Sample records for landscape fire analysis

  1. Understanding the Factors that Influence Perceptions of Post-Wildfire Landscape Recovery Across 25 Wildfires in the Northwestern United States.

    PubMed

    Kooistra, C; Hall, T E; Paveglio, T; Pickering, M

    2018-01-01

    Disturbances such as wildfire are important features of forested landscapes. The trajectory of changes following wildfires (often referred to as landscape recovery) continues to be an important research topic among ecologists and wildfire scientists. However, the landscape recovery process also has important social dimensions that may or may not correspond to ecological or biophysical perspectives. Perceptions of landscape recovery may affect people's attitudes and behaviors related to forest and wildfire management. We explored the variables that influence people's perceptions of landscape recovery across 25 fires that occurred in 2011 or 2012 in the United States of Washington, Oregon, Idaho, and Montana and that represented a range of fire behavior characteristics and landscape impacts. Residents near each of the 25 fires were randomly selected to receive questionnaires about their experiences with the nearby fire, including perceived impacts and how the landscape had recovered since the fire. People generally perceived landscapes as recovering, even though only one to two years had passed. Regression analysis suggested that perceptions of landscape recovery were positively related to stronger beliefs about the ecological role of fire and negatively related to loss of landscape attachment, concern about erosion, increasing distance from the fire perimeter, and longer lasting fires. Hierarchical linear modeling (HLM) analysis indicated that the above relationships were largely consistent across fires. These findings highlight that perceptions of post-fire landscape recovery are influenced by more than vegetation changes and include emotional and cognitive factors. We discuss the management implications of these findings.

  2. Understanding the Factors that Influence Perceptions of Post-Wildfire Landscape Recovery Across 25 Wildfires in the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Kooistra, C.; Hall, T. E.; Paveglio, T.; Pickering, M.

    2018-01-01

    Disturbances such as wildfire are important features of forested landscapes. The trajectory of changes following wildfires (often referred to as landscape recovery) continues to be an important research topic among ecologists and wildfire scientists. However, the landscape recovery process also has important social dimensions that may or may not correspond to ecological or biophysical perspectives. Perceptions of landscape recovery may affect people's attitudes and behaviors related to forest and wildfire management. We explored the variables that influence people's perceptions of landscape recovery across 25 fires that occurred in 2011 or 2012 in the United States of Washington, Oregon, Idaho, and Montana and that represented a range of fire behavior characteristics and landscape impacts. Residents near each of the 25 fires were randomly selected to receive questionnaires about their experiences with the nearby fire, including perceived impacts and how the landscape had recovered since the fire. People generally perceived landscapes as recovering, even though only one to two years had passed. Regression analysis suggested that perceptions of landscape recovery were positively related to stronger beliefs about the ecological role of fire and negatively related to loss of landscape attachment, concern about erosion, increasing distance from the fire perimeter, and longer lasting fires. Hierarchical linear modeling (HLM) analysis indicated that the above relationships were largely consistent across fires. These findings highlight that perceptions of post-fire landscape recovery are influenced by more than vegetation changes and include emotional and cognitive factors. We discuss the management implications of these findings.

  3. Identifying the location of fire refuges in wet forest ecosystems.

    PubMed

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential that within these envelopes, forest is protected from logging, roads, and other developments so that the ecological processes related to the establishment and subsequent use of fire refuges are maintained.

  4. Incorporating Resource Protection Constraints in an Analysis of Landscape Fuel-Treatment Effectiveness in the Northern Sierra Nevada, CA, USA.

    PubMed

    Dow, Christopher B; Collins, Brandon M; Stephens, Scott L

    2016-03-01

    Finding novel ways to plan and implement landscape-level forest treatments that protect sensitive wildlife and other key ecosystem components, while also reducing the risk of large-scale, high-severity fires, can prove to be difficult. We examined alternative approaches to landscape-scale fuel-treatment design for the same landscape. These approaches included two different treatment scenarios generated from an optimization algorithm that reduces modeled fire spread across the landscape, one with resource-protection constrains and one without the same. We also included a treatment scenario that was the actual fuel-treatment network implemented, as well as a no-treatment scenario. For all the four scenarios, we modeled hazardous fire potential based on conditional burn probabilities, and projected fire emissions. Results demonstrate that in all the three active treatment scenarios, hazardous fire potential, fire area, and emissions were reduced by approximately 50 % relative to the untreated condition. Results depict that incorporation of constraints is more effective at reducing modeled fire outputs, possibly due to the greater aggregation of treatments, creating greater continuity of fuel-treatment blocks across the landscape. The implementation of fuel-treatment networks using different planning techniques that incorporate real-world constraints can reduce the risk of large problematic fires, allow for landscape-level heterogeneity that can provide necessary ecosystem services, create mixed forest stand structures on a landscape, and promote resilience in the uncertain future of climate change.

  5. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.

    PubMed

    Yang, Jian; He, Hong S; Shifley, Stephen R

    2008-07-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.

  6. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States

    PubMed Central

    Liu, Zhihua; Wimberly, Michael C.

    2015-01-01

    An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959

  7. Depopulation of rural landscapes exacerbates fire activity in the western Amazon.

    PubMed

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E; Padoch, Christine

    2012-12-26

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes.

  8. Depopulation of rural landscapes exacerbates fire activity in the western Amazon

    PubMed Central

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S.; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E.; Padoch, Christine

    2012-01-01

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes. PMID:23236144

  9. Impacts of fire management on aboveground tree carbon stocks in Yosemite and Sequoia & Kings Canyon National Parks

    USGS Publications Warehouse

    Matchett, John R.; Lutz, James A.; Tarnay, Leland W.; Smith, Douglas G.; Becker, Kendall M.L.; Brooks, Matthew L.

    2015-01-01

    We compared our landscape carbon estimates in YOSE to remotely-sensed carbon estimates from the NASA–CASA project and found that the two methods roughly agree. Our analysis and comparisons suggest, however, that fire severity should be integrated into future carbon mapping efforts. We illustrate this with an example using the 2013 Rim Fire, which we estimate burned an area containing over 5 Tg of aboveground tree carbon, but likely left a large fraction of that carbon on the landscape if one accounts for fire severity.

  10. Cross-scale analysis of fire regimes

    Treesearch

    Donald A. Falk; Carol Miller; Donald McKenzie; Anne E. Black

    2007-01-01

    Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire...

  11. Climate change and future fire regimes: Examples from California

    USGS Publications Warehouse

    Keeley, Jon E.; Syphard, Alexandra D.

    2016-01-01

    Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation trajectories, as well as by feedback processes of fire effects on vegetation distribution, plus policy changes in how we manage ecosystems.

  12. What determines area burned in large landscapes? Insights from a decade of comparative landscape-fire modelling

    Treesearch

    Geoffrey J. Cary; Robert E. Keane; Mike D. Flannigan; Ian D. Davies; Russ A. Parsons

    2015-01-01

    Understanding what determines area burned in large landscapes is critical for informing wildland fire management in fire-prone environments and for representing fire activity in Dynamic Global Vegetation Models. For the past ten years, a group of landscape-fire modellers have been exploring the relative influence of key determinants of area burned in temperate and...

  13. Fire and the endangered Indiana bat

    Treesearch

    Matthew B. Dickinson; Michael J. Lacki; Daniel R. Cox

    2009-01-01

    Fire and Indiana bats (Myotis sodalis) have coexisted for millennia in the central hardwoods region, yet past declines in populations of this endangered species, and the imperative of fire use in oak silviculture and ecosystem conservation, call for an analysis of both the risks and opportunities associated with using fires on landscapes in...

  14. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.

    PubMed

    Modugno, Sirio; Balzter, Heiko; Cole, Beth; Borrelli, Pasquale

    2016-05-01

    Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland-Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service in landscape valuations to account for the significant landscape function of reducing the risk of catastrophic large fires. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. A structural equation model analysis of postfire plant diversity in California shrublands

    USGS Publications Warehouse

    Grace, J.B.; Keeley, J.E.

    2006-01-01

    This study investigates patterns of plant diversity following wildfires in fire-prone shrublands of California, seeks to understand those patterns in terms of both local and landscape factors, and considers the implications for fire management. Ninety study sites were established following extensive wildfires in 1993, and 1000-m2 plots were used to sample a variety of parameters. Data on community responses were collected for five years following fire. Structural equation modeling (SEM) was used to relate plant species richness to plant abundance, fire severity, abiotic conditions, within-plot heterogeneity, stand age, and position in the landscape. Temporal dynamics of average richness response was also modeled. Richness was highest in the first year following fire, indicating postfire enhancement of diversity. A general decline in richness over time was detected, with year-to-year variation attributable to annual variations in precipitation. Peak richness in the landscape was found where (1) plant abundance was moderately high, (2) within-plot heterogeneity was high, (3) soils were moderately low in nitrogen, high in sand content, and with high rock cover, (4) fire severity was low, and (5) stands were young prior to fire. Many of these characteristics were correlated with position in the landscape and associated conditions. We infer from the SEM results that postfire richness in this system is strongly influenced by local conditions and that these conditions are, in turn, predictably related to landscape-level conditions. For example, we observed that older stands of shrubs were characterized by more severe fires, which were associated with a low recovery of plant cover and low richness. These results may have implications for the use of prescribed fire in this system if these findings extrapolate to prescribed burns as we would expect. ?? 2006 by the Ecological Society of America.

  16. Vegetation fire proneness in Europe

    NASA Astrophysics Data System (ADS)

    Pereira, Mário; Aranha, José; Amraoui, Malik

    2015-04-01

    Fire selectivity has been studied for vegetation classes in terms of fire frequency and fire size in a few European regions. This analysis is often performed along with other landscape variables such as topography, distance to roads and towns. These studies aims to assess the landscape sensitivity to forest fires in peri-urban areas and land cover changes, to define landscape management guidelines and policies based on the relationships between landscape and fires in the Mediterranean region. Therefore, the objectives of this study includes the: (i) analysis of the spatial and temporal variability statistics within Europe; and, (ii) the identification and characterization of the vegetated land cover classes affected by fires; and, (iii) to propose a fire proneness index. The datasets used in the present study comprises: Corine Land Cover (CLC) maps for 2000 and 2006 (CLC2000, CLC2006) and burned area (BA) perimeters, from 2000 to 2013 in Europe, provided by the European Forest Fire Information System (EFFIS). The CLC is a part of the European Commission programme to COoRdinate INformation on the Environment (Corine) and it provides consistent, reliable and comparable information on land cover across Europe. Both the CLC and EFFIS datasets were combined using geostatistics and Geographical Information System (GIS) techniques to access the spatial and temporal evolution of the types of shrubs and forest affected by fires. Obtained results confirms the usefulness and efficiency of the land cover classification scheme and fire proneness index which allows to quantify and to compare the propensity of vegetation classes and countries to fire. As expected, differences between northern and southern Europe are notorious in what concern to land cover distribution, fire incidence and fire proneness of vegetation cover classes. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by the project SUSTAINSYS: Environmental Sustainable Agro-Forestry Systems (NORTE-07-0124-FEDER-000044), financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), as well as by National Funds (PIDDAC) through the Portuguese Foundation for Science and Technology (FCT/MEC).

  17. Using a stochastic model and cross-scale analysis to evaluate controls on historical low-severity fire regimes

    Treesearch

    Maureen C. Kennedy; Donald McKenzie

    2010-01-01

    Fire-scarred trees provide a deep temporal record of historical fire activity, but identifying the mechanisms therein that controlled landscape fire patterns is not straightforward. We use a spatially correlated metric for fire co-occurrence between pairs of trees (the Sørensen distance variogram), with output from a neutral model for fire history, to infer the...

  18. Valuing fire planning alternatives in forest restoration: using derived demand to integrate economics with ecological restoration.

