Ji, Xiang; Liu, Li-Ming; Li, Hong-Qing
2014-11-01
Taking Jinjing Town in Dongting Lake area as a case, this paper analyzed the evolution of rural landscape patterns by means of life cycle theory, simulated the evolution cycle curve, and calculated its evolution period, then combining CA-Markov model, a complete prediction model was built based on the rule of rural landscape change. The results showed that rural settlement and paddy landscapes of Jinjing Town would change most in 2020, with the rural settlement landscape increased to 1194.01 hm2 and paddy landscape greatly reduced to 3090.24 hm2. The quantitative and spatial prediction accuracies of the model were up to 99.3% and 96.4%, respectively, being more explicit than single CA-Markov model. The prediction model of rural landscape patterns change proposed in this paper would be helpful for rural landscape planning in future.
The Influence of Stratigraphic History on Landscape Evolution
NASA Astrophysics Data System (ADS)
Forte, A. M.; Yanites, B.; Whipple, K. X.
2016-12-01
Variation in rock erodibility can play a significant role in landscape evolution. Using a version of the CHILD landscape evolution model that allows for variations in rock erodibility, we found surprisingly complex landscape evolution in simulations with simple, two unit stratigraphies with contrasting erodibility. This work indicated that the stratigraphic order of units in terms of erodibility, the orientation of the contact with respect to the main drainage direction, and the contact dip angle all have pronounced effects on landscape evolution. Here we expand that work to explore the implications of more complicated stratigraphies on landscape evolution. Introducing multiple units adds additional controls on landscape evolution, namely the thicknesses and relative erodibility of rock layers. In models with a sequence of five alternating hard and soft units embedded within arbitrarily thick over- and underlying units, the number of individual layers that noticeably influence landscape morphology decreases as the thickness of individual layers reduces. Contacts with soft rocks over hard produce the most noticeable effect in model output such as erosion rate and channel steepness. For large contrasts in erodibility of 25 m thick layers, only one soft over hard contact is clearly manifest in the landscape. Between 50 and 75 m, two such contacts are manifest, and by 100 m thickness, all three of these contacts are manifest. However, for a given thickness of layers, more units are manifest in the landscape as the erodibility contrast between units decreases. This is true even though the magnitude of landscape effects away from steady-state erosion rates or channel steepness also decrease with decreasing erodibility contrast. Finally, we explore suites of models with alternating layers reflecting either `hardening-' or `softening-upwards' stratigraphies and find that the two scenarios result in decidedly different landscape forms. Hardening-upwards sections produce a gradational change where as individual layers have more influence in the landscape form in softening-upwards sections. Generally, our modeling highlights that past depositional history can exert a fundamental control on landscape evolution during later erosion through the resulting layered stratigraphy.
Simulating CRN derived erosion rates in a transient Andean catchment using the TTLEM model
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Vanacker, Veerle; Herman, Frédéric; Schwanghart, Wolfgang; Tenrorio Poma, Gustavo; Govers, Gerard
2017-04-01
Assessing the impact of mountain building and erosion on the earth surface is key to reconstruct and predict terrestrial landscape evolution. Landscape evolution models (LEMs) are an essential tool in this research effort as they allow to integrate our growing understanding of physical processes governing erosion and transport of mass across the surface. The recent development of several LEMs opens up new areas of research in landscape evolution. Here, we want to seize this opportunity by answering a fundamental research question: does a model designed to simulate landscape evolution over geological timescales allows to simulate spatially varying erosion rates at a millennial timescale? We selected the highly transient Paute catchment in the Southeastern Ecuadorian Andes as a study area. We found that our model (TTLEM) is capable to better explain the spatial patterns of ca. 30 Cosmogenic Radio Nuclide (CRN) derived catchment wide erosion rates in comparison to a classical, statistical approach. Thus, the use of process-based landscape evolution models may not only be of great help to understand long-term landscape evolution but also in understanding spatial and temporal variations in sediment fluxes at the millennial time scale.
Critical zone evolution and the origins of organised complexity in watersheds
NASA Astrophysics Data System (ADS)
Harman, C.; Troch, P. A.; Pelletier, J.; Rasmussen, C.; Chorover, J.
2012-04-01
The capacity of the landscape to store and transmit water is the result of a historical trajectory of landscape, soil and vegetation development, much of which is driven by hydrology itself. Progress in geomorphology and pedology has produced models of surface and sub-surface evolution in soil-mantled uplands. These dissected, denuding modeled landscapes are emblematic of the kinds of dissipative self-organized flow structures whose hydrologic organization may also be understood by low-dimensional hydrologic models. They offer an exciting starting-point for examining the mapping between the long-term controls on landscape evolution and the high-frequency hydrologic dynamics. Here we build on recent theoretical developments in geomorphology and pedology to try to understand how the relative rates of erosion, sediment transport and soil development in a landscape determine catchment storage capacity and the relative dominance of runoff process, flow pathways and storage-discharge relationships. We do so by using a combination of landscape evolution models, hydrologic process models and data from a variety of sources, including the University of Arizona Critical Zone Observatory. A challenge to linking the landscape evolution and hydrologic model representations is the vast differences in the timescales implicit in the process representations. Furthermore the vast array of processes involved makes parameterization of such models an enormous challenge. The best data-constrained geomorphic transport and soil development laws only represent hydrologic processes implicitly, through the transport and weathering rate parameters. In this work we propose to avoid this problem by identifying the relationship between the landscape and soil evolution parameters and macroscopic climate and geological controls. These macroscopic controls (such as the aridity index) have two roles: 1) they express the water and energy constraints on the long-term evolution of the landscape system, and 2) they bound the range of plausible short-term hydroclimatic regimes that may drive a particular landscape's hydrologic dynamics. To ensure that the hydrologic dynamics implicit in the evolutionary parameters are compatible with the dynamics observed in the hydrologic modeling, a set of consistency checks based on flow process dominance are developed.
Key issues review: evolution on rugged adaptive landscapes
NASA Astrophysics Data System (ADS)
Obolski, Uri; Ram, Yoav; Hadany, Lilach
2018-01-01
Adaptive landscapes represent a mapping between genotype and fitness. Rugged adaptive landscapes contain two or more adaptive peaks: allele combinations with higher fitness than any of their neighbors in the genetic space. How do populations evolve on such rugged landscapes? Evolutionary biologists have struggled with this question since it was first introduced in the 1930s by Sewall Wright. Discoveries in the fields of genetics and biochemistry inspired various mathematical models of adaptive landscapes. The development of landscape models led to numerous theoretical studies analyzing evolution on rugged landscapes under different biological conditions. The large body of theoretical work suggests that adaptive landscapes are major determinants of the progress and outcome of evolutionary processes. Recent technological advances in molecular biology and microbiology allow experimenters to measure adaptive values of large sets of allele combinations and construct empirical adaptive landscapes for the first time. Such empirical landscapes have already been generated in bacteria, yeast, viruses, and fungi, and are contributing to new insights about evolution on adaptive landscapes. In this Key Issues Review we will: (i) introduce the concept of adaptive landscapes; (ii) review the major theoretical studies of evolution on rugged landscapes; (iii) review some of the recently obtained empirical adaptive landscapes; (iv) discuss recent mathematical and statistical analyses motivated by empirical adaptive landscapes, as well as provide the reader with instructions and source code to implement simulations of evolution on adaptive landscapes; and (v) discuss possible future directions for this exciting field.
NASA Astrophysics Data System (ADS)
Gasparini, N. M.; Hobley, D. E. J.; Tucker, G. E.; Istanbulluoglu, E.; Adams, J. M.; Nudurupati, S. S.; Hutton, E. W. H.
2014-12-01
Computational models are important tools that can be used to quantitatively understand the evolution of real landscapes. Commonalities exist among most landscape evolution models, although they are also idiosyncratic, in that they are coded in different languages, require different input values, and are designed to tackle a unique set of questions. These differences can make applying a landscape evolution model challenging, especially for novice programmers. In this study, we compare and contrast two landscape evolution models that are designed to tackle similar questions, but the actual model designs are quite different. The first model, CHILD, is over a decade-old and is relatively well-tested, well-developed and well-used. It is coded in C++, operates on an irregular grid and was designed more with function rather than user-experience in mind. In contrast, the second model, Landlab, is relatively new and was designed to be accessible to a wide range of scientists, including those who have not previously used or developed a numerical model. Landlab is coded in Python, a relatively easy language for the non-proficient programmer, and has the ability to model landscapes described on both regular and irregular grids. We present landscape simulations from both modeling platforms. Our goal is to illustrate best practices for implementing a new process module in a landscape evolution model, and therefore the simulations are applicable regardless of the modeling platform. We contrast differences and highlight similarities between the use of the two models, including setting-up the model and input file for different evolutionary scenarios, computational time, and model output. Whenever possible, we compare model output with analytical solutions and illustrate the effects, or lack thereof, of a uniform vs. non-uniform grid. Our simulations focus on implementing a single process, including detachment-limited or transport-limited fluvial bedrock incision and linear or non-linear diffusion of material on hillslopes. We also illustrate the steps necessary to couple processes together, for example, detachment-limited fluvial bedrock incision with linear diffusion on hillslopes. Trade-offs exist between the two modeling platforms, and these are primarily in speed and ease-of-use.
NASA Astrophysics Data System (ADS)
Yanites, Brian J.; Becker, Jens K.; Madritsch, Herfried; Schnellmann, Michael; Ehlers, Todd A.
2017-11-01
Landscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel-Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.
Barrier displacement on a neutral landscape: Towards a theory of continental biogeography
Albert, James S.; Schoolmaster, Donald; Tagliacollo, Victor; Duke-Sylvester, Scott M.
2017-01-01
Here we present SEAMLESS (Spatially-Explicit Area Model of Landscape Evolution by SimulationS) that generates clade diversification by moving geographic barriers on a continuous, neutral landscape. SEAMLESS is a neutral Landscape Evolution Model (LEM) that treats species and barriers as functionally equivalent with respect to model parameters. SEAMLESS differs from other model-based biogeographic methods (e.g. Lagrange, GeoSSE, BayArea, BioGeoBEARS) by modeling properties of dispersal barriers rather than areas, and by modeling the evolution of species lineages on a continuous landscape, rather than the evolution of geographic ranges along branches of a phylogeny. SEAMLESS shows how dispersal is required to maintain species richness and avoid clade-wide extinction, demonstrates that ancestral range size does not predict species richness, and provides a unified explanation for the suite of commonly observed biogeographic and phylogenetic patterns listed above. SEAMLESS explains how a simple barrier-displacement mechanism affects lineage diversification under neutral conditions, and is advanced here towards the formulation of a general theory of continental biogeography.
Landscape co-evolution and river discharge.
NASA Astrophysics Data System (ADS)
van der Velde, Ype; Temme, Arnaud
2015-04-01
Fresh water is crucial for society and ecosystems. However, our ability to secure fresh water resources under climatic and anthropogenic change is impaired by the complexity of interactions between human society, ecosystems, soils, and topography. These interactions cause landscape properties to co-evolve, continuously changing the flow paths of water through the landscape. These co-evolution driven flow path changes and their effect on river runoff are, to-date, poorly understood. In this presentation we introduce a spatially distributed landscape evolution model that incorporates growing vegetation and its effect on evapotranspiration, interception, infiltration, soil permeability, groundwater-surface water exchange and erosion. This landscape scale (10km2) model is calibrated to evolve towards well known empirical organising principles such as the Budyko curve and Hacks law under different climate conditions. To understand how positive and negative feedbacks within the model structure form complex landscape patterns of forests and peat bogs that resemble observed landscapes under humid and boreal climates, we analysed the effects of individual processes on the spatial distribution of vegetation and river peak and mean flows. Our results show that especially river peak flows and droughts decrease with increasing evolution of the landscape, which is a result that has direct implications for flood management.
Constructing Palaeo-DEMs in landscape evolution: example of the Geren catchment, Turkey
NASA Astrophysics Data System (ADS)
van Gorp, Wouter; Schoorl, Jeroen M.; Veldkamp, Tom; Maddy, Darrel; Demir, Tuncer; Aytac, Serdar
2017-04-01
How to reconstruct the past landscape and how does this influence your modelling results? This is an important paradigma in the soilscape and landscape evolution modelling community. Here an example of Turkey will be presented where a 300 ka LEM simulation requested to the thoroughly think about the initial landscape as an important input. What information can be used to know the morphology of a landscape 300 ka ago? The Geren catchment, a tributary of the upstream Gediz river near Kula, Turkey, has been influenced by base level changes during the Late Pleistocene and Holocene. Different lavaflows have blocked the Gediz and Geren river several times over in the timespan of the last 300 ka -200 Ka and in the recent Holocene. The heavily dissected Geren catchment shows a landscape evolution which is more complex than just a reaction on these base level changes. The steps and inputs of the palaeo DEM reconstruction will be presented and the modelling results will be presented. Keywords: Digital Elevation Model, Palaeo DEMs, Numerical modelling
Empirical fitness landscapes and the predictability of evolution.
de Visser, J Arjan G M; Krug, Joachim
2014-07-01
The genotype-fitness map (that is, the fitness landscape) is a key determinant of evolution, yet it has mostly been used as a superficial metaphor because we know little about its structure. This is now changing, as real fitness landscapes are being analysed by constructing genotypes with all possible combinations of small sets of mutations observed in phylogenies or in evolution experiments. In turn, these first glimpses of empirical fitness landscapes inspire theoretical analyses of the predictability of evolution. Here, we review these recent empirical and theoretical developments, identify methodological issues and organizing principles, and discuss possibilities to develop more realistic fitness landscape models.
Wedge, David C; Rowe, William; Kell, Douglas B; Knowles, Joshua
2009-03-07
We model the process of directed evolution (DE) in silico using genetic algorithms. Making use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover and selection pressure on the performance of DE. A range of values of K, the epistatic interaction of the landscape, are considered, and high- and low-throughput modes of evolution are compared. Our findings suggest that for runs of or around ten generations' duration-as is typical in DE-there is little difference between the way in which DE needs to be configured in the high- and low-throughput regimes, nor across different degrees of landscape epistasis. In all cases, a high selection pressure (but not an extreme one) combined with a moderately high mutation rate works best, while crossover provides some benefit but only on the less rugged landscapes. These genetic algorithms were also compared with a "model-based approach" from the literature, which uses sequential fixing of the problem parameters based on fitting a linear model. Overall, we find that purely evolutionary techniques fare better than do model-based approaches across all but the smoothest landscapes.
NASA Astrophysics Data System (ADS)
Yetemen, O.; Saco, P. M.
2016-12-01
Orography induced precipitation and its implications on vegetation dynamics and landscape morphology have long been documented in the literature. However a numerical framework that integrates a range of ecohydrologic and geomorphic processes to explore the coupled ecohydro-geomorphic landscape response of catchments where pronounced orographic precipitation prevails has been missing. In this study, our aim is to realistically represent orographic-precipitation-driven ecohydrologic dynamics in a landscape evolution model (LEM). The model is used to investigate how ecohydro-geomorphic differences caused by differential precipitation patterns on the leeward and windward sides of low-relief landscapes lead to differences in the organization of modelled topography, soil moisture and plant biomass. We use the CHILD LEM equipped with a vegetation dynamics component that explicitly tracks above- and below-ground biomass, and a precipitation forcing component that simulates rainfall as a function of elevation and orientation. The preliminary results of the model show how the competition between an increased shear stress through runoff production and an enhanced resistance force due to denser canopy cover shape the landscape. Moreover, orographic precipitation leads to not only the migration of the divide between leeward and windward slopes but also a change in the concavity of streams. These results clearly demonstrate the strong coupling between landform evolution and climate processes.
Punctuated equilibrium and shock waves in molecular models of biological evolution.
Saakian, David B; Ghazaryan, Makar H; Hu, Chin-Kun
2014-08-01
We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way.
NASA Astrophysics Data System (ADS)
Skinner, Christopher; Peleg, Nadav; Quinn, Niall
2017-04-01
The use of Landscape Evolution Models often requires a timeseries of rainfall to drive the model. The spatial and temporal resolution of the driving data has an impact on several model outputs, including the shape of the landscape itself. Attempts to compensate for the spatiotemporal smoothing of local rainfall intensities are insufficient and may exacerbate these issues, meaning that to produce the best results the model needs to be run with data of highest spatial and temporal resolutions available. Some rainfall generators are able to produce timeseries with high spatial and temporal resolution. Observed data is used for the calibration of these generators. However, rainfall observations are highly uncertain and vary between different products (e.g. raingauges, weather radar) which may cascade through the Landscape Evolution Model. Here, we used the STREAP rainfall generator to produce high spatial (1km) and temporal (hourly) resolution ensembles of rainfall for a 50-year period, and used these to drive the CAESAR-Lisflood Landscape Evolution Model for a test catchment. Three different calibrations of STREAP were used against different products: gridded raingauge (TBR), weather radar (NIMROD), and a merged of the two. Analysis of the discharge and sediment yields from the model runs showed that the models run by STREAP calibrated by the different products were statistically significantly different, with the raingauge calibration producing 12.4 % more sediment on average over the 50-year period. The merged product produced results which were between the raingauge and radar products. The results demonstrate the importance of considering the selection of rainfall driving data on Landscape Evolution Modelling. Rainfall products are highly uncertain, different instruments will observe rainfall differently, and these uncertainties are clearly shown to cascade through the calibration of the rainfall generator and the Landscape Evolution Model. Merging raingauge and radar products is a common practise operationally, and by using features of both to calibrate the rainfall generator it is likely a more robust rainfall timeseries is produced.
Modeling Evolution on Nearly Neutral Network Fitness Landscapes
NASA Astrophysics Data System (ADS)
Yakushkina, Tatiana; Saakian, David B.
2017-08-01
To describe virus evolution, it is necessary to define a fitness landscape. In this article, we consider the microscopic models with the advanced version of neutral network fitness landscapes. In this problem setting, we suppose a fitness difference between one-point mutation neighbors to be small. We construct a modification of the Wright-Fisher model, which is related to ordinary infinite population models with nearly neutral network fitness landscape at the large population limit. From the microscopic models in the realistic sequence space, we derive two versions of nearly neutral network models: with sinks and without sinks. We claim that the suggested model describes the evolutionary dynamics of RNA viruses better than the traditional Wright-Fisher model with few sequences.
Coupling Landform Evolution and Soil Pedogenesis - Initial Results From the SSSPAM5D Model
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Welivitiya, W. D. D. P.; Hancock, G. R.; Cohen, S.
2015-12-01
Evolution of soil on a dynamic landform is a crucial next step in landscape evolution modelling. Some attempts have been taken such as MILESD by Vanwalleghem et al. to develop a first model which is capable of simultaneously evolving both the soil profile and the landform. In previous work we have presented physically based models for soil pedogenesis, mARM and SSSPAM. In this study we present the results of coupling a landform evolution model with our SSSPAM5D soil pedogenesis model. In previous work the SSSPAM5D soil evolution model was used to identify trends of the soil profile evolution on a static landform. Two pedogenetic processes, namely (1) armouring due to erosion, and (2) physical and chemical weathering were used in those simulations to evolve the soil profile. By incorporating elevation changes (due to erosion and deposition) we have advanced the SSSPAM5D modelling framework into the realm of landscape evolution. Simulations have been run using elevation and soil grading data of the engineered landform (spoil heap) at the Ranger Uranium Mine, Northern Territory, Australia. The results obtained for the coupled landform-soil evolution simulations predict the erosion of high slope areas, development of rudimentary channel networks in the landform and deposition of sediments in lowland areas, and qualitatively consistent with landform evolution models on their own. Examination of the soil profile characteristics revealed that hill crests are weathering dominated and tend to develop a thick soil layer. The steeper hillslopes at the edge of the landform are erosion dominated with shallow soils while the foot slopes are deposition dominated with thick soil layers. The simulation results of our coupled landform and soil evolution model provide qualitatively correct and timely characterization of the soil evolution on a dynamic landscape. Finally we will compare the characteristics of erosion and deposition predicted by the coupled landform-soil SSSPAM landscape simulator, with landform evolution simulations using a static soil.
NASA Astrophysics Data System (ADS)
Istanbulluoglu, Erkan; Yetemen, Omer
2016-04-01
In this study CHILD landscape evolution model (LEM) is used to study the role of solar radiation on the co-evolution of landscape morphology, vegetation patterns, and erosion rates in a central New Mexico catchment. In the study site north facing slopes (NFS) are characterized by steep diffusion-dominated planar hillslopes covered by co-exiting juniper pine and grass vegetation. South facing slopes (SFS) are characterized by shallow slopes and covered by sparse shrub vegetation. Measured short-term and Holocene-averaged erosion rates show higher soil loss on SFS than NFS. In this study CHILD LEM is first confirmed with ecohydrologic field data and used to systematically examine the co-evolution of topography, vegetation pattern, and erosion rates. Aspect- and network-control are identified as the two main topographic drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of solar radiation driven ecohdrologic patterns emerged in modeled landscape: NFS supported denser vegetation cover and became steeper and planar, while on SFS vegetation grew sparser and slopes declined with more fluvial activity. At the landscape scale, these differential erosion processes led to asymmetric development of catchment forms, consistent with regional observations. While the general patterns of vegetation and topography were reproduced by the model using a stationary representation of the current climate, the observed differential Holocene erosion rates were captured by the model only when cyclic climate is used. This suggests sensitivity of Holocene erosion rates to long-term climate fluctuations.
NASA Astrophysics Data System (ADS)
Kwang, Jeffrey S.; Parker, Gary
2017-12-01
Landscape evolution models often utilize the stream power incision model to simulate river incision: E = KAmSn, where E is the vertical incision rate, K is the erodibility constant, A is the upstream drainage area, S is the channel gradient, and m and n are exponents. This simple but useful law has been employed with an imposed rock uplift rate to gain insight into steady-state landscapes. The most common choice of exponents satisfies m / n = 0.5. Yet all models have limitations. Here, we show that when hillslope diffusion (which operates only on small scales) is neglected, the choice m / n = 0.5 yields a curiously unrealistic result: the predicted landscape is invariant to horizontal stretching. That is, the steady-state landscape for a 10 km2 horizontal domain can be stretched so that it is identical to the corresponding landscape for a 1000 km2 domain.
Landform Evolution Modeling of Specific Fluvially Eroded Physiographic Units on Titan
NASA Technical Reports Server (NTRS)
Moore, J. M.; Howard, A. D.; Schenk, P. M.
2015-01-01
Several recent studies have proposed certain terrain types (i.e., physiographic units) on Titan thought to be formed by fluvial processes acting on local uplands of bedrock or in some cases sediment. We have earlier used our landform evolution models to make general comparisons between Titan and other ice world landscapes (principally those of the Galilean satellites) that we have modeled the action of fluvial processes. Here we give examples of specific landscapes that, subsequent to modeled fluvial work acting on the surfaces, produce landscapes which resemble mapped terrain types on Titan.
Rapid evolution accelerates plant population spread in fragmented experimental landscapes.
Williams, Jennifer L; Kendall, Bruce E; Levine, Jonathan M
2016-07-29
Predicting the speed of biological invasions and native species migrations requires an understanding of the ecological and evolutionary dynamics of spreading populations. Theory predicts that evolution can accelerate species' spread velocity, but how landscape patchiness--an important control over traits under selection--influences this process is unknown. We manipulated the response to selection in populations of a model plant species spreading through replicated experimental landscapes of varying patchiness. After six generations of change, evolving populations spread 11% farther than nonevolving populations in continuously favorable landscapes and 200% farther in the most fragmented landscapes. The greater effect of evolution on spread in patchier landscapes was consistent with the evolution of dispersal and competitive ability. Accounting for evolutionary change may be critical when predicting the velocity of range expansions. Copyright © 2016, American Association for the Advancement of Science.
Hillslope Evolution by Bedrock Landslides
Densmore; Anderson; McAdoo; Ellis
1997-01-17
Bedrock landsliding is a dominant geomorphic process in a number of high-relief landscapes, yet is neglected in landscape evolution models. A physical model of sliding in beans is presented, in which incremental lowering of one wall simulates baselevel fall and generates slides. Frequent small slides produce irregular hillslopes, on which steep toes and head scarps persist until being cleared by infrequent large slides. These steep segments are observed on hillslopes in high-relief landscapes and have been interpreted as evidence for increases in tectonic or climatic process rates. In certain cases, they may instead reflect normal hillslope evolution by landsliding.
Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferré, T.P.A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin
2015-01-01
Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.
Ecohydrologic role of solar radiation on landscape evolution
NASA Astrophysics Data System (ADS)
Yetemen, Omer; Istanbulluoglu, Erkan; Flores-Cervantes, J. Homero; Vivoni, Enrique R.; Bras, Rafael L.
2015-02-01
Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspect has a marked influence on vegetation patterns and landscape morphology. Model predictions are corroborated using limited field observations in central NM and other locations with similar conditions. We design a set of comparative LEM simulations to investigate the role of spatially explicit solar radiation on landscape ecohydro-geomorphic development under different uplift scenarios. Aspect-control and network-control are identified as the two main drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of these short-term ecohdrologic patterns emerged in modeled landscapes. As north facing slopes (NFS) get steeper by continuing uplift they support erosion-resistant denser vegetation cover which leads to further slope steepening until erosion and uplift attains a dynamic equilibrium. Conversely, on south facing slopes (SFS), as slopes grow with uplift, increased solar radiation exposure with slope supports sparser biomass and shallower slopes. At the landscape scale, these differential erosion processes lead to asymmetric development of catchment forms, consistent with regional observations. Understanding of ecohydrogeomorphic evolution will improve to assess the impacts of past and future climates on landscape response and morphology.
NASA Astrophysics Data System (ADS)
Chang, C.; Liu, L.
2017-12-01
Driving mechanisms of the topographic evolution of central-western North America from the Cretaceous Western Interior Seaway (WIS) to its present-day high elevation remain ellusive. Quantifying the effects of lithospheric deformation versus deep-mantle induced topography on the landscape evolution of the region is a key to better constraining the history of North American tectonics and mantle dynamics. One way to tackle this problem is through running landscape evolution simulation coupled with uplift histories characteristic to these tectonic processes. We then use available surface observations, e.g., sedimentation records, land erosion, and drainage evolution, to infer the likely lithospheric and mantle processes that formed the WIS, the subsequent Laramide orogeny, and the present-day high topography of central-western North America. In practice, we use BadLands to simulate the evolution of surface process. To validate a given uplift history, we quantitatively compare model predictions with onshore and offshore stratigraphy data from the literature. Furthermore, critical forcings of landscape evolution, such as climate, lithology and sea level, will also be examined to better attest the effects of different uplift scenarios. Preliminary results demonstrate that only with geographically migratory subsidence, as predicted by an inverse mantle convection model, can we re-produce large scale tilted strata and shifting sediment deposition observed in the WIS basins. Ongoing work will also look into styles of Cenozoic uplift events that ended the WIS and produced the landscape features today. Eventually, we hope to place new constraints on the evolution and properties of lithospheric and deep-mantle dynamics of North American and to locate the best-fit scenario of its coresponding surface evolution since 100 Ma.
NASA Astrophysics Data System (ADS)
Howard, Alan D.; Tierney, Heather E.
2012-01-01
A landform evolution model is used to investigate the historical evolution of a fluvial landscape along the Potomac River in Virginia, USA. The landscape has developed on three terraces whose ages span 3.5 Ma. The simulation model specifies the temporal evolution of base level control by the river as having a high-frequency component of the response of the Potomac River to sea level fluctuations superimposed on a long-term epeirogenic uplift. The wave-cut benches are assumed to form instantaneously during sea level highstands. The region is underlain by relatively soft coastal plain sediments with high intrinsic erodibility. The survival of portions of these terrace surfaces, up to 3.5 Ma, is attributable to a protective cover of vegetation. The vegetation influence is parameterized as a critical shear stress to fluvial erosion whose magnitude decreases with increasing contributing area. The simulation model replicates the general pattern of dissection of the natural landscape, with decreasing degrees of dissection of the younger terrace surfaces. Channel incision and relief increase in headwater areas are most pronounced during the relatively brief periods of river lowstands. Imposition of the wave-cut terraces onto the simulated landscape triggers a strong incisional response. By qualitative and quantitative measures the model replicates, in a general way, the landform evolution and present morphology of the target region.
NASA Astrophysics Data System (ADS)
Istanbulluoglu, E.; Vivoni, E. R.; Ivanov, V. Y.; Bras, R. L.
2005-12-01
Landscape morphology has an important control on the spatial and temporal organization of basin hydrologic response to climate forcing, affecting soil moisture redistribution as well as vegetation function. On the other hand, erosion, driven by hydrology and modulated by vegetation, produces landforms over geologic time scales that reflect characteristic signatures of the dominant land forming process. Responding to extreme climate events or anthropogenic disturbances of the land surface, infrequent but rapid forms of erosion (e.g., arroyo development, landsliding) can modify topography such that basin hydrology is significantly influenced. Despite significant advances in both hydrologic and geomorphic modeling over the past two decades, the dynamic interactions between basin hydrology, geomorphology and terrestrial ecology are not adequately captured in current model frameworks. In order to investigate hydrologic-geomorphic-ecologic interactions at the basin scale we present initial efforts in integrating the CHILD landscape evolution model (Tucker et al. 2001) with the tRIBS hydrology model (Ivanov et al. 2004), both developed in a common software environment. In this talk, we present preliminary results of the numerical modeling of the coupled evolution of basin hydro-geomorphic response and resulting landscape morphology in two sets of examples. First, we discuss the long-term evolution of both the hydrologic response and the resulting basin morphology from an initially uplifted plateau. In the second set of modeling experiments, we implement changes in climate and land-use to an existing topography and compare basin hydrologic response to the model results when landscape form is fixed (e.g. no coupling between hydrology and geomorphology). Model results stress the importance of internal basin dynamics, including runoff generation mechanisms and hydrologic states, in shaping hydrologic response as well as the importance of employing comprehensive conceptualizations of hydrology in modeling landscape evolution.
NASA Astrophysics Data System (ADS)
Pedersen, Vivi K.; Braun, Jean; Huismans, Ritske S.
2018-02-01
The origin of high topography in Scandinavia is highly debated, both in terms of its age and the underlying mechanism for its formation. Traditionally, the current high topography is assumed to have formed by several Cenozoic (mainly Neogene) phases of surface uplift and dissection of an old peneplain surface. These same surface uplift events are suggested to explain the increased deposition observed in adjacent offshore basins on the Norwegian shelf and in the North Sea. However, more recently it has been suggested that erosion and isostatic rock uplift of existing topography may also explain the recent evolution of topography in Scandinavia. For this latter view, the increased sedimentation towards the present is assumed to be a consequence of a climate related increase in erosion. In this study we explore whether inverse modelling of landscape evolution can give new insight into Eocene to mid-Pliocene (54-4 Ma) landscape evolution in the Scandinavian region. We do this by combining a highly efficient forward-in-time landscape evolution model (FastScape) with an optimization scheme suitable for non-linear inverse problems (the neighbourhood algorithm - NA). To limit our approach to the fluvial regime, we exclude the most recent mid-Pliocene-Quaternary time period where glacial erosion processes are expected to dominate landscape evolution. The "goodness" of our landscape evolution models is evaluated using i) sediment fluxes based on decompacted offshore sediment volumes and ii) maximum pre-glacial topography from a mid-Pliocene landscape, reconstructed using geophysical relief and offshore sediment volumes from the mid-Pliocene-Quaternary. We find several tested scenarios consistent with the offshore sediment record and the maximum elevation for our reconstructed pre-glacial (mid-Pliocene) landscape reconstruction, including: I) substantial initial topography ( 2 km) at 54 Ma and no induced tectonic rock uplift, II) the combination of some initial topography ( 1.1 km) at 54 Ma and minor continued rock uplift (< 0.04 mm/yr) until 4 Ma, and III) a two-phased tectonic rock uplift of an initially low topography ( 0.1 km). However, out of these, only scenario I (no tectonic rock uplift) matches large-scale characteristics of our reconstructed pre-glacial (mid-Pliocene) topography well. Our preferred model for Eocene to mid-Pliocene landscape evolution in Scandinavia is therefore one where high topography ( 2 km) has existed throughout the time interval from 54 to 4 Ma. We do not find several phases of peneplain surface uplift necessary to explain offshore sediment volumes and large-scale topographic patterns. On the contrary, extensive peneplain dissection seems inconsistent with the low rates of erosion we infer based on the offshore sediment volumes.
Modeling Fluvial Incision and Transient Landscape Evolution: Influence of Dynamic Channel Adjustment
NASA Astrophysics Data System (ADS)
Attal, M.; Tucker, G. E.; Cowie, P. A.; Whittaker, A. C.; Roberts, G. P.
2007-12-01
Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width (W) depends on a number of parameters, including channel slope, and is not only a function of drainage area (A) as is commonly assumed. The present work represents the first attempt to investigate the consequences, for landscape evolution, of using a static expression of channel width (W ~ A0.5) versus a relationship that allows channels to dynamically adjust to changes in slope. We consider different models for the evolution of the channel geometry, including constant width-to-depth ratio (after Finnegan et al., Geology, v. 33, no. 3, 2005), and width-to-depth ratio varying as a function of slope (after Whittaker et al., Geology, v. 35, no. 2, 2007). We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic disturbance. The topography of a catchment in the footwall of an active normal fault in the Apennines (Italy) is used as a template for the study. We show that, for this catchment, the transient response can be fairly well reproduced using a simple detachment-limited fluvial incision law. We also show that, depending on the relationship used to express channel width, initial steady-state topographies differ, as do transient channel width, slope, and the response time of the fluvial system. These differences lead to contrasting landscape morphologies when integrated at the scale of a whole catchment. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the uplift field is non-uniform.
NASA Astrophysics Data System (ADS)
Yan, Q.; Kumar, P.
2017-12-01
Soil is the largest reservoir of carbon in the biosphere but in agricultural areas it is going through rapid erosion due disturbance arising from crop harvest, tillage, and tile drainage. Identifying whether the production of soil organic carbon (SOC) from the crops can compensate for the loss due to erosion is critical to ensure our food security and adapt to climate change. In the U.S. Midwest where large areas of land are intensively managed for agriculture practices, predicting soil quantity and quality are critical for maintaining crop yield and other Critical Zone services. This work focuses on modeling the coupled landscape evolutions soil organic carbon dynamics in agricultural fields. It couples landscape evolution, surface water runoff, organic matter transformation, and soil moisture dynamics to understand organic carbon gain and loss due to natural forcing and farming practices, such as fertilizer application and tillage. A distinctive feature of the model is the coupling of surface ad subsurface processes that predicts both surficial changes and transport along with the vertical transport and dynamics. Our results show that landscape evolution and farming practices play dominant roles in soil organic carbon (SOC) dynamics both above- and below-ground. Contrary to the common assumption that a vertical profile of SOC concentration decreases exponentially with depth, we find that in many situations SOC concentration below-ground could be higher than that at the surface. Tillage plays a complex role in organic matter dynamics. On one hand, tillage would accelerate the erosion rate, on the other hand, it would improve carbon storage by burying surface SOC into below ground. Our model consistently reproduces the observed above- and below-ground patterns of SOC in the field sites of Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). This model bridges the gaps between the landscape evolution, below- and above-ground hydrologic cycle, and biogeochemical processes. This study not only helps us understand the coupled carbon-nitrogen cycle, but also serve as an instrument to develop practical approaches for reducing soil erosion and carbon loss when the landscape is affected by human activities.
NASA Astrophysics Data System (ADS)
Stippich, Christian; Glasmacher, Ulrich Anton; Hackspacher, Peter
2015-04-01
The aim of the research is to quantify the long-term landscape evolution of the South Atlantic passive continental margin (SAPCM) in SE-Brazil and NW-Namibia. Excellent onshore outcrop conditions and complete rift to post-rift archives between Sao Paulo and Porto Alegre and in the transition from Namibia to Angola (onshore Walvis ridge) allow a high precision quantification of exhumation, and uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate the published and partly published thermochronological data from Brazil and Namibia, and test lately published new concepts on causes of long-term landscape evolution at rifted margins. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE1,2 and FastScape3). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 2. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. 3. Braun, J. and Willett, S.D., 2013. A very efficient, O(n), implicit and parallel method to solve the basic stream power law equation governing fluvial incision and landscape evolution. Geomorphology, v.180-181, 170-179.
TTLEM: Open access tool for building numerically accurate landscape evolution models in MATLAB
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Schwanghart, Wolfgang; Govers, Gerard
2017-04-01
Despite a growing interest in LEMs, accuracy assessment of the numerical methods they are based on has received little attention. Here, we present TTLEM which is an open access landscape evolution package designed to develop and test your own scenarios and hypothesises. TTLEM uses a higher order flux-limiting finite-volume method to simulate river incision and tectonic displacement. We show that this scheme significantly influences the evolution of simulated landscapes and the spatial and temporal variability of erosion rates. Moreover, it allows the simulation of lateral tectonic displacement on a fixed grid. Through the use of a simple GUI the software produces visible output of evolving landscapes through model run time. In this contribution, we illustrate numerical landscape evolution through a set of movies spanning different spatial and temporal scales. We focus on the erosional domain and use both spatially constant and variable input values for uplift, lateral tectonic shortening, erodibility and precipitation. Moreover, we illustrate the relevance of a stochastic approach for realistic hillslope response modelling. TTLEM is a fully open source software package, written in MATLAB and based on the TopoToolbox platform (topotoolbox.wordpress.com). Installation instructions can be found on this website and the therefore designed GitHub repository.
LAPSUS: soil erosion - landscape evolution model
NASA Astrophysics Data System (ADS)
van Gorp, Wouter; Temme, Arnaud; Schoorl, Jeroen
2015-04-01
LAPSUS is a soil erosion - landscape evolution model which is capable of simulating landscape evolution of a gridded DEM by using multiple water, mass movement and human driven processes on multiple temporal and spatial scales. It is able to deal with a variety of human landscape interventions such as landuse management and tillage and it can model their interactions with natural processes. The complex spatially explicit feedbacks the model simulates demonstrate the importance of spatial interaction of human activity and erosion deposition patterns. In addition LAPSUS can model shallow landsliding, slope collapse, creep, solifluction, biological and frost weathering, fluvial behaviour. Furthermore, an algorithm to deal with natural depressions has been added and event-based modelling with an improved infiltration description and dust deposition has been pursued. LAPSUS has been used for case studies in many parts of the world and is continuously developing and expanding. it is now available for third-party and educational use. It has a comprehensive user interface and it is accompanied by a manual and exercises. The LAPSUS model is highly suitable to quantify and understand catchment-scale erosion processes. More information and a download link is available on www.lapsusmodel.nl.
Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment
NASA Astrophysics Data System (ADS)
Attal, M.; Tucker, G. E.; Whittaker, A. C.; Cowie, P. A.; Roberts, G. P.
2008-09-01
Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width depends on a number of parameters, including channel slope, and is not solely a function of drainage area as is commonly assumed. The present work represents the first attempt to investigate the consequences of dynamic, gradient-sensitive channel adjustment for drainage-basin evolution. We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic perturbation, using, as a template, the topography of a well-documented catchment in the footwall of an active normal fault in the Apennines (Italy) that is known to be undergoing a transient response to tectonic forcing. We show that the observed transient response can be reproduced to first order with a simple detachment-limited fluvial incision law. Transient landscape is characterized by gentler gradients and a shorter response time when dynamic channel adjustment is allowed. The differences in predicted channel geometry between the static case (width dependent solely on upstream area) and dynamic case (width dependent on both drainage area and channel slope) lead to contrasting landscape morphologies when integrated at the scale of a whole catchment, particularly in presence of strong tilting and/or pronounced slip-rate acceleration. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the relative uplift field is nonuniform.
Decision making on fitness landscapes
NASA Astrophysics Data System (ADS)
Arthur, R.; Sibani, P.
2017-04-01
We discuss fitness landscapes and how they can be modified to account for co-evolution. We are interested in using the landscape as a way to model rational decision making in a toy economic system. We develop a model very similar to the Tangled Nature Model of Christensen et al. that we call the Tangled Decision Model. This is a natural setting for our discussion of co-evolutionary fitness landscapes. We use a Monte Carlo step to simulate decision making and investigate two different decision making procedures.
Adaptation in Tunably Rugged Fitness Landscapes: The Rough Mount Fuji Model
Neidhart, Johannes; Szendro, Ivan G.; Krug, Joachim
2014-01-01
Much of the current theory of adaptation is based on Gillespie’s mutational landscape model (MLM), which assumes that the fitness values of genotypes linked by single mutational steps are independent random variables. On the other hand, a growing body of empirical evidence shows that real fitness landscapes, while possessing a considerable amount of ruggedness, are smoother than predicted by the MLM. In the present article we propose and analyze a simple fitness landscape model with tunable ruggedness based on the rough Mount Fuji (RMF) model originally introduced by Aita et al. in the context of protein evolution. We provide a comprehensive collection of results pertaining to the topographical structure of RMF landscapes, including explicit formulas for the expected number of local fitness maxima, the location of the global peak, and the fitness correlation function. The statistics of single and multiple adaptive steps on the RMF landscape are explored mainly through simulations, and the results are compared to the known behavior in the MLM model. Finally, we show that the RMF model can explain the large number of second-step mutations observed on a highly fit first-step background in a recent evolution experiment with a microvirid bacteriophage. PMID:25123507
Coupling landscapes to solid-Earth deformation over the ice-age
NASA Astrophysics Data System (ADS)
Pico, T.; Mitrovica, J. X.; Ferrier, K.; Braun, J.
2016-12-01
We present initial results of a coupled ice-age sea level - landscape evolution code. Deformation of the solid Earth in response to the growth and ablation of continental ice sheets produces spatially-variable patterns of sea-level change. Recent modeling has considered the impact of sedimentation and erosion on sea level predictions across the last glacial cycle, but these studies have imposed, a-priori, a record of sediment flux and erosion, rather than computing them from a physics-based model of landscape evolution in the presence of sea-level (topography) changes. These topography changes range from 1-10 m/kyr in the near and intermediate field of the Late Pleistocene ice cover, and are thus comparable to (or exceed) tectonic rates in such regions. Our simulations aim to address the following question: how does solid-Earth deformation influence the evolution of landscapes over glacial periods? To address this issue, we couple a highly-efficient landscape evolution code, Fastscape (Braun & Willett, 2013), to a global, gravitationally-self consistent sea-level theory. Fastscape adopts standard geomorphic laws governing incision and marine deposition, and the sea-level model is based on the canonical work of Farrell & Clark (1976), with extensions to include the effects of rotation and time varying shoreline geometries (Kendall et al., 2005), and sediment erosion and deposition (Dalca et al, 2013). We will present global results and focus on a few regional case studies where deposition rates from a dataset of sedimentary cores can be used as a check on the simulations. These predictions quantify the influence of sea-level change (including that associated with sedimentation and erosion) on geomorphic drivers of landscape evolution, and in turn, the solid Earth deformation caused by these surface processes over an ice age.
NASA Astrophysics Data System (ADS)
Huppert, K.; Perron, J. T.; Ferrier, K.; Mukhopadhyay, S.; Rosener, M.; Douglas, M.
2016-12-01
With homogeneous bedrock, dramatic rainfall gradients, paleoshorelines, and datable remnant topography, volcanic ocean islands provide an exceptional natural experiment in landscape evolution. Analyses traversing gradients in island climate and bedrock age have the potential to advance our understanding of landscape evolution in a diverse range of continental settings. However, as small, conical, dominantly subsiding, and initially highly permeable landmasses, islands are unique, and it remains unclear how these properties influence their erosional history. We use a landscape evolution model and observations from the Hawaiian island of Kaua'i and other islands to characterize the topographic evolution of volcanic ocean islands. We present new measurements of helium-3 concentrations in detrital olivine from 20 rivers on Kaua'i. These measurements indicate that minimum erosion rates over the past 3 to 48 kyr are on average 2.6 times faster than erosion rates averaged over the past 3.9 to 4.4 Myr estimated from the volume of river canyons. This apparent acceleration of erosion rates on Kaua'i is consistent with observations on other islands; erosion rates estimated from the volume of river canyons on 31 islands worldwide, combined with observations of minimal incision on young island volcanoes, suggest a progressive increase in erosion rates over the first few million years of island landscape development. Using a landscape evolution model, we perform a set of experiments to quantify the contribution of subsidence, climate change, and initial geometry to changes in island erosion rates through time. We base these experiments on the evolution of Kaua'i, and we use measured erosion rates and the observed topography to calibrate the model. We find that progressive steepening of island topography by canyon incision drives an acceleration of erosion rates over time. Increases in mean channel and hillslope gradient with island age in the global compilation suggest this may be a general trend in the topographic evolution of volcanic ocean islands.
NASA Astrophysics Data System (ADS)
Langston, Abigail L.; Tucker, Gregory E.
2018-01-01
Understanding how a bedrock river erodes its banks laterally is a frontier in geomorphology. Theories for the vertical incision of bedrock channels are widely implemented in the current generation of landscape evolution models. However, in general existing models do not seek to implement the lateral migration of bedrock channel walls. This is problematic, as modeling geomorphic processes such as terrace formation and hillslope-channel coupling depends on the accurate simulation of valley widening. We have developed and implemented a theory for the lateral migration of bedrock channel walls in a catchment-scale landscape evolution model. Two model formulations are presented, one representing the slow process of widening a bedrock canyon and the other representing undercutting, slumping, and rapid downstream sediment transport that occurs in softer bedrock. Model experiments were run with a range of values for bedrock erodibility and tendency towards transport- or detachment-limited behavior and varying magnitudes of sediment flux and water discharge in order to determine the role that each plays in the development of wide bedrock valleys. The results show that this simple, physics-based theory for the lateral erosion of bedrock channels produces bedrock valleys that are many times wider than the grid discretization scale. This theory for the lateral erosion of bedrock channel walls and the numerical implementation of the theory in a catchment-scale landscape evolution model is a significant first step towards understanding the factors that control the rates and spatial extent of wide bedrock valleys.
NASA Astrophysics Data System (ADS)
Volkmann, T. H. M.; Sengupta, A.; Pangle, L.; Abramson, N.; Barron-Gafford, G.; Breshears, D. D.; Bugaj, A.; Chorover, J.; Dontsova, K.; Durcik, M.; Ferre, T. P. A.; Harman, C. J.; Hunt, E.; Huxman, T. E.; Kim, M.; Maier, R. M.; Matos, K.; Alves Meira Neto, A.; Meredith, L. K.; Monson, R. K.; Niu, G. Y.; Pelletier, J. D.; Rasmussen, C.; Ruiz, J.; Saleska, S. R.; Schaap, M. G.; Sibayan, M.; Tuller, M.; Van Haren, J. L. M.; Wang, Y.; Zeng, X.; Troch, P. A.
2017-12-01
Understanding the process interactions and feedbacks among water, microbes, plants, and porous geological media is crucial for improving predictions of the response of Earth's critical zone to future climatic conditions. However, the integrated co-evolution of landscapes under change is notoriously difficult to investigate. Laboratory studies are typically limited in spatial and temporal scale, while field studies lack observational density and control. To bridge the gap between controlled lab and uncontrolled field studies, the University of Arizona - Biosphere 2 built a macrocosm experiment of unprecedented scale: the Landscape Evolution Observatory (LEO). LEO consists of three replicated, 330-m2 hillslope landscapes inside a 5000-m2 environmentally controlled facility. The engineered landscapes contain 1-m depth of basaltic tephra ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a dense sensor network capable of resolving water, carbon, and energy cycling processes at sub-meter to whole-landscape scale. Embedded sampling devices allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers applied with the artificial rainfall. LEO is now fully operational and intensive forcing experiments have been launched. While operating the massive infrastructure poses significant challenges, LEO has demonstrated the capacity of tracking multi-scale matter and energy fluxes at a level of detail impossible in field experiments. Initial sensor, sampler, and restricted soil coring data are already providing insights into the tight linkages between water flow, weathering, and (micro-) biological community development during incipient landscape evolution. Over the years to come, these interacting processes are anticipated to drive the model systems to increasingly complex states, potentially perturbed by changes in climatic forcing. By intensively monitoring the evolutionary trajectory, integrating data with models, and fostering community-wide collaborations, we envision that emergent landscape structures and functions can be linked and significant progress can be made toward predicting the coupled hydro-biogeochemical and ecological responses to global change.
Matrix quality and disturbance frequency drive evolution of species behavior at habitat boundaries.
Martin, Amanda E; Fahrig, Lenore
2015-12-01
Previous theoretical studies suggest that a species' landscape should influence the evolution of its dispersal characteristics, because landscape structure affects the costs and benefits of dispersal. However, these studies have not considered the evolution of boundary crossing, that is, the tendency of animals to cross from habitat to nonhabitat ("matrix"). It is important to understand this dispersal behavior, because of its effects on the probability of population persistence. Boundary-crossing behavior drives the rate of interaction with matrix, and thus, it influences the rate of movement among populations and the risk of dispersal mortality. We used an individual-based, spatially explicit model to simulate the evolution of boundary crossing in response to landscape structure. Our simulations predict higher evolved probabilities of boundary crossing in landscapes with more habitat, less fragmented habitat, higher-quality matrix, and more frequent disturbances (i.e., fewer generations between local population extinction events). Unexpectedly, our simulations also suggest that matrix quality and disturbance frequency have much stronger effects on the evolution of boundary crossing than either habitat amount or habitat fragmentation. Our results suggest that boundary-crossing responses are most affected by the costs of dispersal through matrix and the benefits of escaping local extinction events. Evolution of optimal behavior at habitat boundaries in response to the landscape may have implications for species in human-altered landscapes, because this behavior may become suboptimal if the landscape changes faster than the species' evolutionary response to that change. Understanding how matrix quality and habitat disturbance drive evolution of behavior at boundaries, and how this in turn influences the extinction risk of species in human-altered landscapes should help us identify species of conservation concern and target them for management.
NASA Astrophysics Data System (ADS)
Bock, Michael; Conrad, Olaf; Günther, Andreas; Gehrt, Ernst; Baritz, Rainer; Böhner, Jürgen
2018-04-01
We propose the implementation of the Soil and Landscape Evolution Model (SaLEM) for the spatiotemporal investigation of soil parent material evolution following a lithologically differentiated approach. Relevant parts of the established Geomorphic/Orogenic Landscape Evolution Model (GOLEM) have been adapted for an operational Geographical Information System (GIS) tool within the open-source software framework System for Automated Geoscientific Analyses (SAGA), thus taking advantage of SAGA's capabilities for geomorphometric analyses. The model is driven by palaeoclimatic data (temperature, precipitation) representative of periglacial areas in northern Germany over the last 50 000 years. The initial conditions have been determined for a test site by a digital terrain model and a geological model. Weathering, erosion and transport functions are calibrated using extrinsic (climatic) and intrinsic (lithologic) parameter data. First results indicate that our differentiated SaLEM approach shows some evidence for the spatiotemporal prediction of important soil parental material properties (particularly its depth). Future research will focus on the validation of the results against field data, and the influence of discrete events (mass movements, floods) on soil parent material formation has to be evaluated.
NASA Astrophysics Data System (ADS)
Gasparini, N. M.; Whipple, K. X.; Willenbring, J.; Crosby, B. T.; Brocard, G. Y.
2013-12-01
Numerical landscape evolution models (LEMs) offer us the unique opportunity to watch a landscape evolve under any set of environmental forcings that we can quantify. The possibilities for using LEMs are infinite, but complications arise when trying to model a real landscape. Specifically, numerical models cannot recreate every aspect of a real landscape because exact initial conditions are unknown, there will always be gaps in the known tectonic and climatic history, and the geomorphic transport laws that govern redistribution of mass due to surface processes will always be a simplified representation of the actual process. Yet, even with these constraints, numerical models remain the only tool that offers us the potential to explore a limitless range of evolutionary scenarios, allowing us to, at the very least, identify possible drivers responsible for the morphology of the current landscape, and just as importantly, rule out others. Here we highlight two examples in which we use a numerical model to explore the signature of different forcings on landscape morphology and erosion patterns. In the first landscape, the Northern Bolivian Andes, the relative imprint of rock uplift and precipitation patterns on landscape morphology is widely contested. We use the CHILD LEM to systematically vary climate and tectonics and quantify their fingerprints on channel profiles across a steep mountain front. We find that rock uplift and precipitation patterns in this landscape and others can be teased out by examining channel profiles of variably sized catchments that drain different parts of the topography. In the second landscape, the South Fork Eel River (SFER), northern California, USA, the tectonic history is relatively well known; a wave of rock uplift swept through the watershed from headwaters to outlet, perturbing the landscape and sending a wave of bedrock incision upstream. Nine millennial-scale erosion rates from along the mainstem of the river illustrate a pattern of downstream increasing erosion rate. Similarly, the proportion of the landscape that has adjusted to the tectonic perturbation increases from upstream to downstream. We use the CHILD LEM to explore whether the relationship between erosion rates and proportion of adjusted landscape is unique to the tectonic history of the SFER and if this relationship can be used as a fingerprint to identify the nature of tectonic perturbations in other locations. In both study sites, we do not try to recreate the exact morphology of the real landscape. Rather, we identify patterns in erosion rates and the morphology of the numerical landscape that can be used to interpret the tectonic history, climatic history, or both in these and other real landscapes.
A distributed snow-evolution modeling system (SnowModel)
Glen E. Liston; Kelly Elder
2006-01-01
SnowModel is a spatially distributed snow-evolution modeling system designed for application in landscapes, climates, and conditions where snow occurs. It is an aggregation of four submodels: MicroMet defines meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowPack simulates snow depth and water-equivalent evolution, and SnowTran-3D...
NASA Astrophysics Data System (ADS)
Hurst, A. A.; Anderson, R. S.; Tucker, G. E.
2017-12-01
Erosion of bedrock river channels exerts significant control on landscape evolution because it communicates climatic and tectonic signals across a landscape by setting the lower erosional boundaries for hillslopes. Hillslope erosion delivers sediment to the channels, which then either store or transport the sediment. At times of high storage, access to the bedrock floor of the channel is limited, inhibiting bedrock erosion. This affects the timescale of channel response to imposed base-level lowering, which in turn affects hillslope erosion. Because occasional exposure of the bedrock bed is a minimum prerequisite for bedrock erosion, we seek to understand the evolution of sediment cover, or scour history, with sufficient resolution to answer when and where the bed is exposed. The scour history at a site is governed by grain size, bed and channel morphology, sediment concentration in the water, and seasonal flow conditions (hydrograph). The transient nature of bedrock exposure during high-flow events implies that short-term sediment cover dynamics are important for predicting long-term bedrock incision rates. Models of channel profile evolution, or of landscape evolution, generally ignore evolution of sediment cover on the hydrograph timescale. To develop insight into the necessary and sufficient conditions for bedrock exposure followed by reburial, we have developed a 1-D model of the evolution of alluvial cover thickness in a long channel profile in response to a seasonal hydrograph. This model tracks erosion, deposition, and the concentration of sediment in the water column separately, and generates histories of scour and fill over the course of the hydrograph. We compare the model's predictions with net-scour measurements in tributaries of the Grand Canyon and with scour-chain and accelerometer measurements in the Cedar River, Washington. By addressing alluvial scour on short timescales, we acknowledge the processes required to allow bedrock incision and landscape evolution over longer timescales.
Topographic evolution of orogens: The long term perspective
NASA Astrophysics Data System (ADS)
Robl, Jörg; Hergarten, Stefan; Prasicek, Günther
2017-04-01
The landscape of mountain ranges reflects the competition of tectonics and climate, that build up and destroy topography, respectively. While there is a broad consensus on the acting processes, there is a vital debate whether the topography of individual orogens reflects stages of growth, steady-state or decay. This debate is fuelled by the million-year time scales hampering direct observations on landscape evolution in mountain ranges, the superposition of various process patterns and the complex interactions among different processes. In this presentation we focus on orogen-scale landscape evolution based on time-dependent numerical models and explore model time series to constrain the development of mountain range topography during an orogenic cycle. The erosional long term response of rivers and hillslopes to uplift can be mathematically formalised by the stream power and mass diffusion equations, respectively, which enables us to describe the time-dependent evolution of topography in orogens. Based on a simple one-dimensional model consisting of two rivers separated by a watershed we explain the influence of uplift rate and rock erodibility on steady-state channel profiles and show the time-dependent development of the channel - drainage divide system. The effect of dynamic drainage network reorganization adds additional complexity and its effect on topography is explored on the basis of two-dimensional models. Further complexity is introduced by coupling a mechanical model (thin viscous sheet approach) describing continental collision, crustal thickening and topography formation with a stream power-based landscape evolution model. Model time series show the impact of crustal deformation on drainage networks and consequently on the evolution of mountain range topography (Robl et al., in review). All model outcomes, from simple one-dimensional to coupled two dimensional models are presented as movies featuring a high spatial and temporal resolution. Robl, J., S. Hergarten, and G. Prasicek (in review), The topographic state of mountain ranges, Earth Science Reviews.
RCHILD - an R-package for flexible use of the landscape evolution model CHILD
NASA Astrophysics Data System (ADS)
Dietze, Michael
2014-05-01
Landscape evolution models provide powerful approaches to numerically assess earth surface processes, to quantify rates of landscape change, infer sediment transfer rates, estimate sediment budgets, investigate the consequences of changes in external drivers on a geomorphic system, to provide spatio-temporal interpolations between known landscape states or to test conceptual hypotheses. CHILD (Channel-Hillslope Integrated Landscape Development Model) is one of the most-used models of landscape change in the context of at least tectonic and geomorphologic process interactions. Running CHILD from command line and working with the model output can be a rather awkward task (static model control via text input file, only numeric output in text files). The package RCHILD is a collection of functions for the free statistical software R that help using CHILD in a flexible, dynamic and user-friendly way. The comprised functions allow creating maps, real-time scenes, animations and further thematic plots from model output. The model input files can be modified dynamically and, hence, (feedback-related) changes in external factors can be implemented iteratively. Output files can be written to common formats that can be readily imported to standard GIS software. This contribution presents the basic functionality of the model CHILD as visualised and modified by the package. A rough overview of the available functions is given. Application examples help to illustrate the great potential of numeric modelling of geomorphologic processes.
Looking for the optimal rate of recombination for evolutionary dynamics
NASA Astrophysics Data System (ADS)
Saakian, David B.
2018-01-01
We consider many-site mutation-recombination models of evolution with selection. We are looking for situations where the recombination increases the mean fitness of the population, and there is an optimal recombination rate. We found two fitness landscapes supporting such nonmonotonic behavior of the mean fitness versus the recombination rate. The first case is related to the evolution near the error threshold on a neutral-network-like fitness landscape, for moderate genome lengths and large population. The more realistic case is the second one, in which we consider the evolutionary dynamics of a finite population on a rugged fitness landscape (the smooth fitness landscape plus some random contributions to the fitness). We also give the solution to the horizontal gene transfer model in the case of asymmetric mutations. To obtain nonmonotonic behavior for both mutation and recombination, we need a specially designed (ideal) fitness landscape.
NASA Astrophysics Data System (ADS)
Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.
2017-12-01
Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock
rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for channel slope, alluvium thickness, and sediment flux, and show that SPACE matches predicted behavior in detachment-limited, transport-limited, and mixed conditions. We provide an example of landscape evolution modeling in which SPACE is coupled with hillslope diffusion, and demonstrate that SPACE provides an effective framework for simultaneously modeling 2-D sediment transport and bedrock erosion.
NASA Astrophysics Data System (ADS)
Troch, Peter A.; Pangle, Luke; Niu, Guo-Yue; Dontsova, Katerina; Barron-Gafford, Greg; van Haren, Joost; Pavao-Zuckerman, Mitch
2014-05-01
The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. This presentation will discuss detection of early landscape evolution in terms of hydrological, geochemical and microbial processes through controlled experimentation, data analysis, and numerical modeling during the commissioning phase of the first hillslope at LEO.
Wegmann, S.F.G.; Franke, K.L.; Hughes, S.; Lewis, R.Q.; Lyons, N.; Paris, P.; Ross, K.; Bauer, J.B.; Witt, A.C.
2011-01-01
The southern Appalachians represent a landscape characterized by locally high topographic relief, steep slopes, and frequent mass movement in the absence of significant tectonic forcing for at least the last 200 Ma. The fundamental processes responsible for landscape evolution in a post-orogenic landscape remain enigmatic. The non-glaciated Cullasaja River basin of south-western North Carolina, with uniform lithology, frequent debris flows, and the availability of high-resolution airborne lidar DEMs, is an ideal natural setting to study landscape evolution in a post-orogenic landscape through the lens of hillslope-channel coupling. This investigation is limited to channels with upslope contributing areas >2.7 km2, a conservative estimate of the transition from fluvial to debris-flow dominated channel processes. Values of normalized hypsometry, hypsometric integral, and mean slope vs elevation are used for 14 tributary basins and the Cullasaja basin as a whole to characterize landscape evolution following upstream knickpoint migration. Results highlight the existence of a transient spatial relationship between knickpoints present along the fluvial network of the Cullasaja basin and adjacent hillslopes. Metrics of topography (relief, slope gradient) and hillslope activity (landslide frequency) exhibit significant downstream increases below the current position of major knickpoints. The transient effect of knickpoint-driven channel incision on basin hillslopes is captured by measuring the relief, mean slope steepness, and mass movement frequency of tributary basins and comparing these results with the distance from major knickpoints along the Cullasaja River. A conceptual model of area-elevation and slope distributions is presented that may be representative of post-orogenic landscape evolution in analogous geologic settings. Importantly, the model explains how knickpoint migration and channel- hillslope coupling is an important factor in tectonically-inactive (i.e. post-orogenic) orogens for the maintenance of significant relief, steep slopes, and weathering-limited hillslopes. ?? 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
DeLong, S.; Troch, P. A.; Barron-Gafford, G. A.; Huxman, T. E.; Pelletier, J. D.; Dontsova, K.; Niu, G.; Chorover, J.; Zeng, X.
2012-12-01
To meet the challenge of predicting landscape-scale changes in Earth system behavior, the University of Arizona has designed and constructed a new large-scale and community-oriented scientific facility - the Landscape Evolution Observatory (LEO). The primary scientific objectives are to quantify interactions among hydrologic partitioning, geochemical weathering, ecology, microbiology, atmospheric processes, and geomorphic change associated with incipient hillslope development. LEO consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1 meter of basaltic tephra ground to homogenous loamy sand and contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. Each ~1000 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation), to facilitate better quantification of evapotraspiration. Each landscape has an engineered rain system that allows application of precipitation at rates between3 and 45 mm/hr. These landscapes are being studied in replicate as "bare soil" for an initial period of several years. After this initial phase, heat- and drought-tolerant vascular plant communities will be introduced. Introduction of vascular plants is expected to change how water, carbon, and energy cycle through the landscapes, with potentially dramatic effects on co-evolution of the physical and biological systems. LEO also provides a physical comparison to computer models that are designed to predict interactions among hydrological, geochemical, atmospheric, ecological and geomorphic processes in changing climates. These computer models will be improved by comparing their predictions to physical measurements made in LEO. The main focus of our iterative modeling and measurement discovery cycle is to use rapid data assimilation to facilitate validation of newly coupled open-source Earth systems models. LEO will be a community resource for Earth system science research, education, and outreach. The LEO project operational philosophy includes 1) open and real-time availability of sensor network data, 2) a framework for community collaboration and facility access that includes integration of new or comparative measurement capabilities into existing facility cyberinfrastructure, 3) community-guided science planning and 4) development of novel education and outreach programs.Artistic rendering of the University of Arizona Landscape Evolution Observatory
Simulations of Fluvial Landscapes
NASA Astrophysics Data System (ADS)
Cattan, D.; Birnir, B.
2013-12-01
The Smith-Bretherton-Birnir (SBB) model for fluvial landsurfaces consists of a pair of partial differential equations, one governing water flow and one governing the sediment flow. Numerical solutions of these equations have been shown to provide realistic models in the evolution of fluvial landscapes. Further analysis of these equations shows that they possess scaling laws (Hack's Law) that are known to exist in nature. However, the simulations are highly dependent on the numerical methods used; with implicit methods exhibiting the correct scaling laws, but the explicit methods fail to do so. These equations, and the resulting models, help to bridge the gap between the deterministic and the stochastic theories of landscape evolution. Slight modifications of the SBB equations make the results of the model more realistic. By modifying the sediment flow equation, the model obtains more pronounced meandering rivers. Typical landsurface with rivers.
Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity
Wobus, C.W.; Kean, J.W.; Tucker, G.E.; Anderson, R. Scott
2008-01-01
The cross-sectional shape of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate evolution of channel cross-sectional geometry. However, fully two-dimensional (2-D) flow models are too computationally expensive to implement in large-scale landscape evolution models, while available simple empirical relationships between width and discharge do not adequately capture the dynamics of channel adjustment. We have developed a simplified 2-D numerical model of channel evolution in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Erosion is assumed to be proportional to boundary shear stress, which is calculated using an approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local channel bed. Model predictions of the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ???3%, and the predicted peak shear stress is consistent to within ???7%. Furthermore, the shear stress distributions predicted by our model compare favorably with available laboratory measurements for prescribed channel shapes. A modification to our simplified code in which the flow includes a high-velocity core allows the model to be extended to estimate shear stress distributions in channels with large width-to-depth ratios. Our model is efficient enough to incorporate into large-scale landscape evolution codes and can be used to examine how channels adjust both cross-sectional shape and slope in response to tectonic and climatic forcing. Copyright 2008 by the American Geophysical Union.
Yardang evolution from maturity to demise
NASA Astrophysics Data System (ADS)
Barchyn, Thomas E.; Hugenholtz, Chris H.
2015-07-01
Yardangs are enigmatic wind-parallel ridges sculpted by aeolian processes that are found extensively in arid environments on Earth and Mars. No general theory exists to explain the long-term evolution of yardangs, curtailing modeling of landscape evolution and dynamics of suspended sediment release. We present a hypothesis of yardang evolution using relative rates of sediment flux, interyardang corridor downcutting, yardang denudation, substrate erodibility, and substrate clast content. To develop and sustain yardangs, corridor downcutting must exceed yardang vertical denudation and deflation. However, erosion of substrate yields considerable quantities of sediment that shelters corridors, slowing downcutting. We model the evolution of yardangs through various combinations of rates and substrate compositions, demonstrating the life span, suspended sediment release, and resulting landscape evolution. We find that yardangs have a distinct and predictable evolution, with inevitable demise and unexpectedly dynamic and autogenic erosion rates driven by subtle differences in substrate clast composition.
A Physically Based Coupled Chemical and Physical Weathering Model for Simulating Soilscape Evolution
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Welivitiya, D.; Hancock, G. R.
2015-12-01
A critical missing link in existing landscape evolution models is a dynamic soil evolution models where soils co-evolve with the landform. Work by the authors over the last decade has demonstrated a computationally manageable model for soil profile evolution (soilscape evolution) based on physical weathering. For chemical weathering it is clear that full geochemistry models such as CrunchFlow and PHREEQC are too computationally intensive to be couplable to existing soilscape and landscape evolution models. This paper presents a simplification of CrunchFlow chemistry and physics that makes the task feasible, and generalises it for hillslope geomorphology applications. Results from this simplified model will be compared with field data for soil pedogenesis. Other researchers have previously proposed a number of very simple weathering functions (e.g. exponential, humped, reverse exponential) as conceptual models of the in-profile weathering process. The paper will show that all of these functions are possible for specific combinations of in-soil environmental, geochemical and geologic conditions, and the presentation will outline the key variables controlling which of these conceptual models can be realistic models of in-profile processes and under what conditions. The presentation will finish by discussing the coupling of this model with a physical weathering model, and will show sample results from our SSSPAM soilscape evolution model to illustrate the implications of including chemical weathering in the soilscape evolution model.
SIGNUM: A Matlab, TIN-based landscape evolution model
NASA Astrophysics Data System (ADS)
Refice, A.; Giachetta, E.; Capolongo, D.
2012-08-01
Several numerical landscape evolution models (LEMs) have been developed to date, and many are available as open source codes. Most are written in efficient programming languages such as Fortran or C, but often require additional code efforts to plug in to more user-friendly data analysis and/or visualization tools to ease interpretation and scientific insight. In this paper, we present an effort to port a common core of accepted physical principles governing landscape evolution directly into a high-level language and data analysis environment such as Matlab. SIGNUM (acronym for Simple Integrated Geomorphological Numerical Model) is an independent and self-contained Matlab, TIN-based landscape evolution model, built to simulate topography development at various space and time scales. SIGNUM is presently capable of simulating hillslope processes such as linear and nonlinear diffusion, fluvial incision into bedrock, spatially varying surface uplift which can be used to simulate changes in base level, thrust and faulting, as well as effects of climate changes. Although based on accepted and well-known processes and algorithms in its present version, it is built with a modular structure, which allows to easily modify and upgrade the simulated physical processes to suite virtually any user needs. The code is conceived as an open-source project, and is thus an ideal tool for both research and didactic purposes, thanks to the high-level nature of the Matlab environment and its popularity among the scientific community. In this paper the simulation code is presented together with some simple examples of surface evolution, and guidelines for development of new modules and algorithms are proposed.
Exhumation and topographic evolution of the Namche Barwa Syntaxis, eastern Himalaya
NASA Astrophysics Data System (ADS)
Yang, Rong; Herman, Frédéric; Fellin, Maria Giuditta; Maden, Colin
2018-01-01
The Namche Barwa Syntaxis, as one of the most tectonically active regions, remains an appropriate place to explore the relationship between tectonics, surface processes, and landscape evolution. Two leading models have been proposed for the formation and evolution of this syntaxis, including the tectonic aneurysm model and the syntaxis expansion model. Here we use a multi-disciplinary approach based on low-temperature thermochronometry, numerical modeling, river profile and topographic analyses to investigate the interactions between tectonics, erosion, and landscape evolution and to test these models. Our results emphasize the presence of young cooling ages (i.e., < 1 Ma) along the Parlung River, to the north of the syntaxis. Using numerical modeling we argue that a recent increase in exhumation rate is required to expose these young ages. Our river analysis reveals spatial variations in channel steepness, which we interpret to reflect the rock uplift pattern. By establishing the relationship between erosion rates and topographic features, we find that erosion rates are poorly to weakly correlated with topographic features, suggesting that the landscape is still evolving. Altogether, these results seem better explained by a mechanism that involves a northward expansion of the syntaxis, which causes high rock uplift rates to the north of the syntaxis and a transient state of topography adjusting to an evolving tectonic setting.
Genetic algorithm dynamics on a rugged landscape
NASA Astrophysics Data System (ADS)
Bornholdt, Stefan
1998-04-01
The genetic algorithm is an optimization procedure motivated by biological evolution and is successfully applied to optimization problems in different areas. A statistical mechanics model for its dynamics is proposed based on the parent-child fitness correlation of the genetic operators, making it applicable to general fitness landscapes. It is compared to a recent model based on a maximum entropy ansatz. Finally it is applied to modeling the dynamics of a genetic algorithm on the rugged fitness landscape of the NK model.
NASA Astrophysics Data System (ADS)
Bonetti, S.; Porporato, A. M.
2017-12-01
The time evolution of a landscape topography through erosional and depositional mechanisms is modified by both human and natural disturbances. This is particularly evident in the Calhoun Critical Zone Observatory, where decades of land-use resulted in a distinct topography with gullies, interfluves, hillslopes and significantly eroded areas. Understanding the role of different geomorphological processes that led to these conditions is crucial to reconstruct sediment and soil carbon fluxes, predict critical conditions of landscape degradation, and implement strategies of land recovery. To model these dynamics, an analytical theory of the drainage area (which represents a surrogate for water surface runoff responsible for fluvial incision) is used to evolve ridge and valley lines. Furthermore, the coupled dynamics of surface water runoff and landscape evolution is analyzed theoretically and numerically to detect thresholds leading to either stable landscape configurations or critical conditions of land erosion. Observed erosional cycles due to vegetation disturbances are explored and used to predict future evolutions under various levels of anthropogenic disturbance.
USDA-ARS?s Scientific Manuscript database
Measurement of geomorphic change may be of interest to researchers and practitioners in a variety of fields including geology, geomorphology, hydrology, engineering, and soil science. Landscapes are often represented by digital elevation models. Surface models generated of the same landscape over a ...
NASA Astrophysics Data System (ADS)
Margirier, Audrey; Braun, Jean; Robert, Xavier; Audin, Laurence
2018-03-01
The processes driving uplift and exhumation of the highest Peruvian peaks (the Cordillera Blanca) are not well understood. Uplift and exhumation seem closely linked to the formation and movement on the Cordillera Blanca normal fault (CBNF) that delimits and shapes the western flank of the Cordillera Blanca. Several models have been proposed to explain the presence of this major normal fault in a compressional setting, but the CBNF and the Cordillera Blanca recent rapid uplift remain enigmatic. Whereas the Cordillera Blanca morphology demonstrates important erosion and thus a significant mass of rocks removal, the impact of erosion and isostasy on the evolution of the Cordillera Blanca uplift rates has never been explored. We address the role of erosion and associated flexural rebound in the uplift and exhumation of the Cordillera Blanca with numerical modeling of landscape evolution. We perform inversions of the broad features of the present-day topography, total exhumation and thermochronological data using a landscape evolution model (FastScape) to provide constraints on the erosion efficiency factor, the uplift rate and the temperature gradient. Our results evidence the not negligible contribution of erosion and associated flexural rebound to the uplift of the Cordillera Blanca and allow us to question the models previously proposed for the formation of the CBNF.
Co-evolution of landforms and vegetation under the influence of orographic precipitation
NASA Astrophysics Data System (ADS)
Yetemen, Omer; Srivastava, Ankur; Saco, Patricia M.
2017-04-01
Landforms are controlled by the interaction between tectonics, climate, and vegetation. Orography induced precipitation not only has implications on erosion resistance through vegetation dynamics but also affects erosive forces through modifying runoff production. The implications of elevated precipitation due to orography on landscape morphology requires a numerical framework that integrates a range of ecohydrologic and geomorphic processes to explore the competition between erosive and resisting forces in catchments where pronounced orographic precipitation prevails. In this study, our aim was to realistically represent ecohydrology driven by orographic precipitation and explore its implications on landscape evolution through a numerical model. The model was used to investigate how ecohydro-geomorphic differences caused by differential precipitation patterns as a result of orographic influence and rain-shadow effect lead to differences in the organization of modelled topography, soil moisture, and plant biomass. We use the CHILD landscape evolution model equipped with a vegetation dynamics component that explicitly tracks above- and below-ground biomass, and a precipitation forcing component that simulates rainfall as a function of elevation and orientation. The preliminary results of the model have shown how the competition between an increased shear stress through runoff production and an enhanced resistance force due to denser canopy cover, shape the landscape. Hillslope asymmetry between polar- and equator-facing hillslopes are enhanced (diminished) when they coincide with windward (leeward) side of the mountain series. The mountain divide accommodates itself by migrating toward the windward direction to increase (decrease) hillslope gradients on windward (leeward) slopes. These results clearly demonstrate the strong coupling between landform evolution and climate processes.
Outbursts and Gradualism: Megaflood erosion consistent with long-term landscape evolution
NASA Astrophysics Data System (ADS)
Garcia-Castellanos, Daniel; O'Connor, Jim
2017-04-01
Existing models for the development of topography and relief over geological timescales are fundamentally based on semi-empirical laws of the erosion and sediment transport performed by rivers. The prediction power of these laws is hindered by limitations in measuring river incision and by the scant knowledge of the past hydrological conditions, specifically average water flow and its variability. Consequently, models adopt 'gradualistic' (time-averaged) assumptions and the erodability values derived from modelling long-term erosion rates in rivers remain ambiguously tied not only to the lithology and nature of the bedrock but also to uncertainties in the quantification of past climate. This prevents the use of those erodabilities to predict the landscape evolution in different scenarios. Here, we apply the fundamentals of river erosion models to outburst floods triggered by overtopping lakes, for which the hydrograph is intrinsically known from the geomorphological record or from direct measures. We obtain the outlet erodability from the peak water discharge and lake area observed in 86 floods that span over 16 orders of magnitude in water volume. The obtained erodability-lithology correlation is consistent with that seen in 22 previous long-term river incision quantifications, showing that outburst floods can be used to estimate erodability values that remain valid for a wide range of hydrological regimes and for erosion timescales spanning from hours-long outburst floods to million-year-scale landscape evolution. The results constrain the conditions leading to the runaway erosion responsible for outburst floods triggered by overtopping lakes. They also call for the explicit incorporation of climate episodicity to the landscape evolution models. [Funded by CGL2014-59516].
No Future in the Past? The role of initial topography on landform evolution model predictions
NASA Astrophysics Data System (ADS)
Hancock, G. R.; Coulthard, T. J.; Lowry, J.
2014-12-01
Our understanding of earth surface processes is based on long-term empirical understandings, short-term field measurements as well as numerical models. In particular, numerical landscape evolution models (LEMs) have been developed which have the capability to capture a range of both surface (erosion and deposition), tectonics, as well as near surface or critical zone processes (i.e. pedogenesis). These models have a range of applications for understanding both surface and whole of landscape dynamics through to more applied situations such as degraded site rehabilitation. LEMs are now at the stage of development where if calibrated, can provide some level of reliability. However, these models are largely calibrated based on parameters determined from present surface conditions which are the product of much longer-term geology-soil-climate-vegetation interactions. Here, we assess the effect of the initial landscape dimensions and associated error as well as parameterisation for a potential post-mining landform design. The results demonstrate that subtle surface changes in the initial DEM as well as parameterisation can have a large impact on landscape behaviour, erosion depth and sediment discharge. For example, the predicted sediment output from LEM's is shown to be highly variable even with very subtle changes in initial surface conditions. This has two important implications in that decadal time scale field data is needed to (a) better parameterise models and (b) evaluate their predictions. We question how a LEM using parameters derived from field plots can firstly be employed to examine long-term landscape evolution. Secondly, the potential range of outcomes is examined based on estimated temporal parameter change and thirdly, the need for more detailed and rigorous field data for calibration and validation of these models is discussed.
Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution
Takahashi, Daisuke; Yamanaka, Takehiko; Sudo, Masaaki; Andow, David A.
2017-01-01
The evolution of resistance against pesticides is an important problem of modern agriculture. The high‐dose/refuge strategy, which divides the landscape into treated and nontreated (refuge) patches, has proven effective at delaying resistance evolution. However, theoretical understanding is still incomplete, especially for combinations of limited dispersal and partially recessive resistance. We reformulate a two‐patch model based on the Comins model and derive a simple quadratic approximation to analyze the effects of limited dispersal, refuge size, and dominance for high efficacy treatments on the rate of evolution. When a small but substantial number of heterozygotes can survive in the treated patch, a larger refuge always reduces the rate of resistance evolution. However, when dominance is small enough, the evolutionary dynamics in the refuge population, which is indirectly driven by migrants from the treated patch, mainly describes the resistance evolution in the landscape. In this case, for small refuges, increasing the refuge size will increase the rate of resistance evolution. Our analysis distils major driving forces from the model, and can provide a framework for understanding directional selection in source‐sink environments. PMID:28422284
Landform Erosion and Volatile Redistribution on Ganymede and Callisto
NASA Technical Reports Server (NTRS)
Moore, Jeffrey Morgan; Howard, Alan D.; McKinnon, William B.; Schenk, Paul M.; Wood, Stephen E.
2009-01-01
We have been modeling landscape evolution on the Galilean satellites driven by volatile transport. Our work directly addresses some of the most fundamental issues pertinent to deciphering icy Galilean satellite geologic histories by employing techniques currently at the forefront of terrestrial, martian, and icy satellite landscape evolution studies [e.g., 1-6], including modeling of surface and subsurface energy and volatile exchanges, and computer simulation of long-term landform evolution by a variety of processes. A quantitative understanding of the expression and rates of landform erosion, and of volatile redistribution on landforms, is especially essential in interpreting endogenic landforms that have, in many cases, been significantly modified by erosion [e.g., 7-9].
USDA-ARS?s Scientific Manuscript database
Cellular automata (CA) is a powerful tool in modeling the evolution of macroscopic scale phenomena as it couples time, space, and variable together while remaining in a simplified form. However, such application has remained challenging in landscape-level chronic forest insect epidemics due to the h...
Spatial distribution of erosion and deposition on an agricultural watershed
NASA Astrophysics Data System (ADS)
Pineux, Nathalie; Gilles, Colinet; Degré, Aurore
2013-04-01
To better understand the agricultural landscapes evolution becomes an essential preoccupation and, for this, it is needed to take into account the sediments deposition, in a distributed way. As it is not possible in practice to study all terrestrial surfaces in detail by instrumenting sectors to obtain data, models of prediction are valuable tools to control the current problems, to predict the future tendencies and to provide a scientific base to the political decisions. In our case, a landscape evolution model is needed, which aims at representing both erosion and sedimentation and dynamically adjusts the landscape to erosion and deposition by modifying the initial digital elevation model. The Landsoil model (Landscape design for Soil conservation under soil use and climate change), among others, could fulfil this objective. It has the advantage to take the soil variability into account. This model, designed for the analysis of agricultural landscape, is suitable for simulations from parcel to catchment scale, is spatially distributed and event-based. Observed quantitative data are essential (notably to calibrate the model) but still limited. Particularly, we lack observations spatially distributed on the watershed. For this purpose, we choose a watershed in Belgium (Wallonia) which is a 124 ha agricultural zone in the loamy region. Its slopes range from 0% to 9%. To test the predictions of the model, comparisons will be done with: - sediment measurements which are done with water samplings in four points on the site to compare the net erosion results; - sediment selective measurements (depth variation observed along graduated bares placed on site) to compare the erosion and deposition results; - very accurate DSM's (6,76 cm pixel resolution X-Y) obtained by the drone (Gatewing X100) each winter. Besides planning what the landscape evolution should be, a revision of the soil map (drew in 1958) is organized to compare with the past situation and establish how the landscape moved in 50 years. The first results of the sediment measurements and of the pictures of the drone will be showed in the presentation.
NASA Astrophysics Data System (ADS)
Marc, O.; Hovius, N.; Meunier, P.; Rault, C.
2017-12-01
In tectonically active areas, earthquakes are an important trigger of landslides with significant impact on hillslopes and river evolutions. However, detailed prediction of landslides locations and properties for a given earthquakes remain difficult.In contrast we propose, landscape scale, analytical prediction of bulk coseismic landsliding, that is total landslide area and volume (Marc et al., 2016a) as well as the regional area within which most landslide must distribute (Marc et al., 2017). The prediction is based on a limited number of seismological (seismic moment, source depth) and geomorphological (landscape steepness, threshold acceleration) parameters, and therefore could be implemented in landscape evolution model aiming at engaging with erosion dynamics at the scale of the seismic cycle. To assess the model we have compiled and normalized estimates of total landslide volume, total landslide area and regional area affected by landslides for 40, 17 and 83 earthquakes, respectively. We have found that low landscape steepness systematically leads to overprediction of the total area and volume of landslides. When this effect is accounted for, the model is able to predict within a factor of 2 the landslide areas and associated volumes for about 70% of the cases in our databases. The prediction of regional area affected do not require a calibration for the landscape steepness and gives a prediction within a factor of 2 for 60% of the database. For 7 out of 10 comprehensive inventories we show that our prediction compares well with the smallest region around the fault containing 95% of the total landslide area. This is a significant improvement on a previously published empirical expression based only on earthquake moment.Some of the outliers seems related to exceptional rock mass strength in the epicentral area or shaking duration and other seismic source complexities ignored by the model. Applications include prediction on the mass balance of earthquakes and this model predicts that only earthquakes generated on a narrow range of fault sizes may cause more erosion than uplift (Marc et al., 2016b), while very large earthquakes are expected to always build topography. The model could also be used to physically calibrate hillslope erosion or perturbations to river network within landscape evolution model.
NASA Astrophysics Data System (ADS)
Moon, Seulgi; Shelef, Eitan; Hilley, George E.
2015-05-01
In this study, we model postglacial surface processes and examine the evolution of the topography and denudation rates within the deglaciated Washington Cascades to understand the controls on and time scales of landscape response to changes in the surface process regime after deglaciation. The postglacial adjustment of this landscape is modeled using a geomorphic-transport-law-based numerical model that includes processes of river incision, hillslope diffusion, and stochastic landslides. The surface lowering due to landslides is parameterized using a physically based slope stability model coupled to a stochastic model of the generation of landslides. The model parameters of river incision and stochastic landslides are calibrated based on the rates and distribution of thousand-year-time scale denudation rates measured from cosmogenic 10Be isotopes. The probability distributions of those model parameters calculated based on a Bayesian inversion scheme show comparable ranges from previous studies in similar rock types and climatic conditions. The magnitude of landslide denudation rates is determined by failure density (similar to landslide frequency), whereas precipitation and slopes affect the spatial variation in landslide denudation rates. Simulation results show that postglacial denudation rates decay over time and take longer than 100 kyr to reach time-invariant rates. Over time, the landslides in the model consume the steep slopes characteristic of deglaciated landscapes. This response time scale is on the order of or longer than glacial/interglacial cycles, suggesting that frequent climatic perturbations during the Quaternary may produce a significant and prolonged impact on denudation and topography.
Using circuit theory to model connectivity in ecology, evolution, and conservation.
McRae, Brad H; Dickson, Brett G; Keitt, Timothy H; Shah, Viral B
2008-10-01
Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.
NASA Astrophysics Data System (ADS)
Perignon, M. C.; Tucker, G. E.; Hilley, G. E.; Arrowsmith, R.
2009-12-01
Landscape evolution models use mass transport rules to simulate the temporal development of topography over timescales too long for humans to observe. As such, these models are difficult to test using the decadal time-scale observations of topographic change that can be directly measured. In contrast, natural systems in which driving forces, boundary conditions, and timing of landscape evolution over millennial time-scales can be well constrained may be used to test the ability of mathematical models to reproduce various attributes of the observed topography. The Dragon’s Back pressure ridge, a 4km x 0.5 km x 100 m high area of elevated topography elongate parallel to the south-central San Andreas fault (SAF) in California, serves as a natural laboratory for studying how the timing and spatial distribution of uplift affects patterns of erosion and topography. Geologic mapping and geophysical studies show that, at this location, the Pacific plate is forced over a relatively stationary shallow discontinuity in the SAF, resulting in local uplift. Continued right-lateral motion along the fault results in the movement of material though the uplift zone at the SAF slip rate of 35 mm/yr. This allows for the substitution of space for time when observing topographic change, and can be used to constrain the tectonic conditions to which the surface processes responded and developed the resulting landscape. We used the CHILD model of landscape evolution to recreate the Dragon’s Back pressure ridge system in order to test the reliability of the model predictions and determine the necessary and sufficient conditions to explain the observed topography. To do this, we first ran a Monte Carlo simulation in which we varied the model inputs within a range of plausible values. We then compared the model results with LiDAR topography from the Dragon’s Back pressure ridge to determine which combinations of input parameters best reproduced the observed topography and how well it was reproduced. Our simulations show a nonlinear geomorphic response to tectonic processes, suggesting that landscape response time varies strongly with local relief. Our results demonstrate that a relatively simple combination of geomorphic transport laws, when suitably calibrated, can account for the morphology of the ridge.
Exploring the fitness landscape of poliovirus
NASA Astrophysics Data System (ADS)
Bianco, Simone; Acevedo, Ashely; Andino, Raul; Tang, Chao
2012-02-01
RNA viruses are known to display extraordinary adaptation capabilities to different environments, due to high mutation rates. Their very dynamical evolution is captured by the quasispecies concept, according to which the viral population forms a swarm of genetic variants linked through mutation, which cooperatively interact at a functional level and collectively contribute to the characteristics of the population. The description of the viral fitness landscape becomes paramount towards a more thorough understanding of the virus evolution and spread. The high mutation rate, together with the cooperative nature of the quasispecies, makes it particularly challenging to explore its fitness landscape. I will present an investigation of the dynamical properties of poliovirus fitness landscape, through both the adoption of new experimental techniques and theoretical models.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Cohen, S.; Svoray, T.; Sela, S.; Hancock, G. R.
2010-12-01
Numerical models are an important tool for studying landscape processes as they allow us to isolate specific processes and drivers and test various physics and spatio-temporal scenarios. Here we use a distributed physically-based soil evolution model (mARM4D) to describe the drivers and processes controlling soil-landscape evolution on a field-site at the fringe between the Mediterranean and desert regions of Israel. This study is an initial effort in a larger project aimed at improving our understanding of the mechanisms and drivers that led to the extensive removal of soils from the loess covered hillslopes of this region. This specific region is interesting as it is located between the Mediterranean climate region in which widespread erosion from hillslopes was attributed to human activity during the Holocene and the arid region in which extensive removal of loess from hillslopes was shown to have been driven by climatic changes during the late-Pleistocene. First we study the sediment transport mechanism of the soil-landscape evolution processes in our study-site. We simulate soil-landscape evolution with only one sediment transport process (fluvial or diffusive) at a time. We find that diffusive sediment transport is likely the dominant process in this site as it resulted in soil distributions that better corresponds to current observations. We then simulate several realistic climatic/anthropogenic scenarios (based on the literature) in order to quantify the sensitivity of the soil-landscape evolution process to temporal fluctuations. We find that this site is relatively insensitive to short term (several thousands of years) sharp, changes. This suggests that climate, rather then human activity, was the main driver for the extensive removal of loess from the hillslopes.
NASA Astrophysics Data System (ADS)
Gobattoni, Federica; Lauro, Giuliana; Leone, Antonio; Monaco, Roberto; Pelorosso, Raffaele
2010-05-01
Landscape continually evolves under the influence of a complex and broad range of natural processes, directly or indirectly determined by land use, but also under the impact of anthropic actions of planning and territorial management. While processes such as earthquakes, landslides, and so on, are manifestations of this evolutionary process, human decisions concerning land government (cropping, urbanization etc.) may affect dramatically the landscape evolution in a complex mechanism of cause-and-effect leading to accelerated erosion phenomena, hydro-geological instability and flood events. To better understand landscape evolution and change in time, several numerical and empirical models have been developed and implemented with the aim to explore and explain such complex processes; reproducing landscape evolution through models and schematic representation of reality could be a powerful and reliable tool for natural resources planning and decision making in land management. Even understanding interactions and relations between the involved variables, predicting how the system will react to external inputs such as political, social or economic constraints, could be strongly difficult. Decision support systems could help in choosing among possible alternatives by integrating different sources of information and "What if" scenarios could be developed as possible future states of the world that represent alternative plausible conditions under different assumptions (Mahmoud M. wt al., 2009). Modelling approaches can be successfully applied to describe and assess both the natural spatial environmental variability and the anthropic impacts at different temporal and spatial scales even if they usually takes into account each aspect of the environmental system separately and without looking directly at landscape as a unique system and without understanding its intrinsic evolution mechanisms (H. Siegrist, 2002, S. Demberel, 2003, A. Brenner, 2005). GIS-based models which could be able to predict the response of the landscape working as a unique system, are expected to advance through a development of sustainable planning strategies and to evaluate the equilibrium-non equilibrium status of landscape evolution and the availability of vital resources in space and time. In this context mathematical models adapted in GIS environment may really give an heavy contribution in such a complex problem- solving, providing a real and concrete Decision System Support. An integrated GIS (Geographic Information System)-based approach was developed (G. Lauro, R. Monaco, 2008) combining an ecological graph model for the analysis of the relationship between spatial pattern and ecological flows and a mathematical model, based on a system of two nonlinear differential equations, that studies meta-stability and bifurcation phenomena. These equations are mainly based on a balance law between a logistic growth of bio-energy and its reduction due to limiting factors coming from environmental constraints. The energy exchange among them will be more or less strong depending on the degree of permeability of the barriers which can obstruct the energy passage from each "landscape unit" to the other. Through NetLogo, a cross-platform multi-agent programmable modelling environment, a completely automatic GIS-based mathematical model, based on the ecological graph and on the cited two differential equations, is presented and discussed here. A study case in Central Italy is analysed to better underline the importance of such a user friendly model in GIS environment.
Arbour, J H; López-Fernández, H
2014-11-01
Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise-AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
On the evolution of dispersal via heterogeneity in spatial connectivity
Henriques-Silva, Renato; Boivin, Frédéric; Calcagno, Vincent; Urban, Mark C.; Peres-Neto, Pedro R.
2015-01-01
Dispersal has long been recognized as a mechanism that shapes many observed ecological and evolutionary processes. Thus, understanding the factors that promote its evolution remains a major goal in evolutionary ecology. Landscape connectivity may mediate the trade-off between the forces in favour of dispersal propensity (e.g. kin-competition, local extinction probability) and those against it (e.g. energetic or survival costs of dispersal). It remains, however, an open question how differing degrees of landscape connectivity may select for different dispersal strategies. We implemented an individual-based model to study the evolution of dispersal on landscapes that differed in the variance of connectivity across patches ranging from networks with all patches equally connected to highly heterogeneous networks. The parthenogenetic individuals dispersed based on a flexible logistic function of local abundance. Our results suggest, all else being equal, that landscapes differing in their connectivity patterns will select for different dispersal strategies and that these strategies confer a long-term fitness advantage to individuals at the regional scale. The strength of the selection will, however, vary across network types, being stronger on heterogeneous landscapes compared with the ones where all patches have equal connectivity. Our findings highlight how landscape connectivity can determine the evolution of dispersal strategies, which in turn affects how we think about important ecological dynamics such as metapopulation persistence and range expansion. PMID:25673685
Carbon and nitrogen accumulation and fluxes on Landscape Evolution Observatory (LEO) slopes
NASA Astrophysics Data System (ADS)
Dontsova, K.; Volk, M.; Webb, C.; Hunt, E.; Tfaily, M. M.; Van Haren, J. L. M.; Sengupta, A.; Chorover, J.; Troch, P.; Ruiz, J.
2017-12-01
Carbon accumulation on the landscapes in organic and inorganic forms is an important sink of CO2 from the atmosphere. Formation and preservation of organic compounds is accompanied by N fixation from the atmosphere and cycling in the soil. Model slopes of Landscape Evolution Observatory present unique opportunity to examine carbon and nitrogen buildup on the landscapes during soil formation processes, such as weathering of primary minerals and microbial activity, due to low original levels of C and N, tight control over environmental conditions, and high spatial and temporal density of measurements. This presents results of inorganic and organic C and N measurements in the cores collected in LEO slopes after several years of exposure to the rainfall, as well as soil solution measurements collected through 496 samplers on each of three model slopes and in seepage. We observed significant spatially distributed accumulation of both C (organic and inorganic) and N in soil profiles. We also observed differences in the composition of organic compounds in the solid and solution phases depending on location on the slope indicating formation of heterogeneity as soils develop. This works indicates potential of physical models to help understand accumulation and fluxes of C and N on natural landscapes.
Insights on landscape evolution and climatic forcing on Titan
NASA Astrophysics Data System (ADS)
Lucas, A.; Daudon, C.; Rodriguez, S.; Cornet, T.; Perron, J. T.
2017-12-01
The landscapes of Titan were observed for nearly 13 years by the Cassini spacecraft and Huygens probe. With dunes, mountains, seas, lakes, rivers..., the great morphological variety observed testifies to the geological richness that Titan shares with the Earth. In this study, we combine analysis of radar and hyperspectral data provided by the Cassini-Huygens mission, with models of valley and river network evolution to better understand the processes at work that sculpt these familiar landscapes. We develop quantitative criteria for comparing 3D morphologies obtained by numerical simulation with those derived for Titan by photogrammetry. These criteria are validated on Earth's landscapes. We simulate morphologies similar to those observed and show that landscapes at the equator and poles are mainly controlled by river incision and mass wasting such as landslides for which we quantify their respective contribution. Subsequently, we relate modeling to precipitation rates of methane and show values that are to be compared with general circulation model predictions (GCM). Our results also show a very young age of formation of the observed morphologies, less than a few million years. Finally, we provide new constraints on current amplitude of the tidal effects and organic precipitation rates from atmosphere chemistry.
NASA Astrophysics Data System (ADS)
Benaïchouche, Abed; Stab, Olivier; Tessier, Bruno; Cojan, Isabelle
2016-01-01
In landscapes dominated by fluvial erosion, the landscape morphology is closely related to the hydrographic network system. In this paper, we investigate the hydrographic network reorganization caused by a headward piracy mechanism between two drainage basins in France, the Meuse and the Moselle. Several piracies occurred in the Meuse basin during the past one million years, and the basin's current characteristics are favorable to new piracies by the Moselle river network. This study evaluates the consequences over the next several million years of a relative lowering of the Moselle River (and thus of its basin) with respect to the Meuse River. The problem is addressed with a numerical modeling approach (landscape evolution model, hereafter LEM) that requires empirical determinations of parameters and threshold values. Classically, fitting of the parameters is based on analysis of the relationship between the slope and the drainage area and is conducted under the hypothesis of equilibrium. Application of this conventional approach to the capture issue yields incomplete results that have been consolidated by a parametric sensitivity analysis. The LEM equations give a six-dimensional parameter space that was explored with over 15,000 simulations using the landscape evolution model GOLEM. The results demonstrate that stream piracies occur in only four locations in the studied reach near the city of Toul. The locations are mainly controlled by the local topography and are model-independent. Nevertheless, the chronology of the captures depends on two parameters: the river concavity (given by the fluvial advection equation) and the hillslope erosion factor. Thus, the simulations lead to three different scenarios that are explained by a phenomenon of exclusion or a string of events.
Steady evolution of hillslopes in layered landscapes: self-organization of a numerical hogback
NASA Astrophysics Data System (ADS)
Glade, R.; Anderson, R. S.
2017-12-01
Landscapes developed in layered sedimentary or igneous rocks are common across Earth, as well as on other planets. Features such as hogbacks, exposed dikes, escarpments and mesas exhibit resistant rock layers in tilted, vertical, or horizontal orientations adjoining more erodible rock. Hillslopes developed in the erodible rock are typically characterized by steep, linear-to-concave slopes or "ramps" mantled with material derived from the resistant layers, often in the form of large blocks. Our previous work on hogbacks has shown that feedbacks between weathering and transport of the blocks and underlying soft rock are fundamental to their formation; our numerical model incorporating these feedbacks explain the development of commonly observed concave-up slope profiles in the absence of rilling processes. Here we employ an analytic approach to describe the steady behavior of our model, in which hillslope form and erosion rates remain constant in the reference frame of the retreating feature. We first revisit a simple geometric analysis that relates structural dip to erosion rates. We then explore the mechanisms by which our numerical model of hogback evolution self-organizes to meet these geometric expectations. Autogenic adjustment of soil depth, slope and erosion rates enables efficient transport of resistant blocks; this allows erosion of the resistant layer to keep up with base level fall rate, leading to steady evolution of the feature. Analytic solutions relate easily measurable field quantities such as ramp length, slope, block size and resistant layer dip angle to local incision rate, block velocity, and block weathering rate. These equations provide a framework for exploring the evolution of layered landscapes, and pinpoint the processes for which we require a more thorough understanding to predict the evolution of such signature landscapes over time.
Debris Flow Process and Climate Controls on Steepland Valley Form and Evolution
NASA Astrophysics Data System (ADS)
Struble, W.; Roering, J. J.
2017-12-01
In unglaciated mountain ranges, steepland bedrock valleys often dominate relief structure and dictate landscape response to perturbations in tectonics or climate; drainage divides have been shown to be dynamic and drainage capture is common. Landscape evolution models often use the stream power model to simulate morphologic changes, but steepland valley networks exhibit trends that deviate from predictions of this model. The prevalence of debris flows in steep channels has motivated approaches that account for commonly observed curvature of slope-area data at small drainage areas. Debris flow deposits correspond with observed curvature in slope-area data, wherein slope increases slowly as drainage area decreases; debris flow incision is implied upstream of deposits. In addition, shallow landslides and in-channel sediment entrainment in humid and arid regions, respectively, have been identified as likely debris flow triggering mechanisms, but the extent to which they set the slope of steep channels is unclear. While an untested model exists for humid landscape debris flows, field observations and models are lacking for regions with lower mean annual precipitation. The Oregon Coastal Ranges are an ideal humid setting for observing how shallow landslide-initiated debris flows abrade channel beds and/or drive exposure-driven weathering. Preliminary field observations in the Lost River Range and the eastern Sierra Nevada - semi-arid and unglaciated environments - suggest that debris flows are pervasive in steep reaches. Evidence for fluvial incision is lacking and the presence of downstream debris flow deposits and a curved morphologic signature in slope-area space suggests stream power models are insufficient for predicting and interpreting landscape dynamics. Investigation of debris flow processes in both humid and arid sites such as these seeks to identify the linkage between sediment transport and the characteristic form of steepland valleys. Bedrock weathering, fracture density, recurrence interval, bulking, and grain size may determine process-form linkages in humid and arid settings. Evaluation of debris flow processes in sites of varying climate presents the opportunity to quantify the role of debris flow incision in the evolution of steepland valleys and improve landscape evolution models.
NASA Astrophysics Data System (ADS)
Kwang, J. S.; Parker, G.
2017-12-01
Many landscape evolution models incorporate sediment removal as a quasi-equilibrium process via the Stream Power Incision Model, or otherwise incorporate sediment supply to mixed bedrock-alluvial channels according to a quasi-steady relation between channel incision and hillslope production. Yet in actively uplifting landscapes, hillslope production is often a highly punctuated phenomenon governed by landslides. We investigate the following key question: how does a landscape subject to punctuated sediment supply differ from one with a steady supply at the same rate? To do this, we incorporate punctuated supply into the Macro Roughness Saltation Abrasion Alluviation model [Zhang et al., 2015], a descendant of the Capacity Saltation Abrasion model [Sklar and Dietrich, 2004, 2006], that is specifically designed to capture unsteady alluvial morphodynamics. Our model has three modules: a) a bedrock-alluvial channel module, b) a hillslope diffusion module, and c) a stochastically-driven landslide supply module. Sediment in bedrock channels plays two roles in incision: 1) as an abrasive agent that incises the bed via collisions and 2) as a protector that inhibits collisions of sediment on the bed. The abrasion rate is proportional to a bedload transport rate times the areal fraction of bedrock surface that is exposed. The transport rate is equal to the capacity transport rate times the areal fraction of bedrock surface that is covered with alluvium, i.e. cover factor. Here, the incision rate vanishes with either vanishing cover (no tools) or complete cover (no bedrock exposed for abrasion). The properties of and amount of sediment delivered to the channel heavily depend on hillslope dynamics. Therefore, hillslope dynamics are important in determining the rate of incision of bedrock channels. Conversely, bedrock incision drives the production of sediment by lowering the base of hillslopes, creating a feedback. We explore this feedback in our landscape evolution model by adjusting our landslide model so that it supplies sediment at a steady rate or according to a stochastic algorithm chosen to characterize landslide size and frequency in such settings as Taiwan or Sichuan near the 2008 Wenchuan Earthquake epicenter. We use our model to study the signature of punctuated sediment delivery on the landscape.
Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution.
Takahashi, Daisuke; Yamanaka, Takehiko; Sudo, Masaaki; Andow, David A
2017-06-01
The evolution of resistance against pesticides is an important problem of modern agriculture. The high-dose/refuge strategy, which divides the landscape into treated and nontreated (refuge) patches, has proven effective at delaying resistance evolution. However, theoretical understanding is still incomplete, especially for combinations of limited dispersal and partially recessive resistance. We reformulate a two-patch model based on the Comins model and derive a simple quadratic approximation to analyze the effects of limited dispersal, refuge size, and dominance for high efficacy treatments on the rate of evolution. When a small but substantial number of heterozygotes can survive in the treated patch, a larger refuge always reduces the rate of resistance evolution. However, when dominance is small enough, the evolutionary dynamics in the refuge population, which is indirectly driven by migrants from the treated patch, mainly describes the resistance evolution in the landscape. In this case, for small refuges, increasing the refuge size will increase the rate of resistance evolution. Our analysis distils major driving forces from the model, and can provide a framework for understanding directional selection in source-sink environments. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Exploring the impact of multiple grain sizes in numerical landscape evolution model
NASA Astrophysics Data System (ADS)
Guerit, Laure; Braun, Jean; Yuan, Xiaoping; Rouby, Delphine
2017-04-01
Numerical evolution models have been widely developed in order to understand the evolution of landscape over different time-scales, but also the response of the topography to changes in external conditions, such as tectonics or climate, or to changes in the bedrock characteristics, such as its density or its erodability. Few models have coupled the evolution of the relief in erosion to the evolution of the related area in deposition, and in addition, such models generally do not consider the role of the size of the sediments reached the depositional domain. Here, we present a preliminary work based on an enhanced version of Fastscape, a very-efficient model solving the stream power equation, which now integrates a sedimentary basin at the front of a relief, together with the integration of multiple grain sizes in the system. Several simulations were performed in order to explore the impact of several grain sizes in terms of stratigraphy in the marine basin. A simple setting is considered, with uniform uplift rate, precipitation rate, and rock properties onshore. The pros and cons of this approach are discussed with respect to similar simulations performed considering only flux.
Crustal strength anisotropy influences landscape form and longevity
NASA Astrophysics Data System (ADS)
Roy, S. G.; Koons, P. O.; Upton, P.; Tucker, G. E.
2013-12-01
Lithospheric deformation is increasingly recognized as integral to landscape evolution. Here we employ a coupled orogenic and landscape model to test the hypothesis that strain-induced crustal failure exerts the dominant control on rates and patterns of orogenic landscape evolution. We assume that erodibility is inversely proportional to cohesion for bedrock rivers host to bedload abrasion. Crustal failure can potentially reduce cohesion by several orders of magnitude along meter scale planar fault zones. The strain-induced cohesion field is generated by use of a strain softening upper crustal rheology in our orogenic model. Based on the results of our coupled model, we predict that topographic anisotropy found in natural orogens is largely a consequence of strain-induced anisotropy in the near surface strength field. The lifespan and geometry of mountain ranges are strongly sensitive to 1) the acute division in erodibility values between the damaged fault zones and the surrounding intact rock and 2) the fault zone orientations for a given tectonic regime. The large division in erodibility between damaged and intact rock combined with the dependence on fault zone orientation provides a spectrum of rates at which a landscape will respond to tectonic or climatic perturbations. Knickpoint migration is about an order of magnitude faster along the exposed cores of fault zones when compared to rates in intact rock, and migration rate increases with fault dip. The contrast in relative erosion rate confines much of the early stage fluvial erosion and establishes a major drainage network that reflects the orientations of exposed fault zones. Slower erosion into the surrounding intact rock typically creates small tributaries that link orthogonally to the structurally confined channels. The large divide in fluvial erosion rate permits the long term persistence of the tectonic signal in the landscape and partly contributes to orogen longevity. Landscape morphology and channel tortuosity together provide critical information on the orientation and spatial distribution of fault damage and the relevant tectonic regime. Our landscape evolution models express similar mechanisms and produce drainage network patterns analogous to those seen in the Southern Alps of New Zealand and the Himalayan Eastern Syntaxis, both centers of active lithospheric deformation.
Chan, Yvonne H.; Venev, Sergey V.; Zeldovich, Konstantin B.; Matthews, C. Robert
2017-01-01
Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. PMID:28262665
On the time to steady state: insights from numerical modeling
NASA Astrophysics Data System (ADS)
Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.
2013-12-01
How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations and area change in adjacent tributaries and basins. In order to characterize the evolution of the drainage network on its way to steady state, we define a proxy to steady state elevation, χ, which is also the characteristic parameter of the transient stream power PDE. Through simulations of tectonic tilting we find that reorganization tends to minimize moments of the χ distribution of the landscape and of Δχ across divides.
Glassy dynamics of landscape evolution
Ortiz, Carlos P.; Jerolmack, Douglas J.
2018-01-01
Soil creeps imperceptibly downhill, but also fails catastrophically to create landslides. Despite the importance of these processes as hazards and in sculpting landscapes, there is no agreed-upon model that captures the full range of behavior. Here we examine the granular origins of hillslope soil transport by discrete element method simulations and reanalysis of measurements in natural landscapes. We find creep for slopes below a critical gradient, where average particle velocity (sediment flux) increases exponentially with friction coefficient (gradient). At critical gradient there is a continuous transition to a dense-granular flow rheology. Slow earthflows and landslides thus exhibit glassy dynamics characteristic of a wide range of disordered materials; they are described by a two-phase flux equation that emerges from grain-scale friction alone. This glassy model reproduces topographic profiles of natural hillslopes, showing its promise for predicting hillslope evolution over geologic timescales. PMID:29686102
NASA Astrophysics Data System (ADS)
Yetemen, Omer; Istanbulluoglu, Erkan; Duvall, Alison R.
2015-12-01
Observations at the field, catchment, and continental scales across a range of arid and semiarid climates and latitudes reveal aspect-controlled patterns in soil properties, vegetation types, ecohydrologic fluxes, and hillslope morphology. Although the global distribution of solar radiation on earth's surface and its implications on vegetation dynamics are well documented, we know little about how variation of solar radiation across latitudes influence landscape evolution and resulting geomorphic difference. Here, we used a landscape evolution model that couples the continuity equations for water, sediment, and aboveground vegetation biomass at each model element in order to explore the controls of latitude and mean annual precipitation (MAP) on the development of hillslope asymmetry (HA). In our model, asymmetric hillslopes emerged from the competition between soil creep and vegetation-modulated fluvial transport, driven by spatial distribution of solar radiation. Latitude was a primary driver of HA because of its effects on the global distribution of solar radiation. In the Northern Hemisphere, north-facing slopes (NFS), which support more vegetation cover and have lower transport efficiency, get steeper toward the North Pole while south-facing slopes (SFS) get gentler. In the Southern Hemisphere, the patterns are reversed and SFS get steeper toward the South Pole. For any given latitude, MAP is found to have minor control on HA. Our results underscore the potential influence of solar radiation as a global control on the development of asymmetric hillslopes in fluvial landscapes.
NASA Astrophysics Data System (ADS)
Istanbulluoglu, Erkan; Bras, Rafael L.
2005-06-01
Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion-dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when such disturbances are considered.
Can Landscape Evolution Models (LEMs) be used to reconstruct palaeo-climate and sea-level histories?
NASA Astrophysics Data System (ADS)
Leyland, J.; Darby, S. E.
2011-12-01
Reconstruction of palaeo-environmental conditions over long time periods is notoriously difficult, especially where there are limited or no proxy records from which to extract data. Application of landscape evolution models (LEMs) for palaeo-environmental reconstruction involves hindcast modeling, in which simulation scenarios are configured with specific model variables and parameters chosen to reflect a specific hypothesis of environmental change. In this form of modeling, the environmental time series utilized are considered credible when modeled and observed landscape metrics converge. Herein we account for the uncertainties involved in evaluating the degree to which the model simulations and observations converge using Monte Carlo analysis of reduced complexity `metamodels'. The technique is applied to a case study focused on a specific set of gullies found on the southwest coast of the Isle of Wight, UK. A key factor controlling the Holocene evolution of these coastal gullies is the balance between rates of sea-cliff retreat (driven by sea-level rise) and headwards incision caused by knickpoint migration (driven by the rate of runoff). We simulate these processes using a version of the GOLEM model that has been modified to represent sea-cliff retreat. A Central Composite Design (CCD) sampling technique was employed, enabling the trajectories of gully response to different combinations of driving conditions to be modeled explicitly. In some of these simulations, where the range of bedrock erodibility (0.03 to 0.04 m0.2 a-1) and rate of sea-level change (0.005 to 0.0059 m a-1) is tightly constrained, modeled gully forms conform closely to those observed in reality, enabling a suite of climate and sea-level change scenarios which plausibly explain the Holocene evolution of the Isle of Wight gullies to be identified.
NASA Astrophysics Data System (ADS)
Glaubius, J.; Maerker, M.
2016-12-01
Anthropogenic landforms, such as mines and agricultural terraces, are impacted by both geomorphic and social processes at varying intensities through time. In the case of agricultural terraces, decisions regarding terrace maintenance are intertwined with land use, such as when terraced fields are abandoned. Furthermore, terrace maintenance and land use decisions, either jointly or separately, may be in response to geomorphic processes, as well as geomorphic feedbacks. Previous studies of these complex geomorphic systems considered agricultural terraces as static features or analyzed only the geomorphic response to landowner decisions. Such research is appropriate for short-term or binary landscape scenarios (e.g. the impact of maintained vs. abandoned terraces), but the complexities inherent in these socio-natural systems requires an approach that includes both social and geomorphic processes. This project analyzes feedbacks and emergent properties in terraced systems by implementing a coupled landscape evolution model (LEM) and agent-based model (ABM) using the Landlab and Mesa modeling libraries. In the ABM portion of the model, agricultural terraces are conceptualized using a life-cycle stages schema and implemented using Markov Decision Processes to simulate the changing geomorphic impact of terracing based on human decisions. This paper examines the applicability of this approach by comparing results from a LEM-only model against the coupled LEM-ABM model for a terraced region. Model results are compared by quantify and spatial patterning of sediment transport. This approach fully captures long-term landscape evolution of terraced terrain that is otherwise lost when the life-cycle of terraces is not considered. The coupled LEM-ABM approach balances both environmental and social processes so that the socio-natural feedbacks in such anthropogenic systems can be disentangled.
NASA Astrophysics Data System (ADS)
Kooi, Henk; Beaumont, Christopher
1996-02-01
Linear systems analysis is used to investigate the response of a surface processes model (SPM) to tectonic forcing. The SPM calculates subcontinental scale denudational landscape evolution on geological timescales (1 to hundreds of million years) as the result of simultaneous hillslope transport, modeled by diffusion, and fluvial transport, modeled by advection and reaction. The tectonically forced SPM accommodates the large-scale behavior envisaged in classical and contemporary conceptual geomorphic models and provides a framework for their integration and unification. The following three model scales are considered: micro-, meso-, and macroscale. The concepts of dynamic equilibrium and grade are quantified at the microscale for segments of uniform gradient subject to tectonic uplift. At the larger meso- and macroscales (which represent individual interfluves and landscapes including a number of drainage basins, respectively) the system response to tectonic forcing is linear for uplift geometries that are symmetric with respect to baselevel and which impose a fully integrated drainage to baselevel. For these linear models the response time and the transfer function as a function of scale characterize the model behavior. Numerical experiments show that the styles of landscape evolution depend critically on the timescales of the tectonic processes in relation to the response time of the landscape. When tectonic timescales are much longer than the landscape response time, the resulting dynamic equilibrium landscapes correspond to those envisaged by Hack (1960). When tectonic timescales are of the same order as the landscape response time and when tectonic variations take the form of pulses (much shorter than the response time), evolving landscapes conform to the Penck type (1972) and to the Davis (1889, 1899) and King (1953, 1962) type frameworks, respectively. The behavior of the SPM highlights the importance of phase shifts or delays of the landform response and sediment yield in relation to the tectonic forcing. Finally, nonlinear behavior resulting from more general uplift geometries is discussed. A number of model experiments illustrate the importance of "fundamental form," which is an expression of the conformity of antecedent topography with the current tectonic regime. Lack of conformity leads to models that exhibit internal thresholds and a complex response.
Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy
NASA Astrophysics Data System (ADS)
Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice
2017-04-01
Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift (respectively subsidence) of the source area results in an increase (respectively decrease) of sediment supply, while the dynamic uplift (respectively subsidence) of the continental margin leads to a decrease (respectively increase) in sedimentation.
Glassy dynamics of landscape evolution.
Ferdowsi, Behrooz; Ortiz, Carlos P; Jerolmack, Douglas J
2018-05-08
Soil creeps imperceptibly downhill, but also fails catastrophically to create landslides. Despite the importance of these processes as hazards and in sculpting landscapes, there is no agreed-upon model that captures the full range of behavior. Here we examine the granular origins of hillslope soil transport by discrete element method simulations and reanalysis of measurements in natural landscapes. We find creep for slopes below a critical gradient, where average particle velocity (sediment flux) increases exponentially with friction coefficient (gradient). At critical gradient there is a continuous transition to a dense-granular flow rheology. Slow earthflows and landslides thus exhibit glassy dynamics characteristic of a wide range of disordered materials; they are described by a two-phase flux equation that emerges from grain-scale friction alone. This glassy model reproduces topographic profiles of natural hillslopes, showing its promise for predicting hillslope evolution over geologic timescales. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Richardson, P. W.; Karlstrom, L.
2016-12-01
The competition between constructional volcanic processes such as lava flows, cinder cones, and tumuli compete with physical and chemical erosional processes to control the morphology of mafic volcanic landscapes. If volcanic effusion rates are high, these landscapes are primarily constructional, but over the timescales associated with hot spot volcanism (1-10 Myr) and arcs (10-50 Myr), chemical and physical erosional processes are important. For fluvial incision to occur, initially high infiltration rates must be overcome by chemical weathering or input of fine-grained sediment. We investigate lava flow resurfacing, using a new lava flow algorithm that can be calibrated for specific flows and eruption magnitude/frequency relationships, into a landscape evolution model to complete two modeling experiments to investigate the interplay between volcanic resurfacing and fluvial incision. We use a stochastic spatial vent distribution calibrated from the Hawaiian eruption record to resurface a synthetically produced ocean island. In one experiment, we investigate the consequences of including time-dependent channel incision efficiency. This effectively mimics the behavior of transient hydrological development of lava flows. In the second experiment, we explore the competition between channel incision and lava flow resurfacing. The relative magnitudes of channel incision versus lava flow resurfacing are captured in landscape topography. For example, during the shield building period for ocean islands, effusion rates are high and the signature of lava flow resurfacing dominates. In contrast, after the shield building phase, channel incision begins and eventually dominates the topographic signature. We develop a dimensionless ratio of resurfacing rate to erosion rate to characterize the transition between these processes. We use spectral techniques to characterize volcanic features and to pinpoint the transition between constructional and erosional morphology on modeled landscapes and on the Big Island of Hawaii.
NASA Astrophysics Data System (ADS)
Frenken, Koen
2001-06-01
The biological evolution of complex organisms, in which the functioning of genes is interdependent, has been analyzed as "hill-climbing" on NK fitness landscapes through random mutation and natural selection. In evolutionary economics, NK fitness landscapes have been used to simulate the evolution of complex technological systems containing elements that are interdependent in their functioning. In these models, economic agents randomly search for new technological design by trial-and-error and run the risk of ending up in sub-optimal solutions due to interdependencies between the elements in a complex system. These models of random search are legitimate for reasons of modeling simplicity, but remain limited as these models ignore the fact that agents can apply heuristics. A specific heuristic is one that sequentially optimises functions according to their ranking by users of the system. To model this heuristic, a generalized NK-model is developed. In this model, core elements that influence many functions can be distinguished from peripheral elements that affect few functions. The concept of paradigmatic search can then be analytically defined as search that leaves core elements in tact while concentrating on improving functions by mutation of peripheral elements.
Biomorphodynamics: Physical-biological feedbacks that shape landscapes
Murray, A.B.; Knaapen, M.A.F.; Tal, M.; Kirwan, M.L.
2008-01-01
Plants and animals affect morphological evolution in many environments. The term "ecogeomorphology" describes studies that address such effects. In this opinion article we use the term "biomorphodynamics" to characterize a subset of ecogeomorphologic studies: those that investigate not only the effects of organisms on physical processes and morphology but also how the biological processes depend on morphology and physical forcing. The two-way coupling precipitates feedbacks, leading to interesting modes of behavior, much like the coupling between flow/sediment transport and morphology leads to rich morphodynamic behaviors. Select examples illustrate how even the basic aspects of some systems cannot be understood without considering biomorphodynamic coupling. Prominent examples include the dynamic interactions between vegetation and flow/sediment transport that can determine river channel patterns and the multifaceted biomorphodynamic feedbacks shaping tidal marshes and channel networks. These examples suggest that the effects of morphology and physical processes on biology tend to operate over the timescale of the evolution of the morphological pattern. Thus, in field studies, which represent a snapshot in the pattern evolution, these effects are often not as obvious as the effects of biology on physical processes. However, numerical modeling indicates that the influences on biology from physical processes can play a key role in shaping landscapes and that even local and temporary vegetation disturbances can steer large-scale, long-term landscape evolution. The prevalence of biomorphodynamic research is burgeoning in recent years, driven by societal need and a confluence of complex systems-inspired modeling approaches in ecology and geomorphology. To make fundamental progress in understanding the dynamics of many landscapes, our community needs to increasingly learn to look for two-way, biomorphodynamic feedbacks and to collect new types of data to support the modeling of such emergent interactions. Copyright 2008 by the American Geophysical Union.
[Dynamic evolution of landscape spatial pattern in Taihu Lake basin, China].
Wang, Fang; Xie, Xiao Ping; Chen, Zhi Cong
2017-11-01
Based on the land-use satellite image datasets of 2000, 2010 and 2015, the landscape index, dynamic change model, landscape transfer matrix and CLUE-S model were integrated to analyze the dynamic evolution of the landscape spatial pattern of Taihu Lake basin. The results showed that the landscape type of the basin was dominated by cultivated land and construction land, and the degree of landscape fragmentation was strengthened from 2000 to 2015, and the distribution showed a uniform trend. From the point of transfer dynamic change, the cultivated land and construction land changed significantly, which was reduced by 6761 km 2 (2.1%) and increased by 6615.33 km 2 (8.4%), respectively. From the landscape transfer, it could be seen that the main change direction of the cultivated land reduction was the construction land, and the cultivated land with 7866.30 km 2 was converted into construction land, accounting for 91.6% of the cultivated land change, and the contribution to the construction land was 96.5%. The trend of dynamic changes of cultivated and construction land in the counties and cities was the same as that of the whole Taihu Lake basin. For Shanghai Central Urban, as well as Pudong District, Lin'an City, Baoshan District, Minhang District, Jiading District and Changzhou City, the area of the cultivated land and construction land changed more prominently. However, compared with the CLUE-S model for the landscape pattern change in 2030, the change of cultivated and construction lands would be the largest in the natural development scenario. Under the ecological protection scenario, the area of grassland would increase and the dynamic degree would reach 54.5%. Under the situation of cultivated land protection, the conversion of cultivated land to construction land would be decreased.
Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains
NASA Astrophysics Data System (ADS)
Gallen, Sean F.
2018-07-01
Determining factors that modify Earth's topography is essential for understanding continental mass and nutrient fluxes, and the evolution and diversity of species. Contrary to the paradigm of slow, steady topographic decay after orogenesis ceases, nearly all ancient mountain belts exhibit evidence of unsteady landscape evolution at large spatial scales. External forcing from uplift from dynamic mantle processes or climate change is commonly invoked to explain the unexpected dynamics of dead orogens, yet direct evidence supporting such inferences is generally lacking. Here I use quantitative analysis of fluvial topography in the southern Appalachian Mountains to show that the exhumation of rocks of variable erosional resistance exerts a fundamental, autogenic control on the evolution of post-orogenic landscapes that continually reshapes river networks. I characterize the spatial pattern of erodibility associated with individual rock-types, and use inverse modeling of river profiles to document a ∼150 m base level fall event at 9 ± 3 Ma in the Upper Tennessee drainage basin. This analysis, combined with existing geological and biological data, demonstrates that base level fall was triggered by capture of the Upper Tennessee River basin by the Lower Tennessee River basin in the Late Miocene. I demonstrate that rock-type triggered changes in river network topology gave rise to the modern Tennessee River system and enhanced erosion rates, changed sediment flux and dispersal patterns, and altered bio-evolutionary pathways in the southeastern U.S.A., a biodiversity hotspot. These findings suggest that variability observed in the stratigraphic, geomorphic, and biologic archives of tectonically quiescent regions does not require external drivers, such as geodynamic or climate forcing, as is typically the interpretation. Rather, my findings lead to a new model of inherently unsteady evolution of ancient mountain landscapes due to the geologic legacy of plate tectonics.
Continuum Model for River Networks
NASA Astrophysics Data System (ADS)
Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.
1995-07-01
The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.
NASA Astrophysics Data System (ADS)
Mahmoudi, M.; Sklar, L. S.; Leclere, S.; Davis, J. D.; Stine, A.
2017-12-01
The size distributions of sediment produced on hillslopes and supplied to river channels influence a wide range of fluvial processes, from bedrock river incision to the creation of aquatic habitats. However, the factors that control hillslope sediment size are poorly understood, limiting our ability to predict sediment size and model the evolution of sediment size distributions across landscapes. Recently separate field and theoretical investigations have begun to address this knowledge gap. Here we compare the predictions of several emerging modeling approaches to landscapes where high quality field data are available. Our goals are to explore the sensitivity and applicability of the theoretical models in each field context, and ultimately to provide a foundation for incorporating hillslope sediment size into models of landscape evolution. The field data include published measurements of hillslope sediment size from the Kohala peninsula on the island of Hawaii and tributaries to the Feather River in the northern Sierra Nevada mountains of California, and an unpublished data set from the Inyo Creek catchment of the southern Sierra Nevada. These data are compared to predictions adapted from recently published modeling approaches that include elements of topography, geology, structure, climate and erosion rate. Predictive models for each site are built in ArcGIS using field condition datasets: DEM topography (slope, aspect, curvature), bedrock geology (lithology, mineralogy), structure (fault location, fracture density), climate data (mean annual precipitation and temperature), and estimates of erosion rates. Preliminary analysis suggests that models may be finely tuned to the calibration sites, particularly when field conditions most closely satisfy model assumptions, leading to unrealistic predictions from extrapolation. We suggest a path forward for developing a computationally tractable method for incorporating spatial variation in production of hillslope sediment size distributions in landscape evolution models. Overall, this work highlights the need for additional field data sets as well as improved theoretical models, but also demonstrates progress in predicting the size distribution of sediments produced on hillslopes and supplied to channels.
NASA Astrophysics Data System (ADS)
Chilton, K.; Spotila, J. A.
2017-12-01
Bedrock erodibility exerts a primary control on landscape evolution and fluvial morphodynamics, but the relationships between erodibility and the many factors that influence it (rock strength, spacing and orientation of discontinuities, weathering susceptibility, erosive process, etc.) remain poorly defined. This results in oversimplification of erodibility in landscape evolution models, the primary example being the stream power incision model, which groups together factors which may influence erodibility into a single coefficient. There is therefore need to better define how bedrock properties influence erodibility and, in turn, channel form and evolution. This study seeks to deconvolve the relationships between bedrock material properties and erodibility by quantifying empirical relationships between substrate characteristics and bedrock channel morphology (slope, steepness index, width, form) at a high spatial resolution (5-10 m scale) in continuous and mixed alluvial-bedrock channels. We specifically focus on slowly eroding channels with minimal evidence for landscape transience, such that variations in channel morphology are mainly due to bedrock properties. We also use channels cut into sedimentary rock, which exhibit extreme variation (yet predictability and continuity) in discontinuity spacing. Here we present preliminary data comparing the morphology and bedrock properties of 1st through 4th order channels in the tectonically inactive Valley and Ridge province of the Appalachian Mountains, SW Virginia. Field surveys of channel slope, width, substrate, and form consist of 0.5 km long, continuous stream reaches through different intervals of tilted Paleozoic siliciclastic stratigraphy. Some surveys exhibit nearly complete bedrock exposure, whereas others are predominantly mixed, with localized bedrock reaches in high-slope knickzones. We statistically analyze relationships between fluvial morphology and lithology, strength (based on field and laboratory measurements), and discontinuity spacing and orientation. Results are informative for models of landscape evolution, and specifically provide insight into the controls on erosive process dominance (i.e., plucking vs. abrasion) and on the development and evolution of knickpoints in non-transient settings.
NASA Astrophysics Data System (ADS)
Stokes, M.; Perron, J. T.
2017-12-01
Freshwater systems host exceptionally species-rich communities whose spatial structure is dictated by the topology of the river networks they inhabit. Over geologic time, river networks are dynamic; drainage basins shrink and grow, and river capture establishes new connections between previously separated regions. It has been hypothesized that these changes in river network structure influence the evolution of life by exchanging and isolating species, perhaps boosting biodiversity in the process. However, no general model exists to predict the evolutionary consequences of landscape change. We couple a neutral community model of freshwater organisms to a landscape evolution model in which the river network undergoes drainage divide migration and repeated river capture. Neutral community models are macro-ecological models that include stochastic speciation and dispersal to produce realistic patterns of biodiversity. We explore the consequences of three modes of speciation - point mutation, time-protracted, and vicariant (geographic) speciation - by tracking patterns of diversity in time and comparing the final result to an equilibrium solution of the neutral model on the final landscape. Under point mutation, a simple model of stochastic and instantaneous speciation, the results are identical to the equilibrium solution and indicate the dominance of the species-area relationship in forming patterns of diversity. The number of species in a basin is proportional to its area, and regional species richness reaches its maximum when drainage area is evenly distributed among sub-basins. Time-protracted speciation is also modeled as a stochastic process, but in order to produce more realistic rates of diversification, speciation is not assumed to be instantaneous. Rather, each new species must persist for a certain amount of time before it is considered to be established. When vicariance (geographic speciation) is included, there is a transient signature of increased regional diversity after river capture. The results indicate that the mode of speciation and the rate of speciation relative to the rate of divide migration determine the evolutionary signature of river capture.
NASA Astrophysics Data System (ADS)
Hancock, G. R.; Webb, A. A.; Turner, L.
2017-11-01
Sediment transport and soil erosion can be determined by a variety of field and modelling approaches. Computer based soil erosion and landscape evolution models (LEMs) offer the potential to be reliable assessment and prediction tools. An advantage of such models is that they provide both erosion and deposition patterns as well as total catchment sediment output. However, before use, like all models they require calibration and validation. In recent years LEMs have been used for a variety of both natural and disturbed landscape assessment. However, these models have not been evaluated for their reliability in steep forested catchments. Here, the SIBERIA LEM is calibrated and evaluated for its reliability for two steep forested catchments in south-eastern Australia. The model is independently calibrated using two methods. Firstly, hydrology and sediment transport parameters are inferred from catchment geomorphology and soil properties and secondly from catchment sediment transport and discharge data. The results demonstrate that both calibration methods provide similar parameters and reliable modelled sediment transport output. A sensitivity study of the input parameters demonstrates the model's sensitivity to correct parameterisation and also how the model could be used to assess potential timber harvesting as well as the removal of vegetation by fire.
Tool-effect: Controls on Landscape Persistence
NASA Astrophysics Data System (ADS)
Willenbring, J. K.; Brocard, G. Y.; Salles, T.; Harrison, E. J.
2017-12-01
The ability of rivers to cut through rock and to remove former land surfaces sets the pace of landscape response to mountain uplift. Because of associations between tectonism, river incision, erosion, carbon burial and silicate weathering, high rates of rock uplift are thought to initiate a cascade of processes that are linked to sequestration of CO2 over geologic timescales. However, even in some cases of landscapes experiencing rapid uplift, some portions of landscapes remain unchanged or `relict' for long periods and the fluxes of chemical weathering and physical erosion do not reflect the new tectonic regime-sometimes for millions of years following uplift. These relict portions of the landscape are often composed of subdued topography with thick soils. River incision is achieved by various processes, but one of the main contributors is bedrock abrasion by bedload. Here, we show how the presence of flat, relict landscapes in headwaters can lead to reduced incision rates and low erosion fluxes. We use a known pulse of uplift in Puerto Rico and track the river response to the uplift over time to illustrate a how landscapes in hot, humid climates can persist for millions of years even after rapid mountain uplift. We run experiments on simplified topography using numerical landscape evolution models. Typically, numerical landscape evolution models apply a standard stream power law model, whereby river incision is proportional to basal shear stress or unit stream power, and is not affected by gravel flux. We implement a formulation of the tool and cover effect model, and then we added a reinforcing effect of weathering on this process, by implementing a gravel production function. This function simulates the effect of the residence time of rocks in soil, which is expected to affect the grain-size distribution of the particles in the soil, with lower erosion rates, and longer residence time further decreasing the proportion of gravel delivered to the streams. We find that the presence of rock fragments in a landscape acts as a stream attractor and fine-grained materials retard stream incision. Thus, a relict surface with thick soils composed of sand and clays effectively protects itself from dissection.
Rice, Sean H
1998-06-01
Evolution can change the developmental processes underlying a character without changing the average expression of the character itself. This sort of change must occur in both the evolution of canalization, in which a character becomes increasingly buffered against genetic or developmental variation, and in the phenomenon of closely related species that show similar adult phenotypes but different underlying developmental patterns. To study such phenomena, I develop a model that follows evolution on a surface representing adult phenotype as a function of underlying developmental characters. A contour on such a "phenotype landscape" is a set of states of developmental characters that produce the same adult phenotype. Epistasis induces curvature of this surface, and degree of canalization is represented by the slope along a contour. I first discuss the geometric properties of phenotype landscapes, relating epistasis to canalization. I then impose a fitness function on the phenotype and model evolution of developmental characters as a function of the fitness function and the local geometry of the surface. This model shows how canalization evolves as a population approaches an optimum phenotype. It further shows that under some circumstances, "decanalization" can occur, in which the expression of adult phenotype becomes increasingly sensitive to developmental variation. This process can cause very similar populations to diverge from one another developmentally even when their adult phenotypes experience identical selection regimes. © 1998 The Society for the Study of Evolution.
Weathering and landscape evolution
NASA Astrophysics Data System (ADS)
Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.
2005-04-01
In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.
A General Model for Estimating Macroevolutionary Landscapes.
Boucher, Florian C; Démery, Vincent; Conti, Elena; Harmon, Luke J; Uyeda, Josef
2018-03-01
The evolution of quantitative characters over long timescales is often studied using stochastic diffusion models. The current toolbox available to students of macroevolution is however limited to two main models: Brownian motion and the Ornstein-Uhlenbeck process, plus some of their extensions. Here, we present a very general model for inferring the dynamics of quantitative characters evolving under both random diffusion and deterministic forces of any possible shape and strength, which can accommodate interesting evolutionary scenarios like directional trends, disruptive selection, or macroevolutionary landscapes with multiple peaks. This model is based on a general partial differential equation widely used in statistical mechanics: the Fokker-Planck equation, also known in population genetics as the Kolmogorov forward equation. We thus call the model FPK, for Fokker-Planck-Kolmogorov. We first explain how this model can be used to describe macroevolutionary landscapes over which quantitative traits evolve and, more importantly, we detail how it can be fitted to empirical data. Using simulations, we show that the model has good behavior both in terms of discrimination from alternative models and in terms of parameter inference. We provide R code to fit the model to empirical data using either maximum-likelihood or Bayesian estimation, and illustrate the use of this code with two empirical examples of body mass evolution in mammals. FPK should greatly expand the set of macroevolutionary scenarios that can be studied since it opens the way to estimating macroevolutionary landscapes of any conceivable shape. [Adaptation; bounds; diffusion; FPK model; macroevolution; maximum-likelihood estimation; MCMC methods; phylogenetic comparative data; selection.].
Experimental rugged fitness landscape in protein sequence space.
Hayashi, Yuuki; Aita, Takuyo; Toyota, Hitoshi; Husimi, Yuzuru; Urabe, Itaru; Yomo, Tetsuya
2006-12-20
The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12-130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7x10(4)-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18-24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region.
Experimental Rugged Fitness Landscape in Protein Sequence Space
Hayashi, Yuuki; Aita, Takuyo; Toyota, Hitoshi; Husimi, Yuzuru; Urabe, Itaru; Yomo, Tetsuya
2006-01-01
The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12–130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7×104-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18–24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region. PMID:17183728
NASA Astrophysics Data System (ADS)
Bras, R. L.; Istanbulluoglu, E.
2004-12-01
Topography acts as a template for numerous landscape processes that includes hydrologic, ecologic and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on known geomorphic relations, thresholds for channel initiation and landform evolution, using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants, and is killed by geomorphic disturbances (runoff erosion and landsliding), and wildfires. Analytical results suggest that, in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion dominated landscape, under none or loose vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the CHILD model. Numerical experiments reveal the importance of vegetation disturbances on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when vegetation disturbances are considered.
NASA Astrophysics Data System (ADS)
Sangireddy, H.; Passalacqua, P.; Stark, C. P.
2013-12-01
Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic processes. Also, we explore the variability in hillslope length scales as a function of hillslope diffusivity coefficients and critical shear stress in natural landscapes and show that we can infer signatures of dominant geomorphic processes by analyzing characteristic topographic length scales present in topography. References: Beven, K. and Kirkby, M. J.: A physically based variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43-69, 1979 Howard, A. D. (1994). A detachment-limited model of drainage basin evolution.Water resources research, 30(7), 2261-2285. Passalacqua, P., Do Trung, T., Foufoula Georgiou, E., Sapiro, G., & Dietrich, W. E. (2010). A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophysical. Research: Earth Surface (2003-2012), 115(F1). Sangireddy, H., Passalacqua, P., Stark, C.P.(2012). Multi-resolution estimation of lidar-DTM surface flow metrics to identify characteristic topographic length scales, EP13C-0859: AGU Fall meeting 2012. Stark, C. P., & Stark, G. J. (2001). A channelization model of landscape evolution. American Journal of Science, 301(4-5), 486-512. Tucker, G. E., Catani, F., Rinaldo, A., & Bras, R. L. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3), 187-202.
Efficient retrieval of landscape Hessian: Forced optimal covariance adaptive learning
NASA Astrophysics Data System (ADS)
Shir, Ofer M.; Roslund, Jonathan; Whitley, Darrell; Rabitz, Herschel
2014-06-01
Knowledge of the Hessian matrix at the landscape optimum of a controlled physical observable offers valuable information about the system robustness to control noise. The Hessian can also assist in physical landscape characterization, which is of particular interest in quantum system control experiments. The recently developed landscape theoretical analysis motivated the compilation of an automated method to learn the Hessian matrix about the global optimum without derivative measurements from noisy data. The current study introduces the forced optimal covariance adaptive learning (FOCAL) technique for this purpose. FOCAL relies on the covariance matrix adaptation evolution strategy (CMA-ES) that exploits covariance information amongst the control variables by means of principal component analysis. The FOCAL technique is designed to operate with experimental optimization, generally involving continuous high-dimensional search landscapes (≳30) with large Hessian condition numbers (≳104). This paper introduces the theoretical foundations of the inverse relationship between the covariance learned by the evolution strategy and the actual Hessian matrix of the landscape. FOCAL is presented and demonstrated to retrieve the Hessian matrix with high fidelity on both model landscapes and quantum control experiments, which are observed to possess nonseparable, nonquadratic search landscapes. The recovered Hessian forms were corroborated by physical knowledge of the systems. The implications of FOCAL extend beyond the investigated studies to potentially cover other physically motivated multivariate landscapes.
Ecological Functions of Landscapes
NASA Astrophysics Data System (ADS)
Kiryushin, V. I.
2018-01-01
Ecological functions of landscapes are considered a system of processes ensuring the development, preservation, and evolution of ecosystems and the biosphere as a whole. The concept of biogeocenosis can be considered a model that integrates biotic and environmental functions. The most general biogeocenotic functions specify the biodiversity, biotic links, self-organization, and evolution of ecosystems. Close interaction between biocenosis and the biotope (ecotope) is ensured by the continuous exchange of matter, energy, and information. Ecotope determines the biocenosis. The group of ecotopic functions includes atmospheric (gas exchange, heat exchange, hydroatmospheric, climate-forming), lithospheric (geodynamic, geophysical, and geochemical), hydrologic and hydrogeologic functions of landscape and ecotopic functions of soils. Bioecological functions emerge as a result of the biotope and ecotope interaction; these are the bioproductive, destructive, organoaccumulative, biochemical (gas, concentration, redox, biochemical, biopedological), pedogenetic, and energy functions
Predicting the evolution of sex on complex fitness landscapes.
Misevic, Dusan; Kouyos, Roger D; Bonhoeffer, Sebastian
2009-09-01
Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, Delta Var(HD), also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. Delta Var(HD) is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction.
Predicting the Evolution of Sex on Complex Fitness Landscapes
Misevic, Dusan; Kouyos, Roger D.; Bonhoeffer, Sebastian
2009-01-01
Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, ΔVarHD, also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. ΔVarHD is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction. PMID:19763171
NASA Astrophysics Data System (ADS)
Deal, Eric; Braun, Jean
2015-04-01
A current challenge in landscape evolution modelling is to integrate realistic precipitation patterns and behaviour into longterm fluvial erosion models. The effect of precipitation on fluvial erosion can be subtle as well as nonlinear, implying that changes in climate (e.g. precipitation magnitude or storminess) may have unexpected outcomes in terms of erosion rates. For example Tucker and Bras (2000) show theoretically that changes in the variability of precipitation (storminess) alone can influence erosion rate across a landscape. To complicate the situation further, topography, ultimately driven by tectonic uplift but shaped by erosion, has a major influence on the distribution and style of precipitation. Therefore, in order to untangle the coupling between climate, erosion and tectonics in an actively uplifting orogen where fluvial erosion is dominant it is important to understand how the 'rain dial' used in a landscape evolution model (LEM) corresponds to real precipitation patterns. One issue with the parameterisation of rainfall for use in an LEM is the difference between the timescales for precipitation (≤ 1 year) and landscape evolution (> 103 years). As a result, precipitation patterns must be upscaled before being integrated into a model. The relevant question then becomes: What is the most appropriate measure of precipitation on a millennial timescale? Previous work (Tucker and Bras, 2000; Lague, 2005) has shown that precipitation can be properly upscaled by taking into account its variable nature, along with its average magnitude. This captures the relative size and frequency of extreme events, ensuring a more accurate characterisation of the integrated effects of precipitation on erosion over long periods of time. In light of this work, we present a statistical parameterisation that accurately models the mean and daily variability of ground based (APHRODITE) and remotely sensed (TRMM) precipitation data in the Himalayan orogen with only a few parameters. We also demonstrate over what spatial and temporal scales this parameterisation applies and is stable. Applying the parameterisation over the Himalayan orogen reveals large-scale strike-perpendicular gradients in precipitation variability in addition to the long observed strike-perpendicular gradient in precipitation magnitude. This observation, combined with the theoretical work mentioned above, suggests that variability is an integral part of the interaction between climate and erosion. References Bras, R. L., & Tucker, G. E. (2000). A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resources Research, 36(7), 1953-1964. doi:10.1029/2000WR900065 Lague, D. (2005). Discharge, discharge variability, and the bedrock channel profile. Journal of Geophysical Research, 110(F4), F04006. doi:10.1029/2004JF000259
NASA Technical Reports Server (NTRS)
Gilchrist, Alan R.; Kooi, Henk; Beaumont, Christopher
1994-01-01
The relationship between morphology and surficial geology is used to quantify the denudation that has occurred across southwestern Africa sicne the fragmentation of Gondwana during the Early Mesozoic. Two main points emerge. Signficant denudation, of the order of kilometers, is widespread except in the Kalahari region of the continental interior. The denudation is systematically distributed so that the continental exterior catchment, draining directly to the Cape basin, is denuded to a greater depth than the interior catchment inland of the Great Escarpment. The analysis also implies tha the majority of the denudation occurred before the beginning of the Cenozoic for both teh exerior and interior catchments. Existing models of landscape development are reviewed, and implications of the denudation chronology are incorporated into a revised conceptual model. This revision implies tha thte primary effect of rifting on the subsequent landscape evolution is that it generates two distinct drainage regimes. A marginal upwarp, or rift flank uplift, separates rejuvenated rivers that drain into the subsiding rift from rivers in the continetal interior that are deflected but not rejuvenated. The two catchments evolve independently unless they are integrated by breaching of hte marginal upwarp. If this occurs, the exterior baselevel is communicated to the interior catchment that is denuded accordingly. Denudation rates generally decrease as the margin evolves, and this decrease is reinforced by the exposure of substrate that is resistant to denudation and/or a change to a more arid climate. The observations do not reveal a particular style of smaller-scale landscape evolution, sucha s escarpment retreat, that is responsible for the differential denudation across the region. It is proposed that numerical model experiments, which reflect the observational insights at the large scale, may identify the smaller-scale controls on escarpment development if the model and natural systems are analogous. Four numerical experiments are presented in which the roles of antecedent topography, resistant substrate, climte change, and lowering the baselevel of the interior catchment are investigated for an initially high elevation margin bordered by an escarpment. The model results suggest several styles of landscape evolution that are compatible with the observations. Escarpments may retreat in a regular manner, but they also degrade and are destroyed, only to reform at the drainage divide between exterior and interior catchments.
Biophysical Fitness Landscapes for Transcription Factor Binding Sites
Haldane, Allan; Manhart, Michael; Morozov, Alexandre V.
2014-01-01
Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions. PMID:25010228
Modelling landscape evolution at the flume scale
NASA Astrophysics Data System (ADS)
Cheraghi, Mohsen; Rinaldo, Andrea; Sander, Graham C.; Barry, D. Andrew
2017-04-01
The ability of a large-scale Landscape Evolution Model (LEM) to simulate the soil surface morphological evolution as observed in a laboratory flume (1-m × 2-m surface area) was investigated. The soil surface was initially smooth, and was subjected to heterogeneous rainfall in an experiment designed to avoid rill formation. Low-cohesive fine sand was placed in the flume while the slope and relief height were 5 % and 20 cm, respectively. Non-uniform rainfall with an average intensity of 85 mm h-1 and a standard deviation of 26 % was applied to the sediment surface for 16 h. We hypothesized that the complex overland water flow can be represented by a drainage discharge network, which was calculated via the micro-morphology and the rainfall distribution. Measurements included high resolution Digital Elevation Models that were captured at intervals during the experiment. The calibrated LEM captured the migration of the main flow path from the low precipitation area into the high precipitation area. Furthermore, both model and experiment showed a steep transition zone in soil elevation that moved upstream during the experiment. We conclude that the LEM is applicable under non-uniform rainfall and in the absence of surface incisions, thereby extending its applicability beyond that shown in previous applications. Keywords: Numerical simulation, Flume experiment, Particle Swarm Optimization, Sediment transport, River network evolution model.
NASA Astrophysics Data System (ADS)
Stippich, Christian; Krob, Florian; Glasmacher, Ulrich A.; Hackspacher, Peter C.
2016-04-01
The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate published1 and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones1 are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE2,3 and FastScape4). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244. 2. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 3. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. 4. Braun, J. and Willett, S.D., 2013. A very efficient, O(n), implicit and parallel method to solve the basic stream power law equation governing fluvial incision and landscape evolution. Geomorphology, v.180-181, 170-179.
NASA Astrophysics Data System (ADS)
Troch, Peter A.; Niu, Guo-Yue; Gevaert, Anouk; Teuling, Adriaan; Uijlenhoet, Remko; Pasetto, Damiano; Paniconi, Claudio; Putti, Mario
2014-05-01
The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. We observed the spatial and temporal evolution of the soil moisture content at 496 5-TM Decagon sensors distributed over 5 different depths during a low-intensity long-duration rainfall experiment in February 2013. This presentation will focus on our modeling efforts to reveal subsurface hydraulic heterogeneity required to explain observed rainfall-runoff dynamics at the hillslope scale.
Branching pattern in natural drainage network
NASA Astrophysics Data System (ADS)
Hooshyar, M.; Singh, A.; Wang, D.
2017-12-01
The formation and growth of river channels and their network evolution are governed by the erosional and depositional processes operating on the landscape due to movement of water. The branching structure of drainage network is an important feature related to the network topology and contain valuable information about the forming mechanisms of the landscape. We studied the branching patterns in natural drainage networks, extracted from 1 m Digital Elevation Models (DEMs) of 120 catchments with minimal human impacts across the United States. We showed that the junction angles have two distinct modes an the observed modes are physically explained as the optimal angles that result in minimum energy dissipation and are linked to the exponent characterizing slope-area curve. Our findings suggest that the flow regimes, debris-flow dominated or fluvial, have distinct characteristic angles which are functions of the scaling exponent of the slope-area curve. These findings enable us to understand the geomorphological signature of hydrological processes on drainage networks and develop more refined landscape evolution models.
Empirical evidence of climate's role in Rocky Mountain landscape evolution
NASA Astrophysics Data System (ADS)
Riihimaki, Catherine A.; Reiners, Peter W.
2012-06-01
Climate may be the dominant factor affecting landscape evolution during the late Cenozoic, but models that connect climate and landscape evolution cannot be tested without precise ages of landforms. Zircon (U-Th)/He ages of clinker, metamorphosed rock formed by burning of underlying coal seams, provide constraints on the spatial and temporal patterns of Quaternary erosion in the Powder River basin of Wyoming and Montana. The age distribution of 86 sites shows two temporal patterns: (1) a bias toward younger ages because of erosion of older clinker and (2) periodic occurrence of coal fires likely corresponding with particular climatic regimes. Statistical t tests of the ages and spectral analyses of the age probability density function indicate that these episodes of frequent coal fires most likely correspond with times of high eccentricity in Earth's orbit, possibly driven by increased seasonality in the region causing increased erosion rates and coal exhumation. Correlation of ages with interglacial time periods is weaker. The correlations between climate and coal fires improve when only samples greater than 50 km from the front of the Bighorn Range, the site of the nearest alpine glaciation, are compared. Together, these results indicate that the interaction between upstream glaciation and downstream erosion is likely not the dominant control on Quaternary landscape evolution in the Powder River basin, particularly since 0.5 Ma. Instead, incision rates are likely controlled by the response of streams to climate shifts within the basin itself, possibly changes in local precipitation rates or frequency-magnitude distributions, with no discernable lag time between climate changes and landscape responses. Clinker ages are consistent with numerical models in which stream erosion is driven by fluctuations in stream power on thousand year timescales within the basins, possibly as a result of changing precipitation patterns, and is driven by regional rock uplift on million year timescales.
NASA Astrophysics Data System (ADS)
Smithells, R. A.
2015-12-01
Many studies investigate rift evolution with geodynamic models, giving insight into the architecture and morphology of extensional basins. Recent advances in modeling allow better temporal and spatial resolution in surface processes when coupled with geodynamic processes, allowing modeling the interactions between sediment erosion and deposition with rift development. Here we use a combination of dynamic forward modeling and landscape evolution models to determine feedback and interaction of sediment erosion and deposition with rift development and fault localization. The Gulf of Corinth is an ideal basin to study the effect of surface processes on rifting because it can be considered a closed system for sediment erosion and deposition. It is a young rift, not affected by subsequent overprinting and there is a large amount of data from offshore seismic surveys and onshore fieldwork to constrain its evolution. We reconstruct paleo topography of the catchment area by removing the effects of fault activity and sediment erosion. The reconstructed topography is used to model different scenarios for landscape evolution and the results determine the relative importance of regional and fault related uplift and subsidence on the drainage evolution in the Gulf of Corinth. The landscape models are also used to constrain source area and total amount of sediment eroded from the catchment area. The eroded onshore volume and the amount of sediment deposited offshore are compared in order to reconstruct the source-to-sink balance for the Gulf of Corinth. Our results constrain the evolution of the catchment area and timings of drainage reversals that occurred in the fluvial systems of the Gulf of Corinth. Coupled forward tectonic-surface process modeling is used to investigate feedback between rift formation and the surface processes and to determine its role in developing asymmetry and fault migration in an extensional setting. In this study we investigate the effect of a mature sediment routing system on rift development. Our models show that migrating fault activity may be triggered by migration of sediment deposition filling the accommodation space provided by the associated half grabens. The asymmetric development of the rift can be explained by the preferred erosion and deposition of the southern flank of the Gulf of Corinth.
Classification of Farmland Landscape Structure in Multiple Scales
NASA Astrophysics Data System (ADS)
Jiang, P.; Cheng, Q.; Li, M.
2017-12-01
Farmland is one of the basic terrestrial resources that support the development and survival of human beings and thus plays a crucial role in the national security of every country. Pattern change is the intuitively spatial representation of the scale and quality variation of farmland. Through the characteristic development of spatial shapes as well as through changes in system structures, functions and so on, farmland landscape patterns may indicate the landscape health level. Currently, it is still difficult to perform positioning analyses of landscape pattern changes that reflect the landscape structure variations of farmland with an index model. Depending on a number of spatial properties such as locations and adjacency relations, distance decay, fringe effect, and on the model of patch-corridor-matrix that is applied, this study defines a type system of farmland landscape structure on the national, provincial, and city levels. According to such a definition, the classification model of farmland landscape-structure type at the pixel scale is developed and validated based on mathematical-morphology concepts and on spatial-analysis methods. Then, the laws that govern farmland landscape-pattern change in multiple scales are analyzed from the perspectives of spatial heterogeneity, spatio-temporal evolution, and function transformation. The result shows that the classification model of farmland landscape-structure type can reflect farmland landscape-pattern change and its effects on farmland production function. Moreover, farmland landscape change in different scales displayed significant disparity in zonality, both within specific regions and in urban-rural areas.
NASA Astrophysics Data System (ADS)
Lai, J.; Anders, A. M.
2017-12-01
Landscapes of the US Midwest were repeatedly affected by the southern margin of the Laurentide Ice Sheet during the Quaternary. Glacial processes removed pre-glacial relief and left constructional landforms including low-relief till plains and high-relief moraines. As the ice retreated, meltwater was collected in subglacial or proglacial lakes and outburst floods of glacial lakes episodically carved deep valleys. These valleys provided the majority of post-glacial landscape relief. However, a significant fraction of the area of low-relief till plains was occupied by closed depressions and remained unconnected to these meltwater valleys. This area is referred to as non-contributing area (NCA) because it does not typically contribute surface runoff to stream networks. Decreasing fractions of NCA on older glacial landscape surfaces suggests that NCA becomes integrated into external drainage networks over time. We propose that this integration could occur via two different paths: 1) through capture of NCA as channel heads propagate into the upland or, 2) through erosion of a channel along a flow path that, perhaps intermittently, connects NCA to the external drainage network. We refer the two cases as "disconnected" and "connected" cases since the crucial difference between them is the hydrological connectivity on the upland. We investigate the differences in the evolution of channel networks and morphology in low relief landscapes under disconnected and connected drainage regimes through numerical simulations of fluvial and hillslope processes. We observe a substantially faster evolution of the channel network in the connected case than in the disconnected case. Modeled landscapes show that channel network in the connected case has longer, more sinuous channels. We also find that the connected case removes lower amounts of total mass than the disconnected case when the same degree of channel integration is achieved. Observed landscapes in US Midwest are more comparable to the connected case than the disconnected case. This finding suggest that the hydrological connectivity in these landscapes may not be entirely controlled by topographic drainage divides.
