration degree index based on Landsat images of 2005, 2010 and 2015. The results showed that: (1) The top conversion area was farmland, woodland and grassland area decreased, city land and rural residential land increased fastest. (2) The fragility of the landscape pattern along the Qingyi River gradually increased between 2005 and 2015, the downstream area was influenced by the influence of human activities. (3) Landscape pattern changes and fragility are mainly affected by urbanization. These findings are helpful for understanding the evolution of landscape pattern as well as urban ecology, which both have significant implications for urban planning and minimize the potential environmental impacts of urbanization in Qingyi River Basin.

  4. Comparative Performance Analysis of a Hyper-Temporal Ndvi Analysis Approach and a Landscape-Ecological Mapping Approach

    NASA Astrophysics Data System (ADS)

    Ali, A.; de Bie, C. A. J. M.; Scarrott, R. G.; Ha, N. T. T.; Skidmore, A. K.

    2012-07-01

    Both agricultural area expansion and intensification are necessary to cope with the growing demand for food, and the growing threat of food insecurity which is rapidly engulfing poor and under-privileged sections of the global population. Therefore, it is of paramount importance to have the ability to accurately estimate crop area and spatial distribution. Remote sensing has become a valuable tool for estimating and mapping cropland areas, useful in food security monitoring. This work contributes to addressing this broad issue, focusing on the comparative performance analysis of two mapping approaches (i) a hyper-temporal Normalized Difference Vegetation Index (NDVI) analysis approach and (ii) a Landscape-ecological approach. The hyper-temporal NDVI analysis approach utilized SPOT 10-day NDVI imagery from April 1998-December 2008, whilst the Landscape-ecological approach used multitemporal Landsat-7 ETM+ imagery acquired intermittently between 1992 and 2002. Pixels in the time-series NDVI dataset were clustered using an ISODATA clustering algorithm adapted to determine the optimal number of pixel clusters to successfully generalize hyper-temporal datasets. Clusters were then characterized with crop cycle information, and flooding information to produce an NDVI unit map of rice classes with flood regime and NDVI profile information. A Landscape-ecological map was generated using a combination of digitized homogenous map units in the Landsat-7 ETM+ imagery, a Land use map 2005 of the Mekong delta, and supplementary datasets on the regions terrain, geo-morphology and flooding depths. The output maps were validated using reported crop statistics, and regression analyses were used to ascertain the relationship between land use area estimated from maps, and those reported in district crop statistics. The regression analysis showed that the hyper-temporal NDVI analysis approach explained 74% and 76% of the variability in reported crop statistics in two rice crop and three rice crop land use systems respectively. In contrast, 64% and 63% of the variability was explained respectively by the Landscape-ecological map. Overall, the results indicate the hyper-temporal NDVI analysis approach is more accurate and more useful in exploring when, why and how agricultural land use manifests itself in space and time. Furthermore, the NDVI analysis approach was found to be easier to implement, was more cost effective, and involved less subjective user intervention than the landscape-ecological approach.

  5. Social network models predict movement and connectivity in ecological landscapes

    USGS Publications Warehouse

    Fletcher, R.J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, W.M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  6. Land-use planning of Volyn region (Ukraine) using Geographic Information Systems (GIS) technologies

    NASA Astrophysics Data System (ADS)

    Strielko, Irina; Pereira, Paulo

    2014-05-01

    Land-use development planning is carried out in order to create a favourable environment for human life, sustainable socioeconomic and spatial development. Landscape planning is an important part of land-use development that aims to meet the fundamental principles of sustainable development. Geographic Information Systems (GIS) is a fundamental tool to make a better landscape planning at different territorial levels, providing data and maps to support decision making. The objective of this work is to create spatio-temporal, territorial and ecological model of development of Volyn region (Ukraine). It is based on existing spatial raster and vector data and includes the analysis of territory dynamics as the aspects responsible for it. A spatial analyst tool was used to zone the areas according to their environmental components and economic activity. This analysis is fundamental to define the basic parameters of sustainability of Volyn region. To carry out this analysis, we determined the demographic capacity of districts and the analysis of spatial parameters of land use. On the basis of the existing natural resources, we observed that there is a need of landscape protection and integration of more are natural areas in the Pan-European Ecological Network. Using GIS technologies to landscape planning in Volyn region, allowed us to identify, natural areas of interest, contribute to a better resource management and conflict resolution. Geographic Information Systems will help to formulate and implement landscape policies, reform the existing administrative system of Volyn region and contribute to a better sustainable development.

  7. Integrated analysis of landscape management scenarios using state and transition models in the upper Grande Ronde River subbasin, Oregon, USA.

    Treesearch

    Miles A. Hemstrom; James Merzenich; Allison Reger; Barbara. Wales

    2007-01-01

    We modeled the integrated effects of natural disturbances and management activities for three disturbance scenarios on a 178 000-ha landscape in the upper Grande Ronde subbasin of northeast Oregon. The landscape included three forest environments (warm-dry, cool-moist, and cold) as well as a mixture of publicly and privately owned lands. Our models were state and...

  8. An Integrative Platform for Three-dimensional Quantitative Analysis of Spatially Heterogeneous Metastasis Landscapes

    NASA Astrophysics Data System (ADS)

    Guldner, Ian H.; Yang, Lin; Cowdrick, Kyle R.; Wang, Qingfei; Alvarez Barrios, Wendy V.; Zellmer, Victoria R.; Zhang, Yizhe; Host, Misha; Liu, Fang; Chen, Danny Z.; Zhang, Siyuan

    2016-04-01

    Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ.

  9. SAVANNAH RIVER BASIN LANDSCAPE ANALYSIS

    EPA Science Inventory

    Scientists from the U.S. Environmental Protection Agency (EPA), Region 4, Science and Ecosystem Support Division, enlisted the assistance of the landscape ecology group of U.S. EPA, Office of Research and Development (ORD), National Exposure Research Laboratory, Environmental Sci...

  10. Free energy landscape of a biomolecule in dihedral principal component space: sampling convergence and correspondence between structures and minima.

    PubMed

    Maisuradze, Gia G; Leitner, David M

    2007-05-15

    Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure. 2007 Wiley-Liss, Inc.

  11. Geographic and Environmental Sources of Variation in Lake Bacterial Community Composition†

    PubMed Central

    Yannarell, Anthony C.; Triplett, Eric W.

    2005-01-01

    This study used a genetic fingerprinting technique (automated ribosomal intergenic spacer analysis [ARISA]) to characterize microbial communities from a culture-independent perspective and to identify those environmental factors that influence the diversity of bacterial assemblages in Wisconsin lakes. The relationships between bacterial community composition and 11 environmental variables for a suite of 30 lakes from northern and southern Wisconsin were explored by canonical correspondence analysis (CCA). In addition, the study assessed the influences of ARISA fragment detection threshold (sensitivity) and the quantitative, semiquantitative, and binary (presence-absence) use of ARISA data. It was determined that the sensitivity of ARISA was influential only when presence-absence-transformed data were used. The outcomes of analyses depended somewhat on the data transformation applied to ARISA data, but there were some features common to all of the CCA models. These commonalities indicated that differences in bacterial communities were best explained by regional (i.e., northern versus southern Wisconsin lakes) and landscape level (i.e., seepage lakes versus drainage lakes) factors. ARISA profiles from May samples were consistently different from those collected in other months. In addition, communities varied along gradients of pH and water clarity (Secchi depth) both within and among regions. The results demonstrate that environmental, temporal, regional, and landscape level features interact to determine the makeup of bacterial assemblages in northern temperate lakes. PMID:15640192

  12. Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data

    PubMed Central

    Huang, Jingfeng; Wei, Chen; Zhang, Yao; Blackburn, George Alan; Wang, Xiuzhen; Wei, Chuanwen; Wang, Jing

    2015-01-01

    Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a. PMID:26356842

  13. [Landscape pattern change of ethnic townships under the background of urbanization: Case of Aerla Town in Molidawa Daur Autonomous Banner, Inner Mongolia, China.

    PubMed

    Yang, Jin Yao; Huang, Lu; Yan, Li Jiao; Huo, Si Gao

    2016-08-01

    With the stable development of new countryside construction and new-type urbanization, the changing of the landscape pattern in countryside attracts more attention, especially in the ethnic townships which are hardly accessible. To explore the development of these areas, it is crucial to understand the spatial and temporal variation of the landscape pattern. In this paper, the landscape pattern change was analyzed at both patch type level and landscape level based on the landscape ecology theory. The land use data (format: vector) got from Aerla Town (a typical Daur ethnic township in Inner Mongolia) for the duration from 2008 to 2013 was studied by ArcGIS platform and Fragstats. For the type level, the grassland, farmland, and forest turned into building land gra-dually. Regarding the landscape level, the landscape diversity index and landscape connectivity index were relatively low, the heterogeneity index and the landscape fragmentation were relatively high. With considering the correlation analysis and grey correlation of the above indexes as well as the social and economic development in Aerla Town, the results indicated that population change and GDP growth were the main driving forces of landscape pattern change. Finally, the driving forces which resulted in the variation of landscape pattern with the incorporation of the economic, cultural, policy, and natural effects were discussed. The research could provide basic information and theoretical foundation for the development of minority areas in Northeast China.

  14. Testing methods to produce landscape-scale presettlement vegetation maps from the U.S. public land survey records

    USGS Publications Warehouse

    Manies, K.L.; Mladenoff, D.J.

    2000-01-01

    The U.S. Public Land Survey (PLS) notebooks are one of the best records of the pre-European settlement landscape and are widely used to recreate presettlement vegetation maps. The purpose of this study was to evaluate the relative ability of several interpolation techniques to map this vegetation, as sampled by the PLS surveyors, at the landscape level. Field data from Sylvania Wilderness Area, MI (U.S.A.), sampled at the same scale as the PLS data, were used for this test. Sylvania is comprised of a forested landscape similar to that present during presettlement times. Data were analyzed using two Arc/Info interpolation processes and indicator kriging. The resulting maps were compared to a 'correct' map of Sylvania, which was classified from aerial photographs. We found that while the interpolation methods used accurately estimated the relative forest composition of the landscape and the order of dominance of different vegetation types, they were unable to accurately estimate the actual area occupied by each vegetation type. Nor were any of the methods we tested able to recreate the landscape patterns found in the natural landscape. The most likely cause for these inabilities is the scale at which the field data (and hence the PLS data) were recorded. Therefore, these interpolation methods should not be used with the PLS data to recreate pre-European settlement vegetation at small scales (e.g., less than several townships or areas < 104 ha). Recommendations are given for ways to increase the accuracy of these vegetation maps.

  15. Amazonian landscapes and the bias in field studies of forest structure and biomass.

    PubMed

    Marvin, David C; Asner, Gregory P; Knapp, David E; Anderson, Christopher B; Martin, Roberta E; Sinca, Felipe; Tupayachi, Raul

    2014-12-02

    Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.

  16. The influence of linear elements on plant species diversity of Mediterranean rural landscapes: assessment of different indices and statistical approaches.

    PubMed

    García del Barrio, J M; Ortega, M; Vázquez De la Cueva, A; Elena-Rosselló, R

    2006-08-01

    This paper mainly aims to study the linear element influence on the estimation of vascular plant species diversity in five Mediterranean landscapes modeled as land cover patch mosaics. These landscapes have several core habitats and a different set of linear elements--habitat edges or ecotones, roads or railways, rivers, streams and hedgerows on farm land--whose plant composition were examined. Secondly, it aims to check plant diversity estimation in Mediterranean landscapes using parametric and non-parametric procedures, with two indices: Species richness and Shannon index. Land cover types and landscape linear elements were identified from aerial photographs. Their spatial information was processed using GIS techniques. Field plots were selected using a stratified sampling design according to relieve and tree density of each habitat type. A 50x20 m2 multi-scale sampling plot was designed for the core habitats and across the main landscape linear elements. Richness and diversity of plant species were estimated by comparing the observed field data to ICE (Incidence-based Coverage Estimator) and ACE (Abundance-based Coverage Estimator) non-parametric estimators. The species density, percentage of unique species, and alpha diversity per plot were significantly higher (p < 0.05) in linear elements than in core habitats. ICE estimate of number of species was 32% higher than of ACE estimate, which did not differ significantly from the observed values. Accumulated species richness in core habitats together with linear elements, were significantly higher than those recorded only in the core habitats in all the landscapes. Conversely, Shannon diversity index did not show significant differences.

  17. Red-shouldered Hawk (Buteo lineatus) abundance and habitat in a reclaimed mine landscape

    USGS Publications Warehouse

    Balcerzak, M.J.; Wood, P.B.