    PubMed

    Rideout, Douglas B; Ziesler, Pamela S; Kernohan, Nicole J

    2014-08-01

    Assessing the value of fire planning alternatives is challenging because fire affects a wide array of ecosystem, market, and social values. Wildland fire management is increasingly used to address forest restoration while pragmatic approaches to assessing the value of fire management have yet to be developed. Earlier approaches to assessing the value of forest management relied on connecting site valuation with management variables. While sound, such analysis is too narrow to account for a broad range of ecosystem services. The metric fire regime condition class (FRCC) was developed from ecosystem management philosophy, but it is entirely biophysical. Its lack of economic information cripples its utility to support decision-making. We present a means of defining and assessing the deviation of a landscape from its desired fire management condition by re-framing the fire management problem as one of derived demand. This valued deviation establishes a performance metric for wildland fire management. Using a case study, we display the deviation across a landscape and sum the deviations to produce a summary metric. This summary metric is used to assess the value of alternative fire management strategies on improving the fire management condition toward its desired state. It enables us to identify which sites are most valuable to restore, even when they are in the same fire regime condition class. The case study site exemplifies how a wide range of disparate values, such as watershed, wildlife, property and timber, can be incorporated into a single landscape assessment. The analysis presented here leverages previous research on environmental capital value and non-market valuation by integrating ecosystem management, restoration, and microeconomics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Perceptions of Post-Wildfire Landscape Change and Recovery

    NASA Astrophysics Data System (ADS)

    Kooistra, C. M.; Hall, T. E.; Paveglio, T.; Carroll, M.; Smith, A. M.

    2013-12-01

    Considering the dynamic nature of the earth and climate systems and the increasing potential for widespread forest disturbances, it is important to understand the implications of landscape changes, and perceptions of changes, on people's responses to forest disturbances. Understanding how people perceive landscape change over time following forest disturbances helps researchers, land managers, and community leaders identify important biophysical and social characteristics that influence the vulnerability of people who experience forest disturbances, as well as their responses to those disturbances. This poster describes people's perceptions of landscape change following a significant wildfire. The lightning ignited Dahl fire burned 12 miles southeast of Roundup, MT mostly on private land in the summer of June 2012. The fire burned approximately 22,000 acres and destroyed 73 residences. We conducted interviews in the summer of 2013 with more than 40 residents, land managers, emergency personnel, and other stakeholders. While interviews covered several topics, this poster focuses on responses to questions regarding perceptions of short- and long-term landscape change after the fire, including both social and biophysical perspectives. Interviews revealed that people's understanding of the role of wildfires as a natural ecosystem process, as well as their connections with the landscape (i.e., sense of place), were important factors that influenced their perceptions of landscape change after the fire. Many respondents discussed the landscape ';recovering' to pre-fire conditions in longer-term timeframes, such as ';multiple generations.' They often referenced previous wildfires, the Hawk Creek fire (1984) and the Majeras fire (2006), by explaining how parts of the landscape affected by the Dahl fire might compare to certain areas of the previous fires. Variations in recovery expectations were often based on perceptions of the severity of the fire (especially temperature), post-fire restoration/seeding efforts, and what the landscape was ';supposed to look like.' Participants with a stronger understanding of the ecological role of fire seemed less concerned about the long-term negative impacts of the fire on the ecological and aesthetic aspects of the changed landscape. Others seemed to focus on the negative aspects, namely that the landscape would never return to ';normal' within their lifetime. Several residents (not interviewed) reportedly moved away because the changes to the landscape were so severe. Of course, most residents stayed, though many mentioned how important the trees in the landscape were to them and that areas burnt by the fire had lost something special. Many respondents also discussed a severe flood shortly after the fire, as well as continued erosion problems due largely to the fire's impacts on the soil and vegetation. These insights about perceptions of changes in the landscape from the fire, floods, and erosion, in terms of expected recovery over spatial and temporal scales will be explored in more detail. We also discuss the implications of these insights for understanding people's attitudes about wildfire management and for communicating about wildfire issues with the public.

  20. The use of fuel breaks in landscape fire management

    USGS Publications Warehouse

    Agee, James K.; Bahro, Berni; Finney, Mark A.; Omi, Philip N.; Sapsis, David B.; Skinner, Carl N.; Van Wagtendonk, Jan W.; Weatherspoon, C. Phillip

    2000-01-01

    Shaded fuelbreaks and larger landscape fuel treatments, such as prescribed fire, are receiving renewed interest as forest protection strategies in the western United States. The effectiveness of fuelbreaks remains a subject of debate because of differing fuelbreak objectives, prescriptions for creation and maintenance, and their placement in landscapes with differing fire regimes. A well-designed fuelbreak will alter the behavior of wildland fire entering the fuel-altered zone. Both surface and crown fire behavior may be reduced. Shaded fuelbreaks must be created in the context of the landscape within which they are placed. No absolute standards for fuelbreak width or fuel reduction are possible, although recent proposals for forested fuelbreaks suggest 400 m wide bands where surface fuels are reduced and crown fuels are thinned. Landscape-level treatments such as prescribed fire can use shaded fuelbreaks as anchor points, and extend the zone of altered fire behavior to larger proportions of the landscape. Coupling fuelbreaks with area-wide fuel treatments can reduce the size, intensity, and effects of wildland fires.

  1. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA

    Treesearch

    Thomas A. Spies; Eric White; Alan Ager; Jeffrey D. Kline; John P. Bolte; Emily K. Platt; Keith A. Olsen; Robert J. Pabst; Ana M. G. Barros; John D. Bailey; Susan Charnley; Anita T. Morzillo; Jennifer Koch; Michelle M. Steen-Adams; Peter H. Singleton; James Sulzman; Cynthia Schwartz; Blair Csuti

    2017-01-01

    Fire-prone landscapes present many challenges for both managers and policy makers in developing adaptive behaviors and institutions. We used a coupled human and natural systems framework and an agent-based landscape model to examine how alternative management scenarios affect fire and ecosystem services metrics in a fire-prone multiownership landscape in the eastern...

  2. How fuel treatment types, locations, and amounts impact landscape-scale fire behavior and carbon dynamics

    Treesearch

    Christopher A. Dicus; Kevin J. Osborne

    2015-01-01

    When managing for fire across a large landscape, the types of fuel treatments, the locations of treatments, and the percentage of the landscape being treated should all interact to impact not only potential fire size, but also carbon dynamics across that landscape. To investigate these interactions, we utilized a forest growth model (FVS-FFE) and fire simulation...

  3. Evaluating Post-Fire Forest Resilience Using GIS and Multi-Criteria Analysis: An Example from Cape Sounion National Park, Greece

    NASA Astrophysics Data System (ADS)

    Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios

    2011-03-01

    Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.

  4. Evaluating post-fire forest resilience using GIS and multi-criteria analysis: an example from Cape Sounion National Park, Greece.

    PubMed

    Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios

    2011-03-01

    Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.

  5. Proceedings: workshop on fire, people, and the central hardwoods landscape

    Treesearch

    Daniel A. Yaussy; [comp.

    2000-01-01

    Contains 18 papers and 16 poster abstracts on the history of fire, fire ecology, fire and ecosystem management, and fire and the future presented at the workshop on fire, people, and the central hardwoods landscape.

  6. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resasco, Julian; et al,

    2014-04-01

    Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors thanmore » in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.« less

  7. Studying fire mitigation strategies in multi-ownership landscapes: balancing the management of fire-dependent ecosystems and fire risk

    Treesearch

    Brian R. Sturtevant; Brian R. Miranda; Jian Yang; Hong S. He; Eric J. Gustafson; Robert M. Scheller

    2009-01-01

    Public forests are surrounded by land over which agency managers have no control, and whose owners expect the public forest to be a "good neighbor." Fire risk abatement on multi-owner landscapes containing flammable but fire-dependent ecosystems epitomizes the complexities of managing public lands. We report a case study that applies a landscape disturbance...

  8. Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011

    NASA Astrophysics Data System (ADS)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2017-12-01

    The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying yearly burned areas allowed to identify areas with high fire recurrence.

  9. Spatially explicit modeling of mixed-severity fire regimes and landscape dynamics

    Treesearch

    Michael C. Wimberly; Rebecca S.H. Kennedy

    2008-01-01

    Simulation models of disturbance and succession are being increasingly applied to characterize landscape composition and dynamics under natural fire regimes, and to evaluate alternative management strategies for ecological restoration and fire hazard reduction. However, we have a limited understanding of how landscapes respond to changes in fire frequency, and about...

  10. Dendroecological potential of Fabiana imbricata shrub for reconstructing fire history at landscape scale in grasslands

    NASA Astrophysics Data System (ADS)

    Oddi, Facundo; Ghermandi, Luciana; Lasaponara, Rosa

    2014-05-01

    Fire recurrently affects many of the terrestrial ecosystems causing major implications on the structure and dynamics of vegetation. In fire prone, it is particularly important to know the fire regime for which precise fire records are needed. Dendroecology offers the possibility of obtaining fire occurrence data from woody species and has been widely used in forest ecosystems for fire research. Grasslands are regions with no trees but shrubs could be used to acquire dendroecological information in order to reconstructing fire history at landscape scale. We studied the dendroecological potential of shrub F. imbricata to reconstruct fire history at landscape scale in a fire prone grassland of northwestern Patagonia. To do this, we combined spatio-temporal information of recorded fires within the study area with the age structure of F. imbricata shrublands derived by dendroecology. Sampling sites were located over 2500 ha in San Ramón ranch, 30 km east from Bariloche, Río Negro province, Argentina (latitude -41° 04'; longitude -70° 51'). Shrubland age structure correctly described how fires occurred in the past. Pulses of individuals' recruitment were associated with fire in time and space. A bi-variate analysis showed that F. imbricata recruits individuals during the two years after fire and spatial distribution of pulses coincided with the fire map. In sites without fire data, the age structure allowed the identification of two additional fires. Our results show that shrub F. imbricata can be employed with other data sources such as remote sensing and operational databases to improve knowledge on fire regime in northwestern Patagonia grasslands. In conclusion, we raise the possibility of utilizing shrubs as a dendroecological data source to study fire history in grasslands where tree cover is absent.

  11. Fire-climate-human interactions during the postglacial period at Sunrise Ridge, Mount Rainier National Park, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Walsh, Megan K.; Lukens, Michael L.; McCutcheon, Patrick T.; Burtchard, Greg C.

    2017-12-01

    With the creation of Mount Rainier National Park (MORA) in 1899 came the active management of the park's landscapes and a heavy emphasis on fire suppression. Today, managers at MORA seek to better manage current fire activity; however, this requires an improved understanding of past fire activity on the mountain. In this study high-resolution macroscopic charcoal analysis and pollen analysis of lake sediment records was used to reconstruct the postglacial fire and vegetation history for the Sunrise Ridge area of MORA. Fire activity was lowest during the Late Glacial when vegetation was sparse and climate was cool and dry. Fire activity increased during the early Holocene as the regional climate warmed and dried, and burnable biomass became more abundant. Fire activity continued to increase into the middle Holocene (until ca. 6600 cal yr BP) even as the regional climate became wetter and eventually cooler; the modern-day mesic forest and subalpine meadow landscapes of the park established at this time. Fire activity was generally highest and mean fire return intervals were lowest on Sunrise Ridge during the late Holocene, and are consistent with tree-ring based estimates of fire frequency. The similarity between the Sunrise Ridge and other paleofire records in the Pacific Northwest suggests that broad-scale climatic shifts, such as the retreat of the Cordilleran ice sheet and changes in annual insolation, as well as increased interannual climate variability (i.e., drought) particularly in the middle to late Holocene, were responsible for changes in fire activity during the postglacial period. However, abundant and increasing archaeological evidence from Sunrise Ridge during the middle to late Holocene suggests that humans may have also influenced the landscape at this time. It is likely that fires will continue to increase at MORA as drought becomes a more frequent occurrence in the Pacific Northwest.

  12. Incorporating resource protection constraints in an analysis of landscape fuel-treatment effectiveness in the northern Sierra Nevada, CA, USA

    Treesearch

    Christopher B. Dow; Brandon M. Collins; Scott L. Stephens

    2016-01-01

    Finding novel ways to plan and implement landscape-level forest treatments that protect sensitive wildlife and other key ecosystem components, while also reducing the risk of large-scale, high-severity fires, can prove to be difficult. We examined alternative approaches to landscape-scale fuel-treatment design for the same landscape. These approaches included two...

  13. Characterizing historical and modern fire regimes in Michigan (USA): A landscape ecosystem approach

    Treesearch

    David T. Cleland; Thomas R. Crow; Sari C. Saunders; Donald I. Dickmann; Ann L. Maclean; James K. Jordan; Richard L. Watson; Alyssa M. Sloan; Kimberely D. Brosofske

    2004-01-01

    We studied the relationships of landscape ecosystems to historical and contemporary fire regimes across 4.3 million hectares in northern lower Michigan (USA). Changes in fire regimes were documented by comparing historical fire rotations in different landscape ecosystems to those occurring between 1985 and 2000. Previously published data and a synthesis of the...