NASA Astrophysics Data System (ADS)
Shalaby, Ahmed
2017-10-01
Crustal rifting of the Arabian-Nubian Shield and formation of the Afro-Arabian rifts since the Miocene resulted in uplifting and subsequent terrain evolution of Sinai landscapes; including drainage systems and fault scarps. Geomorphic evolution of these landscapes in relation to tectonic evolution of the Afro-Arabian rifts is the prime target of this study. The fracture patterns and landscape evolution of the Wadi Dahab drainage basin (WDDB), in which its landscape is modeled by the tectonic evolution of the Gulf of Aqaba-Dead Sea transform fault, are investigated as a case study of landscape modifications of tectonically-controlled drainage systems. The early developed drainage system of the WDDB was achieved when the Sinai terrain subaerially emerged in post Eocene and initiation of the Afro-Arabian rifts in the Oligo-Miocene. Conjugate shear fractures, parallel to trends of the Afro-Arabian rifts, are synthesized with tensional fracture arrays to adapt some of inland basins, which represent the early destination of the Sinai drainage systems as paleolakes trapping alluvial sediments. Once the Gulf of Aqaba rift basin attains its deeps through sinistral movements on the Gulf of Aqaba-Dead Sea transform fault in the Pleistocene and the consequent rise of the Southern Sinai mountainous peaks, relief potential energy is significantly maintained through time so that it forced the Pleistocene runoffs to flow via drainage systems externally into the Gulf of Aqaba. Hence the older alluvial sediments are (1) carved within the paleolakes by a new generation of drainage systems; followed up through an erosional surface by sandy- to silty-based younger alluvium; and (2) brought on footslopes of fault scarps reviving the early developed scarps and inselbergs. These features argue for crustal uplifting of Sinai landscapes syn-rifting of the Gulf of Aqaba rift basin. Oblique orientation of the Red Sea-Gulf of Suez rift relative to the WNW-trending Precambrian Najd faults; and extrusion of volcanic rocks in directions parallel to the rift boundaries geometrically suggest rifting on tensional fractures that mutually bridge the Najd fault-related shear fractures. These aspects might envisage reactivation of the preexisting Precambrian fracture patterns in the Arabian-Nubian shield by the Oligo-Miocene to Pleistocene rift-controlled stress field.
Scale Invariance in Landscape Evolution Models Using Stream Power Laws
NASA Astrophysics Data System (ADS)
Kwang, J. S.; Parker, G.
2014-12-01
Landscape evolution models (LEM) commonly utilize stream power laws to simulate river incision with formulations such as E = KAmSn, where E is a vertical incision rate [L/T], K is an erodibility constant [L1-2m/T], A is an upstream drainage area [L2], S is a local channel gradient [-], and m and n are positive exponents that describe the basin hydrology. In our reduced complexity model, the landscape approached equilibrium by balancing an incision rate with a constant, uniform, vertical rock uplift rate at every location in the landscape. From our simulations, for a combination of m and n, the landscape exhibited scale invariance. That is, regardless of the size and scale of the basin, the relief and vertical structure of the landscape remained constant. Therefore, the relief and elevation profile of the landscape at equilibrium were only dependent on the coefficients for erodibility and uplift and an equation that described how upstream area, A, increased as the length of a stream increased. In our analytical 1D models, we utilized two equations that described upslope area, (a) A = Bl, where B is the profile width [L], and l is the stream length from the ridge [L] and (b) A = Clh, Hack's Law, where C is a constant [L2-h] and h is a positive exponent. With these equations, (a) m = n and (b) hm = n resulted in scale invariance. In our numerical 2D models, the relationship between A and l was inherent in the actual structure of the drainage network. From our numerical 2D results, scale invariance occurred when 2m = n. Additionally, using reasonable values from the literature for exponents, n, m and h, resulted in singularities at the ridges in the landscape, which caused truncation error. In consequence, the elevation of the ridge increased as the number of grid cells in the domain increased in the numerical model, and the model was unable to converge. These singularities at the ridges appeared when (a) m ≥ n and (b) hm ≥ n in the analytical model and 2m ≥ n in the numerical model. Here we present (1) 1D analytical solutions and (2) 2D numerical solutions that demonstrate scale invariance in LEMs and (3) the consequences of the singularity in 2D LEM numerical simulations. These results will help provide insight about the structure and dynamics of landscapes and drainage networks and shed light on geomorphological empirical relationships.
NASA Astrophysics Data System (ADS)
Wilds, Roy; Kauffman, Stuart A.; Glass, Leon
2008-09-01
We study the evolution of complex dynamics in a model of a genetic regulatory network. The fitness is associated with the topological entropy in a class of piecewise linear equations, and the mutations are associated with changes in the logical structure of the network. We compare hill climbing evolution, in which only mutations that increase the fitness are allowed, with neutral evolution, in which mutations that leave the fitness unchanged are allowed. The simple structure of the fitness landscape enables us to estimate analytically the rates of hill climbing and neutral evolution. In this model, allowing neutral mutations accelerates the rate of evolutionary advancement for low mutation frequencies. These results are applicable to evolution in natural and technological systems.
NASA Astrophysics Data System (ADS)
Moon, S.; Shelef, E.; Hilley, G. E.
2013-12-01
The Washington Cascades is currently in topographic and erosional disequilibrium after deglaciation occurred around 11- 17 ka ago. The topography still shows the features inherited from prior alpine glacial processes (e.g., cirques, steep side-valleys, and flat valley bottoms), though postglacial processes are currently denuding this landscape. Our previous study in this area calculated the thousand-year-timescale denudation rates using cosmogenic 10Be concentration (CRN-denudation rates), and showed that they were ~ four times higher than million-year-timescale uplift rates. In addition, the spatial distribution of denudation rates showed a good correlation with a factor-of-ten variation in precipitation. We interpreted this correlation as reflecting the sensitivity of landslide triggering in over-steepened deglaciated topography to precipitation, which produced high denudation rates in wet areas that experienced frequent landsliding. We explored this interpretation using a model of postglacial surface processes that predicts the evolution of the topography and denudation rates within the deglaciated Washington Cascades. Specifically, we used the model to understand the controls on and timescales of landscape response to changes in the surface process regime after deglaciation. The postglacial adjustment of this landscape is modeled using a geomorphic-transport-law-based numerical model that includes processes of river incision, hillslope diffusion, and stochastic landslides. The surface lowering due to landslides is parameterized using a physically-based slope stability model coupled to a stochastic model of the generation of landslides. The model parameters of river incision and stochastic landslides are calibrated based on the rates and distribution of thousand-year-timescale denudation rates measured from cosmogenic 10Be isotopes. The probability distribution of model parameters required to fit the observed denudation rates shows comparable ranges from previous studies in similar rock types and climatic conditions. The calibrated parameters suggest that the dominant sediment source of river sediments originates from stochastic landslides. The magnitude of landslide denudation rates is determined by failure density (similar to landslide frequency), while their spatial distribution is largely controlled by precipitation and slope angles. Simulation results show that denudation rates decay over time and take approximately 130-180 ka to reach steady-state rates. This response timescale is longer than glacial/interglacial cycles, suggesting that frequent climatic perturbations during the Quaternary may prevent these types of landscapes from reaching a dynamic equilibrium with postglacial processes.
In Review (Geology): Alpine Landscape Evolution Dominated by Cirque Retreat
NASA Technical Reports Server (NTRS)
Oskin, Michael; Burbank, Doug
2005-01-01
Despite the abundance in alpine terrain of glacially dissected landscapes, the magnitude and geometry of glacial erosion can rarely be defined. In the eastern Kyrgyz Range, a widespread unconformity exhumed as a geomorphic surface provides a regional datum with which to calibrate erosion. As tectonically driven surface uplift has progressively pushed this surface into the zone of ice accumulation, glacial erosion has overprinted the landscape. With as little as 500 m of incision into rocks underlying the unconformity, distinctive glacial valleys display their deepest incision adjacent to cirque headwalls. The expansion of north-facing glacial cirques at the expense of south-facing valleys has driven the drainage divide southwards at rates up to 2 to 3 times the rate of valley incision. Existing ice-flux-based glacial erosion rules incompletely model expansion of glacial valleys via cirque retreat into the low-gradient unconformity remnants. Local processes that either directly sap cirque headwalls or inhibit erosion down-glacier appear to control, at least initially, alpine landscape evolution.
Rapid biological speciation driven by tectonic evolution in New Zealand
NASA Astrophysics Data System (ADS)
Craw, Dave; Upton, Phaedra; Burridge, Christopher P.; Wallis, Graham P.; Waters, Jonathan M.
2016-02-01
Collisions between tectonic plates lead to the rise of new mountain ranges that can separate biological populations and ultimately result in new species. However, the identification of links between tectonic mountain-building and biological speciation is confounded by environmental and ecological factors. Thus, there are surprisingly few well-documented examples of direct tectonic controls on terrestrial biological speciation. Here we present examples from New Zealand, where the rapid evolution of 18 species of freshwater fishes has resulted from parallel tectonic landscape evolution. We use numerical models to reconstruct changes in the deep crustal structure and surface drainage catchments of the southern island of New Zealand over the past 25 million years. We show that the island and mountain topography evolved in six principal tectonic zones, which have distinct drainage catchments that separated fish populations. We use new and existing phylogenetic analyses of freshwater fish populations, based on over 1,000 specimens from more than 400 localities, to show that fish genomes can retain evidence of this tectonic landscape development, with a clear correlation between geologic age and extent of DNA sequence divergence. We conclude that landscape evolution has controlled on-going biological diversification over the past 25 million years.
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-05-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-01-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
Astudillo-Clavijo, Viviana; Arbour, Jessica H; López-Fernández, Hernán
2015-05-01
Simpson envisaged a conceptual model of adaptive radiation in which lineages diversify into "adaptive zones" within a macroevolutionary adaptive landscape. However, only a handful of studies have empirically investigated this adaptive landscape and its consequences for our interpretation of the underlying mechanisms of phenotypic evolution. In fish radiations the evolution of locomotor phenotypes may represent an important dimension of ecomorphological diversification given the implications of locomotion for feeding and habitat use. Neotropical geophagine cichlids represent a newly identified adaptive radiation and provide a useful system for studying patterns of locomotor diversification and the implications of selective constraints on phenotypic divergence in general. We use multivariate ordination, models of phenotypic evolution and posterior predictive approaches to investigate the macroevolutionary adaptive landscape and test for evidence of early divergence of locomotor phenotypes in Geophagini. The evolution of locomotor phenotypes was characterized by selection towards at least two distinct adaptive peaks and the early divergence of modern morphological disparity. One adaptive peak included the benthic and epibenthic invertivores and was characterized by fishes with deep, laterally compressed bodies that optimize precise, slow-swimming manoeuvres. The second adaptive peak resulted from a shift in adaptive optima in the species-rich ram-feeding/rheophilic Crenicichla-Teleocichla clade and was characterized by species with streamlined bodies that optimize fast starts and rapid manoeuvres. Evolutionary models and posterior predictive approaches favoured an early shift to a new adaptive peak over decreasing rates of evolution as the underlying process driving the early divergence of locomotor phenotypes. The influence of multiple adaptive peaks on the divergence of locomotor phenotypes in Geophagini is compatible with the expectations of an ecologically driven adaptive radiation. This study confirms that the diversification of locomotor phenotypes represents an important dimension of phenotypic evolution in the geophagine adaptive radiation. It also suggests that the commonly observed early burst of phenotypic evolution during adaptive radiations may be better explained by the concentration of shifts to new adaptive peaks deep in the phylogeny rather than overall decreasing rates of evolution.
NASA Astrophysics Data System (ADS)
Werner, Christian; Liakka, Johan; Schmid, Manuel; Fuentes, Juan-Pablo; Ehlers, Todd A.; Hickler, Thomas
2017-04-01
Vegetation composition and establishment is strongly dependent on climate conditions but also a result of vegetation dynamics (competition for light, water and nutrients). In addition, vegetation exerts control over the development of landscapes as it mediates the climatic and hydrological forces shaping the terrain via hillslope and fluvial processes. At the same time, topography as well as soil texture and soil depth affect the microclimate, soil water storage and rooting space that is defining the environmental envelope for vegetation development. Within the EarthShape research program (www.earthshape.net) we evaluate these interactions by simulating the co-evolution of landscape and vegetation with a dynamic vegetation model (LPJ-GUESS) and a landscape evolution model (LandLab). LPJ-GUESS is a mechanistic model driven by daily or monthly weather data and explicitly simulates vegetation physiology, succession, competition and water and nutrient cycling. Here we present the results of first transient vegetation simulations from 21kyr BP to present-day using the TraCE-21ka climate dataset for four focus sites along the coastal cordillera of Chile that are exposed to a substantial meridional climate gradient (ranging from hyper-arid to humid-temperate conditions). We show that the warming occurring in the region from LGM to present, in addition to the increase of atmospheric CO2 concentrations, led to a shift in vegetation composition and surface cover. Future work will show how these changes resonate in the dynamics of hillslope and fluvial erosion and ultimately bi-directional feedback mechanisms of vegetation development and landscape evolution/ soil formation (see also companion presentation by Schmid et al., this session).
A 'Turing' Test for Landscape Evolution Models
NASA Astrophysics Data System (ADS)
Parsons, A. J.; Wise, S. M.; Wainwright, J.; Swift, D. A.
2008-12-01
Resolving the interactions among tectonics, climate and surface processes at long timescales has benefited from the development of computer models of landscape evolution. However, testing these Landscape Evolution Models (LEMs) has been piecemeal and partial. We argue that a more systematic approach is required. What is needed is a test that will establish how 'realistic' an LEM is and thus the extent to which its predictions may be trusted. We propose a test based upon the Turing Test of artificial intelligence as a way forward. In 1950 Alan Turing posed the question of whether a machine could think. Rather than attempt to address the question directly he proposed a test in which an interrogator asked questions of a person and a machine, with no means of telling which was which. If the machine's answer could not be distinguished from those of the human, the machine could be said to demonstrate artificial intelligence. By analogy, if an LEM cannot be distinguished from a real landscape it can be deemed to be realistic. The Turing test of intelligence is a test of the way in which a computer behaves. The analogy in the case of an LEM is that it should show realistic behaviour in terms of form and process, both at a given moment in time (punctual) and in the way both form and process evolve over time (dynamic). For some of these behaviours, tests already exist. For example there are numerous morphometric tests of punctual form and measurements of punctual process. The test discussed in this paper provides new ways of assessing dynamic behaviour of an LEM over realistically long timescales. However challenges remain in developing an appropriate suite of challenging tests, in applying these tests to current LEMs and in developing LEMs that pass them.
Evolution, Energy Landscapes and the Paradoxes of Protein Folding
Wolynes, Peter G.
2014-01-01
Protein folding has been viewed as a difficult problem of molecular self-organization. The search problem involved in folding however has been simplified through the evolution of folding energy landscapes that are funneled. The funnel hypothesis can be quantified using energy landscape theory based on the minimal frustration principle. Strong quantitative predictions that follow from energy landscape theory have been widely confirmed both through laboratory folding experiments and from detailed simulations. Energy landscape ideas also have allowed successful protein structure prediction algorithms to be developed. The selection constraint of having funneled folding landscapes has left its imprint on the sequences of existing protein structural families. Quantitative analysis of co-evolution patterns allows us to infer the statistical characteristics of the folding landscape. These turn out to be consistent with what has been obtained from laboratory physicochemical folding experiments signalling a beautiful confluence of genomics and chemical physics. PMID:25530262
Ogbunugafor, C Brandon; Hartl, Daniel
2016-01-25
The study of reverse evolution from resistant to susceptible phenotypes can reveal constraints on biological evolution, a topic for which evolutionary theory has relatively few general principles. The public health catastrophe of antimicrobial resistance in malaria has brought these constraints on evolution into a practical realm, with one proposed solution: withdrawing anti-malarial medication use in high resistance settings, built on the assumption that reverse evolution occurs readily enough that populations of pathogens may revert to their susceptible states. While past studies have suggested limits to reverse evolution, there have been few attempts to properly dissect its mechanistic constraints. Growth rates were determined from empirical data on the growth and resistance from a set of combinatorially complete set of mutants of a resistance protein (dihydrofolate reductase) in Plasmodium vivax, to construct reverse evolution trajectories. The fitness effects of individual mutations were calculated as a function of drug environment, revealing the magnitude of epistatic interactions between mutations and genetic backgrounds. Evolution across the landscape was simulated in two settings: starting from the population fixed for the quadruple mutant, and from a polymorphic population evenly distributed between double mutants. A single mutation of large effect (S117N) serves as a pivot point for evolution to high resistance regions of the landscape. Through epistatic interactions with other mutations, this pivot creates an epistatic ratchet against reverse evolution towards the wild type ancestor, even in environments where the wild type is the most fit of all genotypes. This pivot mutation underlies the directional bias in evolution across the landscape, where evolution towards the ancestor is precluded across all examined drug concentrations from various starting points in the landscape. The presence of pivot mutations can dictate dynamics of evolution across adaptive landscape through epistatic interactions within a protein, leaving a population trapped on local fitness peaks in an adaptive landscape, unable to locate ancestral genotypes. This irreversibility suggests that the structure of an adaptive landscape for a resistance protein should be understood before considering resistance management strategies. This proposed mechanism for constraints on reverse evolution corroborates evidence from the field indicating that phenotypic reversal often occurs via compensatory mutation at sites independent of those associated with the forward evolution of resistance. Because of this, molecular methods that identify resistance patterns via single SNPs in resistance-associated markers might be missing signals for resistance and compensatory mutation throughout the genome. In these settings, whole genome sequencing efforts should be used to identify resistance patterns, and will likely reveal a more complicated genomic signature for resistance and susceptibility, especially in settings where anti-malarial medications have been used intermittently. Lastly, the findings suggest that, given their role in dictating the dynamics of evolution across the landscape, pivot mutations might serve as future targets for therapy.
Quasi-Steady Evolution of Hillslopes in Layered Landscapes: An Analytic Approach
NASA Astrophysics Data System (ADS)
Glade, R. C.; Anderson, R. S.
2018-01-01
Landscapes developed in layered sedimentary or igneous rocks are common on Earth, as well as on other planets. Features such as hogbacks, exposed dikes, escarpments, and mesas exhibit resistant rock layers adjoining more erodible rock in tilted, vertical, or horizontal orientations. Hillslopes developed in the erodible rock are typically characterized by steep, linear-to-concave slopes or "ramps" mantled with material derived from the resistant layers, often in the form of large blocks. Previous work on hogbacks has shown that feedbacks between weathering and transport of the blocks and underlying soft rock can create relief over time and lead to the development of concave-up slope profiles in the absence of rilling processes. Here we employ an analytic approach, informed by numerical modeling and field data, to describe the quasi-steady state behavior of such rocky hillslopes for the full spectrum of resistant layer dip angles. We begin with a simple geometric analysis that relates structural dip to erosion rates. We then explore the mechanisms by which our numerical model of hogback evolution self-organizes to meet these geometric expectations, including adjustment of soil depth, erosion rates, and block velocities along the ramp. Analytical solutions relate easily measurable field quantities such as ramp length, slope, block size, and resistant layer dip angle to local incision rate, block velocity, and block weathering rate. These equations provide a framework for exploring the evolution of layered landscapes and pinpoint the processes for which we require a more thorough understanding to predict their evolution over time.
NASA Astrophysics Data System (ADS)
Goren, Liran; Petit, Carole
2017-04-01
Fluvial channels respond to changing tectonic and climatic conditions by adjusting their patterns of erosion and relief. It is therefore expected that by examining these patterns, we can infer the tectonic and climatic conditions that shaped the channels. However, the potential interference between climatic and tectonic signals complicates this inference. Within the framework of the stream power model that describes incision rate of mountainous bedrock rivers, climate variability has two effects: it influences the erosive power of the river, causing local slope change, and it changes the fluvial response time that controls the rate at which tectonically and climatically induced slope breaks are communicated upstream. Because of this dual role, the fluvial response time during continuous climate change has so far been elusive, which hinders our understanding of environmental signal propagation and preservation in the fluvial topography. An analytic solution of the stream power model during general tectonic and climatic histories gives rise to a new definition of the fluvial response time. The analytic solution offers accurate predictions for landscape evolution that are hard to achieve with classical numerical schemes and thus can be used to validate and evaluate the accuracy of numerical landscape evolution models. The analytic solution together with the new definition of the fluvial response time allow inferring either the tectonic history or the climatic history from river long profiles by using simple linear inversion schemes. Analytic study of landscape evolution during periodic climate change reveals that high frequency (10-100 kyr) climatic oscillations with respect to the response time, such as Milankovitch cycles, are not expected to leave significant fingerprints in the upstream reaches of fluvial channels. Linear inversion schemes are applied to the Tinee river tributaries in the southern French Alps, where tributary long profiles are used to recover the incision rate history of the Tinee main trunk. Inversion results show periodic, high incision rate pulses, which are correlated with interglacial episodes. Similar incision rate histories are recovered for the past 100 kyr when assuming constant climatic conditions or periodic climatic oscillations, in agreement with theoretical predictions.
Landscape evolution on Mars - A model of aeolian denudation in Gale Crater
NASA Astrophysics Data System (ADS)
Day, M. D.; Kocurek, G.; Grotzinger, J. P.
2015-12-01
Aeolian erosion has been the dominant geomorphic agent to shape the surface of Mars for the past ~3.5 billion years. Although individual geomorphic features evidencing aeolian activity are well understood (e.g., yardangs, dune fields, and wind streaks), landscapes formed by aeolian erosion remain poorly characterized. Intra-crater sedimentary mounds are hypothesized to have formed by wind deflation of craters once filled with flat-lying strata, and, therefore, should be surrounded by landscapes formed by aeolian erosion. Here we present a landscape evolution model that provides both an initial characterization of aeolian landscapes, and a mechanism for large-scale excavation. Wind excavation of Gale Crater to form the 5 km high Mount Sharp would require removal of 6.4 x 104 km3 of sediment. Imagery in Gale Crater from satellites and the Mars Science Laboratory rover Curiosity shows a surface characterized by first-cycle aeolian erosion of bedrock. The overall landscape is interpreted to represent stages in a cycle of aeolian deflation and excavation, enhanced by physical weathering (e.g., thermal fracturing, cratering). Initial wind erosion of bedrock is enhanced along fractures, producing retreating scarps. Underlying less resistant layers then erode faster than the armoring cap rock, increasing relief in scarps to form retreating mesas. As scarp retreat continues, boulders from the armoring cap unit break away and cover the hillslopes of less resistant material below the scarps. Eventually all material from the capping unit is eroded away and a boulder-capped hill remains. Winnowing of fine material flattens hillslope topography, leaving behind a desert pavement. Over long enough time, this pavement is breached and the cycle begins anew. This cycle of landscape denudation by the wind is similar to that of water, but lacks characteristic subaqueous features such as dendritic drainage networks.
The potential and flux landscape theory of evolution.
Zhang, Feng; Xu, Li; Zhang, Kun; Wang, Erkang; Wang, Jin
2012-08-14
We established the potential and flux landscape theory for evolution. We found explicitly the conventional Wright's gradient adaptive landscape based on the mean fitness is inadequate to describe the general evolutionary dynamics. We show the intrinsic potential as being Lyapunov function(monotonically decreasing in time) does exist and can define the adaptive landscape for general evolution dynamics for studying global stability. The driving force determining the dynamics can be decomposed into gradient of potential landscape and curl probability flux. Non-zero flux causes detailed balance breaking and measures how far the evolution from equilibrium state. The gradient of intrinsic potential and curl flux are perpendicular to each other in zero fluctuation limit resembling electric and magnetic forces on electrons. We quantified intrinsic energy, entropy and free energy of evolution and constructed non-equilibrium thermodynamics. The intrinsic non-equilibrium free energy is a Lyapunov function. Both intrinsic potential and free energy can be used to quantify the global stability and robustness of evolution. We investigated an example of three allele evolutionary dynamics with frequency dependent selection (detailed balance broken). We uncovered the underlying single, triple, and limit cycle attractor landscapes. We found quantitative criterions for stability through landscape topography. We also quantified evolution pathways and found paths do not follow potential gradient and are irreversible due to non-zero flux. We generalized the original Fisher's fundamental theorem to the general (i.e., frequency dependent selection) regime of evolution by linking the adaptive rate with not only genetic variance related to the potential but also the flux. We show there is an optimum potential where curl flux resulting from biotic interactions of individuals within a species or between species can sustain an endless evolution even if the physical environment is unchanged. We offer a theoretical basis for explaining the corresponding Red Queen hypothesis proposed by Van Valen. Our work provides a theoretical foundation for evolutionary dynamics.
The inheritance of a Mesozoic landscape in western Scandinavia
Fredin, Ola; Viola, Giulio; Zwingmann, Horst; Sørlie, Ronald; Brönner, Marco; Lie, Jan-Erik; Grandal, Else Margrethe; Müller, Axel; Margreth, Annina; Vogt, Christoph; Knies, Jochen
2017-01-01
In-situ weathered bedrock, saprolite, is locally found in Scandinavia, where it is commonly thought to represent pre-Pleistocene weathering possibly associated with landscape formation. The age of weathering, however, remains loosely constrained, which has an impact on existing geological and landscape evolution models and morphotectonic correlations. Here we provide new geochronological evidence that some of the low-altitude basement landforms on- and offshore southwestern Scandinavia are a rejuvenated geomorphological relic from Mesozoic times. K-Ar dating of authigenic, syn-weathering illite from saprolitic remnants constrains original basement exposure in the Late Triassic (221.3±7.0–206.2±4.2 Ma) through deep weathering in a warm climate and subsequent partial mobilization of the saprolitic mantle into the overlying sediment cascade system. The data support the bulk geomorphological development of west Scandinavia coastal basement rocks during the Mesozoic and later, long-lasting relative tectonic stability. Pleistocene glaciations played an additional geomorphological role, selectively stripping the landscape from the Mesozoic overburden and carving glacial landforms down to Plio–Pleistocene times. Saprolite K-Ar dating offers unprecedented possibilities to study past weathering and landscape evolution processes. PMID:28452366
TTLEM - an implicit-explicit (IMEX) scheme for modelling landscape evolution in MATLAB
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Schwanghart, Wolfgang
2016-04-01
Landscape evolution models (LEM) are essential to unravel interdependent earth surface processes. They are proven very useful to bridge several temporal and spatial timescales and have been successfully used to integrate existing empirical datasets. There is a growing consensus that landscapes evolve at least as much in the horizontal as in the vertical direction urging for an efficient implementation of dynamic drainage networks. Here we present a spatially explicit LEM, which is based on the object-oriented function library TopoToolbox 2 (Schwanghart and Scherler, 2014). Similar to other LEMs, rivers are considered to be the main drivers for simulated landscape evolution as they transmit pulses of tectonic perturbations and set the base level of surrounding hillslopes. Highly performant graph algorithms facilitate efficient updates of the flow directions to account for planform changes in the river network and the calculation of flow-related terrain attributes. We implement the model using an implicit-explicit (IMEX) scheme, i.e. different integrators are used for different terms in the diffusion-incision equation. While linear diffusion is solved using an implicit scheme, we calculate incision explicitly. Contrary to previously published LEMS, however, river incision is solved using a total volume method which is total variation diminishing in order to prevent numerical diffusion when solving the stream power law (Campforts and Govers, 2015). We show that the use of this updated numerical scheme alters both landscape topography and catchment wide erosion rates at a geological time scale. Finally, the availability of a graphical user interface facilitates user interaction, making the tool very useful both for research and didactical purposes. References Campforts, B., Govers, G., 2015. Keeping the edge: A numerical method that avoids knickpoint smearing when solving the stream power law. J. Geophys. Res. Earth Surf. 120, 1189-1205. doi:10.1002/2014JF003376 Schwanghart, W., Scherler, D., 2014. TopoToolbox 2 - MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2, 1-7. doi:10.5194/esurf-2-1-2014
NASA Astrophysics Data System (ADS)
Yanites, B.; Bregy, J. C.; Carlson, G.; Cataldo, K.; Holahan, M.; Johnston, G.; Mitchell, N. A.; Nelson, A.; Valenza, J.; Wanker, M.
2017-12-01
Intense precipitation or seismic events can generate clustered mass movement processes across a landscape. These rare events have significant impacts on the landscape, however, the rarity of such events leads to uncertainty in how these events impact the entire geomorphic system over a range of timescales. Taiwan is a steep, seismically active region and is highly prone to landslide and debris flows, especially when exposed to heavy rainfall events. Typhoon Morakot made landfall in Taiwan in August of 2009, delivering record-breaking rainfall and inducing more than 22,000 landslides in southern Taiwan. The topographic gradient in southern Taiwan leads to spatial variability in landslide susceptibility providing an opportunity to infer the long-term impact of landslides on channel morphology. The availability of pre and post typhoon imagery allows a quantitative reconstruction on the propagating impact of this event on channel width. The pre and post typhoon patterns of channel width to river and hillslope gradients in 20 basins in the study area reveal the importance of cascading hazards from landslides on landscape evolution. Prior to Typhoon Morakot, the river channels in the central part of the study area were about 3-10 times wider than the channels in the south. Aggradation and widening was also a maximum in these basins where hillslope gradients and channel steepness is high. The results further show that the narrowest channels are located where channel steepness is the lowest, an observation inconsistent with a detachment-limited model for river evolution. We infer this pattern is indicative of a strong role of sediment supply, and associated landslide events, on long-term channel evolution. These findings have implications across a range of spatial and temporal scales including understanding the cascade of hazards in steep landscapes and geomorphic interpretation of channel morphology.
NASA Astrophysics Data System (ADS)
Anders, Alison M.; Bettis, E. Arthur; Grimley, David A.; Stumpf, Andrew J.; Kumar, Praveen
2018-03-01
The concept of a critical zone (CZ) supporting terrestrial life has fostered groundbreaking interdisciplinary science addressing complex interactions among water, soil, rock, air and life near Earth’s surface. Pioneering work has focused on the CZ in areas with residual soils and steady-state or erosional topography. CZ evolution in these areas is conceptualized as progressive weathering of local bedrock (e.g. in the flow-through reactor model). However, this model is not applicable to areas in which weathering profiles form in transported materials including the formerly glaciated portion of the Central Lowland of North America. We present a new conceptual model of CZ evolution in landscapes impacted by continental glaciation based on investigations at three study sites in the Intensively Managed Landscapes Critical Zone Observatory (IML-CZO) The IML-CZO is devoted to the study of CZ processes in a region characterized by thick surficial deposits resulting from multiple continental glaciations, with bedrock at depths of up to 150 m. Here the physical (glacial ice, loess, developing soil profiles) and biological (microbes, tundra, forest, prairie) components of the CZ vary significantly in time. Moreover, the spatial relationships between mineral components of the CZ record a history of glacial-interglacial cycles and landscape evolution. We present cross-sections from IML-CZO sites to provide specific examples of how environmental change is recorded by the structure of the mineral components of the CZ. We build on these examples to create an idealized model of CZ evolution through a glacial cycle that represents the IML-CZO sites and other areas of low relief that have experienced continental glaciation. In addition, we identify two main characteristics of CZ structure which should be included in a conceptual model of CZ development in the IML-CZO and similar settings: (1) mineral components have diverse origins and transport trajectories including alteration in past CZs, and, (2) variability in climate, ecosystems, and hydrology during glacial-interglacial cycles profoundly influence the CZ composition, creating a legacy retained in its structure. This legacy is important because the current physical CZ structure influences the occurrence and rates of CZ processes, as well as future CZ responses to land use and climate change.
NASA Astrophysics Data System (ADS)
Margirier, A.; Robert, X.; Braun, J.; Laurence, A.
2017-12-01
The uplift and exhumation of the highest Peruvian peaks seems closely linked to the Cordillera Blanca normal fault that delimits and shape the western flank of the Cordillera Blanca. Two models have been previously proposed to explain the occurrence of extension and the presence of this active normal fault in a compression setting but the Cordillera Blanca normal fault and the uplift and exhumation of the Cordillera Blanca remain enigmatic. Recent studies suggested an increase of exhumation rates during the Quaternary in the Cordillera Blanca and related this increase to a change in climate and erosion process (glacial erosion vs. fluvial erosion). The Cordillera Blanca granite has been significantly eroded since its emplacement (12-5 Ma) indicating a significant mass of rocks removal. Whereas it has been demonstrated recently that the effect of eroding denser rocks can contribute to an increase of uplift rate, the impact of erosion and isostasy on the increase of the Cordillera Blanca uplift rates has never been explored. Based on numerical modeling of landscape evolution we address the role of erosion and isostasy in the uplift and exhumation of the Cordillera Blanca. We performed inversions of the present-day topography, total exhumation and thermochronological data using a landscape evolution model (FastScape). Our results evidence the contribution of erosion and associated flexural rebound to the uplift of the Cordillera Blanca. Our models suggest that the erosion of the Cordillera Blanca dense intrusion since 3 Ma could also explain the Quaternary exhumation rate increase in this area. Finally, our results allow to question the previous models proposed for the formation of the Cordillera Blanca normal fault.
Informational landscapes in art, science, and evolution.
Cohen, Irun R
2006-07-01
An informational landscape refers to an array of information related to a particular theme or function. The Internet is an example of an informational landscape designed by humans for purposes of communication. Once it exists, however, any informational landscape may be exploited to serve a new purpose. Listening Post is the name of a dynamic multimedia work of art that exploits the informational landscape of the Internet to produce a visual and auditory environment. Here, I use Listening Post as a prototypic example for considering the creative role of informational landscapes in the processes that beget evolution and science.
Barrier Displacement on a Neutral Landscape: Toward a Theory of Continental Biogeography.
Albert, James S; Schoolmaster, Donald R; Tagliacollo, Victor; Duke-Sylvester, Scott M
2017-03-01
Macroevolutionary theory posits three processes leading to lineage diversification and the formation of regional biotas: dispersal (species geographic range expansion), speciation (species lineage splitting), and extinction (species lineage termination). The Theory of Island Biogeography (TIB) predicts species richness values using just two of these processes; dispersal and extinction. Yet most species on Earth live on continents or continental shelves, and the dynamics of evolutionary diversification at regional and continental scales are qualitatively different from those that govern the formation of species richness on biogeographic islands. Certain geomorphological processes operating perennially on continental platforms displace barriers to gene flow and organismal dispersal, and affect all three terms of macroevolutionary diversification. For example, uplift of a dissected landscape and river capture both merge and separate portions of adjacent areas, allowing dispersal and larger geographic ranges, vicariant speciation and smaller geographic ranges, and extinction when range sizes are subdivided below a minimum persistence threshold. The TIB also does not predict many biogeographic and phylogenetic patterns widely observed in continentally distributed taxa, including: (i) power function-like species-area relationships; (ii) log-normal distribution of species geographic range sizes, in which most species have restricted ranges (are endemic) and few species have broad ranges (are cosmopolitan); (iii) mid-domain effects with more species toward the geographic center, and more early-branching, species-poor clades toward the geographic periphery; (iv) exponential rates of net diversification with log-linear accumulation of lineages through geological time; and (v) power function-like relationships between species-richness and clade diversity, in which most clades are species-poor and few clades are species-rich. Current theory does not provide a robust mechanistic framework to connect these seemingly disparate patterns. Here we present SEAMLESS (Spatially Explicit Area Model of Landscape Evolution by SimulationS) that generates clade diversification by moving geographic barriers on a continuous, neutral landscape. SEAMLESS is a neutral Landscape Evolution Model (LEM) that treats species and barriers as functionally equivalent with respect to model parameters. SEAMLESS differs from other model-based biogeographic methods (e.g., Lagrange, GeoSSE, BayArea, and BioGeoBEARS) by modeling properties of dispersal barriers rather than areas, and by modeling the evolution of species lineages on a continuous landscape, rather than the evolution of geographic ranges along branches of a phylogeny. SEAMLESS shows how dispersal is required to maintain species richness and avoid clade-wide extinction, demonstrates that ancestral range size does not predict species richness, and provides a unified explanation for the suite of commonly observed biogeographic and phylogenetic patterns listed above. SEAMLESS explains how a simple barrier-displacement mechanism affects lineage diversification under neutral conditions, and is advanced here toward the formulation of a general theory of continental biogeography. [Diversification, extinction, geodispersal, macroevolution, river capture, vicariance.]. Published by Oxford University Press on behalf of Society of Systematic Biologists 2016. This work is written by a US Government employee and is in the public domain in the US.
Dynamic colloidal assembly pathways via low dimensional models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yuguang; Bevan, Michael A., E-mail: mabevan@jhu.edu; Thyagarajan, Raghuram
2016-05-28
Here we construct a low-dimensional Smoluchowski model for electric field mediated colloidal crystallization using Brownian dynamic simulations, which were previously matched to experiments. Diffusion mapping is used to infer dimensionality and confirm the use of two order parameters, one for degree of condensation and one for global crystallinity. Free energy and diffusivity landscapes are obtained as the coefficients of a low-dimensional Smoluchowski equation to capture the thermodynamics and kinetics of microstructure evolution. The resulting low-dimensional model quantitatively captures the dynamics of different assembly pathways between fluid, polycrystal, and single crystals states, in agreement with the full N-dimensional data as characterizedmore » by first passage time distributions. Numerical solution of the low-dimensional Smoluchowski equation reveals statistical properties of the dynamic evolution of states vs. applied field amplitude and system size. The low-dimensional Smoluchowski equation and associated landscapes calculated here can serve as models for predictive control of electric field mediated assembly of colloidal ensembles into two-dimensional crystalline objects.« less
Learning Progress in Evolution Theory: Climbing a Ladder or Roaming a Landscape?
ERIC Educational Resources Information Center
Zabel, Jorg; Gropengiesser, Harald
2011-01-01
The objective of this naturalistic study was to explore, model and visualise the learning progress of 13-year-old students in the domain of evolution theory. Data were collected under actual classroom conditions and with a sample size of 107 learners, which followed a teaching unit on Darwin's theory of natural selection. Before and after the…
The Origins of Order: Self-Organization and Selection in Evolution
NASA Astrophysics Data System (ADS)
Kauffman, Stuart A.
The following sections are included: * Introduction * Fitness Landscapes in Sequence Space * The NK Model of Rugged Fitness Landscapes * The NK Model of Random Epistatic Interactions * The Rank Order Statistics on K = N - 1 Random Landscapes * The number of local optima is very large * The expected fraction of fitter 1-mutant neighbors dwindles by 1/2 on each improvement step * Walks to local optima are short and vary as a logarithmic function of N * The expected time to reach an optimum is proportional to the dimensionality of the space * The ratio of accepted to tried mutations scales as lnN/N * Any genotype can only climb to a small fraction of the local optima * A small fraction of the genotypes can climb to any one optimum * Conflicting constraints cause a "complexity catastrophe": as complexity increase accessible adaptive peaks fall toward the mean fitness * The "Tunable" NK Family of Correlated Landscapes * Other Combinatorial Optimization Problems and Their Landscapes * Summary * References
Self-organized criticality in forest-landscape evolution
J.C. Sprott; Janine Bolliger; David J. Mladenoff
2002-01-01
A simple cellular automaton replicates the fractal pattern of a natural forest landscape and predicts its evolution. Spatial distributions and temporal fluctuations in global quantities show power-law spectra, implying scale-invariance, characteristic of self-organized criticality. The evolution toward the SOC state and the robustness of that state to perturbations...
Biological evolution and statistical physics
NASA Astrophysics Data System (ADS)
Drossel, Barbara
2001-03-01
This review is an introduction to theoretical models and mathematical calculations for biological evolution, aimed at physicists. The methods in the field are naturally very similar to those used in statistical physics, although the majority of publications have appeared in biology journals. The review has three parts, which can be read independently. The first part deals with evolution in fitness landscapes and includes Fisher's theorem, adaptive walks, quasispecies models, effects of finite population sizes, and neutral evolution. The second part studies models of coevolution, including evolutionary game theory, kin selection, group selection, sexual selection, speciation, and coevolution of hosts and parasites. The third part discusses models for networks of interacting species and their extinction avalanches. Throughout the review, attention is paid to giving the necessary biological information, and to pointing out the assumptions underlying the models, and their limits of validity.
A mathematical model of marine bacteriophage evolution.
Pagliarini, Silvia; Korobeinikov, Andrei
2018-03-01
To explore how particularities of a host cell-virus system, and in particular host cell replication, affect viral evolution, in this paper we formulate a mathematical model of marine bacteriophage evolution. The intrinsic simplicity of real-life phage-bacteria systems, and in particular aquatic systems, for which the assumption of homogeneous mixing is well justified, allows for a reasonably simple model. The model constructed in this paper is based upon the Beretta-Kuang model of bacteria-phage interaction in an aquatic environment (Beretta & Kuang 1998 Math. Biosci. 149 , 57-76. (doi:10.1016/S0025-5564(97)10015-3)). Compared to the original Beretta-Kuang model, the model assumes the existence of a multitude of viral variants which correspond to continuously distributed phenotypes. It is noteworthy that the model is mechanistic (at least as far as the Beretta-Kuang model is mechanistic). Moreover, this model does not include any explicit law or mechanism of evolution; instead it is assumed, in agreement with the principles of Darwinian evolution, that evolution in this system can occur as a result of random mutations and natural selection. Simulations with a simplistic linear fitness landscape (which is chosen for the convenience of demonstration only and is not related to any real-life system) show that a pulse-type travelling wave moving towards increasing Darwinian fitness appears in the phenotype space. This implies that the overall fitness of a viral quasi-species steadily increases with time. That is, the simulations demonstrate that for an uneven fitness landscape random mutations combined with a mechanism of natural selection (for this particular system this is given by the conspecific competition for the resource) lead to the Darwinian evolution. It is noteworthy that in this system the speed of propagation of this wave (and hence the rate of evolution) is not constant but varies, depending on the current viral fitness and the abundance of susceptible bacteria. A specific feature of the original Beretta-Kuang model is that this model exhibits a supercritical Hopf bifurcation, leading to the loss of stability and the rise of self-sustained oscillations in the system. This phenomenon corresponds to the paradox of enrichment in the system. It is remarkable that under the conditions that ensure the bifurcation in the Beretta-Kuang model, the viral evolution model formulated in this paper also exhibits a rise in self-sustained oscillations of the abundance of all interacting populations. The propagation of the travelling wave, however, remains stable under these conditions. The only visible impact of the oscillations on viral evolution is a lower speed of the evolution.
A drainage basin scale model for earthflow-prone landscapes over geomorphic timescales
NASA Astrophysics Data System (ADS)
Booth, A. M.; Roering, J. J.
2009-12-01
Landscape evolution models can be informative tools for understanding how sediment transport processes, regulated by tectonic and climatic forcing, interact to control fundamental landscape characteristics such as relief, channel network organization, and hillslope form. Many studies have proposed simple mathematical geomorphic transport laws for modeling hillslope and fluvial processes, and these models are capable of generating synthetic landscapes similar to many of those observed in nature. However, deep-seated mass movements dominate the topographic development of many tectonically active landscapes, yet few compelling transport laws exist for accurately describing these processes at the drainage basin scale. Specifically, several detailed field and theoretical studies describe the mechanics of deep-seated earthflows, such as those found throughout the northern California coast ranges, but these studies are often restricted to a single earthflow site. Here, we generalize earthflow behavior to larger spatial and geomorphically significant temporal scales using a mathematical model to determine how interactions between earthflow, weathering, hillslope, and fluvial processes control sediment flux and topographic form. The model couples the evolution of the land surface with the evolution of a weathered zone driven by fluctuations in the groundwater table. The lower boundary of this weathered zone sets the potential failure plane for earthflows, which occur once the shear stress on this plane exceeds a threshold value. Earthflows deform downslope with a non-Newtonian viscous rheology while gullying, modeled with a stream power equation, and soil creep, modeled with a diffusion equation, continuously act on the land surface. To compare the intensities of these different processes, we define a characteristic timescale for each modeled process, and demonstrate how the ratios of these timescales control the steady-state topographic characteristics of the simulated landscapes. As changes in earthflow rheological properties or thickening of the weathered zone increase the intensity of earthflow processes, relief decreases, hillslopes become more planar, and fluvial incision is inhibited at low drainage areas. The model also predicts that earthflows make their most significant contribution to long term lowering of the land surface at mid- and upper-slope locations. Fluvial processes dominate at high drainage area hillslope toes, and soil creep dominates at highly convex ridgelines. We find the predictions of our model in agreement with the following general observations of earthflow prone terrain, drawn from analysis of a 1m resolution LiDAR digital elevation model of terrain adjacent to the main stem of the Eel River, northern California: (1) hillslope profiles tend to be slightly convex at the foot, broadly concave through the mid-slope, and highly convex at the ridgeline, (2) gully incision of earthflow transport zones and toes may be important in delivering sediment from hillslopes to high order streams, and (3) as with shallow landsliding, magnitude-frequency distributions of active earthflows tend to be heavy tailed.
Geomorphologic Map of Titan's Polar Terrains
NASA Astrophysics Data System (ADS)
Birch, S. P. D.; Hayes, A. G.; Malaska, M. J.; Lopes, R. M. C.; Schoenfeld, A.; Williams, D. A.
2016-06-01
Titan's lakes and seas contain vast amounts of information regarding the history and evolution of Saturn's largest moon. To understand this landscape, we created a geomorphologic map, and then used our map to develop an evolutionary model.
Titan Polar Landscape Evolution
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.
2016-01-01
With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.
Study on Ecological Risk Assessment of Guangxi Coastal Zone Based on 3s Technology
NASA Astrophysics Data System (ADS)
Zhong, Z.; Luo, H.; Ling, Z. Y.; Huang, Y.; Ning, W. Y.; Tang, Y. B.; Shao, G. Z.
2018-05-01
This paper takes Guangxi coastal zone as the study area, following the standards of land use type, divides the coastal zone of ecological landscape into seven kinds of natural wetland landscape types such as woodland, farmland, grassland, water, urban land and wetlands. Using TM data of 2000-2015 such 15 years, with the CART decision tree algorithm, for analysis the characteristic of types of landscape's remote sensing image and build decision tree rules of landscape classification to extract information classification. Analyzing of the evolution process of the landscape pattern in Guangxi coastal zone in nearly 15 years, we may understand the distribution characteristics and change rules. Combined with the natural disaster data, we use of landscape index and the related risk interference degree and construct ecological risk evaluation model in Guangxi coastal zone for ecological risk assessment results of Guangxi coastal zone.
Bailey, Geoffrey N; Reynolds, Sally C; King, Geoffrey C P
2011-03-01
This paper examines the relationship between complex and tectonically active landscapes and patterns of human evolution. We show how active tectonics can produce dynamic landscapes with geomorphological and topographic features that may be critical to long-term patterns of hominin land use, but which are not typically addressed in landscape reconstructions based on existing geological and paleoenvironmental principles. We describe methods of representing topography at a range of scales using measures of roughness based on digital elevation data, and combine the resulting maps with satellite imagery and ground observations to reconstruct features of the wider landscape as they existed at the time of hominin occupation and activity. We apply these methods to sites in South Africa, where relatively stable topography facilitates reconstruction. We demonstrate the presence of previously unrecognized tectonic effects and their implications for the interpretation of hominin habitats and land use. In parts of the East African Rift, reconstruction is more difficult because of dramatic changes since the time of hominin occupation, while fossils are often found in places where activity has now almost ceased. However, we show that original, dynamic landscape features can be assessed by analogy with parts of the Rift that are currently active and indicate how this approach can complement other sources of information to add new insights and pose new questions for future investigation of hominin land use and habitats. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jacob, Frédéric; Mekki, Insaf; Chikhaoui, Mohamed
2014-05-01
In the context of mitigating the pressures induced by global change combined with demography and market pressures, there is increasing societal demand and scientific need to understand the functioning of Mediterranean Rainfed Agrosystems (MRAs) for their potential to provide various environmental and economic services of importance such as food production, preservation of employment and local knowhow, downstream water delivery or mitigation of rural exodus. Efficient MRAs management strategies that allow for compromises between economic development and natural resources preservation are needed. Such strategies require innovative system based research, integration across approaches and scales. One of the major challenges is to make all contributions from different disciplines converging towards a reproducible transdisciplinary approach. The objective of this communication is to present the ALMIRA project, a Tunisian - Moroccan - French project which lasts four years (2014 - 2017). The communication details the societal context, the scientific positioning and the related work hypothesis, the study areas, the project structure, the expected outcomes and the partnership which capitalizes on long term collaborations. ALMIRA aims to explore the modulation of landscape mosaics within MRAs to optimize landscape services. To explore this new lever, ALMIRA proposes to design, implement and test a new Integrated Assessment Modelling approach that explicitly i) includes innovations and action means into prospective scenarii for landscape evolutions, and ii) addresses landscape mosaics and processes of interest from the agricultural field to the resource governance catchment. This requires tackling methodological challenges in relation to i) the design of spatially explicit landscape evolution scenarii, ii) the coupling of biophysical processes related to agricultural catchment hydrology, iii) the digital mapping of landscape properties and iv) the economic assessment of the landscape services. The new Integrated Assessment Modelling approach is implemented and tested within three catchments located in Tunisia, France, and Morocco. Beyond the obtaining of significant advances in the aforementioned methodological domains, and the understanding of landscape functioning and services for the considered catchments, outcomes are expected to help in revisiting former recommendations at the levels of agricultural field and resource governance catchment, and in identifying new levers that improve MRA management at the intermediate level of landscape mosaics.
Real time forecasting of near-future evolution.
Gerrish, Philip J; Sniegowski, Paul D
2012-09-07
A metaphor for adaptation that informs much evolutionary thinking today is that of mountain climbing, where horizontal displacement represents change in genotype, and vertical displacement represents change in fitness. If it were known a priori what the 'fitness landscape' looked like, that is, how the myriad possible genotypes mapped onto fitness, then the possible paths up the fitness mountain could each be assigned a probability, thus providing a dynamical theory with long-term predictive power. Such detailed genotype-fitness data, however, are rarely available and are subject to change with each change in the organism or in the environment. Here, we take a very different approach that depends only on fitness or phenotype-fitness data obtained in real time and requires no a priori information about the fitness landscape. Our general statistical model of adaptive evolution builds on classical theory and gives reasonable predictions of fitness and phenotype evolution many generations into the future.
A 1-D mechanistic model for the evolution of earthflow-prone hillslopes
NASA Astrophysics Data System (ADS)
Booth, Adam M.; Roering, Josh J.
2011-12-01
In mountainous terrain, deep-seated landslides transport large volumes of material on hillslopes, exerting a dominant control on erosion rates and landscape form. Here, we develop a mathematical landscape evolution model to explore interactions between deep-seated earthflows, soil creep, and gully processes at the drainage basin scale over geomorphically relevant (>103 year) timescales. In the model, sediment flux or incision laws for these three geomorphic processes combine to determine the morphology of actively uplifting and eroding steady state topographic profiles. We apply the model to three sites, one in the Gabilan Mesa, California, with no earthflow activity, and two along the Eel River, California, with different lithologies and varying levels of historic earthflow activity. Representative topographic profiles from these sites are consistent with model predictions in which the magnitude of a dimensionless earthflow number, based on a non-Newtonian flow rheology, reflects the magnitude of recent earthflow activity on the different hillslopes. The model accurately predicts the behavior of earthflow collection and transport zones observed in the field and estimates long-term average sediment fluxes that are due to earthflows, in agreement with historical rates at our field sites. Finally, our model predicts that steady state hillslope relief in earthflow-prone terrain increases nonlinearly with the tectonic uplift rate, suggesting that the mean hillslope angle may record uplift rate in earthflow-prone landscapes even at high uplift rates, where threshold slope processes normally limit further topographic development.
Coevolution of hydrology and topography on a basalt landscape in the Oregon Cascade Range, USA
A. Jefferson; G.E. Grant; S.L. Lewis; S.T. Lancaster
2010-01-01
Young basalt terrains offer an exceptional opportunity to study landscape and hydrologic evolution through time, as the age of the landscape itself can be determined by dating lava flows. These constructional terrains are also highly permeable, allowing one to examine timescales and process of geomorphic evolution as they relate to the partitioning of hydrologic...
Using graph approach for managing connectivity in integrative landscape modelling
NASA Astrophysics Data System (ADS)
Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger
2013-04-01
In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). OpenFLUID-landr library has been developed in order i) to be used with no GIS expert skills needed (common gis formats can be read and simplified spatial management is provided), ii) to easily develop adapted rules of landscape discretization and graph creation to follow spatialized model requirements and iii) to allow model developers to manage dynamic and complex spatial topology. Graph management in OpenFLUID are shown with i) examples of hydrological modelizations on complex farmed landscapes and ii) the new implementation of Geo-MHYDAS tool based on the OpenFLUID-landr library, which allows to discretize a landscape and create graph structure for the MHYDAS model requirements.
Currin, Andrew; Swainston, Neil; Day, Philip J.
2015-01-01
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the ‘search space’ of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (K d) and catalytic (k cat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving k cat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the ‘best’ amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust. PMID:25503938
NASA Astrophysics Data System (ADS)
Morris, Chloe; Coulthard, Tom; Parsons, Daniel R.; Manson, Susan; Barkwith, Andrew
2017-04-01
Landscape Evolution Models (LEMs) are proven to be useful tools in understanding the morphodynamics of coast and estuarine systems. However, perhaps owing to the lack of research in this area, current models are not capable of simulating the dynamic interactions between these systems and their co-evolution at the meso-scale. Through a novel coupling of numerical models, this research is designed to explore coupled coastal-estuarine interactions, controls on system behaviour and the influence that environmental change could have. This will contribute to the understanding of the morphodynamics of these systems and how they may behave and evolve over the next century in response to climate changes, with the aim of informing management practices. This goal is being achieved through the modification and coupling of the one-line Coastline Evolution Model (CEM) with the hydrodynamic LEM CAESAR-Lisflood (C-L). The major issues faced with coupling these programs are their differing complexities and the limited graphical visualisations produced by the CEM that hinder the dissemination of results. The work towards overcoming these issues and reported here, include a new version of the CEM that incorporates a range of more complex geomorphological processes and boasts a graphical user interface that guides users through model set-up and projects a live output during model runs. The improved version is a stand-alone tool that can be used for further research projects and for teaching purposes. A sensitivity analysis using the Morris method has been completed to identify which key variables, including wave climate, erosion and weathering values, dominate the control of model behaviour. The model is being applied and tested using the evolution of the Holderness Coast, Humber Estuary and Spurn Point on the east coast of England (UK), which possess diverse geomorphologies and complex, co-evolving sediment pathways. Simulations using the modified CEM are currently being completed to ascertain the processes influential to the morphodynamics and evolution of these systems; presently this includes increasing sea levels and changing wave climate patterns. Outputs and findings from these runs will be presented and discussed, with the aid of the improved graphical visualisations and animations that illustrate the evolution of simulated environments.
Representing biophysical landscape interactions in soil models by bridging disciplines and scales.
NASA Astrophysics Data System (ADS)
van der Ploeg, M. J.; Carranza, C.; Teixeira da Silva, R.; te Brake, B.; Baartman, J.; Robinson, D.
2017-12-01
The combination of climate change, population growth and soil threats including carbon loss, biodiversity decline and erosion, increasingly confront the global community (Schwilch et al., 2016). One major challenge in studying processes involved in soil threats, landscape resilience, ecosystem stability, sustainable land management and resulting economic consequences, is that it is an interdisciplinary field (Pelletier et al., 2012). Less stringent scientific disciplinary boundaries are therefore important (Liu et al., 2007), because as a result of disciplinary focus, ambiguity may arise on the understanding of landscape interactions. This is especially true in the interaction between a landscape's physical and biological processes (van der Ploeg et al. 2012). Biophysical landscape interactions are those biotic and abiotic processes in a landscape that have an influence on the developments within and evolution of a landscape. An important aspect in biophysical landscape interactions is the differences in scale related to the various processes that play a role in these systems. Moreover, the interplay between the physical landscape and the occurring vegetation, which often co-evolve, and the resulting heterogeneity and emerging patterns are the reason why it is so challenging to establish a theoretical basis to describe biophysical processes in landscapes (e.g. te Brake et al. 2013, Robinson et al. 2016). Another complicating factor is the response of vegetation to changing environmental conditions, including a possible, and often unknown, time-lag (e.g. Metzger et al., 2009). An integrative description for modelling biophysical interactions has been a long standing goal in soil science (Vereecken et al., 2016). We need the development of soil models that are more focused on networks, connectivity and feedbacks incorporating the most important aspects of our detailed mechanistic modelling (Paola & Leeder, 2011). Additionally, remote sensing measurement techniques facilitate non-interfering observation of biophysical interactions on a landscape scale. A joint effort to connect Earth's (sub)surface processes by a combination of innovative big data-assimilation, measurement and modelling techniques will enable the scientific community to accurately address vital issues.
NASA Astrophysics Data System (ADS)
Kluiving, Sjoerd; Kok, Marielle; van Suijlekom, Jan-Jaap; Kasse, Kees
2015-04-01
In the province of North-Brabant in the southern Netherlands a diverse geological substrate is present variable in chronology, sediment properties, and soil profiles. The human influence on soil quality and topography has a history of millennia while new developments related to the horsification of the landscape in this region allow an insight in the soil patterns with associated landscape evolution. The objective in this project is to show that records of soils and landscape in this area are able to demonstrate the evolutional history and disseminate the pedological and geological knowledge to a wider audience in demonstrating that soil records and associated landscape evolution reveal a regional identity that can be very useful to apply in landscape architectural projects, such as in the horsification of the landscape. Soil records show landscape evolution has progressed in three distinct phases: 1) The oldest deposits in the region are formed by river sediments that reflect a fluvial environment that was present 800.000 years ago in the Lower-Pleistocene. Old courses of the rivers Rhine and Meuse deposited gravelly white sands and clay layers that have a distinct effect on hydrological properties. 2) Eolian sands dating from the Late Glacial, deposited 12.000-14.000 years before present were deposited by western wind directions, obvious from large scale linear and parabolic dune ridges. These sandy deposits have endured soil acidification and podzolisation resulting in classic Umbric Podzol profiles testifying of a prolonged period of landscape evolution. 3) Tree removal in the Holocene by man created unprotected open sand plains that were eroded and deposited by wind processes in small scale ridges with steep slopes up till approximately 500 years ago. These drift sands have a widespread occurrence and can be recognized in thin micro-podzol profiles in association with a distinct morphology of steep sloped dunes. Multiple soil horizons reflect different time periods elapsed and specific 'open landscape' environments, as these thin podzolic horizons testify. Future research will involve cartographic mapping by soil coring, as well as OSL dating, next to an ecological field reconnaissance. In this poster we will show how the soil in this region beholds an entire landscape history, and how that information can be combined with nature development in landscape architectural plans.
Inferring Microbial Fitness Landscapes
2016-02-25
infer from data the determinants of microbial evolution with sufficient resolution that we can quantify 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Distribution Unlimited UU UU UU UU 25-02-2016 1-Oct-2012 30-Sep-2015 Final Report: Inferring Microbial Fitness Landscapes The views, opinions and/or findings...Triangle Park, NC 27709-2211 evolution, fitness landscapes, epistasis, microbial populations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT
NASA Technical Reports Server (NTRS)
Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.
2013-01-01
Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface and final landscape form as constrained by DEMs. We have also simulated fluvial and lacustrine modification of icy satellites landscapes to evaluate the degree to which fluvial erosion of representative initial landscapes can replicate the present Titan landscape.
Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone
NASA Astrophysics Data System (ADS)
Byzov, Leonid; San'kov, Vladimir
2014-05-01
Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example) probably has small height and relative weak incision over later beginning of uplift.
CRevolution 2—Origin and evolution of the Colorado River system, workshop abstracts
Beard, L. Sue; Karlstrom, Karl E.; Young, Richard A.; Billingsley, George H.
2011-01-01
A 2010 Colorado River symposium, held in Flagstaff, Arizona, involved 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built upon two previous decadal scientific meetings, focused on forging scientific consensus, where possible, while articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau-Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift and new and controversial hypotheses for the pre-6 Ma presence and evolution of ancestral rivers that may be important in the history and birth of the present Colorado River. There is a consensus that plateau tilt and uplift models must be tested with multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology to determine the relative importance of tectonic and geomorphic forces that shape the spectacular landscapes of the Colorado Plateau, Arizona and region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in shaping the landscape of elevated plateaus.
Present Day Biology seen in the Looking Glass of Physics of Complexity
NASA Astrophysics Data System (ADS)
Schuster, P.
Darwin's theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept—originally introduced by Sewall Wright—and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.
Barton, C Michael; Ullah, Isaac I; Bergin, Sean
2010-11-28
The evolution of Mediterranean landscapes during the Holocene has been increasingly governed by the complex interactions of water and human land use. Different land-use practices change the amount of water flowing across the surface and infiltrating the soil, and change water's ability to move surface sediments. Conversely, water amplifies the impacts of human land use and extends the ecological footprint of human activities far beyond the borders of towns and fields. Advances in computational modelling offer new tools to study the complex feedbacks between land use, land cover, topography and surface water. The Mediterranean Landscape Dynamics project (MedLand) is building a modelling laboratory where experiments can be carried out on the long-term impacts of agropastoral land use, and whose results can be tested against the archaeological record. These computational experiments are providing new insights into the socio-ecological consequences of human decisions at varying temporal and spatial scales.
Dissolution on Saturn's Moon Titan: A 3D Karst Landscape Evolution Model
NASA Astrophysics Data System (ADS)
Cornet, Thomas; Fleurant, Cyril; Seignovert, Benoît; Cordier, Daniel; Bourgeois, Olivier; Le Mouélic, Stéphane; Rodriguez, Sebastien; Lucas, Antoine
2017-04-01
Titan is an Earth-like world possessing a nitrogen-rich atmosphere that covers a surface with signs of lacustrine (lakes, seas, depressions), fluvial (channels, valleys) and aeolian (dunes) activity [1]. The chemistry implied in the geological processes is, however, strikingly different from that on Earth. Titan's extremely cold environment (T -180°C) allows water to exist only under the form of icy "bedrock". The presence of methane as the second major constituent in the atmosphere, as well as an active nitrogen-methane photochemistry, allows methane and ethane to drive a hydrocarbon cycle similar to the terrestrial hydrological cycle. A plethora of organic solids, more or less soluble in liquid hydrocarbons, is also produced in the atmosphere and can lead, by atmospheric sedimentation over geological timescales, to formation of some kind of organic geological sedimentary layer. Based on comparisons between Titan's landscapes seen in the Cassini spacecraft data and terrestrial analogues, karstic-like dissolution and evaporitic crystallization have been suggested in various instances to take part in the landscape development on Titan. Dissolution has been invoked, for instance, for the development of the so-called "labyrinthic terrain", located at high latitudes and resembling terrestrial cockpit or polygonal karst terrain. In this work, we aim at testing this hypothesis by comparing the natural landscapes visible in the Cassini/RADAR images of Titan's surface, with those inferred from the use of a 3D Landscape Evolution Model (LEM) based on the Channel-Hillslope Integrated Landscape Development (CHILD) [2] modified to include karstic dissolution as the major geological process [3]. Digital Elevation Models (DEMs) are generated from an initial quasi-planar surface for a set of dissolution rates, diffusion coefficients (solute transport), and sink densities of the mesh. The landscape evolves over millions of years. Synthetic SAR images are generated from these DEMs in order to be compared with Titan's landforms seen in the Cassini SAR data. Inference on the possible thickness and degree of maturation of the Titan karst will be discussed. [1] Lopes R.M.C. et al. (2010), Icarus ; [2] Tucker et al. (2001), Computers Geosciences ; [3] Fleurant C. et al. (2008), Geomorph., Rel., Proc., Envir.
On modeling the organization of landscapes and vegetation patterns controlled by solar radiation
NASA Astrophysics Data System (ADS)
Istanbulluoglu, E.; Yetemen, O.
2014-12-01
Solar radiation is a critical driver of ecohydrologic processes and vegetation dynamics. Patterns of runoff generation and vegetation dictate landscape geomorphic response. Distinct patterns in the organization of soil moisture, vegetation type, and landscape morphology have been documented in close relation to aspect in a range of climates. Within catchments, from north to south facing slopes, studies have shown ecotone shifts from forest to shrub species, and steep diffusion-dominated landforms to fluvial landforms. Over the long term differential evolution of ecohydrology and geomorphology leads to observed asymmetric structure in the planform of channel network and valley morphology. In this talk we present examples of coupled modeling of ecohydrology and geomorphology driven by solar radiation. In a cellular automata model of vegetation dynamics we will first show how plants organize in north and south facing slopes and how biodiversity changes with elevation. When vegetation-erosion feedbacks are coupled emergent properties of the coupled system are observed in the modeled elevation and vegetation fields. Integrating processes at a range of temporal and spatial scales, coupled models of ecohydrologic and geomorphic dynamics enable examination of global change impacts on landscapes and ecosystems.
NASA Astrophysics Data System (ADS)
Mouchene, M.; van der Beek, P.; Carretier, S.; Mouthereau, F.
2017-12-01
Alluvial megafans are sensitive recorders of landscape evolution, controlled by both autogenic processes and allogenic forcing, and they are influenced by the coupled dynamics of the fan with its mountainous catchment. The Mio-Pliocene Lannemezan megafan in the northern Pyrenean foreland (SW France) was abandoned by its mountainous feeder stream during the Quaternary and subsequently incised. The flight of alluvial terraces abandoned along the stream network may suggest a climatic control on the incision. We use a landscape evolution numerical model (CIDRE) to explore the relative roles of autogenic processes and external forcing in the building, abandonment and incision of a foreland megafan, and we compare the results with the inferred evolution of the Lannemezan megafan. Autogenic processes are sufficient to explain the building of a megafan and the long-term entrenchment of its feeding river on time and space scales that match the Lannemezan setting. Climate, through temporal variations in precipitation rate, may have played a role in the episodic pattern of incision on a shorter timescale. In contrast, base-level changes, tectonic activity in the mountain range or tilting of the foreland through flexural isostatic rebound do not appear to have played a role in the abandonment of the megafan.
Landscape evolution and agricultural land salinization in coastal area: A conceptual model.
Bless, Aplena Elen; Colin, François; Crabit, Armand; Devaux, Nicolas; Philippon, Olivier; Follain, Stéphane
2018-06-01
Soil salinization is a major threat to agricultural lands. Among salt-affected lands, coastal areas could be considered as highly complex systems, where salinization degradation due to anthropogenic pressure and climate-induced changes could significantly alter system functioning. For such complex systems, conceptual models can be used as evaluation tools in a preliminary step to identify the main evolutionary processes responsible for soil and water salinization. This study aimed to propose a conceptual model for water fluxes in a coastal area affected by salinity, which can help to identify the relationships between agricultural landscape evolution and actual salinity. First, we conducted field investigations from 2012 to 2016, mainly based on both soil (EC 1/5 ) and water (EC w ) electrical conductivity survey. This allowed us to characterize spatial structures for EC 1/5 and EC w and to identify the river as a preponderant factor in land salinization. Subsequently, we proposed and used a conceptual model for water fluxes and conducted a time analysis (1962-2012) for three of its main constitutive elements, namely climate, river, and land systems. When integrated within the conceptual model framework, it appeared that the evolution of all constitutive elements since 1962 was responsible for the disruption of system equilibrium, favoring overall salt accumulation in the soil root zone. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stippich, Christian; Krob, Florian; Glasmacher, Ulrich Anton; Hackspacher, Peter Christian
2017-04-01
The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. The research integrates published (Karl et al., 2013) and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones (Karl et al., 2013) are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. Following up on our latest publication (Braun et al., 2016) regarding the effect of variability in rock thermal conductivity on exhumation rate estimates we performed a sensitivity analysis to quantify the effect of a differentiated lithospheric crust on the thermal evolution of the Florianópolis block versus exhumation rates estimated from modelling a lithospheric uniform crustal block. The long-term landscape evolution models with process rates were computed with the software code PECUBE (Braun, 2003; Braun et al., 2012). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameters, values, and rates can be constrained. References Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. Braun, J., Stippich, C., Glasmacher, U. A., 2016. The effect of variability in rock thermal conductivity on exhumation rate estimates from thermochronological data. Tectonophysics, v.690, pp.288-297 Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C., 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244.
Towards integrated modelling of soil organic carbon cycling at landscape scale
NASA Astrophysics Data System (ADS)
Viaud, V.
2009-04-01
Soil organic carbon (SOC) is recognized as a key factor of the chemical, biological and physical quality of soil. Numerous models of soil organic matter turnover have been developed since the 1930ies, most of them dedicated to plot scale applications. More recently, they have been applied to national scales to establish the inventories of carbon stocks directed by the Kyoto protocol. However, only few studies consider the intermediate landscape scale, where the spatio-temporal pattern of land management practices, its interactions with the physical environment and its impacts on SOC dynamics can be investigated to provide guidelines for sustainable management of soils in agricultural areas. Modelling SOC cycling at this scale requires accessing accurate spatially explicit input data on soils (SOC content, bulk density, depth, texture) and land use (land cover, farm practices), and combining both data in a relevant integrated landscape representation. The purpose of this paper is to present a first approach to modelling SOC evolution in a small catchment. The impact of the way landscape is represented on SOC stocks in the catchment was more specifically addressed. This study was based on the field map, the soil survey, the crop rotations and land management practices of an actual 10-km² agricultural catchment located in Brittany (France). RothC model was used to drive soil organic matter dynamics. Landscape representation in the form of a systematic regular grid, where driving properties vary continuously in space, was compared to a representation where landscape is subdivided into a set of homogeneous geographical units. This preliminary work enabled to identify future needs to improve integrated soil-landscape modelling in agricultural areas.
Emergence, reductionism and landscape response to climate change
NASA Astrophysics Data System (ADS)
Harrison, Stephan; Mighall, Tim
2010-05-01
Predicting landscape response to external forcing is hampered by the non-linear, stochastic and contingent (ie dominated by historical accidents) forcings inherent in landscape evolution. Using examples from research carried out in southwest Ireland we suggest that non-linearity in landform evolution is likely to be a strong control making regional predictions of landscape response to climate change very difficult. While uncertainties in GCM projections have been widely explored in climate science much less attention has been directed by geomorphologists to the uncertainties in landform evolution under conditions of climate change and this problem may be viewed within the context of philosophical approaches to reductionsim and emergence. Understanding the present and future trajectory of landform change may also guide us to provide an enhanced appreciation of how landforms evolved in the past.
Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization
Zhao, Qiangfu; Liu, Yong
2015-01-01
A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050
NASA Astrophysics Data System (ADS)
Elez, Javier; Silva, Pablo G.; Huerta, Pedro; Perucha, M. Ángeles; Civis, Jorge; Roquero, Elvira; Rodríguez-Pascua, Miguel A.; Bardají, Teresa; Giner-Robles, Jorge L.; Martínez-Graña, Antonio
2016-12-01
The Malaga basin contains an important geological record documenting the complex paleogeographic evolution of the Gibraltar Arc before, during and after the closure and desiccation of the Mediterranean Sea triggered by the "Messinian Salinity crisis" (MSC). Proxy paleo-elevation data, estimated from the stratigraphic and geomorphological records, allow the building of quantitative paleogeoid, paleotopographic and paleogeographic models for the three main paleogeographic stages: pre-MSC (Tortonian-early Messinian), syn-MSC (late Messinian) and post-MSC (early Pliocene). The methodological workflow combines classical contouring procedures used in geology and isobase map models from geomorphometric analyses and proxy data overprinted on present Digital Terrain Models. The resulting terrain quantitative models have been arranged, managed and computed in a GIS environment. The computed terrain models enable the exploration of past landscapes usually beyond the reach of classical geomorphological analyses and strongly improve the paleogeographic and paleotopographic knowledge of the study area. The resulting models suggest the occurrence of a set of uplifted littoral erosive and paleokarstic landforms that evolved during pre-MSC times. These uplifted landform assemblages can explain the origin of key elements of the present landscape, such as the Torcal de Antequera and the large amount of mogote-like relict hills present in the zone, in terms of ancient uplifted tropical islands. The most prominent landform is the extensive erosional platform dominating the Betic frontal zone that represents the relic Atlantic wave cut platform elaborated during late-Tortonian to early Messinian times. The amount of uplift derived from paleogeoid models suggests that the area rose by about 340 m during the MSC. This points to isostatic uplift triggered by differential erosional unloading (towards the Mediterranean) as the main factor controlling landscape evolution in the area during and after the MSC. Former littoral landscapes in the old emergent axis of the Gibraltar Arc were uplifted to form the main water-divide of the present Betic Cordillera in the zone.
Larsen, Laurel G.; Harvey, Judson W.
2011-01-01
In general, the stability of different wetland pattern types is most strongly related to factors controlling the erosion and deposition of sediment at vegetation patch edges, the magnitude of sediment redistribution by flow, patch elevation relative to water level, and the variability of erosion rates in vegetation patches with low flow-resistance. As we exemplify in our case-study of the Everglades ridge and slough landscape, feedback between flow and vegetation also causes hysteresis in landscape evolution trajectories that will affect the potential for landscape restoration. Namely, even if the hydrologic conditions that historically produced higher flows are restored, degraded portions of the ridge and slough landscape are unlikely to revert to their former patterning. As wetlands and floodplains worldwide become increasingly threatened by climate change and urbanization, the greater mechanistic understanding of landscape pattern and process that our analysis provides will improve our ability to forecast and manage the behavior of these ecosystems.
International symposium on erosion and landscape evolution abstracts
USDA-ARS?s Scientific Manuscript database
This book contains all of the extended abstracts from the ASABE specialty conference, the International Symposium on Erosion and Landscape Evolution (ISELE), held September 18-21, 2011 at the Hilton Anchorage Hotel in Anchorage, Alaska. Three extended abstracts from the meeting keynote speakers as ...
Using Landscape metrics to analyze the landscape evolution under land abandonment
NASA Astrophysics Data System (ADS)
Pelorosso, Raffaele; Della Chiesa, Stefano; Gobattoni, Federica; Leone, Antonio
2010-05-01
The human actions and the human-linked land use changes are the main responsible of the present landscapes and vegetation patterns (Antrop, 2005; Pelorosso et al., 2009). Hence, revised concept of potential natural vegetation has been developed in landscape ecology. In fact, it cannot more be considered as the optimum for a certain landscape, but only as a general indication never widely reached. In particular Ingegnoli and Pignatti (2007) introduced the concept of fittest vegetation as "the most suitable or suited vegetation for the specific climate and geomorphic conditions, in a limited period of time and in a certain defined place with a particular range of incorporable disturbances (including man's) under natural or not natural conditions". Anthropic exploitation of land and its resources to obtain goods and services (Willemen et al, 2008) can be considered therefore the main cause of landscape change as an integrant part of nature, not external. The abandon of the land by farmers or other users it is one of the more felt problems for the marginal territories of Mediterranean basin. It is therefore caused by socio-economic changes of last decades and cause several impact on biodiversity (Geri et al. 2010) and hydro-geological assessment. A mountain landscape has however the capacity to provide goods like timber and services like aesthetic pleasure or regulation of water system. The necessity of a conservation strategy and the development of sustainable socio-economic management plan play a very important role in governing land and quality of life for people and ecosystems also for marginal territory. After a land abandonment, soil conditions and several climatic and orographic characteristic plus human disturbance affect the length of time required by secondary succession, throwing the establishment of vegetation with different association, structure and composition until a (stable or meta-stable) equilibrium is reached (Ingegnoli and Pignatti, 2007). In this view, therefore, not all the abandoned land will be covered by woods also after a reasonable time (e.g 20-30 years); open areas patches can resist over time as a consequence of different (more o less natural) disturbances, pointing out a landscape mosaic and vegetation pattern almost never completely homogeneous. This spatial and temporal differentiation of landscape pattern, therefore, require both the individuation of disturbances and their effect on land abandonment process to be analyzed for each different landscape. Many types of analysis and models were developed and used to understand the reason of abandonment, its evolution, likelihood future landscape scenarios and the leading consequences on environment and population in order to establish right land-uses to obtain suitable and sustainable goods and services from landscape itself. One of these analysis recurs to landscape metrics. Landscape metrics have been widely applied in ecology and landscape ecology (Rainis, 2003; Romero-Calcerrada and Perry, 2004 ; Narumalani et al., 2004; Rocchini et al., 2006) because they allow an objective description of the temporal pattern of landscape change and a comparison with other landscapes (Turner et al., 2001). Furthermore, a description of the shape, size and spatial arrangement of patches of vegetation can be used to link the observed pattern with the ecological processes that may have generated it (Rocchini et al., 2006). So these metrics can be used to see how an abandoned landscape can evolve under the effects of different constrictions that, also if not completely knew, have been affecting the present assessment. Through historical and recent aerial photos (1954-1985-1999) and several landscape metrics, the evolution of marginal municipality of central Apennine under abandonment is presented here. Temporal evolution of landscape metrics was discussed to underline the importance of such descriptors of vegetation pattern dynamics and the key role played by these useful tools for the evaluation of reachable future vegetation pattern equilibriums.
Efficient Parallel Algorithms for Landscape Evolution Modelling
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Mather, B.; Beucher, R.
2017-12-01
Landscape erosion and the deposition of sediments by river systems are strongly controlled bytopography, rainfall patterns, and the susceptibility of the basement to the action ofrunning water. It is well understood that each of these processes depends on the other, for example:topography results from active tectonic processes; deformation, metamorphosis andexhumation alter the competence of the basement; rainfall patterns depend on topography;uplift and subsidence in response to tectonic stress can be amplified by erosionand sediment deposition. We typically gain understanding of such coupled systems through forward models which capture theessential interactions of the various components and attempt parameterise those parts of the individual systemthat are unresolvable at the scale of the interaction. Here we address the problem of predicting erosion and deposition rates at a continental scalewith a resolution of tens to hundreds of metres in a dynamic, Lagrangian framework. This isa typical requirement for a code to interface with a mantle / lithosphere dynamics model anddemands an efficient, unstructured, parallel implementation. We address this through a very general algorithm that treats all parts of the landscape evolution equationsin sparse-matrix form including those for stream-flow accumulation, dam-filling and catchment determination. This givesus considerable flexibility in developing unstructured, parallel code, and in creating a modular packagethat can be configured by users to work at different temporal and spatial scales, but is also has potential advantagesin treating the non-linear parts of the problem in a general manner.