    2003-01-01

    Fragmentation of the landscape by large-scale mining may affect Red-shouldered Hawk (Buteo lineatus) populations by reducing the amount of forested habitat available in a landscape and by creating fragmented forest parches surrounded by reclaimed mine lands. We examined habitat characteristics and relative abundance of Red-shouldered Hawks in reclaimed mine landscapes within four treatments: early-successional grassland habitat, mid-successional shrub/pole habitat, late-successional fragmented forest habitat, and late-successional intact forest habitat. We quantified microhabitat characteristics within an 11.3-m-radius plot centered on 156 vegetation plots throughout the four treatments. We surveyed 48 stations on and adjacent to three mines for Red-shouldered Hawks using standardized broadcast call techniques during February 2000-January 2001 and measured landscape characteristics within 1000-m buffer zones centered on each station from digitized aerial photographs. Mean abundance of Red-shouldered Hawks was significantly higher in the intact forest (x?? = 0.07 detections/ point, SE = 0.03) than the grassland (x?? = 0.01, SE = 0.01) treatment, but did not differ from the fragmented forest (x?? = 0.03, SE = 0.01) or shrub/pole (x?? = 0.03, SE = 0.01) treatments. Most microhabitat characteristics in both fragmented and intact forest differed from shrub/pole and grasslands. Amount of wetland was the most important characteristic determining presence of Red-shouldered Hawks in a forest-dominated landscape. More wetlands in the landscape may provide abundant amphibians and reptiles, which are important in the diet of Red-shouldered Hawks. ?? 2003 The Raptor Research Foundation, Inc.

  18. Cultural ecosystem services of mountain regions: Modelling the aesthetic value.

    PubMed

    Schirpke, Uta; Timmermann, Florian; Tappeiner, Ulrike; Tasser, Erich

    2016-10-01

    Mountain regions meet an increasing demand for pleasant landscapes, offering many cultural ecosystem services to both their residents and tourists. As a result of global change, land managers and policy makers are faced with changes to this landscape and need efficient evaluation techniques to assess cultural ecosystem services. This study provides a spatially explicit modelling approach to estimating aesthetic landscape values by relating spatial landscape patterns to human perceptions via a photo-based survey. The respondents attributed higher aesthetic values to the Alpine landscape in respect to areas with settlements, infrastructure or intensive agricultural use. The aesthetic value of two study areas in the Central Alps (Stubai Valley, Austria and Vinschgau, Italy) was modelled for 10,215 viewpoints along hiking trails according to current land cover and a scenario considering the spontaneous reforestation of abandoned land. Viewpoints with high aesthetic values were mainly located at high altitude, allowing long vistas, and included views of lakes or glaciers, and the lowest values were for viewpoints close to streets and in narrow valleys with little view. The aesthetic values of the reforestation scenario decreased mainly at higher altitudes, but the whole area was affected, reducing aesthetic value by almost 10% in Stubai Valley and 15% in Vinschgau. Our proposed modelling approach allows the estimation of aesthetic values in spatial and qualitative terms for most viewpoints in the European Alps. The resulting maps can be used as information and the basis for discussion by stakeholders, to support the decision-making process and landscape planning. This paper also discusses the role of mountain farming in preserving an attractive landscape and related cultural values.

  19. Landscape influences on dispersal behaviour: a theoretical model and empirical test using the fire salamander, Salamandra infraimmaculata.

    PubMed

    Kershenbaum, Arik; Blank, Lior; Sinai, Iftach; Merilä, Juha; Blaustein, Leon; Templeton, Alan R

    2014-06-01

    When populations reside within a heterogeneous landscape, isolation by distance may not be a good predictor of genetic divergence if dispersal behaviour and therefore gene flow depend on landscape features. Commonly used approaches linking landscape features to gene flow include the least cost path (LCP), random walk (RW), and isolation by resistance (IBR) models. However, none of these models is likely to be the most appropriate for all species and in all environments. We compared the performance of LCP, RW and IBR models of dispersal with the aid of simulations conducted on artificially generated landscapes. We also applied each model to empirical data on the landscape genetics of the endangered fire salamander, Salamandra infraimmaculata, in northern Israel, where conservation planning requires an understanding of the dispersal corridors. Our simulations demonstrate that wide dispersal corridors of the low-cost environment facilitate dispersal in the IBR model, but inhibit dispersal in the RW model. In our empirical study, IBR explained the genetic divergence better than the LCP and RW models (partial Mantel correlation 0.413 for IBR, compared to 0.212 for LCP, and 0.340 for RW). Overall dispersal cost in salamanders was also well predicted by landscape feature slope steepness (76%), and elevation (24%). We conclude that fire salamander dispersal is well characterised by IBR predictions. Together with our simulation findings, these results indicate that wide dispersal corridors facilitate, rather than hinder, salamander dispersal. Comparison of genetic data to dispersal model outputs can be a useful technique in inferring dispersal behaviour from population genetic data.

  20. An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States

    USGS Publications Warehouse

    Wendel, Jochen; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2016-01-01

    Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification.

  1. A simple approach for a spatial terrestrial exposure assessment of the insecticide fenoxycarb, based on a high-resolution landscape analysis.

    PubMed

    Thomas, Kai; Resseler, Herbert; Spatz, Robert; Hendley, Paul; Sweeney, Paul; Urban, Martin; Kubiak, Roland

    2016-11-01

    The objective was to refine the standard regulatory exposure scenario used in plant protection product authorisations by developing a more realistic landscape-related GIS-based exposure assessment for terrestrial non-target arthropods. We quantified the proportion of adjacent off-target area in agricultural landscapes potentially exposed to insecticide drift from applications of the active substance fenoxycarb. High-resolution imagery, landscape classification and subsequent stepwise analysis of a whole landscape using drift and interception functions were applied to selected areas in representative fruit-producing regions in Germany. Even under worst-case assumptions regarding treated area, use rate and drift, less than 12% of the non-agricultural habitat area would potentially be exposed to fenoxycarb drift above regulatory acceptable concentrations. Additionally, if the filtering effect of tall vegetation were taken into account, this number would decrease to 6.6%. Further refinements to landscape elements and application conditions indicate that less than 5% of the habitat area might be exposed above regulatory acceptable concentrations, meaning that 95% of the non-agricultural habitat area will be unimpacted (i.e. no unacceptable effects) and can serve as refuge for recolonisation. Approaches and tools are proposed for standardisable and transparent refinements in regulatory risk assessments on the landscape level. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  2. Experimental evidence of dynamic re-organization of evolving landscapes under changing climatic forcing

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Tejedor, Alejandro; Zaliapin, Ilya; Reinhardt, Liam; Foufoula-Georgiou, Efi

    2015-04-01

    The aim of this study is to better understand the dynamic re-organization of an evolving landscape under a scenario of changing climatic forcing for improving our knowledge of geomorphic transport laws under transient conditions and developing predictive models of landscape response to external perturbations. Real landscape observations for long-term analysis are limited and to this end a high resolution controlled laboratory experiment was conducted at the St. Anthony Falls laboratory at the University of Minnesota. Elevation data were collected at temporal resolution of 5 mins and spatial resolution of 0.5 mm as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5x precipitation). The results reveal rapid topographic re-organization under a five-fold precipitation increase with the fluvial regime expanding into the previously debris dominated regime, accelerated erosion happening at hillslope scales, and rivers shifting from an erosion-limited to a transport-limited regime. From a connectivity and clustering analysis of the erosional and depositional events, we demonstrate the strikingly different spatial patterns of landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is "stretched" compared to that under TS such as to match the total volume and PDF of erosional and depositional amounts. We quantify the spatial coupling of hillslopes and channels and demonstrate that hillslopes lead and channels follow in re-organizing the whole landscape under such an amplified precipitation regime.

  3. A Landscape Analysis to Understand Orientation of Honey Bee (Hymenoptera: Apidae) Drones in Puerto Rico.

    PubMed

    Galindo-Cardona, A; Monmany, A C; Diaz, G; Giray, T

    2015-08-01

    Honey bees [Apis mellifera L. (Apidae, Hymenoptera)] show spatial learning behavior or orientation, in which animals make use of structured home ranges for their daily activities. Worker (female) orientation has been studied more extensively than drone (male) orientation. Given the extensive and large flight range of drones as part of their reproductive biology, the study of drone orientation may provide new insight on landscape features important for orientation. We report the return rate and orientation of drones released at three distances (1, 2, and 4 km) and at the four cardinal points from an apiary located in Gurabo, Puerto Rico. We used high-resolution aerial photographs to describe landscape characteristics at the releasing sites and at the apiary. Analyses of variance were used to test significance among returning times from different distances and directions. A principal components analysis was used to describe the landscape at the releasing sites and generalized linear models were used to identify landscape characteristics that influenced the returning times of drones. Our results showed for the first time that drones are able to return from as far as 4 km from the colony. Distance to drone congregation area, orientation, and tree lines were the most important landscape characteristics influencing drone return rate. We discuss the role of landscape in drone orientation. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Grains of connectivity: analysis at multiple spatial scales in landscape genetics.

    PubMed

    Galpern, Paul; Manseau, Micheline; Wilson, Paul

    2012-08-01

    Landscape genetic analyses are typically conducted at one spatial scale. Considering multiple scales may be essential for identifying landscape features influencing gene flow. We examined landscape connectivity for woodland caribou (Rangifer tarandus caribou) at multiple spatial scales using a new approach based on landscape graphs that creates a Voronoi tessellation of the landscape. To illustrate the potential of the method, we generated five resistance surfaces to explain how landscape pattern may influence gene flow across the range of this population. We tested each resistance surface using a raster at the spatial grain of available landscape data (200 m grid squares). We then used our method to produce up to 127 additional grains for each resistance surface. We applied a causal modelling framework with partial Mantel tests, where evidence of landscape resistance is tested against an alternative hypothesis of isolation-by-distance, and found statistically significant support for landscape resistance to gene flow in 89 of the 507 spatial grains examined. We found evidence that major roads as well as the cumulative effects of natural and anthropogenic disturbance may be contributing to the genetic structure. Using only the original grid surface yielded no evidence for landscape resistance to gene flow. Our results show that using multiple spatial grains can reveal landscape influences on genetic structure that may be overlooked with a single grain, and suggest that coarsening the grain of landcover data may be appropriate for highly mobile species. We discuss how grains of connectivity and related analyses have potential landscape genetic applications in a broad range of systems. © 2012 Blackwell Publishing Ltd.

  5. Placing the pieces: Reconstructing the original property mosaic in a warrant and patent watershed

    USGS Publications Warehouse

    Bain, D.J.; Brush, G.S.

    2005-01-01

    Recent research shows that land use history is an important determinant of current ecosystem function. In the United States, characterization of land use change following European settlement requires reconstruction of the original property mosaic. However, this task is difficult in unsystematically surveyed areas east of the Appalachian Mountains. The Gwynns Falls watershed (Baltimore, MD) was originally surveyed in the 1600-1700s under a system of warrants and patents (commonly known as 'metes and bounds'). A method for the reconstruction and mapping of warrant and patent properties is presented and used to map the original property mosaic in the Gwynns Falls watershed. Using the mapped mosaic, the persistence of properties and property lines in the current Gwynns Falls landscape is considered. The results of this research indicate that as in agricultural areas, the original property lines in the Gwynns Falls watershed are persistent. At the same time, the results suggest that the property mosaic in heavily urbanized/suburbanized areas is generally 'reset.' Further, trends in surveying technique, parcel size, and settlement patterns cause property line density and property shape complexity to increase in the less urbanized upper watershed. The persistence of original patterns may be damping expression of heterogeneity gradients in this urban landscape. This spatial pattern of complexity in the original mosaic is directly opposite of hypothesized patterns of landscape heterogeneity arising from urbanization. The technique reported here and the resulting observations are important for landscape pattern studies in areas settled under unsystematic survey systems, especially the heavily urbanized areas of the eastern United States. ?? 2004 Kluwer Academic Publishers.

  6. Detecting trends in landscape pattern metrics over a 20-year period using a sampling-based monitoring programme

    USGS Publications Warehouse

    Griffith, J.A.; Stehman, S.V.; Sohl, Terry L.; Loveland, Thomas R.

    2003-01-01

    Temporal trends in landscape pattern metrics describing texture, patch shape and patch size were evaluated in the US Middle Atlantic Coastal Plain Ecoregion. The landscape pattern metrics were calculated for a sample of land use/cover data obtained for four points in time from 1973-1992. The multiple sampling dates permit evaluation of trend, whereas availability of only two sampling dates allows only evaluation of change. Observed statistically significant trends in the landscape pattern metrics demonstrated that the sampling-based monitoring protocol was able to detect a trend toward a more fine-grained landscape in this ecoregion. This sampling and analysis protocol is being extended spatially to the remaining 83 ecoregions in the US and temporally to the year 2000 to provide a national and regional synthesis of the temporal and spatial dynamics of landscape pattern covering the period 1973-2000.