  14. The role of old-growth forests in frequent-fire landscapes

    Treesearch

    Daniel Binkley; Tom Sisk; Carol Chambers; Judy Springer; William Block

    2007-01-01

    Classic ecological concepts and forestry language regarding old growth are not well suited to frequent-fire landscapes. In frequent-fire, old-growth landscapes, there is a symbiotic relationship between the trees, the understory graminoids, and fire that results in a healthy ecosystem. Patches of old growth interspersed with younger growth and open, grassy areas...

  15. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics

    PubMed Central

    Bliege Bird, R.; Bird, D. W.; Codding, B. F.; Parker, C. H.; Jones, J. H.

    2008-01-01

    Aboriginal burning in Australia has long been assumed to be a “resource management” strategy, but no quantitative tests of this hypothesis have ever been conducted. We combine ethnographic observations of contemporary Aboriginal hunting and burning with satellite image analysis of anthropogenic and natural landscape structure to demonstrate the processes through which Aboriginal burning shapes arid-zone vegetational diversity. Anthropogenic landscapes contain a greater diversity of successional stages than landscapes under a lightning fire regime, and differences are of scale, not of kind. Landscape scale is directly linked to foraging for small, burrowed prey (monitor lizards), which is a specialty of Aboriginal women. The maintenance of small-scale habitat mosaics increases small-animal hunting productivity. These results have implications for understanding the unique biodiversity of the Australian continent, through time and space. In particular, anthropogenic influences on the habitat structure of paleolandscapes are likely to be spatially localized and linked to less mobile, “broad-spectrum” foraging economies. PMID:18809925

  16. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS

    Treesearch

    Jian Yang; Hong S. He; Eric J. Gustafson

    2004-01-01

    Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...

  17. D. McKenzie, C. Miller and D.A. Falk, eds. The Landscape Ecology of Fire [book review

    Treesearch

    Eric J. Gustafson

    2012-01-01

    In the Foreword of this volume is the statement that "landscape ecology is the 'glue' that holds ecosystem theory together and nowhere is that more evident than in the study of wildland fire ecology." The Landscape Ecology of Fire summarizes how landscape ecology has contributed to, and been formed by, the study...

  18. Contrasting fire responses to climate and management: insights from two Australian ecosystems.

    PubMed

    King, Karen J; Cary, Geoffrey J; Bradstock, Ross A; Marsden-Smedley, Jonathan B

    2013-04-01

    This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions. © 2012 Blackwell Publishing Ltd.

  19. Information Framework of Pervasive Real Time Monitoring System: Case of Peat Land Forest Fires and Air Quality in South Sumatera, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurmaini, Siti; Firsandaya Malik, Reza; Stiawan, Deris; Firdaus; Saparudin; Tutuko, Bambang

    2017-04-01

    The information framework aims to holistically address the problems and issues posed by unwanted peat and land fires within the context of the natural environment and socio-economic systems. Informed decisions on planning and allocation of resources can only be made by understanding the landscape. Therefore, information on fire history and air quality impacts must be collected for future analysis. This paper proposes strategic framework based on technology approach with data fusion strategy to produce the data analysis about peat land fires and air quality management in in South Sumatera. The research framework should use the knowledge, experience and data from the previous fire seasons to review, improve and refine the strategies and monitor their effectiveness for the next fire season. Communicating effectively with communities and the public and private sectors in remote and rural landscapes is important, by using smartphones and mobile applications. Tools such as one-stop information based on web applications, to obtain information such as early warning to send and receive fire alerts, could be developed and promoted so that all stakeholders can share important information with each other.

  20. Modeling fire occurrence as a function of landscape

    NASA Astrophysics Data System (ADS)

    Loboda, T. V.; Carroll, M.; DiMiceli, C.

    2011-12-01

    Wildland fire is a prominent component of ecosystem functioning worldwide. Nearly all ecosystems experience the impact of naturally occurring or anthropogenically driven fire. Here, we present a spatially explicit and regionally parameterized Fire Occurrence Model (FOM) aimed at developing fire occurrence estimates at landscape and regional scales. The model provides spatially explicit scenarios of fire occurrence based on the available records from fire management agencies, satellite observations, and auxiliary geospatial data sets. Fire occurrence is modeled as a function of the risk of ignition, potential fire behavior, and fire weather using internal regression tree-driven algorithms and empirically established, regionally derived relationships between fire occurrence, fire behavior, and fire weather. The FOM presents a flexible modeling structure with a set of internal globally available default geospatial independent and dependent variables. However, the flexible modeling environment adapts to ingest a variable number, resolution, and content of inputs provided by the user to supplement or replace the default parameters to improve the model's predictive capability. A Southern California FOM instance (SC FOM) was developed using satellite assessments of fire activity from a suite of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, Monitoring Trends in Burn Severity fire perimeters, and auxiliary geospatial information including land use and ownership, utilities, transportation routes, and the Remote Automated Weather Station data records. The model was parameterized based on satellite data acquired between 2001 and 2009 and fire management fire perimeters available prior to 2009. SC FOM predictive capabilities were assessed using observed fire occurrence available from the MODIS active fire product during 2010. The results show that SC FOM provides a realistic estimate of fire occurrence at the landscape level: the fraction of area impacted by fire from the total available area within a given value of the Fire Occurrence Index (FOI) increased from 9.e-06 at FOI < 3 to 28.e-06 at 25 < FOI <= 28. Additionally, the model has revealed a new important relationship between fire occurrence, anthropogenic activity, and fire weather. Data analysis has demonstrated that human activity can alter the expected weather/fire occurrence relationships and result in considerable modifications of fire regimes contrary to the assumed ecological parameters. Specifically, between 2001 and 2009 over 50% of total fire impacted area burned during the low fire danger conditions (Canadian Fire Weather Index < 5). These findings and the FOM capabilities offer a new theoretical construct and an advanced tool for assessing the potential impacts of climate changes on fire regimes, particularly within landscapes which are impacted strongly by human activities. Future development of the FOM will focus on ingesting and internal downscaling of climate variables produced by General or Regional Circulation Models to develop scenarios of potential future change in fire occurrence under the influence of projected climate change at the appropriate regional or landscape scales.

  1. On wildfire complexity, simple models and environmental templates for fire size distributions

    NASA Astrophysics Data System (ADS)

    Boer, M. M.; Bradstock, R.; Gill, M.; Sadler, R.

    2012-12-01

    Vegetation fires affect some 370 Mha annually. At global and continental scales, fire activity follows predictable spatiotemporal patterns driven by gradients and seasonal fluctuations of primary productivity and evaporative demand that set constraints for fuel accumulation rates and fuel dryness, two key ingredients of fire. At regional scales, fires are also known to affect some landscapes more than others and within landscapes to occur preferentially in some sectors (e.g. wind-swept ridges) and rarely in others (e.g. wet gullies). Another common observation is that small fires occur relatively frequent yet collectively burn far less country than relatively infrequent large fires. These patterns of fire activity are well known to management agencies and consistent with their (informal) models of how the basic drivers and constraints of fire (i.e. fuels, ignitions, weather) vary in time and space across the landscape. The statistical behaviour of these landscape fire patterns has excited the (academic) research community by showing some consistency with that of complex dynamical systems poised at a phase transition. The common finding that the frequency-size distributions of actual fires follow power laws that resemble those produced by simple cellular models from statistical mechanics has been interpreted as evidence that flammable landscapes operate as self-organising systems with scale invariant fire size distributions emerging 'spontaneously' from simple rules of contagious fire spread and a strong feedback between fires and fuel patterns. In this paper we argue that the resemblance of simulated and actual fire size distributions is an example of equifinality, that is fires in model landscapes and actual landscapes may show similar statistical behaviour but this is reached by qualitatively different pathways or controlling mechanisms. We support this claim with two key findings regarding simulated fire spread mechanisms and fire-fuel feedbacks. Firstly, we demonstrate that the power law behaviour of fire size distributions in the widely used Drossel and Schwabl (1992) Forest Fire Model (FFM) is strictly conditional on simulating fire spread as a cell-to-cell contagion over a fixed distance; the invariant scaling of fire sizes breaks down under the slightest variation in that distance, suggesting that pattern formation in the FFM is irreconcilable with the reality of disparate rates and modes of fire spread observed in the field. Secondly, we review field evidence showing that fuel age effects on the probability of fire spread, a key assumption in simulation models like the FFM, do not generally apply across flammable environments. Finally, we explore alternative explanations for the formation of scale invariant fire sizes in real landscapes. Using observations from southern Australian forest regions we demonstrate that the spatiotemporal patterns of fuel dryness and magnitudes of fire driving weather events set strong environmental templates for regional fire size distributions.

  2. Ponderosa pine in the Colorado Front Range: long historical fire and tree recruitment intervals and a case for landscape heterogeneity

    Treesearch

    M. R. Kaufmann; L. S. Huckaby; P. Gleason

    2000-01-01

    An unlogged forest landscape in the Colorado Front Range provides insight into historical characteristics of ponderosa pine/Douglas-fir landscapes where the past fire regime was mixed severity with mean fire intervals of 50 years or more. Natural fire and tree recruitment patterns resulted in considerable spatial and temporal heterogeneity, whereas nearby forest...

  3. Simulating historical landscape dynamics using the landscape fire succession model LANDSUM version 4.0

    Treesearch

    Robert E. Keane; Lisa M. Holsinger; Sarah D. Pratt

    2006-01-01

    The range and variation of historical landscape dynamics could provide a useful reference for designing fuel treatments on today's landscapes. Simulation modeling is a vehicle that can be used to estimate the range of conditions experienced on historical landscapes. A landscape fire succession model called LANDSUMv4 (LANDscape SUccession Model version 4.0) is...

  4. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas‐fir landscape in the southern Rocky Mountains after a century of fire suppression

    USGS Publications Warehouse

    Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas‐fir ( Pinus ponderosa/Pseudotsuga menziesii ) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post‐fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand‐replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.

  5. Climate, not Aboriginal landscape burning, controlled the historical demography and distribution of fire-sensitive conifer populations across Australia

    PubMed Central

    Sakaguchi, Shota; Bowman, David M. J. S.; Prior, Lynda D.; Crisp, Michael D.; Linde, Celeste C.; Tsumura, Yoshihiko; Isagi, Yuji

    2013-01-01

    Climate and fire are the key environmental factors that shape the distribution and demography of plant populations in Australia. Because of limited palaeoecological records in this arid continent, however, it is unclear as to which factor impacted vegetation more strongly, and what were the roles of fire regime changes owing to human activity and megafaunal extinction (since ca 50 kya). To address these questions, we analysed historical genetic, demographic and distributional changes in a widespread conifer species complex that paradoxically grows in fire-prone regions, yet is very sensitive to fire. Genetic demographic analysis showed that the arid populations experienced strong bottlenecks, consistent with range contractions during the Last Glacial Maximum (ca 20 kya) predicted by species distribution models. In southern temperate regions, the population sizes were estimated to have been mostly stable, followed by some expansion coinciding with climate amelioration at the end of the last glacial period. By contrast, in the flammable tropical savannahs, where fire risk is the highest, demographic analysis failed to detect significant population bottlenecks. Collectively, these results suggest that the impact of climate change overwhelmed any modifications to fire regimes by Aboriginal landscape burning and megafaunal extinction, a finding that probably also applies to other fire-prone vegetation across Australia. PMID:24174110

  6. Evolution of human-driven fire regimes in Africa

    PubMed Central

    Archibald, Sally; Staver, A. Carla; Levin, Simon A.