Carbonate landscapes evolution: Insights from 36Cl
NASA Astrophysics Data System (ADS)
Godard, Vincent; Thomas, Franck; Ollivier, Vincent; Bellier, Olivier; Shabanian, Esmaeil; Miramont, Cécile; Fleury, Jules; Benedetti, Lucilla; Guillou, Valéry; Aster Team
2017-04-01
Carbonate landscapes cover a significant fraction of the Earth surface, but their long-term dynamics is still poorly understood. When comparing with the situation in areas underlain by quartz-rich lithologies, where the routine use of 10Be-derived denudation rates has delivered fundamental insights on landscape evolution processes, this knowledge gap is particularly notable. Recent advances in the measurement of 36Cl and better understanding of its production pathways has opened the way to the development of a similar physically-based and quantitative analysis of landscape evolution in carbonate settings. However, beyond these methodological considerations, we still face fundamental geomorphological open questions, as for example the assessment of the importance of congruent carbonate dissolution in long-wavelength topographic evolution. Such unresolved problems concerning the relative importance of physical and chemical weathering processes lead to question the applicability of standard slope-dependent Geomorphic Transport Laws in carbonate settings. These issues have been addressed studying the geomorphological evolution of selected limestone ranges in Provence, SE France, where 36Cl concentration measurements in bedrock and stream sediment samples allow constraining denudation over 10 ka time-scale. We first identify a significant denudation contrast between the summit surface and the flanks of the ranges, pointing to a substantial contribution of gravity-driven processes to the landscape evolution, in addition to dissolution. Furthermore, a detailed analysis of the relationships between hillslope morphology and hilltop denudation allow to identify a fundamental transition between two regimes: (1) a dynamics where hillslope evolution is controlled by linear diffusive downslope regolith transport; and, (2) a domain where denudation is limited by the rate at which physical and chemical weathering processes can produce clasts and lower the hilltop. Such an abrupt transition toward a weathering-limited dynamics may prevent hillslope denudation from balancing the rate of base level fall imposed by the river network and could potentially explain the development of high local relief observed in many Mediterranean carbonate landscapes.
NASA Astrophysics Data System (ADS)
Taylor, R. G.; Howard, K. W. F.
1998-11-01
A model for the evolution of weathered landsurfaces in Uganda is developed using available geotectonic, climatic, sedimentological and chronological data. The model demonstrates the pivotal role of tectonic uplift in inducing cycles of stripping, and tectonic quiescence for cycles of deep weathering. It is able to account for the development of key landforms, such as inselbergs and duricrust-capped plateaux, which previous hypotheses of landscape evolution that are based on climatic or eustatic controls are unable to explain. Development of the Ugandan landscape is traced back to the Permian. Following late Palaeozoic glaciation, a trend towards warmer and more humid climates through the Mesozoic enabled deep weathering of the Jurassic/mid-Cretaceous surface in Uganda during a period of prolonged tectonic quiescence. Uplift associated with the opening South Atlantic Ocean terminated this cycle and instigated a cycle of stripping between the mid-Cretaceous and early Miocene. Deep weathering on the succeeding Miocene to recent (African) surface has occurred from Miocene to present but has been interrupted in the areas adjacent to the western rift where development of a new drainage base level has prompted cycles of stripping in the Miocene and Pleistocene.
NASA Astrophysics Data System (ADS)
Aalto, R. E.; Lauer, J. W.; Darby, S. E.; Best, J.; Dietrich, W. E.
2015-12-01
During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Modelling these processes would illuminate system morphodynamics, fluxes, and 'complexity' in response to base level change, yet such problems are computationally formidable. Environmental systems are characterized by strong interconnectivity, yet traditional supercomputers have slow inter-node communication -- whereas rapidly advancing Graphics Processing Unit (GPU) technology offers vastly higher (>100x) bandwidths. GULLEM (GpU-accelerated Lowland Landscape Evolution Model) employs massively parallel code to simulate coupled fluvial-landscape evolution for complex lowland river systems over large temporal and spatial scales. GULLEM models the accommodation space carved/infilled by representing a range of geomorphic processes, including: river & tributary incision within a multi-directional flow regime, non-linear diffusion, glacial-isostatic flexure, hydraulic geometry, tectonic deformation, sediment production, transport & deposition, and full 3D tracking of all resulting stratigraphy. Model results concur with the Holocene dynamics of the Fly River, PNG -- as documented with dated cores, sonar imaging of floodbasin stratigraphy, and the observations of topographic remnants from LGM conditions. Other supporting research was conducted along the Mekong River, the largest fluvial system of the Sunda Shelf. These and other field data provide tantalizing empirical glimpses into the lowland landscapes of large rivers during glacial-interglacial transitions, observations that can be explored with this powerful numerical model. GULLEM affords estimates for the timing and flux budgets within the Fly and Sunda Systems, illustrating complex internal system responses to the external forcing of sea level and climate. Furthermore, GULLEM can be applied to most ANY fluvial system to explore processes across a wide range of temporal and spatial scales. The presentation will provide insights (& many animations) illustrating river morphodynamics & resulting landscapes formed as a result of sea level oscillations. [Image: The incised 3.2e6 km^2 Sundaland domain @ 431ka
NASA Astrophysics Data System (ADS)
Herbert, E. R.; Walters, D.; Windham-Myers, L.; Kirwan, M. L.
2016-12-01
Evaluating the strength and long-term stability of the coastal carbon sink requires a consideration of the spatial evolution of coastal landscapes in both the horizontal and vertical dimensions. We present a model of the transformation and burial of carbon along a bay-marsh-upland forest complex to explore the response of the coastal carbon sink to sea level rise (SLR) and anthropogenic activity. We establish a carbon mass-balance by coupling dynamic biogeochemically-based models of soil carbon burial in aquatic, intertidal, and upland environments with a physically-based model of marsh edge erosion, vertical growth and migration into adjacent uplands. The modeled increase in marsh vertical growth and carbon burial at moderate rates of sea level rise (3-10 mm/yr) is consistent with a synthesis of 219 field measurements of marsh carbon accumulation that show a significant (p<0.0001) positive correlation with local SLR rates. The model suggests that at moderate SLR rates in low topographic relief landscapes, net marsh expansion into upland forest concomitant with increased carbon burial rates are sufficient to mitigate the associated loss of forest carbon stocks. Coastlines with high relief or barriers to wetland migration can become sources of carbon through the erosion of buried carbon stocks, but we show that the recapture of eroded carbon through vertical growth can be an important mechanism for reducing carbon loss. Overall, we show that the coastal carbon balance must be evaluated in a landscape context to account for changes in the size and magnitude of both the stocks and sinks of marsh carbon and for the transfers of carbon between coastal habitats. These results may help inform current efforts to appraise coastal carbon sinks that are beset by issues of landscape heterogeneity and the provenance of buried carbon.
Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.; ...
2018-05-18
Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.
Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less
statement of significance, location map, site plan, landscape plan, site ...
statement of significance, location map, site plan, landscape plan, site sections, evolution of cemetery landscape. - San Francisco National Cemetery, 1 Lincoln Boulevard, San Francisco, San Francisco County, CA
[Dynamic evolution of wetland landscape spatial pattern in Nansi Lake, China].
Chen, Zhi Cong; Xie, Xiao Ping; Bai, Mao Wei
2016-10-01
Based on Landsat images in 1987, 2002 and 2014 from Nansi Lake located in Shandong Province, landscape pattern index, dynamic index, landscape gradient and gridding model were used for analysis of the wetland distribution in the lake. The results showed that the landscape contagion index and aggregation index gradually decreased from 1987 to 2014, while the landscape diversity index and evenness index gradually increased. The distribution of landscape area was more uniform while its patterns trended to be fragmented. Human activities impacted Nansi wetland distribution and the disturbance presented an increasing trend. The total area of Nansi wetland gradually increased during the study period. The area of lake first decreased then increased, and the area reached the maximum in 2014. The area of the ponds along the riparian zone had increased gradually, but the increasing speed slowed down. The area of the rivers remained stable, while the area of the swamps decreased continually during the period. The change of landscape pattern of Nansi Lake wetland mainly resulted from agricultural activities, establishment of Nansi Lake Natural Reserve, and the South-to-North Water Diversion Project.
Santos, José; Monteagudo, Ángel
2017-03-27
The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.
CD-ROM Proceedings International Symposium on Erosion and Landscape Evolution (ISELE)
USDA-ARS?s Scientific Manuscript database
This CD-ROM contains the abstracts and full papers for the proceedings from the ASABE specialty conference, the International Symposium on Erosion and Landscape Evolution (ISELE), held September 18-21, 2011 at the Hilton Anchorage Hotel in Anchorage, Alaska. Three extended abstracts from the meeting...
NASA Astrophysics Data System (ADS)
Adams, Jordan M.; Gasparini, Nicole M.; Hobley, Daniel E. J.; Tucker, Gregory E.; Hutton, Eric W. H.; Nudurupati, Sai S.; Istanbulluoglu, Erkan
2017-04-01
Representation of flowing water in landscape evolution models (LEMs) is often simplified compared to hydrodynamic models, as LEMs make assumptions reducing physical complexity in favor of computational efficiency. The Landlab modeling framework can be used to bridge the divide between complex runoff models and more traditional LEMs, creating a new type of framework not commonly used in the geomorphology or hydrology communities. Landlab is a Python-language library that includes tools and process components that can be used to create models of Earth-surface dynamics over a range of temporal and spatial scales. The Landlab OverlandFlow component is based on a simplified inertial approximation of the shallow water equations, following the solution of de Almeida et al.(2012). This explicit two-dimensional hydrodynamic algorithm simulates a flood wave across a model domain, where water discharge and flow depth are calculated at all locations within a structured (raster) grid. Here, we illustrate how the OverlandFlow component contained within Landlab can be applied as a simplified event-based runoff model and how to couple the runoff model with an incision model operating on decadal timescales. Examples of flow routing on both real and synthetic landscapes are shown. Hydrographs from a single storm at multiple locations in the Spring Creek watershed, Colorado, USA, are illustrated, along with a map of shear stress applied on the land surface by flowing water. The OverlandFlow component can also be coupled with the Landlab DetachmentLtdErosion component to illustrate how the non-steady flow routing regime impacts incision across a watershed. The hydrograph and incision results are compared to simulations driven by steady-state runoff. Results from the coupled runoff and incision model indicate that runoff dynamics can impact landscape relief and channel concavity, suggesting that, on landscape evolution timescales, the OverlandFlow model may lead to differences in simulated topography in comparison with traditional methods. The exploratory test cases described within demonstrate how the OverlandFlow component can be used in both hydrologic and geomorphic applications.
Visualising landscape evolution: the effects of resolution on soil redistribution
NASA Astrophysics Data System (ADS)
Schoorl, Jeroen M.; Claessens, Lieven; (A) Veldkamp, Tom
2017-04-01
Landscape forming processes such as erosion by water, land sliding by water and gravity or ploughing by gravity, are closely related to resolution and land use changes. These processes may be controlled and influenced by multiple bio-physical and socio-economic driving factors, resulting in a complex multi-scale system. Consequently, land use changes should not be analysed in isolation without accounting for both on-site and off-site effects of these landscape processes in landscapes where water driven and or gravity driven processes are very active,. Especially the visualisation of these on- and off-site effects as a movie of evolving time series and changes is a potential valuable possibility in DEM modelling approaches. To investigate the interactions between land use, land use change, resolution of DEMs and landscape processes, a case study for the Álora region in southern Spain will presented, mainly as movies of modelling time-series, Starting from a baseline scenario of land use change, different levels of resolutions, interactions and feedbacks are added to the coupled LAPSUS model framework: Quantities and spatial patterns of both land use change and soil redistribution are compared between the baseline scenario without interactions and with each of the interaction mechanisms implemented consecutively. All as a function of spatial resolution. Keywords: LAPSUS; land use change; soil erosion, movie;
Observations of an aeolian landscape: From surface to orbit in Gale Crater
NASA Astrophysics Data System (ADS)
Day, Mackenzie; Kocurek, Gary
2016-12-01
Landscapes derived solely from aeolian processes are rare on Earth because of the dominance of subaqueous processes. In contrast, aeolian-derived landscapes should typify Mars because of the absence of liquid water, the long exposure times of surfaces, and the presence of wind as the default geomorphic agent. Using the full range of available orbital and Mars Science Laboratory rover Curiosity images, wind-formed features in Gale Crater were cataloged and analyzed in order to characterize the aeolian landscape and to derive the evolution of the crater wind regime over time. Inferred wind directions show a dominance of regional northerly winds over geologic time-scales, but a dominance of topography-driven katabatic winds in modern times. Landscapes in Gale Crater show a preponderance of aeolian features at all spatial scales. Interpreted processes forming these features include first-cycle aeolian abrasion of bedrock, pervasive deflation, organization of available sand into bedforms, abundant cratering, and gravity-driven wasting, all of which occur over a background of slow physical weathering. The observed landscapes are proposed to represent a spectrum of progressive surface denudation from fractured bedrock, to retreating bedrock-capped mesas, to remnant hills capped by bedrock rubble, to desert pavement plains. This model of landscape evolution provides the mechanism by which northerly winds acting over ∼3 Ga excavated tens of thousands of cubic kilometers of material from the once sediment-filled crater, thus carving the intra-crater moat and exhuming Mount Sharp (Aeolis Mons). The current crater surface is relatively sand-starved, indicating that potential sediment deflation from the crater is greater than sediment production, and that most exhumation of Mount Sharp occurred in the ancient geologic past.
NASA Astrophysics Data System (ADS)
Leyland, J.; Darby, S. E.
2006-12-01
Incised coastal channels are found in numerous locations around the world where the shoreline morphology consists of cliffs. The incised coastal channels found on the Isle of Wight, UK, are known locally as `Chines' and debouche (up to 45m) through the soft cliffs of the south west coast, maintaining steep side walls subject to deep-seated mass wasting. These canyons offer sheltered locations and bare substrate, providing habitat for plant (Philonotis marchica, Anthoceros punctatos) and invertebrate (Psen atratinus, Baris analis, Melitaea cinxi) species of international importance. The base level of the Chines is highly dynamic, with episodes of sea cliff erosion causing the rejuvenation of the channel network. Consequently a key factor in Chine evolution is the relative balance between rates of cliff retreat and headwards incision caused by knickpoint migration. Specifically, there is concern that if contemporary coastal retreat rates are higher than the corresponding rates of knickpoint recession, there will be long-term a reduction in the overall extent of the Chines and their associated habitats. In an attempt to provide a long-term context for these issues, in this poster we explore the Holocene erosional history of the Chines using a numerical landscape evolution model. The model includes a stochastic cliff recession function that controls the position of the outlet boundary. Knickpoint recession rates are simulated using a detachment-limited channel erosion law wherein erosion rate is a power function of drainage area and stream gradient with model parameters defined using empirically- derived data. Simulations are undertaken for a range of imposed boundary conditions representing different scenarios of long-term cliff retreat forced by Holocene sea-level rise, plausible scenarios corresponding to cases where simulated and observed Chine and landscape forms match. The study provides an example of how a landscape evolution model could be used to reconstruct Holocene coastal processes, as well as providing the long-term context necessary to manage Chine habitats appropriately. In particular a critical threshold drainage area is defined that provides knickpoint recession rates that are sufficient to generate self- sustaining Chines in relation to cliff recession rates.
Controls on stream network branching angles, tested using landscape evolution models
NASA Astrophysics Data System (ADS)
Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.
2016-04-01
Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349(6243), 51-53.
Kell, Douglas B
2012-03-01
A considerable number of areas of bioscience, including gene and drug discovery, metabolic engineering for the biotechnological improvement of organisms, and the processes of natural and directed evolution, are best viewed in terms of a 'landscape' representing a large search space of possible solutions or experiments populated by a considerably smaller number of actual solutions that then emerge. This is what makes these problems 'hard', but as such these are to be seen as combinatorial optimisation problems that are best attacked by heuristic methods known from that field. Such landscapes, which may also represent or include multiple objectives, are effectively modelled in silico, with modern active learning algorithms such as those based on Darwinian evolution providing guidance, using existing knowledge, as to what is the 'best' experiment to do next. An awareness, and the application, of these methods can thereby enhance the scientific discovery process considerably. This analysis fits comfortably with an emerging epistemology that sees scientific reasoning, the search for solutions, and scientific discovery as Bayesian processes. Copyright © 2012 WILEY Periodicals, Inc.
Human tumors show a high level of genetic heterogeneity, but the processes that influence the timing and route of metastatic dissemination of the subclones are unknown. Here we have used whole-exome sequencing of 103 matched benign, malignant and metastatic skin tumors from genetically heterogeneous mice to demonstrate that most metastases disseminate synchronously from the primary tumor, supporting parallel rather than linear evolution as the predominant model of metastasis.
NASA Astrophysics Data System (ADS)
Mitasova, H.; Hardin, E. J.; Kratochvilova, A.; Landa, M.
2012-12-01
Multitemporal data acquired by modern mapping technologies provide unique insights into processes driving land surface dynamics. These high resolution data also offer an opportunity to improve the theoretical foundations and accuracy of process-based simulations of evolving landforms. We discuss development of new generation of visualization and analytics tools for GRASS GIS designed for 3D multitemporal data from repeated lidar surveys and from landscape process simulations. We focus on data and simulation methods that are based on point sampling of continuous fields and lead to representation of evolving surfaces as series of raster map layers or voxel models. For multitemporal lidar data we present workflows that combine open source point cloud processing tools with GRASS GIS and custom python scripts to model and analyze dynamics of coastal topography (Figure 1) and we outline development of coastal analysis toolbox. The simulations focus on particle sampling method for solving continuity equations and its application for geospatial modeling of landscape processes. In addition to water and sediment transport models, already implemented in GIS, the new capabilities under development combine OpenFOAM for wind shear stress simulation with a new module for aeolian sand transport and dune evolution simulations. Comparison of observed dynamics with the results of simulations is supported by a new, integrated 2D and 3D visualization interface that provides highly interactive and intuitive access to the redesigned and enhanced visualization tools. Several case studies will be used to illustrate the presented methods and tools and demonstrate the power of workflows built with FOSS and highlight their interoperability.Figure 1. Isosurfaces representing evolution of shoreline and a z=4.5m contour between the years 1997-2011at Cape Hatteras, NC extracted from a voxel model derived from series of lidar-based DEMs.
NASA Astrophysics Data System (ADS)
Moucha, R.; Ruetenik, G.; de Boer, B.
2017-12-01
Reconciling elevations of paleoshorelines along the US Atlantic passive margin with estimates of eustatic sea level have long posed to be a challenge. Discrepancies between shoreline elevation and sea level have been attributed to combinations of tectonics, glacial isostatic adjustment, mantle convection, gravitation and/or errors, for example, in the inference of eustatic sea level from the marine 18O record. Herein we present a numerical model of landscape evolution combined with sea level change and solid Earth deformations to demonstrate the importance of flexural effects in response to erosion and sedimentation along the US Atlantic passive margin. We quantify these effects using two different temporal models. One reconciles the Orangeburg scarp, a well-documented 3.5 million-year-old mid-Pliocene shoreline, with a 15 m mid-Pliocene sea level above present-day (Moucha and Ruetenik, 2017). The other model focuses on the evolution of the South Carolina and northern Georgia margin since MIS 11 ( 400 Ka) using a fully coupled ice sheet, sea level and solid Earth model (de Boer et al, 2014) while relating our results to a series of enigmatic sea level high stand markers. de Boer, B., Stocci, P., and van de Wal, R. (2014). A fully coupled 3-d ice-sheet-sea-level model: algorithm and applications. Geoscientific Model Development, 7:2141-2156. Moucha, R. and Ruetenik, G. A. (2017). Interplay between dynamic topography and flexure along the US Atlantic passive margin: Insights from landscape evolution modeling. Global and Planetary Change, 149: 72-78
NASA Astrophysics Data System (ADS)
Shekhar, Karthik; Ruberman, Claire F.; Ferguson, Andrew L.; Barton, John P.; Kardar, Mehran; Chakraborty, Arup K.
2013-12-01
Mutational escape from vaccine-induced immune responses has thwarted the development of a successful vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus' fitness as a function of its proteomic sequence can enable rational design of potent vaccines, as this information can focus vaccine-induced immune responses to target mutational vulnerabilities of the virus. Spin models have been proposed as a means to infer intrinsic fitness landscapes of HIV proteins from patient-derived viral protein sequences. These sequences are the product of nonequilibrium viral evolution driven by patient-specific immune responses and are subject to phylogenetic constraints. How can such sequence data allow inference of intrinsic fitness landscapes? We combined computer simulations and variational theory á la Feynman to show that, in most circumstances, spin models inferred from patient-derived viral sequences reflect the correct rank order of the fitness of mutant viral strains. Our findings are relevant for diverse viruses.
Simulating Lanform Evolution on Mars
NASA Astrophysics Data System (ADS)
Howard, A. D.
2003-12-01
Knowledge of the planet Mars largely derives from remote sensing. Although these data are of increasing resolution and spectral coverage, including global topography at about 1 km2 resolution, interpretations vary widely about past processes and environments. Most uncertain is the environment of early Mars, during the Noachian Period (4.5 to about 3.5 b.y.). Interpretations range from a relatively warm wet climate with lakes and precipitation runoff, to a cold, dry Mars with valley networks originating solely from hydrothermally-driven seepage. Geomorphic analysis has generally been based upon image interpretation and terrestrial analogs. Increasingly, however, quantitative process and landform modeling is being brought to bear, including simulation modeling of landform evolution. A simulation model incorporates geomorphic processes relevant to Mars. Impact cratering is simulated geometrically by randomly-located impacts drawn from a size-frequency distribution. Scaling of crater dimensions is based upon fresh martian crater morphology, and heuristic rules govern inheritance from the pre-existing topography. Simulated cratered landscapes serve as initial conditions for simulated eolian erosion and deposition, inundation by lava flows,and fluvial denudation. The heuristic eolian model assumes that the long-term rate of eolian deposition and erosion is a function of an "exposure index", which is based upon the relative height of a location, such that valleys and crater floors are rapidly filled, level plains either receive no deposition or are slightly eroded, and crater rims and hill summits are eroded. Deposition on Mars is assumed to occur from saltation, deposition of dust from dust storms, and long-distance transport of crater ejecta and volcanic ash. The eolian model predicts that craters should infill at a nearly constant rate. Simulation of lava flow emplacement is also heuristic, based upon flow events of variable duration from specified source vents. The probability of a lava flow extending in a given direction is assumed greatest at the margins of recently active portions of the flow and is proportional to the local topographic gradient. Inundation of a cratered landscape is highly stochastic, with some craters surviving unscathed while neighbors are filled. Sumulation of fluvial erosion largely follows the landform evolution model of Howard [1994], with: 1) weathering rates a function of regolith thickness; 2) mass wasting involving both linear diffusional creep and accelerated motion as slopes approach a limiting angle; 3) detachment-limited fluvial erosion based upon shear stress, unit stream power, or bedload abrasion; and 4) sediment transport and deposition/erosion in alluvial channels, fans, deltas, and pediments. Fluvial erosion of cratered landscapes under assumed desert climate results in short valley systems with enclosed drainages in and between craters that resemble landscapes of the terrestrial Mojave and Basin and Range provinces. Drainage integration increases with time, but continued impact cratering disrupts fluvial networks. Model validation is limited by low resolution of images and topography, lack of stratigraphic information, absence of dating methods, and strong post-Noachian modification of landscapes by wind, mass-wasting, and "gardening" by small impacts. Nevertheless, the profiles of streams and fans are consistent with the gentle sections being sand or fine gravel, and steeper bedrock or boulder-floored sections. Simulated landscapes also compare favorably with the visual appearance of degraded Noachian cratered landscapes and with hypsometry and slope geometry statistics.
Disruption of River Networks in Nature and Models
NASA Astrophysics Data System (ADS)
Perron, J. T.; Black, B. A.; Stokes, M.; McCoy, S. W.; Goldberg, S. L.
2017-12-01
Many natural systems display especially informative behavior as they respond to perturbations. Landscapes are no exception. For example, longitudinal elevation profiles of rivers responding to changes in uplift rate can reveal differences among erosional mechanisms that are obscured while the profiles are in equilibrium. The responses of erosional river networks to perturbations, including disruption of their network structure by diversion, truncation, resurfacing, or river capture, may be equally revealing. In this presentation, we draw attention to features of disrupted erosional river networks that a general model of landscape evolution should be able to reproduce, including the consequences of different styles of planetary tectonics and the response to heterogeneous bedrock structure and deformation. A comparison of global drainage directions with long-wavelength topography on Earth, Mars, and Saturn's moon Titan reveals the extent to which persistent and relatively rapid crustal deformation has disrupted river networks on Earth. Motivated by this example and others, we ask whether current models of river network evolution adequately capture the disruption of river networks by tectonic, lithologic, or climatic perturbations. In some cases the answer appears to be no, and we suggest some processes that models may be missing.
Scale-dependent erosional patterns in steady-state and transient-state landscapes.
Tejedor, Alejandro; Singh, Arvind; Zaliapin, Ilya; Densmore, Alexander L; Foufoula-Georgiou, Efi
2017-09-01
Landscape topography is the expression of the dynamic equilibrium between external forcings (for example, climate and tectonics) and the underlying lithology. The magnitude and spatial arrangement of erosional and depositional fluxes dictate the evolution of landforms during both statistical steady state (SS) and transient state (TS) of major landscape reorganization. For SS landscapes, the common expectation is that any point of the landscape has an equal chance to erode below or above the landscape median erosion rate. We show that this is not the case. Afforded by a unique experimental landscape that provided a detailed space-time recording of erosional fluxes and by defining the so-called E50-area curve, we reveal for the first time that there exists a hierarchical pattern of erosion. Specifically, hillslopes and fluvial channels erode more rapidly than the landscape median erosion rate, whereas intervening parts of the landscape in terms of upstream contributing areas (colluvial regime) erode more slowly. We explain this apparent paradox by documenting the dynamic nature of SS landscapes-landscape locations may transition from being a hillslope to being a valley and then to being a fluvial channel due to ridge migration, channel piracy, and small-scale landscape dynamics through time. Under TS conditions caused by increased precipitation, we show that the E50-area curve drastically changes shape during landscape reorganization. Scale-dependent erosional patterns, as observed in this study, suggest benchmarks in evaluating numerical models and interpreting the variability of sampled erosional rates in field landscapes.
Fast stochastic algorithm for simulating evolutionary population dynamics
NASA Astrophysics Data System (ADS)
Tsimring, Lev; Hasty, Jeff; Mather, William
2012-02-01
Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.; Ganti, V. K.; Dietrich, W. E.
2009-12-01
Sediment transport on hillslopes can be thought of as a hopping process, where the sediment moves in a series of jumps. A wide range of processes shape the hillslopes which can move sediment to a large distance in the downslope direction, thus, resulting in a broad-tail in the probability density function (PDF) of hopping lengths. Here, we argue that such a broad-tailed distribution calls for a non-local computation of sediment flux, where the sediment flux is not only a function of local topographic quantities but is an integral flux which takes into account the upslope topographic “memory” of the point of interest. We encapsulate this non-local behavior into a simple fractional diffusive model that involves fractional (non-integer) derivatives. We present theoretical predictions from this nonlocal model and demonstrate a nonlinear dependence of sediment flux on local gradient, consistent with observations. Further, we demonstrate that the non-local model naturally eliminates the scale-dependence exhibited by any local (linear or nonlinear) sediment transport model. An extension to a 2-D framework, where the fractional derivative can be cast into a mixture of directional derivatives, is discussed together with the implications of introducing non-locality into existing landscape evolution models.
Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore
Fountain-Jones, Nicholas M.; Craft, Meggan E.; Funk, W. Chris; Kozakiewicz, Chris; Trumbo, Daryl; Boydston, Erin E.; Lyren, Lisa M.; Crooks, Kevin R.; Lee, Justin S.; VandeWoude, Sue; Carver, Scott
2017-01-01
Urban expansion has widespread impacts on wildlife species globally, including the transmission and emergence of infectious diseases. However, there is almost no information about how urban landscapes shape transmission dynamics in wildlife. Using an innovative phylodynamic approach combining host and pathogen molecular data with landscape characteristics and host traits, we untangle the complex factors that drive transmission networks of Feline Immunodeficiency Virus (FIV) in bobcats (Lynx rufus). We found that the urban landscape played a significant role in shaping FIV transmission. Even though bobcats were often trapped within the urban matrix, FIV transmission events were more likely to occur in areas with more natural habitat elements. Urban fragmentation also resulted in lower rates of pathogen evolution, possibly owing to a narrower range of host genotypes in the fragmented area. Combined, our findings show that urban landscapes can have impacts on a pathogen and its evolution in a carnivore living in one of the most fragmented and urban systems in North America. The analytical approach used here can be broadly applied to other host-pathogen systems, including humans.
NASA Astrophysics Data System (ADS)
Yuan, X.; Braun, J.; Guerit, L.; Simon, B.
2017-12-01
Limited attention has been given to linking continental erosion to transport and deposition of sediments in the marine environment in large-scale landscape evolution models. Although both environments have been thoroughly investigated, the details of how erosional or climatic events are recorded in the sedimentary and stratigraphic records have not been studied in a consistent quantitative manner. Here we propose a new numerical model for marine multi-lithology (sand and silt) coupling transport and deposition that is directly coupled to FastScape, a landscape evolution model that solves the continental stream power law and hillslope diffusion equation using implicit and O(n) algorithms. Marine transport and deposition is simulated by a nonlinear 2D diffusion model that incorporates a dual lithology (sand and slit) and where source terms represent the sediment flux from continental river erosion. Sediment compaction effects are also incorporated, taking into account the dual lithology, and are important to properly compute the details of the synthetic stratigraphic record. The algorithm used to represent marine transport and deposition is also implicit and O(n). The main purpose of our work is to invert stratigraphic data from offshore marginal basins to provide constraints on the tectonic, climatic and sea-level conditions that have affected the adjacent continental areas. In order to do so, we have incorporated the new model into a Bayesian inversion and optimisation scheme and tested and validated the approach with synthetic data. This is made possible due to the high efficient of the forward model. We are in the process of applying the inversion scheme to stratigraphic data from the Ogooue Delta (Gabon). By comparing real and synthetic stratigraphic geometries along cross-section of the delta, the shape and slope of seismic/time markers, and the sand to silt fraction in wells, we hope to obtain good constraints, not only of the value of the transport coefficients for sand and silt in the marine environment, but also of the uplift, erosional and climate history of the adjacent continental areas, as well as the amplitude of sea level variations.
Landscape-scale modelling of soil carbon dynamics under land use and climate change
NASA Astrophysics Data System (ADS)
Lacoste, Marine; Viaud, Valérie; Michot, Didier; Christian, Walter
2013-04-01
Soil organic carbon (SOC) sequestration is highly linked to soil use and farming practices, but also to soil redistributions, soil properties, and climate. In a global change context, landscape, farming practice and climate changes are expected; and they will most probably impact SOC dynamics. To assess their respective impacts, we modelled the SOC contents and stocks evolution at the scale of an agricultural landscape, by taking into account the soil redistribution by tillage and water processes. The simulations were conducted from 2010 to 2100 under different scenarios of landscape and climate. These scenarios combined different land uses associated to specific farming practices (mixed dairy with rotations of crops and grasslands, intensive cropping with only crops rotations or permanent grasslands), landscape managements (hedges planting or removal), and climates (business-as-usual climate and climate change, with temperature and precipitations increase). We used a spatially SOC dynamic model (adapted from RothC), coupled to a soil redistribution model (LandSoil). SOC dynamics were spatially modelled with a lateral resolution of 2-m and for soil organic layers up to 105 cm. Initial SOC stocks were described with a 2-m resolution map based on field data and produced with digital soil mapping methods. The major factor of change in SOC stocks was land use change, the second factor of importance was climate change, and finally landscape management: for the total SOC stocks (0-to-105 cm soil layer) the change of land use, climate and landscape management induced a respective mean absolute variation of 10 to 20 tC ha-1, 9 tC ha-1 and 0.4 tC ha-1. When considering the 0-to-105 cm soil layer, the different modelled landscapes showed the same sensitivity to climate change, with induced a mean decrease of 10 tC ha-1. However, the impact of climate change was found different according to the different modelled landscape when considering the 0-to-7.5 and 0-to-30 cm soil layers: the more sensitive landscapes were those of intensive cropping. This shows the importance of considering not only the plough layer, but also the vertical distribution of SOC stocks to assess the variation in SOC dynamics under land use, landscape management or climate change. Finally, rural hedgerow landscapes were proved to be quite well adapted for soil protection in a context of climate change, focusing on both carbon storage and soil erosion.
Scale-dependent erosional patterns in steady-state and transient-state landscapes
Tejedor, Alejandro; Singh, Arvind; Zaliapin, Ilya; Densmore, Alexander L.; Foufoula-Georgiou, Efi
2017-01-01
Landscape topography is the expression of the dynamic equilibrium between external forcings (for example, climate and tectonics) and the underlying lithology. The magnitude and spatial arrangement of erosional and depositional fluxes dictate the evolution of landforms during both statistical steady state (SS) and transient state (TS) of major landscape reorganization. For SS landscapes, the common expectation is that any point of the landscape has an equal chance to erode below or above the landscape median erosion rate. We show that this is not the case. Afforded by a unique experimental landscape that provided a detailed space-time recording of erosional fluxes and by defining the so-called E50-area curve, we reveal for the first time that there exists a hierarchical pattern of erosion. Specifically, hillslopes and fluvial channels erode more rapidly than the landscape median erosion rate, whereas intervening parts of the landscape in terms of upstream contributing areas (colluvial regime) erode more slowly. We explain this apparent paradox by documenting the dynamic nature of SS landscapes—landscape locations may transition from being a hillslope to being a valley and then to being a fluvial channel due to ridge migration, channel piracy, and small-scale landscape dynamics through time. Under TS conditions caused by increased precipitation, we show that the E50-area curve drastically changes shape during landscape reorganization. Scale-dependent erosional patterns, as observed in this study, suggest benchmarks in evaluating numerical models and interpreting the variability of sampled erosional rates in field landscapes. PMID:28959728
1987 Robert E. Horton Award to Thomas Dunne
NASA Astrophysics Data System (ADS)
Dunne, Thomas
Robert Horton demonstrated in his seminal 1945 paper that physically based quantitative models for landscape evolution can be constructed by using predicted overland flow in a sediment transport equation for sheetwash. He envisioned drainage network evolution by infiltration-limited overland flow as a process of channel incision, network growth, and then abstraction to a stable channel network fed by hillslopes too short for channel initiation. Not until the work of Tom Dunne in the late 1960s in the Sleepers River watershed, Vermont, was it realized that overland flow, and consequently hillslope evolution, could occur by an entirely different mechanism than that proposed by Horton. Dunne showed that in certain predictable zones of the landscape, exfiltration from saturated grounds adds to precipitation on the soil surface to form what he later called saturation overland flow. Many researchers have since found that this form of overland flow occurs in humid and semiarid landscapes throughout the world. So clear is Dunne's contribution to defining this process that some refer to it as the “Dunne mechanism” to distinguish it from “Horton overland flow.” His work also documented unquestionably the applicability of the partial area concept in explaining runoff generation. Because of this work, his research in snowmelt runoff, and his subsequent authorship with Luna Leopold of the widely used book entitled Water in Environmental Planning, Dunne has established himself as a leader of process hydrology.
The landscape of Titan as witness to its climate evolution
NASA Astrophysics Data System (ADS)
Moore, Jeffrey M.; Howard, Alan D.; Morgan, Alexander M.
2014-09-01
We investigated the range of Titan climate evolution hypotheses regulated by the role, sources, and availability of methane. We analyzed all available image data (principally synthetic aperture radar (SAR)) of Titan's landscape through the T-86 encounter, starting with focused examinations of terrains that carry the markers of climate evolution. Traditional geologic and geomorphic landscape analysis was used to perform morphometric characterization, establish time-stratigraphic relationships, and interpret local and regional geologic process-oriented evolutionary histories. We then assayed the distribution of terrains we identified with respect to both their latitudinal and altimetric occurrence. Our analysis of the terrain types and distributions was used to evaluate and rank the various climate evolution scenarios. We favor progressive hypotheses, which include a relatively brief period in which precipitation was able to affect geomorphic change in low latitudes at scales perceivable in SAR data, with subsequent gradual decline of precipitation intensity coupled with an increasing poleward restriction.
NASA Astrophysics Data System (ADS)
Berthling, Ivar
2015-04-01
Low relief surfaces at relatively high altitude are a main characteristic of the landscape in Southern Norway. These surfaces have for more than a century been regarded as old surfaces, originally developed as low altitude peneplains and later tectonically uplifted during the Cenozoic (e.g. LidmarBergstrom et al., 2000). Recently, this standard model has been challenged by models suggesting more recent uplift from erosionally driven isostatic adjustments during Pliocene and Pleistocene (Nielsen et al., 2009) or also earlier (Gołędowski et al., 2013). These models differ in opinion as to how and when the surfaces actually have developed from denudational processes in increasingly colder climates, unconstrained by a common base level, but both a glacial and a periglacial 'buzzsaw' have been invoked. If this interpretation is correct, it provides an example of large-scale periglacial bedrock landscape development and further underlines the importance of cryo-conditioning for long-term landscape development (Berthling and Etzelmüller, 2011) and the interconnected role of earth surface processes in cold climates. According to (French, 2007), however, large scale periglacial landscapes are rare or non-existent. Testing the periglacial 'buzzsaw' is therefore important, both for addressing the potential general long-term effects of periglacial processes on landscape development, and specifically to evaluate the mentioned models for Cenozoic landscape development. Here, we assess both the standard model and the glacial/periglacial 'buzzsaw' hypotheses on the Southern Norway landscape development, based on available field relationships. The periglacial 'buzzsaw' involves two aspects: sediment production by frost weathering, and sediment transport by periglacial mass wasting, i.e. solifluction and/or permafrost creep. Several studies evaluate frost weathering at the landscape scale, but periglacial mass wasting - especially regarding solifluction - has mainly been investigated on local scales. We test the periglacial 'buzzsaw' by spatial and temporal upscaling from current periglacial solifluction landforms and process rates. Berthling, I., and Etzelmüller, B., 2011, The concept of cryo-conditioning in landscape evolution: Quaternary Research, v. 75, no. 2, p. 378-384. French, H. M., 2007, The Periglacial Environment, John Wiley & Sons, 458 pp Gołędowski, B., Egholm, D. L., Nielsen, S. B., Clausen, O. R., and McGregor, E. D., 2013, Cenozoic erosion and flexural isostasy of Scandinavia: Journal of Geodynamics, v. 70, p. 49-57. LidmarBergstrom, K., Ollier, C. D., and Sulebak, J. R., 2000, Landforms and uplift history of southern Norway: Global and Planetary Change, v. 24, no. 3-4, p. 211-231. Nielsen, S. B., Gallagher, K., Leighton, C., Balling, N., Svenningsen, L., Jacobsen, B. H., Thomsen, E., Nielsen, O. B., Heilmann-Clausen, C., Egholm, D. L., Summerfield, M. A., Clausen, O. R., Piotrowski, J. A., Thorsen, M. R., Huuse, M., Abrahamsen, N., King, C., and Lykke-Andersen, H., 2009, The evolution of western Scandinavian topography: A review of Neogene uplift versus the ICE (isostasy-climate-erosion) hypothesis: Journal of Geodynamics, v. 47, no. 2-3, p. 72-95.
Zachary A. Holden; W. Matt Jolly
2011-01-01
Fire danger rating systems commonly ignore fine scale, topographically-induced weather variations. These variations will likely create heterogeneous, landscape-scale fire danger conditions that have never been examined in detail. We modeled the evolution of fuel moistures and the Energy Release Component (ERC) from the US National Fire Danger Rating System across the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor
The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimalmore » frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.« less
When sources become sinks: migrational meltdown in heterogeneous habitats.
Ronce, O; Kirkpatrick, M
2001-08-01
We consider the evolution of ecological specialization in a landscape with two discrete habitat types connected by migration, for example, a plant-insect system with two plant hosts. Using a quantitative genetic approach. we study the joint evolution of a quantitative character determining performance in each habitat together with the changes in the population density. We find that specialization on a single habitat evolves with intermediate migration rates, whereas a generalist species evolves with both very low and very large rates of movement between habitats. There is a threshold at which a small increase in the connectivity of the two habitats will result in dramatic decrease in the total population size and the nearly complete loss of use of one of the two habitats through a process of "migrational meltdown." In some situations, equilibria corresponding to a specialist and a generalist species are simultaneously stable. Analysis of our model also shows cases of hysteresis in which small transient changes in the landscape structure or accidental demographic disturbances have irreversible effects on the evolution of specialization.
Lee, John P.; Stockli, Daniel F.; Kelley, S.A.; Pederson, J.; Karlstrom, K.E.; Ehlers, T.A.
2013-01-01
Thermal histories are modeled from new apatite (U-Th)/He and apatite fission-track data in order to quantitatively constrain the landscape evolution of the Grand Canyon region. Fifty new samples and their associated thermochronometric ages are presented here. Samples span from Lee’s Ferry in the east to Quartermaster Canyon in the west and include four age-elevation transects into Grand Canyon and borehole samples from the Coconino Plateau. Twenty-seven samples are inversely modeled to provide continuous thermal histories. This represents the most extensive and complete dataset on patterns of long-term exhumation in the Grand Canyon region, and it enables us to constrain the timing and magnitude of erosion and also discriminate between canyon incision and broader planation. The new data suggest that the early Cenozoic landscape in eastern Grand Canyon was low in relief and does not indicate the presence of an early Cenozoic precursor to the modern Grand Canyon. However, there is evidence for the incision of a smaller-scale canyon across the Kaibab Uplift at 28–20 Ma. This middle-Cenozoic denudation event was accompanied by the removal of a majority of remaining Mesozoic strata west of the Kaibab Uplift. In contrast, just upstream in the area of Lee’s Ferry, ∼2 km of Mesozoic strata remained over the middle Cenozoic and were removed after 10 Ma.
Ives, Anthony R; Paull, Cate; Hulthen, Andrew; Downes, Sharon; Andow, David A; Haygood, Ralph; Zalucki, Myron P; Schellhorn, Nancy A
2017-01-01
Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt) are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.
Numerical modelling of landscape and sediment flux response to precipitation rate change
NASA Astrophysics Data System (ADS)
Armitage, John J.; Whittaker, Alexander C.; Zakari, Mustapha; Campforts, Benjamin
2018-02-01
Laboratory-scale experiments of erosion have demonstrated that landscapes have a natural (or intrinsic) response time to a change in precipitation rate. In the last few decades there has been growth in the development of numerical models that attempt to capture landscape evolution over long timescales. However, there is still an uncertainty regarding the validity of the basic assumptions of mass transport that are made in deriving these models. In this contribution we therefore return to a principal assumption of sediment transport within the mass balance for surface processes; we explore the sensitivity of the classic end-member landscape evolution models and the sediment fluxes they produce to a change in precipitation rates. One end-member model takes the mathematical form of a kinetic wave equation and is known as the stream power model, in which sediment is assumed to be transported immediately out of the model domain. The second end-member model is the transport model and it takes the form of a diffusion equation, assuming that the sediment flux is a function of the water flux and slope. We find that both of these end-member models have a response time that has a proportionality to the precipitation rate that follows a negative power law. However, for the stream power model the exponent on the water flux term must be less than one, and for the transport model the exponent must be greater than one, in order to match the observed concavity of natural systems. This difference in exponent means that the transport model generally responds more rapidly to an increase in precipitation rates, on the order of 105 years for post-perturbation sediment fluxes to return to within 50 % of their initial values, for theoretical landscapes with a scale of 100×100 km. Additionally from the same starting conditions, the amplitude of the sediment flux perturbation in the transport model is greater, with much larger sensitivity to catchment size. An important finding is that both models respond more quickly to a wetting event than a drying event, and we argue that this asymmetry in response time has significant implications for depositional stratigraphies. Finally, we evaluate the extent to which these constraints on response times and sediment fluxes from simple models help us understand the geological record of landscape response to rapid environmental changes in the past, such as the Paleocene-Eocene thermal maximum (PETM). In the Spanish Pyrenees, for instance, a relatively rapid (10 to 50 kyr) duration of the deposition of gravel is observed for a climatic shift that is thought to be towards increased precipitation rates. We suggest that the rapid response observed is more easily explained through a diffusive transport model because (1) the model has a faster response time, which is consistent with the documented stratigraphic data, (2) there is a high-amplitude spike in sediment flux, and (3) the assumption of instantaneous transport is difficult to justify for the transport of large grain sizes as an alluvial bedload. Consequently, while these end-member models do not reproduce all the complexity of processes seen in real landscapes, we argue that variations in long-term erosional dynamics within source catchments can fundamentally control when, how, and where sedimentary archives can record past environmental change.
Geomorphology and landscape organization of a northern peatland complex
NASA Astrophysics Data System (ADS)
Richardson, M. C.
2012-12-01
The geomorphic evolution of northern peatlands is governed by complex ecohydrological feedback mechanisms and associated hydro-climatic drivers. For example, prevailing models of bog development (i.e. Ingram's groundwater mounding hypothesis and variants) attempt to explicitly link bog dome characteristics to the regional climate based on analytical and numerical models of lateral groundwater flow and the first-order control of water table position on rates of peat accumulation. In this talk I will present new results from quantitative geomorphic analyses of a northern peatland complex at the De Beers Victor diamond mine site in the Hudson Bay Lowlands of northern Ontario. This work capitalizes on spatially-extensive, high-resolution topographic (LiDAR) data to rigorously test analytical and numerical models of bog dome development in this landscape. The analysis and discussion are then expanded beyond individual bog formations to more broadly consider ecohydrological drivers of landscape organization, with implications for understanding and modeling catchment-scale runoff response. Results show that in this landscape, drainage patterns exhibit relatively well-organized characteristics consistent with observed runoff responses in six gauged research catchments. Interpreted together, the results of these geomorphic and hydrologic analyses help refine our understanding of water balance partitioning among different landcover types within northern peatland complexes. These findings can be used to help guide the development of appropriate numerical model structures for hydrologic prediction in ungauged peatland basins of northern Canada.
NASA Astrophysics Data System (ADS)
Doranti Tiritan, Carolina; Hackspacher, Peter C.; Glasmacher, Ulrich A.
2014-05-01
The Poços de Caldas Plateau in the southeastern Brazil, and it is characterized by a high relief topography supported by the pre-Cambrian crystalline rocks and by the Poços de Caldas Alkaline Massif (PCAM). Ulbrich et al (2002) determine that the ages for the predominant PCAM intermediate rocks were constrained ~83Ma. In addition, geologic observations indicates the phonolites, tinguaites and nepheline syenites were emplaced in a continuous and rapid sequence lasting between 1 to 2 Ma. The topography is characterized by dissected plateau with irregular topographic ridges and peaks with elevations between 900 and 1300m (a.s.l.) on the metamorphic basement and from 1300 to 1700m (a.s.l) on the PCAM region. Therefore, the aim of the work was quantify the main processes that were responsible for the evolution of the landscape by using methods as the low temperature thermochronology and the 3D thermokinematic modeling, for obtaining data of uplift and erosion rates and to correlate them with the thermal gradients of the region. The 3D thermokinematic modeling was obtained using the software code PECUBE (Braun 2003).
New Parallel Algorithms for Landscape Evolution Model
NASA Astrophysics Data System (ADS)
Jin, Y.; Zhang, H.; Shi, Y.
2017-12-01
Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.
Multiresolution analysis of characteristic length scales with high-resolution topographic data
NASA Astrophysics Data System (ADS)
Sangireddy, Harish; Stark, Colin P.; Passalacqua, Paola
2017-07-01
Characteristic length scales (CLS) define landscape structure and delimit geomorphic processes. Here we use multiresolution analysis (MRA) to estimate such scales from high-resolution topographic data. MRA employs progressive terrain defocusing, via convolution of the terrain data with Gaussian kernels of increasing standard deviation, and calculation at each smoothing resolution of (i) the probability distributions of curvature and topographic index (defined as the ratio of slope to area in log scale) and (ii) characteristic spatial patterns of divergent and convergent topography identified by analyzing the curvature of the terrain. The MRA is first explored using synthetic 1-D and 2-D signals whose CLS are known. It is then validated against a set of MARSSIM (a landscape evolution model) steady state landscapes whose CLS were tuned by varying hillslope diffusivity and simulated noise amplitude. The known CLS match the scales at which the distributions of topographic index and curvature show scaling breaks, indicating that the MRA can identify CLS in landscapes based on the scaling behavior of topographic attributes. Finally, the MRA is deployed to measure the CLS of five natural landscapes using meter resolution digital terrain model data. CLS are inferred from the scaling breaks of the topographic index and curvature distributions and equated with (i) small-scale roughness features and (ii) the hillslope length scale.
NASA Astrophysics Data System (ADS)
Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.
2015-06-01
The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (high Agri Valley - Basilicata region) that occurred over 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European onshore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the forest/non-forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, and expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.
NASA Astrophysics Data System (ADS)
Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.
2014-08-01
The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (High Agri Valley - Basilicata region) occurred during 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European on-shore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the Forest/Non Forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern: increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.
Evolutionary trend toward kinetic stability in the folding trajectory of RNases H
Lim, Shion A.; Hart, Kathryn M.; Marqusee, Susan
2016-01-01
Proper folding of proteins is critical to producing the biological machinery essential for cellular function. The rates and energetics of a protein’s folding process, which is described by its energy landscape, are encoded in the amino acid sequence. Over the course of evolution, this landscape must be maintained such that the protein folds and remains folded over a biologically relevant time scale. How exactly a protein’s energy landscape is maintained or altered throughout evolution is unclear. To study how a protein’s energy landscape changed over time, we characterized the folding trajectories of ancestral proteins of the ribonuclease H (RNase H) family using ancestral sequence reconstruction to access the evolutionary history between RNases H from mesophilic and thermophilic bacteria. We found that despite large sequence divergence, the overall folding pathway is conserved over billions of years of evolution. There are robust trends in the rates of protein folding and unfolding; both modern RNases H evolved to be more kinetically stable than their most recent common ancestor. Finally, our study demonstrates how a partially folded intermediate provides a readily adaptable folding landscape by allowing the independent tuning of kinetics and thermodynamics. PMID:27799545
NASA Astrophysics Data System (ADS)
Worman, Stacey; Furbish, David; Fathel, Siobhan
2014-05-01
In arid landscapes, desert shrubs individually and collectively modify how sediment is transported (e.g by wind, overland-flow, and rain-splash). Addressing how desert shrubs modify landscapes on geomorphic timescales therefore necessitates spanning multiple shrub lifetimes and accounting for how processes affecting shrub dynamics on these longer timescales (e.g. fire, grazing, drought, and climate change) may in turn impact sediment transport. To fulfill this need, we present a mechanistic model of the spatiotemporal dynamics of a desert-shrub population that uses a simple accounting framework and tracks individual shrubs as they enter, age, and exit the population (via recruitment, growth, and mortality). Our model is novel insomuch as it (1) features a strong biophysical foundation, (2) mimics well-documented aspects of how shrub populations respond to changes in precipitation, and (3) possesses the process granularity appropriate for use in geomorphic simulations. In a complimentary abstract (Fathel et al. 2014), we demonstrate the potential of this biological model by coupling it to a physical model of rain-splash sediment transport: We mechanistically reproduce the empirical observation that the erosion rate of a hillslope decreases as its vegetation coverage increases and we predict erosion rates under different climate-change scenarios.
Modelling the impact of vegetation on marly catchments in the Southern Alps of France
NASA Astrophysics Data System (ADS)
Carriere, Alexandra; Le Bouteiller, Caroline; Tucker, Greg; Naaim, Mohamed
2017-04-01
The Southern Alps of France have been identified as a hot-spot in a global climate change context where the rainfall intensity increase may exacerbate the erosion of already badly erodible lands: Badlands. Vegetalization methods are a promising area of research for erosion control and slope and riverbed stabilization. Nevertheless the impact of vegetation on erosive dynamics is still poorly understood. We own data collected over the last thirty years on marly catchments in the Southern Alps of France from the Draix-Bléone Observatory, part of the Network of Drainage Basins RBV. These are temporal data of sedimentary flux at the scale of the precipitation event but also more recent topographic data on watersheds with areas ranging from 10-3 square kilometers to twenty square kilometers. Erosion rates in this landscape reach 1 cm per year. We simulate the topographic evolution of the catchments over a few decades to centuries with the landscape evolution model Landlab, using our data to calibrate and explicitly validate the model. This model, in comparison with other landscape evolution models, incorporates a more advanced vegetation module in terms of ecology. Nevertheless the erosion-vegetation coupling is not present in Landlab and we are working on its construction. To this end we use an erosion module and a vegetation module that we seek to couple. We want to see how the erosion laws parameters depend on the vegetation cover. We have implemented the calibration of parameters of a non-linear diffusion module coupled with a transport-limited law by comparing the simulated annual sediment flux with the one of the data of the observatory as a function of the percentage of vegetation cover of the ground. We obtained average values of parameters adjusted according to vegetation cover. We observe that the values of the erosion laws parameters are strongly affected by the percentage of vegetation cover. We will then spatialize these parameters on our vegetation maps in order to obtain different parameter values for different types of vegetation.
The origin and significance of sinuosity along incising bedrock rivers
NASA Astrophysics Data System (ADS)
Barbour, Jonathan Ross
Landscapes evolve through processes acting at the earth's surface in response to tectonics and climate. Rivers that cut into bedrock are particularly important since they set the local baselevel and communicate changes in boundary conditions across the landscape through erosion and deposition; the pace of topographic evolution depends on both the rate of change of the boundary conditions and the speed of the bedrock channel network response. Much of the work so far has considered the effects of tectonically-controlled changes in slope and climatically-controlled changes in discharges to the rate of channel bed erosion while considering bank erosion, if active at all, to be of at best secondary importance to landscape evolution. Sprinkled throughout the literature of the past century are studies that have recognized lateral activity along incising rivers, but conflicting interpretations have left many unanswered questions about how to identify and measure horizontal erosion, what drives it, what effect it has on the landscape, and how it responds to climate and tectonics. In this thesis, I begin to answer some of these questions by focusing on bedrock river sinuosity and its evolution through horizontal erosion of the channel banks. An analysis of synoptic scale topography and climatology of the islands of eastern Asia reveals a quantitative signature of storm frequency in a regional measure of mountain river sinuosity. This is partly explained through a study of the hydro- and morphodynamics of a rapidly evolving bedrock river in Taiwan which shows how the erosive forces vary along a river to influence the spatiotemporal distribution of downcutting, sidecutting, and sediment transport. Through these analyses, I also present evidence that suggests that the relative frequency of erosive events is far more important than the absolute magnitude of extreme events in setting the erosion rate, and I show that the horizontal erosion of bedrock rivers is an important contributor to landscape evolution. This thesis comprises a new look at the processes at work in bedrock rivers which suggests new ideas about the ways that landscape and climate interact, new tools for interpreting landscape morphology, and new insights into the processes that contribute to the evolution of active orogens.
Modeling Climate Change Impacts on Landscape Evolution, Fire, and Hydrology
NASA Astrophysics Data System (ADS)
Sheppard, B. S.; O Connor, C.; Falk, D. A.; Garfin, G. M.
2015-12-01
Landscape disturbances such as wildfire interact with climate variability to influence hydrologic regimes. We coupled landscape, fire, and hydrologic models and forced them using projected climate to demonstrate climate change impacts anticipated at Fort Huachuca in southeastern Arizona, USA. The US Department of Defense (DoD) recognizes climate change as a trend that has implications for military installations, national security and global instability. The goal of this DoD Strategic Environmental Research and Development Program (SERDP) project (RC-2232) is to provide decision making tools for military installations in the southwestern US to help them adapt to the operational realities associated with climate change. For this study we coupled the spatially explicit fire and vegetation dynamics model FireBGCv2 with the Automated Geospatial Watershed Assessment tool (AGWA) to evaluate landscape vegetation change, fire disturbance, and surface runoff in response to projected climate forcing. A projected climate stream for the years 2005-2055 was developed from the Multivariate Adaptive Constructed Analogs (MACA) 4 km statistical downscaling of the CanESM2 GCM using Representative Concentration Pathway (RCP) 8.5. AGWA, an ArcGIS add-in tool, was used to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and the KINematic runoff and EROSion2 (KINEROS2) models based on GIS layers. Landscape raster data generated by FireBGCv2 project an increase in fire and drought associated tree mortality and a decrease in vegetative basal area over the years of simulation. Preliminary results from SWAT modeling efforts show an increase to surface runoff during years following a fire, and for future winter rainy seasons. Initial results from KINEROS2 model runs show that peak runoff rates are expected to increase 10-100 fold as a result of intense rainfall falling on burned areas.
A Model of Substitution Trajectories in Sequence Space and Long-Term Protein Evolution
Usmanova, Dinara R.; Ferretti, Luca; Povolotskaya, Inna S.; Vlasov, Peter K.; Kondrashov, Fyodor A.
2015-01-01
The nature of factors governing the tempo and mode of protein evolution is a fundamental issue in evolutionary biology. Specifically, whether or not interactions between different sites, or epistasis, are important in directing the course of evolution became one of the central questions. Several recent reports have scrutinized patterns of long-term protein evolution claiming them to be compatible only with an epistatic fitness landscape. However, these claims have not yet been substantiated with a formal model of protein evolution. Here, we formulate a simple covarion-like model of protein evolution focusing on the rate at which the fitness impact of amino acids at a site changes with time. We then apply the model to the data on convergent and divergent protein evolution to test whether or not the incorporation of epistatic interactions is necessary to explain the data. We find that convergent evolution cannot be explained without the incorporation of epistasis and the rate at which an amino acid state switches from being acceptable at a site to being deleterious is faster than the rate of amino acid substitution. Specifically, for proteins that have persisted in modern prokaryotic organisms since the last universal common ancestor for one amino acid substitution approximately ten amino acid states switch from being accessible to being deleterious, or vice versa. Thus, molecular evolution can only be perceived in the context of rapid turnover of which amino acids are available for evolution. PMID:25415964
Process-Driven Ecological Modeling for Landscape Change Analysis
NASA Astrophysics Data System (ADS)
Altman, S.; Reif, M. K.; Swannack, T. M.
2013-12-01
Landscape pattern is an important driver in ecosystem dynamics and can control system-level functions such as nutrient cycling, connectivity, biodiversity and carbon sequestration. However, the links between process, pattern and function remain ambiguous. Understanding the quantitative relationship between ecological processes and landscape pattern across temporal and spatial scales is vital for successful management and implementation of ecosystem-level projects. We used remote sensing imagery to develop critical landscape metrics to understand the factors influencing landscape change. Our study area, a coastal area in southwest Florida, is highly dynamic with critically eroding beaches and a range of natural and developed land cover types. Hurricanes in 2004 and 2005 caused a breach along the coast of North Captiva Island that filled in by 2010. We used a time series of light detection and ranging (lidar) elevation data and hyperspectral imagery from 2006 and 2010 to determine land cover changes. Landscape level metrics used included: Largest Patch Index, Class Area, Area-weighted mean area, Clumpiness, Area-weighted Contiguity Index, Number of Patches, Percent of landcover, Area-weighted Shape. Our results showed 1) 27% increase in sand/soil class as the channel repaired itself and shoreline was reestablished, 2) 40% decrease in the mudflat class area due to conversion to sand/soil and water, 3) 30% increase in non-wetland vegetation class as a result of new vegetation around the repaired channel, and 4) the water class only slightly increased though there was a marked increase in the patch size area. Thus, the smaller channels disappeared with the infilling of the channel, leaving much larger, less complex patches behind the breach. Our analysis demonstrated that quantification of landscape pattern is critical to linking patterns to ecological processes and understanding how both affect landscape change. Our proof of concept indicated that ecological processes can correlate to landscape pattern and that ecosystem function changes significantly as pattern changes. However, the number of links between landscape metrics and ecological processes are highly variable. Extensively studied processes such as biodiversity can be linked to numerous landscape metrics. In contrast, correlations between sediment cycling and landscape pattern have only been evaluated for a limited number of metrics. We are incorporating these data into a relational database linking landscape and ecological patterns, processes and metrics. The database will be used to parameterize site-specific landscape evolution models projecting how landscape pattern will change as a result of future ecosystem restoration projects. The model is a spatially-explicit, grid-based model that projects changes in community composition based on changes in soil elevations. To capture scalar differences in landscape change, local and regional landscape metrics are analyzed at each time step and correlated with ecological processes to determine how ecosystem function changes with scale over time.
A fast, parallel algorithm to solve the basic fluvial erosion/transport equations
NASA Astrophysics Data System (ADS)
Braun, J.
2012-04-01
Quantitative models of landform evolution are commonly based on the solution of a set of equations representing the processes of fluvial erosion, transport and deposition, which leads to predict the geometry of a river channel network and its evolution through time. The river network is often regarded as the backbone of any surface processes model (SPM) that might include other physical processes acting at a range of spatial and temporal scales along hill slopes. The basic laws of fluvial erosion requires the computation of local (slope) and non-local (drainage area) quantities at every point of a given landscape, a computationally expensive operation which limits the resolution of most SPMs. I present here an algorithm to compute the various components required in the parameterization of fluvial erosion (and transport) and thus solve the basic fluvial geomorphic equation, that is very efficient because it is O(n) (the number of required arithmetic operations is linearly proportional to the number of nodes defining the landscape), and is fully parallelizable (the computation cost decreases in a direct inverse proportion to the number of processors used to solve the problem). The algorithm is ideally suited for use on latest multi-core processors. Using this new technique, geomorphic problems can be solved at an unprecedented resolution (typically of the order of 10,000 X 10,000 nodes) while keeping the computational cost reasonable (order 1 sec per time step). Furthermore, I will show that the algorithm is applicable to any regular or irregular representation of the landform, and is such that the temporal evolution of the landform can be discretized by a fully implicit time-marching algorithm, making it unconditionally stable. I will demonstrate that such an efficient algorithm is ideally suited to produce a fully predictive SPM that links observationally based parameterizations of small-scale processes to the evolution of large-scale features of the landscapes on geological time scales. It can also be used to model surface processes at the continental or planetary scale and be linked to lithospheric or mantle flow models to predict the potential interactions between tectonics driving surface uplift in orogenic areas, mantle flow producing dynamic topography on continental scales and surface processes.
NASA Astrophysics Data System (ADS)
Nelson, M. D.; Bryk, A. B.; Fauria, K.; Huang, M. H.; Dietrich, W. E.
2017-12-01
Shallow landslides are often a primary method of sediment transport and a dominant process of hillslope evolution in steep, soil-mantled landscapes. However, detailed studies of single landslides can be difficult to generalize across a landscape and watershed-scale analyses using coarse-resolution digital elevation models often fail to capture the detail necessary to understand the mechanics of individual slides. During February 2017, an intense rainfall event generated over 400 shallow landslides within a 13 km2 field site in Colusa County, Northern California, providing a unique opportunity to investigate how landsliding affects landscape morphology at multiple scales. The hilly grass and oak woodland site is underlain by Great Valley Sequence shale, sandstone, and conglomerate turbidites uniformly dipping 50° east, with ridgelines and valleys following bedding orientation. Here we present results from ultrahigh-resolution ( 100 points per square meter) airborne lidar data and aerial imagery collected directly after the event, as well as high-resolution airborne lidar data collected in 2015 and preliminary findings from field surveys. Of the 136 landslides surveyed so far, the failure surface was at the soil-weathered bedrock boundary in 85%. Only 69% of the landslides traveled down hillslopes and reached active channels, and of these, 37% transformed into debris flows that scoured channel pathways to bedrock. These small landslides have a median width of 3.2 m and average failure depth of 0.4 m. Landslides occurred at a median pre-failure ground surface slope of 35°, and only 56% occurred in convergent or weakly convergent areas. This comprehensive before and after dataset is being used as a rigorous test of shallow landslide models that predict landslide size and location, as well as a lens to investigate patterns in slope stability or failure with across the landscape. After multiple years of fieldwork at this study site where small landslide scars suggested this process could be important, the February 2017 event confirms that shallow landslides play an integral role in shaping the landscape, both by redistributing soil and rock mass downslope and delivering sediment to and scouring into active channels.
Feedbacks Between Topographic Stress and Drainage Basin Evolution
NASA Astrophysics Data System (ADS)
Perron, J.; Martel, S. J.; Singha, K.; Slim, M. I.
2013-12-01
Theoretical calculations imply that stresses produced by gravity acting on topography may be large enough in some scenarios to fracture rock. Predicted stress fields beneath ridges and valleys can differ dramatically, which has led several authors to hypothesize feedbacks between topographic stress, rock fracture and landscape evolution. However, there have been few attempts to explore these feedbacks. We use a coupled model to identify possible feedbacks between topographic stress and drainage basin evolution. The domain is a cross-section of a valley consisting of a bedrock channel and adjacent soil-mantled hillslopes. The bedrock surface evolves due to channel incision, soil production, and rock uplift, and soil thickness evolves due to soil production and transport. Plane stresses at and below the bedrock surface are calculated with a boundary element method that accounts for both ambient tectonic stress and topographic stress. We assume that the stress field experienced by rock as it is exhumed influences the likelihood that it will develop fractures, which make the rock more susceptible to weathering, disaggregation and erosion. A measure of susceptibility to shear fracture, the most likely failure mode under regional compression, serves as a proxy for rock damage. We couple the landscape evolution model to the stress model by assuming that rock damage accelerates the rates of soil production and channel incision, with two endmember cases: rates scale with the magnitude of the damage proxy at the bedrock surface, or with cumulative damage acquired during rock exhumation. The stress-induced variations in soil production and channel incision alter the soil thickness and topography, which in turn alter the stress field. Comparing model simulations with and without these feedbacks, we note several predicted consequences of topographic stress for drainage basin evolution. Rock damage is typically focused at or near the foot of hillslopes, which creates thicker soils near the valley bottom than near the ridgetop. This gradient in soil thickness is largest, and the thickest soil furthest downslope, if most rock damage is assumed to occur near the surface. Ambient tectonic stress also has a strong effect on hillslopes, with more compressive horizontal stress steepening the soil thickness gradient and displacing the thickest soil farther downslope. Rock damage in the valley bottom scales with valley depth, creating a positive feedback between relief and channel incision. This produces higher relief during transient channel incision, but steady-state relief is insensitive to stress effects because the positive feedback is limited by reduction of the channel slope. However, the fact that valleys are typically deepest in the middle of a drainage basin implies that channel profiles will be more concave if stresses enhance channel incision. Observational tests of these qualitative predictions will help evaluate the significance of suspected feedbacks between topographic stress and landscape evolution.
Topographic signatures of deep-seated landslides and a general landscape evolution model
NASA Astrophysics Data System (ADS)
Booth, A. M.; Roering, J. J.; Rempel, A. W.
2012-12-01
A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here, we propose a transport law for deep-seated landslides and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of uplift to landslide flow time scales, that predicts three distinct landscape types. The first is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates far exceeding the long term uplift rate. The second is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is largest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, quasi-planar, low angle hillslopes despite high uplift rates. The stochastic landsliding regime best captures the frequent observation that deep-seated landslides produce a large sediment flux from a small aerial extent while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and may be useful for interpreting climate-driven changes in landslide behavior.
On the tidal prism-channel area relations
NASA Astrophysics Data System (ADS)
D'Alpaos, Andrea; Lanzoni, Stefano; Marani, Marco; Rinaldo, Andrea
2010-03-01
We verify the broad applicability of tidal prism cross-sectional area relationships, originally proposed to relate the total water volume entering a lagoon during a characteristic tidal cycle (the tidal prism) to the size of its inlet, to arbitrary sheltered cross sections within a tidal network. We suggest, with reasonable approximation defining a statistical tendency rather than a pointwise equivalence, that the regime of tidal channels may be anywhere related to local landscape-forming prisms embedded in a characteristic spring tide oscillation. The importance of the proposed extension stems from its potential for quantitative predictions of the long-term morphological evolution of whole tidal landforms, in response to forcings affecting tidal prisms. This is the case, in particular, for alterations of relative mean sea levels possibly driven by climate change. Various 1-D and 2-D morphodynamic and hydrodynamic models are employed to evaluate peak flow rates, bottom shear stresses, and the ensuing local tidal prisms. One-dimensional morphodynamic models describing both the longitudinal and cross-sectional evolution of tidal channels are used to verify the validity of the relationship for sheltered sections. Relevant hydrodynamic features determined through accurate 2-D numerical models are compared with those obtained through time-invariant equivalents, defining a mean watershed by an energy landscape from averaged free surface gradients. Empirical evidence gathered within the lagoon of Venice (Italy) supports the proposed extension. We conclude that the geomorphic law relating tidal prisms to channel cross-sectional areas anywhere within a tidal landscape is a valuable tool for studies on long-term tidal geomorphology.
NASA Astrophysics Data System (ADS)
Booth, Adam M.; Roering, Josh J.; Rempel, Alan W.
2013-06-01
A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, tectonics, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here we propose a transport law for deep-seated landslides in weathered bedrock and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand, and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of the horizontal landslide flux to the vertical tectonic flux, that characterizes three distinct landscape types. One is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates exceeding the long-term uplift rate. Another is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is greatest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, low angle hillslopes despite high uplift rates. The stochastic landsliding regime captures the frequent observation that deep-seated landslides produce large sediment fluxes from small areal extents while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and is useful for interpreting climate-driven changes in landslide behavior.
Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland.
Baynes, Edwin R C; Attal, Mikaël; Niedermann, Samuel; Kirstein, Linda A; Dugmore, Andrew J; Naylor, Mark
2015-02-24
Extreme flood events have the potential to cause catastrophic landscape change in short periods of time (10(0) to 10(3) h). However, their impacts are rarely considered in studies of long-term landscape evolution (>10(3) y), because the mechanisms of erosion during such floods are poorly constrained. Here we use topographic analysis and cosmogenic (3)He surface exposure dating of fluvially sculpted surfaces to determine the impact of extreme flood events within the Jökulsárgljúfur canyon (northeast Iceland) and to constrain the mechanisms of bedrock erosion during these events. Surface exposure ages allow identification of three periods of intense canyon cutting about 9 ka ago, 5 ka ago, and 2 ka ago during which multiple large knickpoints retreated large distances (>2 km). During these events, a threshold flow depth was exceeded, leading to the toppling and transportation of basalt lava columns. Despite continuing and comparatively large-scale (500 m(3)/s) discharge of sediment-rich glacial meltwater, there is no evidence for a transition to an abrasion-dominated erosion regime since the last erosive event because the vertical knickpoints have not diffused over time. We provide a model for the evolution of the Jökulsárgljúfur canyon through the reconstruction of the river profile and canyon morphology at different stages over the last 9 ka and highlight the dominant role played by extreme flood events in the shaping of this landscape during the Holocene.
Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland
Baynes, Edwin R. C.; Attal, Mikaël; Kirstein, Linda A.; Dugmore, Andrew J.; Naylor, Mark
2015-01-01
Extreme flood events have the potential to cause catastrophic landscape change in short periods of time (100 to 103 h). However, their impacts are rarely considered in studies of long-term landscape evolution (>103 y), because the mechanisms of erosion during such floods are poorly constrained. Here we use topographic analysis and cosmogenic 3He surface exposure dating of fluvially sculpted surfaces to determine the impact of extreme flood events within the Jökulsárgljúfur canyon (northeast Iceland) and to constrain the mechanisms of bedrock erosion during these events. Surface exposure ages allow identification of three periods of intense canyon cutting about 9 ka ago, 5 ka ago, and 2 ka ago during which multiple large knickpoints retreated large distances (>2 km). During these events, a threshold flow depth was exceeded, leading to the toppling and transportation of basalt lava columns. Despite continuing and comparatively large-scale (500 m3/s) discharge of sediment-rich glacial meltwater, there is no evidence for a transition to an abrasion-dominated erosion regime since the last erosive event because the vertical knickpoints have not diffused over time. We provide a model for the evolution of the Jökulsárgljúfur canyon through the reconstruction of the river profile and canyon morphology at different stages over the last 9 ka and highlight the dominant role played by extreme flood events in the shaping of this landscape during the Holocene. PMID:25675484
A coupled vegetation/sediment transport model for dryland environments
NASA Astrophysics Data System (ADS)
Mayaud, Jerome R.; Bailey, Richard M.; Wiggs, Giles F. S.
2017-04-01
Dryland regions are characterized by patchy vegetation, erodible surfaces, and erosive aeolian processes. Understanding how these constituent factors interact and shape landscape evolution is critical for managing potential environmental and anthropogenic impacts in drylands. However, modeling wind erosion on partially vegetated surfaces is a complex problem that has remained challenging for researchers. We present the new, coupled cellular automaton Vegetation and Sediment TrAnsport (ViSTA) model, which is designed to address fundamental questions about the development of arid and semiarid landscapes in a spatially explicit way. The technical aspects of the ViSTA model are described, including a new method for directly imposing oblique wind and transport directions onto a cell-based domain. Verification tests for the model are reported, including stable state solutions, the impact of drought and fire stress, wake flow dynamics, temporal scaling issues, and the impact of feedbacks between sediment movement and vegetation growth on landscape morphology. The model is then used to simulate an equilibrium nebkha dune field, and the resultant bed forms are shown to have very similar size and spacing characteristics to nebkhas observed in the Skeleton Coast, Namibia. The ViSTA model is a versatile geomorphological tool that could be used to predict threshold-related transitions in a range of dryland ecogeomorphic systems.
From cancer genomes to cancer models: bridging the gaps
Baudot, Anaïs; Real, Francisco X.; Izarzugaza, José M. G.; Valencia, Alfonso
2009-01-01
Cancer genome projects are now being expanded in an attempt to provide complete landscapes of the mutations that exist in tumours. Although the importance of cataloguing genome variations is well recognized, there are obvious difficulties in bridging the gaps between high-throughput resequencing information and the molecular mechanisms of cancer evolution. Here, we describe the current status of the high-throughput genomic technologies, and the current limitations of the associated computational analysis and experimental validation of cancer genetic variants. We emphasize how the current cancer-evolution models will be influenced by the high-throughput approaches, in particular through efforts devoted to monitoring tumour progression, and how, in turn, the integration of data and models will be translated into mechanistic knowledge and clinical applications. PMID:19305388
Fitness landscape complexity and the emergence of modularity in neural networks
NASA Astrophysics Data System (ADS)
Lowell, Jessica
Previous research has shown that the shape of the fitness landscape can affect the evolution of modularity. We evolved neural networks to solve different tasks with different fitness landscapes, using NEAT, a popular neuroevolution algorithm that quantifies similarity between genomes in order to divide them into species. We used this speciation mechanism as a means to examine fitness landscape complexity, and to examine connections between fitness landscape complexity and the emergence of modularity.
River self-organisation inhibits discharge control on waterfall migration.
Baynes, Edwin R C; Lague, Dimitri; Attal, Mikaël; Gangloff, Aurélien; Kirstein, Linda A; Dugmore, Andrew J
2018-02-05
The action of rivers within valleys is fundamentally important in controlling landscape morphology, and how it responds to tectonic or climate change. The response of landscapes to external forcing usually results in sequential changes to river long profiles and the upstream migration of waterfalls. Currently, models of this response assume a relationship between waterfall retreat rate and drainage area at the location of the waterfall. Using an experimental study, we show that this assumption has limited application. Due to a self-regulatory response of channel geometry to higher discharge through increasing channel width, the bed shear stress at the lip of the experimental waterfall remains almost constant, so there was no observed change in the upstream retreat rate despite an order of magnitude increase in discharge. Crucially, however, the strength of the bedrock material exhibits a clear control on the magnitude of the mean retreat rate, highlighting the importance of lithology in setting the rate at which landscapes respond to external forcing. As a result existing numerical models of landscape evolution that simulate the retreat of waterfalls as a function of drainage area with a fixed erodibility constant should be re-evaluated to consider spatial heterogeneity in erodibility and channel self-organisation.
RS- and GIS-based study on landscape pattern change in the Poyang Lake wetland area, China
NASA Astrophysics Data System (ADS)
Chen, Xiaoling; Li, Hui; Bao, Shuming; Wu, Zhongyi; Fu, Weijuan; Cai, Xiaobin; Zhao, Hongmei; Guo, Peng
2006-10-01
As wetland has been recognized as an important component of ecosystem, it is received ever-increasing attention worldwide. Poyang Lake wetlands, the international wetlands and the largest bird habitat in Asia, play an important role in biodiversity and ecologic protection. However, with the rapid economic growth and urbanization, landscape patterns in the wetlands have dramatically changed in the past three decades. To better understand the wetland landscape dynamics, remote sensing, geographic information system technologies, and the FRAGSTATS landscape analysis program were used to measure landscape patterns. Statistical approach was employed to illustrate the driving forces. In this study, Landsat images (TM and ETM+) from 1989 and 2000 were acquired for the wetland area. The landscapes in the wetland area were classified as agricultural land, urban, wetland, forest, grassland, unused land, and water body using a combination of supervised and unsupervised classification techniques integrated with Digital Elevation Model (DEM). Landscape indices, which are popular for the quantitative analysis of landscape pattern, were then employed to analyze the landscape pattern changes between the two dates in a GIS. From this analysis an understanding of the spatial-temporal patterns of landscape evolution was generated. The results show that wetland area was reduced while fragmentation was increased over the study period. Further investigation was made to examine the relationship between landscape metrics and some other parameters such as urbanization to address the driving forces for those changes. The urban was chosen as center to conduct buffer analysis in a GIS to study the impact of human-induced activities on landscape pattern dynamics. It was found that the selected parameters were significantly correlated with the landscape metrics, which may well indicate the impact of human-induced activities on the wetland landscape pattern dynamics and account for the driving forces.