  7. Study on Ecological Risk Assessment of Guangxi Coastal Zone Based on 3s Technology

    NASA Astrophysics Data System (ADS)

    Zhong, Z.; Luo, H.; Ling, Z. Y.; Huang, Y.; Ning, W. Y.; Tang, Y. B.; Shao, G. Z.

    2018-05-01

    This paper takes Guangxi coastal zone as the study area, following the standards of land use type, divides the coastal zone of ecological landscape into seven kinds of natural wetland landscape types such as woodland, farmland, grassland, water, urban land and wetlands. Using TM data of 2000-2015 such 15 years, with the CART decision tree algorithm, for analysis the characteristic of types of landscape's remote sensing image and build decision tree rules of landscape classification to extract information classification. Analyzing of the evolution process of the landscape pattern in Guangxi coastal zone in nearly 15 years, we may understand the distribution characteristics and change rules. Combined with the natural disaster data, we use of landscape index and the related risk interference degree and construct ecological risk evaluation model in Guangxi coastal zone for ecological risk assessment results of Guangxi coastal zone.

  8. How cells explore shape space: a quantitative statistical perspective of cellular morphogenesis.

    PubMed

    Yin, Zheng; Sailem, Heba; Sero, Julia; Ardy, Rico; Wong, Stephen T C; Bakal, Chris

    2014-12-01

    Through statistical analysis of datasets describing single cell shape following systematic gene depletion, we have found that the morphological landscapes explored by cells are composed of a small number of attractor states. We propose that the topology of these landscapes is in large part determined by cell-intrinsic factors, such as biophysical constraints on cytoskeletal organization, and reflects different stable signaling and/or transcriptional states. Cell-extrinsic factors act to determine how cells explore these landscapes, and the topology of the landscapes themselves. Informational stimuli primarily drive transitions between stable states by engaging signaling networks, while mechanical stimuli tune, or even radically alter, the topology of these landscapes. As environments fluctuate, the topology of morphological landscapes explored by cells dynamically adapts to these fluctuations. Finally we hypothesize how complex cellular and tissue morphologies can be generated from a limited number of simple cell shapes. © 2014 WILEY Periodicals, Inc.

  9. Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations.

    PubMed

    Harpole, Tyler J; Delemotte, Lucie

    2018-04-01

    The expansion of computational power, better parameterization of force fields, and the development of novel algorithms to enhance the sampling of the free energy landscapes of proteins have allowed molecular dynamics (MD) simulations to become an indispensable tool to understand the function of biomolecules. The temporal and spatial resolution of MD simulations allows for the study of a vast number of processes of interest. Here, we review the computational efforts to uncover the conformational free energy landscapes of a subset of membrane proteins: ion channels, transporters and G-protein coupled receptors. We focus on the various enhanced sampling techniques used to study these questions, how the conclusions come together to build a coherent picture, and the relationship between simulation outcomes and experimental observables. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Landscape and Health: Connecting Psychology, Aesthetics, and Philosophy through the Concept of Affordance.

    PubMed

    Menatti, Laura; Casado da Rocha, Antonio

    2016-01-01

    In this paper we address a frontier topic in the humanities, namely how the cultural and natural construction that we call landscape affects well-being and health. Following an updated review of evidence-based literature in the fields of medicine, psychology, and architecture, we propose a new theoretical framework called "processual landscape," which is able to explain both the health-landscape and the medical agency-structure binomial pairs. We provide a twofold analysis of landscape, from both the cultural and naturalist points of view: in order to take into account its relationship with health, the definition of landscape as a cultural product needs to be broadened through naturalization, grounding it in the scientific domain. Landscape cannot be distinguished from the ecological environment. For this reason, we naturalize the idea of landscape through the notion of affordance and Gibson's ecological psychology. In doing so, we stress the role of agency in the theory of perception and the health-landscape relationship. Since it is the result of continuous and co-creational interaction between the cultural agent, the biological agent and the affordances offered to the landscape perceiver, the processual landscape is, in our opinion, the most comprehensive framework for explaining the health-landscape relationship. The consequences of our framework are not only theoretical, but ethical also: insofar as health is greatly affected by landscape, this construction represents something more than just part of our heritage or a place to be preserved for the aesthetic pleasure it provides. Rather, we can talk about the right to landscape as something intrinsically linked to the well-being of present and future generations.

  11. Landscape and Health: Connecting Psychology, Aesthetics, and Philosophy through the Concept of Affordance

    PubMed Central

    Menatti, Laura; Casado da Rocha, Antonio

    2016-01-01

    In this paper we address a frontier topic in the humanities, namely how the cultural and natural construction that we call landscape affects well-being and health. Following an updated review of evidence-based literature in the fields of medicine, psychology, and architecture, we propose a new theoretical framework called “processual landscape,” which is able to explain both the health-landscape and the medical agency-structure binomial pairs. We provide a twofold analysis of landscape, from both the cultural and naturalist points of view: in order to take into account its relationship with health, the definition of landscape as a cultural product needs to be broadened through naturalization, grounding it in the scientific domain. Landscape cannot be distinguished from the ecological environment. For this reason, we naturalize the idea of landscape through the notion of affordance and Gibson’s ecological psychology. In doing so, we stress the role of agency in the theory of perception and the health-landscape relationship. Since it is the result of continuous and co-creational interaction between the cultural agent, the biological agent and the affordances offered to the landscape perceiver, the processual landscape is, in our opinion, the most comprehensive framework for explaining the health-landscape relationship. The consequences of our framework are not only theoretical, but ethical also: insofar as health is greatly affected by landscape, this construction represents something more than just part of our heritage or a place to be preserved for the aesthetic pleasure it provides. Rather, we can talk about the right to landscape as something intrinsically linked to the well-being of present and future generations. PMID:27199808

  12. Why replication is important in landscape genetics: American black bear in the Rocky Mountains

    USGS Publications Warehouse

    Short, Bull R.A.; Cushman, S.A.; MacE, R.; Chilton, T.; Kendall, K.C.; Landguth, E.L.; Schwartz, Maurice L.; McKelvey, K.; Allendorf, F.W.; Luikart, G.

    2011-01-01

    We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note – that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species’ movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics.

  13. Landscape analysis of pesticide use patterns and ecological exposure

    EPA Science Inventory

    Background/Question/Methods The pesticide exposure landscape in the US is spatially and temporally complex. Researchers studying ecological exposure and effects of pesticides must consider a number of dimensions when framing experiments and conducting assessments. These dimension...

  14. Detection of early landscape evolution through controlled experimentation, data analysis, and numerical modeling at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, Peter A.; Pangle, Luke; Niu, Guo-Yue; Dontsova, Katerina; Barron-Gafford, Greg; van Haren, Joost; Pavao-Zuckerman, Mitch

    2014-05-01

    The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. This presentation will discuss detection of early landscape evolution in terms of hydrological, geochemical and microbial processes through controlled experimentation, data analysis, and numerical modeling during the commissioning phase of the first hillslope at LEO.

  15. Hydrological resiliency in the Western Boreal Plains: classification of hydrological responses using wavelet analysis to assess landscape resilience

    NASA Astrophysics Data System (ADS)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hannah, David; Parkin, Geoff

    2017-04-01

    The Boreal represents a system of substantial resilience to climate change, with minimal ecological change over the past 6000 years. However, unprecedented climatic warming, coupled with catchment disturbances could exceed thresholds of hydrological function in the Western Boreal Plains. Knowledge of ecohydrological and climatic feedbacks that shape the resilience of boreal forests has advanced significantly in recent years, but this knowledge is yet to be applied and understood at landscape scales. Hydrological modelling at the landscape scale is challenging in the WBP due to diverse, non-topographically driven hydrology across the mosaic of terrestrial and aquatic ecosystems. This study functionally divides the geologic and ecological components of the landscape into Hydrologic Response Areas (HRAs) and wetland, forestland, interface and pond Hydrologic Units (HUs) to accurately characterise water storage and infer transmission at multiple spatial and temporal scales. Wavelet analysis is applied to pond and groundwater levels to describe the patterns of water storage in response to climate signals; to isolate dominant controls on hydrological responses and to assess the relative importance of physical controls between wet and dry climates. This identifies which components of the landscape exhibit greater magnitude and frequency of variability to wetting and drying trends, further to testing the hierarchical framework for hydrological storage controls of: climate, bedrock geology, surficial geology, soil, vegetation, and topography. Classifying HRA and HU hydrological function is essential to understand and predict water storage and redistribution through drought cycles and wet periods. This work recognises which landscape components are most sensitive under climate change and disturbance and also creates scope for hydrological resiliency research in Boreal systems by recognising critical landscape components and their role in landscape collapse or catastrophic shift in ecosystem function under future climatic scenarios.

  16. Self-dissimilar landscapes: Revealing the signature of geologic constraints on landscape dissection via topologic and multi-scale analysis

    NASA Astrophysics Data System (ADS)

    Danesh-Yazdi, Mohammad; Tejedor, Alejandro; Foufoula-Georgiou, Efi

    2017-10-01

    Climatic or geologic controls, such as tectonics or glacial drainage, might impose constraints on landscape self-organization resulting in spatial patterns of rivers and valleys which do not obey the typical self-similar relationships found in most landscapes. The goal of this study is to quantify how such geologic constraints express themselves on channel network topology, spatial heterogeneity of drainage patterns, and emergence of preferred scales of landscape dissection. We use as an example a basin located in the Upper Midwestern United States where successive glaciations over the past thousand years have led to a pronounced spatially anisotropic channel network structure which defeats most scaling laws of fluvial landscapes. This is contrasted with another river basin in the North-Central U.S. which has been organized under the absence of major geologic influences and follows a typical self-similar channel network organization. We show how the geologic constraints have imposed a competition for space which is captured in the slope-local drainage density probabilistic structure, in the failure of self-similarity in basin-wide river network topology, and in the length-area scaling relationship being not typical of fluvial landscapes. Via a two-dimensional wavelet analysis and synthesis, we demonstrate the occurrence of a gap in the power spectrum which corresponds to the presence of preferred scales of organization, and characterize them through multi-scale detrending. The developed methodologies can be useful in advancing our geomorphologic understanding of how external controls might manifest themselves in creating a landscape dissection that is outside the norm and how this dissection can be studied objectively for understanding cause and effect.

  17. BIOLOGICAL INTEGRITY IN MID-ATLANTIC COASTAL PLAINS HEADWATER STREAMS

    EPA Science Inventory

    The objective of this study was to assess the applicability of landscape metrics, in conjunction with stream water quality to estimate the biological integrity of headwater streams in the Mid-Atlantic Coastal Plains using multivariate techniques.

  18. Gate-Sensing the Potential Landscape of a GaAs Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Croot, Xanthe; Mahoney, Alice; Pauka, Sebastian; Colless, James; Reilly, David; Watson, John; Fallahi, Saeed; Gardner, Geoff; Manfra, Michael; Lu, Hong; Gossard, Arthur

    In situ dispersive gate sensors hold potential as a means of enabling the scalable readout of quantum dot arrays. Sensitive to quantum capacitance, dispersive sensors have been used to detect inter- and intra-dot transitions in GaAs double quantum dots, and can distinguish the spin states of singlet triplet qubits. In addition, the gate-sensing technique is likely of value in probing the physics of Majorana zero modes in nanowire devices. Beyond the readout signatures associated with charge and spin configurations of qubits, gate-sensing is sensitive to trapped charge in the potential landscape. Here, we report gate-sensing signals arising from tunnelling of electrons between puddles of trapped charge in a GaAs 2DEG. We examine these signals in a family of different devices with varying mobilities, and as a function of temperature and bias. Implications for qubit readout using the gate-sensing technique are discussed.

  19. Homogenization techniques for population dynamics in strongly heterogeneous landscapes.

    PubMed

    Yurk, Brian P; Cobbold, Christina A

    2018-12-01

    An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.