    2012-01-01

    Human ability to manipulate fire and the landscape has increased over evolutionary time, but the impact of this on fire regimes and consequences for biodiversity and biogeochemistry are hotly debated. Reconstructing historical changes in human-derived fire regimes empirically is challenging, but information is available on the timing of key human innovations and on current human impacts on fire; here we incorporate this knowledge into a spatially explicit fire propagation model. We explore how changes in population density, the ability to create fire, and the expansion of agropastoralism altered the extent and seasonal distribution of fire as modern humans arose and spread through Africa. Much emphasis has been placed on the positive effect of population density on ignition frequency, but our model suggests this is less important than changes in fire spread and connectivity that would have occurred as humans learned to light fires in the dry season and to transform the landscape through grazing and cultivation. Different landscapes show different limitations; we show that substantial human impacts on burned area would only have started ∼4,000 B.P. in open landscapes, whereas they could have altered fire regimes in closed/dissected landscapes by ∼40,000 B.P. Dry season fires have been the norm for the past 200–300 ky across all landscapes. The annual area burned in Africa probably peaked between 4 and 40 kya. These results agree with recent paleocarbon studies that suggest that the biomass burned today is less than in the recent past in subtropical countries. PMID:22184249

  7. Long-term, landscape patterns of past fire events in a montane ponderosa pine forest of central Colorado

    Treesearch

    Peter M. Brown; Merrill R. Kaufmann; Wayne D. Shepperd

    1999-01-01

    Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine - Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire...

  8. Exploring fire dynamics with BFAST approach: case studies in Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Quarfeld, Jamie; di Mauro, Biagio; Colombo, Roberto; Verbesselt, Jan

    2016-04-01

    The synergistic effect of wildfire and extreme post-fire climatic events, (e.g. droughts or torrential rainfall), may result in long windows of disturbance - challenging the overall resilience of Mediterranean ecosystems and communities. The notion that increased fire frequency and severity may reduce ecosystem resilience has received much attention in Mediterranean regions in recent decades. Careful evaluation of vegetation recovery and landscape regeneration after a fire event provides vital information useful in land management. In this study, an extension of Breaks For Additive Seasonal and Trend (BFAST) is proposed as an ideal approach to monitor change and assess fire dynamics at the landscape level based on analysis of the MODerate-resolution Imaging Spectroradiometer (MODIS, TERRA) time series. To this end, satellite images of three vegetation indices (VIs), the Normalized Burn Ratio (NBR), the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) were used. The analysis was conducted on areas affected by wildfires in the Sardinia region (Italy) between 2007 and 2010. Some land surface (LS) descriptors (i.e. mean and maximum VI) and fire characteristics (e.g. pre-fire trend & VI, change magnitude, current VI) were extracted to characterize the post-fire evolution of each site within a fifteen-year period (2000-2015). Resilience was estimated using a classic linear function, whereby recovery rates were compared to regional climate data (e.g. water balance) and local landscape components (e.g.topography, land use and land cover). The methodology was applied according to land cover type (e.g. mixed forest, maquis, shrubland, pasture) within each fire site and highlighted the challenge of isolating effects and quantifying the role of fire regime characteristics on resilience in a dynamic way when considering large, heterogeneous areas. Preliminary findings can be outlined as follows: I. NBR showed it was most effective at detecting fire occurrence. EVI showed it was more sensitive to the influence of the Savitkzy-Golay smoothing filter than NBR or NDVI; II. The quantitative assessment of resilience for different land covers (maquis, mixed forest, shrubland) allows discrimination of diverse post-fire dynamics. Mixed forest showed an overall lower resilience compared to maquis and shrubland. Detection of post-fire breakpoints appears to occur in a similar time sequence with respect to both year of fire occurrence and land cover. III. The combined use of several climate and landscape components enables characterization of different features of post-fire dynamics in a Mediterranean ecosystem. In summary, the approach used in this study provides useful insight into complex post-fire vegetation dynamics in Mediterranean regions from a remote sensing perspective. Tailoring of the methodologies employed this study can inform a broad spectrum of forest and wildfire management activities, from monitoring and decision support during the fire season to long-term fuel management and landscape planning, with the general goal of reducing fire exposure and losses from future wildfires. Results can be expanded to include additional LS descriptors or soil geological aspects that contribute to a stronger integration of remote sensing data in operational natural resource management plans for ecosystem conservation and natural hazard prevention.

  9. Abrupt and severe 20th Century changes in the fire regimes of southeastern Australia: Evidence from a 3000 year multi-proxy analysis

    NASA Astrophysics Data System (ADS)

    Baker, Patrick; Mooney, Scott; Allen, Kathryn; Willersdorf, Timothy

    2015-04-01

    Fire is the dominant natural disturbance in southeastern Australia. For millennia it has been the driving force shaping terrestrial ecosystems in the region -- simultaneously killing vegetation and initiating regeneration across whole landscapes. Fire regimes across the region are driven by several factors including climate, vegetation, and ignition sources. Humans have been a significant contributing factor to past and present fire regimes. Prior to European settlement in the late 1700s, Aboriginal Australians used frequent, low-intensity fires to manage vegetation across much of the landscape. European settlement led to the displacement of Aboriginal communities and a shift to active fire suppression and control. This changing approach to fire management is widely believed to have initiated a fundamental shift towards extreme, high-intensity fire events as fuel loads increased. In addition, during the 20th Century prolonged periods of warm, dry conditions have occurred with greater frequency and intensity. The relative importance of climate and fire management practices on contemporary fire regimes is vigorously debated in Australia and is directly relevant to land management policies and their implementation. To put the current fire regime into historical context, we used a multi-proxy approach combining palaeo-charcoal and tree-ring analyses to assess how fire regimes have changed over the last 3000 years in the Snowy Mountains region of southeastern Australia. We found almost no evidence of high-intensity fires in the 3000 years that preceded the 20th Century. However, in the mid-20th Century there is a sudden and dramatic increase in the presence of charcoal and the pulsed establishment of trees across the landscape, suggesting a recent shift from low-intensity fires with minimal charcoal signatures to moderate- to high-intensity fires with substantial charcoal inputs. Importantly, the tree-ring data demonstrate that most of these fires were not stand-replacing and led to the establishment of multiple-age cohorts. While there is a clear shift in the fire regime in the 20th Century, the intensification of fire occurs nearly 150 years after European settlement in this area and has led to the establishment of complex, multi-aged forests across the landscape, suggesting an important interaction between fire management practices associated with European settlement and changing climatic conditions.

  10. Economic susceptibility of fire-prone landscapes in natural protected areas of the southern Andean Range.

    PubMed

    Molina, Juan Ramón; Moreno, Roberto; Castillo, Miguel; Rodríguez Y Silva, Francisco

    2018-04-01

    Large fires are the most important disturbances at landscape-level due to their ecological and socioeconomic impacts. This study aimed to develop an approach for the assessment of the socio-economic landscape susceptibility to fire. Our methodology focuses on the integration of economic components of landscape management based on contingent valuation method (CVM) and net-value change (NVC). This former component has been estimated using depreciation rates or changes on the number of arrivals to different natural protected areas after a large fire occurrence. Landscape susceptibility concept has been motivated by the need to assist fire prevention programs and environmental management. There was a remarkable variation in annual economic value attributed to each protected area based on the CVM scenario, ranging from 40,189-46,887$/year ("Tolhuaca National Park") to 241,000-341,953$/year ("Conguillio National Park"). We added landscape susceptibility using depreciation rates or tourist arrival decrease which varied from 2.04% (low fire intensity in "Tolhuaca National Park") to 76.67% (high fire intensity in "Conguillio National Park"). The integration of this approach and future studies about vegetation resilience should seek management strategies to increase economic efficiency in the fire prevention activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Landscape Patterns of Burn Severity in the Soberanes Fire of 2016

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2016-01-01

    The Soberanes Fire started on July 22, 2016 in Monterey County on the California Central Coast from an illegal campfire. This fire burned for 10 weeks at a record cost of more than $208 million for protection and control. A progressive analysis of the normalized burn ratio from the Landsat satellite showed that the final high burn severity (HBS) area for the Soberanes Fire comprised 22 percent of the total area burned, whereas final moderate burn severity (MBS) area comprised about 10 percent of the total area burned of approximately 53,470 ha (132,130 acres). The resulting landscape pattern of burn severity classes from the 2016 Soberanes Fire revealed that the majority of HBS area was located in the elevation zone between 500 and 1000 m, in the slope zone between 15 percent and 30 percent, or on south-facing aspects.

  12. Landscape characteristics of disturbed shrubsteppe habitats in southwestern Idaho (USA)

    USGS Publications Warehouse

    Knick, Steven T.; Rotenberry, J.T.

    1997-01-01

    We compared 5 zones in shrubsteppe habitats of southwestern Idaho to determine the effect of differing disturbance combinations on landscapes that once shared historically similar disturbance regimes. The primary consequence of agriculture, wildfires, and extensive fires ignited by the military during training activities was loss of native shrubs from the landscape. Agriculture created large square blocks on the landscape, and the landscape contained fewer small patches and more large shrub patches than non-agricultural areas. In contrast, fires left a more fragmented landscape. Repeated fires did not change the distribution of patch sizes, but decreased the total area of remaining shrublands and increased the distance between remaining shrub patches that provide seed sources. Military training with tracked vehicles was associated with a landscape characterized by small, closely spaced, shrub patches. Our results support the general model hypothesized for conversion of shrublands to annual grasslands by disturbance. Larger shrub patches in our region, historically resistant to fire spread and large-scale fires because of a perennial bunchgrass understory, were more fragmented than small patches. Presence of cheatgrass (Bromus tectorum), an exotic annual, was positively related to landscape patchiness and negatively related to number of shrub cells. Thus, cheatgrass dominance can contribute to further fragmentation and loss of the shrub patch by facilitating spread of subsequent fires, carried by continuous fuels, through the patch. The synergistic processes of fragmentation of shrub patches by disturbance, invasion and subsequent dominance by exotic annuals, and fire are converting shrubsteppe in southwestern Idaho to a new state dominated by exotic annual grasslands and high fire frequencies.

  13. Characterizing fire-related spatial patterns in fire-prone ecosystems using optical and microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Henry, Mary Catherine

    The use of active and passive remote sensing systems for relating forest spatial patterns to fire history was tested over one of the Arizona Sky Islands. Using Landsat Thematic Mapper (TM), Shuttle Imaging Radar (SIR-C), and data fusion I examined the relationship between landscape metrics and a range of fire history characteristics. Each data type (TM, SIR-C, and fused) was processed in the following manner: each band, channel, or derived feature was simplified to a thematic layer and landscape statistics were calculated for plots with known fire history. These landscape metrics were then correlated with fire history characteristics, including number of fire-free years in a given time period, mean fire-free interval, and time since fire. Results from all three case studies showed significant relationships between fire history and forest spatial patterns. Data fusion performed as well or better than Landsat TM alone, and better than SIR-C alone. These comparisons were based on number and strength of significant correlations each method achieved. The landscape metric that was most consistent and obtained the greatest number of significant correlations was Shannon's Diversity Index. Results also agreed with field-based research that has linked higher fire frequency to increased landscape diversity and patchiness. An additional finding was that the fused data seem to detect fire-related spatial patterns over a range of scales.

  14. Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II

    Treesearch

    Brian R. Sturtevant; Robert M. Scheller; Brian R. Miranda; Douglas Shinneman; Alexandra Syphard

    2009-01-01

    Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and...

  15. Future climate and fire interactions in the southeastern region of the United States

    Treesearch

    Robert J. Mitchell; Yongqiang Liu; Joseph J. O’Brien; Katherine J. Elliott; Gregory Starr; Chelcy Ford Miniat; J. Kevin Hiers

    2014-01-01

    Fire has a profound, though paradoxical influence on landscapes of the southeastern U.S.; it simultaneously maintains native biodiversity and ecosystem processes but also threatens silvicultural resources and human landscapes. Furthermore, since the majority of the southern landscape is heavily influenced by human activities, contemporary fire regimes are human managed...

  16. Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands

    USGS Publications Warehouse

    Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.

    2007-01-01

    In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.

  17. Wildlife adaptations and management in eastside interior forests with mixed severity fire regimes.

    Treesearch

    John F. Lehmkuhl

    2004-01-01

    Little is known about the effects of mixed severity fire on wildlife, but a population viability analysis framework that considers habitat quantity and quality, species life history, and species population structure can be used to analyze management options. Landscape-scale habitat patterns under a mixed severity fire regime are a mosaic of compositional and structural...

  18. Ecological effects of the Hayman Fire - Part 8: Effects on species of concern

    Treesearch

    Natasha B. Kotliar; Sara Simonson; Geneva Chong; Dave Theobald

    2003-01-01

    Conclusions about the effects of fire on species of concern will depend on the temporal and spatial scales of analysis. Populations of some species may decline in abundance immediately postfire due to alteration or destruction of habitat, but over larger spatial and temporal scales, fire contributes to a shifting mosaic of habitat conditions across the landscape....