Coupled hydrological and geochemical process evolution at the Landscape Evolution Observatory
NASA Astrophysics Data System (ADS)
Troch, P. A. A.
2015-12-01
Predictions of hydrologic and biogeochemical responses to natural and anthropogenic forcing at the landscape scale are highly uncertain due to the effects of heterogeneity on the scaling of reaction, flow and transport phenomena. The physical, chemical and biological structures and processes controlling reaction, flow and transport in natural landscapes interact at multiple space and time scales and are difficult to quantify. The current paradigm of hydrological and geochemical theory is that process descriptions derived from observations at small scales in controlled systems can be applied to predict system response at much larger scales, as long as some 'equivalent' or 'effective' values of the scale-dependent parameters can be identified. Furthermore, natural systems evolve in time in a way that is hard to observe in short-run laboratory experiments or in natural landscapes with unknown initial conditions and time-variant forcing. The spatial structure of flow pathways along hillslopes determines the rate, extent and distribution of geochemical reactions (and biological colonization) that drive weathering, the transport and precipitation of solutes and sediments, and the further evolution of soil structure. The resulting evolution of structures and processes, in turn, produces spatiotemporal variability of hydrological states and flow pathways. There is thus a need for experimental research to improve our understanding of hydrology-biogeochemistry interactions and feedbacks at appropriate spatial scales larger than laboratory soil column experiments. Such research is complicated in real-world settings because of poorly constrained impacts of initial conditions, climate variability, ecosystems dynamics, and geomorphic evolution. The Landscape Evolution Observatory (LEO) at Biosphere 2 offers a unique research facility that allows real-time observations of incipient hydrologic and biogeochemical response under well-constrained initial conditions and climate forcing. The LEO allows to close the water, carbon and energy budgets at hillslope scales, thereby enabling elucidation of the tight coupling between the time water spends along subsurface flow paths and geochemical weathering reactions, including the feedbacks between flow and pedogenesis.
Kurylyk, Barret L.; Masaki, Masaki; Quinton, William L.; McKenzie, Jeffrey M.; Voss, Clifford I.
2016-01-01
Recent climate change has reduced the spatial extent and thickness of permafrost in many discontinuous permafrost regions. Rapid permafrost thaw is producing distinct landscape changes in the Taiga Plains of the Northwest Territories, Canada. As permafrost bodies underlying forested peat plateaus shrink, the landscape slowly transitions into unforested wetlands. The expansion of wetlands has enhanced the hydrologic connectivity of many watersheds via new surface and near-surface flow paths, and increased streamflow has been observed. Furthermore, the decrease in forested peat plateaus results in a net loss of boreal forest and associated ecosystems. This study investigates fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012. Measured climate data are first used to drive surface energy balance simulations for the wetland and peat plateau. Near-surface soil temperatures simulated in the surface energy balance model are then applied as the upper boundary condition to a three-dimensional model of subsurface water flow and coupled energy transport with freeze-thaw. Simulation results demonstrate that lateral heat transfer, which is not considered in many permafrost models, can influence permafrost thaw rates. Furthermore, the simulations indicate that landscape evolution arising from permafrost thaw acts as a positive feedback mechanism that increases the energy absorbed at the land surface and produces additional permafrost thaw. The modeling results also demonstrate that flow rates in local groundwater flow systems may be enhanced by the degradation of isolated permafrost bodies.
NASA Astrophysics Data System (ADS)
DeLong, Stephen B.; Youberg, Ann M.; DeLong, Whitney M.; Murphy, Brendan P.
2018-01-01
Flooding and erosion after wildfires present increasing hazard as climate warms, semi-arid lands become drier, population increases, and the urban interface encroaches farther into wildlands. We quantify post-wildfire erosion in a steep, initially unchannelized, 7.5 ha headwater catchment following the 2011 Horseshoe 2 Fire in the Chiricahua Mountains of southeastern Arizona. Using time-lapse cameras, rain gauges, and repeat surveys by terrestrial laser scanner, we quantify the response of a burned landscape to subsequent precipitation events. Repeat surveys provide detailed pre-and post-rainfall measurements of landscape form associated with a range of weather events. The first post-fire precipitation led to sediment delivery equivalent to 0.017 m of erosion from hillslopes and 0.12 m of erosion from colluvial hollows. Volumetrically, 69% of sediment yield was generated from hillslope erosion and 31% was generated from gully channel establishment in colluvial hollows. Processes on hillslopes included erosion by extensive shallow overland flow, formation of rills and gullies, and generation of sediment-laden flows and possibly debris flows. Subsequent smaller rain events caused ongoing hillslope erosion and local deposition and erosion in gullies. Winter freeze-thaw led to soil expansion, likely related to frost-heaving, causing a net centimeter-scale elevation increase across soil-mantled slopes. By characterizing landscape form, the properties of near-surface materials, and measuring both precipitation and landscape change, we can improve our empirical understanding of landscape response to environmental forcing. This detailed approach to studying landscape response to wildfires may be useful in the improvement of predictive models of flood, debris flow and sedimentation hazards used in post-wildfire response assessments and land management, and may help improve process-based models of landscape evolution.
DeLong, Stephen B.; Youberg, Ann M.; DeLong, Whitney M.; Murphy, Brendan P.
2018-01-01
Flooding and erosion after wildfires present increasing hazard as climate warms, semi-arid lands become drier, population increases, and the urban interface encroaches farther into wildlands. We quantify post-wildfire erosion in a steep, initially unchannelized, 7.5 ha headwater catchment following the 2011 Horseshoe 2 Fire in the Chiricahua Mountains of southeastern Arizona. Using time-lapse cameras, rain gauges, and repeat surveys by terrestrial laser scanner, we quantify the response of a burned landscape to subsequent precipitation events. Repeat surveys provide detailed pre-and post-rainfall measurements of landscape form associated with a range of weather events. The first post-fire precipitation led to sediment delivery equivalent to 0.017 m of erosion from hillslopes and 0.12 m of erosion from colluvial hollows. Volumetrically, 69% of sediment yield was generated from hillslope erosion and 31% was generated from gully channel establishment in colluvial hollows. Processes on hillslopes included erosion by extensive shallow overland flow, formation of rills and gullies, and generation of sediment-laden flows and possibly debris flows. Subsequent smaller rain events caused ongoing hillslope erosion and local deposition and erosion in gullies. Winter freeze-thaw led to soil expansion, likely related to frost-heaving, causing a net centimeter-scale elevation increase across soil-mantled slopes. By characterizing landscape form, the properties of near-surface materials, and measuring both precipitation and landscape change, we can improve our empirical understanding of landscape response to environmental forcing. This detailed approach to studying landscape response to wildfires may be useful in the improvement of predictive models of flood, debris flow and sedimentation hazards used in post-wildfire response assessments and land management, and may help improve process-based models of landscape evolution.
Constructive neutral evolution: exploring evolutionary theory's curious disconnect.
Stoltzfus, Arlin
2012-10-13
Constructive neutral evolution (CNE) suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the "mutational landscape" model), and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article.
Universality Classes of Interaction Structures for NK Fitness Landscapes
NASA Astrophysics Data System (ADS)
Hwang, Sungmin; Schmiegelt, Benjamin; Ferretti, Luca; Krug, Joachim
2018-07-01
Kauffman's NK-model is a paradigmatic example of a class of stochastic models of genotypic fitness landscapes that aim to capture generic features of epistatic interactions in multilocus systems. Genotypes are represented as sequences of L binary loci. The fitness assigned to a genotype is a sum of contributions, each of which is a random function defined on a subset of k ≤ L loci. These subsets or neighborhoods determine the genetic interactions of the model. Whereas earlier work on the NK model suggested that most of its properties are robust with regard to the choice of neighborhoods, recent work has revealed an important and sometimes counter-intuitive influence of the interaction structure on the properties of NK fitness landscapes. Here we review these developments and present new results concerning the number of local fitness maxima and the statistics of selectively accessible (that is, fitness-monotonic) mutational pathways. In particular, we develop a unified framework for computing the exponential growth rate of the expected number of local fitness maxima as a function of L, and identify two different universality classes of interaction structures that display different asymptotics of this quantity for large k. Moreover, we show that the probability that the fitness landscape can be traversed along an accessible path decreases exponentially in L for a large class of interaction structures that we characterize as locally bounded. Finally, we discuss the impact of the NK interaction structures on the dynamics of evolution using adaptive walk models.
Universality Classes of Interaction Structures for NK Fitness Landscapes
NASA Astrophysics Data System (ADS)
Hwang, Sungmin; Schmiegelt, Benjamin; Ferretti, Luca; Krug, Joachim
2018-02-01
Kauffman's NK-model is a paradigmatic example of a class of stochastic models of genotypic fitness landscapes that aim to capture generic features of epistatic interactions in multilocus systems. Genotypes are represented as sequences of L binary loci. The fitness assigned to a genotype is a sum of contributions, each of which is a random function defined on a subset of k ≤ L loci. These subsets or neighborhoods determine the genetic interactions of the model. Whereas earlier work on the NK model suggested that most of its properties are robust with regard to the choice of neighborhoods, recent work has revealed an important and sometimes counter-intuitive influence of the interaction structure on the properties of NK fitness landscapes. Here we review these developments and present new results concerning the number of local fitness maxima and the statistics of selectively accessible (that is, fitness-monotonic) mutational pathways. In particular, we develop a unified framework for computing the exponential growth rate of the expected number of local fitness maxima as a function of L, and identify two different universality classes of interaction structures that display different asymptotics of this quantity for large k. Moreover, we show that the probability that the fitness landscape can be traversed along an accessible path decreases exponentially in L for a large class of interaction structures that we characterize as locally bounded. Finally, we discuss the impact of the NK interaction structures on the dynamics of evolution using adaptive walk models.
Activated aging dynamics and effective trap model description in the random energy model
NASA Astrophysics Data System (ADS)
Baity-Jesi, M.; Biroli, G.; Cammarota, C.
2018-01-01
We study the out-of-equilibrium aging dynamics of the random energy model (REM) ruled by a single spin-flip Metropolis dynamics. We focus on the dynamical evolution taking place on time-scales diverging with the system size. Our aim is to show to what extent the activated dynamics displayed by the REM can be described in terms of an effective trap model. We identify two time regimes: the first one corresponds to the process of escaping from a basin in the energy landscape and to the subsequent exploration of high energy configurations, whereas the second one corresponds to the evolution from a deep basin to the other. By combining numerical simulations with analytical arguments we show why the trap model description does not hold in the former but becomes exact in the second.
NASA Astrophysics Data System (ADS)
Tucker, G. E.
2012-04-01
Geomorphology, like the rest of geoscience, has always had two major themes: a quest to understand the earth's history and 'products' - its landscapes and seascapes - and, in parallel, a quest to understand its formative processes. This dualism is manifest in the remarkable career of R. A. Bagnold, who was inspired by landforms such as dunes, and dedicated to understanding the physical processes that shaped them. His legacy inspires us to emulate two principles at the heart of his contributions: the benefits of rooting geomorphic theory in basic physics, and the importance of understanding geomorphic systems in terms of simple equations framed around energy or force. Today, following Bagnold's footsteps, the earth-surface process community is engaged in a quest to build, test, and refine an ever-improving body of theory to describe our planet's surface and its evolution. In this lecture, I review a small sample of some of the fruits of that quest, emphasizing the value of surprises encountered along the way. The first example involves models of long-term river incision into bedrock. When the community began to grapple with how to represent this process mathematically, several different ideas emerged. Some were based on the assumption that sediment transport is the limiting factor; others assumed that hydraulic stress on rock is the key, while still others treated rivers as first-order 'reactors.' Thanks in part to advances in digital topography and numerical computing, the predictions of these models can be tested using natural-experiment case studies. Examples from the King Range, USA, the Central Apennines, Italy, and the fold-thrust belt of Taiwan, illustrate that independent knowledge of history and/or tectonics makes it possible to quantify how the rivers have responded to external forcing. Some interesting surprises emerge, such as: that the relief-uplift relationship can be highly nonlinear in a steady-state landscape because of grain-entrainment thresholds; that transient landscapes are better than steady state cases for discriminating between models; and that an important part of the job for some rivers is unearthing their valleys after a major event such as an earthquake fills them up. These examples suggest that the 'the simplest possible model' isn't always the one that our intuition expects. A second example concerns hillslope evolution. Laboratory experiments, field measurements, and the- ory make it clear that, as with rivers, the evolution of hillslopes can involve a strongly nonlinear relationship between relief and erosion rate. Models of particle transport suggest that this nonlinearity can arise from increasingly long-distance particle motions as the gradient increases. One current challenge, therefore, is understanding the dynamics of steep, rocky hillslopes. Among the best natural laboratories for studying such hillslopes are normal-fault facets. These features are a bit like time machines: the higher you go, the longer the surface has been exposed to erosion. A simple mathematical model of facet evolution predicts that the slope of the facet is set by the ratio of erosion rate to fault slip rate. Applying this concept to a case study in Italy where the slip rate is known leads to the startling conclusion that the average hillslope erosion rates over the past ~100 ky is about 20 times faster than the Holocene rate. Thus, facet analysis seems to provide a method for documenting hillslope erosion rates and their variation with climate. As the quest continues, there are surely more fascinating surprises in store.
Noninvasive methods for dynamic mapping of microbial populations across the landscape
NASA Astrophysics Data System (ADS)
Meredith, L. K.; Sengupta, A.; Troch, P. A.; Volkmann, T. H. M.
2017-12-01
Soil microorganisms drive key ecosystem processes, and yet characterizing their distribution and activity in soil has been notoriously difficult. This is due, in part, to the heterogeneous nature of their response to changing environmental and nutrient conditions across time and space. These dynamics are challenging to constrain in both natural and experimental systems because of sampling difficulty and constraints. For example, soil microbial sampling at the Landscape Evolution Observatory (LEO) infrastructure in Biosphere 2 is limited in efforts to minimize soil disruption to the long term experiment that aims to characterize the interacting biological, hydrological, and geochemical processes driving soil evolution. In this and other systems, new methods are needed to monitor soil microbial communities and their genetic potential over time. In this study, we take advantage of the well-defined boundary conditions on hydrological flow at LEO to develop a new method to nondestructively characterize in situ microbial populations. In our approach, we sample microbes from the seepage flow at the base of each of three replicate LEO hillslopes and use hydrological models to `map back' in situ microbial populations. Over the course of a 3-month periodic rainfall experiment we collected samples from the LEO outflow for DNA and extraction and microbial community composition analysis. These data will be used to describe changes in microbial community composition over the course of the experiment. In addition, we will use hydrological flow models to identify the changing source region of discharge water over the course of periodic rainfall pulses, thereby mapping back microbial populations onto their geographic origin in the slope. These predictions of in situ microbial populations will be ground-truthed against those derived from destructive soil sampling at the beginning and end of the rainfall experiment. Our results will show the suitability of this method for long-term, non-destructive monitoring of the microbial communities that contribute to soil evolution in this large-scale model system. Furthermore, this method may be useful for other study systems with limitations to destructive sampling including other model infrastructures and natural landscapes.
NASA Astrophysics Data System (ADS)
Pavano, F.; Catalano, S.; Romagnoli, G.; Tortorici, G.
2018-03-01
Tectonic forcing causes the relief-building of mountain chains and enforces the surficial processes in a persistent dismantling of rock volumes, continuously modelling Earth's surface. Actually, we observe transient landscapes that have temporarily recorded tectonic forcing as a codified signal. The Late Quaternary tectonic evolution of northeastern Sicily, located along the Nubia-Eurasia plate boundary at the southern termination of the Calabrian arc, has been dominated by intense Plio-Pleistocene dynamics that severely modified the Late Miocene landscape. The present work aims to investigate geomorphically northeastern Sicily, essentially focusing on the hypsometric and relief analyses of the region in order to define how the topography responds to the post-Pliocene tectonic deformation. We apply different relief morphometric indices (Hypsometric Integral, Topographic Relief and Topographic Dissection) measured for each differently sized moving window, and we use different swath topographic profiles as well. Our analysis evidences differential morphological responses between distinct morphotectonic domains of the studied area, led by the combination of earlier morphological background and Late Quaternary tectonic deformation stages of the region. In addition, in the context of a constant and uniform tectonic uplift, the results define the general space- and time-relating pathways of the landscape geomorphic metrics. This enables us to bring out the controls of the vertical scale of landscape on hypsometry, exploring their mutual relationships. Finally, we reconstruct the Late Quaternary morphotectonic evolution of the region, defining the role played by the main tectonic alignments on the present geomorphic setting.
The main principles of formation of structure of cultural-historical landscapes of Central Russia.
NASA Astrophysics Data System (ADS)
Nizovtsev, Vyacheslav; Natalia, Erman
2014-05-01
The forming and development of cultural-historical landscapes (CH) are obligate result of evolution of society and nature, as well as, man and landscapes during their coherent growth. CH landscapes are holistic historic-cultural and nature creations. They reflect the history of land use and spiritual development of ethnic community of concrete territory with determine homogeneous landscape characteristics. The majority of them appertain to the category of relict landscapes, which completed their evolution growth. That means that these are anthropogenic (AL) and cultural (CL) landscapes. They lost anthropogenic management and continue their growth obeying natural logic. These landscapes include elements of morphological structure and natural components, which have been transformed by men, and also artefacts, sociofacts and mental facts. These facts can be considered as peculiar "biographical chronicle" of activity of population in determinate landscape conditions in determinate historical period. These facts are evidences of material and spiritual cultural of society. The first AL begin to arise simultaneously with conversation of appropriating economy into generating economy. There was such conversation in Central Russia (Neolithic revolution) only in Bronze Age. Anthropogenic transformed landscape complexes and even man-made landscape complexes have been formed in Bronze Age. Some of these complexes exist now. Actual anthropogenic and cultural landscapes began to form only in Iron Age while permanent, long existed settlement and agriculture structure has organized. First, These are small settlement anthropogenic landscape complexes (selischa and gorodischa) with applied permanent miniature arable areas. These complexes located on the capes and on the areas between river banks and banks of streams. Second, these are pasture anthropogenic landscape complexes (on the level of podurochische and urochische), located in flood plain and valley-cavin position (pasture plod plain meadow-forest).
The role of waterfalls in controlling the style and pace of landscape adjustment
NASA Astrophysics Data System (ADS)
DiBiase, R.; Lamb, M. P.; Whipple, K. X.
2013-12-01
Bedrock rivers set the pace of landscape adjustment to tectonic or climatic forcing by transmitting signals of baselevel change upstream through the channel network and ultimately to hillslopes. River incision is typically modeled as a monotonic function of bed shear stress, modulated by sediment tools and cover effects, but these models break down in landscapes where waterfalls are common due to changes in flow dynamics across steep, near-vertical reaches. Here we investigate how waterfalls influence the response times of landscapes to external forcing with a conceptual long-profile model and field observations from the San Gabriel Mountains, California. We show that the transient channel response of rivers with waterfalls can either be 'slow' or 'fast' relative to the response of rivers without waterfalls, and identify a series of field tests to identify which end-member behavior is present for natural waterfalls. We apply this conceptual model to the 300 km2 watershed of Big Tujunga Creek in the San Gabriel Mountains, where we identified over 800 bedrock steps greater than 3m in height from a 1m LiDAR DEM and 20 km of detailed field surveys. Two prominent slope-break knickpoints along the mainstem characterized by numerous waterfalls show contrasting behavior. For the upper knickpoint, waterfalls align with bands of harder rock exposed on adjacent hillslopes, and between waterfalls the channel is mantled by large (>2 m) boulders, suggesting that waterfalls here are stalled and enhance the preservation of an upstream relict landscape. In contrast, the lower knickpoint is characterized by waterfalls within an incised inner gorge, and the intervening reaches are a mixture of gravel and exposed bedrock. These observations, combined with a well-preserved strath terrace level parallel with the modern channel downstream of the inner gorge, indicate that the waterfalls here are retreating rapidly relative to background river incision. Our results highlight the importance of quantifying waterfall development and retreat processes for inclusion in landscape evolution models.
NASA Astrophysics Data System (ADS)
Brigand, Louis; Bioret, Frédéric; Le Démezet, Maurice
1992-09-01
For about 50 years the desertion of areas by traditional activities has led to an important evolution of landscapes and environments on the island of Ouessant. The study of this evolution has been undertaken at different spatial and temporal scales. On one part of the island, a scientific investigation carried out at the scale of the parcel enabled the form of the landscape in 1850 to be compared with that of 1985. On the whole island, the evolution of spatial organization and land use was compared between 1950 and 1985. For each of three main ecological environments, vegetational successions after the decrease of agriculture have been studied along with their future potential changes. This work highlights some considerations about the present management of the environment in relation to the major objectives of island environmental policies.
NASA Astrophysics Data System (ADS)
Larsen, L.; Watts, D.; Khurana, A.; Anderson, J. L.; Xu, C.; Merritts, D. J.
2015-12-01
The classic signal of self-organization in nature is pattern formation. However, the interactions and feedbacks that organize depositional landscapes do not always result in regular or fractal patterns. How might we detect their existence and effects in these "irregular" landscapes? Emergent landscapes such as newly forming deltaic marshes or some restoration sites provide opportunities to study the autogenic processes that organize landscapes and their physical signatures. Here we describe a quest to understand autogenic vs. allogenic controls on landscape evolution in Big Spring Run, PA, a landscape undergoing restoration from bare-soil conditions to a target wet meadow landscape. The contemporary motivation for asking questions about autogenic vs. allogenic controls is to evaluate how important initial conditions or environmental controls may be for the attainment of management objectives. However, these questions can also inform interpretation of the sedimentary record by enabling researchers to separate signals that may have arisen through self-organization processes from those resulting from environmental perturbations. Over three years at Big Spring Run, we mapped the dynamic evolution of floodplain vegetation communities and distributions of abiotic variables and topography. We used principal component analysis and transition probability analysis to detect associative interactions between vegetation and geomorphic variables and convergent cross-mapping on lidar data to detect causal interactions between biomass and topography. Exploratory statistics revealed that plant communities with distinct morphologies exerted control on landscape evolution through stress divergence (i.e., channel initiation) and promoting the accumulation of fine sediment in channels. Together, these communities participated in a negative feedback that maintains low energy and multiple channels. Because of the spatially explicit nature of this feedback, causal interactions could not be uncovered from convergent cross-mapping with this limited dataset, serving as a reminder that spatially explicit approaches for revealing causality are needed to reconstruct self-organizing mechanisms from data.
Phase Transitions in Geomorphology
NASA Astrophysics Data System (ADS)
Ortiz, C. P.; Jerolmack, D. J.
2015-12-01
Landscapes are patterns in a dynamic steady-state, due to competing processes that smooth or sharpen features over large distances and times. Geomorphic transport laws have been developed to model the mass-flux due to different processes, but are unreasonably effective at recovering the scaling relations of landscape features. Using a continuum approximation to compare experimental landscapes and the observed landscapes of the earth, one finds they share similar morphodynamics despite a breakdown of classical dynamical similarity between the two. We propose the origin of this effectiveness is a different kind of dynamic similarity in the statistics of initiation and cessation of motion of groups of grains, which is common to disordered systems of grains under external driving. We will show how the existing data of sediment transport points to common signatures with dynamical phase transitions between "mobile" and "immobile" phases in other disordered systems, particularly granular materials, colloids, and foams. Viewing landscape evolution from the lens of non-equilibrium statistical physics of disordered systems leads to predictions that the transition of bulk measurements such as particle flux is continuous from one phase to another, that the collective nature of the particle dynamics leads to very slow aging of bulk properties, and that the dynamics are history-dependent. Recent results from sediment transport experiments support these predictions, suggesting that existing geomorphic transport laws may need to be replaced by a new generation of stochastic models with ingredients based on the physics of disordered phase transitions. We discuss possible strategies for extracting the necessary information to develop these models from measurements of geomorphic transport noise by connecting particle-scale collective dynamics and space-time fluctuations over landscape features.
Energy landscape-driven non-equilibrium evolution of inherent structure in disordered material
Fan, Yue; Iwashita, Takuya; Egami, Takeshi
2017-05-19
Complex states in glasses can be neatly expressed by the potential energy landscape (PEL). But, because PEL is highly multi-dimensional it is difficult to describe how the system moves around in PEL. We demonstrate that it is possible to predict the evolution of macroscopic state in a metallic glass, such as ageing and rejuvenation, through a set of simple equations describing excitations in the PEL. The key to this simplification is the realization that the step of activation from the initial state to the saddle point in PEL and the following step of relaxation to the final state are essentiallymore » decoupled. Furthermore, the model shows that the interplay between activation and relaxation in PEL is the key driving force that simultaneously explains both the equilibrium of supercooled liquid and the thermal hysteresis observed in experiments. It further predicts anomalous peaks in truncated thermal scanning, validated by independent molecular dynamics simulation.« less
The evolutionary landscape of intergenic trans-splicing events in insects
Kong, Yimeng; Zhou, Hongxia; Yu, Yao; Chen, Longxian; Hao, Pei; Li, Xuan
2015-01-01
To explore the landscape of intergenic trans-splicing events and characterize their functions and evolutionary dynamics, we conduct a mega-data study of a phylogeny containing eight species across five orders of class Insecta, a model system spanning 400 million years of evolution. A total of 1,627 trans-splicing events involving 2,199 genes are identified, accounting for 1.58% of the total genes. Homology analysis reveals that mod(mdg4)-like trans-splicing is the only conserved event that is consistently observed in multiple species across two orders, which represents a unique case of functional diversification involving trans-splicing. Thus, evolutionarily its potential for generating proteins with novel function is not broadly utilized by insects. Furthermore, 146 non-mod trans-spliced transcripts are found to resemble canonical genes from different species. Trans-splicing preserving the function of ‘breakup' genes may serve as a general mechanism for relaxing the constraints on gene structure, with profound implications for the evolution of genes and genomes. PMID:26521696
NASA Astrophysics Data System (ADS)
Szejka, Agnes; Drossel, Barbara
2010-02-01
We study the evolution of Boolean networks as model systems for gene regulation. Inspired by biological networks, we select simultaneously for robust attractors and for the ability to respond to external inputs by changing the attractor. Mutations change the connections between the nodes and the update functions. In order to investigate the influence of the type of update functions, we perform our simulations with canalizing as well as with threshold functions. We compare the properties of the fitness landscapes that result for different versions of the selection criterion and the update functions. We find that for all studied cases the fitness landscape has a plateau with maximum fitness resulting in the fact that structurally very different networks are able to fulfill the same task and are connected by neutral paths in network (“genotype”) space. We find furthermore a connection between the attractor length and the mutational robustness, and an extremely long memory of the initial evolutionary stage.
Theoretical Perspectives on the Statics and Dynamics of Species’ Borders in Patchy Environments
Holt, Robert D.; Barfield, Michael
2016-01-01
Understanding range limits is a fundamental problem in ecology and evolutionary biology. In 1963, Mayr argued that “contaminating” gene flow from central populations constrained adaptation in marginal populations, preventing range expansion, while in 1984, Bradshaw suggested that absence of genetic variation prevented species from occurring everywhere. Understanding stability of range boundaries requires unraveling the interplay of demography, gene flow, and evolution of populations in concrete landscape settings. We walk through a set of interrelated spatial scenarios that illustrate interesting complexities of this interplay. To motivate our individual-based model results, we consider a hypothetical zooplankter in a landscape of discrete water bodies coupled by dispersal. We examine how patterns of dispersal influence adaptation in sink habitats where conditions are outside the species’ niche. The likelihood of observing niche evolution (and thus range expansion) over any given timescale depends on (1) the degree of initial maladaptation; (2) pattern (pulsed vs. continuous, uni- vs. bidirectional), timing (juvenile vs. adult), and rate of dispersal (and hence population size); (3) mutation rate; (4) sexuality; and (5) the degree of heterogeneity in the occupied range. We also show how the genetic architecture of polygenic adaptation is influenced by the interplay of selection and dispersal in heterogeneous landscapes. PMID:21956092
Social learning and the replication process: an experimental investigation.
Derex, Maxime; Feron, Romain; Godelle, Bernard; Raymond, Michel
2015-06-07
Human cultural traits typically result from a gradual process that has been described as analogous to biological evolution. This observation has led pioneering scholars to draw inspiration from population genetics to develop a rigorous and successful theoretical framework of cultural evolution. Social learning, the mechanism allowing information to be transmitted between individuals, has thus been described as a simple replication mechanism. Although useful, the extent to which this idealization appropriately describes the actual social learning events has not been carefully assessed. Here, we used a specifically developed computer task to evaluate (i) the extent to which social learning leads to the replication of an observed behaviour and (ii) the consequences it has for fitness landscape exploration. Our results show that social learning does not lead to a dichotomous choice between disregarding and replicating social information. Rather, it appeared that individuals combine and transform information coming from multiple sources to produce new solutions. As a consequence, landscape exploration was promoted by the use of social information. These results invite us to rethink the way social learning is commonly modelled and could question the validity of predictions coming from models considering this process as replicative. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Assessment of the Temporal Evolution of Storm Surge via Land to Water Isopleths in Coastal Louisiana
NASA Astrophysics Data System (ADS)
Siverd, C. G.; Hagen, S. C.; Bilskie, M. V.; Braud, D.; Gao, S.; Peele, H.; Twilley, R.
2017-12-01
The low-lying coastal Louisiana deltaic landscape features an intricate system of fragmented wetlands, natural ridges, man-made navigation canals and flood protection infrastructure. Since 1900 and prior to the landfall of Hurricane Katrina in 2005, Louisiana lost approximately 480,000 ha (1,850 sq mi) of coastal wetlands and an additional 20,000 ha (77 sq mi) due to Katrina. This resulted in a total wetland storm protection value loss of USD 28.3 billion and USD 1.1 billion, respectively (Costanza 2008). To investigate the response of hurricane storm surge (e.g. peak water levels, inundation time and extent) through time due to land loss, hydrodynamic models that represent historical eras of the Louisiana coastal landscape were developed. Land:Water (L:W) isopleths (Gagliano 1970, 1971, Twilley 2016) have been calculated along the coast from the Sabine River to the Pearl River. These isopleths were utilized to create a simplified coastal landscape (bathymetry, topography, bottom roughness) representing circa 2010. Similar methodologies are employed with the objective of developing storm surge models that represent the coastal landscape for past eras. The goal is to temporally examine the evolution of storm surge along coastal Louisiana. The isopleths determined to best represent the Louisiana coast as a result of the methodology devised to develop the simple storm surge model for c.2010 are applied in the development of surge models for historical eras c.1930 and c.1970. The ADvaced CIRCulation (ADCIRC) code (Luettich 2004) is used to perform storm surge simulations with a predetermined suite of hurricane wind and pressure forcings. Hydrologic Unit Code 12 (HUC12) sub-watersheds provide geographical bounds to quantify mean maximum water surface elevations (WSEs), volume of inundation, and area of inundation. HUC12 sub-watersheds also provide a means to compare/contrast these quantified surge parameters on a HUC12-by-HUC12 basis for the c.1930, c.1970 and c.2010 eras. Results will provide insight into how storm surge has evolved in coastal Louisiana from 1930 to 2010 and assist to inform policy makers of regions with temporally accelerating storm surge.
Repar, Jelena; Warnecke, Tobias
2017-08-01
Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin-terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus-Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Troch, P. A.; Gevaert, A.; Smit, Y.; Niu, G.; Nakolan, L.; Kyzivat, E.
2013-12-01
The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. Six trenches measure subsurface flow via tipping bucket gauges and electromagnetic flowmeters. This presentation will give an overview of lessons learned during the commissioning phase of the first hillslope of LEO, and will indicate several opportunities for collaborative research at Biosphere 2.
Modeling the stratigraphy and preservation potential of meandering stream deposits
NASA Astrophysics Data System (ADS)
Tucker, G. E.; Clevis, Q.; Lock, G.; Lancaster, S.; Desitter, A.
2003-12-01
Both natural and human-induced modes of river and floodplain behavior have the potential to obscure, expose, or even destroy portions of the archaeological record. In valley systems with actively meandering channels much material can be lost to lateral bank erosion. Conversely, floodplain aggradation can bury and therefore obscure sites. In this study we aim to quantify the preservation potential of fluvial units containing archaeological sites as a function of the natural process of meandering, climate change and increased land-use during the Holocene. We used the CHILD simulation model of landscape evolution to explore alternative scenarios in which these three factors are both varied independently and combined. Boundary and initial conditions for the model scenarios are based on the Holocene evolution of the archaeologically-rich Upper Thames Valley, which is known to have witnessed variations in flood frequency, land-clearance, episodic alluviation and river entrenchment. The CHILD model is set up to combine four components that simulate the development of valley and floodplain system: hillslope and channel erosion, lateral stream meandering, overbank deposition, and the accumulation of a 3D stratigraphy. The landscape is represented by an adaptable triangular mesh of nodes, especially suited for simulating the gradual shifting of meander bends. The new stratigraphic layering routine recently added to the model in improves the resolution of the stratigraphic record accumulated by the model. Simulation results reveal systematic controls on preservation potential, and suggest potential sources of bias in the archaeological record.
Massol, François; Débarre, Florence
2015-07-01
Spatiotemporal variability of the environment is bound to affect the evolution of dispersal, and yet model predictions strongly differ on this particular effect. Recent studies on the evolution of local adaptation have shown that the life cycle chosen to model the selective effects of spatiotemporal variability of the environment is a critical factor determining evolutionary outcomes. Here, we investigate the effect of the order of events in the life cycle on the evolution of unconditional dispersal in a spatially heterogeneous, temporally varying landscape. Our results show that the occurrence of intermediate singular strategies and disruptive selection are conditioned by the temporal autocorrelation of the environment and by the life cycle. Life cycles with dispersal of adults versus dispersal of juveniles, local versus global density regulation, give radically different evolutionary outcomes that include selection for total philopatry, evolutionary bistability, selection for intermediate stable states, and evolutionary branching points. Our results highlight the importance of accounting for life-cycle specifics when predicting the effects of the environment on evolutionarily selected trait values, such as dispersal, as well as the need to check the robustness of model conclusions against modifications of the life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Delcaillau, Bernard; Amrhar, Mostafa; Namous, Mustapha; Laville, Edgard; Pedoja, Kevin; Dugué, Olivier
2011-11-01
The Ouzzelarh Massif extends across the Marrakech High Atlas (MHA) and forms the highest elevated mountain belt. To better understand the evolution of collision-related topography, we present the results of a geomorphological study in which elevation changes generated by reactivated pre-Alpine (Variscan and Triassic-Jurassic) faults drive a landscape evolution model. We aim to evaluate the relationship between the geometry of the drainage network and the main fault systems in this region. New insight into geomorphological changes in drainage patterns and related landforms is based on geological fieldwork combined with DEM analysis. To quantitatively measure landscape features we used several classical geomorphic indices (spacing ratio, hypsometric curves and integral, stream frequency drainage, stream length-gradient). The Ouzzelarh Massif is bounded to the north by the Tizi N'Test Fault Zone (TTFZ) and to the south by the Sour Fault Zone (SFZ). These faults delimit a pop-up structure. By using the above geomorphic parameters, we ascertained that the Ouzzelarh Massif is affected by a high spatial variability of uplift. The actual landscape of the Ouzzelarh Massif reveals remnants of an uplifted ancient erosional surface and the heterogeneity of exposed rocks in the range explaining the possibility that the topographic asymmetry between north and south flanks is due to differences in lithology-controlled resistance to erosion. Drainage, topography and fault pattern all concur to show uplifted rhomboidal-shaped blocks. It exhibits high stream frequency drainage and uplift in separate tectonically-uplifted blocks such as Jebel Toubkal which is characterized by asymmetric drainage basins.
Study of City Landscape Heritage Using Lidar Data and 3d-City Models
NASA Astrophysics Data System (ADS)
Rubinowicz, P.; Czynska, K.
2015-04-01
In contemporary town planning protection of urban landscape is a significant issue. It regards especially those cities, where urban structures are the result of ages of evolution and layering of historical development process. Specific panoramas and other strategic views with historic city dominants can be an important part of the cultural heritage and genius loci. Other hand, protection of such expositions introduces limitations for future based city development. Digital Earth observation techniques creates new possibilities for more accurate urban studies, monitoring of urbanization processes and measuring of city landscape parameters. The paper examines possibilities of application of Lidar data and digital 3D-city models for: a) evaluation of strategic city views, b) mapping landscape absorption limits, and c) determination protection zones, where the urbanization and buildings height should be limited. In reference to this goal, the paper introduces a method of computational analysis of the city landscape called Visual Protection Surface (VPS). The method allows to emulate a virtual surface above the city including protection of a selected strategic views. The surface defines maximum height of buildings in such a way, that no new facility can be seen in any of selected views. The research includes also analyses of the quality of simulations according the form and precision of the input data: airborne Lidar / DSM model and more advanced 3D-city models (incl. semantic of the geometry, like in CityGML format). The outcome can be a support for professional planning of tall building development. Application of VPS method have been prepared by a computer program developed by the authors (C++). Simulations were carried out on an example of the city of Dresden.
Inflation with a graceful exit in a random landscape
NASA Astrophysics Data System (ADS)
Pedro, F. G.; Westphal, A.
2017-03-01
We develop a stochastic description of small-field inflationary histories with a graceful exit in a random potential whose Hessian is a Gaussian random matrix as a model of the unstructured part of the string landscape. The dynamical evolution in such a random potential from a small-field inflation region towards a viable late-time de Sitter (dS) minimum maps to the dynamics of Dyson Brownian motion describing the relaxation of non-equilibrium eigenvalue spectra in random matrix theory. We analytically compute the relaxation probability in a saddle point approximation of the partition function of the eigenvalue distribution of the Wigner ensemble describing the mass matrices of the critical points. When applied to small-field inflation in the landscape, this leads to an exponentially strong bias against small-field ranges and an upper bound N ≪ 10 on the number of light fields N participating during inflation from the non-observation of negative spatial curvature.
Non-structural origins of asymmetric topography in semi-arid environments
NASA Astrophysics Data System (ADS)
Richardson, P. W.; Perron, T.; Miller, S. R.
2012-12-01
Geoscientists have long noted that landscapes in some regions have pole-facing slopes that are steeper than equator-facing slopes. In some cases, the asymmetry has a simple structural cause, such as slopes that form parallel to bedrock strata, but in others, the absence of obvious structural controls and the consistent pole-equator orientation of the asymmetry suggest that different microclimates on opposing slopes may be the cause. Compelling as the microclimatic correlation may be, it has not been demonstrated how microclimatic effects can influence long-term landscape evolution sufficiently to generate asymmetric topography. Two conflicting hypotheses that depend on microclimates have been proposed. In one hypothesis, a microclimate-induced contrast in the efficiency of erosion processes, such as channel incision, creates a difference in erosion rates on opposing slopes that drives drainage divide migration until the slope asymmetry compensates for the difference in erosional efficiency. In the other, more popular hypothesis, the asymmetric erosional efficiency is not a sufficient condition. Instead, faster sediment aggradation at the foot of more efficiently eroding slopes forces axial streams to undercut the opposing slopes, eventually creating an asymmetry in steepness. We seek to determine whether undercutting is a necessary mechanism, and focus our efforts on understanding the mechanisms responsible for the topographic asymmetry at Gabilan Mesa, CA, a landscape with a high degree of asymmetry and a simple underlying lithology. We investigate the long-term topographic consequences of these mechanisms with a landscape evolution model. In the first set of model experiments, we explore the effects of aspect-dependent differences in the efficiency of soil creep, the magnitude of a channel incision threshold, and runoff production. The second model experiment includes undercutting of slopes in response to lateral base level migration. We examined which mechanism most accurately matches the observed topography of Gabilan Mesa, in terms of both the degree of slope asymmetry and other characteristics, including the degree of valley incision, mean gradient, and relief. Both the erosional efficiency model and the undercutting model are capable of producing landscapes with the same degree of asymmetry as Gabilan Mesa while also reproducing the other topographic characteristics. When paired with field evidence that rills and gullies are more abundant on equator-facing slopes, we believe that a discrepancy in either channel incision thresholds or runoff production may be enough to cause the observed topographic asymmetry at Gabilan Mesa without the aid of undercutting.
Thermokarst transformation of permafrost preserved glaciated landscapes.
NASA Astrophysics Data System (ADS)
Kokelj, S.; Tunnicliffe, J. F.; Fraser, R.; Kokoszka, J.; Lacelle, D.; Lantz, T. C.; Lamoureux, S. F.; Rudy, A.; Shakil, S.; Tank, S. E.; van der Sluijs, J.; Wolfe, S.; Zolkos, S.
2017-12-01
Thermokarst is the fundamental mechanism of landscape change and a primary driver of downstream effects in a warming circumpolar world. Permafrost degradation is inherently non-linear because latent heat effects can inhibit thawing. However, once this thermal transition is crossed thermokarst can accelerate due to the interaction of thermal, physical and ecological feedbacks. In this paper we highlight recent climate and precipitation-driven intensification of thaw slumping that is transforming permafrost preserved glaciated landscapes in northwestern Canada. The continental distribution of slump affected terrain reflects glacial extents and recessional positions of the Laurentide Ice sheet. On this basis and in conjunction with intense thermokarst in cold polar environments, we highlight the critical roles of geological legacy and climate history in dictating the sensitivity of permafrost terrain. These glaciated landscapes, maintained in a quasi-stable state throughout much of the late Holocene are now being transformed into remarkably dynamic environments by climate-driven thermokarst. Individual disturbances displace millions of cubic metres of previously frozen material downslope, converting upland sedimentary stores into major source areas. Precipitation-driven evacuation of sediment by fluidized mass flows perpetuates non-linear enlargement of disturbances. The infilling of valleys with debris deposits tens of metres thick increases stream base-levels and promotes rapid valley-side erosion. These processes destabilize adjacent slopes and proliferate disturbance effects. Physically-based modeling of thaw slump development provides insight into the trajectories of landscape change, and the mapping of fluvial linkages portrays the cascade of effects across watershed scales. Post-glacial or "paraglacial" models of landscape evolution provide a useful framework for understanding the nature and magnitude of climate-driven changes in permafrost preserved glaciated landscapes.
Sensitivity of regional forest carbon budgets to continuous and stochastic climate change pressures
NASA Astrophysics Data System (ADS)
Sulman, B. N.; Desai, A. R.; Scheller, R. M.
2010-12-01
Climate change is expected to impact forest-atmosphere carbon budgets through three processes: 1. Increased disturbance rates, including fires, mortality due to pest outbreaks, and severe storms 2. Changes in patterns of inter-annual variability, related to increased incidence of severe droughts and defoliating insect outbreaks 3. Continuous changes in forest productivity and respiration, related to increases in mean temperature, growing season length, and CO2 fertilization While the importance of these climate change effects in future regional carbon budgets has been established, quantitative characterization of the relative sensitivity of forested landscapes to these different types of pressures is needed. We present a model- and- data-based approach to understanding the sensitivity of forested landscapes to climate change pressures. Eddy-covariance and biometric measurements from forests in the northern United States were used to constrain two forest landscape models. The first, LandNEP, uses a prescribed functional form for the evolution of net ecosystem productivity (NEP) over the age of a forested grid cell, which is reset following a disturbance event. This model was used for investigating the basic statistical properties of a simple landscape’s responses to climate change pressures. The second model, LANDIS-II, includes different tree species and models forest biomass accumulation and succession, allowing us to investigate the effects of more complex forest processes such as species change and carbon pool accumulation on landscape responses to climate change effects. We tested the sensitivity of forested landscapes to these three types of climate change pressures by applying ensemble perturbations of random disturbance rates, distribution functions of inter-annual variability, and maximum potential carbon uptake rates, in the two models. We find that landscape-scale net carbon exchange responds linearly to continuous changes in potential carbon uptake and inter-annual variability, while responses to stochastic changes are non-linear and become more important at shorter mean disturbance intervals. These results provide insight on how to better parameterize coupled carbon-climate models to more realistically simulate feedbacks between forests and the atmosphere.
Rocks and Rain: orographic precipitation and the form of mountain ranges
NASA Astrophysics Data System (ADS)
Roe, G. H.; Anders, A. M.; Durran, D. R.; Montgomery, D. R.; Hallet, B.
2005-12-01
In mountainous landscapes patterns of erosion reflect patterns of precipitation that are, in turn, controlled by the orography. Ultimately therefore, the feedbacks between orography and the climate it creates are responsible for the sculpting of mountain ranges. Key questions concerning these interactions are: 1) how robust are patterns of precipitation on geologic time scales? and 2) how do those patterns affect landscape form? Since climate is by definition the statistics of weather, there is tremendous information to be gleaned from how patterns of precipitation vary between different weather events. However up to now sparse measurements and computational limitations have hampered our knowledge of such variations. For the Olympics in Washington State, a characteristic midlatitude mountain range, we report results from a high-resolution, state-of-the-art numerical weather prediction model and a dense network of precipitation gauges. Down to scales around 10 km, the patterns of precipitation are remarkably robust both storm-by-storm and year-to-year, lending confidence that they are indeed persistent on the relevant time scales. Secondly, the consequences of the coupled interactions are presented using a landscape evolution model coupled with a simple model of orographic precipitation that is able to substantially reproduce the observed precipitation patterns.
A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape.
Gilpin, William; Feldman, Marcus W
2017-07-01
In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the "edge of chaos" while creating a wide distribution of opportunities for speciation during epochs of disruptive selection-a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies.
Integration of geological remote-sensing techniques in subsurface analysis
Taranik, James V.; Trautwein, Charles M.
1976-01-01
Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.
NASA Astrophysics Data System (ADS)
Schmid, Manuel; Ehlers, Todd; Werner, Christian; Hickler, Thomas
2017-04-01
Recent studies hypothesize that vegetation and the morphology of landscapes are strongly coupled. On a small scale, plants influence the erosivity of soil and sediments and therefore systematically impact catchment erosion and topography. Previous landscape evolution modeling studies primarily focus on changes in fluvial and hillslope erosion due to variations in climate and tectonics, without explicit consideration of vegetation effects. In this study, we complement previous work by investigating the effects of vegetation and vegetation change on hillslope and fluvial processes by combining LPJ-GUESS, a dynamic global vegetation model, with a modified version of the Landlab surface process model. The LandLab model was extended to account for vegetation-dependent sediment fluxes for both hillslope and detachment-limited fluvial erosion. The models are coupled by using predicted changes in surface vegetation from LPJ-GUESS for different climate scenarios as input for vegetation dependent erosional coefficients in Landlab. Simulations were conducted with the general climate and vegetation conditions representative between 25° and 40°S along the Coastal Cordillera of Chile. This region is the focus of the EarthShape research program (www.earthshape.net). These areas present a natural climatic and associated vegetation gradient that ranges from hyper-arid (Atacama desert) to humid-temperate conditions without a dry season and pristine temperate Araucaria forest. All study areas considered have a similar and uniform granite substrate, which minimizes lithologic variations and their effect on catchment erosion. Simulations are in progress that were designed to independently determine the climatic or vegetation controls on topography and erosion histories over the last 21 kyr. Our preliminary findings suggest that an increase in the surface vegetation results in a modulation of the mean hillslope angle and the average drainage density. In addition, we find that a decrease in surface vegetation density within a landscape can act as a trigger for sudden pulses of erosion, leading towards a new equilibrium topography. Our study suggests that vegetation changes (e.g. from the Last Glacial Maximum to present) act as a main agent of perturbing topographic equilibria. Reducing surface vegetation increases erosional efficiency and therefore sediment transport until a new stable state is reached.
The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography
NASA Astrophysics Data System (ADS)
Weinreich, Daniel M.; Lan, Yinghong; Jaffe, Jacob; Heckendorn, Robert B.
2018-07-01
The effect of a mutation on the organism often depends on what other mutations are already present in its genome. Geneticists refer to such mutational interactions as epistasis. Pairwise epistatic effects have been recognized for over a century, and their evolutionary implications have received theoretical attention for nearly as long. However, pairwise epistatic interactions themselves can vary with genomic background. This is called higher-order epistasis, and its consequences for evolution are much less well understood. Here, we assess the influence that higher-order epistasis has on the topography of 16 published, biological fitness landscapes. We find that on average, their effects on fitness landscape declines with order, and suggest that notable exceptions to this trend may deserve experimental scrutiny. We conclude by highlighting opportunities for further theoretical and experimental work dissecting the influence that epistasis of all orders has on fitness landscape topography and on the efficiency of evolution by natural selection.
The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography
NASA Astrophysics Data System (ADS)
Weinreich, Daniel M.; Lan, Yinghong; Jaffe, Jacob; Heckendorn, Robert B.
2018-02-01
The effect of a mutation on the organism often depends on what other mutations are already present in its genome. Geneticists refer to such mutational interactions as epistasis. Pairwise epistatic effects have been recognized for over a century, and their evolutionary implications have received theoretical attention for nearly as long. However, pairwise epistatic interactions themselves can vary with genomic background. This is called higher-order epistasis, and its consequences for evolution are much less well understood. Here, we assess the influence that higher-order epistasis has on the topography of 16 published, biological fitness landscapes. We find that on average, their effects on fitness landscape declines with order, and suggest that notable exceptions to this trend may deserve experimental scrutiny. We conclude by highlighting opportunities for further theoretical and experimental work dissecting the influence that epistasis of all orders has on fitness landscape topography and on the efficiency of evolution by natural selection.
Experimental evidence of reorganizing landscape under changing climatic forcing
NASA Astrophysics Data System (ADS)
Singh, A.; Tejedor, A.; Zaliapin, I. V.; Reinhardt, L.; Foufoula-Georgiou, E.
2015-12-01
Quantification of the dynamics of landscape reorganization under changing climatic forcing is important to understand geomorphic transport laws under transient conditions, assess response of landscapes to external perturbations for future predictive modeling, and for interpreting past climate from stratigraphic record. For such an analysis, however, real landscape observations are limited. To this end, a series of controlled laboratory experiments on evolving landscape were conducted at the St. Anthony Falls laboratory at the University of Minnesota. High resolution elevation data at a temporal resolution of 5 mins and spatial resolution of 0.5 mm were collected as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5 times precipitation rate). Our results reveal rapid topographic re-organization under a five-fold increase in precipitation with the fluvial regime encroaching into the previously debris dominated regime, widening and aggradation of channels and valleys, and accelerated erosion happening at hillslope scales. To better understand the initiation of the observed reorganization, we perform a connectivity and clustering analysis of the erosional and depositional events, showing strikingly different spatial patterns on landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is renormalized to match the total volume of eroded and deposited sediment in TS. Our results suggest a regime shift in the behavior of transport processes on the landscape at the intermediate scales i.e., from supply-limited to transport-limited.
NASA Astrophysics Data System (ADS)
Piana, Juliene
2015-04-01
A multidisciplinary research has been initiated in the Loir River valley where investigations revealed high-potential fluvial records and landforms for environmental and socio-environmental reconstructions. Investigations provide the opportunity to reconstruct landscape trajectories between climate, environmental and societal changes during the last 16000 years, using geoarchaeological and archaeogeographical approaches: sedimentology, soil micromorphology, geochemistry, archaeology, geomatics, geochronology (AGES Program: Ancient Geomorphological EvolutionS of Loire Basin hydrosystem). In the sector of Vaas (Sarthe, France) the research on the Lateglacial and the Holocene sedimentary sequences from the alluvial plain leads to a general overview of the valley evolution from the end of the Weichselian Upper Pleniglacial to the Present. Joined to archaeological (Protohistoric and Antic sites) and historical data (engineering archives, 18th century cadastral registers) this research highlights the importance of anthropogenic and geomorphological heritages in the current fluvial landscape (microtopography, wetlands, archaeological remains, land use). This knowledge constitutes a basis for skills transfer to planners and managers, in sustainable management of hydrological resources (reducing the vulnerability to flooding and low flows), preservation of biodiversity (wetlands protection) and valorization of landscapes (cultural tourism development).
Landscape evolution (A Review)
Sharp, Robert P.
1982-01-01
Landscapes are created by exogenic and endogenic processes acting along the interface between the lithosphere and the atmosphere and hydrosphere. Various landforms result from the attack of weathering and erosion upon the highly heterogeneous lithospheric surface. Landscapes are dynamic, acutely sensitive to natural and artificial perturbation. Undisturbed, they can evolve through a succession of stages to a plain of low relief. Often, the progression of an erosion cycle is interrupted by tectonic or environmental changes; thus, many landscapes preserve vestiges of earlier cycles useful in reconstructing the recent history of Earth's surface. Landforms are bounded by slopes, so their evolution is best understood through study of slopes and the complex of factors controlling slope character and development. The substrate, biosphere, climatic environment, and erosive processes are principal factors. Creep of the disintegrated substrate and surface wash by water are preeminent. Some slopes attain a quasisteady form and recede parallel to themselves (backwearing); others become ever gentler with time (downwearing). The lovely convex/rectilinear/concave profile of many debris-mantled slopes reflects an interplay between creep and surface wash. Landscapes of greatest scenic attraction are usually those in which one or two genetic factors have strongly dominated or those perturbed by special events. Nature has been perturbing landscapes for billions of years, so mankind can learn about landscape perturbation from natural examples. Images
NASA Astrophysics Data System (ADS)
Attal, M.; Tucker, G.; Whittaker, A.; Cowie, P.; Roberts, G.
2005-12-01
River systems constitute some of the most efficient agents that shape terrestrial landscapes. Fluvial incision rates govern landscape evolution but, due to the variety of processed involved and the difficulty of quantifying them in the field, there is no "universal theory" describing the way rivers incise into bedrock. The last decades have seen the birth of numerous fluvial incision laws associated with models that assign different roles to hydrodynamic variables and to sediments. In order to discriminate between models and constrain their parameters, the transient response of natural river systems to a disturbance (tectonic or climatic) can be used. Indeed, the different models predict different kinds of transient response whereas most models predict a similar power law relationship between slope and drainage area at equilibrium. To this end, a coupled field - modeling study is in progress. The field area consists of the Central Apennines that are subject to active faulting associated with a regional extensional regime. Fault initiation occurred 3 My ago, associated with throw rates of 0.3 +/- 0.2 mm/yr. Due to fault interaction and linkage, the throw rate on the faults located near the center of the fault system increased dramatically 0.7 My ago (up to 2 mm/yr), whereas slip rates on distal faults either decayed or remained approximately constant. The present study uses the landscape evolution model, CHILD, to examine the behavior of rivers draining across these active faults. Distal and central faults are considered in order to track the effects of the fault acceleration on the development of the fluvial network. River characteristics have been measured in the field (e.g. channel width, slope, sediment grain size) and extracted from a 20m DEM (e.g. channel profile, drainage area). We use CHILD to test the ability of alternative incision laws to reproduce observed topography under known tectonic forcing. For each of the fluvial incision models, a Monte-Carlo simulation has been performed, allowing the exploration of a wide range of values for the different parameters relative to tectonic, climate, sediment characteristics, and channel geometry. Observed profiles are consistent with a dominantly wave-like, as opposed to diffusive, transient response to accelerated fault motion. The ability of the different models to reproduce more or less accurately the catchment characteristics, in particular the specific profiles exhibited by the rivers, are discussed in light of our first results.
Evolution of human-driven fire regimes in Africa
Archibald, Sally; Staver, A. Carla; Levin, Simon A.
2012-01-01
Human ability to manipulate fire and the landscape has increased over evolutionary time, but the impact of this on fire regimes and consequences for biodiversity and biogeochemistry are hotly debated. Reconstructing historical changes in human-derived fire regimes empirically is challenging, but information is available on the timing of key human innovations and on current human impacts on fire; here we incorporate this knowledge into a spatially explicit fire propagation model. We explore how changes in population density, the ability to create fire, and the expansion of agropastoralism altered the extent and seasonal distribution of fire as modern humans arose and spread through Africa. Much emphasis has been placed on the positive effect of population density on ignition frequency, but our model suggests this is less important than changes in fire spread and connectivity that would have occurred as humans learned to light fires in the dry season and to transform the landscape through grazing and cultivation. Different landscapes show different limitations; we show that substantial human impacts on burned area would only have started ∼4,000 B.P. in open landscapes, whereas they could have altered fire regimes in closed/dissected landscapes by ∼40,000 B.P. Dry season fires have been the norm for the past 200–300 ky across all landscapes. The annual area burned in Africa probably peaked between 4 and 40 kya. These results agree with recent paleocarbon studies that suggest that the biomass burned today is less than in the recent past in subtropical countries. PMID:22184249
Detecting consistent patterns of directional adaptation using differential selection codon models.
Parto, Sahar; Lartillot, Nicolas
2017-06-23
Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.
Modelled responses of the Kalahari Desert to 21st century climate and land use change.
Mayaud, Jerome R; Bailey, Richard M; Wiggs, Giles F S
2017-06-20
Drylands are home to over 2 billion people globally, many of whom use the land for agricultural and pastoral activities. These vulnerable livelihoods could be disrupted if desert dunefields become more active in response to climate and land use change. Despite increasing knowledge about the role that wind, moisture availability and vegetation cover play in shaping dryland landscapes, relatively little is known about how drylands might respond to climatic and population pressures over the 21 st century. Here we use a newly developed numerical model, which fully couples vegetation and sediment-transport dynamics, to simulate potential landscape evolution at three locations in the Kalahari Desert, under two future emissions scenarios: stabilising (RCP 4.5) and high (RCP 8.5). Our simulations suggest that whilst our study sites will experience some climatically-induced landscape change, the impacts of climate change alone on vegetation cover and sediment mobility may be relatively small. However, human activity could strongly exacerbate certain landscape trajectories. Fire frequency has a primary impact on vegetation cover, and, together with grazing pressure, plays a significant role in modulating shrub encroachment and ensuing land degradation processes. Appropriate land management strategies must be implemented across the Kalahari Desert to avoid severe environmental and socio-economic consequences over the coming decades.
Adaptive landscapes: Top-down and bottom-up perspectives
NASA Astrophysics Data System (ADS)
Kerr, Benjamin
Sewall Wright introduced the metaphor of the adaptive landscape, a map from genotype to fitness, more than 80 years ago to help describe his view of adaptive evolution. This metaphor has been immensely popular and has been used in a variety of incarnations. However, a systematic study of the genotype-fitness map presents significant problems. The space of possible genotypes is vast, and the mapping is likely dependent on both environment and the composition of genotypes in a population. In this talk, I will discuss some of these problems and present experimental strategies for uncovering features of adaptive landscapes. In particular, I will discuss how population structure can be used as an experimental variable to elucidate landscape topography and how a combination of experimental evolution and genetic engineering can reveal important landscape features in changing environments. I will also present some potential applications of this work to the problem of antibiotic resistance and potential implications for evolutionary rescue in the face of global climate change. For some of these topics, the classic notion of the adaptive landscape must itself be adapted; however, I propose that there are fruitful ways to continue to apply this metaphor.
NASA Astrophysics Data System (ADS)
Limaye, A. B.; Komatsu, Y.; Suzuki, K.; Paola, C.
2017-12-01
Turbidity currents deliver clastic sediment from continental margins to the deep ocean, and are the main driver of landscape and stratigraphic evolution in many low-relief, submarine environments. The sedimentary architecture of turbidites—including the spatial organization of coarse and fine sediments—is closely related to the aggradation, scour, and lateral shifting of channels. Seismic stratigraphy indicates that submarine, meandering channels often aggrade rapidly relative to lateral shifting, and develop channel sand bodies with high vertical connectivity. In comparison, the stratigraphic architecture developed by submarine, braided is relatively uncertain. We present a new stratigraphic model for submarine braided channels that integrates predictions from laboratory experiments and flow modeling with constraints from sediment cores. In the laboratory experiments, a saline density current developed subaqueous channels in plastic sediment. The channels aggraded to form a deposit with a vertical scale of approximately five channel depths. We collected topography data during aggradation to (1) establish relative stratigraphic age, and (2) estimate the sorting patterns of a hypothetical grain size distribution. We applied a numerical flow model to each topographic surface and used modeled flow depth as a proxy for relative grain size. We then conditioned the resulting stratigraphic model to observed grain size distributions using sediment core data from the Nankai Trough, offshore Japan. Using this stratigraphic model, we establish new, quantitative predictions for the two- and three-dimensional connectivity of coarse sediment as a function of fine-sediment fraction. Using this case study as an example, we will highlight outstanding challenges in relating the evolution of low-relief landscapes to the stratigraphic record.
Sediment Transport and Landscape Evolution on Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Birch, S.; Umurhan, O. M.; Hayes, A.; Tang, Y.; Moore, J. M.; White, O. L.
2017-12-01
New observations from ESA's Rosetta orbiter of comet 67P/Churyumov-Gerasimenko (67P) have revolutionized our understanding of these primitive bodies and the processes that act to modify their surfaces. Centimeter to meter scale images of the surface of 67P have revealed a diverse sedimentary world, where the dominant landforms consist of vertical, consolidated cliffs and pits interspersed, and in the northern hemisphere buried, by smooth, decameter thick sedimentary deposits. Sublimation erosion, in the form of jets, from exposed cliff faces acts to break off parts of the weakened bedrock material, which then accumulate as mass wasting deposits at the cliff bases. The large boulders within these deposits may also contribute to the jets, as volatiles in exposed faces of the boulders, previously hidden from the Sun, can sublimate away. During a jet event, the less volatile material that does not escape the comet falls back and drapes the rocky surface as smooth deposits. This is particularly evident in the northern hemisphere of 67P and within gravitational lows, where the underlying consolidated material appears to outcrop from underneath a vast cover of sedimentary deposits. These sedimentary materials, having a low thermal inertia, counteracts the erosive process, and allows for the surface of 67P to retain a relatively primitive form to the current day. To understand this process quantitatively, and constrain over what timescale(s) the surface of 67P evolves, we utilized high-resolution photoclinometry digital terrain models ( 14 cm/pixel), and the MARSSIM landscape evolution model, adapted for a low, and variable gravity environment. Perfectly suited to model sublimation erosion and mass-wasting, MARSSIM also allows us to track the re-condensation of non-volatile materials to accurately account for the important feedback played by the sedimentary deposits. These simulations will allow for us to constrain the rates of landscape evolution on 67P, to compare directly to observations of dynamic changes on the nucleus. Through this work, we will also be able to assess the question of whether 67P is primitive or not, using reasonable assumptions as to the volatility and strength of the bedrock materials.
Sex that moves mountains: The influence of spawning fish on river profiles over geologic timescales
NASA Astrophysics Data System (ADS)
Fremier, Alexander K.; Yanites, Brian J.; Yager, Elowyn M.
2018-03-01
A key component of resilience is to understand feedbacks among components of biophysical systems, such as physical drivers, ecological responses and the subsequent feedbacks onto physical process. While physically based explanations of biological speciation are common (e.g., mountains separating a species can lead to speciation), less common is the inverse process examined: can a speciation event have significant influence on physical processes and patterns in a landscape? When such processes are considered, such as with 'ecosystem engineers', many studies have focused on the short-term physical and biological effects rather than the long-term impacts. Here, we formalized the physical influence of salmon spawning on stream beds into a model of channel profile evolution by altering the critical shear stress required to move stream bed particles. We then asked if spawning and an adaptive radiation event (similar to the one that occurred in Pacific salmon species) could have an effect on channel erosion processes and stream profiles over geological timescales. We found that spawning can profoundly influence the longitudinal profiles of stream beds and thereby the evolution of entire watersheds. The radiation of five Pacific salmon from a common ancestor, additionally, could also cause significant geomorphic change by altering a wider section of the profile for a given distribution of grain sizes. This modeling study suggests that biological evolution can impact landscape evolution by increasing the sediment transport and erosion efficiency of mountain streams. Moreover, the physical effects of a species on its environment might be a complementary explanation for rapid radiation events in species through the creation of new habitat types. This example provides an illustrative case for thinking about the long- and short-term coupling of biotic and abiotic systems.
On Cellular Darwinism: Mitochondria.
Bull, Larry
2016-01-01
The significant role of mitochondria within cells is becoming increasingly clear. This letter uses the NKCS model of coupled fitness landscapes to explore aspects of organelle-nucleus coevolution. The phenomenon of mitochondrial diversity is allowed to emerge under a simple intracellular evolutionary process, including varying the relative rate of evolution by the organelle. It is shown how the conditions for the maintenance of more than one genetic variant of mitochondria are similar to those previously suggested as needed for the original symbiotic origins of the relationship using the NKCS model.
Repar, Jelena; Warnecke, Tobias
2017-01-01
Abstract Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin–terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus–Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes. PMID:28407093
NASA Astrophysics Data System (ADS)
Scudeler, Carlotta; Pangle, Luke; Pasetto, Damiano; Niu, Guo-Yue; Volkmann, Till; Paniconi, Claudio; Putti, Mario; Troch, Peter
2016-10-01
This paper explores the challenges of model parameterization and process representation when simulating multiple hydrologic responses from a highly controlled unsaturated flow and transport experiment with a physically based model. The experiment, conducted at the Landscape Evolution Observatory (LEO), involved alternate injections of water and deuterium-enriched water into an initially very dry hillslope. The multivariate observations included point measures of water content and tracer concentration in the soil, total storage within the hillslope, and integrated fluxes of water and tracer through the seepage face. The simulations were performed with a three-dimensional finite element model that solves the Richards and advection-dispersion equations. Integrated flow, integrated transport, distributed flow, and distributed transport responses were successively analyzed, with parameterization choices at each step supported by standard model performance metrics. In the first steps of our analysis, where seepage face flow, water storage, and average concentration at the seepage face were the target responses, an adequate match between measured and simulated variables was obtained using a simple parameterization consistent with that from a prior flow-only experiment at LEO. When passing to the distributed responses, it was necessary to introduce complexity to additional soil hydraulic parameters to obtain an adequate match for the point-scale flow response. This also improved the match against point measures of tracer concentration, although model performance here was considerably poorer. This suggests that still greater complexity is needed in the model parameterization, or that there may be gaps in process representation for simulating solute transport phenomena in very dry soils.
Feedbacks in human-landscape systems
NASA Astrophysics Data System (ADS)
Chin, Anne
2015-04-01
As human interactions with Earth systems intensify in the "Anthropocene", understanding the complex relationships among human activity, landscape change, and societal responses to those changes is increasingly important. Interdisciplinary research centered on the theme of "feedbacks" in human-landscape systems serves as a promising focus for unraveling these interactions. Deciphering interacting human-landscape feedbacks extends our traditional approach of considering humans as unidirectional drivers of change. Enormous challenges exist, however, in quantifying impact-feedback loops in landscapes with significant human alterations. This paper illustrates an example of human-landscape interactions following a wildfire in Colorado (USA) that elicited feedback responses. After the 2012 Waldo Canyon Fire, concerns for heightened flood potential and debris flows associated with post-fire hydrologic changes prompted local landowners to construct tall fences at the base of a burned watershed. These actions changed the sediment transport regime and promoted further landscape change and human responses in a positive feedback cycle. The interactions ultimately increase flood and sediment hazards, rather than dampening the effects of fire. A simple agent-based model, capable of integrating social and hydro-geomorphological data, demonstrates how such interacting impacts and feedbacks could be simulated. Challenges for fully capturing human-landscape feedback interactions include the identification of diffuse and subtle feedbacks at a range of scales, the availability of data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, and the varied metrics and data needed to represent both the physical and human systems. By collaborating with social scientists with expertise in the human causes of landscape change, as well as the human responses to those changes, geoscientists could more fully recognize and anticipate the coupled human-landscape interactions that will drive the evolution of Earth systems into the future.
Stratonovitch, Pierre; Elias, Jan; Denholm, Ian; Slater, Russell; Semenov, Mikhail A.
2014-01-01
Preventing a pest population from damaging an agricultural crop and, at the same time, preventing the development of pesticide resistance is a major challenge in crop protection. Understanding how farming practices and environmental factors interact with pest characteristics to influence the spread of resistance is a difficult and complex task. It is extremely challenging to investigate such interactions experimentally at realistic spatial and temporal scales. Mathematical modelling and computer simulation have, therefore, been used to analyse resistance evolution and to evaluate potential resistance management tactics. Of the many modelling approaches available, individual-based modelling of a pest population offers most flexibility to include and analyse numerous factors and their interactions. Here, a pollen beetle (Meligethes aeneus) population was modelled as an aggregate of individual insects inhabiting a spatially heterogeneous landscape. The development of the pest and host crop (oilseed rape) was driven by climatic variables. The agricultural land of the landscape was managed by farmers applying a specific rotation and crop protection strategy. The evolution of a single resistance allele to the pyrethroid lambda cyhalothrin was analysed for different combinations of crop management practices and for a recessive, intermediate and dominant resistance allele. While the spread of a recessive resistance allele was severely constrained, intermediate or dominant resistance alleles showed a similar response to the management regime imposed. Calendar treatments applied irrespective of pest density accelerated the development of resistance compared to ones applied in response to prescribed pest density thresholds. A greater proportion of spring-sown oilseed rape was also found to increase the speed of resistance as it increased the period of insecticide exposure. Our study demonstrates the flexibility and power of an individual-based model to simulate how farming practices affect pest population dynamics, and the consequent impact of different control strategies on the risk and speed of resistance development. PMID:25531104
Stratonovitch, Pierre; Elias, Jan; Denholm, Ian; Slater, Russell; Semenov, Mikhail A
2014-01-01
Preventing a pest population from damaging an agricultural crop and, at the same time, preventing the development of pesticide resistance is a major challenge in crop protection. Understanding how farming practices and environmental factors interact with pest characteristics to influence the spread of resistance is a difficult and complex task. It is extremely challenging to investigate such interactions experimentally at realistic spatial and temporal scales. Mathematical modelling and computer simulation have, therefore, been used to analyse resistance evolution and to evaluate potential resistance management tactics. Of the many modelling approaches available, individual-based modelling of a pest population offers most flexibility to include and analyse numerous factors and their interactions. Here, a pollen beetle (Meligethes aeneus) population was modelled as an aggregate of individual insects inhabiting a spatially heterogeneous landscape. The development of the pest and host crop (oilseed rape) was driven by climatic variables. The agricultural land of the landscape was managed by farmers applying a specific rotation and crop protection strategy. The evolution of a single resistance allele to the pyrethroid lambda cyhalothrin was analysed for different combinations of crop management practices and for a recessive, intermediate and dominant resistance allele. While the spread of a recessive resistance allele was severely constrained, intermediate or dominant resistance alleles showed a similar response to the management regime imposed. Calendar treatments applied irrespective of pest density accelerated the development of resistance compared to ones applied in response to prescribed pest density thresholds. A greater proportion of spring-sown oilseed rape was also found to increase the speed of resistance as it increased the period of insecticide exposure. Our study demonstrates the flexibility and power of an individual-based model to simulate how farming practices affect pest population dynamics, and the consequent impact of different control strategies on the risk and speed of resistance development.
Toward a unifying constitutive relation for sediment transport across environments
NASA Astrophysics Data System (ADS)
Houssais, Morgane; Jerolmack, Douglas J.
2017-01-01
Landscape evolution models typically parse the environment into different process domains, each with its own sediment transport law: e.g., soil creep, landslides and debris flows, and river bed-load and suspended-sediment transport. Sediment transport in all environments, however, contains many of the same physical ingredients, albeit in varying proportions: grain entrainment due to a shear force, that is a combination of fluid flow, particle-particle friction and gravity. We present a new take on the perspective originally advanced by Bagnold, that views the long profile of a hillsope-river-shelf system as a continuous gradient of decreasing granular friction dominance and increasing fluid drag dominance on transport capacity. Recent advances in understanding the behavior and regime transitions of dense granular systems suggest that the entire span of granular-to-fluid regimes may be accommodated by a single-phase rheology. This model predicts a material-flow effective friction (or viscosity) that changes with the degree of shear rate and confining pressure. We present experimental results confirming that fluid-driven sediment transport follows this same rheology, for bed and suspended load. Surprisingly, below the apparent threshold of motion we observe that sediment particles creep, in a manner characteristic of glassy systems. We argue that this mechanism is relevant for both hillslopes and rivers. We discuss the possibilities of unifying sediment transport across environments and disciplines, and the potential consequences for modeling landscape evolution.
Rey, Jean-François; Barrett, Luke G.; Thrall, Peter H.
2018-01-01
Genetically-controlled plant resistance can reduce the damage caused by pathogens. However, pathogens have the ability to evolve and overcome such resistance. This often occurs quickly after resistance is deployed, resulting in significant crop losses and a continuing need to develop new resistant cultivars. To tackle this issue, several strategies have been proposed to constrain the evolution of pathogen populations and thus increase genetic resistance durability. These strategies mainly rely on varying different combinations of resistance sources across time (crop rotations) and space. The spatial scale of deployment can vary from multiple resistance sources occurring in a single cultivar (pyramiding), in different cultivars within the same field (cultivar mixtures) or in different fields (mosaics). However, experimental comparison of the efficiency (i.e. ability to reduce disease impact) and durability (i.e. ability to limit pathogen evolution and delay resistance breakdown) of landscape-scale deployment strategies presents major logistical challenges. Therefore, we developed a spatially explicit stochastic model able to assess the epidemiological and evolutionary outcomes of the four major deployment options described above, including both qualitative resistance (i.e. major genes) and quantitative resistance traits against several components of pathogen aggressiveness: infection rate, latent period duration, propagule production rate, and infectious period duration. This model, implemented in the R package landsepi, provides a new and useful tool to assess the performance of a wide range of deployment options, and helps investigate the effect of landscape, epidemiological and evolutionary parameters. This article describes the model and its parameterisation for rust diseases of cereal crops, caused by fungi of the genus Puccinia. To illustrate the model, we use it to assess the epidemiological and evolutionary potential of the combination of a major gene and different traits of quantitative resistance. The comparison of the four major deployment strategies described above will be the objective of future studies. PMID:29649208
Local Fitness Landscapes Predict Yeast Evolutionary Dynamics in Directionally Changing Environments.
Gorter, Florien A; Aarts, Mark G M; Zwaan, Bas J; de Visser, J Arjan G M
2018-01-01
The fitness landscape is a concept that is widely used for understanding and predicting evolutionary adaptation. The topography of the fitness landscape depends critically on the environment, with potentially far-reaching consequences for evolution under changing conditions. However, few studies have assessed directly how empirical fitness landscapes change across conditions, or validated the predicted consequences of such change. We previously evolved replicate yeast populations in the presence of either gradually increasing, or constant high, concentrations of the heavy metals cadmium (Cd), nickel (Ni), and zinc (Zn), and analyzed their phenotypic and genomic changes. Here, we reconstructed the local fitness landscapes underlying adaptation to each metal by deleting all repeatedly mutated genes both by themselves and in combination. Fitness assays revealed that the height, and/or shape, of each local fitness landscape changed considerably across metal concentrations, with distinct qualitative differences between unconditionally (Cd) and conditionally toxic metals (Ni and Zn). This change in topography had particularly crucial consequences in the case of Ni, where a substantial part of the individual mutational fitness effects changed in sign across concentrations. Based on the Ni landscape analyses, we made several predictions about which mutations had been selected when during the evolution experiment. Deep sequencing of population samples from different time points generally confirmed these predictions, demonstrating the power of landscape reconstruction analyses for understanding and ultimately predicting evolutionary dynamics, even under complex scenarios of environmental change. Copyright © 2018 by the Genetics Society of America.
Dynamic landscapes in human evolution and dispersal
NASA Astrophysics Data System (ADS)
Devès, Maud; King, Geoffrey; Bailey, Geoffrey; Inglis, Robyn; Williams, Matthew; Winder, Isabelle
2013-04-01
Archaeological studies of human settlement in its wider landscape setting usually focus on climate change as the principal environmental driver of change in the physical features of the landscape, even on the long time scales of early human evolution. We emphasize that landscapes evolve dynamically due to an interplay of processes occurring over different timescales. Tectonic deformation, volcanism, sea level changes, by acting on the topography, the lithology and on the patterns of erosion-deposition in a given area, can moderate or amplify the influence of climate at the regional and local scale. These processes impose or alleviate physical barriers to movement, and modify the distribution and accessibility of plant and animal resources in ways critical to human ecological and evolutionary success (King and Bailey, JHE 2006; Bailey and King, Antiquity 2011, Winder et al. Antiquity in press). The DISPERSE project, an ERC-funded collaboration between the University of York and the Institut de Physique du Globe de Paris, aims to develop systematic methods for reconstructing landscapes associated with active tectonics, volcanism and sea level change at a variety of scales in order to study their potential impact on patterns of human evolution and dispersal. Examples are shown to illustrate the ways in which changes of significance to human settlement can occur at a range of geographical scales and on time scales that range from lifetimes to tens of millennia, creating and sustaining attractive conditions for human settlement and exercising powerful selective pressures on human development.