  20. Protection of Landscape Values of Historical Post Military Objects - Complexes in Spatial, Urban and Architectural Planning of Polish Cities

    NASA Astrophysics Data System (ADS)

    Gawryluk, Dorota; Zagroba, Marek

    2017-12-01

    Within the borders of modern Poland there are numerous barracks units erected at the turn of the 19th and 20th centuries by the invaders from Russia, Austria and Prussia. Former barracks are a clear element of the history of the place. Historical complexes have a strong influence on the urban landscape and on building their former and contemporary identity. The analysis of functional and landscape absorption of postmodern complexes allows for their adaptation and modern use without limiting the readability of historical values. For this reason, their landscape should be protected comprehensively within the scope of subsequent exposure scales. The aim of the work is to justify the conditions of comprehensive protection of the fortified landscape of the former barracks of the former Russian partition in the landscape of contemporary Polish cities. The article contains a review of the literature on the protection, supplement and access to fortified buildings from the turn of the 19th and 20th centuries in contemporary Poland. A review of current research conducted at various academic centres in Poland, concerning the exposition of fortified buildings in the landscape, is presented. Particular attention was paid to the scales and forms of exposition, proposed for the fortifications and barracks. The paper presents justification for the protection of barracks complexes from the turn of the 19th and 20th centuries in the landscape of Polish cities of the former Russian partition area. Protection of the landscape was proposed in the following scales: superregional, landscape (panorama of the centre), urban (urban structure of the complex in the context of the urban space), architectural and landscape interiors of the complex (WAK) such as alleys, alarm squares, greenery) and detail (view of the building from the outside), interior of the building (characteristic interior spaces, e.g. home chapels, staircases). Taking account of exposures analysis of individual scales should result in appropriate records at all levels of planning documents to protect the fortified landscape of the historic barracks. The article points to the use of greenery as a means to correct barracks exposures and to improve the standard of using historic complexes for new, contemporary functions.

  1. The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments.

    PubMed

    Granata, Daniele; Baftizadeh, Fahimeh; Habchi, Johnny; Galvagnion, Celine; De Simone, Alfonso; Camilloni, Carlo; Laio, Alessandro; Vendruscolo, Michele

    2015-10-26

    The free energy landscape theory has been very successful in rationalizing the folding behaviour of globular proteins, as this representation provides intuitive information on the number of states involved in the folding process, their populations and pathways of interconversion. We extend here this formalism to the case of the Aβ40 peptide, a 40-residue intrinsically disordered protein fragment associated with Alzheimer's disease. By using an advanced sampling technique that enables free energy calculations to reach convergence also in the case of highly disordered states of proteins, we provide a precise structural characterization of the free energy landscape of this peptide. We find that such landscape has inverted features with respect to those typical of folded proteins. While the global free energy minimum consists of highly disordered structures, higher free energy regions correspond to a large variety of transiently structured conformations with secondary structure elements arranged in several different manners, and are not separated from each other by sizeable free energy barriers. From this peculiar structure of the free energy landscape we predict that this peptide should become more structured and not only more compact, with increasing temperatures, and we show that this is the case through a series of biophysical measurements.

  2. The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments

    PubMed Central

    Granata, Daniele; Baftizadeh, Fahimeh; Habchi, Johnny; Galvagnion, Celine; De Simone, Alfonso; Camilloni, Carlo; Laio, Alessandro; Vendruscolo, Michele

    2015-01-01

    The free energy landscape theory has been very successful in rationalizing the folding behaviour of globular proteins, as this representation provides intuitive information on the number of states involved in the folding process, their populations and pathways of interconversion. We extend here this formalism to the case of the Aβ40 peptide, a 40-residue intrinsically disordered protein fragment associated with Alzheimer’s disease. By using an advanced sampling technique that enables free energy calculations to reach convergence also in the case of highly disordered states of proteins, we provide a precise structural characterization of the free energy landscape of this peptide. We find that such landscape has inverted features with respect to those typical of folded proteins. While the global free energy minimum consists of highly disordered structures, higher free energy regions correspond to a large variety of transiently structured conformations with secondary structure elements arranged in several different manners, and are not separated from each other by sizeable free energy barriers. From this peculiar structure of the free energy landscape we predict that this peptide should become more structured and not only more compact, with increasing temperatures, and we show that this is the case through a series of biophysical measurements. PMID:26498066

  3. Simple Analysis of Deposited Gene Expression Datasets for the Non-Bioinformatician: How to Use GEO for Fibrosis Research.

    PubMed

    Guo, Yang; Townsend, Richard; Tsoi, Lam C

    2017-01-01

    In the past decade, high-throughput techniques have facilitated the "-omics" research. Transcriptomic study, for instance, has advanced our understanding on the expression landscape of different human diseases and cellular mechanisms. The National Center for Biotechnology Center (NCBI) initialized Genetic Expression Omnibus (GEO) to promote the sharing of transcriptomic data to facilitate biomedical research. In this chapter, we will illustrate how to use GEO to search and analyze the public available transcriptomic data, and we will provide easy to follow protocol for researchers to data mine the powerful resources in GEO to retrieve relevant information that can be valuable for fibrosis research.

  4. Time scale bias in erosion rates of glaciated landscapes

    PubMed Central

    Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P.; Fischer, Woodward W.; Avouac, Jean-Philippe

    2016-01-01

    Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time. PMID:27713925

  5. Time scale bias in erosion rates of glaciated landscapes.

    PubMed

    Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P; Fischer, Woodward W; Avouac, Jean-Philippe

    2016-10-01

    Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.

  6. Folding of the 25 residue Abeta(12-36) peptide in TFE/water: temperature-dependent transition from a funneled free-energy landscape to a rugged one.

    PubMed

    Kamiya, Narutoshi; Mitomo, Daisuke; Shea, Joan-Emma; Higo, Junichi

    2007-05-17

    The free-energy landscape of the Alzheimer beta-amyloid peptide Abeta(12-36) in a 40% (v/v) 2,2,2-trifluoroethanol (TFE)/water solution was determined by using multicanonical molecular dynamics simulations. Simulations using this enhanced conformational sampling technique were initiated from a random unfolded polypeptide conformation. Our simulations reliably folded the peptide to the experimental NMR structure, which consists of two linked helices. The shape of the free energy landscape for folding was found to be strongly dependent on temperature: Above 325 K, the overall shape was funnel-like, with the bottom of the funnel coinciding exactly with the NMR structure. Below 325 K, on the other hand, the landscape became increasingly rugged, with the emergence of new conformational clusters connected by low free-energy pathways. Finally, our simulations reveal that water and TFE solvate the polypeptide in different ways: The hydrogen bond formation between TFE and Abeta was enhanced with decreasing temperature, while that between water and Abeta was depressed.

  7. Linkages between benthic macroinvertebrate assemblages and landscape stressors in the US Great Lakes

    EPA Science Inventory

    We used multiple linear regression analysis to investigate relationships between benthic macroinvertebrate assemblages in the nearshore region of the Laurentian Great Lakes and landscape characteristics in adjacent watersheds. Benthic invertebrate data were obtained from the 201...

  8. [Evaluation of view points in forest park based on landscape sensitivity].

    PubMed

    Zhou, Rui; Li, Yue-hui; Hu, Yuan-man; Liu, Miao

    2008-11-01

    Based on topographical characteristics, five factors including comparative slope, comparative distance, mutual visibility, vision probability, and striking degree were chosen to assess the landscape sensitivity of major view points in Houshi National Forest Park. Spatial analysis in GIS was used for exploring the theory and method of landscape sensitivity of view points. The results showed that in the Park, there were totally 23 view points, but none of them reached up to class I. Among the 23 points, 10 were of class II , accounting for 43.5% of the total, 8 were of class III, accounting for 34.8%, and 5 were of classes IV and V, accounting for 21.7%. Around the view points of class II, the landscape should be strictly protected to maintain their natural feature; around the view points of class III, human-made landscape points should be developed according to the natural landscape feature, and wide tourism roads and small-size buildings could be constructed but the style of the buildings should be harmonious with surrounding nature landscape; while around the view points of classes IV and V, large-size multifunctional items and roads could be built to perfect the natural landscape. Through the multi-perspective and quantitative evaluation of landscape sensitivity, this study enriched the theory of landscape visual assessment and landscape apperception, and provided scientific base and direction for the planning and management of forest parks and other tourism areas.

  9. Continental-scale quantification of landscape values using social media data.

    PubMed

    van Zanten, Boris T; Van Berkel, Derek B; Meentemeyer, Ross K; Smith, Jordan W; Tieskens, Koen F; Verburg, Peter H

    2016-11-15

    Individuals, communities, and societies ascribe a diverse array of values to landscapes. These values are shaped by the aesthetic, cultural, and recreational benefits and services provided by those landscapes. However, across the globe, processes such as urbanization, agricultural intensification, and abandonment are threatening landscape integrity, altering the personally meaningful connections people have toward specific places. Existing methods used to study landscape values, such as social surveys, are poorly suited to capture dynamic landscape-scale processes across large geographic extents. Social media data, by comparison, can be used to indirectly measure and identify valuable features of landscapes at a regional, continental, and perhaps even worldwide scale. We evaluate the usefulness of different social media platforms-Panoramio, Flickr, and Instagram-and quantify landscape values at a continental scale. We find Panoramio, Flickr, and Instagram data can be used to quantify landscape values, with features of Instagram being especially suitable due to its relatively large population of users and its functional ability of allowing users to attach personally meaningful comments and hashtags to their uploaded images. Although Panoramio, Flickr, and Instagram have different user profiles, our analysis revealed similar patterns of landscape values across Europe across the three platforms. We also found variables describing accessibility, population density, income, mountainous terrain, or proximity to water explained a significant portion of observed variation across data from the different platforms. Social media data can be used to extend our understanding of how and where individuals ascribe value to landscapes across diverse social, political, and ecological boundaries.

  10. Continental-scale quantification of landscape values using social media data

    PubMed Central

    van Zanten, Boris T.; Van Berkel, Derek B.; Meentemeyer, Ross K.; Smith, Jordan W.; Tieskens, Koen F.

    2016-01-01

    Individuals, communities, and societies ascribe a diverse array of values to landscapes. These values are shaped by the aesthetic, cultural, and recreational benefits and services provided by those landscapes. However, across the globe, processes such as urbanization, agricultural intensification, and abandonment are threatening landscape integrity, altering the personally meaningful connections people have toward specific places. Existing methods used to study landscape values, such as social surveys, are poorly suited to capture dynamic landscape-scale processes across large geographic extents. Social media data, by comparison, can be used to indirectly measure and identify valuable features of landscapes at a regional, continental, and perhaps even worldwide scale. We evaluate the usefulness of different social media platforms—Panoramio, Flickr, and Instagram—and quantify landscape values at a continental scale. We find Panoramio, Flickr, and Instagram data can be used to quantify landscape values, with features of Instagram being especially suitable due to its relatively large population of users and its functional ability of allowing users to attach personally meaningful comments and hashtags to their uploaded images. Although Panoramio, Flickr, and Instagram have different user profiles, our analysis revealed similar patterns of landscape values across Europe across the three platforms. We also found variables describing accessibility, population density, income, mountainous terrain, or proximity to water explained a significant portion of observed variation across data from the different platforms. Social media data can be used to extend our understanding of how and where individuals ascribe value to landscapes across diverse social, political, and ecological boundaries. PMID:27799537

  11. Classification of Farmland Landscape Structure in Multiple Scales

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Cheng, Q.; Li, M.

    2017-12-01

    Farmland is one of the basic terrestrial resources that support the development and survival of human beings and thus plays a crucial role in the national security of every country. Pattern change is the intuitively spatial representation of the scale and quality variation of farmland. Through the characteristic development of spatial shapes as well as through changes in system structures, functions and so on, farmland landscape patterns may indicate the landscape health level. Currently, it is still difficult to perform positioning analyses of landscape pattern changes that reflect the landscape structure variations of farmland with an index model. Depending on a number of spatial properties such as locations and adjacency relations, distance decay, fringe effect, and on the model of patch-corridor-matrix that is applied, this study defines a type system of farmland landscape structure on the national, provincial, and city levels. According to such a definition, the classification model of farmland landscape-structure type at the pixel scale is developed and validated based on mathematical-morphology concepts and on spatial-analysis methods. Then, the laws that govern farmland landscape-pattern change in multiple scales are analyzed from the perspectives of spatial heterogeneity, spatio-temporal evolution, and function transformation. The result shows that the classification model of farmland landscape-structure type can reflect farmland landscape-pattern change and its effects on farmland production function. Moreover, farmland landscape change in different scales displayed significant disparity in zonality, both within specific regions and in urban-rural areas.

  12. [Dynamic changes of landscape pattern and hemeroby in Ximen Island wetland, Zhejiang Province, China].