  19. Comparing production function models for wildfire risk analysis in the wildland-urban interface

    Treesearch

    D. Evan Mercer; Jeffrey P. Prestemon

    2005-01-01

    Wildfires create damages in the wildland-urban interface (WUI) that total hundreds of millions of dollars annually in the United States. Understanding how fires are produced in built-up areas near and within fire prone landscapes requires evaluating and quantifling the roles that humans play in fire regimes. We outline a typology of wildfire production functions (WPFs...

  20. Modeling Forest Understory Fires in an Eastern Amazonian Landscape

    NASA Technical Reports Server (NTRS)

    Alencar, A. A. C.; Solorzano, L. A.; Nepstad, D. C.

    2004-01-01

    Forest understory fires are an increasingly important cause of forest impoverishment in Ammonia, but little is known of the landscape characteristics and climatic phenomena that determine their occurrence. We developed empirical functions relating the occurrence of understory fires to landscape features near Paragominas, a 35- yr-old ranching and logging center in eastern Ammonia. An historical sequence of maps of forest understory fire was created based on field interviews With local farmers and Landsat TM images. Several landscape features that might explain spatial variations in the occurrence of understory fires were also mapped and co-registered for each of the sample dates, including: forest fragment size and shape, forest impoverishment through logging and understory fires, source of ignition (settlements and charcoal pits), roads, forest edges, and others. The spatial relationship between forest understory fire and each landscape characteristic was tested by regression analyses. Fire probability models were then developed for various combinations of landscape characteristics. The analyses were conducted separately for years of the El Nino Southern Oscillation (ENSO), which are associated with severe drought in eastern Amazonia, and non-ENS0 years. Most (91 %) of the forest area that burned during the 10-yr sequence caught fire during ENSO years, when severe drought may have increased both forest flammability and the escape of agricultural management fires. Forest understory fires were associated with forest edges, as reported in previous studies from Ammonia. But the strongest predictor of forest fire was the percentage of the forest fragment that had been previously logged or burned. Forest fragment size, distance to charcoal pits, distance to agricultural settlement, proximity to forest edge, and distance to roads were also correlated with forest understory fire. Logistic regression models using information on fragment degradation and distance to ignition sources accurately predicted the location of lss than 80% of the forest fires observed during the ENSO event of 1997- 1998. In this Amazon landscape, forest understory fire is a complex function of several variables that influence both the flammability and ignition exposure of the forest.

  1. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    NASA Astrophysics Data System (ADS)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments that correspond to deserts. Application of PFR model to fire management is discussed.

  2. Fuel dynamics by using Landscape Ecology Indices in the Alto Mijares, Spain

    NASA Astrophysics Data System (ADS)

    Iqbal, J.; Garcia, C. V.

    2009-04-01

    Land abandonment in Mediterranean regions has brought about a number of management problems, being an increased wildfire activity prevalent among them. Agricultural neglect in highlands resulted in reduced anthropogenic disturbances and greater landscape homogeneity in areas such as the Alto Mijares in Spain. It is widely accepted that processes like forest fires, influence structure of the landscape and vice versa. Fire-prone Mediterranean flora is well adapted to this disturbance, exhibiting excellent succession capabilities; but higher fuel loads and homogeneous conditions may ally to promote vegetation recession when the fire regime is altered by land abandonment. Both succession and recession make changes to the landscape structure and configuration. However, these changes are difficult to quantify and characterize. If landscape restoration of these forests is a management objective, then developing a quantitative knowledge base for landscape fuel dynamics is a prerequisite. Four classified LandsatTM satellite images were compared to quantify changes in landscape structure between 1984 and 1998. An attempt is made to define landscape level dynamics for fuel development after reduced disturbance and fuel accumulation that leads to catastrophic fires by using landscape ecology indices. By doing so, indices that best describe the fuel dynamics are pointed. The results indicate that low-level disturbance increases heterogeneity, thus lowers fire hazard. No disturbance or severe disturbance increases homogeneity because of vegetation succession and may lead to devastating fires. These fires could be avoided by human induced disturbance like controlled burning, harvesting, mechanical works for fuel reduction and other silviculture measures; thus bringing in more heterogeneity in the region. The Alto Mijares landscape appears to be in an unstable equilibrium where succession and recession are at tug of war. The effects are evident in the general absence of the climax species of Quercus ilex. It have also been recognised that just one index is rarely sufficient to describe the complex dynamics in any landscape; it is usually a group of indices that needs to be consulted in order to perceive the wider picture. The study indicates that there is a need for landscape and social restoration in areas like Alto Mijares to make best use of available resources and avoid catastrophic fires.

  3. Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA)

    Treesearch

    Stanley G. Kitchen

    2012-01-01

    Proper management of naturally forested landscapes requires knowledge of key disturbance processes and their effects on species composition and structure. Spatially-intensive fire and forest histories provide valuable information about how fire and vegetation may vary and interact on heterogeneous landscapes. I constructed 800-year fire and tree recruitment...

  4. Defining fire environment zones in the boreal forests of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu

    2015-06-15

    Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Spatially explicit and stochastic simulation of forest landscape fire disturbance and succession

    Treesearch

    Hong S. He; David J. Mladenoff

    1999-01-01

    Understanding disturbance and recovery of forest landscapes is a challenge because of complex interactions over a range of temporal and spatial scales. Landscape simulation models offer an approach to studying such systems at broad scales. Fire can be simulated spatially using mechanistic or stochastic approaches. We describe the fire module in a spatially explicit,...

  6. Understanding coupled natural and human systems on fire prone landscapes: integrating wildfire simulation into an agent based planning system.

    NASA Astrophysics Data System (ADS)

    Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John

    2015-04-01

    Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and surface fuels are modeled in a state and transition framework that accounts for succession, fire effects, and fuels management. Fire effects are modeled using simulated fire intensity (flame length) to calculate expected vegetation impacts for each vegetation state. This talk will describe the mechanics of the simulation system along with initial results of Envision simulations for the Central Oregon study area that explore the dynamics of wildfire, fuel management, and succession over time.

  7. Ecological effects of large fires on US landscapes: benefit or catastrophe?

    USGS Publications Warehouse

    Keane, Robert E.; Agee, James K.; Fule, Peter; Keeley, Jon E.; Key, Carl H.; Kitchen, Stanley G.; Miller, Richard; Schulte, Lisa A.

    2008-01-01

    The perception is that today’s large fires are an ecological catastrophe because they burn vast areas with high intensities and severities. However, little is known of the ecological impacts of large fires on both historical and contemporary landscapes. The present paper presents a review of the current knowledge of the effects of large fires in the United States by important ecosystems written by regional experts. The ecosystems are (1) ponderosa pine–Douglas-fir, (2) sagebrush–grasslands, (3) piñon–juniper, (4) chaparral, (5) mixed-conifer, and (6) spruce–fir. This review found that large fires were common on most historical western US landscapes and they will continue to be common today with exceptions. Sagebrush ecosystems are currently experiencing larger, more severe, and more frequent large fires compared to historical conditions due to exotic cheatgrass invasions. Historical large fires in south-west ponderosa pine forest created a mixed severity mosaic dominated by non-lethal surface fires while today’s large fires are mostly high severity crown fires. While large fires play an important role in landscape ecology for most regions, their importance is much less in the dry piñon–juniper forests and sagebrush–grasslands. Fire management must address the role of large fires in maintaining the health of many US fire-dominated ecosystems.

  8. Historical fire regimes, reconstructed from land-survey data, led to complexity and fluctuation in sagebrush landscapes.

    PubMed

    Bukowski, Beth E; Baker, William L

    2013-04-01

    Sagebrush landscapes provide habitat for Sage-Grouse and other sagebrush obligates, yet historical fire regimes and the structure of historical sagebrush landscapes are poorly known, hampering ecological restoration and management. To remedy this, General Land Office Survey (GLO) survey notes were used to reconstruct over two million hectares of historical vegetation for four sagebrush-dominated (Artemisia spp.) study areas in the western United States. Reconstructed vegetation was analyzed for fire indicators used to identify historical fires and reconstruct historical fire regimes. Historical fire-size distributions were inverse-J shaped, and one fire > 100 000 ha was identified. Historical fire rotations were estimated at 171-342 years for Wyoming big sagebrush (A. tridentata ssp. wyomingensis) and 137-217 years for mountain big sagebrush (A. tridentata ssp. vaseyana). Historical fire and patch sizes were significantly larger in Wyoming big sagebrush than mountain big sagebrush, and historical fire rotations were significantly longer in Wyoming big sagebrush than mountain big sagebrush. Historical fire rotations in Wyoming were longer than those in other study areas. Fine-scale mosaics of burned and unburned area and larger unburned inclusions within fire perimeters were less common than in modern fires. Historical sagebrush landscapes were dominated by large, contiguous areas of sagebrush, though large grass-dominated areas and finer-scale mosaics of grass and sagebrush were also present in smaller amounts. Variation in sagebrush density was a common source of patchiness, and areas classified as "dense" made up 24.5% of total sagebrush area, compared to 16.3% for "scattered" sagebrush. Results suggest significant differences in historical and modern fire regimes. Modern fire rotations in Wyoming big sagebrush are shorter than historical fire rotations. Results also suggest that historical sagebrush landscapes would have fluctuated, because of infrequent episodes of large fires and long periods of recovery and maturity. Due to fragmentation of sagebrush landscapes, the large, contiguous expanses of sagebrush that dominated historically are most at risk and in need of conservation, including both dense and scattered sagebrush. Fire suppression in Wyoming big sagebrush may also be advisable, as modern fire rotations are shorter than their historical counterparts.

  9. Determination of fire-initiated landscape patterns: Restoring fire mosaics on the landscape

    Treesearch

    Michael Hartwell; Paul Alaback

    1996-01-01

    One of the key limitations in implementing ecosystem management is a lack of accurate information on how forest landscapes have developed over time, reflecting both pre-Euroamerican landscapes and those resulting from more recent disturbance regimes. Landscape patterns are of great importance to the maintenance of biodiversity in general, and particularly in relation...

  10. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    PubMed

    Baker, William L

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests.

  11. Sequential use of simulation and optimization in analysis and planning

    Treesearch

    Hans R. Zuuring; Jimmie D. Chew; J. Greg Jones

    2000-01-01

    Management activities are analyzed at landscape scales employing both simulation and optimization. SIMPPLLE, a stochastic simulation modeling system, is initially applied to assess the risks associated with a specific natural process occurring on the current landscape without management treatments, but with fire suppression. These simulation results are input into...

  12. Variability in vegetation and surface fuels across mixed-conifer-dominated landscapes with over 40 years of natural fire

    Treesearch

    Brandon M. Collins; Jamie M. Lydersen; Danny L. Fry; Katherine Wilkin; Tadashi Moody; Scott L. Stephens

    2016-01-01

    Studies of historical fire and vegetation conditions in dry conifer forests have demonstrated a high degree of heterogeneity across landscapes. However, there is a limit to the amount of inference that can be drawn from historical fire reconstructions. Contemporary "reference" landscapes may be able to provide information that is not available from historical...

  13. Modeling hydrologic and geomorphic hazards across post-fire landscapes using a self-organizing map approach

    USGS Publications Warehouse

    Friedel, Michael J.

    2011-01-01

    Few studies attempt to model the range of possible post-fire hydrologic and geomorphic hazards because of the sparseness of data and the coupled, nonlinear, spatial, and temporal relationships among landscape variables. In this study, a type of unsupervised artificial neural network, called a self-organized map (SOM), is trained using data from 540 burned basins in the western United States. The sparsely populated data set includes variables from independent numerical landscape categories (climate, land surface form, geologic texture, and post-fire condition), independent landscape classes (bedrock geology and state), and dependent initiation processes (runoff, landslide, and runoff and landslide combination) and responses (debris flows, floods, and no events). Pattern analysis of the SOM-based component planes is used to identify and interpret relations among the variables. Application of the Davies-Bouldin criteria following k-means clustering of the SOM neurons identified eight conceptual regional models for focusing future research and empirical model development. A split-sample validation on 60 independent basins (not included in the training) indicates that simultaneous predictions of initiation process and response types are at least 78% accurate. As climate shifts from wet to dry conditions, forecasts across the burned landscape reveal a decreasing trend in the total number of debris flow, flood, and runoff events with considerable variability among individual basins. These findings suggest the SOM may be useful in forecasting real-time post-fire hazards, and long-term post-recovery processes and effects of climate change scenarios.