Characterizing Phase Transitions in a Model of Neutral Evolutionary Dynamics
NASA Astrophysics Data System (ADS)
Scott, Adam; King, Dawn; Bahar, Sonya
2013-03-01
An evolutionary model was recently introduced for sympatric, phenotypic evolution over a variable fitness landscape with assortative mating (Dees & Bahar 2010). Organisms in the model are described by coordinates in a two-dimensional phenotype space, born at random coordinates with limited variation from their parents as determined by a mutation parameter, mutability. The model has been extended to include both neutral evolution and asexual reproduction in Scott et al (submitted). It has been demonstrated that a second order, non-equilibrium phase transition occurs for the temporal dynamics as the mutability is varied, for both the original model and for neutral conditions. This transition likely belongs to the directed percolation universality class. In contrast, the spatial dynamics of the model shows characteristics of an ordinary percolation phase transition. Here, we characterize the phase transitions exhibited by this model by determining critical exponents for the relaxation times, characteristic lengths, and cluster (species) mass distributions. Missouri Research Board; J.S. McDonnell Foundation
NASA Astrophysics Data System (ADS)
Hopkins, Paul; Fortini, Andrea; Archer, Andrew J.; Schmidt, Matthias
2010-12-01
We describe a test particle approach based on dynamical density functional theory (DDFT) for studying the correlated time evolution of the particles that constitute a fluid. Our theory provides a means of calculating the van Hove distribution function by treating its self and distinct parts as the two components of a binary fluid mixture, with the "self " component having only one particle, the "distinct" component consisting of all the other particles, and using DDFT to calculate the time evolution of the density profiles for the two components. We apply this approach to a bulk fluid of Brownian hard spheres and compare to results for the van Hove function and the intermediate scattering function from Brownian dynamics computer simulations. We find good agreement at low and intermediate densities using the very simple Ramakrishnan-Yussouff [Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy functional. Since the DDFT is based on the equilibrium Helmholtz free energy functional, we can probe a free energy landscape that underlies the dynamics. Within the mean-field approximation we find that as the particle density increases, this landscape develops a minimum, while an exact treatment of a model confined situation shows that for an ergodic fluid this landscape should be monotonic. We discuss possible implications for slow, glassy, and arrested dynamics at high densities.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Tejedor, Alejandro; Zaliapin, Ilya; Reinhardt, Liam; Foufoula-Georgiou, Efi
2015-04-01
The aim of this study is to better understand the dynamic re-organization of an evolving landscape under a scenario of changing climatic forcing for improving our knowledge of geomorphic transport laws under transient conditions and developing predictive models of landscape response to external perturbations. Real landscape observations for long-term analysis are limited and to this end a high resolution controlled laboratory experiment was conducted at the St. Anthony Falls laboratory at the University of Minnesota. Elevation data were collected at temporal resolution of 5 mins and spatial resolution of 0.5 mm as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5x precipitation). The results reveal rapid topographic re-organization under a five-fold precipitation increase with the fluvial regime expanding into the previously debris dominated regime, accelerated erosion happening at hillslope scales, and rivers shifting from an erosion-limited to a transport-limited regime. From a connectivity and clustering analysis of the erosional and depositional events, we demonstrate the strikingly different spatial patterns of landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is "stretched" compared to that under TS such as to match the total volume and PDF of erosional and depositional amounts. We quantify the spatial coupling of hillslopes and channels and demonstrate that hillslopes lead and channels follow in re-organizing the whole landscape under such an amplified precipitation regime.
NASA Astrophysics Data System (ADS)
Dong, X.; Heffernan, J. B.; Murray, A. B.; Cohen, M. J.; Martin, J. B.
2016-12-01
The evolution of the critical zone both shapes and reflects hydrologic, geochemical, and ecological processes. These interactions are poorly understood in karst landscapes with highly soluble bedrock. In this study, we used the regular-dispersed wetland basins of Big Cypress National Preserve in Florida as a focal case to model the hydrologic, geochemical, and biological mechanisms that affect soil development in karst landscapes. We addressed two questions: (1) What is the minimum timescale for wetland basin development, and (2) do changes in soil depth feed back on dissolution processes and if so by what mechanism? We developed an atmosphere-water-soil model with coupled water-solute transport, incorporating major ion equilibria and kinetic non-equilibrium chemistry, and biogenic acid production via roots distributed through the soil horizon. Under current Florida climate, weathering to a depth of 2 m (a typical depth of wetland basins) would take 4000 6000 yrs, suggesting that landscape pattern could have origins as recent as the most recent stabilization of sea level. Our model further illustrates that interactions between ecological and hydrologic processes influence the rate and depth-dependence of weathering. Absent inundation, dissolution rate decreased exponentially with distance from the bedrock to groundwater table. Inundation generally increased bedrock dissolution, but surface water chemistry and residence time produced complex and non-linear effects on dissolution rate. Biogenic acidity accelerated the dissolution rate by 50 and 1,000 times in inundated and exposed soils. Phase portrait analysis indicated that exponential decreases in bedrock dissolution rate with soil depth could produce stable basin depths. Negative feedback between hydro-period and total basin volume could stabilize the basin radius, but the lesser strength of this mechanism may explain the coalescence of wetland basins observed in some parts of the Big Cypress Landscape.
Evolution of a Lowland Karst Landscape; A Mass-Balance Approach
NASA Astrophysics Data System (ADS)
Chamberlin, C.; Heffernan, J. B.; Cohen, M. J.; Quintero, C.; Pain, A.
2016-12-01
Karst landscapes are highly soluble, and are vulnerable to biological acid production as a major driving factor in their evolution. Big Cypress National Park (BICY) is a low-lying karst landscape in southern Florida displaying a distinctive morphology of isolated depressions likely influenced by biology. The goal of this study is to constrain timescales of landform development in BICY. This question was addressed through the construction of landscape-scale elemental budgets for both calcium and phosphorus. Precipitation and export fluxes were calculated using available chemistry and hydrology data, and stocks were calculated from a combination of existing data, field measurements, and laboratory chemical analysis. Estimates of expected mass export given no biological acid production and given an equivalent production of 100% of GPP were compared with observed rates. Current standing stocks of phosphorus are dominated by a large soil pool, and contain 500 Gg P. Inputs are largely dominated by precipitation, and 8000 years are necessary to accumulate standing stocks of phosphorus given modern fluxes. Calcium flux is vastly dominated by dissolution of the limestone bedrock, and though some calcium is retained in the soil, most is exported. Using LiDAR generated estimates of volume loss across the landscape and current export rates, an estimated 15,000 years would be necessary to create the modern landscape. Both of these estimates indicate that the BICY landscape is geologically very young. The different behaviors of these elements (calcium is largely exported, while phosphorus is largely retained) lend additional confidence to estimates of denudation rates of the landscape. These estimates can be even closer reconciled if calcium redistribution over the landscape is allowed for. This estimate is compared to the two bounding conditions for biological weathering to indicate a likely level of biological importance to landscape development in this system.
Vertical plate motions from ancient buried landscapes: Constraints on Icelandic plume evolution
NASA Astrophysics Data System (ADS)
Stucky de Quay, G.
2016-12-01
Convection in the Earth's mantle is strongly time-dependent (Ra 106-108). In regions that are dynamically supported, uplift and subsidence histories might therefore contain information about evolution of mantle convection. We examine uplift and subsidence histories of sedimentary basins fringing NW Europe, close to the Icelandic plume, where it has been shown short-term vertical motions disrupt post-rift thermal subsidence. These sedimentary basins contain ancient (59-53 Ma) buried fluvial landscapes which developed during inception of the Icelandic plume. Stratigraphic and seismic reflection data indicate that these terrestrial landscapes were incised by 100s of meters in only a few million years and were then rapidly submerged. We extracted a landscape buried beneath 1.5 km of sedimentary rock in the Bressay region, offshore eastern Scotland. This landscape was mapped using a three-dimensional 9000 km2 seismic dataset and seven exploration wells. First, the buried landscape was mapped using every inline and cross line (horizontal resolution 12 m). Second, the landscape was depth converted and decompacted using check-shot data. Third, drainage patterns were reconstructed by calculating flow directions across the mapped landscape. River profiles were extracted from these drainage patterns and contain three knickzones analogous to those documented in an older buried landscape in the Faereo-Shetland Basin, 400 km to the west. Fourth, we reinterpreted dinocyst records to determine the age of our landscape, allowing us to constrain erosion rates. Finally, our drainage inventory was inverted for uplift rate as a function of space and time. Results indicate three uplift events occurred between 55-57 Ma, resulting in a total cumulative uplift of 400 m. We combine these results with estimates of uplift in nearby regions to constrain the behavior of the incipient Icelandic plume both in a temporal and spatial context.
NASA Astrophysics Data System (ADS)
Gallen, S. F.
2016-12-01
Long-term landscape evolution in post-orogenic settings remains an outstanding question in the geosciences. Despite conventional wisdom that topography in dead orogens will slowly and steadily decay through time, observations from around the globe show that dynamic, unsteady (e.g. transient) landscape evolution is the norm. Unraveling the mechanisms that drive unsteadiness in dead orogens is paramount to understanding the stratigraphic record of offshore basins and the geologic factors that contribute to the high biodiversity common in these settings. Here we address the enigma of unsteady post-orogenic landscape evolution with a study of the geomorphology of southern Appalachians, U.S.A. We focus on the 58,000 km2 Upper Tennessee River Basin that covers portions of the fold-and-thrust belt (Valley and Ridge), foreland basin (Appalachian Plateau), and a deeply exhumed thrust sheet (Blue Ridge) of this dead orogen. Using published millennial-scale erosion rates and quantitative analysis of fluvial topography, we show that this region is in a transient state of adjustment to 400 m of base level fall. Ongoing adjustment to base level drop is observed as a zone of high erosion rates, steep river channels and numerous knickpoints located upstream of and surrounding the contact between the Valley and Ridge and adjacent lithotectonic units. We argue that the association of adjusting landscapes and the Valley and Ridge contact is due to the rapid response time of rivers incising soft Valley and Ridge rocks, relative to the harder metamorphic rocks in the Blue Ridge and resistant capstone in the Appalachian Plateau. We propose that base level fall was triggered by incision through the Appalachian Plateau capstone into underlying weaker rocks that set off a wave of transient adjustment, drainage reorganization and ultimately capture of the paleo-Upper Tennessee Basin. Our results indicate that transient landscape evolution is characteristic of post-orogenic settings, as rivers continually incise through rock-types of varying erosional resistance in ancient foreland basins and fold-and-thrust belts. Thus, unsteadiness in dead orogens reflects the legacy of past tectonic events and may have little to do with epeirogenic uplift or climate induced changes in erosional efficiency, as is often the interpretation.
Farrell, K.M.
2001-01-01
This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions - vertical (x), lateral (y), and down-the-basin (z). A flood basin fills in as landforms vertically (x) and laterally accrete (y), and prograde down-the-basin (z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Farrell, K. M.
2001-02-01
This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions — vertical ( x), lateral ( y), and down-the-basin ( z). A flood basin fills in as landforms vertically ( x) and laterally accrete ( y), and prograde down-the-basin ( z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution.
Regional Landscape Response to Wedge-Top Basin Formation
NASA Astrophysics Data System (ADS)
Ruetenik, G.; Moucha, R.; Hoke, G. D.; Val, P.
2017-12-01
Wedge-top basins are the result of regionally variable uplift along thrust faults downstream of a mountain range and provide an ideal environment to study the regional stream and surface response to local variations in rock uplift. In this study, we simulate the formation and evolution of a wedge-top basin using a landscape evolution model. In line with a previous study, we find that during deformation in the fold-and-thrust belt adjacent to a wedge-top basin, both channel slope and erosion rates are reduced, and these changes propagate as a wave of low erosion into the uplands. For a uniform background uplift rate, this reduced rate of erosion results in a net surface uplift and a decreased slope within and upstream of the wedge-top basin. Following the eventual breach of the basin's bounding thrust belt, a wave of high erosion propagates through the basin and increases the channel slope. We expand upon previous studies by testing our model against a wide range of model parameters, although in general we find that the onset of increased erosion can be delayed by up to several million years. The amount of surface uplift is highly dependent on flexural isostasy and therefore it is heavily influenced by the elastic thickness and erodbility parameters. Observed paleoerosion rates in a paired wedge-top foreland sequence in the Argentine Precordillera reveal similar histories of paleo-erosion, and present day stream profiles show evidence that support model outcomes.
R. J. Dyer; R. D. Westfall; V. L. Sork; P. E. Smouse
2004-01-01
Patterns of pollen dispersal are central to both the ecology and evolution of plant populations. However, the mechanisms controlling either the dispersal process itself or our estimation of that process may be influenced by site-specific factors such as local forest structure and nonuniform adult genetic structure. Here, we present an extension of the AMOVA model...
A Distributed Snow Evolution Modeling System (SnowModel)
NASA Astrophysics Data System (ADS)
Liston, G. E.; Elder, K.
2004-12-01
A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.
Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.
Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W
2013-01-01
Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.
Kell, Douglas B
2012-01-01
A considerable number of areas of bioscience, including gene and drug discovery, metabolic engineering for the biotechnological improvement of organisms, and the processes of natural and directed evolution, are best viewed in terms of a ‘landscape’ representing a large search space of possible solutions or experiments populated by a considerably smaller number of actual solutions that then emerge. This is what makes these problems ‘hard’, but as such these are to be seen as combinatorial optimisation problems that are best attacked by heuristic methods known from that field. Such landscapes, which may also represent or include multiple objectives, are effectively modelled in silico, with modern active learning algorithms such as those based on Darwinian evolution providing guidance, using existing knowledge, as to what is the ‘best’ experiment to do next. An awareness, and the application, of these methods can thereby enhance the scientific discovery process considerably. This analysis fits comfortably with an emerging epistemology that sees scientific reasoning, the search for solutions, and scientific discovery as Bayesian processes. PMID:22252984
NASA Astrophysics Data System (ADS)
Howard, A. D.; Matsubara, Y.; Lloyd, H.
2006-12-01
The DELIM landform evolution model has been adapted to investigate erosional and depositional landforms in two setting with fluctuating base levels. The first is erosion and wave planation of terraced landscapes in Coastal Plain sediments along the estuarine Potomac River. The last 3.5 million years of erosion is simulated with base level fluctuations based upon the long-term oceanic delta 18O record, eustatic sea level changes during the last 120 ka, estimates of the history of tectonic uplift in the region, and maximum depths of incision of the Potomac River during sea-level lowstands. Inhibition of runoff erosion by vegetation has been a crucial factor allowing persistence of uplands in the soft coastal plain bedrock. The role of vegetation is simulated as a contributing area- dependent critical shear stress. Development of wave-cut terraces is simulated by episodic planation of the landscape during base-level highstands. Although low base level excursions are infrequent and of short duration, the total amount of erosion is largely controlled by the depth and frequency of lowstands. The model has also been adapted to account for flow routing and accompanying erosion and sedimentation in landscapes with multiple enclosed depressions. The hydrological portion of the model has been calibrated and tested in the Great Basin and Mojave regions of the southwestern U.S. In such a setting, runoff, largely from mountains, may flow through several lacustrine basins, each with evaporative losses. An iterative approach determines the size and depth of lakes, including overflow (or not) that balances runoff and evaporation. The model utilizes information on temperatures, rainfall, runoff, and evaporation within the region to parameterize evaporation and runoff as functions of latitude, mean annual temperature, precipitation, and elevation. The model is successful in predicting the location of modern perennial lakes in the region as well as that of lakes during the last glacial maximum based upon published estimates of changes in mean annual temperature and precipitation within the region. The hydrological model has been coupled with the DELIM landform evolution model to investigate expected patterns of basin sedimentation in cratered landscapes on Mars and the role that fluctuating lake levels has on the form and preservation of deltaic and shoreline sedimentary platforms. As would be expected, base levels that fluctuate widely complicate the pattern of depositional landforms, but recognizable coastal benches develop even with high-amplitude variations.
Division of labour and the evolution of multicellularity
Ispolatov, Iaroslav; Ackermann, Martin; Doebeli, Michael
2012-01-01
Understanding the emergence and evolution of multicellularity and cellular differentiation is a core problem in biology. We develop a quantitative model that shows that a multicellular form emerges from genetically identical unicellular ancestors when the compartmentalization of poorly compatible physiological processes into component cells of an aggregate produces a fitness advantage. This division of labour between the cells in the aggregate occurs spontaneously at the regulatory level owing to mechanisms present in unicellular ancestors and does not require any genetic predisposition for a particular role in the aggregate or any orchestrated cooperative behaviour of aggregate cells. Mathematically, aggregation implies an increase in the dimensionality of phenotype space that generates a fitness landscape with new fitness maxima, in which the unicellular states of optimized metabolism become fitness saddle points. Evolution of multicellularity is modelled as evolution of a hereditary parameter: the propensity of cells to stick together, which determines the fraction of time a cell spends in the aggregate form. Stickiness can increase evolutionarily owing to the fitness advantage generated by the division of labour between cells in an aggregate. PMID:22158952
Frisbee, Marty D.; Tysor, Elizabeth H.; Stewart-Maddox, Noah; ...
2016-02-13
Interbasin groundwater flow (IGF) can play a significant role in the generation and geochemical evolution of streamflow. However, it is exceedingly difficult to identify IGF, and to determine the location and quantity of water that is exchanged between watersheds. How does IGF affect landscape/watershed geomorphic evolution? Can geomorphic metrics be used to identify the presence of IGF? We examine these questions in two adjacent sedimentary watersheds in northern New Mexico using a combination of geomorphic/landscape metrics, springflow residence times, and spatial geochemical patterns. IGF is expressed geomorphically in the landscape placement of springs, and flow direction and shape of streammore » channels. Springs emerge preferentially on one side of stream valleys where landscape incision has intercepted IGF flowpaths. Stream channels grow toward the IGF source and show little bifurcation. In addition, radiocarbon residence times of springs decrease and the geochemical composition of springs changes as the connection to IGF is lost.« less
Adaptation in protein fitness landscapes is facilitated by indirect paths
Wu, Nicholas C; Dai, Lei; Olson, C Anders; Lloyd-Smith, James O; Sun, Ren
2016-01-01
The structure of fitness landscapes is critical for understanding adaptive protein evolution. Previous empirical studies on fitness landscapes were confined to either the neighborhood around the wild type sequence, involving mostly single and double mutants, or a combinatorially complete subgraph involving only two amino acids at each site. In reality, the dimensionality of protein sequence space is higher (20L) and there may be higher-order interactions among more than two sites. Here we experimentally characterized the fitness landscape of four sites in protein GB1, containing 204 = 160,000 variants. We found that while reciprocal sign epistasis blocked many direct paths of adaptation, such evolutionary traps could be circumvented by indirect paths through genotype space involving gain and subsequent loss of mutations. These indirect paths alleviate the constraint on adaptive protein evolution, suggesting that the heretofore neglected dimensions of sequence space may change our views on how proteins evolve. DOI: http://dx.doi.org/10.7554/eLife.16965.001 PMID:27391790
NASA Astrophysics Data System (ADS)
Frisbee, Marty D.; Tysor, Elizabeth H.; Stewart-Maddox, Noah S.; Tsinnajinnie, Lani M.; Wilson, John L.; Granger, Darryl E.; Newman, Brent D.
2016-02-01
Interbasin groundwater flow (IGF) can play a significant role in the generation and geochemical evolution of streamflow. However, it is exceedingly difficult to identify IGF and to determine the location and quantity of water that is exchanged between watersheds. How does IGF affect landscape/watershed geomorphic evolution? Can geomorphic metrics be used to identify the presence of IGF? We examine these questions in two adjacent sedimentary watersheds in northern New Mexico using a combination of geomorphic/landscape metrics, springflow residence times, and spatial geochemical patterns. IGF is expressed geomorphically in the landscape placement of springs and flow direction and shape of stream channels. Springs emerge preferentially on one side of stream valleys where landscape incision has intercepted IGF flow paths. Stream channels grow toward the IGF source and show little bifurcation. In addition, radiocarbon residence times of springs decrease and the geochemical composition of springs changes as the connection to IGF is lost.
Sediment Dynamics in Shallow Tidal Landscapes: The Role of Wind Waves and Tidal Currents
NASA Astrophysics Data System (ADS)
Carniello, L.; D'Alpaos, A.
2014-12-01
A precise description of sediment dynamics (resuspension and re-distribution of sediments) is crucial when investigating the long term evolution of the different morphological entities characterizing tidal landscapes. It has been demonstrated that wind waves are the main responsible for sediment resuspension in shallow micro-tidal lagoons where tidal currents, which produce shear stresses large enough to carry sediments into suspension only within the main channels, are mainly responsible for sediment redistribution. A mathematical model has been developed to describe sediment entrainment, transport and deposition due to the combined effect of tidal currents and wind waves in shallow lagoons considering both cohesive and non-cohesive sediments. The model was calibrated and tested using both in situ point observations and turbidity maps obtained analyzing satellite images. Once calibrated the model can integrate the high temporal resolution of point observations with the high spatial resolution of remote sensing, overcoming the intrinsic limitation of these two types of observations. The model was applied to the specific test case of the Venice lagoon simulating an entire year (2005) which was shown to be a "representative" year for wind and tide characteristics. The time evolution of the computed total bottom shear stresses (BSS) and suspended sediment concentration (SSC) was analyzed on the basis of a "Peaks Over Threshold" method once a critical value for shear stress and turbidity were chosen. The analyses of the numerical results enabled us to demonstrate that resuspension events can be modeled as marked Poisson processes: interarrival time, intensity of peak excesses and duration being exponentially distributed random variable. The probability distributions of the interarrival time of overthreshold exceedances in both BSS and SSC as well as their intensity and duration can be used in long-term morphodynamic studies to generate synthetic series statistically equivalent to real sequences through which MonteCarlo realizations of relevant morphological evolutions can be computed.
NASA Astrophysics Data System (ADS)
Murtha, T., Jr.; Duffy, C.; Cook, B. D.; Schroder, W.; Webster, D.; French, K. D.; Alcover, O.; Golden, C.; Balzotti, C.; Shaffer, D.
2016-12-01
Relying on a niche inheritance perspective, this paper discusses the long-term spatial and temporal dynamics of land-use management, agricultural decision making and patterns of resource availability in the tropical lowlands of Central America. We introduce and describe ongoing research that addresses a series of long standing questions about coupled natural and human history dynamics in the Central Maya lowlands, emphasizing the role of landscape and region to address these questions. First, we summarize the results of a CNH pilot study focused on the evolution of the regional landscape of Tikal, Guatemala. Particular attention is centered on how we integrated landscape survey, traditional archaeology and soil studies to understand the spatial and temporal dynamics of agricultural land use and intensification over a two thousand period. Additionally, we discuss how these results were integrated into remote sensing, hydrological and erosion models to better understand how past changes in available water and productive land compare to what we know about settlement patterns in the Tikal Region over that same time period. We not only describe how the Maya transformed this landscape, but also how the region influenced changing patterns of settlement and land use. We finish this section with a discussion of some of the unique challenges integrating archaeological information to study CNH dynamics during this pilot study. Second, we introduce a new project designed to `scale up' the pilot study for a macro-regional analysis of the lowland Maya landscape. The new project leverages a uniquely sampled LIDAR data set designed to refine measurements of above ground carbon storage. Our new project quantitatively examines these data for evidence for past human activity. Preliminary results offer a promising path for tightly integrating archaeology, natural science, remote sensing and modeling for studying CNH dynamics in the deep and recent past.
Rebhahn, Jonathan A; Deng, Nan; Sharma, Gaurav; Livingstone, Alexandra M; Huang, Sui; Mosmann, Tim R
2014-01-01
Recent advances in understanding CD4+ T-cell differentiation suggest that previous models of a few distinct, stable effector phenotypes were too simplistic. Although several well-characterized phenotypes are still recognized, some states display plasticity, and intermediate phenotypes exist. As a framework for reexamining these concepts, we use Waddington's landscape paradigm, augmented with explicit consideration of stochastic variations. Our animation program “LAVA” visualizes T-cell differentiation as cells moving across a landscape of hills and valleys, leading to attractor basins representing stable or semistable differentiation states. The model illustrates several principles, including: (i) cell populations may behave more predictably than individual cells; (ii) analogous to reticulate evolution, differentiation may proceed through a network of interconnected states, rather than a single well-defined pathway; (iii) relatively minor changes in the barriers between attractor basins can change the stability or plasticity of a population; (iv) intrapopulation variability of gene expression may be an important regulator of differentiation, rather than inconsequential noise; (v) the behavior of some populations may be defined mainly by the behavior of outlier cells. While not a quantitative representation of actual differentiation, our model is intended to provoke discussion of T-cell differentiation pathways, particularly highlighting a probabilistic view of transitions between states. PMID:24945794
Norman, Janette A.; Christidis, Les
2016-01-01
Bioclimatic models are widely used to investigate the impacts of climate change on species distributions. Range shifts are expected to occur as species track their current climate niche yet the potential for exploitation of new ecological opportunities that may arise as ecosystems and communities remodel is rarely considered. Here we show that grasswrens of the Amytornis textilis-modestus complex responded to new ecological opportunities in Australia’s arid biome through shifts in habitat preference following the development of chenopod shrublands during the late Plio-Pleistocene. We find evidence of spatially explicit responses to climatically driven landscape changes including changes in niche width and patterns of population growth. Conservation of structural and functional aspects of the ancestral niche appear to have facilitated recent habitat shifts, while demographic responses to late Pleistocene climate change provide evidence for the greater resilience of populations inhabiting the recently evolved chenopod shrubland communities. Similar responses could occur under future climate change in species exposed to novel ecological conditions, or those already occupying spatially heterogeneous landscapes. Mechanistic models that consider structural and functional aspects of the niche along with regional hydro-dynamics may be better predictors of future climate responses in Australia’s arid biome than bioclimatic models alone. PMID:26787111
A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape
2017-01-01
In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the “edge of chaos” while creating a wide distribution of opportunities for speciation during epochs of disruptive selection—a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies. PMID:28678792
IML-CZO: Critical Zone Observatory for Intensively Managed Landscapes
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Papanicolaou, Thanos
2014-05-01
Intensively managed landscapes, regions of significant land use change, serve as a cradle for economic prosperity. However, the intensity of change is responsible for unintended deterioration of our land and water environments. By understanding present day dynamics in the context of long-term co-evolution of the Critical Zone comprising of the landscape, soil and biota, IML-CZO aims to support the assessment of short- and long-term resilience of the crucial ecological, hydrological and climatic services provided by the Critical Zone. An observational network of three sites in Illinois, Iowa, and Minnesota that capture the geological diversity of the low relief, glaciated, and tile-drained landscape will drive novel scientific and technological advances. IML-CZO will provide leadership in developing the next generation of scientists and practitioners, and informing management strategies aimed at reducing the vulnerability of the system to present and emerging trends in human activities. IML-CZO, one of the nine observatories funded by the United States National Science Foundation (NSF), consists of two core sites: the 3,690- sq. km. Upper Sangamon River Basin in Illinois and 270-sq. km. Clear Creek Watershed in Iowa, along with the 44,000- sq. km. Minnesota River Basin as third participating site. These sites together are characterized by low-relief landscapes with poorly drained soils and represent a broad range of physiographic variations found throughout the glaciated Midwest, and thereby provide an opportunity to advance understanding of the CZO in this important region. Through novel measurements, analysis and modeling, IML-CZO aims to address the following questions: • How do different time scales of geologic evolution and anthropogenic influence interact to determine the trajectory of CZ structure and function? • How is the co-evolution of biota, consisting of both vegetation and microbes, and soil affected due to intensive management? • How have dynamic patterns of connectivity, which link across transition zones and heterogeneity, changed by anthropogenic impacts? • How do these changes affect residence times and aggregate fluxes of water, carbon, nutrients, and sediment? IML-CZO will use historical data, existing observational networks, new instruments, remote sensing, sampling and laboratory analyses, and novel sensing technologies using open hardware and unmanned vehicles to study a number of variables related to climate and weather, hydrology, geology, geomorphology, soils, water chemistry, biogeochemistry, ecology, and land management. Additional details are available at imlczo.org.
Statistical and Biophysical Models for Predicting Total and Outdoor Water Use in Los Angeles
NASA Astrophysics Data System (ADS)
Mini, C.; Hogue, T. S.; Pincetl, S.
2012-04-01
Modeling water demand is a complex exercise in the choice of the functional form, techniques and variables to integrate in the model. The goal of the current research is to identify the determinants that control total and outdoor residential water use in semi-arid cities and to utilize that information in the development of statistical and biophysical models that can forecast spatial and temporal urban water use. The City of Los Angeles is unique in its highly diverse socio-demographic, economic and cultural characteristics across neighborhoods, which introduces significant challenges in modeling water use. Increasing climate variability also contributes to uncertainties in water use predictions in urban areas. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Study predictors of residential water use include socio-demographic, economic, climate and landscaping variables at the zip code level collected from US Census database. Climate variables are estimated from ground-based observations and calculated at the centroid of each zip code by inverse-distance weighting method. Remotely-sensed products of vegetation biomass and landscape land cover are also utilized. Two linear regression models were developed based on the panel data and variables described: a pooled-OLS regression model and a linear mixed effects model. Both models show income per capita and the percentage of landscape areas in each zip code as being statistically significant predictors. The pooled-OLS model tends to over-estimate higher water use zip codes and both models provide similar RMSE values.Outdoor water use was estimated at the census tract level as the residual between total water use and indoor use. This residual is being compared with the output from a biophysical model including tree and grass cover areas, climate variables and estimates of evapotranspiration at very high spatial resolution. A genetic algorithm based model (Shuffled Complex Evolution-UA; SCE-UA) is also being developed to provide estimates of the predictions and parameters uncertainties and to compare against the linear regression models. Ultimately, models will be selected to undertake predictions for a range of climate change and landscape scenarios. Finally, project results will contribute to a better understanding of water demand to help predict future water use and implement targeted landscaping conservation programs to maintain sustainable water needs for a growing population under uncertain climate variability.
Linking glacial erosion and low-relief landscapes in tropical orogens
NASA Astrophysics Data System (ADS)
Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Galewsky, J.; Yoo, J.
2015-12-01
One significant way that climate influences orogenic evolution is by modulating glacial erosion. At mid-latitudes it is hypothesized that this climate-tectonic interplay is so strong that a "glacial buzzsaw" acting throughout the Quaternary outpaced tectonic uplift in most mountain belts and concentrated topography in a zone defined by the bounds of ELA fluctuation. Less attention has been paid to how the buzzsaw might manifest itself at low latitudes, where many mountain belts are just high enough to have been glaciated at the LGM but today sit well below the ELA. We have focused on the glacial history of Costa Rica and Taiwan, where we find evidence of ice cap erosion coincident with low-relief landscapes near the LGM ELA. Previous attempts to understand the formation of these perched, low-relief landscapes has mostly concerned interactions between fluvial erosion and geodynamics. Our work aims instead to describe the role that glacial erosion played in the evolution of these landscapes, and how they fit in the buzzsaw paradigm. At Cerro Chirripó in Costa Rica we use 10-Be surface exposure age dating of moraine boulders and scoured bedrock, field mapping, and remote sensing to constrain the timing, areal extent, and pattern of glacial erosion. We made similar observations of ice extent at Nanhudashan in Taiwan, where surface exposure age dating has previously been applied to glacial landforms (e.g. Hebenstreit et al., 2011; Siame et al., 2007). In Costa Rica, our 10-Be dates from scoured bedrock near the highest peak and terminal/lateral moraines show signs of ice-cap erosion until 22 ka. Similar arguments for LGM ice cap erosion have been made for Nanhudashan. Regional climate simulations (WRF) further constrain the timing and spatial extent of glaciation in these places, and the combination of field data and climate modeling will inform estimates of the magnitude of glacial erosion on perched landscapes.
Independent evolution of the sexes promotes amphibian diversification.
De Lisle, Stephen P; Rowe, Locke
2015-03-22
Classic ecological theory predicts that the evolution of sexual dimorphism constrains diversification by limiting morphospace available for speciation. Alternatively, sexual selection may lead to the evolution of reproductive isolation and increased diversification. We test contrasting predictions of these hypotheses by examining the relationship between sexual dimorphism and diversification in amphibians. Our analysis shows that the evolution of sexual size dimorphism (SSD) is associated with increased diversification and speciation, contrary to the ecological theory. Further, this result is unlikely to be explained by traditional sexual selection models because variation in amphibian SSD is unlikely to be driven entirely by sexual selection. We suggest that relaxing a central assumption of classic ecological models-that the sexes share a common adaptive landscape-leads to the alternative hypothesis that independent evolution of the sexes may promote diversification. Once the constraints of sexual conflict are relaxed, the sexes can explore morphospace that would otherwise be inaccessible. Consistent with this novel hypothesis, the evolution of SSD in amphibians is associated with reduced current extinction threat status, and an historical reduction in extinction rate. Our work reconciles conflicting predictions from ecological and evolutionary theory and illustrates that the ability of the sexes to evolve independently is associated with a spectacular vertebrate radiation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
ERIC Educational Resources Information Center
Scanlon, Andrew, Ed.; And Others
Knowledge of the physiographic evolution of the Tasmanian landscape is still very far from complete; however, all aspects of the landscape are governed by definable processes acting on the rock medley which is the heritage of Tasmania's geological history. This book explains Tasmania's landforms and geology in terms of geologic processes. Chapters…
D Reconstruction and Visualization of Cultural Heritage: Analyzing Our Legacy Through Time
NASA Astrophysics Data System (ADS)
Rodríguez-Gonzálvez, P.; Muñoz-Nieto, A. L.; del Pozo, S.; Sanchez-Aparicio, L. J.; Gonzalez-Aguilera, D.; Micoli, L.; Gonizzi Barsanti, S.; Guidi, G.; Mills, J.; Fieber, K.; Haynes, I.; Hejmanowska, B.
2017-02-01
Temporal analyses and multi-temporal 3D reconstruction are fundamental for the preservation and maintenance of all forms of Cultural Heritage (CH) and are the basis for decisions related to interventions and promotion. Introducing the fourth dimension of time into three-dimensional geometric modelling of real data allows the creation of a multi-temporal representation of a site. In this way, scholars from various disciplines (surveyors, geologists, archaeologists, architects, philologists, etc.) are provided with a new set of tools and working methods to support the study of the evolution of heritage sites, both to develop hypotheses about the past and to model likely future developments. The capacity to "see" the dynamic evolution of CH assets across different spatial scales (e.g. building, site, city or territory) compressed in diachronic model, affords the possibility to better understand the present status of CH according to its history. However, there are numerous challenges in order to carry out 4D modelling and the requisite multi-data source integration. It is necessary to identify the specifications, needs and requirements of the CH community to understand the required levels of 4D model information. In this way, it is possible to determine the optimum material and technologies to be utilised at different CH scales, as well as the data management and visualization requirements. This manuscript aims to provide a comprehensive approach for CH time-varying representations, analysis and visualization across different working scales and environments: rural landscape, urban landscape and architectural scales. Within this aim, the different available metric data sources are systemized and evaluated in terms of their suitability.
Edwards, Mary E.; Grosse, Guido; Jones, Benjamin M.; McDowell, Patricia F.
2016-01-01
Thermokarst processes characterize a variety of ice-rich permafrost terrains and often lead to lake formation. The long-term evolution of thermokarst landscapes and the stability and longevity of lakes depend upon climate, vegetation and ground conditions, including the volume of excess ground ice and its distribution. The current lake status of thermokarst-lake landscapes and their future trajectories under climate warming are better understood in the light of their long-term development. We studied the lake-rich southern marginal upland of the Yukon Flats (northern interior Alaska) using dated lake-sediment cores, observations of river-cut exposures, and remotely-sensed data. The region features thick (up to 40 m) Quaternary deposits (mainly loess) that contain massive ground ice. Two of three studied lakes formed ~ 11,000–12,000 cal yr BP through inferred thermokarst processes, and fire may have played a role in initiating thermokarst development. From ~ 9000 cal yr BP, all lakes exhibited steady sedimentation, and pollen stratigraphies are consistent with regional patterns. The current lake expansion rates are low (0 to < 7 cm yr− 1 shoreline retreat) compared with other regions (~ 30 cm yr− 1 or more). This thermokarst lake-rich region does not show evidence of extensive landscape lowering by lake drainage, nor of multiple lake generations within a basin. However, LiDAR images reveal linear “corrugations” (> 5 m amplitude), deep thermo-erosional gullies, and features resembling lake drainage channels, suggesting that highly dynamic surface processes have previously shaped the landscape. Evidently, widespread early Holocene permafrost degradation and thermokarst lake initiation were followed by lake longevity and landscape stabilization, the latter possibly related to establishment of dense forest cover. Partial or complete drainage of three lakes in 2013 reveals that there is some contemporary landscape dynamism. Holocene landscape evolution in the study area differs from that described from other thermokarst-affected regions; regional responses to future environmental change may be equally individualistic.
Palaeolithic landscapes of Europe and environs, 150,000-25,000 years ago: An overview
NASA Astrophysics Data System (ADS)
Van Andel, T. H.; Tzedakis, P. C.
When considering the evolution and migrations of Neandertalers and early modem human beings, the harsh conditions of the last glacial maximum are often implicitly or explicitly assumed as their environmental background. This perception is false: the conditions of the high glacial apply to a small fraction of late Pleistocene time. Here we review the palaeoenvironmental history of Europe from 150,000 to 25,000 years ago with the aid of data from long cores of ice and marine and continental sediments. The results are displayed in four sketch maps that illustrate the landscapes of an interglacial-glacial cycle. The maps, connected by palaeoenvironmental histories, show that especially between 60,000 and 25,000 years ago, a critical part of the Palaeolithic, the glacial landscapes were for much of the time less barren than is generally assumed, but numerous climate changes on a scale of several millennia are evident, placing a premium on accurate dating of the co-evolution of humans and landscape. Moreover, during the glacial interval abrupt climatic changes lasting from a century to a few millennia were common. Their importance for landscape changes and their impact on human activity remain to be ascertained.
NASA Astrophysics Data System (ADS)
Kreutzer, Sebastian; Meszner, Sascha; Faust, Dominik; Fuchs, Markus
2014-05-01
Interpreting former landscape evolution asks for understanding the processes that sculpt such landforms by means of deciphering complex systems. For reconstructing terrestrial Quaternary environments based on loess archives this might be considered, at least, as a three step process: (1) Identifying valuable records in appropriate morphological positions in a previously defined research area, (2) analysing the profiles by field work and laboratory methods and finally (3) linking the previously considered pseudo-isolated systems to set up a comprehensive picture. Especially the first and the last step might bring some pitfalls, as it is tempting to specify single records as pseudo-isolated, closed systems. They might be, with regard to their preservation in their specific morphological position, but in fact they are part of a complex, open system. Between 2008 and 2013, Late-Pleistocene loess archives in Saxony have been intensively investigated by field and laboratory methods. Linking pedo- and luminescence dating based chronostratigraphies, a composite profile for the entire Saxonian Loess Region has been established. With this, at least, two-fold approach we tried to avoid misinterpretations that might appear when focussing on one standard profile in an open morphological system. Our contribution focuses on this multi-proxy approach to decipher the Late-Pleistocene landscape evolution in the Saxonian Loess Region. Highlighting the challenges and advantages of combining different methods, we believe that (1) this multi-proxy approach is without alternative, (2) the combination of different profiles may simplify the more complex reality, but it may be a useful generalisation to understand and reveal the stratigraphical significance of the landscape evolution in this region.
Human impact on the geomorphic evolution of the HOAL catchment, Lower Austria
NASA Astrophysics Data System (ADS)
Pöppl, Ronald; Kraushaar, Sabine; Strauss, Peter; Fuchs, Markus
2016-04-01
Since the beginning of human settlement extensive land cover and land use changes have induced significant geomorphic landscape changes as water and sediment dynamics have been transformed. The presented project focuses on the reconstruction of Holocene geomorphic landscape evolution and the assessment of recent geomorphic processes in the Northern foothills of the Eastern Alps in Austria - an area intensively agriculturally used since the middle ages and often overlooked in its geomorphic evolution. The study area is a small catchment (ca. 66 ha) which is located in the western part of Lower Austria comprising a land use history as well as environmental settings typical for wide regions across the Northern foothills of the Eastern Alps in Austria. The catchment elevation ranges from 268 to 323 m a.s.l. and has a mean slope angle of 8%. The climate in this region can be characterized as humid. The lithology mainly consists of Tertiary marly to sandy deposits which are superimposed by Quaternary sediments (e.g. loesses). Dominant soil types are Cambisols, Luvisols, and Planosols. Furthermore, the catchment is used as a Hydrological Open Air Laboratory (HOAL) implemented for the long-term research of water-related flow and transport processes in the landscape (http://hoal.hydrology.at). The main objective of this research project is to reconstruct Holocene landscape evolution by analyzing physical parameters of sediment cores taken from colluvial and alluvial sediment archives with additional 14C and OSL dating as well as by the measurement of truncated and covered standardized Luvisol profiles. First results will be presented at the EGU General Assembly 2016.
Fitness Landscapes of Functional RNAs.
Kun, Ádám; Szathmáry, Eörs
2015-08-21
The notion of fitness landscapes, a map between genotype and fitness, was proposed more than 80 years ago. For most of this time data was only available for a few alleles, and thus we had only a restricted view of the whole fitness landscape. Recently, advances in genetics and molecular biology allow a more detailed view of them. Here we review experimental and theoretical studies of fitness landscapes of functional RNAs, especially aptamers and ribozymes. We find that RNA structures can be divided into critical structures, connecting structures, neutral structures and forbidden structures. Such characterisation, coupled with theoretical sequence-to-structure predictions, allows us to construct the whole fitness landscape. Fitness landscapes then can be used to study evolution, and in our case the development of the RNA world.
Ten Years of Landscape Genomics: Challenges and Opportunities.
Li, Yong; Zhang, Xue-Xia; Mao, Run-Li; Yang, Jie; Miao, Cai-Yun; Li, Zhuo; Qiu, Ying-Xiong
2017-01-01
Landscape genomics is a relatively new discipline that aims to reveal the relationship between adaptive genetic imprints in genomes and environmental heterogeneity among natural populations. Although the interest in landscape genomics has increased since this term was coined, studies on this topic remain scarce. Landscape genomics has become a powerful method to scan and determine the genes responsible for the complex adaptive evolution of species at population (mostly) and individual (more rarely) level. This review outlines the sampling strategies, molecular marker types and research categories in 37 articles published during the first 10 years of this field (i.e., 2007-2016). We also address major challenges and future directions for landscape genomics. This review aims to promote interest in conducting additional studies in landscape genomics.
The Evolution of Bony Vertebrate Enhancers at Odds with Their Coding Sequence Landscape.
Yousaf, Aisha; Sohail Raza, Muhammad; Ali Abbasi, Amir
2015-08-06
Enhancers lie at the heart of transcriptional and developmental gene regulation. Therefore, changes in enhancer sequences usually disrupt the target gene expression and result in disease phenotypes. Despite the well-established role of enhancers in development and disease, evolutionary sequence studies are lacking. The current study attempts to unravel the puzzle of bony vertebrates' conserved noncoding elements (CNE) enhancer evolution. Bayesian phylogenetics of enhancer sequences spotlights promising interordinal relationships among placental mammals, proposing a closer relationship between humans and laurasiatherians while placing rodents at the basal position. Clock-based estimates of enhancer evolution provided a dynamic picture of interspecific rate changes across the bony vertebrate lineage. Moreover, coelacanth in the study augmented our appreciation of the vertebrate cis-regulatory evolution during water-land transition. Intriguingly, we observed a pronounced upsurge in enhancer evolution in land-dwelling vertebrates. These novel findings triggered us to further investigate the evolutionary trend of coding as well as CNE nonenhancer repertoires, to highlight the relative evolutionary dynamics of diverse genomic landscapes. Surprisingly, the evolutionary rates of enhancer sequences were clearly at odds with those of the coding and the CNE nonenhancer sequences during vertebrate adaptation to land, with land vertebrates exhibiting significantly reduced rates of coding sequence evolution in comparison to their fast evolving regulatory landscape. The observed variation in tetrapod cis-regulatory elements caused the fine-tuning of associated gene regulatory networks. Therefore, the increased evolutionary rate of tetrapods' enhancer sequences might be responsible for the variation in developmental regulatory circuits during the process of vertebrate adaptation to land. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Dynamic Landscapes and Sea Level Change in Human Evolution and Dispersal
NASA Astrophysics Data System (ADS)
King, G. C.; Devès, M. H.; Bailey, G.; Inglis, R.; Williams, M.
2012-12-01
Archaeological studies of human settlement in its wider landscape setting usually focus on climate change as the principal environmental driver of change in the physical features of the landscape, even on the long time scales of early human evolution. We emphasize that landscapes evolve dynamically due to an interplay of processes occurring over different timescales. Tectonic deformation, volcanism, sea level changes, by acting on the topography, the lithology and on the patterns of erosion-deposition in a given area, can moderate or amplify the influence of climate at the regional and local scale. These processes impose or alleviate physical barriers to movement, and modify the distribution and accessibility of plant and animal resources in ways critical to human ecological and evolutionary success (King and Bailey, JHE 2006; Bailey and King, Antiquity 2011). The DISPERSE project, an ERC-funded collaboration between the University of York and the Institut de Physique du Globe de Paris,are developing systematic methods for reconstructing landscapes associated with active tectonics, volcanism and sea level change at a variety of scales in order to study their potential impact on patterns of human evolution and dispersal. These approaches use remote sensing techniques combined with archaeological and tectonic field surveys on land and underwater. Examples are shown from Europe, the Middle East and Africa to illustrate the ways in which changes of significance to human settlement can occur at a range of geographical scales and on time scales that range from lifetimes to tens of millennia, creating and sustaining attractive conditions for human settlement and exercising powerful selective pressures on human development.
[Wetland landscape pattern change based on GIS and RS: a review].
Kong, Fan-Ting; Xi, Min; Li, Yue; Kong, Fan-Long; Chen, Wan
2013-04-01
Wetland is an ecological landscape with most biodiversity in nature, which has unique ecological structure and function, and contains abundant natural resources to provide material guarantee for human's living and development. Wetland landscape pattern is the comprehensive result of various ecological processes, and has become a hot issue in wetland ecological study. At present, the combination of geographic information system (GIS) and remote sensing (RS) technologies is an important way to study the wetland landscape pattern change. This paper reviewed the research progress in the wetland landscape change based on GIS and RS from the aspects of the research methods of wetland landscape pattern, index of wetland landscape pattern, and driving forces of wetland landscape pattern evolution, and discussed the applications of the combination of GIS and RS in monitoring the wetland landscape pattern change, the index selection of wetland landscape pattern, and the driving mechanisms of the combined action of human and nature. Some deficiencies in the current studies were put forward, and the directions of the future-studies were prospected.
Relief Evolution in Tectonically Active Mountain Ranges
NASA Technical Reports Server (NTRS)
Whipple, Kelin X.
2004-01-01
The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.
Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm
NASA Technical Reports Server (NTRS)
Yuhas, Roberta H.; Goetz, Alexander F. H.; Boardman, Joe W.
1992-01-01
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired during three consecutive seasons of the year (26 Sep. 1989, 22 Mar. 1990, and 7 Aug. 1990) over an area of the High Plains east of Greeley, Colorado. This region contains extensive eolian deposits in the form of stabilized dune complexes (small scale parabolic dunes superimposed on large scale longitudinal and parabolic dunes). Due to the dunes' large scale (2-10 km) and low relief (1-5 m), the scaling relationships that contribute to the evolution of this landscape are nearly impossible to understand without the use of remote sensing. Additionally, climate models indicate that the High Plains could be one of the first areas to experience changes in climate caused by either global warming or cooling. During the past 10,000 years there were at least three periods of extensive sand activity, followed by periods of landscape stability, as shown in the stratigraphic record of this area. Therefore, if the past is an indication of the future, the monitoring of this landscape and its sensitive ecosystem is important for early detection of regional and global climate change.
NASA Astrophysics Data System (ADS)
Strzelecki, M. C.; Long, A. J.; Zagorski, P.
2017-12-01
The rapid retreat of glaciers observed since the end of the Little Ice Age (LIA) led to a dramatic transformation of High Arctic landscape. This change is apparent in slope, valley and glacier foreland systems, where glacigenic landforms are being denudated by fluvial, aeolian or mass-wasting processes that are being accelerated by permafrost degradation. However, the impact of these changes on the coastal zone is uncertain because of few studies of pre- and post-LIA coastal change. This paper addresses this deficiency by detailing the patterns and processes of post-LIA coastal zone changes in Svalbard - key area for observation of recent paraglacial landscape change in the High Arctic. By application of a mosaic of geomorphological, sedimentological and remote sensing techniques we proved that studied coastal systems (i.e. Billefjorden, Bellsund, Hornsund) abruptly responded to post-LIA deglaciation, permafrost thaw, extreme slope processes and shifts in glaciated catchments. Most of studied coastal systems were characterised by more rapid morphodynamic adjustments than previously thought. Under intervals characterized by a warming climate, retreating local ice masses and shortened sea-ice seasons most of studied coastal systems rapidly responded to an excess of freshly released sediments and experienced significant geomorphological changes (Figure 1). The increased supply of sediments led to the accumulation of new coastal landforms such as extensive gravel-dominated barriers, spits and tidal flats, which are highly sensitive recorders of recent environmental change. We also proved that the development of the post-LIA Svalbard coast is closely linked to the rate of sediment excavation from relict sediment storage systems, such as alluvial fans and outwash plains, that developed across a wide coast plains between the glacier valleys and the fjord during the Holocene. The results are synthesised to propose a new conceptual model of High Arctic paraglacial coastal system, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of High Arctic coastal evolution.This paper is a contribution to the NCN projects UMO2013/11/B/ST10/00283 and UMO2013/08/S/ST10/00585.
Diverse landscapes beneath Pine Island Glacier influence ice flow.
Bingham, Robert G; Vaughan, David G; King, Edward C; Davies, Damon; Cornford, Stephen L; Smith, Andrew M; Arthern, Robert J; Brisbourne, Alex M; De Rydt, Jan; Graham, Alastair G C; Spagnolo, Matteo; Marsh, Oliver J; Shean, David E
2017-11-20
The retreating Pine Island Glacier (PIG), West Antarctica, presently contributes ~5-10% of global sea-level rise. PIG's retreat rate has increased in recent decades with associated thinning migrating upstream into tributaries feeding the main glacier trunk. To project future change requires modelling that includes robust parameterisation of basal traction, the resistance to ice flow at the bed. However, most ice-sheet models estimate basal traction from satellite-derived surface velocity, without a priori knowledge of the key processes from which it is derived, namely friction at the ice-bed interface and form drag, and the resistance to ice flow that arises as ice deforms to negotiate bed topography. Here, we present high-resolution maps, acquired using ice-penetrating radar, of the bed topography across parts of PIG. Contrary to lower-resolution data currently used for ice-sheet models, these data show a contrasting topography across the ice-bed interface. We show that these diverse subglacial landscapes have an impact on ice flow, and present a challenge for modelling ice-sheet evolution and projecting global sea-level rise from ice-sheet loss.
NASA Astrophysics Data System (ADS)
Hargitai, H.
INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no hydrosphere (no erosion). Adding new elements (differentiated body: horizon, atmosphere: blue/purple etc sky as visually important elements; complex lithology (mountains of tectonic ori- gin); atmosphere (which can alter temperature) and hydrosphere (erosion, rivers, de- position) a more complex landscape will appear. As a first step, by making a "landscape model", we can input general parameters of atmosphere, lithosphere, hydrosphere, biosphere, the distance from the Sun, orbital parameters, last resurfacing date, age of the planet and the model will output the pos- 1 sible landscape elements in the planet. This can be refined by inputing the actual pa- rameters (place on planet, climate region etc.) from which the actual landscape can be the result. The landscape altering processes are: exogenic (impact), mass movement, endogenic (volcanism, thermal conditions), weathering, aeolic, fluvial, glacial, biogenic, antro- pogenic processes. Comparing planets and moons, all of these processes work on Earth, only half of them works on Mars and Venus, and even fewer on Mercury and Moon [3], where most of the surface is an "post-impact" landscape. A Planetary view. Science-fiction writers often describe planets with one characteris- tic: "desert planet", "ocean planet", "forest planet". Generally, planetary flyby missions verify these images (Europa - ice plain planet or Io - volcano world), but a orbiter mis- sion makes clear than in any planet, several significantly different landcape units are present, but from planet to planet, the average climatic and lithologic conditions do change and characterize the given planet. LANDSCAPE RESOURCES, LANDSCAPE "HOT SPOTS" Landscape hot spots has "high values" in the factors listed below. Physical landscape values. Small object not detectable from orbiters: individual rocks or the local physical characteristics of the upper layer of the regolith, the sediment or bedrock characteristics along with relief forms will be the important factors of the landscape. Unique or common landscape forms: Depending on the given planet, one feature can have special value (or can be of different scientific importance): on Io, a impact crater would be more important, than on the Moon, etc. Current processes: Naturally, "living" landscapes (with active volcanoes, geysers, dust devils or active weather processes) are more valuable than "dead" ones. Cultural landscape values. Human presence on a extraterrestrial body is of high impor- tance. Human landing sites with footprints or landing sites with spacecraft "debris" or scientific devices makes any - otherwise unimportant - landscape valuable for us. Even the proper names of surface features will change their physical value: for a Hungarian, for example, a crater named after a Hungarian scientist will have a special value and will attract more interest than other craters. These factors are comparable with our tourist value categories. Economical landscape values. As on Earth, it makes an area more valuable if it has economically usable and profitable raw materials: minerals, rocks (impactites and other materials formed in special conditions or a long time ago). Aesthetic landscape values. We, humans, consider this as an other important factor since the German painter A. Altdorfer in the 16th century has first chosen certain land- 2 scapes that he considered to be of artistic value even without human figures present in the landscape. Parts of aesthetic landscape values are not part of the surface or local environment but of the planet or planetary system: the color of lack of the atmosphere, clouds, the characteristics of the visible moons. The abiogenic surface elements of this category are for example sand dunes, relief forms with order in their shape or distri- bution, or extreme landforms: extensive smooth plains or deep canyons. "Human presence (or life) - friendliness" values. Conditions for longer human pres- ence will be one of the most important factors when we start building Lunar or Martian bases. Factors of this category are the presence of water, 24 h communication oppor- tunity with Earth, radio noise free sky, radiation, temperature etc conditions. Since the emergence of the discipline of astrobiology, potentially habitable niches - and espe- cially the so far undiscovered de facto inhabited niches - make very high value of a given landscape. CONCLUSION As we have closer touch with planetary surfaces other than our, and as human (and manned) exploration of the Solar System will again be in the agenda, in addition to physical geographic or geologic factors, new ones: economical, cultural, aesthetic and geofactors together will determine the value of a certain landscape in a given area. Its study will be more geographic than geologic. The above listed ele- ments can be important when chosing a base or landing site on any planetary body. The landscape values can be merged in a GIS system and this way we can more ea- sity determine not only landcape types but also the optimal landing sites for future missions. References [1] Mezõsi , G.: A földrajzi táj (geographic landscape), in: Általános ter- mészerföldrajz, Budapest, 1993. pp 807-818. [2] Baker, V. R.: Extraterrestrial Geo- morphology: An Introduction. Geomorphology 37 (2001) pp 175-178. [3] Jakucs, L.: A földrajzi burok kozmogén és endogén dinamikája (Endogenic and Cosmogenic Dy- namics of the Geospheres). JATEPress, 1997. 3
GEOMORPHOLOGY. Experimental evidence for hillslope control of landscape scale.
Sweeney, K E; Roering, J J; Ellis, C
2015-07-03
Landscape evolution theory suggests that climate sets the scale of landscape dissection by modulating the competition between diffusive processes that sculpt convex hillslopes and advective processes that carve concave valleys. However, the link between the relative dominance of hillslope and valley transport processes and landscape scale is difficult to demonstrate in natural landscapes due to the episodic nature of erosion. Here, we report results from laboratory experiments combining diffusive and advective processes in an eroding landscape. We demonstrate that rainsplash-driven disturbances in our experiments are a robust proxy for hillslope transport, such that increasing hillslope transport efficiency decreases drainage density. Our experimental results demonstrate how the coupling of climate-driven hillslope- and valley-forming processes, such as bioturbation and runoff, dictates the scale of eroding landscapes. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Mugiraneza, T.; Haas, J.; Ban, Y.
2017-11-01
Mapping urbanization and ensuing environmental impacts using satellite data combined with landscape metrics has become a hot research topic. The objectives of the study are to analyze the spatio-temporal evolution of urbanization patterns of Kigali, Rwanda over the last three decades (from 1984 to 2015) using multitemporal Landsat data and to assess the associated environmental impact using landscape metrics. Landsat images, Normalized Difference Vegetation Index (NDVI), Grey Level Co-occurrence Matrix (GLCM) variance texture and digital elevation model (DEM) data were classified using a support vector machine (SVM). Eight landscape indices were derived from classified images for urbanization environment impact assessment. Seven land cover classes were derived with an overall accuracy exceeding 88 % with Kappa Coefficients around 0.8. As most prominent changes, cropland was reduced considerably in favour of built-up areas that increased from 2,349 ha to 11,579 ha between 1984 and 2015. During those 31 years, the increased number of patches in most land cover classes illustrated landscape fragmentation, especially for forest. The landscape configuration indices demonstrate that in general the land cover pattern remained stable for cropland but it was highly changed in built-up areas. Satellite-based analysis and quantification of urbanization and its effects using landscape metrics are found to be interesting for grassroots and provide a cost-effective method for urban information production. This information can be used for e.g. potential design and implementation of early warning systems that cater for urbanization effects.
van der Post, Daniel J.; Semmann, Dirk
2011-01-01
Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or “recognize patterns” in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is “staying in patches”. In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape. PMID:21998571
van der Post, Daniel J; Semmann, Dirk
2011-10-01
Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or "recognize patterns" in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is "staying in patches". In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape.
Zelditch, Miriam Leah; Ye, Ji; Mitchell, Jonathan S; Swiderski, Donald L
2017-03-01
Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. We examine the roles of size and diet as determinants of jaw shape in Sciuridae. As expected, size and diet have significant interdependent effects on jaw shape and ecomorphological convergence is rare, typically involving demanding diets and limiting sizes. More surprising is morphological without ecological convergence, which is equally common between and within dietary classes. Those cases, like rare ecomorphological convergence, may be consequences of evolving on an adaptive landscape shaped by many-to-many relationships between ecology and function, many-to-one relationships between form and performance, and one-to-many relationships between functionally versatile morphologies and ecology. On complex adaptive landscapes, ecological selection can yield different outcomes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Weathering-limited hillslope evolution in carbonate landscapes
NASA Astrophysics Data System (ADS)
Godard, Vincent; Ollivier, Vincent; Bellier, Olivier; Miramont, Cécile; Shabanian, Esmaeil; Fleury, Jules; Benedetti, Lucilla; Guillou, Valéry; Aster Team
2016-07-01
Understanding topographic evolution requires integrating elementary processes acting at the hillslope scale into the long-wavelength framework of landscape dynamics. Recent progress has been made in the quantification of denudation of eroding landscapes and its links with topography. Despite these advances, data is still sparse in carbonate terrain, which covers a significant part of the Earth's surface. In this study, we measured both long-term denudation rates using in situ-produced 36Cl concentrations in bedrock and regolith clasts and surface convexity at 12 sites along ridges of the Luberon carbonate range in Provence, Southeastern France. Starting from ∼30 mm/ka for the lowering of the summit plateau surface, denudation linearly increases with increasing hilltop convexity up to ∼70 mm/ka, as predicted by diffusive mass transport theory. Beyond this point denudation rates appear to be insensitive to the increase in hilltop convexity. We interpret this constant denudation as indicating a transition from a regime where hillslope evolution is primarily controlled by diffusive downslope regolith transport, toward a situation in which denudation is limited by the rate at which physical and chemical weathering processes can produce clasts and lower the hilltop. Such an abrupt transition into a weathering-limited dynamics may prevent hillslope denudation from balancing the rate of base level fall imposed by the river network and could potentially explain the development of high local relief in many Mediterranean carbonate landscapes.
Evolution of canalizing Boolean networks
NASA Astrophysics Data System (ADS)
Szejka, A.; Drossel, B.
2007-04-01
Boolean networks with canalizing functions are used to model gene regulatory networks. In order to learn how such networks may behave under evolutionary forces, we simulate the evolution of a single Boolean network by means of an adaptive walk, which allows us to explore the fitness landscape. Mutations change the connections and the functions of the nodes. Our fitness criterion is the robustness of the dynamical attractors against small perturbations. We find that with this fitness criterion the global maximum is always reached and that there is a huge neutral space of 100% fitness. Furthermore, in spite of having such a high degree of robustness, the evolved networks still share many features with “chaotic” networks.
Towards physical principles of biological evolution
NASA Astrophysics Data System (ADS)
Katsnelson, Mikhail I.; Wolf, Yuri I.; Koonin, Eugene V.
2018-03-01
Biological systems reach organizational complexity that far exceeds the complexity of any known inanimate objects. Biological entities undoubtedly obey the laws of quantum physics and statistical mechanics. However, is modern physics sufficient to adequately describe, model and explain the evolution of biological complexity? Detailed parallels have been drawn between statistical thermodynamics and the population-genetic theory of biological evolution. Based on these parallels, we outline new perspectives on biological innovation and major transitions in evolution, and introduce a biological equivalent of thermodynamic potential that reflects the innovation propensity of an evolving population. Deep analogies have been suggested to also exist between the properties of biological entities and processes, and those of frustrated states in physics, such as glasses. Such systems are characterized by frustration whereby local state with minimal free energy conflict with the global minimum, resulting in ‘emergent phenomena’. We extend such analogies by examining frustration-type phenomena, such as conflicts between different levels of selection, in biological evolution. These frustration effects appear to drive the evolution of biological complexity. We further address evolution in multidimensional fitness landscapes from the point of view of percolation theory and suggest that percolation at level above the critical threshold dictates the tree-like evolution of complex organisms. Taken together, these multiple connections between fundamental processes in physics and biology imply that construction of a meaningful physical theory of biological evolution might not be a futile effort. However, it is unrealistic to expect that such a theory can be created in one scoop; if it ever comes to being, this can only happen through integration of multiple physical models of evolutionary processes. Furthermore, the existing framework of theoretical physics is unlikely to suffice for adequate modeling of the biological level of complexity, and new developments within physics itself are likely to be required.
2015-01-01
explain the accuracy and speed increase. Exploring the underlying connections of the energy evolution of these methods and the energy landscape for the...unwanted trivial global minimizers from the energy landscape . Note that the second eigenvector of the Laplacian already provides a solution to a cut...von Brecht. Convergence and energy landscape for Cheeger cut clustering. Advances in Neural Information Processing Systems, 25:1394– 1402, 2012. [13] X
Coupled land surface/hydrologic/atmospheric models
NASA Technical Reports Server (NTRS)
Pielke, Roger; Steyaert, Lou; Arritt, Ray; Lahtakia, Mercedes; Smith, Chris; Ziegler, Conrad; Soong, Su Tzai; Avissar, Roni; Wetzel, Peter; Sellers, Piers
1993-01-01
The topics covered include the following: prototype land cover characteristics data base for the conterminous United States; surface evapotranspiration effects on cumulus convection and implications for mesoscale models; the use of complex treatment of surface hydrology and thermodynamics within a mesoscale model and some related issues; initialization of soil-water content for regional-scale atmospheric prediction models; impact of surface properties on dryline and MCS evolution; a numerical simulation of heavy precipitation over the complex topography of California; representing mesoscale fluxes induced by landscape discontinuities in global climate models; emphasizing the role of subgrid-scale heterogeneity in surface-air interaction; and problems with modeling and measuring biosphere-atmosphere exchanges of energy, water, and carbon on large scales.
Spatial and temporal heterogeneity of microbial life in artificial landscapes
NASA Astrophysics Data System (ADS)
Sengupta, A.; Kaur, R.; Meredith, L. K.; Troch, P. A. A.
2017-12-01
The Landscape Evolution Observatory (LEO) project at Biosphere 2 consists of three replicated artificial landscapes which are sealed within a climate-controlled glass house. LEO is composed of basaltic soil material with low organic matter, nutrients, and microbes. The landscapes are built to resemble zero-order basins and enable researchers to observe hydrological, biological, and geochemical evolution of landscapes in a controlled environment. This study is focused on capturing microbial community dynamics in LEO soil, pre- and post-controlled rainfall episodes. Soil samples were collected from six different locations and at five depths in each of the three slopes followed by DNA extraction from 180 samples and sent for amplicon and minimal draft metagenome sequencing. The average concentration of DNA recovered from each sample was higher in the post-rainfall samples than the pre-rainfall samples, a trend consistent in all three slopes. The sequence data will be evaluated to reveal heterogeneity of the soil microbes, providing a more exact narrative of the microbes present in each slope and the spatiotemporal trends of microbial life in the landscapes. Next, functional traits will be predicted from the community data and metagenomes to determine whether consistent changes occur with respect to wetting and drying episodes. Together, these results will highlight the relevance of a unique terrestrial ecosystem research infrastructure in supporting interdisciplinary hydrobiogeochemical research.
NASA Astrophysics Data System (ADS)
Booth, Adam M.; LaHusen, Sean R.; Duvall, Alison R.; Montgomery, David R.
2017-02-01
Documenting spatial and temporal patterns of past landsliding is a challenging step in quantifying the effect of landslides on landscape evolution. While landslide inventories can map spatial distributions, lack of dateable material, landslide reactivations, or time, access, and cost constraints generally limit dating large numbers of landslides to analyze temporal patterns. Here we quantify the record of the Holocene history of deep-seated landsliding along a 25 km stretch of the North Fork Stillaguamish River valley, Washington State, USA, including the 2014 Oso landslide, which killed 43 people. We estimate the ages of more than 200 deep-seated landslides in glacial sediment by defining an empirical relationship between landslide deposit age from radiocarbon dating and landslide deposit surface roughness. We show that roughness systematically decreases with age as a function of topographic wavelength, consistent with models of disturbance-driven soil transport. The age-roughness model predicts a peak in landslide frequency at 1000 calibrated (cal) years B.P., with very few landslide deposits older than 7000 cal years B.P. or younger than 100 cal years B.P., likely reflecting a combination of preservation bias and a complex history of changing climate, base level, and seismic shaking in the study area. Most recent landslides have occurred where channels actively interact with the toes of hillslopes composed of glacial sediments, suggesting that lateral channel migration is a primary control on the location of large deep-seated landslides in the valley.
Can Evolution Supply What Ecology Demands?
Kokko, Hanna; Chaturvedi, Anurag; Croll, Daniel; Fischer, Martin C; Guillaume, Frédéric; Karrenberg, Sophie; Kerr, Ben; Rolshausen, Gregor; Stapley, Jessica
2017-03-01
A simplistic view of the adaptive process pictures a hillside along which a population can climb: when ecological 'demands' change, evolution 'supplies' the variation needed for the population to climb to a new peak. Evolutionary ecologists point out that this simplistic view can be incomplete because the fitness landscape changes dynamically as the population evolves. Geneticists meanwhile have identified complexities relating to the nature of genetic variation and its architecture, and the importance of epigenetic variation is under debate. In this review, we highlight how complexity in both ecological 'demands' and the evolutionary 'supply' influences organisms' ability to climb fitness landscapes that themselves change dynamically as evolution proceeds, and encourage new synthetic effort across research disciplines towards ecologically realistic studies of adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modelling past hydrology of an interfluve area in the Campine region (NE Belgium)
NASA Astrophysics Data System (ADS)
Leterme, Bertrand; Beerten, Koen; Gedeon, Matej; Vandersteen, Katrijn
2015-04-01
This study aims at hydrological model verification of a small lowland interfluve area (18.6 km²) in NE Belgium, for conditions that are different than today. We compare the current state with five reference periods in the past (AD 1500, 1770, 1854, 1909 and 1961) representing important stages of landscape evolution in the study area. Historical information and proxy data are used to derive conceptual model features and boundary conditions specific to each period: topography, surface water geometry (canal, drains and lakes), land use, soils, vegetation and climate. The influence of landscape evolution on the hydrological cycle is assessed using numerical simulations of a coupled unsaturated zone - groundwater model (HYDRUS-MODFLOW). The induced hydrological changes are assessed in terms of groundwater level, recharge, evapotranspiration, and surface water discharge. HYDRUS-MODFLOW coupling allows including important processes such as the groundwater contribution to evapotranspiration. Major land use change occurred between AD 1854 and 1909, with about 41% of the study area being converted from heath to coniferous forest, together with the development of a drainage network. Results show that this led to a significant decrease of groundwater recharge and lowering of the groundwater table. A limitation of the study lies in the comparison of simulated past hydrology with appropriate palaeo-records. Examples are given as how some indicators (groundwater head, swamp zones) can be used to tend to model validation. Quantifying the relative impact of land use and climate changes requires running sensitivity simulations where the models using alternative land use are run with the climate forcing of other periods. A few examples of such sensitivity runs are presented in order to compare the influence of land use and climate change on the study area hydrology.
NASA Astrophysics Data System (ADS)
Marston, B. K.; Bishop, M. P.; Shroder, J. F.
2009-12-01
Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.
Neutral biogeography and the evolution of climatic niches.
Boucher, Florian C; Thuiller, Wilfried; Davies, T Jonathan; Lavergne, Sébastien
2014-05-01
Recent debate on whether climatic niches are conserved through time has focused on how phylogenetic niche conservatism can be measured by deviations from a Brownian motion model of evolutionary change. However, there has been no evaluation of this methodological approach. In particular, the fact that climatic niches are usually obtained from distribution data and are thus heavily influenced by biogeographic factors has largely been overlooked. Our main objective here was to test whether patterns of climatic niche evolution that are frequently observed might arise from neutral dynamics rather than from adaptive scenarios. We developed a model inspired by neutral biodiversity theory, where individuals disperse, compete, and undergo speciation independently of climate. We then sampled the climatic niches of species according to their geographic position and showed that even when species evolve independently of climate, their niches can nonetheless exhibit evolutionary patterns strongly differing from Brownian motion. Indeed, climatic niche evolution is better captured by a model of punctuated evolution with constraints due to landscape boundaries, two features that are traditionally interpreted as evidence for selective processes acting on the niche. We therefore suggest that deviation from Brownian motion alone should not be used as evidence for phylogenetic niche conservatism but that information on phenotypic traits directly linked to physiology is required to demonstrate that climatic niches have been conserved through time.
Neutral biogeography and the evolution of climatic niches
Boucher, Florian C.; Thuiller, Wilfried; Davies, T. Jonathan; Lavergne, Sébastien
2014-01-01
Recent debate on whether climatic niches are conserved through time has focused on how phylogenetic niche conservatism can be measured by deviations from a Brownian motion model of evolutionary change. However, there has been no evaluation of this methodological approach. In particular, the fact that climatic niches are usually obtained from distribution data and are thus heavily influenced by biogeographic factors has largely been overlooked. Our main objective here was to test whether patterns of climatic niche evolution that are frequently observed might arise from neutral dynamics rather than adaptive scenarios. We develop a model inspired by Neutral Biodiversity Theory, where individuals disperse, compete, and undergo speciation independently of climate. We then sample the climatic niches of species according to their geographic position and show that even when species evolved independently of climate, their niches can nonetheless exhibit evolutionary patterns strongly differing from Brownian motion. Indeed, climatic niche evolution is better captured by a model of punctuated evolution with constraints due to landscape boundaries, two features that are traditionally interpreted as evidence for selective processes acting on the niche. We therefore suggest that deviation from Brownian motion alone should not be used as evidence for phylogenetic niche conservatism, but that information on phenotypic traits directly linked to physiology is required to demonstrate that climatic niches have been conserved through time. PMID:24739191
Lunar and Planetary Science XXXV: Special Session: Mars Climate Change
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars Climate Change" contained the following reports:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape; Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.
Lunar and Planetary Science XXXV: Special Session: Mars Climate Change
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Mars Climate Change" included the following topics:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.
Woods, Kristina N; Pfeffer, Juergen
2016-01-01
It is now widely accepted that protein function is intimately tied with the navigation of energy landscapes. In this framework, a protein sequence is not described by a distinct structure but rather by an ensemble of conformations. And it is through this ensemble that evolution is able to modify a protein's function by altering its landscape. Hence, the evolution of protein functions involves selective pressures that adjust the sampling of the conformational states. In this work, we focus on elucidating the evolutionary pathway that shaped the function of individual proteins that make-up the mammalian c-type lysozyme subfamily. Using both experimental and computational methods, we map out specific intermolecular interactions that direct the sampling of conformational states and accordingly, also underlie shifts in the landscape that are directly connected with the formation of novel protein functions. By contrasting three representative proteins in the family we identify molecular mechanisms that are associated with the selectivity of enhanced antimicrobial properties and consequently, divergent protein function. Namely, we link the extent of localized fluctuations involving the loop separating helices A and B with shifts in the equilibrium of the ensemble of conformational states that mediate interdomain coupling and concurrently moderate substrate binding affinity. This work reveals unique insights into the molecular level mechanisms that promote the progression of interactions that connect the immune response to infection with the nutritional properties of lactation, while also providing a deeper understanding about how evolving energy landscapes may define present-day protein function. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Role of Utility and Inference in the Evolution of Functional Information
Sharov, Alexei A.
2009-01-01
Functional information means an encoded network of functions in living organisms from molecular signaling pathways to an organism’s behavior. It is represented by two components: code and an interpretation system, which together form a self-sustaining semantic closure. Semantic closure allows some freedom between components because small variations of the code are still interpretable. The interpretation system consists of inference rules that control the correspondence between the code and the function (phenotype) and determines the shape of the fitness landscape. The utility factor operates at multiple time scales: short-term selection drives evolution towards higher survival and reproduction rate within a given fitness landscape, and long-term selection favors those fitness landscapes that support adaptability and lead to evolutionary expansion of certain lineages. Inference rules make short-term selection possible by shaping the fitness landscape and defining possible directions of evolution, but they are under control of the long-term selection of lineages. Communication normally occurs within a set of agents with compatible interpretation systems, which I call communication system. Functional information cannot be directly transferred between communication systems with incompatible inference rules. Each biological species is a genetic communication system that carries unique functional information together with inference rules that determine evolutionary directions and constraints. This view of the relation between utility and inference can resolve the conflict between realism/positivism and pragmatism. Realism overemphasizes the role of inference in evolution of human knowledge because it assumes that logic is embedded in reality. Pragmatism substitutes usefulness for truth and therefore ignores the advantage of inference. The proposed concept of evolutionary pragmatism rejects the idea that logic is embedded in reality; instead, inference rules are constructed within each communication system to represent reality and they evolve towards higher adaptability on a long time scale. PMID:20160960
Stukenbrock, Eva H.; Dutheil, Julien Y.
2018-01-01
Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae. We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. PMID:29263029
Stukenbrock, Eva H; Dutheil, Julien Y
2018-03-01
Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. Copyright © 2018 Stukenbrock and Dutheil.
Predicting soil formation on the basis of transport-limited chemical weathering
NASA Astrophysics Data System (ADS)
Yu, Fang; Hunt, Allen Gerhard
2018-01-01
Soil production is closely related to chemical weathering. It has been shown that, under the assumption that chemical weathering is limited by solute transport, the process of soil production is predictable. However, solute transport in soil cannot be described by Gaussian transport. In this paper, we propose an approach based on percolation theory describing non-Gaussian transport of solute to predict soil formation (the net production of soil) by considering both soil production from chemical weathering and removal of soil from erosion. Our prediction shows agreement with observed soil depths in the field. Theoretical soil formation rates are also compared with published rates predicted using soil age-profile thickness (SAST) method. Our formulation can be incorporated directly into landscape evolution models on a point-to-point basis as long as such models account for surface water routing associated with overland flow. Further, our treatment can be scaled-up to address complications associated with continental-scale applications, including those from climate change, such as changes in vegetation, or surface flow organization. The ability to predict soil formation rates has implications for understanding Earth's climate system on account of the relationship to chemical weathering of silicate minerals with the associated drawdown of atmospheric carbon, but it is also important in geomorphology for understanding landscape evolution, including for example, the shapes of hillslopes, and the net transport of sediments to sedimentary basins.
Adaptive Landscapes of Resistance Genes Change as Antibiotic Concentrations Change.
Mira, Portia M; Meza, Juan C; Nandipati, Anna; Barlow, Miriam
2015-10-01
Most studies on the evolution of antibiotic resistance are focused on selection for resistance at lethal antibiotic concentrations, which has allowed the detection of mutant strains that show strong phenotypic traits. However, solely focusing on lethal concentrations of antibiotics narrowly limits our perspective of antibiotic resistance evolution. New high-resolution competition assays have shown that resistant bacteria are selected at relatively low concentrations of antibiotics. This finding is important because sublethal concentrations of antibiotics are found widely in patients undergoing antibiotic therapies, and in nonmedical conditions such as wastewater treatment plants, and food and water used in agriculture and farming. To understand the impacts of sublethal concentrations on selection, we measured 30 adaptive landscapes for a set of TEM β-lactamases containing all combinations of the four amino acid substitutions that exist in TEM-50 for 15 β-lactam antibiotics at multiple concentrations. We found that there are many evolutionary pathways within this collection of landscapes that lead to nearly every TEM-genotype that we studied. While it is known that the pathways change depending on the type of β-lactam, this study demonstrates that the landscapes including fitness optima also change dramatically as the concentrations of antibiotics change. Based on these results we conclude that the presence of multiple concentrations of β-lactams in an environment result in many different adaptive landscapes through which pathways to nearly every genotype are available. Ultimately this may increase the diversity of genotypes in microbial populations. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Razjigaeva, N. G.; Ganzey, L. A.; Grebennikova, T. A.; Mokhova, L. M.; Kudryavtseva, E. P.; Arslanov, Kh. A.; Maksimov, F. E.; Starikova, A. A.