    PubMed

    Xiao, Cui; Xie, Xue-Fen; Wu, Tao; Jiang, Guo-Jun; Bian, Hua-Jing; Xu, Wei

    2014-11-01

    Abstract: The hemeroby type classification system of Ximen Island wetland of Zhejiang Province was established based on the multiple datasets: SOPT-5 image data with a spatial resolution of 5 m in 2007 and 2010, its wetland land cover and land use status, the National Land Use Classification (on trail), and sea area use classification of marine industry standards as well as remote sensing data features. Meanwhile, the dynamic relationship between the landscape pattern and the degree of hemeroby in Ximen Island was investigated with the landscape indices and hemeroby index (HI) derived from the landscape pattern index and GIS spatial analysis. The results showed that the wetland landscape spatial heterogeneity, fragmentation and dominance index dropped, and the landscape shape index complexity was low. The human disturbance center developed from a dispersion type to a concentration type. The landscape type of the disturbance center was bare land and settlement. The HI rose up from the sea to the land. Settlement, wharf and traffic land had the highest HI. The HI of the mudflat cultivation, mudflats and raft-cultivation dramatically changed. Marine-terrestrial interlaced zone showed a low total HI with unstable characteristics. The number of patches declined of undisturbed, partially disturbed and completely disturbed landscapes. Mean patch areas of partially disturbed and completely disturbed landscapes increased, and that of the undisturbed decreased. Mean shape index of the undisturbed landscape decreased, while the partially disturbed and completely disturbed landscapes showed a trend of shape complication.

  13. The Impacts of Spatiotemporal Landscape Changes on Water Quality in Shenzhen, China

    PubMed Central

    Liu, Zhenhuan; Yang, Haiyan

    2018-01-01

    The urban landscape in China has changed rapidly over the past four decades, which has led to various environmental consequences, such as water quality degradation at the regional scale. To improve water restoration strategies and policies, this study assessed the relationship between water quality and landscape change in Shenzhen, China, using panel regression analysis. The results show that decreases in natural and semi-natural landscape compositions have had significant negative effects on water quality. Landscape composition and configuration changes accounted for 39–58% of the variation in regional water quality degradation. Additionally, landscape fragmentation indices, such as patch density (PD) and the number of patches (NP), are important indicators of the drivers of water quality degradation. PD accounted for 2.03–5.44% of the variability in water quality, while NP accounted for −1.63% to −4.98% of the variability. These results indicate that reducing landscape fragmentation and enhancing natural landscape composition at the watershed scale are vital to improving regional water quality. The study findings suggest that urban landscape optimization is a promising strategy for mitigating urban water quality degradation, and the results can be used in policy making for the sustainable development of the hydrological environment in rapidly urbanizing areas. PMID:29786672

  14. The Impacts of Spatiotemporal Landscape Changes on Water Quality in Shenzhen, China.

    PubMed

    Liu, Zhenhuan; Yang, Haiyan

    2018-05-22

    The urban landscape in China has changed rapidly over the past four decades, which has led to various environmental consequences, such as water quality degradation at the regional scale. To improve water restoration strategies and policies, this study assessed the relationship between water quality and landscape change in Shenzhen, China, using panel regression analysis. The results show that decreases in natural and semi-natural landscape compositions have had significant negative effects on water quality. Landscape composition and configuration changes accounted for 39⁻58% of the variation in regional water quality degradation. Additionally, landscape fragmentation indices, such as patch density (PD) and the number of patches (NP), are important indicators of the drivers of water quality degradation. PD accounted for 2.03⁻5.44% of the variability in water quality, while NP accounted for -1.63% to -4.98% of the variability. These results indicate that reducing landscape fragmentation and enhancing natural landscape composition at the watershed scale are vital to improving regional water quality. The study findings suggest that urban landscape optimization is a promising strategy for mitigating urban water quality degradation, and the results can be used in policy making for the sustainable development of the hydrological environment in rapidly urbanizing areas.

  15. Self-organization in irregular landscapes: Detecting autogenic interactions from field data using descriptive statistics and dynamical systems theory

    NASA Astrophysics Data System (ADS)

    Larsen, L.; Watts, D.; Khurana, A.; Anderson, J. L.; Xu, C.; Merritts, D. J.

    2015-12-01

    The classic signal of self-organization in nature is pattern formation. However, the interactions and feedbacks that organize depositional landscapes do not always result in regular or fractal patterns. How might we detect their existence and effects in these "irregular" landscapes? Emergent landscapes such as newly forming deltaic marshes or some restoration sites provide opportunities to study the autogenic processes that organize landscapes and their physical signatures. Here we describe a quest to understand autogenic vs. allogenic controls on landscape evolution in Big Spring Run, PA, a landscape undergoing restoration from bare-soil conditions to a target wet meadow landscape. The contemporary motivation for asking questions about autogenic vs. allogenic controls is to evaluate how important initial conditions or environmental controls may be for the attainment of management objectives. However, these questions can also inform interpretation of the sedimentary record by enabling researchers to separate signals that may have arisen through self-organization processes from those resulting from environmental perturbations. Over three years at Big Spring Run, we mapped the dynamic evolution of floodplain vegetation communities and distributions of abiotic variables and topography. We used principal component analysis and transition probability analysis to detect associative interactions between vegetation and geomorphic variables and convergent cross-mapping on lidar data to detect causal interactions between biomass and topography. Exploratory statistics revealed that plant communities with distinct morphologies exerted control on landscape evolution through stress divergence (i.e., channel initiation) and promoting the accumulation of fine sediment in channels. Together, these communities participated in a negative feedback that maintains low energy and multiple channels. Because of the spatially explicit nature of this feedback, causal interactions could not be uncovered from convergent cross-mapping with this limited dataset, serving as a reminder that spatially explicit approaches for revealing causality are needed to reconstruct self-organizing mechanisms from data.

  16. Two states or not two states: Single-molecule folding studies of protein L

    NASA Astrophysics Data System (ADS)

    Aviram, Haim Yuval; Pirchi, Menahem; Barak, Yoav; Riven, Inbal; Haran, Gilad

    2018-03-01

    Experimental tools of increasing sophistication have been employed in recent years to study protein folding and misfolding. Folding is considered a complex process, and one way to address it is by studying small proteins, which seemingly possess a simple energy landscape with essentially only two stable states, either folded or unfolded. The B1-IgG binding domain of protein L (PL) is considered a model two-state folder, based on measurements using a wide range of experimental techniques. We applied single-molecule fluorescence resonance energy transfer (FRET) spectroscopy in conjunction with a hidden Markov model analysis to fully characterize the energy landscape of PL and to extract the kinetic properties of individual molecules of the protein. Surprisingly, our studies revealed the existence of a third state, hidden under the two-state behavior of PL due to its small population, ˜7%. We propose that this minority intermediate involves partial unfolding of the two C-terminal β strands of PL. Our work demonstrates that single-molecule FRET spectroscopy can be a powerful tool for a comprehensive description of the folding dynamics of proteins, capable of detecting and characterizing relatively rare metastable states that are difficult to observe in ensemble studies.

  17. Integrated analysis of RNA-binding protein complexes using in vitro selection and high-throughput sequencing and sequence specificity landscapes (SEQRS).

    PubMed

    Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T

    2017-04-15

    RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Multi-Scale Network Landscape of Collaboration.

    PubMed

    Bae, Arram; Park, Doheum; Ahn, Yong-Yeol; Park, Juyong

    2016-01-01

    Propelled by the increasing availability of large-scale high-quality data, advanced data modeling and analysis techniques are enabling many novel and significant scientific understanding of a wide range of complex social, natural, and technological systems. These developments also provide opportunities for studying cultural systems and phenomena--which can be said to refer to all products of human creativity and way of life. An important characteristic of a cultural product is that it does not exist in isolation from others, but forms an intricate web of connections on many levels. In the creation and dissemination of cultural products and artworks in particular, collaboration and communication of ideas play an essential role, which can be captured in the heterogeneous network of the creators and practitioners of art. In this paper we propose novel methods to analyze and uncover meaningful patterns from such a network using the network of western classical musicians constructed from a large-scale comprehensive Compact Disc recordings data. We characterize the complex patterns in the network landscape of collaboration between musicians across multiple scales ranging from the macroscopic to the mesoscopic and microscopic that represent the diversity of cultural styles and the individuality of the artists.

  19. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, M.; Lewis, M.; Bosch, D.; Giraldo, Mario; Yamamoto, K.; Sullivan, D.; Kincaid, R.; Luna, R.; Allam, G.; Kvien, Craig; Williams, M.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  20. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, Michael P.; Lewis, Mark (David); Bosch, David D.; Giraldo, Mario; Yamamoto, Kristina H.; Sullivan, Dana G.; Kincaid, Russell; Luna, Ronaldo; Allam, Gopala Krishna; Kvien, Craig; Williams, Michael S.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  1. A New View of Dynamic River Networks

    NASA Astrophysics Data System (ADS)

    Perron, J. T.; Willett, S.; McCoy, S. W.

    2014-12-01

    River networks are the main conduits that transport water, sediment, and nutrients from continental interiors to the oceans. They also shape topography as they erode through bedrock. These hierarchical networks are dynamic: there are numerous examples of apparent changes in the topology of river networks through geologic time. But these examples are geographically scattered, the evidence can be ambiguous, and the mechanisms that drive changes in river networks are poorly understood. This makes it difficult to assess how pervasive river network reorganization is, how it operates, and how the interlocking river basins that compose a given landscape are changing through time. Recent progress has improved the situation. We describe three developments that have dramatically advanced our understanding of dynamic river networks. First, new topographic, geophysical and geochronological measurement techniques are revealing the rate and extent of river network adjustment. Second, laboratory experiments and computational models are clarifying how river networks respond to tectonic and climatic perturbations at scales ranging from local to continental. Third, spatial analysis of genetic data is exposing links between landscape evolution, biological evolution, and the development of biodiversity. We highlight key problems that remain unsolved, and suggest ways to build on recent advances that will bring dynamic river networks into even sharper focus.

  2. Analysis of Land-Use Effects on Landscape Patterns and Biological Diversity in Pacific North Forests: 1972-1991

    NASA Technical Reports Server (NTRS)

    Wallin, David O.; Cohen, Warren B.; Bradshaw, G. A.; Spies, T. A.; Hansen, A.; Huff, M. H.; Lehmkuhl, J. F.; Raphael, M. G.; Ripple, W. J.

    1998-01-01

    While there is widespread recognition of the importance of preserving biological diversity there is considerable uncertainty about how to map current patterns of diversity and monitor changes through time. Ground-based approaches are impractical for examining regional patterns of biological diversity, for monitoring change, and they may actually overlook important higher-order phenomena. Thus, there is a critical need for innovative techniques to examine land-use effects on biological diversity at the landscape and regional scales. In this project, we have used satellite-based remote sensing to examine land-use effects on forest ecosystems in the Pacific NorthWest region (PNW) of the U.S.A. Rates and patterns of forest change throughout the region were quantified for the period from 1972 to 1993. This information was then used to map changes in the abundance and distribution of potential habitat for selected vertebrate species. The results of this project will be useful for identifying "keystone" stands that are important in maintaining habitat connectivity at the regional scale and for evaluating the impact of future land-use on vertebrate diversity throughout the region. The approaches developed here will also be useful in other forested regions throughout the world.

  3. The Multi-Scale Network Landscape of Collaboration

    PubMed Central

    Ahn, Yong-Yeol; Park, Juyong

    2016-01-01

    Propelled by the increasing availability of large-scale high-quality data, advanced data modeling and analysis techniques are enabling many novel and significant scientific understanding of a wide range of complex social, natural, and technological systems. These developments also provide opportunities for studying cultural systems and phenomena—which can be said to refer to all products of human creativity and way of life. An important characteristic of a cultural product is that it does not exist in isolation from others, but forms an intricate web of connections on many levels. In the creation and dissemination of cultural products and artworks in particular, collaboration and communication of ideas play an essential role, which can be captured in the heterogeneous network of the creators and practitioners of art. In this paper we propose novel methods to analyze and uncover meaningful patterns from such a network using the network of western classical musicians constructed from a large-scale comprehensive Compact Disc recordings data. We characterize the complex patterns in the network landscape of collaboration between musicians across multiple scales ranging from the macroscopic to the mesoscopic and microscopic that represent the diversity of cultural styles and the individuality of the artists. PMID:26990088

  4. Integrating landscape system and meta-ecosystem frameworks to advance the understanding of ecosystem function in heterogeneous landscapes: An analysis on the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan.

    PubMed

    Yang, Haile; Chen, Jiakuan

    2018-01-01

    The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems.