  14. High severity fires, positive fire feedbacks and alternative stable states in Athrotaxis rainforest ecosystems in western Tasmania.

    NASA Astrophysics Data System (ADS)

    Holz, A.; Wood, S.; Fletcher, M. S.; Ward, C.; Hopf, F.; Veblen, T. T.; Bowman, D. M. J. S.

    2016-12-01

    Recurrent landscape fires present a powerful selective force on plant regeneration strategies that form a continuum between vegetative resprouters and obligate seeders. In the latter case, reduction of the interval between fires, combined with factors that affect plant traits and regeneration dynamics can drive plant population to local extinction. Here we use Athrotaxis selaginoides, a relict fire-sensitive Gondwanan tree species that occurs in western Tasmania, as model system to investigate the putative impacts of climate change and variability and human management of fire. We integrate landscape ecology (island-wide scale), with field survey and dendrochronology (stand-scale) and sedimentary records (watershed and landscape-scales) to garner a better understanding of the timing and impact of landscape fire on the vegetation dynamics of Athrotaxis at multiple scales. Across the species range sedimentary charcoal and pollen concentrations indicate that the recovery time since the last fire has consistently lengthened over the last 10,000 yrs. Stand-scale tree-age and fire-scar reconstructions suggest that populations of the Athrotxis have survive very infrequent landscape fires over the last 4-6 centuries, but that fire severity has increased following European colonization causing population collapse of Athrotaxis and an associate shift in stand structure and composition that favor resprouter species over obligate seeders. Overall our findings suggest that the resistance to fires and postfire recovery of populations of A. selaginoides have gradually declined throughout the Holocene and rapidly declined after Europeans altered fire regimes, a trend that matches the fate other Gondwanan conifers in temperate rainforests elsewhere in the southern Hemisphere.

  15. Global Change Impacts on Future Fire Regimes: Distinguishing Between Climate-limited vs Ignition-Limited Landscapes

    NASA Astrophysics Data System (ADS)

    Keeley, J. E.; Syphard, A. D.

    2016-12-01

    Global warming is expected to exacerbate fire impacts. Predicting how climates will impact future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned, however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models are needed that predict future seasonal temperature changes if we are to forecast future fire regimes in these forests. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited, and because they are closely juxtaposed with human habitations fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science, it is far more complicated than that. Climate change is not relevant on some landscapes, but where climate is relevant the relationship will change due to direct climate effects on vegetation trajectories, as well as by feedback processes of fire effects on vegetation distribution, plus policy changes in how we manage ecosystems.

  16. Production and efficiency of large wildland fire suppression effort: A stochastic frontier analysis.

    PubMed

    Katuwal, Hari; Calkin, David E; Hand, Michael S

    2016-01-15

    This study examines the production and efficiency of wildland fire suppression effort. We estimate the effectiveness of suppression resource inputs to produce controlled fire lines that contain large wildland fires using stochastic frontier analysis. Determinants of inefficiency are identified and the effects of these determinants on the daily production of controlled fire line are examined. Results indicate that the use of bulldozers and fire engines increase the production of controlled fire line, while firefighter crews do not tend to contribute to controlled fire line production. Production of controlled fire line is more efficient if it occurs along natural or built breaks, such as rivers and roads, and within areas previously burned by wildfires. However, results also indicate that productivity and efficiency of the controlled fire line are sensitive to weather, landscape and fire characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Traditional fire-use, landscape transition, and the legacies of social theory past.

    PubMed

    Coughlan, Michael R

    2015-12-01

    Fire-use and the scale and character of its effects on landscapes remain hotly debated in the paleo- and historical-fire literature. Since the second half of the nineteenth century, anthropology and geography have played important roles in providing theoretical propositions and testable hypotheses for advancing understandings of the ecological role of human-fire-use in landscape histories. This article reviews some of the most salient and persistent theoretical propositions and hypotheses concerning the role of humans in historical fire ecology. The review discusses this history in light of current research agendas, such as those offered by pyrogeography. The review suggests that a more theoretically cognizant historical fire ecology should strive to operationalize transdisciplinary theory capable of addressing the role of human variability in the evolutionary history of landscapes. To facilitate this process, researchers should focus attention on integrating more current human ecology theory into transdisciplinary research agendas.

  18. The FireBGCv2 landscape fire and succession model: a research simulation platform for exploring fire and vegetation dynamics

    Treesearch

    Robert E. Keane; Rachel A. Loehman; Lisa M. Holsinger

    2011-01-01

    Fire management faces important emergent issues in the coming years such as climate change, fire exclusion impacts, and wildland-urban development, so new, innovative means are needed to address these challenges. Field studies, while preferable and reliable, will be problematic because of the large time and space scales involved. Therefore, landscape simulation...

  19. Estimation of wildfire size and risk changes due to fuels treatments

    USGS Publications Warehouse

    Cochrane, M.A.; Moran, C.J.; Wimberly, M.C.; Baer, A.D.; Finney, M.A.; Beckendorf, K.L.; Eidenshink, J.; Zhu, Z.

    2012-01-01

    Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel treatments at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking. Here, we present a method for estimating spatial probabilities of burning as a function of extant fuels treatments for any wildland fire-affected landscape. We examined the landscape effects of more than 72 000 ha of wildland fuel treatments involved in 14 large wildfires that burned 314 000 ha of forests in nine US states between 2002 and 2010. Fuels treatments altered the probability of fire occurrence both positively and negatively across landscapes, effectively redistributing fire risk by changing surface fire spread rates and reducing the likelihood of crowning behaviour. Trade offs are created between formation of large areas with low probabilities of increased burning and smaller, well-defined regions with reduced fire risk.

  20. Analysis of Alaskan burn severity patterns using remotely sensed data

    USGS Publications Warehouse

    Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.

    2007-01-01

    Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.

  1. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    PubMed

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  2. Evidence for nonuniform permafrost degradation after fire in boreal landscapes

    USGS Publications Warehouse

    Minsley, Burke J.; Pastick, Neal J.; Wylie, Bruce K.; Brown, Dana R.N.; Kass, M. Andy

    2016-01-01

    Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. We present a combination of multiscale remote sensing, geophysical, and field observations that reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost. Along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska, subsurface electrical resistivity and nuclear magnetic resonance data indicate locations where permafrost appears to be resilient to disturbance from fire, areas where warm permafrost conditions exist that may be most vulnerable to future change, and also areas where permafrost has thawed. High-resolution geophysical data corroborate remote sensing interpretations of near-surface permafrost and also add new high-fidelity details of spatial heterogeneity that extend from the shallow subsurface to depths of about 10 m. Results show that postfire impacts on permafrost can be variable and depend on multiple factors such as fire severity, soil texture, soil moisture, and time since fire.

  3. Fire history and landscape restoration in Douglas-fir ecosystems of western Oregon

    Treesearch

    J. E. Means; J. H. Cissel; F. J. Swanson

    1996-01-01

    For thousands of years fire has been a major, natural disturbance in the forest landscape from the Cascade Range westward to the coast in Oregon and Washington (Agee 1993; Brubaker 1991). Viewing the landscape of the central western Cascades in Oregon from a high point, one can see that fires of variable intensity and areal extent have created a complex mosaic of...

  4. Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, central Oregon, USA

    USGS Publications Warehouse

    Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.

    2018-01-01

    Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.

  5. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    NASA Astrophysics Data System (ADS)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  6. Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem

    USGS Publications Warehouse

    White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.

    2008-01-01

    Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire disturbance. Simulations generated from this model are expected to be the subject of subsequent studies on landscape dynamics with specific regard to prediction of wildlife distributions associated with fire management and climate change.

  7. Interactions among wildland fires in a long-established Sierra Nevada natural fire area

    USGS Publications Warehouse

    Collins, B.M.; Miller, J.D.; Thode, A.E.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.

    2009-01-01

    We investigate interactions between successive naturally occurring fires, and assess to what extent the environments in which fires burn influence these interactions. Using mapped fire perimeters and satellite-based estimates of post-fire effects (referred to hereafter as fire severity) for 19 fires burning relatively freely over a 31-year period, we demonstrate that fire as a landscape process can exhibit self-limiting characteristics in an upper elevation Sierra Nevada mixed conifer forest. We use the term 'self-limiting' to refer to recurring fire as a process over time (that is, fire regime) consuming fuel and ultimately constraining the spatial extent and lessening fire-induced effects of subsequent fires. When the amount of time between successive adjacent fires is under 9 years, and when fire weather is not extreme (burning index <34.9), the probability of the latter fire burning into the previous fire area is extremely low. Analysis of fire severity data by 10-year periods revealed a fair degree of stability in the proportion of area burned among fire severity classes (unchanged, low, moderate, high). This is in contrast to a recent study demonstrating increasing high-severity burning throughout the Sierra Nevada from 1984 to 2006, which suggests freely burning fires over time in upper elevation Sierra Nevada mixed conifer forests can regulate fire-induced effects across the landscape. This information can help managers better anticipate short- and long-term effects of allowing naturally ignited fires to burn, and ultimately, improve their ability to implement Wildland Fire Use programs in similar forest types. ?? 2008 Springer Science+Business Media, LLC.

  8. Fire history and fire management implications in the Yukon Flats National Wildlife Refuge, interior Alaska

    Treesearch

    S. A. Drury; P. J. Grissom

    2008-01-01

    We conducted this investigation in response to criticisms that the current Alaska Interagency Fire Management Plans are allowing too much of the landscape in interior Alaska to burn annually. To address this issue, we analyzed fire history patterns within the Yukon Flats National Wildlife Refuge, interior Alaska. We dated 40 fires on 27 landscape points within the...

  9. Corridors promote fire via connectivity and edge effects.

    PubMed

    Brudvig, Lars A; Wagner, Stephanie A; Damschen, Ellen I

    2012-04-01

    Landscape corridors, strips of habitat that connect otherwise isolated habitat patches, are commonly employed during management of fragmented landscapes. To date, most reported effects of corridors have been positive; however, there are long-standing concerns that corridors may have unintended consequences. Here, we address concerns over whether corridors promote propagation of disturbances such as fire. We collected data during prescribed fires in the world's largest and best replicated corridor experiment (Savannah River Site, South Carolina, USA), six -50-ha landscapes of open (shrubby/herbaceous) habitat within a pine plantation matrix, to test several mechanisms for how corridors might influence fire. Corridors altered patterns of fire temperature through a direct connectivity effect and an indirect edge effect. The connectivity effect was independent of fuel levels and was consistent with a hypothesized wind-driven "bellows effect." Edges, a consequence of corridor implementation, elevated leaf litter (fuel) input from matrix pine trees, which in turn increased fire temperatures. We found no evidence for corridors or edges impacting patterns of fire spread: plots across all landscape positions burned with similar probability. Impacts of edges and connectivity on fire temperature led to changes in vegetation: hotter-burning plots supported higher bunch grass cover during the field season after burning, suggesting implications for woody/herbaceous species coexistence. To our knowledge, this represents the first experimental evidence that corridors can modify landscape-scale patterns of fire intensity. Corridor impacts on fire should be carefully considered during landscape management, both in the context of how corridors connect or break distributions of fuels and the desired role of fire as a disturbance, which may range from a management tool to an agent to be suppressed. In our focal ecosystem, longleaf pine woodland, corridors might provide a previously unrecognized benefit during prescribed burning activities, by promoting fire intensity, which may assist in promoting plant biodiversity.

  10. Native American impacts on fire regimes of the California coastal ranges

    USGS Publications Warehouse

    Keeley, Jon E.