2018-06-01
Several stages are recognizable in landscape evolution along the Eastern Primorye coast, Kit Bay and its surrounding mountains in terms of climatic changes and related sea level fluctuations during the middle-late Holocene. The last 3.8-3.5 cal ka years were marked by a notable effect of the pyrogenic factor. The sea level rise at the maximum phase of the Holocene transgression led to the formation of lagoons at stream mouths, which underwent a complicated development. At that time, the coast's principal topographic elements came into being, and the modern landscape's pattern was laid on the coastal lowlands. The authors trace the changes in the vegetation in the process of short-term warmings and coolings. Korean pine appeared in the forests surrounding Kit Bay much earlier than in other regions of the Eastern Primorye. During the considered period, warmer phases were marked by increasing importance of broadleaf species, while at the cooler phases, a proportion of the Korean pine grew in the low mountains. In the last 2.3 cal ka, at greater elevations in the middle mountains, dark coniferous forests became more widespread, particularly spruce. At the same time, larch groves existed around the coastal sphagnum bog, probably due to seasonally frozen ground persisting for the greater part of a year. Extreme events with a considerable effect on the coastal landscape evolution include floods, whose frequency has been growing for the last 1.75 cal ka. Strong tsunamis are another factor influencing coastal evolution. Finally, changes in landscapes have been recorded related to human activities in the last few decades.
Geomorphology, active tectonics, and landscape evolution in the Mid-Atlantic region: Chapter
Pazzaglia, Frank J.; Carter, Mark W.; Berti, Claudio; Counts, Ronald C.; Hancock, Gregory S.; Harbor, David; Harrison, Richard W.; Heller, Matthew J.; Mahan, Shannon; Malenda, Helen; McKeon, Ryan; Nelson, Michelle S.; Prince, Phillip; Rittenour, Tammy M.; Spotilla, James; Whittecar, G. Richard
2015-01-01
In 2014, the geomorphology community marked the 125th birthday of one of its most influential papers, “The Rivers and Valleys of Pennsylvania” by William Morris Davis. Inspired by Davis’s work, the Appalachian landscape rapidly became fertile ground for the development and testing of several grand landscape evolution paradigms, culminating with John Hack’s dynamic equilibrium in 1960. As part of the 2015 GSA Annual Meeting, the Geomorphology, Active Tectonics, and Landscape Evolution field trip offers an excellent venue for exploring Appalachian geomorphology through the lens of the Appalachian landscape, leveraging exciting research by a new generation of process-oriented geomorphologists and geologic field mapping. Important geomorphologic scholarship has recently used the Appalachian landscape as the testing ground for ideas on long- and short-term erosion, dynamic topography, glacial-isostatic adjustments, active tectonics in an intraplate setting, river incision, periglacial processes, and soil-saprolite formation. This field trip explores a geologic and geomorphic transect of the mid-Atlantic margin, starting in the Blue Ridge of Virginia and proceeding to the east across the Piedmont to the Coastal Plain. The emphasis here will not only be on the geomorphology, but also the underlying geology that establishes the template and foundation upon which surface processes have etched out the familiar Appalachian landscape. The first day focuses on new and published work that highlights Cenozoic sedimentary deposits, soils, paleosols, and geomorphic markers (terraces and knickpoints) that are being used to reconstruct a late Cenozoic history of erosion, deposition, climate change, and active tectonics. The second day is similarly devoted to new and published work documenting the fluvial geomorphic response to active tectonics in the Central Virginia seismic zone (CVSZ), site of the 2011 M 5.8 Mineral earthquake and the integrated record of Appalachian erosion preserved on the Coastal Plain. The trip concludes on Day 3, joining the Kirk Bryan Field Trip at Great Falls, Virginia/ Maryland, to explore and discuss the dramatic processes of base-level fall, fluvial incision, and knickpoint retreat.
The relative importance of physical and biological energy in landscape evolution
NASA Astrophysics Data System (ADS)
Turowski, J. M.; Schwanghart, W.
2017-12-01
Landscapes are formed by the interplay of uplift and geomorphic processes, including interacting and competing physical and biological processes. For example, roots re-inforce soil and thereby stabilize hillslopes and the canopy cover of the forest may mediate the impact of precipitation. Furthermore, plants and animals act as geomorphic agents, directly altering landscape response and dynamics by their actions: tree roots may crack rocks, thus changing subsurface water flows and exposing fresh material for denudation; fungi excrete acids that accelerate rates of chemical weathering, and burrowing animals displace soil and rocks while digging holes for shelter or in search of food. Energetically, landscapes can be viewed as open systems in which topography stores potential energy above a base level. Tectonic processes add energy to the system by uplift and mechanically altering rock properties. Especially in unvegetated regions, erosion and transport by wind can be an important geomorphic process. Advection of atmospheric moisture in high altitudes provides potential energy that is converted by water fluxes through catchments. At the same time, the conversion of solar energy through atmospheric and biological processes drives primary production of living organisms. If we accept that biota influence geomorphic processes, then what is their energetic contribution to landscape evolution relative to physical processes? Using two case studies, we demonstrate that all components of energy input are negligible apart from biological production, quantified by net primary productivity (NPP) and potential energy conversion by water that is placed high up in the landscape as rainfall and leaves it as runoff. Assuming that the former is representative for biological energy and the latter for physical energy, we propose that the ratio of these two values can be used as a proxy for the relative importance of biological and physical processes in landscape evolution. All necessary parameters needed to calculate the ratio (NPP, runoff, elevation) are available globally. We find that biological processes are more important in arid and semiarid regions. The wide-spread lack of water strongly limits the energy available for fluvial erosion, while biota are geomorphic engineers less sensitive to water shortage.
Feedbacks between subglacial dynamics and long-term glacial landscape evolution (Invited)
NASA Astrophysics Data System (ADS)
Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Christensen, A. D.; Andersen, J. L.
2011-12-01
Several well-known glacial landforms (such as U-shaped troughs and cirques) are associated with characteristic length scales, indicating that the viscosity of the ice and the stress gradients associated with ice flow exert first-order controls on their formation. The evolution of these glacial landforms has so far mostly been explored using phenomenological models that simply link the subglacial erosion rate to sliding or ice discharge. In order to improve our understanding of the causal links between the glacial landforms and the physics of the subglacial environment, we have performed computational experiments with a higher-order ice sheet model (Egholm et al., 2009) capable of simulating the long-term evolution of subglacial dynamics at a high spatial resolution. The orientation and magnitude of subglacial stress components depend not only on ice thickness and ice surface gradients, but also on the details of the bed topography and the regional variations in ice flow velocity. As glaciers erode their beds and modify the morphology of glaciated valleys, the subglacial dynamics therefore change with important implications for the sliding patterns and the continued erosion rates. We focus this presentation on feedbacks between the evolving bed topography and the subglacial erosion patterns. We have performed our experiments with different sliding and erosion laws, including highly non-linear rules representing coulomb-type slip at the bed (Schoof, 2010) and a quarrying model associated to the level of cavitation (Iverson, 2012). The highly non-linear computational experiments are made possible by new and very efficient GPU-accelerated multigrid algorithms. The computational experiments show that higher-order stress effects associated with local changes to the bed gradient provide important stabilizing effects for example in overdeepenings and near topographic steps. The experiments also show how a narrow and meandering pre-glacial valley represents a much more stable environment for a glacier than a glacially eroded valley where slip instabilities can readily propagate upstream. References: Egholm, D. L. et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011). Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005).
Feedbacks between subglacial dynamics and long-term glacial landscape evolution (Invited)
NASA Astrophysics Data System (ADS)
Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Christensen, A. D.; Andersen, J. L.
2013-12-01
Several well-known glacial landforms (such as U-shaped troughs and cirques) are associated with characteristic length scales, indicating that the viscosity of the ice and the stress gradients associated with ice flow exert first-order controls on their formation. The evolution of these glacial landforms has so far mostly been explored using phenomenological models that simply link the subglacial erosion rate to sliding or ice discharge. In order to improve our understanding of the causal links between the glacial landforms and the physics of the subglacial environment, we have performed computational experiments with a higher-order ice sheet model (Egholm et al., 2009) capable of simulating the long-term evolution of subglacial dynamics at a high spatial resolution. The orientation and magnitude of subglacial stress components depend not only on ice thickness and ice surface gradients, but also on the details of the bed topography and the regional variations in ice flow velocity. As glaciers erode their beds and modify the morphology of glaciated valleys, the subglacial dynamics therefore change with important implications for the sliding patterns and the continued erosion rates. We focus this presentation on feedbacks between the evolving bed topography and the subglacial erosion patterns. We have performed our experiments with different sliding and erosion laws, including highly non-linear rules representing coulomb-type slip at the bed (Schoof, 2010) and a quarrying model associated to the level of cavitation (Iverson, 2012). The highly non-linear computational experiments are made possible by new and very efficient GPU-accelerated multigrid algorithms. The computational experiments show that higher-order stress effects associated with local changes to the bed gradient provide important stabilizing effects for example in overdeepenings and near topographic steps. The experiments also show how a narrow and meandering pre-glacial valley represents a much more stable environment for a glacier than a glacially eroded valley where slip instabilities can readily propagate upstream. References: Egholm, D. L. et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011). Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005).
A new surface-process model for landscape evolution at a mountain belt scale
NASA Astrophysics Data System (ADS)
Willett, Sean D.; Braun, Jean; Herman, Frederic
2010-05-01
We present a new surface process model designed for modeling surface erosion and mass transport at an orogenic scale. Modeling surface processes at a large-scale is difficult because surface geomorphic processes are frequently described at the scale of a few meters, and such resolution cannot be represented in orogen-scale models operating over hundreds of square kilometers. We circumvent this problem by implementing a hybrid numerical -- analytical model. Like many previous models, the model is based on a numerical fluvial network represented by a series of nodes linked by model rivers in a descending network, with fluvial incision and sediment transport defined by laws operating on this network. However we only represent the largest rivers in the landscape by nodes in this model. Low-order rivers and water divides between large rivers are determined from analytical solutions assuming steady-state conditions with respect to the local river channel. The analytical solution includes the same fluvial incision law as the large rivers and a channel head with a specified size and mean slope. This permits a precise representation of the position of water divides between river basins. This is a key characteristic in landscape evolution as divide migration provides a positive feedback between river incision and a consequent increase in drainage area. The analytical solution also provides an explicit criterion for river capture, which occurs once a water divide migrates to its neighboring channel. This algorithm avoids the artificial network organization that often results from meshing and remeshing algorithms in numerical models. We demonstrate the use of this model with several simple examples including uniform uplift of a block, simultaneous uplift and shortening of a block, and a model involving strike slip faulting. We find a strong dependence on initial condition, but also a surprisingly strong dependence on channel head height parameters. Low channel heads, as expected, lead to more fluvial capture, but with low initial relief initial and a small channel-head height, runaway capture is common, with a few rivers capturing much of the available drainage area. With larger channel-head relief, lateral capture of rivers is less common, resulting in evenly spaced river basins. Basin spacing ratios matching those observed in nature are obtained for specific channel head parameters. These models thus demonstrate the mixed control on basin characteristics by antecedent river networks and channel-head parameters, which control the mobility of drainage basin water divides.
The Frequency of Fitness Peak Shifts Is Increased at Expanding Range Margins Due to Mutation Surfing
Burton, Olivia J.; Travis, Justin M. J.
2008-01-01
Dynamic species' ranges, those that are either invasive or shifting in response to environmental change, are the focus of much recent interest in ecology, evolution, and genetics. Understanding how range expansions can shape evolutionary trajectories requires the consideration of nonneutral variability and genetic architecture, yet the majority of empirical and theoretical work to date has explored patterns of neutral variability. Here we use forward computer simulations of population growth, dispersal, and mutation to explore how range-shifting dynamics can influence evolution on rugged fitness landscapes. We employ a two-locus model, incorporating sign epistasis, and find that there is an increased likelihood of fitness peak shifts during a period of range expansion. Maladapted valley genotypes can accumulate at an expanding range front through a phenomenon called mutation surfing, which increases the likelihood that a mutation leading to a higher peak will occur. Our results indicate that most peak shifts occur close to the expanding front. We also demonstrate that periods of range shifting are especially important for peak shifting in species with narrow geographic distributions. Our results imply that trajectories on rugged fitness landscapes can be modified substantially when ranges are dynamic. PMID:18505864
NASA Technical Reports Server (NTRS)
Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Hausdorff, J. M.; Havlin, S.; Mietus, J.; Sciortino, F.; Simons, M.
1992-01-01
Here we discuss recent advances in applying ideas of fractals and disordered systems to two topics of biological interest, both topics having common the appearance of scale-free phenomena, i.e., correlations that have no characteristic length scale, typically exhibited by physical systems near a critical point and dynamical systems far from equilibrium. (i) DNA nucleotide sequences have traditionally been analyzed using models which incorporate the possibility of short-range nucleotide correlations. We found, instead, a remarkably long-range power law correlation. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences as well as intragenomic DNA, but not in cDNA sequences or intron-less genes. We also found that the myosin heavy chain family gene evolution increases the fractal complexity of the DNA landscapes, consistent with the intron-late hypothesis of gene evolution. (ii) The healthy heartbeat is traditionally thought to be regulated according to the classical principle of homeostasis, whereby physiologic systems operate to reduce variability and achieve an equilibrium-like state. We found, however, that under normal conditions, beat-to-beat fluctuations in heart rate display long-range power law correlations.
A New View of Dynamic River Networks
NASA Astrophysics Data System (ADS)
Perron, J. T.; Willett, S.; McCoy, S. W.
2014-12-01
River networks are the main conduits that transport water, sediment, and nutrients from continental interiors to the oceans. They also shape topography as they erode through bedrock. These hierarchical networks are dynamic: there are numerous examples of apparent changes in the topology of river networks through geologic time. But these examples are geographically scattered, the evidence can be ambiguous, and the mechanisms that drive changes in river networks are poorly understood. This makes it difficult to assess how pervasive river network reorganization is, how it operates, and how the interlocking river basins that compose a given landscape are changing through time. Recent progress has improved the situation. We describe three developments that have dramatically advanced our understanding of dynamic river networks. First, new topographic, geophysical and geochronological measurement techniques are revealing the rate and extent of river network adjustment. Second, laboratory experiments and computational models are clarifying how river networks respond to tectonic and climatic perturbations at scales ranging from local to continental. Third, spatial analysis of genetic data is exposing links between landscape evolution, biological evolution, and the development of biodiversity. We highlight key problems that remain unsolved, and suggest ways to build on recent advances that will bring dynamic river networks into even sharper focus.
NASA Astrophysics Data System (ADS)
Giordano, Enrico; Natalicchio, Marcello; Ghiraldi, Luca; Lozar, Francesca; Dela Pierre, Francesco; Giardino, Marco
2015-04-01
The Piemonte region (NW-Italy) contains a remarkable diversity of landscapes, some of them included in and protected by the World Heritage list, as well as some recently proposed geosites which testify the dramatic paleoevironmental, paleobiological and paleoclimatic event that occurred in the Mediterranean area around 6 Ma ago during the so-called Messinian Salinity Crisis (MSC). However the link between landform, geodiversity, geoheritage, and cultural landscape has not yet fully explored. The aims of this study, promoted by the multidisciplinary research project 'PROGEO-Piemonte' (PROactive management of GEOlogical heritage in the Piemonte region), are: 1) to analyse the link between geosites and recent landscape modification, 2) to reconstruct the landscape evolution and, through geotourism, 3) to promote geological knowledge in an area with great potential for tourism. The study area is located in the SE part of the Cuneo plain, at the foot of the Langhe hills, where heterogeneous landforms, mainly related to the Tanaro river piracy, are observed. The sediments recording the MSC event, mostly consisting of thick gypsum layers, have been recently studied by a multidisciplinary approach and the results allowed the detailed reconstruction of the MSC evolution in this region. Two maps have been produced to disseminate the geodiversity knowledge (the geological - landscape map) and to promote geotourism fruition (the geotouristic map). The geological - landscape map deals with different geological and geomorphologic issues thanks to illustrations of the main features of the Messinian deposits, their depositional environments and the exposed landforms. To underline the high geodiversity of the area, it has been divided into several geomorphologic sectors based of their characteristic landforms and evolution. In each of these sectors, geosites have been identified to clarify the comprehension of the related topics at the widest public: particularly, the geosites help to reconstruct the stages of the MSC and to understand the implication of fast environmental changes on the living beings. The geotouristic map describes the geological and geomorphologic features with a simpler language and shorter form than the previous one. Trails, viewpoints and museums are reported on the map to facilitate the comprehension of the landscape and to create a link between scientific issues and human activities (i.e. use of gypsum in the building industry). Moreover the geomorphologic analysis of the present landscape allows to decipher its recent evolution and to evaluate the risks connected with the tourist fruition, thus improving the potential safe use of anthropogenic landforms for geo-environmental education. Here the MSC is dealt with through the stages of scientific discoveries that led to the formulation of the current theories. In conclusion, the produced maps may help both to improve people knowledge and awareness on environmental modification and past climate variability and to address the crucial question whether they could happen again in the future.
Titan's Impact Cratering Record: Erosion of Ganymedean (and other) Craters on a Wet Icy Landscape
NASA Astrophysics Data System (ADS)
Schenk, P.; Moore, J.; Howard, A.
2012-04-01
We examine the cratering record of Titan from the perspective of icy satellites undergoing persistent landscape erosion. First we evaluate whether Ganymede (and Callisto) or the smaller low-gravity neighboring icy satellites of Saturn are the proper reference standard for evaluating Titan’s impact crater morphologies, using topographic and morphometric measurements (Schenk, 2002; Schenk et al. (2004) and unpublished data). The special case of Titan’s largest crater, Minrva, is addressed through analysis of large impact basins such as Gilgamesh, Lofn, Odysseus and Turgis. Second, we employ a sophisticated landscape evolution and modification model developed for study of martian and other planetary landforms (e.g., Howard, 2007). This technique applies mass redistribution principles due to erosion by impact, fluvial and hydrological processes to a planetary landscape. The primary advantage of our technique is the possession of a limited but crucial body of areal digital elevation models (DEMs) of Ganymede (and Callisto) impact craters as well as global DEM mapping of Saturn’s midsize icy satellites, in combination with the ability to simulate rainfall and redeposition of granular material to determine whether Ganymede craters can be eroded to resemble Titan craters and the degree of erosion required. References: Howard, A. D., “Simulating the development of martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing”, Geomorphology, 91, 332-363, 2007. Schenk, P. "Thickness constraints on the icy shells of the galilean satellites from impact crater shapes". Nature, 417, 419-421, 2002. Schenk, P.M., et al. "Ages and interiors: the cratering record of the Galilean satellites". In: Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004.
NASA Astrophysics Data System (ADS)
Guerit, Laure; Goren, Liran; Dominguez, Stéphane; Malavieille, Jacques; Castelltort, Sébastien
2017-04-01
The morphology of a fluvial landscape reflects a balance between its own dynamics and external forcings, and therefore holds the potential to reveal local or large-scale tectonic patterns. Commonly, particular focus has been cast on the longitudinal profiles of rivers as they constitute sensitive recorders of vertical movements, that can be recovered based on models of bedrock incision. However, several recent studies have suggested that maps of rescaled distance along channel called chi (χ), derived from the commonly observed power law relation between the slope and the drainage area , could reveal transient landscapes in state of reorganization of basin geometry and location of water divides. If river networks deforms in response to large amount of distributed strain, then they might be used to reconstruct the mode and rate of horizontal deformation away from major active structures through the use of the parameter χ. To explore how streams respond to tectonic horizontal deformation, we develop an experimental model for studying river pattern evolution over a doubly-vergent orogenic wedge growing in a context of oblique convergence. We use a series of sprinklers located about the experimental table to activate erosion, sediment transport and river development on the surface of the experimental wedge. At the end of the experiment, the drainage network is statistically rotated clockwise, confirming that rivers can record the distribution of motion along the wedge. However, the amount of rotation does not match with the imposed deformation, and thus we infer that stream networks are not purely passive markers. Based on the comparison between the observed evolution of the fluvial system and the predictions made from χ maps, we show that the plan-view morphology of the streams results from the competition between the imposed deformation and fluvial processes of drainage reorganization.
The Dominant Folding Route Minimizes Backbone Distortion in SH3
Lammert, Heiko; Noel, Jeffrey K.; Onuchic, José N.
2012-01-01
Energetic frustration in protein folding is minimized by evolution to create a smooth and robust energy landscape. As a result the geometry of the native structure provides key constraints that shape protein folding mechanisms. Chain connectivity in particular has been identified as an essential component for realistic behavior of protein folding models. We study the quantitative balance of energetic and geometrical influences on the folding of SH3 in a structure-based model with minimal energetic frustration. A decomposition of the two-dimensional free energy landscape for the folding reaction into relevant energy and entropy contributions reveals that the entropy of the chain is not responsible for the folding mechanism. Instead the preferred folding route through the transition state arises from a cooperative energetic effect. Off-pathway structures are penalized by excess distortion in local backbone configurations and contact pair distances. This energy cost is a new ingredient in the malleable balance of interactions that controls the choice of routes during protein folding. PMID:23166485
Formalized landscape models for surveying and modelling tasks
NASA Astrophysics Data System (ADS)
Löwner, Marc-Oliver
2010-05-01
We present a formalization of main geomorphic landscape models, mainly the concept of slopes, to clarify the needs and potentials of surveying technologies and modelling approaches. Using the Unified Modelling Language (UML) it is implemented as a exchangeable Geography Markup Language (GML3) -based application schema and therefore supports shared measurement campaigns. Today, knowledge in Geomorphology is given synoptically in textbooks in a more or less lyrical way. This knowledge is hard to implement for the use of modelling algorithms or data storage and sharing questions. On the other hand physical based numerical modelling and high resolution surveying technologies enable us to investigate case scenarios within small scales. Bringing together such approaches and organizing our data in an appropriate way will need the formalization of the concepts and knowledge that is archived in the science of geomorphology. The main problem of comparing research results in geomorphology but is that the objects under investigation are composed of 3-dimensional geometries that change in time due to processes of material fluxes, e. g. soil erosion or mass movements. They have internal properties, e. g. soil texture or bulk density, that determine the effectiveness of these processes but are under change as well. The presented application schema is available on the Internet and therefore a first step to enable researchers to share information using an OGC's Web feature service. In this vein comparing modelling results of landscape evolution with results of other scientist's observations is possible. Compared to prevalent data concepts the model presented makes it possible to store information about landforms, their geometry and the characteristics in more detail. It allows to represent the 3D-geometry, the set of material properties and the genesis of a landform by associating processes to a geoobject. Thus, time slices of a geomorphic system can be represented as well as scenarios of landscape modelling. Commercial GI-software is not adapted to the needs of the science of geomorphology. Therefore the development of an application model i. e. a formal description of semantics is imperative to partake in technologies like Web Feature Services supporting interoperable data transfer.
The threshold algorithm: Description of the methodology and new developments
NASA Astrophysics Data System (ADS)
Neelamraju, Sridhar; Oligschleger, Christina; Schön, J. Christian
2017-10-01
Understanding the dynamics of complex systems requires the investigation of their energy landscape. In particular, the flow of probability on such landscapes is a central feature in visualizing the time evolution of complex systems. To obtain such flows, and the concomitant stable states of the systems and the generalized barriers among them, the threshold algorithm has been developed. Here, we describe the methodology of this approach starting from the fundamental concepts in complex energy landscapes and present recent new developments, the threshold-minimization algorithm and the molecular dynamics threshold algorithm. For applications of these new algorithms, we draw on landscape studies of three disaccharide molecules: lactose, maltose, and sucrose.
Introduction: CRevolution 2: origin and evolution of the Colorado River System II
Karlstrom, Karl E.; Beard, L. Sue; House, P. Kyle; Young, Richard A.; Aslan, Andres; Billingsley, George; Pederson, Joel
2012-01-01
A 2010 Colorado River symposium held in Flagstaff, Arizona, in May 2010, had 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built on two previous decadal scientific meetings, focused on forging scientific consensus where possible, while also articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau–Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift, with consensus that multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology are needed to test the relative importance of tectonic and geomorphic forcings in shaping the spectacular landscapes of the Colorado Plateau region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences, and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in the shaping landscape of elevated plateaus.
Potts, Richard; Faith, J Tyler
2015-10-01
Interaction of orbital insolation cycles defines a predictive model of alternating phases of high- and low-climate variability for tropical East Africa over the past 5 million years. This model, which is described in terms of climate variability stages, implies repeated increases in landscape/resource instability and intervening periods of stability in East Africa. It predicts eight prolonged (>192 kyr) eras of intensified habitat instability (high variability stages) in which hominin evolutionary innovations are likely to have occurred, potentially by variability selection. The prediction that repeated shifts toward high climate variability affected paleoenvironments and evolution is tested in three ways. In the first test, deep-sea records of northeast African terrigenous dust flux (Sites 721/722) and eastern Mediterranean sapropels (Site 967A) show increased and decreased variability in concert with predicted shifts in climate variability. These regional measurements of climate dynamics are complemented by stratigraphic observations in five basins with lengthy stratigraphic and paleoenvironmental records: the mid-Pleistocene Olorgesailie Basin, the Plio-Pleistocene Turkana and Olduvai Basins, and the Pliocene Tugen Hills sequence and Hadar Basin--all of which show that highly variable landscapes inhabited by hominin populations were indeed concentrated in predicted stages of prolonged high climate variability. Second, stringent null-model tests demonstrate a significant association of currently known first and last appearance datums (FADs and LADs) of the major hominin lineages, suites of technological behaviors, and dispersal events with the predicted intervals of prolonged high climate variability. Palynological study in the Nihewan Basin, China, provides a third test, which shows the occupation of highly diverse habitats in eastern Asia, consistent with the predicted increase in adaptability in dispersing Oldowan hominins. Integration of fossil, archeological, sedimentary, and paleolandscape evidence illustrates the potential influence of prolonged high variability on the origin and spread of critical adaptations and lineages in the evolution of Homo. The growing body of data concerning environmental dynamics supports the idea that the evolution of adaptability in response to climate and overall ecological instability represents a unifying theme in hominin evolutionary history. Published by Elsevier Ltd.
The Subglacial Drainage Patterns of Devon Island, Canada
NASA Astrophysics Data System (ADS)
Grau Galofre, A.; Jellinek, M.; Osinski, G. R.
2016-12-01
Meltwater drainage patterns incised underneath ice masses can appear strikingly similar to fluvially dissected landscapes. We introduce a landscape evolution model to describe the longitudinal profiles of subglacial meltwater channels (tunnel valleys).We propose a way to identify them from topography data and imagery on the basis of the vertical scale of undulations compared to the total elevation gain. We test the model with field data from tunnel valleys exposed in Devon Island, NU, Canada. We use field measurements of longitudinal profiles, photogrammetry and 3D LIDAR to establish a quantitative comparison of tunnel valleys and fluvial channels. Tunnel valleys are oriented parallel to former ice flow lines and are characterized by undulating longitudinal profiles. We use these features to identify quantitatively tunnel valleys in central Devon Island (figure 1). We ground truth our observations with imagery of tunnel valleys appearing at the edges of the actively retreating ice cap. Longitudinal profiles show undulations with amplitudes up to 14m over a total elevation gain of 20m and with wavelengths comparable to the channel width. These "overdeepenings" are not observed in any fluvial channels in the area and are consistent with expectations of flow driven by variations in ice thickness. Our identification scheme rigorously distinguishes fluvial and subglacial dissected landscapes.
Gregoriano cadastre (1818-35) from old maps to a GIS of historical landscape data
NASA Astrophysics Data System (ADS)
Frazzica, V.; Galletti, F.; Orciani, M.; Colosi, L.; Cartaro, A.
2009-04-01
Our analysis covered specifically an area located along the "internal Marche ridge" of the Apennines, in the province of Ancona (Marche Region, Italy). The cartographical working-out for our historical analysis has been conduct drawing up maps originating from the nineteenth century Gregoriano Cadastre (Catasto Gregoriano) maps preserved in the State Archive of Rome, which have been reproduced in digital format, georeferenced and vectorialized. With the creation of a database, it has been possible to add to the maps the information gathered from the property registers concerning crop production and socioeconomic variables, in order to set up a Geographical Information System (G.I.S.). The combination of the database with the digitalized maps has allowed to create an univocal relation between each parcel and the related historical data, obtaining an information system which integrally and completely evidences the original cadastre data as a final result. It was also possible to create a three-dimensional model of the historical landscapes which permits to visualize the cultural diversification of that historical period. The integration in Territorial Information System (S.I.T.) of historical information from Gregoriano Cadastre, of socio-economic analyses concerning business changes and in parallel the study of the transformations of territorial framework, showed to be a very important instrument for the area planning, allowing to identify specific planning approaches not only for urban settlement but also for restoration of variety and complexity of agricultural landscape. The work opens further research in various directions, identifying some pilot areas which test new managerial models, foreseeing simulation of management impacts both on business profitability and landscape configuration. The future development of the project is also the upgrade and evolution of the database, followed by the acquisition of data related to the following historical periods. It'll also allow to improve the three-dimensional model (rendering) of the landscape described in the Gregoriano Cadastre.
Emergent reorganization of an evolving experimental landscape under changing climatic forcing
NASA Astrophysics Data System (ADS)
Singh, A.; Tejedor, A.; Zaliapin, I. V.; Reinhardt, L.; Foufoula-Georgiou, E.
2014-12-01
Understanding landscape re-organization under changing climatic forcing is fundamental to advancing our understanding of geomorphic transport laws under transient conditions, developing predictive models of landscape response to external perturbations, and interpreting the stratigraphic record for past climates by incorporating possible regime shifts. Real landscape observations for long-term analysis are limited and to this end a high resolution controlled laboratory experiment was conducted at the St. Anthony Falls laboratory at the University of Minnesota. Elevation data were collected at temporal resolution of 5 mins and spatial resolution of 0.5 mm as the landscape approached steady state (for a constant uplift and precipitation rate) and in the transient state (under the same uplift and 5x precipitation). The results reveal rapid topographic re-organization under a five-fold precipitation increase with the fluvial regime expanding into previously debris dominated regime, accelerated erosion happening at hillslope scales, and rivers shifting from an erosion-limited to a transport-limited regime. By studying the space-time structure of the individual erosional and depositional events in terms of their size, location, clustering, and total volume we report complex space-time patterns of change which are scale-dependent and bounded by the river network topology. At the same time, the river network topology itself adjusts at smaller scales, with new channels added to accommodate increased hillslope erosional transport, further adjusting the landscape. Some new ideas related to landscape variability and entropy evolution at different scales during steady and transient states and the possibility of analyzing the self-organization with Optimal Mass Transport (OMT) metrics to infer possible underlying "optimality" principles governing the re-organization will also be presented.
NASA Astrophysics Data System (ADS)
Bo, T. L.; Fu, L. T.; Liu, L.; Zheng, X. J.
2017-06-01
The studies on wind-blown sand are crucial for understanding the change of climate and landscape on Mars. However, the disadvantages of the saltation models may result in unreliable predictions. In this paper, the saltation model has been improved from two main aspects, the aerodynamic surface roughness and the lift-off parameters. The aerodynamic surface roughness is expressed as function of particle size, wind strength, air density, and air dynamic viscosity. The lift-off parameters are improved through including the dependence of restitution coefficient on incident parameters and the correlation between saltating speed and angle. The improved model proved to be capable of reproducing the observed data well in both stable stage and evolution process. The modeling of wind-blown sand is promoted by all improved aspects, and the dependence of restitution coefficient on incident parameters could not be ignored. The constant restitution coefficient and uncorrelated lift-off parameter distributions would lead to both the overestimation of the sand transport rate and apparent surface roughness and the delay of evolution process. The distribution of lift-off speed and the evolution of lift-off parameters on Mars are found to be different from those on Earth. This may thus suggest that it is inappropriate to predict the evolution of wind-blown sand by using the lift-off velocity obtained in steady state saltation. And it also may be problematic to predict the wind-blown sand on Mars through applying the lift-off velocity obtained upon terrestrial conditions directly.
NASA Astrophysics Data System (ADS)
Lebedeva, Luidmila; Semenova, Olga
2015-04-01
Frozen ground distribution and its properties control the presence of aquifuge and aquifers. Correct representation of interactions between infiltrating water, ground ice, permafrost or seasonal freezing table and river flow is challenging for hydrological modelling in cold regions. Observational data of ground water levels, thawing depths in different landscapes or topographical units and meteorological information with high temporal and spatial resolution are required to analyze seasonal and interannual evolution of groundwater in active layer and its linkage to river flow. Such data are extremely rare in vast and remote regions of Russia. There are few historical datasets inherited from former USSR containing unique collection of long-term daily observations of water fluxes, frozen ground characteristics and groundwater levels. The data from three water balance stations were employed in our study with overall goal to analyze co-evolution of thawing layer, shallow groundwater and river flow by data processing and process-based modelling. Three instrumented small watersheds are situated in continuous, discontinuous permafrost zones and at the territory with seasonally frozen ground. They present different climates, landscapes and geology. The Kolyma water-balance station is located in mountainous region of continuous permafrost in North-Eastern Russia. The watershed area of 22 km2 is covered by bare rocks, mountain tundra, sparse larch forest and wet larch forest depending on slope aspect and inclination. The Bomnak water-balance station (22 km2) is situated in discontinuous permafrost zone in upper part of the Amur River basin and characterized by unmerged permafrost. Dominant landscapes are birch forest and bogs. The Pribaltiyskaya water-balance station (40 km2) located in Latvia is characterized by seasonally frozen ground and is covered by mixed forest and arable land. Process-based Hydrograph model was employed in the study. The model was developed specifically for cold regions. It describes all essential processes of land hydrological cycle including detailed algorithm of water and heat dynamics in soil accounting for water phase change. The model parameters relate to basin characteristics and could be assessed in the field. It allows avoiding parameters calibration and transferring model parameterization schemes to ungauged basins in similar conditions. The model was applied and tested against internal states of watersheds (snow, soil thawing/freezing, etc.) and runoff. Different role of frozen ground in formation of shallow groundwater and river flow in continuous, discontinuous and non-permafrost area is highlighted by comparative analysis of observations and simulations in three studied basins. The changes of fractional input of surface and subsurface components into river flow during warm seasons were assessed for each watershed. We concluded that verified hydrological model with meaningful parameters that adequately describe river flow formation and internal hydrological processes and ground freezing/thawing in the catchment could be used in scenario simulations, future predictions and transferring the results between scales.
Tectonic controls of transient landscapes in the Bhutan Himalaya
NASA Astrophysics Data System (ADS)
Adams, B. A.; Whipple, K. X.; Hodges, K. V.; Van Soest, M. C.; Heimsath, A. M.
2013-12-01
Previous research has identified many landscapes within the Himalaya that are not easily explained by classical critical taper models of orogenic wedges. One of the most striking examples is the sharp physiographic transition between the more subdued landforms of the Lower Himalayan ranges and the Higher Himalayan ranges to the north in Nepal. This transition has been attributed to several potential causes: changes in the rheology of rocks at depth, a ramp in the basal detachment of the orogenic wedge, a blind duplex, or a north-dipping, surface-breaking thrust fault. A similar, but more subdued transition marks the northern margin of perched, low-relief landscape patches found at ca. 3000 m in Bhutan. These low-relief surfaces, characterized by bogs and thick saprolites at the surface, overlie piggyback basins within the evolving orogenic wedge, filled with hundreds of meters of colluvial and alluvial deposits. The southern boundaries of the low-relief surfaces are less regular than the physiographic transition at their northern boundaries. The surfaces occur at similar elevations but are not continuous geographically, having been dissected by a series of river systems draining southward from the crest of the range. Pronounced knickpoints have formed at the southern margins of the low-relief surfaces. Our work suggests that there is a young (Pliocene-Pleistocene) fault system coincident with the physiographic transition in Bhutan. This high-angle, north-dipping structure, the Lhuentse fault, has minor normal-sense offset and could not have been responsible for differential uplift of the rugged terrain (in the hanging wall) relative to the low-relief landscape (in the footwall). The Lhuentse fault is coincident with the back limb of a previously inferred blind duplex at depth, and thus may be associated with active deformation on a rotated horse within the duplex. This duplex may also be responsible for the creation of the low-relief landscapes to the south of the Lhuentse fault due to upstream tilting in the back limb of the antiformal rock uplift pattern. Erosion patterns modeled on the basis of newly acquired 40Ar/39Ar and (U-Th)/He thermochronometric data as well as basin-average erosion rates from detrital cosmogenic nuclide concentrations are consistent with this hypothesis. We used a landscape evolution model (CHILD) to track landscape response to an imposed antiformal rock uplift gradient produced by an active duplex at depth. Rotation associated with the back limb of such a duplex causes aggradation, surface uplift, and headward migration of knickpoints. The wedge of sediment deposited during fluvial aggradation migrates northward beyond the back limb where uplift lessens. At this position in the landscape, a subdued physiographic transition develops in the model, similar to the one observed in Bhutan. Our modeling suggests that the presence and juxtaposition of low-relief landscapes and a physiographic transition, and our observed distribution of erosion rates can be explained by a single, simple mechanism related to the growth of a blind duplex.
Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries
2013-02-01
Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change.
Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors
Fagherazzi, Sergio; Kirwan, Matthew L.; Mudd, Simon M.; Guntenspergen, Glenn R.; Temmerman, Stijn; D'Alpaos, Andrea; van de Koppel, Johan; Rybczyk, John; Reyes, Enrique; Craft, Chris; Clough, Jonathan
2012-01-01
Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.
Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors
Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D'Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; Clough, J.
2012-01-01
Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise. Copyright 2012 by the American Geophysical Union.
2014-01-01
Background Protein sites evolve at different rates due to functional and biophysical constraints. It is usually considered that the main structural determinant of a site’s rate of evolution is its Relative Solvent Accessibility (RSA). However, a recent comparative study has shown that the main structural determinant is the site’s Local Packing Density (LPD). LPD is related with dynamical flexibility, which has also been shown to correlate with sequence variability. Our purpose is to investigate the mechanism that connects a site’s LPD with its rate of evolution. Results We consider two models: an empirical Flexibility Model and a mechanistic Stress Model. The Flexibility Model postulates a linear increase of site-specific rate of evolution with dynamical flexibility. The Stress Model, introduced here, models mutations as random perturbations of the protein’s potential energy landscape, for which we use simple Elastic Network Models (ENMs). To account for natural selection we assume a single active conformation and use basic statistical physics to derive a linear relationship between site-specific evolutionary rates and the local stress of the mutant’s active conformation. We compare both models on a large and diverse dataset of enzymes. In a protein-by-protein study we found that the Stress Model outperforms the Flexibility Model for most proteins. Pooling all proteins together we show that the Stress Model is strongly supported by the total weight of evidence. Moreover, it accounts for the observed nonlinear dependence of sequence variability on flexibility. Finally, when mutational stress is controlled for, there is very little remaining correlation between sequence variability and dynamical flexibility. Conclusions We developed a mechanistic Stress Model of evolution according to which the rate of evolution of a site is predicted to depend linearly on the local mutational stress of the active conformation. Such local stress is proportional to LPD, so that this model explains the relationship between LPD and evolutionary rate. Moreover, the model also accounts for the nonlinear dependence between evolutionary rate and dynamical flexibility. PMID:24716445
The mechanics of erosion on soil organic redistribution
NASA Astrophysics Data System (ADS)
Papanicolaou, T.
2014-12-01
Soil Organic Carbon (SOC) is an important constituent of the earth's fabric derived from the breakdown of above ground plant litter, plant rhizomes and root exudates in the form of organic by-products. Stocks of SOC can be affected by a variety of natural and human-induced drivers, including climate and land management practices which collectively could affect intrinsic and extrinsic factors related to SOC, for example, soil texture, soil microclimate, and biomass accumulation rates . In intensely managed agricultural landscapes (IMLs), i.e., regions of significant land use change where significant degradation of SOC has been reported due to soil erosion, enhancing the sequestration or storage potential of SOC is of paramount importance to the ecosystem well-being of these landscapes. A literature review reveals that aspects of the SOC research have received considerable attention in the bioegeochemical, ecological, and agricultural disciplines because available SOC stocks within a soil column affect the evolution of key soil biogeochemical constituents. However, at the landscape scale the quantitative assessment of the SOC storage potential suffers in parts from lack of understanding of the collective effects that tillage and water-driven erosion have on the transport and burial of the eroded SOC. In this study an integrative process-based modeling framework that couples an established biogeochemical soil column model with a physically-based, landscape oriented watershed model capable of replicating the collective erosion effects on the mobilization and redistribution of SOC is developed. All simulations are conducted in an agricultural watershed in the U.S. Midwest Clear Creek, IA which has experienced intense agriculture since the beginning of the century to also assess the legacy effects that land use change and SOC initialization periods have on current SOC stock estimations.
ERIC Educational Resources Information Center
Petersen, Rodney
2004-01-01
The evolution of terms, such as computer security, network security, information security, and information assurance, appears to reflect a changing landscape, largely influenced by rapid developments in technology and the maturity of a relatively young profession and an emerging academic discipline. What lies behind the evolution of these terms?…
Soil-landscape development and late Quaternary environmental change in coastal Estremadura, Portugal
NASA Astrophysics Data System (ADS)
Daniels, Michael; Haws, Jonathan; Benedetti, Michael; Bicho, Nuno
2015-04-01
This poster integrates soil-landscape analysis with archaeological survey and paleoenvironmental reconstruction. Soils in surface and buried contexts in Estremadura, Portugal, provide evidence of landscape stability and instability, relative age relationships between landforms, and general paleoenvironmental conditions during the late Quaternary. These factors provide insight into the distribution and condition of Paleolithic archaeological sites and help understand the record of human settlement in the region. Late Pleistocene and Holocene dunes extend inland approximately 10 km from coastal source regions. Surface soils in Holocene dunes under maritime pine (Pinus pinaster) forest exhibit A, E, C/Bh and A, C horizon sequences and classify as Quartzipsamments. Surface soils in late Pleistocene dunes exhibit A, E, Bh, Bhs, Bs horizon sequences and classify as Haplorthods. Both Pleistocene and Holocene dunes commonly bury a heavily weathered soil formed in calcareous sandstone. The boundary between underlying buried soils and overlying surface soils is characterized by a lag deposit of medium to coarse, moderately-rounded gravels, underlain immediately by subsurface Bt and Bss horizons. The lag deposit and absence of buried A horizons both indicate intense and/or prolonged surface erosion prior to burial by late Quaternary dunes. Soil-geomorphic relationships therefore suggest at least two distinct episodes of dune emplacement and subsequent landscape stability following an extensive episode late Pleistocene landscape instability and soil erosion. A conceptual model of soil-landscape evolution through the late Quaternary and Holocene results from the integration of soil profile data, proxy paleoenvironmental data, and the partial record of human settled as revealed in the archaeological record.
Karst of the Mid-Atlantic region in Maryland, West Virginia, and Virginia
Doctor, Daniel H.; Weary, David J.; Brezinski, David K.; Orndorff, Randall C.; Spangler, Lawrence E.; Brezinski, David K.; Halka, Jeffrey; Ortt, Richard A.
2015-01-01
The Mid-Atlantic region hosts some of the most mature karst landscapes in North America, developed in highly deformed rocks within the Piedmont and Valley and Ridge physiographic provinces. This guide describes a three-day excursion to examine karst development in various carbonate rocks by following Interstate 70 west from Baltimore across the eastern Piedmont, across the Frederick Valley, and into the Great Valley proper. The localities were chosen in order to examine the structural and lithological controls on karst feature development in marble, limestone, and dolostone rocks with an eye toward the implications for ancient landscape evolution, as well as for modern subsidence hazards. A number of caves will be visited, including two commercial caverns that reveal strikingly different histories of speleogenesis. Links between karst landscape development, hydrologic dynamics, and water resource sustainability will also be emphasized through visits to locally important springs. Recent work on quantitative dye tracing, spring water geochemistry, and groundwater modeling reveal the interaction between shallow and deep circulation of groundwater that has given rise to the modern karst landscape. Geologic and karst feature mapping conducted with the benefit of lidar data help reveal the strong bedrock structural controls on karst feature development, and illustrate the utility of geologic maps for assessment of sinkhole susceptibility.
A Simple General Model of Evolutionary Dynamics
NASA Astrophysics Data System (ADS)
Thurner, Stefan
Evolution is a process in which some variations that emerge within a population (of, e.g., biological species or industrial goods) get selected, survive, and proliferate, whereas others vanish. Survival probability, proliferation, or production rates are associated with the "fitness" of a particular variation. We argue that the notion of fitness is an a posteriori concept in the sense that one can assign higher fitness to species or goods that survive but one can generally not derive or predict fitness per se. Whereas proliferation rates can be measured, fitness landscapes, that is, the inter-dependence of proliferation rates, cannot. For this reason we think that in a physical theory of evolution such notions should be avoided. Here we review a recent quantitative formulation of evolutionary dynamics that provides a framework for the co-evolution of species and their fitness landscapes (Thurner et al., 2010, Physica A 389, 747; Thurner et al., 2010, New J. Phys. 12, 075029; Klimek et al., 2009, Phys. Rev. E 82, 011901 (2010). The corresponding model leads to a generic evolutionary dynamics characterized by phases of relative stability in terms of diversity, followed by phases of massive restructuring. These dynamical modes can be interpreted as punctuated equilibria in biology, or Schumpeterian business cycles (Schumpeter, 1939, Business Cycles, McGraw-Hill, London) in economics. We show that phase transitions that separate phases of high and low diversity can be approximated surprisingly well by mean-field methods. We demonstrate that the mathematical framework is suited to understand systemic properties of evolutionary systems, such as their proneness to collapse, or their potential for diversification. The framework suggests that evolutionary processes are naturally linked to self-organized criticality and to properties of production matrices, such as their eigenvalue spectra. Even though the model is phrased in general terms it is also practical in the sense that it's predictions can be used to understand a series of experimental data ranging from the fossil record to macroeconomic indices.
NASA Astrophysics Data System (ADS)
Duvall, A. R.; Collett, C.; Flowers, R. M.; Tucker, G. E.; Upton, P.
2016-12-01
The 150 km wide Marlborough Fault System (MFS) and adjacent dextral-reverse Alpine Fault accommodate oblique convergence of the Australian and Pacific plates in a broad transform boundary that extends for much of the South Island New Zealand. Understanding the deformation history of the Marlborough region offers the opportunity to study topographic evolution in a strike-slip setting and a fuller picture of the evolving New Zealand plate boundary as the MFS lies at the transition from oceanic Pacific plate subduction to oblique continental collision. Here we present low-temperature thermochronology from the MFS to place new limits on the timing and style of mountain building. We sampled a range of elevations spanning 2 km within and adjacent to the Kaikoura Mountains, which stand high as topographic anomalies above active strike-slip faults. Young apatite (U-Th)/He ages ( 2-5 Ma) on both sides of range-bounding faults are consistent with regional distributed deformation since the Pliocene initiation of strike-slip faulting. However, large differences in both zircon helium and apatite fission track ages, from Paleogene/Neogene ages within hanging walls to unreset >100 Ma ages in footwalls, indicate an early phase of fault-related vertical exhumation. Thermal modeling using the QTQt program reveals two phases of exhumation within the Kaikoura Ranges: rapid cooling at 15-12 Ma localized to hanging wall rocks and regional rapid cooling reflected in all samples starting at 4-5 Ma. These results and landscape evolution models suggest that, despite the presence of active mountain front faults, much of the topographic relief in this region may predate the onset of strike-slip faulting and that portions of the Marlborough Faults are re-activated thrusts that coincide with the early development of the transpressive plate boundary. Regional exhumation after 5 Ma likely reflects increased proximity to the migrating Pacific plate subduction zone and the buoyant Chatham Rise.
Toju, Hirokazu; Sota, Teiji
2009-09-01
One of the major controversies in evolutionary biology concerns the processes underlying macroevolutionary patterns in which prolonged stasis is disrupted by rapid, short-term evolution that leads species to new adaptive zones. Recent advances in the understanding of contemporary evolution have suggested that such rapid evolution can occur in the wild as a result of environmental changes. Here, we examined a novel hypothesis that evolutionary stasis is punctuated by co-evolutionary arms races, which continuously alter adaptive peaks and landscapes. Based on the phylogeny of long-mouthed weevils in the genus Curculio, likelihood ratio tests showed that the macroevolutionary pattern of the weevils coincides with the punctuational evolution model. A coalescent analysis of a species, Curculio camelliae, the mouthpart of which has diverged considerably among populations because of an arms race with its host plant, further suggested that major evolutionary shifts had occurred within 7000 generations. Through a microevolutionary analysis of the species, we also found that natural selection acting through co-evolutionary interactions is potentially strong enough to drive rapid evolutionary shifts between adaptive zones. Overall, we posit that co-evolution is an important factor driving the history of organismal evolution.
NASA Astrophysics Data System (ADS)
Belmont, P.; Viparelli, E.; Parker, G.; Lauer, W.; Jennings, C.; Gran, K.; Wilcock, P.; Melesse, A.
2008-12-01
Modeling sediment fluxes and pathways in complex landscapes is limited by our inability to accurately measure and integrate heterogeneous, spatially distributed sources into a single coherent, predictive geomorphic transport law. In this study, we partition the complex landscape of the Le Sueur River watershed into five distributed primary source types, bluffs (including strath terrace caps), ravines, streambanks, tributaries, and flat,agriculture-dominated uplands. The sediment contribution of each source is quantified independently and parameterized for use in a sand and mud routing model. Rigorous modeling of the evolution of this landscape and sediment flux from each source type requires consideration of substrate characteristics, heterogeneity, and spatial connectivity. The subsurface architecture of the Le Sueur drainage basin is defined by a layer cake sequence of fine-grained tills, interbedded with fluvioglacial sands. Nearly instantaneous baselevel fall of 65 m occurred at 11.5 ka, as a result of the catastrophic draining of glacial Lake Agassiz through the Minnesota River, to which the Le Sueur is a tributary. The major knickpoint that was generated from that event has propagated 40 km into the Le Sueur network, initiating an incised river valley with tall, retreating bluffs and actively incising ravines. Loading estimates constrained by river gaging records that bound the knick zone indicate that bluffs connected to the river are retreating at an average rate of less than 2 cm per year and ravines are incising at an average rate of less than 0.8 mm per year, consistent with the Holocene average incision rate on the main stem of the river of less than 0.6 mm per year. Ongoing work with cosmogenic nuclide sediment tracers, ground-based LiDAR, historic aerial photos, and field mapping will be combined to represent the diversity of erosional environments and processes in a single coherent routing model.
Evaluating Metrics of Drainage Divide Mobility
NASA Astrophysics Data System (ADS)
Forte, A. M.; Whipple, K. X.; DiBiase, R.; Gasparini, N. M.; Ouimet, W. B.
2016-12-01
Watersheds are the fundamental organizing units in landscapes and thus the controls on drainage divide location and mobility are an essential facet of landscape evolution. Additionally, many common topographic analyses fundamentally assume that river network topology and divide locations are largely static, allowing channel profile form to be interpreted in terms of spatio-temporal patterns of rock uplift rate relative to baselevel, climate, or rock properties. Recently however, it has been suggested that drainage divides are more mobile than previously thought and that divide mobility, and resulting changes in drainage area, can potentially induce changes to fluvial topography comparable to spatio-temporal variation in rock uplift, climate, or rock properties. Ultimately, reliable metrics are needed to diagnose the mobility of divides. One such recently proposed metric is cross-divide contrasts in `chi', a measure of the current topology of the drainage network, but cross-divide contrasts in a number of topographic metrics show promise. Here we use a series of landscape evolution modeling scenarios in which we induce divide mobility under different conditions to test the utility of a suite of plausible topographic metrics of divide mobility and compare these to natural examples. Specifically, we test cross-divide contrasts in mean slope, mean local relief, channel bed elevation at a reference drainage area, and chi. Our results highlight that cross-divide contrasts in chi can only be accurately interpreted in terms of divide mobility when uplift, rock erodibility, climate, and base-level are uniform across both river networks on either side of the divide. This is problematic for application of this metric to natural landscapes as (1) uniformity of all of these parameters is exceedingly unlikely and (2) quantifying the spatial patterns of these parameters is difficult. Consequently, as shown here for both simulated and natural landscapes, simple measures of cross-divide contrasts in mean slope, mean local relief, and channel bed elevation at a reference drainage area are more robust metrics of divide mobility, correctly identifying stable or mobile divides independent of cross-divide differences in rock uplift, climate, erodibility or baselevel.
Testing the Validity of Local Flux Laws in an Experimental Eroding Landscape
NASA Astrophysics Data System (ADS)
Sweeney, K. E.; Roering, J. J.; Ellis, C.
2015-12-01
Linking sediment transport to landscape evolution is fundamental to interpreting climate and tectonic signals from topography and sedimentary deposits. Most geomorphic process laws consist of simple continuum relationships between sediment flux and local topography. However, recent work has shown that nonlocal formulations, whereby sediment flux depends on upslope conditions, are more accurate descriptions of sediment motion, particularly in steep topography. Discriminating between local and nonlocal processes in natural landscapes is complicated by the scarcity of high-resolution topographic data and by the difficulty of measuring sediment flux. To test the validity of local formulations of sediment transport, we use an experimental erosive landscape that combines disturbance-driven, diffusive sediment transport and surface runoff. We conducted our experiments in the eXperimental Landscape Model at St. Anthony Falls Laboratory a 0.5 x 0.5 m test flume filled with crystalline silica (D50 = 30μ) mixed with water to increase cohesion and preclude surface infiltration. Topography is measured with a sheet laser scanner; total sediment flux is tracked with a series of load cells. We simulate uplift (relative baselevel fall) by dropping two parallel weirs at the edges of the experiment. Diffusive sediment transport in our experiments is driven by rainsplash from a constant head drip tank fitted with 625 blunt needles of fixed diameter; sediment is mobilized both through drop impact and the subsequent runoff of the drops. To drive advective transport, we produce surface runoff via a ring of misters that produce droplets that are too small to disturb the sediment surface on impact. Using the results from five experiments that systematically vary the time of drip box rainfall relative to misting rainfall, we calculate local erosion in our experiments by differencing successive time-slices of topography and test whether these patterns are related to local topographic metrics. By examining these patterns over different timescales, we are able to assess whether there is a signature of nonlocal transport in long-term topographic evolution or if, instead, local formulations are appropriate over timescales much greater than individual transport events.
Landscape evolution by subglacial quarrying
NASA Astrophysics Data System (ADS)
Ugelvig, Sofie V.; Egholm, David L.; Iverson, Neal R.
2014-05-01
In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified for bedrock abrasion because rock debris transported in the basal ice drives the erosion. However, a simple relation between rates of sliding and erosion is not well supported when considering models for quarrying of rock blocks from the bed. Iverson (2012) introduced a new subglacial quarrying model that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential stress, form along the lee side of bed obstacles when the sliding velocity is to high to allow for the ice to creep around the obstacles. The erosion rate is quantified by considering the likelihood of rock fracturing on topographic bumps. The model includes a statistical treatment of the bedrock weakness: larger rock bodies have lower strengths since they have greater possibility of containing a large flaw [Jaeger and Cook, 1979]. Inclusion of this effect strongly influences the erosion rates and questions the dominant role of sliding rate in standard models for subglacial erosion. Effective pressure, average bedslope, and bedrock fracture density are primary factors that, in addition to sliding rate, influence the erosion rate of this new quarrying model [Iverson, 2012]. We have implemented the quarrying model in a depth-integrated higher-order ice-sheet model [Egholm et al. 2011], coupled to a model for glacial hydrology. In order to also include the effects of cavitation on the subglacial sliding rate, we use a sliding law proposed by Schoof (2005), which includes an upper limit for the stress that can be supported at the bed. Computational experiments show that the combined influence of pressure, sliding rate and bed slope leads to realistically looking landforms such as U-shaped valleys, cirques, hanging valleys and overdeepenings. Compared to model results using a standard erosion rule, where erosion rate scales with basal sliding, the quarrying model produces valleys that are wider and have more flattened valley floors with several shallow overdeepenings. The overdeepenings are stabilized by hydrology because of the strong influence of effective pressure on quarrying rate. For melt water to escape the overdeepening, the average water pressure must rise as the overdeepening grows, and this keeps the effective pressure low and prevents the overdeepening from growing infinitely. In addition, the strong influence of effective pressure indicates that erosion rate depends strongly on ice thickness. This could associate to sudden jumps in erosion rate and fjord formation along margins that experienced periodic ice sheet configurations in the Quaternary. Egholm, D. L. et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011). Iverson, N. R. A theory of glacial quarrying for landscape evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005). Jaeger, J.C., and Cook, N.G.W. Fundamentals of rock mechanics: New York, Chapman and Hall, 593 p. (1979)
Examples of equilibrium and non-equilibrium behavior in evolutionary systems
NASA Astrophysics Data System (ADS)
Soulier, Arne
With this thesis, we want to shed some light into the darkness of our understanding of simply defined statistical mechanics systems and the surprisingly complex dynamical behavior they exhibit. We will do so by presenting in turn one equilibrium and then one non-equilibrium system with evolutionary dynamics. In part 1, we will present the seceder-model, a newly developed system that cannot equilibrate. We will then study several properties of the system and obtain an idea of the richness of the dynamics of the seceder model, which is particular impressive given the minimal amount of modeling necessary in its setup. In part 2, we will present extensions to the directed polymer in random media problem on a hypercube and its connection to the Eigen model of evolution. Our main interest will be the influence of time-dependent and time-independent changes in the fitness landscape viewed by an evolving population. This part contains the equilibrium dynamics. The stochastic models and the topic of evolution and non-equilibrium in general will allow us to point out similarities to the various lines of thought in game theory.
Clonal evolution and tumor-initiating cells: New dimensions in cancer patient treatment.
Apostoli, Anthony J; Ailles, Laurie
2016-01-01
Human cancer is not a uniform disease but a plethora of disparate tumor types and subtypes. The differences that exist between individual tumors (intertumoral heterogeneity) present a significant roadblock to the eradication of cancer. It has also become increasingly clear that variations across individual tumors (intratumoral heterogeneity) have important implications to cancer progression and treatment efficacy. Therefore, in order to improve patient care and develop novel chemotherapeutics, the evolving tumor landscape needs to be further explored. Next-generation sequencing (NGS) technologies are revolutionizing the cancer research arena by providing state-of-the-art, high-speed methods of genome sequencing at single-nucleotide resolution, thus enabling an unprecedented detection of tumor-specific genetic abnormalities. These anomalies can be quantified to reveal specific frequencies of DNA alterations that correspond to distinct clonal populations within a given tumor. As such, NGS approaches have also been utilized to explore the heterogeneous landscape of patient tumors as well as to match metastatic and/or recurrent growths and patient-derived engrafts. By sequencing in this manner--through time so to speak--cancer researchers can track shifting clonal populations, make important inferences about tumor evolution and potentially identify tumor subclones that could be viably targeted. This exciting new territory has important implications for the competing clonal evolution and cancer stem cell models of tumor heterogeneity, and also offers a new dimension for cancer treatment and profound hope for patients in the coming years.
Robert E. Keane; Lisa M. Holsinger; Sarah D. Pratt
2006-01-01
The range and variation of historical landscape dynamics could provide a useful reference for designing fuel treatments on today's landscapes. Simulation modeling is a vehicle that can be used to estimate the range of conditions experienced on historical landscapes. A landscape fire succession model called LANDSUMv4 (LANDscape SUccession Model version 4.0) is...
Hillslope-scale experiment demonstrates role of convergence during two-step saturation
Gevaert, A. I.; Teuling, A. J.; Uijlenhoet, R.; DeLong, Stephen B.; Huxman, T. E.; Pangle, L. A.; Breshears, David D.; Chorover, J.; Pelletier, John D.; Saleska, S. R.; Zeng, X.; Troch, Peter A.
2014-01-01
Subsurface flow and storage dynamics at hillslope scale are difficult to ascertain, often in part due to a lack of sufficient high-resolution measurements and an incomplete understanding of boundary conditions, soil properties, and other environmental aspects. A continuous and extreme rainfall experiment on an artificial hillslope at Biosphere 2's Landscape Evolution Observatory (LEO) resulted in saturation excess overland flow and gully erosion in the convergent hillslope area. An array of 496 soil moisture sensors revealed a two-step saturation process. First, the downward movement of the wetting front brought soils to a relatively constant but still unsaturated moisture content. Second, soils were brought to saturated conditions from below in response to rising water tables. Convergent areas responded faster than upslope areas, due to contributions from lateral subsurface flow driven by the topography of the bottom boundary, which is comparable to impermeable bedrock in natural environments. This led to the formation of a groundwater ridge in the convergent area, triggering saturation excess runoff generation. This unique experiment demonstrates, at very high spatial and temporal resolution, the role of convergence on subsurface storage and flow dynamics. The results bring into question the representation of saturation excess overland flow in conceptual rainfall-runoff models and land-surface models, since flow is gravity-driven in many of these models and upper layers cannot become saturated from below. The results also provide a baseline to study the role of the co-evolution of ecological and hydrological processes in determining landscape water dynamics during future experiments in LEO.
Phase Transition Behavior in a Neutral Evolution Model
NASA Astrophysics Data System (ADS)
King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya
2014-03-01
The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.
Possible pingos and a periglacial landscape in northwest Utopia Planitia
Soare, R.J.; Burr, D.M.; Wan, Bun Tseung J.-M.
2005-01-01
Hydrostatic (closed-system) pingos are small, elongate to circular, ice-cored mounds that are perennial features of some periglacial landscapes. The growth and development of hydrostatic pingos is contingent upon the presence of surface water, freezing processes and of deep, continuous, ice-cemented permafrost. Other cold-climate landforms such as small-sized, polygonal patterned ground also may occur in the areas where pingos are found. On Mars, landscapes comprising small, elongate to circular mounds and other possible periglacial features have been identified in various areas, including Utopia Planitia, where water is thought to have played an important role in landscape evolution. Despite the importance of the martian mounds as possible markers of water, most accounts of them in the planetary science literature have been brief and/or based upon Viking imagery. We use a high-resolution Mars Orbiter Camera image (EO300299) and superposed Mars Orbiter Laser Altimeter data tracks to describe and characterise a crater-floor landscape in northwest Utopia Planitia (64.8?? N/292.7?? W). The landscape comprises an assemblage of landforms that is consistent with the past presence of water and of periglacial processes. This geomorphological assemblage may have formed as recently as the last episode of high obliquity. A similar assemblage of landforms is found in the Tuktoyaktuk peninsula of northern Canada and other terrestrial cold-climate landscapes. We point to the similarity of the two assemblages and suggest that the small, roughly circular mounds on the floor of the impact crater in northwest Utopia Planitia are hydrostatic pingos. Like the hydrostatic pingos of the Tuktoyaktuk peninsula, the origin of the crater-floor mounds could be tied to the loss of ponded, local water, permafrost aggradation and the evolution of a sub-surface ice core. ?? 2004 Elsevier Inc. All rights reserved.
Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand
NASA Astrophysics Data System (ADS)
Dixon, Jean L.; Chadwick, Oliver A.; Vitousek, Peter M.
2016-09-01
Chemical weathering in soils dissolves and alters minerals, mobilizes metals, liberates nutrients to terrestrial and aquatic ecosystems, and may modulate Earth's climate over geologic time scales. Climate-weathering relationships are often considered fundamental controls on the evolution of Earth's surface and biogeochemical cycles. However, surprisingly little consensus has emerged on if and how climate controls chemical weathering, and models and data from published literature often give contrasting correlations and predictions for how weathering rates and climate variables such as temperature or moisture are related. Here we combine insights gained from the different approaches, methods, and theory of the soil science, biogeochemistry, and geomorphology communities to tackle the fundamental question of how rainfall influences soil chemical properties. We explore climate-driven variations in weathering and soil development in young, postglacial soils of New Zealand, measuring soil elemental geochemistry along a large precipitation gradient (400-4700 mm/yr) across the Waitaki basin on Te Waipounamu, the South Island. Our data show a strong climate imprint on chemical weathering in these young soils. This climate control is evidenced by rapid nonlinear changes along the gradient in total and exchangeable cations in soils and in the increased movement and redistribution of metals with rainfall. The nonlinear behavior provides insight into why climate-weathering relationships may be elusive in some landscapes. These weathering thresholds also have significant implications for how climate may influence landscape evolution and the release of rock-derived nutrients to ecosystems, as landscapes that transition to wetter climates across this threshold may weather and deplete rapidly.
Wickman, Jonas; Diehl, Sebastian; Blasius, Bernd; Klausmeier, Christopher A; Ryabov, Alexey B; Brännström, Åke
2017-04-01
Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.
Implications of sediment redistribution on modeled sea-level changes over millennial timescales
NASA Astrophysics Data System (ADS)
Ferrier, Ken
2016-04-01
Sea level is a critical link in feedbacks among topography, tectonics, and climate. Over millennial timescales, changes in sea level reshape river networks, regulate organic carbon burial, influence sediment deposition, and set moving boundary conditions for landscape evolution. Sea-level changes influence tectonics by regulating rates and patterns of erosion and deposition, which perturb the surface loads that drive geodynamic processes at depth. These interactions are complex because sea-level changes are influenced by the geomorphic processes that they themselves modify, since sediment redistribution deforms the gravitational and crustal elevation fields that define sea level. A recent advance in understanding the coupling between sea level, tectonics, and topography was the incorporation of sediment redistribution into a gravitationally self-consistent sea-level model, which permits the computation of sea-level responses to erosion and deposition (Dalca et al., 2013, Geophysical Journal International). Here I use this model to quantify changes in sea level resulting from the erosion of some of the most rapidly eroding sites on Earth and the deposition of sediment offshore. These model results show that the sea-level fingerprints of sediment redistribution are strongly variable in space, and that they can represent a significant component of the total sea level change since the last interglacial. This work provides a basis for understanding a fundamental driver of landscape evolution at some of Earth's most geomorphically dynamic sites, and thus aids investigation of the couplings among tectonics, climate, and topography. References Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.
NASA Astrophysics Data System (ADS)
Xie, J.; Wang, M.; Liu, K.
2017-12-01
The 2008 Wenchuan Ms 8.0 earthquake caused overwhelming destruction to vast mountains areas in Sichuan province. Numerous seismic landslides damaged the forest and vegetation cover, and caused substantial loose sediment piling up in the valleys. The movement and fill-up of loose materials led to riverbeds aggradation, thus made the earthquake-struck area more susceptible to flash floods with increasing frequency and intensity of extreme rainfalls. This study investigated the response of sediment and river channel evolution to different rainfall scenarios after the Wenchuan earthquake. The study area was chosen in a catchment affected by the earthquake in Northeast Sichuan province, China. We employed the landscape evolution model CAESAR-lisflood to explore the material migration rules and then assessed the potential effects under two rainfall scenarios. The model parameters were calibrated using the 2013 extreme rainfall event, and the experimental rainfall scenarios were of different intensity and frequency over a 10-year period. The results indicated that CAESAR-lisflood was well adapted to replicate the sediment migration, particularly the fluvial processes after earthquake. With respect to the effects of rainfall intensity, the erosion severity in upstream gullies and the deposition severity in downstream channels, correspondingly increased with the increasing intensity of extreme rainfalls. The modelling results showed that buildings in the catchment suffered from flash floods increased by more than a quarter from the normal to the enhanced rainfall scenarios in ten years, which indicated a potential threat to the exposures nearby the river channel, in the context of climate change. Simulation on landscape change is of great significance, and contributes to early warning of potential geological risks after earthquake. Attention on the high risk area by local government and the public is highly suggested in our study.
Galupa, Rafael; Heard, Edith
2018-04-23
The packaging of genetic material into chromatin and chromosomes has been recognized for more than a century, thanks to microscopy and biochemical approaches. This was followed by the progressive realization that chromatin organization is critical for genome functions such as transcription and DNA replication and repair. The recent discovery that chromosomes are partitioned at the submegabase scale into topologically associating domains (TADs) has implications for our understanding of gene regulation during developmental processes such as X-chromosome inactivation, as well as for evolution and for the search for disease-associated loci. Here we discuss our current knowledge about this recently recognized level of mammalian chromosome organization, with a special emphasis on the potential role of TADs as a structural basis for the function and evolution of mammalian regulatory landscapes. © 2017 Galupa and Heard; Published by Cold Spring Harbor Laboratory Press.
Habitable periglacial landscapes in martian mid-latitudes
NASA Astrophysics Data System (ADS)
Ulrich, M.; Wagner, D.; Hauber, E.; de Vera, J.-P.; Schirrmeister, L.
2012-05-01
Subsurface permafrost environments on Mars are considered to be zones where extant life could have survived. For the identification of possible habitats it is important to understand periglacial landscape evolution and related subsurface and environmental conditions. Many landforms that are interpreted to be related to ground ice are located in the martian mid-latitudinal belts. This paper summarizes the insights gained from studies of terrestrial analogs to permafrost landforms on Mars. The potential habitability of martian mid-latitude periglacial landscapes is exemplarily deduced for one such landscape, that of Utopia Planitia, by a review and discussion of environmental conditions influencing periglacial landscape evolution. Based on recent calculations of the astronomical forcing of climate changes, specific climate periods are identified within the last 10 Ma when thaw processes and liquid water were probably important for the development of permafrost geomorphology. No periods could be identified within the last 4 Ma which met the suggested threshold criteria for liquid water and habitable conditions. Implications of past and present environmental conditions such as temperature variations, ground-ice conditions, and liquid water activity are discussed with respect to the potential survival of highly-specialized microorganisms known from terrestrial permafrost. We conclude that possible habitable subsurface niches might have been developed in close relation to specific permafrost landform morphology on Mars. These would have probably been dominated by lithoautotrophic microorganisms (i.e. methanogenic archaea).
Automated Detection of Knickpoints and Knickzones Across Transient Landscapes
NASA Astrophysics Data System (ADS)
Gailleton, B.; Mudd, S. M.; Clubb, F. J.
2017-12-01
Mountainous regions are ubiquitously dissected by river channels, which transmit climate and tectonic signals to the rest of the landscape by adjusting their long profiles. Fluvial response to allogenic forcing is often expressed through the upstream propagation of steepened reaches, referred to as knickpoints or knickzones. The identification and analysis of these steepened reaches has numerous applications in geomorphology, such as modelling long-term landscape evolution, understanding controls on fluvial incision, and constraining tectonic uplift histories. Traditionally, the identification of knickpoints or knickzones from fluvial profiles requires manual selection or calibration. This process is both time-consuming and subjective, as different workers may select different steepened reaches within the profile. We propose an objective, statistically-based method to systematically pick knickpoints/knickzones on a landscape scale using an outlier-detection algorithm. Our method integrates river profiles normalised by drainage area (Chi, using the approach of Perron and Royden, 2013), then separates the chi-elevation plots into a series of transient segments using the method of Mudd et al. (2014). This method allows the systematic detection of knickpoints across a DEM, regardless of size, using a high-performance algorithm implemented in the open-source Edinburgh Land Surface Dynamics Topographic Tools (LSDTopoTools) software package. After initial knickpoint identification, outliers are selected using several sorting and binning methods based on the Median Absolute Deviation, to avoid the influence sample size. We test our method on a series of DEMs and grid resolutions, and show that our method consistently identifies accurate knickpoint locations across each landscape tested.
Igawa, T; Oumi, S; Katsuren, S; Sumida, M
2013-01-01
Isolation by distance and landscape connectivity are fundamental factors underlying speciation and evolution. To understand how landscapes affect gene flow and shape population structures, island species provide intrinsic study objects. We investigated the effects of landscapes on the population structure of the endangered frog species, Odorrana ishikawae and O. splendida, which each inhabit an island in southwest Japan. This was done by examining population structure, gene flow and demographic history of each species by analyzing 12 microsatellite loci and exploring causal environmental factors through ecological niche modeling (ENM) and the cost-distance approach. Our results revealed that the limited gene flow and multiple-population structure in O. splendida and the single-population structure in O. ishikawae were maintained after divergence of the species through ancient vicariance between islands. We found that genetic distance correlated with geographic distance between populations of both species. Our landscape genetic analysis revealed that the connectivity of suitable habitats influences gene flow and leads to the formation of specific population structures. In particular, different degrees of topographical complexity between islands are the major determining factor for shaping contrasting population structures of two species. In conclusion, our results illustrate the diversification mechanism of organisms through the interaction with space and environment. Our results also present an ENM approach for identifying the key factors affecting demographic history and population structures of target species, especially endangered species. PMID:22990312
NASA Astrophysics Data System (ADS)
Bolton, W. R.; Lara, M. J.; Genet, H.; Romanovsky, V. E.; McGuire, A. D.
2016-12-01
The Arctic, including Alaska, is currently undergoing a change in climate, with observed increases in both mean surface temperature and precipitation. The combination of these increases in precipitation and temperature has resulted in a permafrost condition that is susceptible to thermokarst. Changes in the landscape due to thermokarst takes place whenever ice-rich permafrost thaws and the land surface subsides due to the volume loss when ground-ice transitions to water. The important processes associated with thermokarst include surface ponding, changes in topography, vegetation distribution, soil moisture conditions, drainage patterns, and related erosion. The Alaska Thermokarst Model (ATM) is a large-scale, state-and-transition model designed to simulate transitions between landscape units affected by thermokarst disturbance. The ATM using a frame-based methodology to track cohorts transitions and their respective proportions within each model grid cell. In the arctic tundra environment, the ATM tracks thermokarst related transitions among wetland tundra, graminoid tundra,shrub tundra and lakes. The transition from one cohort to another due to thermokarst processes can take place if thaw reaches ice-rich ground layers either due to pulse disturbance or due to gradual active layer deepening that eventually results in penetration of the protective layer. The protective layer buffers the ice-rich soils from the land surface and is critical to determine how susceptible an area is to thermokarst degradation. The initial landcover distribution is based upon analysis of compiled remote sensing data sets at 30-m resolution. Remote sensing analysis and field measurements from previous and ongoing studies are used to determine the ice-content of the soil, the drainage efficiency (or the ability of the landscape to store or transport water), the cumulative probability of thermokarst initiation, distance from rivers, lake dynamics (increasing, decreasing, or stable), and other factors which help determine landscape transition rates. Tundra types are allowed to transition from one type to another (for example, wetland tundra to graminoid tundra) under favorable climatic conditions. In this study, we present our conceptualization and initial simulation results from in the arctic regions of Alaska.
Schramm-Loewner evolution of the accessible perimeter of isoheight lines of correlated landscapes
NASA Astrophysics Data System (ADS)
Posé, N.; Schrenk, K. J.; Araújo, N. A. M.; Herrmann, H. J.
Real landscapes exhibit long-range height-height correlations, which are quantified by the Hurst exponent H. We give evidence that for negative H, in spite of the long-range nature of correlations, the statistics of the accessible perimeter of isoheight lines is compatible with Schramm-Loewner evolution curves and therefore can be mapped to random walks, their fractal dimension determining the diffusion constant. Analytic results are recovered for H=-1 and H=0 and a conjecture is proposed for the values in between. By contrast, for positive H, we find that the random walk is not Markovian but strongly correlated in time. Theoretical and practical implications are discussed.
The evolution of hillslope strength following large earthquakes
NASA Astrophysics Data System (ADS)
Brain, Matthew; Rosser, Nick; Tunstall, Neil
2017-04-01
Earthquake-induced landslides play an important role in the evolution of mountain landscapes. Earthquake ground shaking triggers near-instantaneous landsliding, but has also been shown to weaken hillslopes, preconditioning them for failure during subsequent seismicity and/or precipitation events. The temporal evolution of hillslope strength during and following primary seismicity, and if and how this ultimately results in failure, is poorly constrained due to the rarity of high-magnitude earthquakes and limited availability of suitable field datasets. We present results obtained from novel geotechnical laboratory tests to better constrain the mechanisms that control strength evolution in Earth materials of differing rheology. We consider how the strength of hillslope materials responds to ground-shaking events of different magnitude and if and how this persists to influence landslide activity during interseismic periods. We demonstrate the role of stress path and stress history, strain rate and foreshock and aftershock sequences in controlling the evolution of hillslope strength and stability. Critically, we show how hillslopes can be strengthened rather than weakened in some settings, challenging conventional assumptions. On the basis of our laboratory data, we consider the implications for earthquake-induced geomorphic perturbations in mountain landscapes over multiple timescales and in different seismogenic settings.
Limits of neutral drift: lessons from the in vitro evolution of two ribozymes.
Petrie, Katherine L; Joyce, Gerald F
2014-10-01
The relative contributions of adaptive selection and neutral drift to genetic change are unknown but likely depend on the inherent abundance of functional genotypes in sequence space and how accessible those genotypes are to one another. To better understand the relative roles of selection and drift in evolution, local fitness landscapes for two different RNA ligase ribozymes were examined using a continuous in vitro evolution system under conditions that foster the capacity for neutral drift to mediate genetic change. The exploration of sequence space was accelerated by increasing the mutation rate using mutagenic nucleotide analogs. Drift was encouraged by carrying out evolution within millions of separate compartments to exploit the founder effect. Deep sequencing of individuals from the evolved populations revealed that the distribution of genotypes did not escape the starting local fitness peak, remaining clustered around the sequence used to initiate evolution. This is consistent with a fitness landscape where high-fitness genotypes are sparse and well isolated, and suggests, at least in this context, that neutral drift alone is not a primary driver of genetic change. Neutral drift does, however, provide a repository of genetic variation upon which adaptive selection can act.