  5. Integrating landscape system and meta-ecosystem frameworks to advance the understanding of ecosystem function in heterogeneous landscapes: An analysis on the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan

    PubMed Central

    Chen, Jiakuan

    2018-01-01

    The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems. PMID:29415066

  6. Cognitive attributes and aesthetic preferences in assessment and differentiation of landscapes.

    PubMed

    Sevenant, Marjanne; Antrop, Marc

    2009-07-01

    The increasing pace and scale of landscape changes involve objective measurements in order to estimate the effects of changes on people's landscape preferences in a meaningful way. In the literature, some attempts have been made to provide a more conceptual base related to landscape preferences. These concepts and their indicators need to be tested empirically in different contexts and landscape types. In the present study, different items related to theoretical concepts of both aesthetic preference and cognitive rating were examined. They were combined in an in situ questionnaire, which was conducted among undergraduate students in geography during two different field excursions. Stimuli consisted of 11 landscape vistas selected during the excursions. All vistas represent rather rural landscapes but they vary with regard to relief, degree of urbanisation, and degree of agricultural land use. Statistical analysis of all data yielded significant correlations between aesthetic and cognitive ratings. However, these correlations did not appear to be very strong. When considering landscape vistas separately, the relations between all cognitive ratings seemed to vary. Further, not all cognitive aspects had an equal predicting value for aesthetic preference. Moreover, this predicting value appeared to vary between different landscape vistas. The groups of interrelated cognitive aspects could not be associated consistently with theoretical concepts. The results demonstrated the inconsistencies existing between the contents of the theoretical concepts and the indicators found within the landscape. The findings argued for the necessity to distinguish between different ratings and landscape types instead of using unitary preference measures and generalized data when studying landscape preference.

  7. Status analysis and vision on urban landscape planning-take Chengdu city as an example

    NASA Astrophysics Data System (ADS)

    Liu, Hanyun

    2017-10-01

    Appropriate urban planning can forge a proper and safe city framework so as to achieve safety, health, convenience and comfort. A personalized urban planning is a name card of city development which can demonstrate the unique culture and function of a city. This essay concludes the concept and principles of urban landscape planning; takes the status of landscape planning in Chengdu City as an object, concludes its merits and demerits and offers solutions to the weak points; looks into the future of urban landscape planning so as to offer theoretical support for the development of an ecologically and environmentally friendly low-carbon city.

  8. Honey bee success predicted by landscape composition in Ohio, USA.

    PubMed

    Sponsler, D B; Johnson, R M

    2015-01-01

    Foraging honey bees (Apis mellifera L.) can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.

  9. Thresholds for soil cover and weathering in mountainous landscapes

    NASA Astrophysics Data System (ADS)

    Dixon, Jean; Benjaram, Sarah

    2017-04-01

    The patterns of soil formation, weathering, and erosion shape terrestrial landscapes, forming the foundation on which ecosystems and human civilizations are built. Several fundamental questions remain regarding how soils evolve, especially in mountainous landscapes where tectonics and climate exert complex forcings on erosion and weathering. In these systems, quantifying weathering is made difficult by the fact that soil cover is discontinuous and heterogeneous. Therefore, studies that attempt to measure soil weathering in such systems face a difficult bias in measurements towards more weathered portions of the landscape. Here, we explore current understanding of erosion-weathering feedbacks, and present new data from mountain systems in Western Montana. Using field mapping, analysis of LiDAR and remotely sensed land-cover data, and soil chemical analyses, we measure soil cover and surface weathering intensity across multiple spatial scales, from the individual soil profile to a landscape perspective. Our data suggest that local emergence of bedrock cover at the surface marks a landscape transition from supply to kinetic weathering regimes in these systems, and highlights the importance of characterizing complex critical zone architecture in mountain landscapes. This work provides new insight into how landscape morphology and erosion may drive important thresholds for soil cover and weathering.

  10. The impact of industrial oil development on a protected area landscape: A case study on human population growth and landscape level change in Murchison Falls Conservation Area, Uganda.

    NASA Astrophysics Data System (ADS)

    Dowhaniuk, Nicholas; Hartter, Joel; Congalton, Russell G.; Palace, Michael W.; Ryan, Sadie J.

    2016-04-01

    Protected areas in Sub-Saharan Africa are sanctuaries for rich biodiversity and are important economic engines for African nations, but they are becoming increasingly threatened by discoveries of mineral deposits within and nearby their boundaries. In 2006, viable oil reserves were discovered in Murchison Falls Conservation Area (MFCA) in northern Uganda. Exploratory and appraisal activities concluded in 2014, and production is expected to begin in 2016. The oil development is associated with a substantial increase in human population outside MFCA, with people seeking jobs, land, and economic opportunity. Concomitant with this change is increased truck traffic, a sprawling and denser road network, and infrastructure within the park, which could have large impacts on both the flora and fauna. We examined the broader protected area landscape and the potential feedbacks from resource development on the ecosystem and local livelihoods. Our analysis combines a land cover analysis using Object Based Image Analysis of Landsat data (2002 and 2014), migration patterns and population change (1959-2014), and qualitative interview data. Our results suggest that most of the larger-scale impacts on the landscape and people are occurring in the western and northern sections, both inside and outside of the park. Additionally, oil development is not the only factor in the region influencing population growth and landscape change. Post conflict regrowth in the north, sugarcane production in the south, and migration to this region from conflict-ridden neighboring countries are also playing a vital role in human migration shaping the MFCA Landscape. Understanding the social and environmental changes and impacts in the MFCA and its surrounding areas will add to limited literature on the impacts of resource extraction on local, subsistence communities and landscape level change, which will be important as access and pressure for oil and minerals within protected areas continues to rise.

  11. Paternity analysis of pollen-mediated gene flow for Fraxinus excelsior L. in a chronically fragmented landscape.

    PubMed

    Bacles, C F E; Ennos, R A

    2008-10-01

    Paternity analysis based on microsatellite marker genotyping was used to infer contemporary genetic connectivity by pollen of three population remnants of the wind-pollinated, wind-dispersed tree Fraxinus excelsior, in a deforested Scottish landscape. By deterministically accounting for genotyping error and comparing a range of assignment methods, individual-based paternity assignments were used to derive population-level estimates of gene flow. Pollen immigration into a 300 ha landscape represents between 43 and 68% of effective pollination, mostly depending on assignment method. Individual male reproductive success is unequal, with 31 of 48 trees fertilizing one seed or more, but only three trees fertilizing more than ten seeds. Spatial analysis suggests a fat-tailed pollen dispersal curve with 85% of detected pollination occurring within 100 m, and 15% spreading between 300 and 1900 m from the source. Identification of immigrating pollen sourced from two neighbouring remnants indicates further effective dispersal at 2900 m. Pollen exchange among remnants is driven by population size rather than geographic distance, with larger remnants acting predominantly as pollen donors, and smaller remnants as pollen recipients. Enhanced wind dispersal of pollen in a barren landscape ensures that the seed produced within the catchment includes genetic material from a wide geographic area. However, gene flow estimates based on analysis of non-dispersed seeds were shown to underestimate realized gene immigration into the remnants by a factor of two suggesting that predictive landscape conservation requires integrated estimates of post-recruitment gene flow occurring via both pollen and seed.

  12. Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces

    DTIC Science & Technology

    2011-02-28

    Final Report for AFOSR #FA9550-08-1-0422 Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces August 1, 2008 to November 30...focused on developing high level general purpose algorithms , such as Tabu Search and Genetic Algorithms . However, understanding of when and why these... algorithms perform well still lags. Our project extended the theory of certain combi- natorial optimization problems to develop analytical

  13. Cost-benefit analysis for biological control programs that target insects pests of eucalypts in urban landscapes of California

    Treesearch

    T.D. Paine; J.G. Millar; L.M. Hanks; J. Gould; Q. Wang; K. Daane; D.L. Dahlsten; E.G. McPherson

    2015-01-01

    As well as being planted for wind breaks, landscape trees, and fuel wood, eucalypts are also widely used as urban street trees in California. They now are besieged by exotic insect herbivores of four different feeding guilds. The objective of the current analysis was to determine the return on investment from biological control programs that have targeted these pests....

  14. Features of the method of large-scale paleolandscape reconstructions

    NASA Astrophysics Data System (ADS)

    Nizovtsev, Vyacheslav; Erman, Natalia; Graves, Irina

    2017-04-01

    The method of paleolandscape reconstructions was tested in the key area of the basin of the Central Dubna, located at the junction of the Taldom and Sergiev Posad districts of the Moscow region. A series of maps was created which shows paleoreconstructions of the original (indigenous) living environment of initial settlers during main time periods of the Holocene age and features of human interaction with landscapes at the early stages of economic development of the territory (in the early and middle Holocene). The sequence of these works is as follows. 1. Comprehensive analysis of topographic maps of different scales and aerial and satellite images, stock materials of geological and hydrological surveys and prospecting of peat deposits, archaeological evidence on ancient settlements, palynological and osteological analysis, analysis of complex landscape and archaeological studies. 2. Mapping of factual material and analyzing of the spatial distribution of archaeological sites were performed. 3. Running of a large-scale field landscape mapping (sample areas) and compiling of maps of the modern landscape structure. On this basis, edaphic properties of the main types of natural boundaries were analyzed and their resource base was determined. 4. Reconstruction of lake-river system during the main periods of the Holocene. The boundaries of restored paleolakes were determined based on power and territorial confinement of decay ooze. 5. On the basis of landscape and edaphic method the actual paleolandscape reconstructions for the main periods of the Holocene were performed. During the reconstructions of the original, indigenous flora we relied on data of palynological studies conducted on the studied area or in similar landscape conditions. 6. The result was a retrospective analysis and periodization of the settlement process, economic development and the formation of the first anthropogenically transformed landscape complexes. The reconstruction of the dynamics of the development of landscapes and lake system in the early and middle Holocene in the middle reaches of the river Dubna helped restore paleo-ecological picture and nature use system in the studied area in the Mesolithic, Neolithic and Bronze Age. The settlements, existing during several eras, are located mostly at the confluence of rivers or streams in a lake or the main river, i.e., points of the highest concentration of fish, with good overview of areas and existing water barrier against predators. Therefore, monuments of the Mesolithic and Neolithic are mainly located in dense groups. In the Bronze Age there is a transition to a producing economy - floodplain cattle breeding. The monuments of the Bronze Age, and not just settlements, were scattered farther away over the territory, in contrast to the monuments of previous eras. Apparently, Fatyanovo people, by virtue of their producing economy, were less tied to a particular landscape complexes and the resource base was crucial for cultures of appropriating economy (Mesolithic, Neolithic). Based on the analysis of open settlement locations, we can conclude that the studied settlements were clearly incorporated into the landscape conditions needed for settlers' living. The work is performed under project № 17-05-00662of the Russian Foundation for Basic Research

  15. Hydrologic and landscape database for the Cache and White River National Wildlife Refuges and contributing watersheds in Arkansas, Missouri, and Oklahoma

    USGS Publications Warehouse

    Buell, Gary R.; Wehmeyer, Loren L.; Calhoun, Daniel L.

    2012-01-01

    A hydrologic and landscape database was developed by the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, for the Cache River and White River National Wildlife Refuges and their contributing watersheds in Arkansas, Missouri, and Oklahoma. The database is composed of a set of ASCII files, Microsoft Access® files, Microsoft Excel® files, an Environmental Systems Research Institute (ESRI) ArcGIS® geodatabase, ESRI ArcGRID® raster datasets, and an ESRI ArcReader® published map. The database was developed as an assessment and evaluation tool to use in examining refuge-specific hydrologic patterns and trends as related to water availability for refuge ecosystems, habitats, and target species; and includes hydrologic time-series data, statistics, and hydroecological metrics that can be used to assess refuge hydrologic conditions and the availability of aquatic and riparian habitat. Landscape data that describe the refuge physiographic setting and the locations of hydrologic-data collection stations are also included in the database. Categories of landscape data include land cover, soil hydrologic characteristics, physiographic features, geographic and hydrographic boundaries, hydrographic features, regional runoff estimates, and gaging-station locations. The database geographic extent covers three hydrologic subregions—the Lower Mississippi–St Francis (0802), the Upper White (1101), and the Lower Arkansas (1111)—within which human activities, climatic variation, and hydrologic processes can potentially affect the hydrologic regime of the refuges and adjacent areas. Database construction has been automated to facilitate periodic updates with new data. The database report (1) serves as a user guide for the database, (2) describes the data-collection, data-reduction, and data-analysis methods used to construct the database, (3) provides a statistical and graphical description of the database, and (4) provides detailed information on the development of analytical techniques designed to assess water availability for ecological needs.