    2002-01-01

    Aim: Native American burning impacts on California shrubland dominated landscapes are evaluated relative to the natural lightning fire potential for affecting landscape patterns. Location: Focus was on the coastal ranges of central and southern California. Methods: Potential patterns of Indian burning were evaluated based upon historical documents, ethnographic accounts, archaeological records and consideration of contemporary land management tactics. Patterns of vegetation distribution in this region were evaluated relative to environmental factors and the resilience of the dominant shrub vegetation to different fire frequencies. Results: Lightning fire frequency in this region is one of the lowest in North America and the density of pre-Columbian populations was one of the highest. Shrublands dominate the landscape throughout most of the region. These woody communities have weak resilience to high fire frequency and are readily displaced by annual grasses and forbs under high fire frequency. Intact shrublands provided limited resources for native Americans and thus there was ample motivation for using fire to degrade this vegetation to an open mosaic of shrubland/grassland, not unlike the agropastoral modification of ecologically related shrublands by Holocene peoples in the Mediterranean Basin. Alien-dominated grasslands currently cover approximately one-quarter of the landscape and less than 1% of these grasslands have a significant native grass presence. Ecological studies in the Californian coastal ranges have failed to uncover any clear soil or climate factors explaining grassland and shrubland distribution patterns. Main conclusions: Coastal ranges of California were regions of high Indian density and low frequency of lightning fires. The natural vegetation dominants on this landscape are shrubland vegetation that often form dense impenetrable stands with limited resources for Native Americans. Natural fire frequencies are not high enough to maintain these landscapes in habitable mixtures of shrublands and grasslands but such landscape mosaics are readily produced with additional human subsidy of ignitions. It is hypothesized that a substantial fraction of the landscape was type converted from shrubland to grassland and much of the landscape that underwent such type conversion has either been maintained by Euro-American land management practices or resisted recolonization of native shrublands. It appears that these patterns are disturbance dependent and result from anthropogenic alteration of landscapes initiated by Native Americans and sustained and expanded upon by Euro-American settlers.

  11. The study of soils and vegetation transformation due fire disturbances in remote areas through scenario modelling of observed hydrological response to fire impact

    NASA Astrophysics Data System (ADS)

    Nesterova, Natalia; Semenova, Olga; Lebedeva, Luidmila

    2015-04-01

    Large territories of Siberia and Russian Far East are the subject to frequent forest fires. Often there is no information available about fire impact except its timing, areal distribution and qualitative characteristics of fire severity. Observed changes of hydrological response in burnt watersheds can be considered as indirect evidence of soil and vegetation transformation due to fire impact. In our study we used MODIS Fire products to detect spatial distribution of fires in Transbaikal and Far East regions of Russia in 2000 - 2012 period. Small and middle-size watersheds (with area up to 10000 km2) affected by extensive (burn area not less than 20 %) fires were chosen. We analyzed available hydrological data (measured discharges in watersheds outlets) for chosen basins. In several cases apparent hydrological response to fire was detected. To investigate main factors causing the change of hydrologic regime after fire several scenarios of soil and vegetation transformation were developed for each watershed under consideration. Corresponding sets of hydrological model parameters describing those transformations were elaborated based on data analysis and post-fire landscape changes as derived from a literature review. We implied different factors such as removal of organic layer, albedo changes, intensification of soil thaw (in presence of permafrost and seasonal soil freezing), reduction of infiltration rate and evapotranspiration, increase of upper subsurface flow fraction in summer flood events following the fire and others. We applied Hydrograph model (Russia) to conduct simulation experiments aiming to reveal which landscape changes scenarios were more plausible. The advantages of chosen hydrological model for this study are 1) that it takes into consideration thermal processes in soils which in case of permafrost and seasonal soil freezing presence can play leading role in runoff formation and 2) that observable vegetation and soil properties are used as its parameters allowing minimal resort to calibration. The model can use dynamic set of parameters performing preassigned abrupt and/or gradual changes of landscape characteristics. Interestingly, based on modelling results it can be concluded that depending on dominant landscape different aspects of soil and vegetation cover changes may influence runoff formation in contrasting way. The results of the study will be reported.

  12. Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC.

    PubMed

    Keane, R E; Ryan, K C; Running, S W

    1996-03-01

    A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.

  13. Assessing accuracy of point fire intervals across landscapes with simulation modelling

    Treesearch

    Russell A. Parsons; Emily K. Heyerdahl; Robert E. Keane; Brigitte Dorner; Joseph Fall

    2007-01-01

    We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensitivity of...

  14. Trends in fire patterns in a southern African savanna under alternative land use practices

    Treesearch

    A. T. Hudak; D. H. K. Fairbanks; B. H. Brockett

    2004-01-01

    Climate, topography, vegetation and land use interact to influence fire regimes.Variable fire regimes may promote landscape heterogeneity, diversification in vegetation pattern and biotic diversity. The objective was to compare effects of alternative land use practices on landscape heterogeneity. Patch characteristics of fire scars were measured from 21 annual burn...

  15. Fire and forest history at Mount Rushmore.

    PubMed

    Brown, Peter M; Wienk, Cody L; Symstad, Amy J

    2008-12-01

    Mount Rushmore National Memorial in the Black Hills of South Dakota is known worldwide for its massive sculpture of four of the United States' most respected presidents. The Memorial landscape also is covered by extensive ponderosa pine (Pinus ponderosa) forest that has not burned in over a century. We compiled dendroecological and forest structural data from 29 plots across the 517-ha Memorial and used fire behavior modeling to reconstruct the historical fire regime and forest structure and compare them to current conditions. The historical fire regime is best characterized as one of low-severity surface fires with occasional (> 100 years) patches (< 100 ha) of passive crown fire. We estimate that only approximately 3.3% of the landscape burned as crown fire during 22 landscape fire years (recorded at > or = 25% of plots) between 1529 and 1893. The last landscape fire was in 1893. Mean fire intervals before 1893 varied depending on spatial scale, from 34 years based on scar-to-scar intervals on individual trees to 16 years between landscape fire years. Modal fire intervals were 11-15 years and did not vary with scale. Fire rotation (the time to burn an area the size of the study area) was estimated to be 30 years for surface fire and 800+ years for crown fire. The current forest is denser and contains more small trees, fewer large trees, lower canopy base heights, and greater canopy bulk density than a reconstructed historical (1870) forest. Fire behavior modeling using the NEXUS program suggests that surface fires would have dominated fire behavior in the 1870 forest during both moderate and severe weather conditions, while crown fire would dominate in the current forest especially under severe weather. Changes in the fire regime and forest structure at Mount Rushmore parallel those seen in ponderosa pine forests from the southwestern United States. Shifts from historical to current forest structure and the increased likelihood of crown fire justify the need for forest restoration before a catastrophic wildfire occurs and adversely impacts the ecological and aesthetic setting of the Mount Rushmore sculpture.

  16. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas-fir landscape in the southern Rocky Mountains after a century of fire suppression

    Treesearch

    Merrill R. Kaufmann; Laurie S. Huckaby; Paula J. Fornwalt; Jason M. Stoker; William H. Romme

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas-fir (Pinus ponderosa/Pseudotsuga menziesii) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post-fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an...

  17. Using simulated historical time series to prioritize fuel treatments on landscapes across the United States: The LANDFIRE prototype project

    USGS Publications Warehouse

    Keane, Robert E.; Rollins, Matthew; Zhu, Zhi-Liang

    2007-01-01

    Canopy and surface fuels in many fire-prone forests of the United States have increased over the last 70 years as a result of modern fire exclusion policies, grazing, and other land management activities. The Healthy Forest Restoration Act and National Fire Plan establish a national commitment to reduce fire hazard and restore fire-adapted ecosystems across the USA. The primary index used to prioritize treatment areas across the nation is Fire Regime Condition Class (FRCC) computed as departures of current conditions from the historical fire and landscape conditions. This paper describes a process that uses an extensive set of ecological models to map FRCC from a departure statistic computed from simulated time series of historical landscape composition. This mapping process uses a data-driven, biophysical approach where georeferenced field data, biogeochemical simulation models, and spatial data libraries are integrated using spatial statistical modeling to map environmental gradients that are then used to predict vegetation and fuels characteristics over space. These characteristics are then fed into a landscape fire and succession simulation model to simulate a time series of historical landscape compositions that are then compared to the composition of current landscapes to compute departure, and the FRCC values. Intermediate products from this process are then used to create ancillary vegetation, fuels, and fire regime layers that are useful in the eventual planning and implementation of fuel and restoration treatments at local scales. The complex integration of varied ecological models at different scales is described and problems encountered during the implementation of this process in the LANDFIRE prototype project are addressed.

  18. Spatial patterns in the effects of fire on savanna vegetation three-dimensional structure.

    PubMed

    Levick, Shaun R; Asner, Gregory P; Smit, Izak P J

    2012-12-01

    Spatial variability in the effects of fire on savanna vegetation structure is seldom considered in ecology, despite the inherent heterogeneity of savanna landscapes. Much has been learned about the effects of fire on vegetation structure from long-term field experiments, but these are often of limited spatial extent and do not encompass different hillslope catena elements. We mapped vegetation three-dimensional (3-D) structure over 21 000 ha in nine savanna landscapes (six on granite, three on basalt), each with contrasting long-term fire histories (higher and lower fire frequency), as defined from a combination of satellite imagery and 67 years of management records. Higher fire frequency areas contained less woody canopy cover than their lower fire frequency counterparts in all landscapes, and woody cover reduction increased linearly with increasing difference in fire frequency (r2 = 0.58, P = 0.004). Vegetation height displayed a more heterogeneous response to difference in fire frequency, with taller canopies present in the higher fire frequency areas of the wetter sites. Vegetation 3-D structural differences between areas of higher and lower fire frequency differed between geological substrates and varied spatially across hillslopes. Fire had the greatest relative impact on vegetation structure on nutrient-rich basalt substrates, and it imparted different structural responses upon vegetation in upland, midslope, and lowland topographic positions. These results highlight the complexity of fire vegetation relationships in savanna systems, and they suggest that underlying landscape heterogeneity needs more explicit incorporation into fire management policies.

  19. FireScape: A program for whole-mountain fire management in the Sky Island Region

    Treesearch

    Brooke Gebow; Christopher Stetson; Donald A. Falk; Corrine Dolan

    2013-01-01

    The Coronado National Forest’s (CNF) FireScape program works to remove barriers to fire playing its natural role on the landscape. A long-term goal is creating landscapes that are able to survive wildfire with biodiversity and key ecological processes intact, especially important in the face of a drier, hotter Southwest. The FireScape team is nurturing multiple efforts...

  20. The effect of urban growth on landscape-scale restoration for a fire-dependent songbird

    USGS Publications Warehouse

    Pickens, Bradley A.; Marcus, Jeffrey F.; Carpenter, John P.; Anderson, Scott; Taillie, Paul J.; Collazo, Jaime A.

    2017-01-01

    A landscape-scale perspective on restoration ecology has been advocated, but few studies have informed restoration with landscape metrics or addressed broad-scale threats. Threats such as urban growth may affect restoration effectiveness in a landscape context. Here, we studied longleaf pine savanna in the rapidly urbanizing southeastern United States where a habitat-specialist bird, Bachman's sparrow (Peucaea aestivalis), is closely associated with savanna vegetation structure and frequent fire. Our objectives were to construct a species distribution model for Bachman's sparrow, determine the relationship between fire and urbanization, quantify the urban growth effect (2010–2090), identify potential restoration areas, and determine the interaction between restoration potential and urban growth by 2050. Number of patches, patch size, and isolation metrics were used to evaluate scenarios. The species distribution model was 88% accurate and emphasized multiscale canopy cover characteristics, fire, and percent habitat. Fires were less common <600 m from urban areas, and this fire suppression effect exacerbated urban growth effects. For restoration scenarios, canopy cover reduction by 30% resulted in nearly double the amount of habitat compared to the prescribed fire scenario; canopy cover reduction resulted in larger patch sizes and less patch isolation compared to current conditions. The effect of urban growth on restoration scenarios was unequal. Seventy-four percent of restoration areas from the prescribed fire scenario overlapped with projected urban growth, whereas the canopy cover reduction scenario only overlapped by 9%. We emphasize the benefits of simultaneously considering the effects of urban growth and landscape-scale restoration potential to promote a landscape with greater patch sizes and less isolation.

  1. Geophysical evidence for non-uniform permafrost degradation after fire across boreal landscapes

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Pastick, N. J.; Wylie, B. K.; Brown, D. N.; Kass, A.

    2015-12-01

    Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. We present a combination of multi-scale remote sensing, geophysical, and field observations that reveal details of both near-surface (<1 m) and deeper impacts of fire on permafrost. Along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska, subsurface imaging indicates locations where permafrost appears to be resilient to disturbance from fire, areas where warm permafrost conditions exist that may be most vulnerable to future change, and also where permafrost has thawed. High-resolution geophysical data corroborate remote sensing interpretations of near-surface permafrost, and also add new high-fidelity details of spatial heterogeneity that extend from the shallow subsurface to depths of about 10 m. Data collected along each transect include observations of active layer thickness (ALT), organic layer thickness (OLT), plant species cover, electrical resistivity tomography (ERT), and downhole Nuclear Magnetic Resonance (NMR) measurements. Results show that post-fire impacts on permafrost can be variable, and depend on multiple factors such as fire severity, soil texture, and soil moisture.