Evoluton of the Tharsis Region of Mars
NASA Astrophysics Data System (ADS)
Anderson, R. C.; Dohm, J. M.; Maruyama, S.
2015-12-01
The evolution of the Tharsis region includes at least five major stages of Tharsis-related activity, which includes the formation of igneous plateaus, canyon and fault systems, volcanoes, and centers of magmatic-driven tectonism. This activity drove major environmental changes that were recorded in the walls of Valles Marineris, the circum-Chryse outflow channel system, the northern plains, and impact basins such as Argyre, among many other Martian features and landscapes. Environmental change included flooding and associated formation of lakes and oceans in basins such as the prominent northern plains and impact basins such as Argyre. This Tharsis-driven activity also included the formation of glaciers in the southern hemisphere and other landscape features (e.g., alluvial fans, periglacial landforms, gelifluction features including mass wasting, fluvial channels) indicative of an active landscape. At this conference, we will present the details of the evolution of Tharsis, as well as discuss contributing factors to its origin, estimated beginning development, and explanations for its longevity.
Ogi, Soichiro; Fukui, Tomoya; Jue, Melinda L; Takeuchi, Masayuki; Sugiyasu, Kazunori
2014-12-22
Far-from-equilibrium thermodynamic systems that are established as a consequence of coupled equilibria are the origin of the complex behavior of biological systems. Therefore, research in supramolecular chemistry has recently been shifting emphasis from a thermodynamic standpoint to a kinetic one; however, control over the complex kinetic processes is still in its infancy. Herein, we report our attempt to control the time evolution of supramolecular assembly in a process in which the supramolecular assembly transforms from a J-aggregate to an H-aggregate over time. The transformation proceeds through a delicate interplay of these two aggregation pathways. We have succeeded in modulating the energy landscape of the respective aggregates by a rational molecular design. On the basis of this understanding of the energy landscape, programming of the time evolution was achieved through adjusting the balance between the coupled equilibria. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Weigt, Martin
Over the last years, biological research has been revolutionized by experimental high-throughput techniques, in particular by next-generation sequencing technology. Unprecedented amounts of data are accumulating, and there is a growing request for computational methods unveiling the information hidden in raw data, thereby increasing our understanding of complex biological systems. Statistical-physics models based on the maximum-entropy principle have, in the last few years, played an important role in this context. To give a specific example, proteins and many non-coding RNA show a remarkable degree of structural and functional conservation in the course of evolution, despite a large variability in amino acid sequences. We have developed a statistical-mechanics inspired inference approach - called Direct-Coupling Analysis - to link this sequence variability (easy to observe in sequence alignments, which are available in public sequence databases) to bio-molecular structure and function. In my presentation I will show, how this methodology can be used (i) to infer contacts between residues and thus to guide tertiary and quaternary protein structure prediction and RNA structure prediction, (ii) to discriminate interacting from non-interacting protein families, and thus to infer conserved protein-protein interaction networks, and (iii) to reconstruct mutational landscapes and thus to predict the phenotypic effect of mutations. References [1] M. Figliuzzi, H. Jacquier, A. Schug, O. Tenaillon and M. Weigt ''Coevolutionary landscape inference and the context-dependence of mutations in beta-lactamase TEM-1'', Mol. Biol. Evol. (2015), doi: 10.1093/molbev/msv211 [2] E. De Leonardis, B. Lutz, S. Ratz, S. Cocco, R. Monasson, A. Schug, M. Weigt ''Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction'', Nucleic Acids Research (2015), doi: 10.1093/nar/gkv932 [3] F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. Marks, C. Sander, R. Zecchina, J.N. Onuchic, T. Hwa, M. Weigt, ''Direct-coupling analysis of residue co-evolution captures native contacts across many protein families'', Proc. Natl. Acad. Sci. 108, E1293-E1301 (2011).
Landslide inventory maps: New tools for an old problem
NASA Astrophysics Data System (ADS)
Guzzetti, Fausto; Mondini, Alessandro Cesare; Cardinali, Mauro; Fiorucci, Federica; Santangelo, Michele; Chang, Kang-Tsung
2012-04-01
Landslides are present in all continents, and play an important role in the evolution of landscapes. They also represent a serious hazard in many areas of the world. Despite their importance, we estimate that landslide maps cover less than 1% of the slopes in the landmasses, and systematic information on the type, abundance, and distribution of landslides is lacking. Preparing landslide maps is important to document the extent of landslide phenomena in a region, to investigate the distribution, types, pattern, recurrence and statistics of slope failures, to determine landslide susceptibility, hazard, vulnerability and risk, and to study the evolution of landscapes dominated by mass-wasting processes. Conventional methods for the production of landslide maps rely chiefly on the visual interpretation of stereoscopic aerial photography, aided by field surveys. These methods are time consuming and resource intensive. New and emerging techniques based on satellite, airborne, and terrestrial remote sensing technologies, promise to facilitate the production of landslide maps, reducing the time and resources required for their compilation and systematic update. In this work, we first outline the principles for landslide mapping, and we review the conventional methods for the preparation of landslide maps, including geomorphological, event, seasonal, and multi-temporal inventories. Next, we examine recent and new technologies for landslide mapping, considering (i) the exploitation of very-high resolution digital elevation models to analyze surface morphology, (ii) the visual interpretation and semi-automatic analysis of different types of satellite images, including panchromatic, multispectral, and synthetic aperture radar images, and (iii) tools that facilitate landslide field mapping. Next, we discuss the advantages and the limitations of the new remote sensing data and technology for the production of geomorphological, event, seasonal, and multi-temporal inventory maps. We conclude by arguing that the new tools will help to improve the quality of landslide maps, with positive effects on all derivative products and analyses, including erosion studies and landscape modeling, susceptibility and hazard assessments, and risk evaluations.
Natural vs. Human forcing: the new challenge for the Earth science community in the Anthropocene
NASA Astrophysics Data System (ADS)
Tarolli, Paolo
2014-05-01
From the analysis of Earth surface, we are able to learn a lot about its history and processes. Indeed, different landforms bear the signs of different ages, but also of climate and tectonic forcing. In addition to these processes, also the biota forcing has a role in shaping the landscape, of course at different scale and magnitude if compared with geology. In biotic landscapes the vegetation through the roots influences the soil formation and surface erosion. Biota affect also climate, and as a consequence the mechanisms and erosion rates that control the landscape evolution. However, the question is, if we can suppose that there is an evidence of biota forcing, what is the role of humans? Human activities, more than vegetation, are leaving a significant signature on the Earth, by altering its morphology and ecosystems. Also in this case, the temporal and spatial scale (and also the magnitude) are different respect to geological forcing, but the development of the society during the Holocene was significant (from hunting-gathering to farming to complex societies and metropolis): the increase of the population was related to a progressively increase of intensive agriculture and urbanization. This anthropogenic forcing deeply affected the environment, inducing or reducing erosion, and changing the equilibrium of several ecosystems. The recognition and the analysis of the human induced changes, signatures and processes represent a real challenge for the scientific community to better understand the evolution of our Planet. This analysis can help in scheduling a suitable environmental planning for a sustainable development, and to mitigate the consequences of anthropogenic alteration. Wider multidisciplinary groups based on these studies could be able to understand better the evolution of landscapes and ecosystems during the human era, providing a full dataset of multidisciplinary information that can be used by land managers and local authorities, and by the scientific community as well. The recent remotely sensed technologies (e.g. LIDAR, SAR, SfM) might help to reach part of the mentioned goals. High-resolution topography could really play a strategic and helpful role in the recognition of human-induced geomorphic and anthropogenic features, and the connected erosion. Among the most evident landscape signatures of the human fingerprint, for example, road networks and agricultural practices such as terracing deserve a great importance since significantly affect the erosional processes. A better recognition of these signatures is at the basis to improve the knowledge of the related induced processes. In addition to this, it is necessary to improve, through historical data (e.g. hydrogeological, meteorological, stratigraphy, also archeological data) and modeling, the understanding about the land use changes occurred during the last centuries, focusing on the reasoning behind these changes, and on the analysis of their effects on landscape and processes. Human society relies on the vast diversity of benefits provided by the environment. Soil biodiversity and conservation are part of the driving force behind its regulation. At the same time, human society is deeply affecting the environment with consequences on the landscape. It is therefore fundamental to establish greater management control over the Earth's rapidly changing ecosystems.
Modelling remediation scenarios in historical mining catchments.
Gamarra, Javier G P; Brewer, Paul A; Macklin, Mark G; Martin, Katherine
2014-01-01
Local remediation measures, particularly those undertaken in historical mining areas, can often be ineffective or even deleterious because erosion and sedimentation processes operate at spatial scales beyond those typically used in point-source remediation. Based on realistic simulations of a hybrid landscape evolution model combined with stochastic rainfall generation, we demonstrate that similar remediation strategies may result in differing effects across three contrasting European catchments depending on their topographic and hydrologic regimes. Based on these results, we propose a conceptual model of catchment-scale remediation effectiveness based on three basic catchment characteristics: the degree of contaminant source coupling, the ratio of contaminated to non-contaminated sediment delivery, and the frequency of sediment transport events.
Dynamic Changes of Landscape Pattern and Vulnerability Analysis in Qingyi River Basin
NASA Astrophysics Data System (ADS)
Li, Ziwei; Xie, Chaoying; He, Xiaohui; Guo, Hengliang; Wang, Li
2017-11-01
Environmental vulnerability research is one of the core areas of global environmental change research. Over the past 10 years, ecologically fragile zones or transition zones had been significantly affected by environmental degradation and climate change and human activities. In this paper, we analyzed the spatial and temporal changes of landscape pattern and landscape vulnerability degree in Qingyi River Basin by calculating the landscape sensitivity index and landscape restoration degree index based on Landsat images of 2005, 2010 and 2015. The results showed that: (1) The top conversion area was farmland, woodland and grassland area decreased, city land and rural residential land increased fastest. (2) The fragility of the landscape pattern along the Qingyi River gradually increased between 2005 and 2015, the downstream area was influenced by the influence of human activities. (3) Landscape pattern changes and fragility are mainly affected by urbanization. These findings are helpful for understanding the evolution of landscape pattern as well as urban ecology, which both have significant implications for urban planning and minimize the potential environmental impacts of urbanization in Qingyi River Basin.
Neogeomorphology, prediction, and the anthropic landscape
NASA Astrophysics Data System (ADS)
Haff, P. K.
The surface of the earth is undergoing profound change due to human impact. By some measures the level of human impact is comparable to the effects of major classical geomorphic processes such as fluvial sediment transport. This change is occurring rapidly, has no geologic precedent, and may represent an irreversible transition to a new and novel landscape with which we have no experience. For these reasons prediction of future landscape evolution will be of increasing importance. The combination of physical and social forces that drive modern landscape change represents the Anthropic Force. Neogeomorphology is the study of the Anthropic Force and its present and likely future effects on the landscape. Unique properties associated with the Anthropic Force include consciousness, intention and design. These properties support the occurrence of nonclassical geomorphic phenomena, such as landscape planning, engineering, and management. The occurrence of short time-scale phenomena induced by anthropic landscape change, the direct effects of this change on society, and the ability to anticipate and intentionally influence the future trajectory of the global landscape underscore the importance of prediction in a neogeomorphic world.
NASA Astrophysics Data System (ADS)
D'Alpaos, A.; Carniello, L.; Rinaldo, A.
2013-12-01
Wind-wave induced erosion processes play a critical role on the morphodynamic evolution of shallow tidal landscapes. Both in the horizontal and in the vertical planes, patterns of wind-induced bottom shear stresses contribute to control the morphological and biological features of the tidal landscape, through the erosion of tidal-flat surfaces and of salt-marsh margins, the disruption of the polymeric microphytobenthic biofilm, and the increase in suspended sediment concentration which affects the stability of intertidal ecosystems. Towards the goal of developing a synthetic theoretical framework to represent wind wave-induced resuspension events and account for their erosional effects on the long-term biomorphodynamic evolution of tidal systems, we have employed a complete, coupled finite element model accounting for the role of wind waves and tidal currents on the hydrodynamic circulation in shallow basins. Our analysis of the characteristics of combined current and wave-induced exceedances in bottom shear stress over a given threshold for erosion, suggest that wind wave-induced resuspension events can be modeled as a marked Poisson process. Moreover, the analysis of wind-wave induced resuspension events for different historical configurations of the Venice Lagoon shows that the interarrival times of erosion events have decreased through the last two centuries, whereas the intensities of erosion events have increased. This allows us to characterize the threatening erosion and degradation processes that the Venice Lagoon has been experiencing since the beginning of the last century.
Vincent, Bourret; Dionne, Mélanie; Kent, Matthew P; Lien, Sigbjørn; Bernatchez, Louis
2013-12-01
A growing number of studies are examining the factors driving historical and contemporary evolution in wild populations. By combining surveys of genomic variation with a comprehensive assessment of environmental parameters, such studies can increase our understanding of the genomic and geographical extent of local adaptation in wild populations. We used a large-scale landscape genomics approach to examine adaptive and neutral differentiation across 54 North American populations of Atlantic salmon representing seven previously defined genetically distinct regional groups. Over 5500 genome-wide single nucleotide polymorphisms were genotyped in 641 individuals and 28 bulk assays of 25 pooled individuals each. Genome scans, linkage map, and 49 environmental variables were combined to conduct an innovative landscape genomic analysis. Our results provide valuable insight into the links between environmental variation and both neutral and potentially adaptive genetic divergence. In particular, we identified markers potentially under divergent selection, as well as associated selective environmental factors and biological functions with the observed adaptive divergence. Multivariate landscape genetic analysis revealed strong associations of both genetic and environmental structures. We found an enrichment of growth-related functions among outlier markers. Climate (temperature-precipitation) and geological characteristics were significantly associated with both potentially adaptive and neutral genetic divergence and should be considered as candidate loci involved in adaptation at the regional scale in Atlantic salmon. Hence, this study significantly contributes to the improvement of tools used in modern conservation and management schemes of Atlantic salmon wild populations. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Eagleson, Peter S.
1989-01-01
A stochastic-geometric landsurface reflectance model is formulated and tested for the parameterization of spatially variable vegetation and soil at subpixel scales using satellite multispectral images without ground truth. Landscapes are conceptualized as 3-D Lambertian reflecting surfaces consisting of plant canopies, represented by solid geometric figures, superposed on a flat soil background. A computer simulation program is developed to investigate image characteristics at various spatial aggregations representative of satellite observational scales, or pixels. The evolution of the shape and structure of the red-infrared space, or scattergram, of typical semivegetated scenes is investigated by sequentially introducing model variables into the simulation. The analytical moments of the total pixel reflectance, including the mean, variance, spatial covariance, and cross-spectral covariance, are derived in terms of the moments of the individual fractional cover and reflectance components. The moments are applied to the solution of the inverse problem: The estimation of subpixel landscape properties on a pixel-by-pixel basis, given only one multispectral image and limited assumptions on the structure of the landscape. The landsurface reflectance model and inversion technique are tested using actual aerial radiometric data collected over regularly spaced pecan trees, and using both aerial and LANDSAT Thematic Mapper data obtained over discontinuous, randomly spaced conifer canopies in a natural forested watershed. Different amounts of solar backscattered diffuse radiation are assumed and the sensitivity of the estimated landsurface parameters to those amounts is examined.
Linear algebra of the permutation invariant Crow-Kimura model of prebiotic evolution.
Bratus, Alexander S; Novozhilov, Artem S; Semenov, Yuri S
2014-10-01
A particular case of the famous quasispecies model - the Crow-Kimura model with a permutation invariant fitness landscape - is investigated. Using the fact that the mutation matrix in the case of a permutation invariant fitness landscape has a special tridiagonal form, a change of the basis is suggested such that in the new coordinates a number of analytical results can be obtained. In particular, using the eigenvectors of the mutation matrix as the new basis, we show that the quasispecies distribution approaches a binomial one and give simple estimates for the speed of convergence. Another consequence of the suggested approach is a parametric solution to the system of equations determining the quasispecies. Using this parametric solution we show that our approach leads to exact asymptotic results in some cases, which are not covered by the existing methods. In particular, we are able to present not only the limit behavior of the leading eigenvalue (mean population fitness), but also the exact formulas for the limit quasispecies eigenvector for special cases. For instance, this eigenvector has a geometric distribution in the case of the classical single peaked fitness landscape. On the biological side, we propose a mathematical definition, based on the closeness of the quasispecies to the binomial distribution, which can be used as an operational definition of the notorious error threshold. Using this definition, we suggest two approximate formulas to estimate the critical mutation rate after which the quasispecies delocalization occurs. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.
2017-12-01
It has been widely demonstrated that glacial erosion limits the height of mid-latitude mountain ranges—a phenomenon commonly referred to as the "glacial buzzsaw." The strength of the buzzsaw is thought to diminish, or die out completely, at lower latitudes, where glacial landscapes occupy only a small part of mountain belts affected by Pleistocene glaciation. Here we argue that glacial erosion has actually truncated the rise of many tropical orogens. To elicit signs of height-limiting glacial erosion in the tropics, we employ a new take on an old tool: we identify transient geomorphic features by tracking the evolution of (sub)catchment hypsometry with increasing elevation above base level, a method we term "progressive hypsometry." In several tropical mountain belts, including the Central Range of Taiwan, the Talamanca of Costa Rica, the Finisterres of Papua New Guinea, and the Rwenzoris of East Africa, progressive hypsometry reveals transient landscapes perched at various elevations, but the highest of these transient features are consistently glacial landscapes near the lower limit of late-Pleistocene glacial equilibrium line altitude (ELA) fluctuation. We attribute this pattern to an efficient glacial buzzsaw. In many cases, these glacial landscapes are undergoing contemporary destruction by headward propagating, fluvially-driven escarpments. We deduce that a duel between glacial buzzcutting and fluvially-driven scarp propagation has been ongoing throughout the Pleistocene in these places, and that the preservation potential of tropical glacial landscapes is low. To this end, we have identified possible remnants of glacial landscapes in the final stages of scarp consumption, and use 3He surface exposure age dating of boulders and bedrock surfaces in two of these landscapes to constrain major geomorphic activity to before the onset of the Last Glacial Maximum. Our work points to a profound climatic influence on the evolution of these warm, tectonically active, tropical mountain ranges and identifies glaciation as a trigger of autogenic behavior in flanking fluvial landscapes.
Rational evolutionary design: the theory of in vitro protein evolution.
Voigt, C A; Kauffman, S; Wang, Z G
2000-01-01
Directed evolution uses a combination of powerful search techniques to generate proteins with improved properties. Part of the success is due to the stochastic element of random mutagenesis; improvements can be made without a detailed description of the complex interactions that constitute function or stability. However, optimization is not a conglomeration of random processes. Rather, it requires both knowledge of the system that is being optimized and a logical series of techniques that best explores the pathways of evolution (Eigen et al., 1988). The weighing of parameters associated with mutation, recombination, and screening to achieve the maximum fitness improvement is the beginning of rational evolutionary design. The optimal mutation rate is strongly influenced by the finite number of mutants that can be screened. A smooth fitness landscape implies that many mutations can be accumulated without disrupting the fitness. This has the effect of lowering the required library size to sample a higher mutation rate. As the sequence ascends the fitness landscape, the optimal mutation rate decreases as the probability of discovering improved mutations also decreases. Highly coupled regions require that many mutations be simultaneously made to generate a positive mutant. Therefore, positive mutations are discovered at uncoupled positions as the fitness of the parent increases. The benefit of recombination is twofold: it combines good mutations and searches more sequence space in a meaningful way. Recombination is most beneficial when the number of mutants that can be screened is limited and the landscape is of an intermediate ruggedness. The structure of schema in proteins leads to the conclusion that many cut points are required. The number of parents and their sequence identity are determined by the balance between exploration and exploitation. Many disparate parents can explore more space, but at the risk of losing information. The required screening effort is related to the number of uphill paths, which decreases more rapidly for rugged landscapes. Noise in the fitness measurements causes a dramatic increase in the required mutant library size, thus implying a smaller optimal mutation rate. Because of strict limitations on the number of mutants that can be screened, there is motivation to optimize the content of the mutant library. By restricting mutations to regions of the gene that are expected to show improvement, a greater return can be made with the same number of mutants. Initial studies with subtilisin E have shown that structurally tolerant positions tend to be where positive activity mutants are made during directed evolution. Mutant fitness information is produced by the screening step that has the potential to provide insight into the structure of the fitness landscape, thus aiding the setting of experimental parameters. By analyzing the mutant fitness distribution and targeting specific regions of the sequence, in vitro evolution can be accelerated. However, when expediting the search, there is a trade-off between rapid improvement and the quality of the long-term solution. The benefit of neutrality has yet to be captured with in vitro protein evolution. Neutral theory predicts the punctuated emergence of novel structure and function, however, with current methods, the required time scale is not feasible. Utilizing neutral evolution to accelerate the discovery of new functional and structural solutions requires a theory that predicts the behavior of mutational pathways between networks. Because the transition from neutral to adaptive evolution requires a multi-mutational switch, increasing the mutation rate decreases the time required for a punctuated change to occur. By limiting the search to the less coupled region of the sequence (smooth portion of the fitness landscape), the required larger mutation rate can be tolerated. Advances in directed evolution will be achieved when the driving forces behind such proce
Landslides and Landscape Evolution
NASA Astrophysics Data System (ADS)
Densmore, A. L.; Hovius, N.
2017-12-01
Landslides have long been recognised as a major hazard, and are a common product of both large earthquakes and rainstorms. Our appreciation for landslides as agents of erosion and land surface evolution, however, is much more recent. Only in the last twenty years have we come to understand the critical role that landslides play at the landscape scale: in allowing hillslopes to keep pace with fluvial incision, in supplying sediment to channel networks and sedimentary basins, in divide migration, and in setting the basic structure of the landscape. This perspective has been made possible in part by repeat remote sensing and new ways of visualising the land surface, and by extending our understanding of failure processes to the landscape scale; but it is also true that the big jumps in our knowledge have been triggered by large events, such as the 1999 Chi-Chi and 2008 Wenchuan earthquakes. Thanks in part to a relative handful of such case studies, we now have a better idea of the spatial distribution of landslides that are triggered in large events, the volume of sediment that they mobilise, the time scales over which that sediment is mobilised and evacuated, and the overall volume balance between erosion and tectonic processes in the growth of mountainous topography. There remain, however, some major challenges that must still be overcome. Estimates of landslide volume remain highly uncertain, as does our ability to predict the evolution of hillslope propensity to failure after a major triggering event, the movement of landslide sediment (especially the coarse fraction that is transported as bedload), and the impact of landslides on both long-term erosion rates and tectonic processes. The limited range of case studies also means that we struggle to predict outcomes for triggering events in different geological settings, such as loess landscapes or massive lithologies. And the perspective afforded by taking a landscape-scale view has yet to be fully reflected in our approach to landslide hazard. We close by outlining some promising future research directions by which these challenges might be overcome.
NASA Astrophysics Data System (ADS)
Bilskie, M. V.; Hagen, S. C.; Alizad, K.; Passeri, D. L.; Irish, J. L.
2016-12-01
Worldwide, coastal land margins are experiencing increased vulnerability from natural and manmade disasters [Nicholls et al., 1999]. Specifically, coastal flooding is expected to increase due to the effects of climate change, and sea level rise (SLR) in particular. A systems of systems (SoS) approach has been implemented to better understand the dynamic and nonlinear effects of SLR on tropical cyclone-induced coastal flooding along a low-gradient coastal landscape (northern Gulf of Mexico [NGOM]). The backbone of the SoS framework is a high-resolution, physics-based, tide, wind-wave, and hurricane storm surge model [Bilskie et al., 2016a] that includes systems of SLR scenarios [Parris et al., 2012], shoreline morphology [Passeri et al., 2016; Plant et al., 2016], marsh evolution [Alizad et al., 2016], and population dynamics driven by carbon emission scenarios [Bilskie et al., 2016b]. Prior to considering future conditions, the storm surge model was comprehensively validated for present-day conditions [Bilskie et al., 2016a]. The present-day model was then modified to represent the potential future landscape based on four SLR scenarios prescribed by Parris et al. [2012] linked to carbon emissions scenarios for the year 2100. Numerical simulations forced by hundreds of synthetic tropical cyclones were performed and the results facilitate the development of return period inundation maps across the NGOM that reflect changes to the coastal landscape. The SoS approach allows new patterns and properties to emerge (i.e. nonlinear and dynamic effects of SLR) that would otherwise be unobserved using a static SLR model.
Evolution and Extinction Dynamics in Rugged Fitness Landscapes
NASA Astrophysics Data System (ADS)
Sibani, Paolo; Brandt, Michael; Alstrøm, Preben
After an introductory section summarizing the paleontological data and some of their theoretical descriptions, we describe the "reset" model and its (in part analytically soluble) mean field version, which have been briefly introduced in Letters.1,2 Macroevolution is considered as a problem of stochastic dynamics in a system with many competing agents. Evolutionary events (speciations and extinctions) are triggered by fitness records found by random exploration of the agents' fitness landscapes. As a consequence, the average fitness in the system increases logarithmically with time, while the rate of extinction steadily decreases. This non-stationary dynamics is studied by numerical simulations and, in a simpler mean field version, analytically. We also consider the effect of externally added "mass" extinctions. The predictions for various quantities of paleontological interest (life-time distribution, distribution of event sizes and behavior of the rate of extinction) are robust and in good agreement with available data.
Szilágyi, András; Scheuring, István; Edwards, David P; Orivel, Jerome; Yu, Douglas W
2009-12-01
Theory suggests that spatial structuring should select for intermediate levels of virulence in parasites, but empirical tests are rare and have never been conducted with castration (sterilizing) parasites. To test this theory in a natural landscape, we construct a spatially explicit model of the symbiosis between the ant-plant Cordia nodosa and its two, protecting ant symbionts, Allomerus and Azteca. Allomerus is also a castration parasite, preventing fruiting to increase colony fecundity. Limiting the dispersal of Allomerus and host plant selects for intermediate castration virulence. Increasing the frequency of the mutualist, Azteca, selects for higher castration virulence in Allomerus, because seeds from Azteca-inhabited plants are a public good that Allomerus exploits. These results are consistent with field observations and, to our knowledge, provide the first empirical evidence supporting the hypothesis that spatial structure can reduce castration virulence and the first such evidence in a natural landscape for either mortality or castration virulence.
Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan.
Black, Benjamin A; Perron, J Taylor; Hemingway, Douglas; Bailey, Elizabeth; Nimmo, Francis; Zebker, Howard
2017-05-19
Rivers have eroded the topography of Mars, Titan, and Earth, creating diverse landscapes. However, the dominant processes that generated topography on Titan (and to some extent on early Mars) are not well known. We analyzed drainage patterns on all three bodies and found that large drainages, which record interactions between deformation and erosional modification, conform much better to long-wavelength topography on Titan and Mars than on Earth. We use a numerical landscape evolution model to demonstrate that short-wavelength deformation causes drainage directions to diverge from long-wavelength topography, as observed on Earth. We attribute the observed differences to ancient long-wavelength topography on Mars, recent or ongoing generation of long-wavelength relief on Titan, and the creation of short-wavelength relief by plate tectonics on Earth. Copyright © 2017, American Association for the Advancement of Science.
Hybrid Topological Lie-Hamiltonian Learning in Evolving Energy Landscapes
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
In this Chapter, a novel bidirectional algorithm for hybrid (discrete + continuous-time) Lie-Hamiltonian evolution in adaptive energy landscape-manifold is designed and its topological representation is proposed. The algorithm is developed within a geometrically and topologically extended framework of Hopfield's neural nets and Haken's synergetics (it is currently designed in Mathematica, although with small changes it could be implemented in Symbolic C++ or any other computer algebra system). The adaptive energy manifold is determined by the Hamiltonian multivariate cost function H, based on the user-defined vehicle-fleet configuration matrix W, which represents the pseudo-Riemannian metric tensor of the energy manifold. Search for the global minimum of H is performed using random signal differential Hebbian adaptation. This stochastic gradient evolution is driven (or, pulled-down) by `gravitational forces' defined by the 2nd Lie derivatives of H. Topological changes of the fleet matrix W are observed during the evolution and its topological invariant is established. The evolution stops when the W-topology breaks down into several connectivity-components, followed by topology-breaking instability sequence (i.e., a series of phase transitions).
van Strien, Maarten J; Slager, Cornelis T J; de Vries, Bauke; Grêt-Regamey, Adrienne
2016-06-01
Many studies have assessed the effect of landscape patterns on spatial ecological processes by simulating these processes in computer-generated landscapes with varying composition and configuration. To generate such landscapes, various neutral landscape models have been developed. However, the limited set of landscape-level pattern variables included in these models is often inadequate to generate landscapes that reflect real landscapes. In order to achieve more flexibility and variability in the generated landscapes patterns, a more complete set of class- and patch-level pattern variables should be implemented in these models. These enhancements have been implemented in Landscape Generator (LG), which is a software that uses optimization algorithms to generate landscapes that match user-defined target values. Developed for participatory spatial planning at small scale, we enhanced the usability of LG and demonstrated how it can be used for larger scale ecological studies. First, we used LG to recreate landscape patterns from a real landscape (i.e., a mountainous region in Switzerland). Second, we generated landscape series with incrementally changing pattern variables, which could be used in ecological simulation studies. We found that LG was able to recreate landscape patterns that approximate those of real landscapes. Furthermore, we successfully generated landscape series that would not have been possible with traditional neutral landscape models. LG is a promising novel approach for generating neutral landscapes and enables testing of new hypotheses regarding the influence of landscape patterns on ecological processes. LG is freely available online.
Egri-Nagy, Attila; Nehaniv, Chrystopher L
2008-01-01
Beyond complexity measures, sometimes it is worthwhile in addition to investigate how complexity changes structurally, especially in artificial systems where we have complete knowledge about the evolutionary process. Hierarchical decomposition is a useful way of assessing structural complexity changes of organisms modeled as automata, and we show how recently developed computational tools can be used for this purpose, by computing holonomy decompositions and holonomy complexity. To gain insight into the evolution of complexity, we investigate the smoothness of the landscape structure of complexity under minimal transitions. As a proof of concept, we illustrate how the hierarchical complexity analysis reveals symmetries and irreversible structure in biological networks by applying the methods to the lac operon mechanism in the genetic regulatory network of Escherichia coli.
Natural Selection as Coarsening
NASA Astrophysics Data System (ADS)
Smerlak, Matteo
2017-11-01
Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.
Natural Selection as Coarsening
NASA Astrophysics Data System (ADS)
Smerlak, Matteo
2018-07-01
Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.
HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation processmore » including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness landscapes influenced the shape of phylogenies, diversity trends, and survival of virus with latent genomic fragments. Furthermore, our model predicts that the persistence of latent genomic fragments from multiple different ancestral origins increases sequence diversity in plasma for reasonable fitness landscapes.« less
Immonen, Taina T.; Conway, Jessica M.; Romero-Severson, Ethan O.; ...
2015-12-22
HIV-1 is subject to immune pressure exerted by the host, giving variants that escape the immune response an advantage. Virus released from activated latent cells competes against variants that have continually evolved and adapted to host immune pressure. Nevertheless, there is increasing evidence that virus displaying a signal of latency survives in patient plasma despite having reduced fitness due to long-term immune memory. We investigated the survival of virus with latent envelope genomic fragments by simulating within-host HIV-1 sequence evolution and the cycling of viral lineages in and out of the latent reservoir. Our model incorporates a detailed mutation processmore » including nucleotide substitution, recombination, latent reservoir dynamics, diversifying selection pressure driven by the immune response, and purifying selection pressure asserted by deleterious mutations. We evaluated the ability of our model to capture sequence evolution in vivo by comparing our simulated sequences to HIV-1 envelope sequence data from 16 HIV-infected untreated patients. Empirical sequence divergence and diversity measures were qualitatively and quantitatively similar to those of our simulated HIV-1 populations, suggesting that our model invokes realistic trends of HIV-1 genetic evolution. Moreover, reconstructed phylogenies of simulated and patient HIV-1 populations showed similar topological structures. Our simulation results suggest that recombination is a key mechanism facilitating the persistence of virus with latent envelope genomic fragments in the productively infected cell population. Recombination increased the survival probability of latent virus forms approximately 13-fold. Prevalence of virus with latent fragments in productively infected cells was observed in only 2% of simulations when we ignored recombination, while the proportion increased to 27% of simulations when we allowed recombination. We also found that the selection pressures exerted by different fitness landscapes influenced the shape of phylogenies, diversity trends, and survival of virus with latent genomic fragments. Furthermore, our model predicts that the persistence of latent genomic fragments from multiple different ancestral origins increases sequence diversity in plasma for reasonable fitness landscapes.« less
Landau-type expansion for the energy landscape of the designed heteropolymer
NASA Astrophysics Data System (ADS)
Grosberg, Alexander; Pande, Vijay; Tanaka, Toyoichi
1997-03-01
The concept of evolutional optimization of heteropolymer sequences is used to construct the phenomenological theory describing folding/unfoolding kinetics of the polymers with designed sequences. The relevant energy landscape is described in terms of Landau expansion over the powers of the overlap parameter of the current and the native conformations. It is shown that only linear term is sequence (mutation) dependent, the rest being determined by the underlying conformational geometry. The theory os free of the assumptions of the uncorrelated energy landscape type. We demonstrate the power of the theory by comparing data to the simulations and experiments.
A geomorphic process law for detachment-limited hillslopes
NASA Astrophysics Data System (ADS)
Turowski, Jens
2015-04-01
Geomorphic process laws are used to assess the shape evolution of structures at the Earth's surface over geological time scales, and are routinely used in landscape evolution models. There are two currently available concepts on which process laws for hillslope evolution rely. In the transport-limited concept, the evolution of a hillslope is described by a linear or a non-linear diffusion equation. In contrast, in the threshold slope concept, the hillslope is assumed to collapse to a slope equal to the internal friction angle of the material when the load due to the relief exists the material strength. Many mountains feature bedrock slopes, especially in the high mountains, and material transport along the slope is limited by the erosion of the material from the bedrock. Here, I suggest a process law for detachment-limited or threshold-dominated hillslopes, in which the erosion rate is a function of the applied stress minus the surface stress due to structural loading. The process law leads to the prediction of an equilibrium form that compares well to the shape of many mountain domes.
Weak bedrock allows north-south elongation of channels in semi-arid landscapes
NASA Astrophysics Data System (ADS)
Johnstone, Samuel A.; Finnegan, Noah J.; Hilley, George E.
2017-11-01
Differences in the lengths of pole- and equator-facing slopes are observed in a variety of landscapes. These differences are generally attributed to relative variations in the intensity of mass-transport processes on slopes receiving different magnitudes of solar radiation. By measuring anomalies in the planform characteristics of drainage networks, we demonstrate that in the most asymmetric landscapes this asymmetry primarily arises from the equator-ward alignment of low-order valley networks. Valley network asymmetry is more severe in rocks expected to offer little resistance to erosion than in more resistant rocks when controlling for climate. This suggests that aspect-driven differences in surface processes that drive differences in landscape evolution are also sensitive to underlying rock type.
Multidimensional adaptive evolution of a feed-forward network and the illusion of compensation
Bullaughey, Kevin
2016-01-01
When multiple substitutions affect a trait in opposing ways, they are often assumed to be compensatory, not only with respect to the trait, but also with respect to fitness. This type of compensatory evolution has been suggested to underlie the evolution of protein structures and interactions, RNA secondary structures, and gene regulatory modules and networks. The possibility for compensatory evolution results from epistasis. Yet if epistasis is widespread, then it is also possible that the opposing substitutions are individually adaptive. I term this possibility an adaptive reversal. Although possible for arbitrary phenotype-fitness mappings, it has not yet been investigated whether such epistasis is prevalent in a biologically-realistic setting. I investigate a particular regulatory circuit, the type I coherent feed-forward loop, which is ubiquitous in natural systems and is accurately described by a simple mathematical model. I show that such reversals are common during adaptive evolution, can result solely from the topology of the fitness landscape, and can occur even when adaptation follows a modest environmental change and the network was well adapted to the original environment. The possibility of adaptive reversals warrants a systems perspective when interpreting substitution patterns in gene regulatory networks. PMID:23289561
NASA Astrophysics Data System (ADS)
Moore, Leah; Nicholson, Allan; Cook, Wayne; Sweeney, Margaret
2014-05-01
In the Greater Launceston Area (GLA) in northern Tasmania, Australia, there is a widespread urban salinity problem with severe impacts on urban/peri-urban infrastructure in localised areas. Salinity patterns in the landscape (elevated flux to waterways; salt efflorescence at the land surface) could be related to: the underlying rock type, the thickness of regolith materials and hence the volume of the salt store, the landforms present and the amount of water passing over and through the landscape. In northern Tasmania secondary mineralogy on dolerite typically includes formation of Fe/Ca smectite phases (e.g. nontronite, saponite) and Fe-Ti oxides/sesquioxides (e.g. hematite, goethite) with some primary phases (e.g. Ca-plagioclase feldspar, augite) weathering through to a suite dominated by kaolinite clay and Fe-Ti oxides/sesquioxides. Deeply weathered profiles in the GLA have weathered to the kaolintite-clay dominant mineralogy and in places there are gibbsite/beidellite/hematite/goethite bauxites developed. Most existing salinity mapping emphasises salt manifestation over paleo-estuarine sediments of the Paleogene Tamar-Esk River system, so incorporation of deeply weathered Jurassic dolerite materials into the salt budget considerably augments the estimated potential hazard. Rapid stream surveys provide a snapshot of stream electrical conductivity (EC) over the study area at regular intervals allowing a broad evaluation of salt flux patterns in surfaces waters. Higher EC readings were obtained from selected streams draining: deeply weathered dolerite profiles (0.37 1.86 dS/m) and deeply weathered Paleogene paleo-estuarine sediments (0.49 to 1.16 dS/m). Lower values were measured on up-faulted dolerite blocks (<0.10 dS/m); moderately weathered, high relief dolerite (<0.03 dS/m), and in incised streams flowing over a rocky dolerite substrate (<0.03 dS/m). The patterns of stream EC reflect the nature of the regolith materials the streams drain, and match mapped patterns for distribution of deeply weathered Jurassic dolerite and moderately to deeply weathered bedded paleo-estuarine sediments of the Paleogene Tamar-Esk river system, some Quaternary terrace deposits along the Tamar and Esk Rivers; and some Holocene estuarine sediments. Recent geomorphic mapping has enabled development of a more comprehensive and consistent landscape evolution model that builds on existing knowledge. This model describes the influence of a progressively incising Tamar-Esk river system in response to episodic lowering of the local base level, with multiple episodes of valley widening as the river system stabilised after incision. Successive lowering events dissected earlier landforms, but locally remnant surfaces are preserved that represent former fluvial plain and terrace features. These processes were partially controlled by the structural configuration and contrasting resistance of the underlying lithologies, influencing the planform geometries of the rivers, and consequently the potential to preserve paleo-fluvial features. Because the Tamar River is an estuarine system, some of the lowermost preserved surfaces are likely to reflect marine processes (e.g. 5-7m; 10-12m ASL). The geomorphic mapping was conducted independently of the hydrogeological landscape (HGL) characterisation in the GLA, but there is strong correlation between the areas identified as having elevated salinity hazard (HGL) and newly mapped remnant surfaces in this landscape. This work complements HGL research and supports development of an increasingly rigorous evidence-based framework for GLA salinity hazard management.
NASA Astrophysics Data System (ADS)
Evans, Ben; Moeller, Iris; Smith, Geoff; Spencer, Tom
2017-04-01
Saltmarshes provide valuable ecosystem services and are protected. Nevertheless they are generally thought to be declining in extent in North West Europe and beyond. The drivers of this decline and its variability are complex and inadequately described. When considering management for future ecosystem service provision it is important to understand why, where, and to what extent areal decline is likely to occur. Physically-based morphological modelling of fine-sediment systems is in its infancy. The models and necessary expertise and facilities to run and validate them are rarely directly accessible to practitioners. This paper uses an accessible and easily applied data-driven modelling approach for the quantitative estimation of current marsh system status and likely future marsh development. Central to this approach are monitoring datasets providing high resolution spatial data and the recognition that antecedent morphology exerts a principal control on future landform change (morphodynamic feedback). Further, current morphology can also be regarded as an integrated response of the intertidal system to the process environment . It may also, therefore, represent proxy information on historical conditions beyond the period of observational records. Novel methods are developed to extract quantitative morphological information from aerial photographic, LiDAR and satellite datasets. Morphometric indices are derived relating to the functional configuration of landform units that go beyond previous efforts and basic description of extent. The incorporation of morphometric indices derived from existing monitoring datasets is shown to improve the performance of statistical models for predicting salt marsh evolution but wider applications and benefits are expected. The indices are useful landscape descriptors when assessing system status and may provide relatively robust measures for comparison against historical datasets. They are also valuable metrics when considering how the landscape delivers ecosystem services and are essential for the testing and validation of morphological models of salt marshes and other systems.
Revealing evolutionary pathways by fitness landscape reconstruction.
Kogenaru, Manjunatha; de Vos, Marjon G J; Tans, Sander J
2009-01-01
The concept of epistasis has since long been used to denote non-additive fitness effects of genetic changes and has played a central role in understanding the evolution of biological systems. Owing to an array of novel experimental methodologies, it has become possible to experimentally determine epistatic interactions as well as more elaborate genotype-fitness maps. These data have opened up the investigation of a host of long-standing questions in evolutionary biology, such as the ruggedness of fitness landscapes and the accessibility of mutational trajectories, the evolution of sex, and the origin of robustness and modularity. Here we review this recent and timely marriage between systems biology and evolutionary biology, which holds the promise to understand evolutionary dynamics in a more mechanistic and predictive manner.
NASA Astrophysics Data System (ADS)
Pierik, Harm Jan; Cohen, Kim; Stouthamer, Esther
2016-04-01
Geological-geomorphological reconstructions are important for integrating diverse types of data and improving understanding of landscape formation processes. This works especially well in densely populated Holocene landscapes, where large quantities of raw data are produced by geotechnical, archaeological, soil science and hydrological communities as well as in academic research. The Rhine-Meuse delta, The Netherlands, has a long tradition of integrated digital reconstruction maps and databases. This contributed to improve understanding of delta evolution, especially regarding the channel belt network evolution. In this contribution, we present a new generation of digital map products for the Holocene Rhine-Meuse delta. Our reconstructions expand existing channel belt network maps, with new map layers containing natural levee extent and relative elevation. The maps we present have been based on hundreds of thousands of lithological borehole descriptions, >1000 radiocarbon dates, and further integrate LIDAR data, soil maps and archaeological information. For selected time slices through the Late Holocene, the map products describe the patterns of levee distribution. Additionally, we mapped the palaeo-topography of the levees through the delta, aiming to resolve what parts of the overbank river landscape were the relatively low and high positioned areas in the past landscape. The resulting palaeogeographical maps are integrative products created for a very data-rich research area. They will allow for delta-wide analysis in studying changes in the Late Holocene landscape and the interaction with past habitation.
NASA Astrophysics Data System (ADS)
Jacobs, J. M.; Bhat, S.; Choi, M.; Mecikalski, J. R.; Anderson, M. C.
2009-12-01
The unprecedented recent droughts in the Southeast US caused reservoir levels to drop dangerously low, elevated wildfire hazard risks, reduced hydropower generation and caused severe economic hardships. Most drought indices are based on recent rainfall or changes in vegetation condition. However in heterogeneous landscapes, soils and vegetation (type and cover) combine to differentially stress regions even under similar weather conditions. This is particularly true for the heterogeneous landscapes and highly variable rainfall in the Southeastern United States. This research examines the spatiotemperal evolution of watershed scale drought using a remotely sensed stress index. Using thermal-infrared imagery, a fully automated inverse model of Atmosphere-Land Exchange (ALEXI), GIS datasets and analysis tools, modeled daily surface moisture stress is examined at a 10-km resolution grid covering central to southern Georgia. Regional results are presented for the 2000-2008 period. The ALEXI evaporative stress index (ESI) is compared to existing regional drought products and validated using local hydrologic measurements in Georgia’s Altamaha River watershed at scales from 10 to 10,000 km2.
Predicting sediment delivery from debris flows after wildfire
NASA Astrophysics Data System (ADS)
Nyman, Petter; Smith, Hugh G.; Sherwin, Christopher B.; Langhans, Christoph; Lane, Patrick N. J.; Sheridan, Gary J.
2015-12-01
Debris flows are an important erosion process in wildfire-prone landscapes. Predicting their frequency and magnitude can therefore be critical for quantifying risk to infrastructure, people and water resources. However, the factors contributing to the frequency and magnitude of events remain poorly understood, particularly in regions outside western USA. Against this background, the objectives of this study were to i) quantify sediment yields from post-fire debris flows in southeast Australian highlands and ii) model the effects of landscape attributes on debris flow susceptibility. Sediment yields from post-fire debris flows (113-294 t ha- 1) are 2-3 orders of magnitude higher than annual background erosion rates from undisturbed forests. Debris flow volumes ranged from 539 to 33,040 m3 with hillslope contributions of 18-62%. The distribution of erosion and deposition above the fan were related to a stream power index, which could be used to model changes in yield along the drainage network. Debris flow susceptibility was quantified with a logistic regression and an inventory of 315 debris flow fans deposited in the first year after two large wildfires (total burned area = 2919 km2). The differenced normalised burn ratio (dNBR or burn severity), local slope, radiative index of dryness (AI) and rainfall intensity (from rainfall radar) were significant predictors in a susceptibility model, which produced excellent results in terms identifying channels that were eroded by debris flows (Area Under Curve, AUC = 0.91). Burn severity was the strongest predictor in the model (AUC = 0.87 when dNBR is used as single predictor) suggesting that fire regimes are an important control on sediment delivery from these forests. The analysis showed a positive effect of AI on debris flow probability in landscapes where differences in moisture regimes due to climate are associated with large variation in soil hydraulic properties. Overall, the results from this study based in the southeast Australian highlands provide a novel basis upon which to model sediment delivery from post-fire debris flows. The modelling approach has wider relevance to post-fire debris flow prediction both from risk management and landscape evolution perspectives.
Influence of rock strength variations on interpretation of thermochronologic data
NASA Astrophysics Data System (ADS)
Flowers, Rebecca; Ehlers, Todd
2017-04-01
Low temperature thermochronologic datasets are the primary means for estimating the timing, magnitude, and rates of erosion over extended (10s to 100s of Ma) timescales. Typically, abrupt shifts in cooling rates recorded by thermochronologic data are interpreted as changes in erosion rates caused by shifts in uplift rates, drainage patterns, or climate. However, recent work shows that different rock types vary in strength and erodibility by as much as several orders of magnitude, therefore implying that lithology should be an important control on how landscapes change through time and the thermochronometer record of erosion histories. Attention in the surface processes community has begun to focus on rock strength as a critical control on short-term (Ka to Ma) landscape evolution, but there has been less consideration of the influence of this factor on landscapes over longer intervals. If intrinsic lithologic variability can strongly modify erosion rates without changes in external factors, this result would have important implications for how thermochronologic datasets are interpreted. Here we evaluate the importance of rock strength for interpreting thermochronologic datasets by examining erosion rates and total denudation magnitudes across sedimentary rock-crystalline basement rock interfaces. We particularly focus on the 'Great Unconformity', a global stratigraphic surface between Phanerozoic sedimentary rocks and Precambrian crystalline basement, which based on rock strength studies marks a dramatic rock erodibility contrast across which erosion rates should decelerate. In the Rocky Mountain basement uplifts of the western U.S., thermochronologic data and geologic observations indicate that erosion rates were high during latest Cretaceous-early Tertiary denudation of the sedimentary cover (3-4 km over 10 m.y., 300-400 m/m.y.) but dramatically decelerated when less erodible basement rocks were encountered (0.1-0.5 km over 55 m.y., 2-9 m/m.y.). Similarly, the western Canadian shield underwent multiple Phanerozoic episodes of substantial (1-4 km) sedimentary rock burial and erosion, but total Phanerozoic erosion of the crystalline basement below the Great Unconformity was no more than a few hundred meters. We use published low temperature thermochronologic dates, the LandLab landscape evolution model, and 1D thermokinematic and erosion (Pecube) models to assess whether the observed deceleration of erosion can be explained by measured variations in rock strength alone. We use these results to consider the extent to which rock strength can change the cooling history recorded by thermochronologic datasets.
van Maanen, B.; Coco, G.; Bryan, K. R.
2015-01-01
An ecomorphodynamic model was developed to study how Avicennia marina mangroves influence channel network evolution in sandy tidal embayments. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. The presence of mangroves was found to enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The enhanced branching of channels is also the result of a vegetation-induced increase in erosion threshold. On the other hand, this reduction in bed erodibility, together with the soil expansion driven by organic matter production, reduces the landward expansion of channels. The ongoing accretion in mangrove forests ultimately drives a reduction in tidal prism and an overall retreat of the channel network. During sea-level rise, mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone, while hindering both the branching and headward erosion of the landward expanding channels. The modelling results presented here indicate the critical control exerted by ecogeomorphological interactions in driving landscape evolution. PMID:26339195
Walker, D.A.; Binnian, Emily F.; Evans, B. M.; Lederer, N.D.; Nordstrand, E.A.; Webber, P.J.
1989-01-01
Maps of the vegetation and terrain of a 22 km2 area centered on the Department of Energy (DOE) R4D (Response, Resistance, Resilience to and Recovery from Disturbance in Arctic Ecosystems) study site in the Southern Foothills Physiographic Province of Alaska were made using integrated geobotanical mapping procedures and a geographic-information system. Typical land forms and surface f orms include hillslope water tracks, Sagavanirktok-age till deposits, nonsorted stone stripes, and colluvial-basin deposits. Thirty-two plant communities are described; the dominant vegetation (51% of the mapped area) is moist tussock-sedge, dwarf-shrub tundra dominated by Eriophorum vaginatum or Carex bigelowii. Much of the spatial variation in the mapped geobotanical characters reflects different-aged glaciated surfaces. Shannon-Wienerin dices indicate that the more mature landscapes, represented by retransported hillslope deposits and basin colluvium, are less heterogeneous than newer landscapes such as surficial till deposits and floodplains. A typical toposequence on a mid-Pleistocene-age surface is discussed with respect to evolution of the landscape. Thick Sphagnum moss layers occur on lower hillslopes, and the patterns of moss-layer development, heat flux, active layer thickness, and ground-ice are seen as keys to developing thermokarst-susceptibility maps.
Tseng, Zhijie Jack
2013-01-01
Morphological convergence is a well documented phenomenon in mammals, and adaptive explanations are commonly employed to infer similar functions for convergent characteristics. I present a study that adopts aspects of theoretical morphology and engineering optimization to test hypotheses about adaptive convergent evolution. Bone-cracking ecomorphologies in Carnivora were used as a case study. Previous research has shown that skull deepening and widening are major evolutionary patterns in convergent bone-cracking canids and hyaenids. A simple two-dimensional design space, with skull width-to-length and depth-to-length ratios as variables, was used to examine optimized shapes for two functional properties: mechanical advantage (MA) and strain energy (SE). Functionality of theoretical skull shapes was studied using finite element analysis (FEA) and visualized as functional landscapes. The distribution of actual skull shapes in the landscape showed a convergent trend of plesiomorphically low-MA and moderate-SE skulls evolving towards higher-MA and moderate-SE skulls; this is corroborated by FEA of 13 actual specimens. Nevertheless, regions exist in the landscape where high-MA and lower-SE shapes are not represented by existing species; their vacancy is observed even at higher taxonomic levels. Results highlight the interaction of biomechanical and non-biomechanical factors in constraining general skull dimensions to localized functional optima through evolution. PMID:23734244
NASA Astrophysics Data System (ADS)
Guerrero, E. F.; Meigs, A.
2012-12-01
Mantle plumes have been recognized to express themselves on the surface as long wavelength and low amplitude topographic swells. These swells are measured as positive geoid anomalies and include shorter wavelength topographic features such as volcanic edifices and pre-exisitng topography. Advection of the topographic swell is expected as the lithosphere passes over the plume uplift source. The hot spot swell occurs in the landscape as transient signal that is expressed with waxing and waning topography. Waxing topography occurs at the leading edge of the swell and is expressed as an increase in rock uplift that is preserved by rivers and landscapes. Advection of topography predicts a shift in a basin from deposition to incision, an increase in convexity of a transverse river's long profile and a lateral river migration in the direction of advection. The Yellowstone region has a strong positive geoid anomaly and the volcanic signal, which have been interpreted as the longer and shorter wavelength topographic expressions of the hot spot. These expressions of the hot spot developed in a part of North America with a compounded deformation and topographic history. Previous studies of the Yellowstone topographic swell have concentrated on the waning or trailing signal preserved in the Snake River Plain. Our project revisits the classic geomorphology study area in the Bighorn Basin of Wyoming and Montana, which is in leading edge of the swell. Present models identify the swell as having a 400 km in diameter and that it is centered on the Yellowstone caldera. If we assume advection to occur in concert with the caldera eruptive track, the Yellowstone swell has migrated to the northeast at a rate of 3 cm yr-1 and began acting on the Bighorn Basin's landscape between 3 and 2 Ma. The Bighorn Basin has an established history of a basin-wide switch from deposition to incision during the late Pliocene, yet the age control on the erosional evolution of the region is relative. This basin is an ideal location to quantify long wavelength dynamic topography due to its low relief. Long river profiles streams that are transverse to the topographic swell in the basin suggest a transient advective signal preserved as profile knickpoints. Abandoned strath terraces, stream piracy, drainage reorganization, and lateral channel migration within the Bighorn Basin are all consistent indicators of the advection of a topographic swell. However, the lack of a high-resolution absolute age chronology precludes us from attributing the primary landscape and drainage forcing to climate change or dynamic topography. Our future work will focus on the timing of geomorphic and river profile evolution to disentangle competing effects of topographic advection, climate, and other factors.
Morphological rates of angiosperm seed size evolution.
Sims, Hallie J
2013-05-01
The evolution of seed size among angiosperms reflects their ecological diversification in a complex fitness landscape of life-history strategies. The lineages that have evolved seeds beyond the upper and lower boundaries that defined nonflowering seed plants since the Paleozoic are more dispersed across the angiosperm phylogeny than would be expected under a neutral model of phenotypic evolution. Morphological rates of seed size evolution estimated for 40 clades based on 17,375 species ranged from 0.001 (Garryales) to 0.207 (Malvales). Comparative phylogenetic analysis indicated that morphological rates are not associated with the clade's seed size but are negatively correlated with the clade's position in the overall distribution of angiosperm seed sizes; clades with seed sizes closer to the angiosperm mean had significantly higher morphological rates than clades with extremely small or extremely large seeds. Likewise, per-clade taxonomic diversification rates are not associated with the seed size of the clade but with where the clade falls within the angiosperm seed size distribution. These results suggest that evolutionary rates (morphological and taxonomic) are elevated in densely occupied regions of the seed morphospace relative to lineages whose ecophenotypic innovations have moved them toward the edges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Spatiotemporal Features of the Three-Dimensional Architectural Landscape in Qingdao, China.
Zhang, Peifeng
2015-01-01
The evolution and development of the three-dimensional (3D) architectural landscape is the basis of proper urban planning, eco-environment construction and the improvement of environmental quality. This paper presents the spatiotemporal characteristics of the 3D architectural landscape of the Shinan and Shibei districts in Qingdao, China, based on buildings' 3D information extracted from Quickbird images from 2003 to 2012, supported by Barista, landscape metrics and GIS. The results demonstrated that: (1) Shinan and Shibei districts expanded vertically and urban land use intensity increased noticeably from year to year. (2) Significant differences in the 3D architectural landscape existed among the western, central and eastern regions, and among the 26 sub-districts over the study period. The differentiation was consistent with the diverse development history, function and planning of the two districts. Finally, we found that population correlates positively with the variation in the 3D architectural landscape. This research provides an important reference for related studies, urban planning and eco-city construction.
Spatiotemporal Features of the Three-Dimensional Architectural Landscape in Qingdao, China
Zhang, Peifeng
2015-01-01
The evolution and development of the three-dimensional (3D) architectural landscape is the basis of proper urban planning, eco-environment construction and the improvement of environmental quality. This paper presents the spatiotemporal characteristics of the 3D architectural landscape of the Shinan and Shibei districts in Qingdao, China, based on buildings’ 3D information extracted from Quickbird images from 2003 to 2012, supported by Barista, landscape metrics and GIS. The results demonstrated that: (1) Shinan and Shibei districts expanded vertically and urban land use intensity increased noticeably from year to year. (2) Significant differences in the 3D architectural landscape existed among the western, central and eastern regions, and among the 26 sub-districts over the study period. The differentiation was consistent with the diverse development history, function and planning of the two districts. Finally, we found that population correlates positively with the variation in the 3D architectural landscape. This research provides an important reference for related studies, urban planning and eco-city construction. PMID:26361016
Cougar space use and movements in the wildland-urban landscape of western Washington
Kertson, B.N.; Spencer, R.D.; Marzluff, J.M.; Hepinstall-Cymerman, Jeffrey; Grue, C.E.
2011-01-01
The wildland-urban interface lies at the confluence of human-dominated and wild landscapes, creating a number of management and conservation challenges. Because wildlife ecology, behavior, and evolution at this interface are shaped by both natural and human phenomena, this requires greater understanding of how diverse factors affect ecosystem and population processes. We illustrate the challenge of understanding and managing a frequent and often undesired inhabitant of the wildland-urban landscape, the cougar (Puma concolor). In wildland and residential areas of western Washington State, USA, we captured and radiotracked 27 cougars to model space use and understand the role of landscape features in interactions (sightings, encounters, and depredations) between cougars and humans. Resource utilization functions (RUFs) identified cougar use of areas with features that were probably attractive to prey, influential on prey vulnerability, and associated with limited or no residential development. Early-successional forest (+), conifer forest (+), distance to road (-), residential density (-), and elevation (-) were significant positive and negative predictors of use for the population, whereas use of other landscape features was highly variable. Space use and movement rates in wildland and residential areas were similar because cougars used wildland-like forest patches, reserves, and corridors in residential portions of their home range. The population RUF was a good predictor of confirmed cougar interactions, with 72% of confirmed reports occurring in the 50% of the landscape predicted to be medium-high and high cougar use areas. We believe that there is a threshold residential density at which the level of development modifies the habitat but maintains enough wildland characteristics to encourage moderate levels of cougar use and maximize the probability of interaction. Wildlife managers trying to reduce interactions between cougars and people should incorporate information on spatial ecology and landscape characteristics to identify areas with the highest overlap of human and cougar use to focus management, education, and landscape planning. Resource utilization functions provide a proactive tool to guide these activities for improved coexistence with wildlife using both wildland and residential portions of the landscape. ??2011 by the Ecological Society of America.
Crossing fitness canyons by a finite population
NASA Astrophysics Data System (ADS)
Saakian, David B.; Bratus, Alexander S.; Hu, Chin-Kun
2017-06-01
We consider the Wright-Fisher model of the finite population evolution on a fitness landscape defined in the sequence space by a path of nearly neutral mutations. We study a specific structure of the fitness landscape: One of the intermediate mutations on the mutation path results in either a large fitness value (climbing up a fitness hill) or a low fitness value (crossing a fitness canyon), the rest of the mutations besides the last one are neutral, and the last sequence has much higher fitness than any intermediate sequence. We derive analytical formulas for the first arrival time of the mutant with two point mutations. For the first arrival problem for the further mutants in the case of canyon crossing, we analytically deduce how the mean first arrival time scales with the population size and fitness difference. The location of the canyon on the path of sequences has a crucial role. If the canyon is at the beginning of the path, then it significantly prolongs the first arrival time; otherwise it just slightly changes it. Furthermore, the fitness hill at the beginning of the path strongly prolongs the arrival time period; however, the hill located near the end of the path shortens it. We optimize the first arrival time by applying a nonzero selection to the intermediate sequences. We extend our results and provide a scaling for the valley crossing time via the depth of the canyon and population size in the case of a fitness canyon at the first position. Our approach is useful for understanding some complex evolution systems, e.g., the evolution of cancer.
Self-organization and information in biosystems: a case study.
Haken, Hermann
2018-05-01
Eigen's original molecular evolution equations are extended in two ways. (1) By an additional nonlinear autocatalytic term leading to new stability features, their dependence on the relative size of fitness parameters and on initial conditions is discussed in detail. (2) By adding noise terms that represent the spontaneous generation of molecules by mutations of substrate molecules, these terms are taken care of by both Langevin and Fokker-Planck equations. The steady-state solution of the latter provides us with a potential landscape giving a bird's eye view on all stable states (attractors). Two different types of evolutionary processes are suggested: (a) in a fixed attractor landscape and (b) caused by a changed landscape caused by changed fitness parameters. This may be related to Gould's concept of punctuated equilibria. External signals in the form of additional molecules may generate a new initial state within a specific basin of attraction. The corresponding attractor is then reached by self-organization. This approach allows me to define pragmatic information as signals causing a specific reaction of the receiver and to use equations equivalent to (1) as model of (human) pattern recognition as substantiated by the synergetic computer.
Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries
2013-01-01
Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change. PMID:23467649
van Strien, Maarten J; Keller, Daniela; Holderegger, Rolf; Ghazoul, Jaboury; Kienast, Felix; Bolliger, Janine
2014-03-01
For conservation managers, it is important to know whether landscape changes lead to increasing or decreasing gene flow. Although the discipline of landscape genetics assesses the influence of landscape elements on gene flow, no studies have yet used landscape-genetic models to predict gene flow resulting from landscape change. A species that has already been severely affected by landscape change is the large marsh grasshopper (Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in Switzerland. From transects drawn between all population pairs within maximum dispersal distance (< 3 km), we calculated several measures of landscape composition as well as some measures of habitat configuration. Additionally, a complete sampling of all populations in our study area allowed incorporating measures of population topology. These measures together with the landscape metrics formed the predictor variables in linear models with gene flow as response variable (F(ST) and mean pairwise assignment probability). With a modified leave-one-out cross-validation approach, we selected the model with the highest predictive accuracy. With this model, we predicted gene flow under several landscape-change scenarios, which simulated construction, rezoning or restoration projects, and the establishment of a new population. For some landscape-change scenarios, significant increase or decrease in gene flow was predicted, while for others little change was forecast. Furthermore, we found that the measures of population topology strongly increase model fit in landscape genetic analysis. This study demonstrates the use of predictive landscape-genetic models in conservation and landscape planning.
The Critical Zone: A Necessary Framework for Understanding Surface Earth Processes
NASA Astrophysics Data System (ADS)
Dietrich, W. E.
2016-12-01
One definition of the critical zone is: the thin veneer of Earth that extends from the top of the vegetation to the base of weathered bedrock. With this definition we can envision the critical zone as a distinct entity with a well-defined top and a fairly well-defined bottom that is distributed across terrestrial earth landscapes. It is a zone of co-evolving processes and, importantly, much of this zone is well below the soil mantle (and commonly more than 10 times thicker than the soil). Weathering advance into fresh bedrock creates a hydrologically-conductive skin that mediates runoff and solute chemistry, stores water used by vegetation, releases water as baseflow to streams, influences soil production and hillslope evolution, and feeds gasses to the atmosphere. Especially in seasonally dry environments, rock moisture in the critical zone, i.e. moisture that is exchangeable and potentially mobile in the matrix and fractures of the bedrock, can be a significant source of water to plants and is a previously unrecognized large component of the water budget that matters to climate models. First observations on the systematic variation of the critical zone across hillslopes have led to four distinct theories representing four distinct processes for what controls the depth to fresh bedrock (and thus the thickness of this zone across a hillslope). These theories are motivating geophysical surveys, deep drilling, and other actions to parameterize and explore the power of these models. Studies at the NSF-supported Critical Zone Observatories have taught us that the critical zone is an entity and that enduring field studies reveal key processes. A challenge we now face is how to include this emerging understanding of the critical zone into models of reactive transport, hydrologic processes and water supply, critical zone structure, landscape evolution, and climate.
Dynamics of Tumor Heterogeneity Derived from Clonal Karyotypic Evolution.
Laughney, Ashley M; Elizalde, Sergi; Genovese, Giulio; Bakhoum, Samuel F
2015-08-04
Numerical chromosomal instability is a ubiquitous feature of human neoplasms. Due to experimental limitations, fundamental characteristics of karyotypic changes in cancer are poorly understood. Using an experimentally inspired stochastic model, based on the potency and chromosomal distribution of oncogenes and tumor suppressor genes, we show that cancer cells have evolved to exist within a narrow range of chromosome missegregation rates that optimizes phenotypic heterogeneity and clonal survival. Departure from this range reduces clonal fitness and limits subclonal diversity. Mapping of the aneuploid fitness landscape reveals a highly favorable, commonly observed, near-triploid state onto which evolving diploid- and tetraploid-derived populations spontaneously converge, albeit at a much lower fitness cost for the latter. Finally, by analyzing 1,368 chromosomal translocation events in five human cancers, we find that karyotypic evolution also shapes chromosomal translocation patterns by selecting for more oncogenic derivative chromosomes. Thus, chromosomal instability can generate the heterogeneity required for Darwinian tumor evolution. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Ng'oma, Enoch; Perinchery, Anna M; King, Elizabeth G
2017-06-28
All organisms use resources to grow, survive and reproduce. The supply of these resources varies widely across landscapes and time, imposing ultimate constraints on the maximal trait values for allocation-related traits. In this review, we address three key questions fundamental to our understanding of the evolution of allocation strategies and their underlying mechanisms. First, we ask: how diverse are flexible resource allocation strategies among different organisms? We find there are many, varied, examples of flexible strategies that depend on nutrition. However, this diversity is often ignored in some of the best-known cases of resource allocation shifts, such as the commonly observed pattern of lifespan extension under nutrient limitation. A greater appreciation of the wide variety of flexible allocation strategies leads directly to our second major question: what conditions select for different plastic allocation strategies? Here, we highlight the need for additional models that explicitly consider the evolution of phenotypically plastic allocation strategies and empirical tests of the predictions of those models in natural populations. Finally, we consider the question: what are the underlying mechanisms determining resource allocation strategies? Although evolutionary biologists assume differential allocation of resources is a major factor limiting trait evolution, few proximate mechanisms are known that specifically support the model. We argue that an integrated framework can reconcile evolutionary models with proximate mechanisms that appear at first glance to be in conflict with these models. Overall, we encourage future studies to: (i) mimic ecological conditions in which those patterns evolve, and (ii) take advantage of the 'omic' opportunities to produce multi-level data and analytical models that effectively integrate across physiological and evolutionary theory. © 2017 The Author(s).
2017-01-01
All organisms use resources to grow, survive and reproduce. The supply of these resources varies widely across landscapes and time, imposing ultimate constraints on the maximal trait values for allocation-related traits. In this review, we address three key questions fundamental to our understanding of the evolution of allocation strategies and their underlying mechanisms. First, we ask: how diverse are flexible resource allocation strategies among different organisms? We find there are many, varied, examples of flexible strategies that depend on nutrition. However, this diversity is often ignored in some of the best-known cases of resource allocation shifts, such as the commonly observed pattern of lifespan extension under nutrient limitation. A greater appreciation of the wide variety of flexible allocation strategies leads directly to our second major question: what conditions select for different plastic allocation strategies? Here, we highlight the need for additional models that explicitly consider the evolution of phenotypically plastic allocation strategies and empirical tests of the predictions of those models in natural populations. Finally, we consider the question: what are the underlying mechanisms determining resource allocation strategies? Although evolutionary biologists assume differential allocation of resources is a major factor limiting trait evolution, few proximate mechanisms are known that specifically support the model. We argue that an integrated framework can reconcile evolutionary models with proximate mechanisms that appear at first glance to be in conflict with these models. Overall, we encourage future studies to: (i) mimic ecological conditions in which those patterns evolve, and (ii) take advantage of the ‘omic’ opportunities to produce multi-level data and analytical models that effectively integrate across physiological and evolutionary theory. PMID:28637856
What causes similarity in catchments?
NASA Astrophysics Data System (ADS)
Savenije, Hubert
2014-05-01
One of the biggest issues in hydrology is how to handle the heterogeneity of catchment properties at different scales. But is this really such a big issue? Is this problem not merely the consequence of how we conceptualise and how we model catchments? Is there not far more similarity than we observe. Maybe we are not looking at the right things or at the right scale to see the similarity. The identity of catchments is largely determined by: the landscape, the ecosystem living on the landscape, and the geology, in that order. Soils, which are often seen as a crucial aspect of hydrological behaviour, are far less important, as will be demonstrated. The main determinants of hydrological behaviour are: the landscape composition, the rooting depth and the phenology. These determinants are a consequence of landscape and ecosystem evolution, which, in turn, are the manifestations of entropy production. There are striking similarities between catchments. The different runoff processes from hillslopes are linked and similar in different environments (McDonnell, 2013). Wetlands behave similarly all over the world. The key is to classify landscapes and to link the ecosystems living on them to climate. The ecosystem then is the main controller of hydrological behaviour. Besides phenology, the rooting depth is key in determining runoff behaviour. Both are strongly linked to climate and much less to soil properties. An example is given of how rooting depth is determined by climate, and how rooting depth can be predicted without calibration, providing a strong constraints on the prediction of rainfall partitioning and catchment runoff.
Lindborg, T; Thorne, M; Andersson, E; Becker, J; Brandefelt, J; Cabianca, T; Gunia, M; Ikonen, A T K; Johansson, E; Kangasniemi, V; Kautsky, U; Kirchner, G; Klos, R; Kowe, R; Kontula, A; Kupiainen, P; Lahdenperä, A-M; Lord, N S; Lunt, D J; Näslund, J-O; Nordén, M; Norris, S; Pérez-Sánchez, D; Proverbio, A; Riekki, K; Rübel, A; Sweeck, L; Walke, R; Xu, S; Smith, G; Pröhl, G
2018-03-01
The International Atomic Energy Agency has coordinated an international project addressing climate change and landscape development in post-closure safety assessments of solid radioactive waste disposal. The work has been supported by results of parallel on-going research that has been published in a variety of reports and peer reviewed journal articles. The project is due to be described in detail in a forthcoming IAEA report. Noting the multi-disciplinary nature of post-closure safety assessments, here, an overview of the work is given to provide researchers in the broader fields of radioecology and radiological safety assessment with a review of the work that has been undertaken. It is hoped that such dissemination will support and promote integrated understanding and coherent treatment of climate change and landscape development within an overall assessment process. The key activities undertaken in the project were: identification of the key processes that drive environmental change (mainly those associated with climate and climate change), and description of how a relevant future may develop on a global scale; development of a methodology for characterising environmental change that is valid on a global scale, showing how modelled global changes in climate can be downscaled to provide information that may be needed for characterising environmental change in site-specific assessments, and illustrating different aspects of the methodology in a number of case studies that show the evolution of site characteristics and the implications for the dose assessment models. Overall, the study has shown that quantitative climate and landscape modelling has now developed to the stage that it can be used to define an envelope of climate and landscape change scenarios at specific sites and under specific greenhouse-gas emissions assumptions that is suitable for use in quantitative post-closure performance assessments. These scenarios are not predictions of the future, but are projections based on a well-established understanding of the important processes involved and their impacts on different types of landscape. Such projections support the understanding of, and selection of, plausible ranges of scenarios for use in post-closure safety assessments. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Decoding Dynamic Topography: Geologic and Thermochronologic Constraints From Madagascar
NASA Astrophysics Data System (ADS)
Stephenson, S.; White, N.
2017-12-01
Madagascar's topography is characterized by flights of low relief peneplains separated by escarpments. Remarkably, nearly 50% of the landscape is higher than 500 m despite being surrounded by passive margins. Eocene marine limestones crop out at elevations of 400-800 m, staircases of Pleistocene marine terraces fringe the coastline and longitudinal river profiles are disequilibrated. Together, these observations suggest that Madagascar has experienced Neogene epeirogenic uplift. Positive oceanic residual depth anomalies surrounding the island, long wavelength free-air gravity anomalies, Neogene basaltic volcanism and slow sub-plate shear wave velocities show that Neogene uplift is generated by convective circulation within the upper mantle. However, the landscape's erosional response to long wavelength uplift is poorly known. Here, we present 18 apatite fission track and apatite He analyses of granitoid samples from sub-vertical transects in central and northern Madagascar. Apatite fission track ages are 200-250 Ma with mean track lengths of 12 μm. Apatite He ages are highly dispersed in samples from the highlands (i.e. AHe age > 150 Ma) but a narrower, younger range of 30-60 Ma is found on the coastal lowlands. Joint inverse modeling was carried out using the QTQt transdimensional reversible jump Markov Chain Monte Carlo (MCMC) algorithm to determine time-temperature histories. Results show that the coastal lowlands experienced up to 1 km of exhumation during the Neogene Period, whilst the central highlands experienced either very slow or negligible exhumation. This spatial distribution is expected when kinematic waves of incision propagate through a fluvially eroding landscape from coast to interior. Inverse modeling of suites of river profiles and forward landscape simulations support this interpretation. Our results show that the landscape response to modest (i.e. 1 km) regional uplift is diachronous and that thermochronologic observations can be used to detect spatial patterns of denudation. These combined observations help to constrain the fluid dynamical evolution of the upper mantle beneath Madagascar.
Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)
NASA Astrophysics Data System (ADS)
Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.
2016-04-01
Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project investigates the complex landscape dynamics between geological and ecological processes. This is done through cross-correlation of mapping results and implementation of modelling techniques that simulate geological and ecological processes in order to extrapolate the landscape evolution
NASA Astrophysics Data System (ADS)
Newman, B. D.; Heikoop, J. M.; Throckmorton, H.; Arendt, C. A.; Graham, D. E.; Wilson, C. J.; Wullschleger, S. D.
2016-12-01
Studies conducted in the Barrow Environmental Observatory as part of the Next Generation Ecosystem Experiment (NGEE) - Arctic have demonstrated significant chemical and isotopic variability in surface water and active layer pore water of polygonal terrain located between drained thaw lake basins (DTLBs). In this study, we report on chemical and isotopic variation at the broader landscape scale that includes different age DTLBs and associated drainages, extant thaw lakes, and interlake regions. Fingerprint diagrams of major elements show a broader range of variation at the landscape scale relative to polygonal terrain. ANOVA analysis suggests that many of the polygonal and broader landscape scale sites have similar chemistry, suggesting a reasonably high degree of hydrologic connectivity. The most significant site-specific differences include higher d18O and d2H, indicative of evaporative conditions, of surface and active layer water from an ancient (2000- 5500 BP) DTLB that comprises a shallow basin with no outlets. Significantly higher Cl, Ca, Fe, Mg, Na, As, Mn and Sr concentrations were also found in pore waters collected immediately above the frost table at two locations. The first location is a small drainage leading from an area of polygonal terrain into an adjacent slough, while the second is upgradient of the estuarine terminus of a drainage sourced from a medium-aged DTLB (50- 300 BP). Higher concentrations at the frost table suggests a mechanism related to periodic freezing and thawing of the transition zone above permafrost or permafrost degradation. Alternative conceptual models, including the presence of a marine signal or the influence of cryopegs (brine layers within permafrost), will also be considered. Characterization of present day Arctic hydrology and chemistry at different scales is important for Earth Systems Models and for predicting hydrogeochemical change associated with landscape evolution due to future permafrost degradation.
Goodier, Sarah A. M.; Cotterill, Fenton P. D.; O'Ryan, Colleen; Skelton, Paul H.; de Wit, Maarten J.
2011-01-01
The geobiotic history of landscapes can exhibit controls by tectonics over biotic evolution. This causal relationship positions ecologically specialized species as biotic indicators to decipher details of landscape evolution. Phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, including fishes, can reveal key events of drainage evolution, notably where geochronological resolution is insufficient. Where geochronological resolution is insufficient, phylogeographic statistics that reconstruct spatio-temporal details of evolutionary histories of aquatic species, notably fishes, can reveal key events of drainage evolution. This study evaluates paleo-environmental causes of mitochondrial DNA (mtDNA) based phylogeographic records of tigerfishes, genus Hydrocynus, in order to reconstruct their evolutionary history in relation to landscape evolution across Africa. Strong geographical structuring in a cytochrome b (cyt-b) gene phylogeny confirms the established morphological diversity of Hydrocynus and reveals the existence of five previously unknown lineages, with Hydrocynus tanzaniae sister to a clade comprising three previously unknown lineages (Groups B, C and D) and H. vittatus. The dated phylogeny constrains the principal cladogenic events that have structured Hydrocynus diversity from the late Miocene to the Plio-Pleistocene (ca. 0–16 Ma). Phylogeographic tests reveal that the diversity and distribution of Hydrocynus reflects a complex history of vicariance and dispersals, whereby range expansions in particular species testify to changes to drainage basins. Principal divergence events in Hydrocynus have interfaced closely with evolving drainage systems across tropical Africa. Tigerfish evolution is attributed to dominant control by pulses of geotectonism across the African plate. Phylogenetic relationships and divergence estimates among the ten mtDNA lineages illustrates where and when local tectonic events modified Africa's Neogene drainage. Haplotypes shared amongst extant Hydrocynus populations across northern Africa testify to recent dispersals that were facilitated by late Neogene connections across the Nilo-Sahelian drainage. These events in tigerfish evolution concur broadly with available geological evidence and reveal prominent control by the African Rift System, evident in the formative events archived in phylogeographic records of tigerfish. PMID:22194910