  16. Variational and PDE-Based Methods for Big Data Analysis, Classification and Image Processing Using Graphs

    DTIC Science & Technology

    2015-01-01

    explain the accuracy and speed increase. Exploring the underlying connections of the energy evolution of these methods and the energy landscape for the...unwanted trivial global minimizers from the energy landscape . Note that the second eigenvector of the Laplacian already provides a solution to a cut...von Brecht. Convergence and energy landscape for Cheeger cut clustering. Advances in Neural Information Processing Systems, 25:1394– 1402, 2012. [13] X

  17. FRAGMENTATION OF CONTINENTAL UNITES STATES FORESTS

    EPA Science Inventory

    We report a multiple-scale analysis of forest fragmentation based on 30-m land-cover maps for the conterminous United States. Each 0.09-ha unit of forest was classified according to fragmentation indices measured within the surrounding landscape, for five landscape sizes from 2....

  18. Analysis of Alaskan burn severity patterns using remotely sensed data

    USGS Publications Warehouse

    Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.

    2007-01-01

    Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.

  19. Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome

    PubMed Central

    Whitford, Paul C.; Blanchard, Scott C.; Cate, Jamie H. D.; Sanbonmatsu, Karissa Y.

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states. PMID:23555233

  20. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.

    PubMed

    Whitford, Paul C; Blanchard, Scott C; Cate, Jamie H D; Sanbonmatsu, Karissa Y

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states.

  1. Evaluating realized seed dispersal across fragmented tropical landscapes: a two-fold approach using parentage analysis and the neighbourhood model.

    PubMed

    Ismail, Sascha A; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G; Uma Shaanker, Ramanan; Kettle, Chris J

    2017-05-01

    Despite the importance of seed dispersal for survival of plant species in fragmented landscapes, data on seed dispersal at landscape scales remain sparse. Effective seed dispersal among fragments determines recolonization and plant species persistence in such landscapes. We present the first large-scale (216-km 2 ) direct estimates of realized seed dispersal of a high-value timber tree (Dysoxylum malabaricum) across an agro-forest landscape in the Western Ghats, India. Based upon an exhaustive inventory of adult trees and a sample of 488 seedlings all genotyped at 10 microsatellite loci, we estimated realized seed dispersal using parentage analysis and the neighbourhood model. Our estimates found that most realized seed dispersal was within 200 m, which is insufficient to effectively bridge the distances between forest patches. We conclude that using mobility of putative animal dispersers can be misleading when estimating tropical tree species vulnerability to habitat fragmentation. This raises serious concerns about the potential of many tropical trees to recolonize isolated forest patches where high-value tree species have already been removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Dynamics of coupled human-landscape systems

    NASA Astrophysics Data System (ADS)

    Werner, B. T.; McNamara, D. E.

    2007-11-01

    A preliminary dynamical analysis of landscapes and humans as hierarchical complex systems suggests that strong coupling between the two that spreads to become regionally or globally pervasive should be focused at multi-year to decadal time scales. At these scales, landscape dynamics is dominated by water, sediment and biological routing mediated by fluvial, oceanic, atmospheric processes and human dynamics is dominated by simplifying, profit-maximizing market forces and political action based on projection of economic effect. Also at these scales, landscapes impact humans through patterns of natural disasters and trends such as sea level rise; humans impact landscapes by the effect of economic activity and changes meant to mitigate natural disasters and longer term trends. Based on this analysis, human-landscape coupled systems can be modeled using heterogeneous agents employing prediction models to determine actions to represent the nonlinear behavior of economic and political systems and rule-based routing algorithms to represent landscape processes. A cellular model for the development of New Orleans illustrates this approach, with routing algorithms for river and hurricane-storm surge determining flood extent, five markets (home, labor, hotel, tourism and port services) connecting seven types of economic agents (home buyers/laborers, home developers, hotel owners/ employers, hotel developers, tourists, port services developer and port services owners/employers), building of levees or a river spillway by political agents and damage to homes, hotels or port services within cells determined by the passage or depth of flood waters. The model reproduces historical aspects of New Orleans economic development and levee construction and the filtering of frequent small-scale floods at the expense of large disasters.

  3. Spatiotemporal Analysis of Urban Land Cover Changes in Kigali, Rwanda Using Multitemporal Landsat Data and Landscape Metrics

    NASA Astrophysics Data System (ADS)

    Mugiraneza, T.; Haas, J.; Ban, Y.

    2017-11-01

    Mapping urbanization and ensuing environmental impacts using satellite data combined with landscape metrics has become a hot research topic. The objectives of the study are to analyze the spatio-temporal evolution of urbanization patterns of Kigali, Rwanda over the last three decades (from 1984 to 2015) using multitemporal Landsat data and to assess the associated environmental impact using landscape metrics. Landsat images, Normalized Difference Vegetation Index (NDVI), Grey Level Co-occurrence Matrix (GLCM) variance texture and digital elevation model (DEM) data were classified using a support vector machine (SVM). Eight landscape indices were derived from classified images for urbanization environment impact assessment. Seven land cover classes were derived with an overall accuracy exceeding 88 % with Kappa Coefficients around 0.8. As most prominent changes, cropland was reduced considerably in favour of built-up areas that increased from 2,349 ha to 11,579 ha between 1984 and 2015. During those 31 years, the increased number of patches in most land cover classes illustrated landscape fragmentation, especially for forest. The landscape configuration indices demonstrate that in general the land cover pattern remained stable for cropland but it was highly changed in built-up areas. Satellite-based analysis and quantification of urbanization and its effects using landscape metrics are found to be interesting for grassroots and provide a cost-effective method for urban information production. This information can be used for e.g. potential design and implementation of early warning systems that cater for urbanization effects.

  4. Fifty-year spatiotemporal analysis of landscape changes in the Mont Saint-Hilaire UNESCO Biosphere Reserve (Quebec, Canada).

    PubMed

    Béliveau, Marc; Germain, Daniel; Ianăş, Ana-Neli

    2017-05-01

    Diachronic analysis with a GIS-based classification of land-use changes based on aerial photographs, orthophotos, topographic maps, geotechnical reports, urban plans, and using landscape metrics has permitted insight into the driving forces responsible for landscape fragmentation in the Mont Saint-Hilaire (MSH) Biosphere Reserve over the period 1958-2015. Although the occurrence of exogenous factors, such as extreme weather and fires, can have a significant influence on the fragmentation of the territory in time and space, the accelerated development of the built environment (+470%) is nevertheless found to be primarily responsible for landscape fragmentation and the loss of areas formerly occupied by orchards, agriculture, and woodlands. The landscape metrics used corroborate these results, with a simplification of the shape of polygons, and once again reveal the difficulties of harmonizing different land uses. MSH has become somewhat of a forest island in a sea of residential development and agriculture. To counter this isolation of fragmented habitat components, forest corridors have been proposed and developed for the Biosphere Reserve and particularly for the core area. Two corridors, to the north and south, are used to connect the protected area and other wooded areas at the regional scale, in order to promote genetic exchange between populations of various species. In that regard, the forest buffer zone around the hill continues to play a key role and has great ecological value for species and ecological preservation and conservation. However, appropriate management and landscape preservation actions should recognize and focus on landscape composition and the associated geographical configuration.

  5. Analysis on Key Points of Construction and Management of Municipal Landscape Engineering

    NASA Astrophysics Data System (ADS)

    Liang, Mingxia; Fei, Cheng

    2018-02-01

    At present, China has made great efforts to promote the construction of ecological civilization and promote the development of ecological protection and environmental construction. It has important practical significance to maintain the ecological balance and environmental quality of our country. Especially with the gradual improvement in people’s awareness of environmental protection, so that the green of the city also put forward higher requirements at the same time with the rising of the level of urbanization. In the process of urban landscape construction, the rational planning of urban landscaping involves a lot of subject knowledge. In the green process, we should fully consider the system of urban development and construction in China, based on the design of urban development and long-term planning of the landscaping project. In addition, we must also consider the traditional layout of the city area and the physical and geographical situation and so on, to enhance the objective and scientific nature of urban landscape. Therefore, it is of great practical significance to ensure the quality of landscaping in the effective management of municipal landscape engineering.

  6. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes

    PubMed Central

    Raudsepp-Hearne, C.; Peterson, G. D.; Bennett, E. M.

    2010-01-01

    A key challenge of ecosystem management is determining how to manage multiple ecosystem services across landscapes. Enhancing important provisioning ecosystem services, such as food and timber, often leads to tradeoffs between regulating and cultural ecosystem services, such as nutrient cycling, flood protection, and tourism. We developed a framework for analyzing the provision of multiple ecosystem services across landscapes and present an empirical demonstration of ecosystem service bundles, sets of services that appear together repeatedly. Ecosystem service bundles were identified by analyzing the spatial patterns of 12 ecosystem services in a mixed-use landscape consisting of 137 municipalities in Quebec, Canada. We identified six types of ecosystem service bundles and were able to link these bundles to areas on the landscape characterized by distinct social–ecological dynamics. Our results show landscape-scale tradeoffs between provisioning and almost all regulating and cultural ecosystem services, and they show that a greater diversity of ecosystem services is positively correlated with the provision of regulating ecosystem services. Ecosystem service-bundle analysis can identify areas on a landscape where ecosystem management has produced exceptionally desirable or undesirable sets of ecosystem services. PMID:20194739

  7. [Dynamic evolution of wetland landscape spatial pattern in Nansi Lake, China].

    PubMed

    Chen, Zhi Cong; Xie, Xiao Ping; Bai, Mao Wei

    2016-10-01

    Based on Landsat images in 1987, 2002 and 2014 from Nansi Lake located in Shandong Province, landscape pattern index, dynamic index, landscape gradient and gridding model were used for analysis of the wetland distribution in the lake. The results showed that the landscape contagion index and aggregation index gradually decreased from 1987 to 2014, while the landscape diversity index and evenness index gradually increased. The distribution of landscape area was more uniform while its patterns trended to be fragmented. Human activities impacted Nansi wetland distribution and the disturbance presented an increasing trend. The total area of Nansi wetland gradually increased during the study period. The area of lake first decreased then increased, and the area reached the maximum in 2014. The area of the ponds along the riparian zone had increased gradually, but the increasing speed slowed down. The area of the rivers remained stable, while the area of the swamps decreased continually during the period. The change of landscape pattern of Nansi Lake wetland mainly resulted from agricultural activities, establishment of Nansi Lake Natural Reserve, and the South-to-North Water Diversion Project.

  8. Darwin's wind hypothesis: does it work for plant dispersal in fragmented habitats?

    PubMed

    Riba, Miquel; Mayol, Maria; Giles, Barbara E; Ronce, Ophélie; Imbert, Eric; van der Velde, Marco; Chauvet, Stéphanie; Ericson, Lars; Bijlsma, R; Vosman, Ben; Smulders, M J M; Olivieri, Isabelle

    2009-08-01

    Using the wind-dispersed plant Mycelis muralis, we examined how landscape fragmentation affects variation in seed traits contributing to dispersal. Inverse terminal velocity (Vt(-1)) of field-collected achenes was used as a proxy for individual seed dispersal ability. We related this measure to different metrics of landscape connectivity, at two spatial scales: in a detailed analysis of eight landscapes in Spain and along a latitudinal gradient using 29 landscapes across three European regions. In the highly patchy Spanish landscapes, seed Vt(-1)increased significantly with increasing connectivity. A common garden experiment suggested that differences in Vt(-1) may be in part genetically based. The Vt(-1) was also found to increase with landscape occupancy, a coarser measure of connectivity, on a much broader (European) scale. Finally, Vt(-1)was found to increase along a south-north latitudinal gradient. Our results for M. muralis are consistent with 'Darwin's wind dispersal hypothesis' that high cost of dispersal may select for lower dispersal ability in fragmented landscapes, as well as with the 'leading edge hypothesis' that most recently colonized populations harbour more dispersive phenotypes.

  9. Navigating the Interface Between Landscape Genetics and Landscape Genomics.

    PubMed

    Storfer, Andrew; Patton, Austin; Fraik, Alexandra K

    2018-01-01

    As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used.

  10. Navigating the Interface Between Landscape Genetics and Landscape Genomics

    PubMed Central

    Storfer, Andrew; Patton, Austin; Fraik, Alexandra K.

    2018-01-01

    As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used. PMID:29593776

  11. Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes.

    PubMed

    Avelino, Jacques; Romero-Gurdián, Alí; Cruz-Cuellar, Héctor F; Declerck, Fabrice A J

    2012-03-01

    Crop pest and disease incidences at plot scale vary as a result of landscape effects. Two main effects can be distinguished. First, landscape context provides habitats of variable quality for pests, pathogens, and beneficial and vector organisms. Second, the movements of these organisms are dependent on the connectivity status of the landscape. Most of the studies focus on indirect effects of landscape context on pest abundance through their predators and parasitoids, and only a few on direct effects on pests and pathogens. Here we studied three coffee pests and pathogens, with limited or no pressure from host-specific natural enemies, and with widely varying life histories, to test their relationships with landscape context: a fungus, Hemileia vastatrix, causal agent of coffee leaf rust; an insect, the coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae); and root-knot nematodes, Meloidogyne spp. Their incidence was assessed in 29 coffee plots from Turrialba, Costa Rica. In addition, we characterized the landscape context around these coffee plots in 12 nested circular sectors ranging from 50 to 1500 m in radius. We then performed correlation analysis between proportions of different land uses at different scales and coffee pest and disease incidences. We obtained significant positive correlations, peaking at the 150 m radius, between coffee berry borer abundance and proportion of coffee in the landscape. We also found significant positive correlations between coffee leaf rust incidence and proportion of pasture, peaking at the 200 m radius. Even after accounting for plot level predictors of coffee leaf rust and coffee berry borer through covariance analysis, the significance of landscape structure was maintained. We hypothesized that connected coffee plots favored coffee berry borer movements and improved its survival. We also hypothesized that wind turbulence, produced by low-wind-resistance land uses such as pasture, favored removal of coffee leaf rust spore clusters from host surfaces, resulting in increased epidemics. In contrast, root-knot nematode population density was not correlated to landscape context, possibly because nematodes are almost immobile in the soil. We propose fragmenting coffee plots with forest corridors to control coffee berry borer movements between coffee plots without favoring coffee leaf rust dispersal.

  12. Cultural ecosystem services of mountain regions: Modelling the aesthetic value

    PubMed Central

    Schirpke, Uta; Timmermann, Florian; Tappeiner, Ulrike; Tasser, Erich

    2016-01-01

    Mountain regions meet an increasing demand for pleasant landscapes, offering many cultural ecosystem services to both their residents and tourists. As a result of global change, land managers and policy makers are faced with changes to this landscape and need efficient evaluation techniques to assess cultural ecosystem services. This study provides a spatially explicit modelling approach to estimating aesthetic landscape values by relating spatial landscape patterns to human perceptions via a photo-based survey. The respondents attributed higher aesthetic values to the Alpine landscape in respect to areas with settlements, infrastructure or intensive agricultural use. The aesthetic value of two study areas in the Central Alps (Stubai Valley, Austria and Vinschgau, Italy) was modelled for 10,215 viewpoints along hiking trails according to current land cover and a scenario considering the spontaneous reforestation of abandoned land. Viewpoints with high aesthetic values were mainly located at high altitude, allowing long vistas, and included views of lakes or glaciers, and the lowest values were for viewpoints close to streets and in narrow valleys with little view. The aesthetic values of the reforestation scenario decreased mainly at higher altitudes, but the whole area was affected, reducing aesthetic value by almost 10% in Stubai Valley and 15% in Vinschgau. Our proposed modelling approach allows the estimation of aesthetic values in spatial and qualitative terms for most viewpoints in the European Alps. The resulting maps can be used as information and the basis for discussion by stakeholders, to support the decision-making process and landscape planning. This paper also discusses the role of mountain farming in preserving an attractive landscape and related cultural values. PMID:27482152

  13. Effects of wetland vs. landscape variables on parasite communities of Rana pipiens: links to anthropogenic factors

    USGS Publications Warehouse

    Schotthoefer, Anna M.; Rohr, Jason R.; Cole, Rebecca A.; Koehler, Anson V.; Johnson, Catherine M.; Johnson, Lucinda B.; Beasley, Val R.

    2011-01-01

    The emergence of several diseases affecting amphibian populations worldwide has prompted investigations into determinants of the occurrence and abundance of parasites in frogs. To understand the spatial scales and identify specific environmental factors that determine risks of parasitism in frogs, helminth communities in metamorphic frogs of the northern leopard frog (Rana pipiens) were examined in relation to wetland and landscape factors at local (1 km) and regional (10 km) spatial extents in an agricultural region of Minnesota (USA) using regression analyses, ordination, and variance partitioning techniques. Greater amounts of forested and woody wetland habitats, shorter distances between woody wetlands, and smaller-sized open water patches in surrounding landscapes were the most consistently positive correlates with the abundances, richness, and diversity of helminths found in the frogs. Wetland and local landscape variables were suggested as most important for larval trematode abundances, whereas local and regional landscape variables appeared most important for adult helminths. As previously reported, the sum concentration of atrazine and its metabolite desethylatrazine, was the strongest predictor of larval trematode communities. In this report, we highlight the additional influences of landscape factors. In particular, our data suggest that anthropogenic activities that have resulted in the loss of the availability and connectivity of suitable habitats in the surrounding landscapes of wetlands are associated with declines in helminth richness and abundance, but that alteration of wetland water quality through eutrophication or pesticide contamination may facilitate the transmission of certain parasite taxa when they are present at wetlands. Although additional research is needed to quantify the negative effects of parasitism on frog populations, efforts to reduce inputs of agrochemicals into wetlands to limit larval trematode infections may be warranted, given the current high rates of amphibian declines and extinction events.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saur, Sigrun; Frengen, Jomar; Department of Oncology and Radiotherapy, St. Olavs University Hospital, N-7006 Trondheim

    Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scansmore » of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16x16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution can be compared with the film-measured dose distribution using a dose constraint of 4% (relative to the measured dose) for doses between 1 and 3 Gy. At lower doses, the dose constraint must be relaxed.« less

  15. High quality topic extraction from business news explains abnormal financial market volatility.

    PubMed

    Hisano, Ryohei; Sornette, Didier; Mizuno, Takayuki; Ohnishi, Takaaki; Watanabe, Tsutomu

    2013-01-01

    Understanding the mutual relationships between information flows and social activity in society today is one of the cornerstones of the social sciences. In financial economics, the key issue in this regard is understanding and quantifying how news of all possible types (geopolitical, environmental, social, financial, economic, etc.) affects trading and the pricing of firms in organized stock markets. In this article, we seek to address this issue by performing an analysis of more than 24 million news records provided by Thompson Reuters and of their relationship with trading activity for 206 major stocks in the S&P US stock index. We show that the whole landscape of news that affects stock price movements can be automatically summarized via simple regularized regressions between trading activity and news information pieces decomposed, with the help of simple topic modeling techniques, into their "thematic" features. Using these methods, we are able to estimate and quantify the impacts of news on trading. We introduce network-based visualization techniques to represent the whole landscape of news information associated with a basket of stocks. The examination of the words that are representative of the topic distributions confirms that our method is able to extract the significant pieces of information influencing the stock market. Our results show that one of the most puzzling stylized facts in financial economies, namely that at certain times trading volumes appear to be "abnormally large," can be partially explained by the flow of news. In this sense, our results prove that there is no "excess trading," when restricting to times when news is genuinely novel and provides relevant financial information.

  16. Dynamics of the recovery of damaged tundra vegetation. Annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amundsen, C.C.

    1976-01-01

    A study, begun in 1971, continues to document the environmental factors which affect the recovery of damaged tundra landscapes. A measurement technique was developed on Amchitka Island to allow the rapid acquisition of data on species presence and frequency across areas disturbed at various times and in various ways. Samples across all examples of aspect, slope steepness and exposure are taken. Studies now include Adak Island and the Point Barrow area. We have concluded that there was no directional secondary succession on the Aleutian tundra, although there was vigorous recovery on organic soils. Our study led to recommendations which resultedmore » in less intensive reclamation management at a considerable financial saving and without further biological perturbation. Because of the increasing activity on tundra landscapes, for energy extraction, transportation or production, military or other reasons, we have expanded our sampling to other tundra areas where landscape disruption is occurring or is predicted.« less

  17. Bidirectional particle transport and size selective sorting of Brownian particles in a flashing spatially periodic energy landscape.

    PubMed

    Martinez-Pedrero, Fernando; Massana-Cid, Helena; Ziegler, Till; Johansen, Tom H; Straube, Arthur V; Tierno, Pietro

    2016-09-29

    We demonstrate a size sensitive experimental scheme which enables bidirectional transport and fractionation of paramagnetic colloids in a fluid medium. It is shown that two types of magnetic colloidal particles with different sizes can be simultaneously transported in opposite directions, when deposited above a stripe-patterned ferrite garnet film subjected to a square-wave magnetic modulation. Due to their different sizes, the particles are located at distinct elevations above the surface, and they experience two different energy landscapes, generated by the modulated magnetic substrate. By combining theoretical arguments and numerical simulations, we reveal such energy landscapes, which fully explain the bidirectional transport mechanism. The proposed technique does not require pre-imposed channel geometries such as in conventional microfluidics or lab-on-a-chip systems, and permits remote control over the particle motion, speed and trajectory, by using relatively low intense magnetic fields.

  18. The free energy landscape of small peptides as obtained from metadynamics with umbrella sampling corrections

    PubMed Central

    Babin, Volodymyr; Roland, Christopher; Darden, Thomas A.; Sagui, Celeste

    2007-01-01

    There is considerable interest in developing methodologies for the accurate evaluation of free energies, especially in the context of biomolecular simulations. Here, we report on a reexamination of the recently developed metadynamics method, which is explicitly designed to probe “rare events” and areas of phase space that are typically difficult to access with a molecular dynamics simulation. Specifically, we show that the accuracy of the free energy landscape calculated with the metadynamics method may be considerably improved when combined with umbrella sampling techniques. As test cases, we have studied the folding free energy landscape of two prototypical peptides: Ace-(Gly)2-Pro-(Gly)3-Nme in vacuo and trialanine solvated by both implicit and explicit water. The method has been implemented in the classical biomolecular code AMBER and is to be distributed in the next scheduled release of the code. © 2006 American Institute of Physics. PMID:17144742

  19. Using surface curvature to map geomorphic process regimes in a bedrock landscape, Henry Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Corbett, S.; Sklar, L. S.; Davis, J.

    2009-12-01

    Linkages between form and process are much better understood in soil-mantled landscapes than in bedrock landscapes, despite the wide occurrence of bedrock landscapes in arid and mountainous terrain. Soil-mantled hillslope topography can be characterized by hillslope gradient and its spatial derivative, which is commonly referred to as curvature and defined as the Laplacian of elevation. Surface curvature can also be quantified using techniques that are invariant to the orientation of the surface. These approaches are useful in many geoscience applications, including structural analysis of folded surfaces within deforming crustal blocks. Here we explore the use of surface curvature of bedrock topography as a metric to identify and map distinct geomorphic process regimes in a landscape devoid of soil cover. Our study site is Simpson Creek, a 2.5 km2 watershed on the east flank of Mt. Hillers in the Henry Mountains, Utah, which drains to the Colorado River in Glen Canyon. The land surface is entirely exposed Navajo Sandstone bedrock, with isolated patches of wind-blown sand deposits. The channel network is discontinuous, with alternating reaches of steep, deeply-incised, frequently-potholed slots, and lower-gradient, sand-bedded channels. Hillslope topography is characterized by dome-shaped and sub-linear ridges, and is influenced by prominent structural joints. We calculate two measures of the surface-normal curvature using an ALSM-derived digital elevation model. The mean and Gaussian surface curvatures are the average and product respectively of the magnitudes of the maximum and minimum curvature vectors, obtained by differentiating a polynomial fit at each point in a grid with 1 m spacing. Plots of mean versus Gaussian curvature reveal distinct clusters of landscape elements, which we associate with specific process regimes. In this parameter space, there are four quadrants, classified as dome, basin, synformal saddle and antiformal saddle. The channel and valley network corresponds to negative mean curvature, where concave and convex profile segments plot as basins and synformal saddles (positive and negative Gaussian curvature) respectively. We are able to use surface curvature to map what can be interpreted as bedrock channel width, as well as knickpoints, sand-bedrock bed transitions, and even individual large potholes. The tips of the channel network also have a distinct surface-curvature signature, and are associated with prominent polygonal bedrock fracturing at the sub-meter scale. In the hillslope portion of the landscape (positive mean curvature), the distribution of landscape elements has several modes, including a characteristic dome curvature that may be associated with sheet jointing and weathering-influenced exfoliation erosion, and an antiformal saddle curvature where solution pits occur, particularly on higher ridges most distant from the main-stem slot canyon channels. One key goal of this work is to quantify the effect of variable erosion rate on the distribution of process regime as expressed by these characteristic modes of bedrock surface curvature.

  20. LANDSCAPE STRUCTURE AND ESTUARINE CONDITION IN THE MID-ATLANTIC REGION OF THE UNITED STATES: I. DEVELOPING QUANTITATIVE RELATIONSHIPS

    EPA Science Inventory

    In a previously published study, quantitative relationships were developed between landscape metrics and sediment contamination for 25 small estuarine systems within Chesapeake Bay. Nonparametric statistical analysis (rank transformation) was used to develop an empirical relation...

Top