  2. From leaves to landscape: A multiscale approach to assess fire hazard in wildland-urban interface areas.

    PubMed

    Ghermandi, Luciana; Beletzky, Natacha A; de Torres Curth, Mónica I; Oddi, Facundo J

    2016-12-01

    The overlapping zone between urbanization and wildland vegetation, known as the wildland urban interface (WUI), is often at high risk of wildfire. Human activities increase the likelihood of wildfires, which can have disastrous consequences for property and land use, and can pose a serious threat to lives. Fire hazard assessments depend strongly on the spatial scale of analysis. We assessed the fire hazard in a WUI area of a Patagonian city by working at three scales: landscape, community and species. Fire is a complex phenomenon, so we used a large number of variables that correlate a priori with the fire hazard. Consequently, we analyzed environmental variables together with fuel load and leaf flammability variables and integrated all the information in a fire hazard map with four fire hazard categories. The Nothofagus dombeyi forest had the highest fire hazard while grasslands had the lowest. Our work highlights the vulnerability of the wildland-urban interface to fire in this region and our suggested methodology could be applied in other wildland-urban interface areas. Particularly in high hazard areas, our work could help in spatial delimitation policies, urban planning and development of plans for the protection of human lives and assets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Can landscape-level ecological restoration influence fire risk? A spatially-explicit assessment of a northern temperate-southern boreal forest landscape

    Treesearch

    Douglas J. Shinneman; Brian J. Palik; Meredith W. Cornett

    2012-01-01

    Management strategies to restore forest landscapes are often designed to concurrently reduce fire risk. However, the compatibility of these two objectives is not always clear, and uncoordinated management among landowners may have unintended consequences. We used a forest landscape simulation model to compare the effects of contemporary management and hypothetical...

  4. Assessing Wildfire Effects in North American Boreal Peatlands through Field and Remote Sensing Analysis

    NASA Astrophysics Data System (ADS)

    Bourgeau-Chavez, L. L.; French, N. H. F.; Endres, S.; Kane, E. S.; Jenkins, L. K.; Hanes, C.; Battaglia, M., Jr.; de Groot, W.

    2017-12-01

    Wildfire is a natural disturbance factor in high northern latitude (HNL) ecosystems occurring primarily through lightning ignitions. However, there is evidence that frequency of wildfire in both boreal and arctic landscapes is increasing with climate change. Higher temperatures and reduced precipitation is leading to widespread seasonal drying in some HNL landscapes, thereby increasing wildfire frequency and severity. In 2014, Northwest Territories (NWT) Canada had a record breaking year of wildfire, burning over 3.4 million hectares of upland forests, peatlands, and even emergent wetlands. Fire activity occurred across seasons (spring, summer, and fall) in the Taiga Shield and Boreal Plains ecozones. Similar large fire years have occurred in boreal Alaska in 2004 and 2015. Under NASA ABoVE, boreal peatlands of Alberta and NWT Canada are the focus of both field and remote sensing studies to better understand their vulnerability and resiliency to wildfire. Landsat and radar satellite imagery are being used to develop remote sensing algorithms specific to peatlands to map and monitor not only burn severity but also organic soil moisture, peatland type (e.g. bog vs. fen) and biomass form (herbaceous, shrub, forest dominated). Field data analysis of tree recruitment, in situ moisture, burn severity, fuel loading and other biophysical parameters are currently being synthesized from three field seasons. The field and remote sensing data are being integrated with CanFIRE (a carbon emissions and fire effects model) to better understand the wildfire effects to peatlands. The spatial information allows for better quantification of the landscape heterogeneity of peatlands, thus providing new insights to landscape scale changes and allowing improved understanding of the implications of increasing wildfire in HNL ecosystems.

  5. Does Fire Influence the Landscape-Scale Distribution of an Invasive Mesopredator?

    PubMed Central

    Payne, Catherine J.; Ritchie, Euan G.; Kelly, Luke T.; Nimmo, Dale G.

    2014-01-01

    Predation and fire shape the structure and function of ecosystems globally. However, studies exploring interactions between these two processes are rare, especially at large spatial scales. This knowledge gap is significant not only for ecological theory, but also in an applied context, because it limits the ability of landscape managers to predict the outcomes of manipulating fire and predators. We examined the influence of fire on the occurrence of an introduced and widespread mesopredator, the red fox (Vulpes vulpes), in semi-arid Australia. We used two extensive and complimentary datasets collected at two spatial scales. At the landscape-scale, we surveyed red foxes using sand-plots within 28 study landscapes – which incorporated variation in the diversity and proportional extent of fire-age classes – located across a 104 000 km2 study area. At the site-scale, we surveyed red foxes using camera traps at 108 sites stratified along a century-long post-fire chronosequence (0–105 years) within a 6630 km2 study area. Red foxes were widespread both at the landscape and site-scale. Fire did not influence fox distribution at either spatial scale, nor did other environmental variables that we measured. Our results show that red foxes exploit a broad range of environmental conditions within semi-arid Australia. The presence of red foxes throughout much of the landscape is likely to have significant implications for native fauna, particularly in recently burnt habitats where reduced cover may increase prey species’ predation risk. PMID:25291186

  6. Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling

    USGS Publications Warehouse

    Van Linn, Peter F.; Nussear, Kenneth E.; Esque, Todd C.; DeFalco, Lesley A.; Inman, Richard D.; Abella, Scott R.

    2013-01-01

    Predicting wildfires that affect broad landscapes is important for allocating suppression resources and guiding land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk (interactions of fuel characteristics and environmental conditions conducive to wildfire) using satellite imagery, our model of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.

  7. Measuring the effect of fuel treatments on forest carbon using landscape risk analysis

    Treesearch

    A.A. Ager; M.A. Finney; A. McMahan; J. Carthcart

    2010-01-01

    Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon...

  8. Fire history and landscape dynamics in a late-successional reserve in the Klamath Mountains, California, USA

    Treesearch

    Alan H. Taylor; Carl N. Skinner

    1998-01-01

    The frequency, extent, and severity of fires strongly influence development patterns of forests dominated by Douglas-fir in the Pacific Northwest. Limited data on fire history and stand structure suggest that there is geographical variation in fire regimes and that this variation contributes to regional differences in stand and landscape structure. Managers need region...

  9. Influence of landscape gradients in wilderness management and spatial climate on fire severity in the Northern Rockies USA, 1984 to 2010

    Treesearch

    Sandra L. Haire; Carol Miller; Kevin McGarigal

    2015-01-01

    Management activities, applied over broad scales, can potentially affect attributes of fire regimes including fire severity. Wilderness landscapes provide a natural laboratory for exploring effects of management because in some federally designated wilderness areas the burning of naturally ignited fires is promoted. In order to better understand the contribution of...

  10. Forest fuels and landscape-level fire risk assessment of the ozark highlands, Missouri

    Treesearch

    Michael C. Stambaugh; Richard P. Guyette; Daniel C. Dey

    2007-01-01

    In this paper we describe a fire risk assessment of the Ozark Highlands. Fire risk is rated using information on ignition potential and fuel hazard. Fuel loading, a component of the fire hazard module, is weakly predicted (r2 = 0.19) by site- and landscape-level attributes. Fuel loading does not significantly differ between Ozark ecological...

  11. Ecological effects of large fires on US landscapes: benefit or catastrophe?

    Treesearch

    Robert E. Keane; James K. Agee; Peter Fule; Jon E. Keeley; Carl Key; Stanley G. Kitchen; Richard Miller; Lisa A. Schulte

    2008-01-01

    The perception is that today's large fires are an ecological catastrophe because they burn vast areas with high intensities and severities. However, little is known of the ecological impacts of large fires on both historical and contemporary landscapes. The present paper presents a review of the current knowledge of the effects of large fires in the United States...

  12. Fire management of California shrubland landscapes

    USGS Publications Warehouse

    Keeley, Jon E.

    2002-01-01

    Fire management of California shrublands has been heavily influenced by policies designed for coniferous forests, however, fire suppression has not effectively excluded fire from chaparral and coastal sage scrub landscapes and catastrophic wildfires are not the result of unnatural fuel accumulation. There is no evidence that prescribed burning in these shrublands provides any resource benefit and in some areas may negatively impact shrublands by increasing fire frequency. Therefore, fire hazard reduction is the primary justification for prescription burning, but it is doubtful that rotational burning to create landscape age mosaics is a cost effective method of controlling catastrophic wildfires. There are problems with prescription burning in this crown-fire ecosystem that are not shared by forests with a natural surface-fire regime. Prescription weather conditions preclude burning at rotation intervals sufficient to effect the control of fires ignited under severe weather conditions. Fire management should focus on strategic placement of prescription burns to both insure the most efficient fire hazard reduction and to minimize the amount of landscape exposed to unnaturally high fire frequency. A major contributor to increased fire suppression costs and increased loss of property and lives is the continued urban sprawl into wildlands naturally subjected to high intensity crown fires. Differences in shrubland fire history suggest there may be a need for different fire management tactics between central coastal and southern California. Much less is known about shrubland fire history in the Sierra Nevada foothills and interior North Coast Ranges, and thus it would be prudent to not transfer these ideas too broadly across the range of chaparral until we have a clearer understanding of the extent of regional variation in shrubland fire regimes.

  13. Fire management of California shrubland landscapes.

    PubMed

    Keeley, Jon E

    2002-03-01

    Fire management of California shrublands has been heavily influenced by policies designed for coniferous forests, however, fire suppression has not effectively excluded fire from chaparral and coastal sage scrub landscapes and catastrophic wildfires are not the result of unnatural fuel accumulation. There is no evidence that prescribed burning in these shrublands provides any resource benefit and in some areas may negatively impact shrublands by increasing fire frequency. Therefore, fire hazard reduction is the primary justification for prescription burning, but it is doubtful that rotational burning to create landscape age mosaics is a cost effective method of controlling catastrophic wildfires. There are problems with prescription burning in this crown-fire ecosystem that are not shared by forests with a natural surface-fire regime. Prescription weather conditions preclude burning at rotation intervals sufficient to effect the control of fires ignited under severe weather conditions. Fire management should focus on strategic placement of prescription burns to both insure the most efficient fire hazard reduction and to minimize the amount of landscape exposed to unnaturally high fire frequency. A major contributor to increased fire suppression costs and increased loss of property and lives is the continued urban sprawl into wildlands naturally subjected to high intensity crown fires. Differences in shrubland fire history suggest there may be a need for different fire management tactics between central coastal and southern California. Much less is known about shrubland fire history in the Sierra Nevada foothills and interior North Coast Ranges, and thus it would be prudent to not transfer these ideas too broadly across the range of chaparral until we have a clearer understanding of the extent of regional variation in shrubland fire regimes.

  14. Spatial patterns of large natural fires in Sierra Nevada wilderness areas

    USGS Publications Warehouse

    Collins, B.M.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.

    2007-01-01

    The effects of fire on vegetation vary based on the properties and amount of existing biomass (or fuel) in a forest stand, weather conditions, and topography. Identifying controls over the spatial patterning of fire-induced vegetation change, or fire severity, is critical in understanding fire as a landscape scale process. We use gridded estimates of fire severity, derived from Landsat ETM+ imagery, to identify the biotic and abiotic factors contributing to the observed spatial patterns of fire severity in two large natural fires. Regression tree analysis indicates the importance of weather, topography, and vegetation variables in explaining fire severity patterns between the two fires. Relative humidity explained the highest proportion of total sum of squares throughout the Hoover fire (Yosemite National Park, 2001). The lowest fire severity corresponded with increased relative humidity. For the Williams fire (Sequoia/Kings Canyon National Parks, 2003) dominant vegetation type explains the highest proportion of sum of squares. Dominant vegetation was also important in determining fire severity throughout the Hoover fire. In both fires, forest stands that were dominated by lodgepole pine (Pinus contorta) burned at highest severity, while red fir (Abies magnifica) stands corresponded with the lowest fire severities. There was evidence in both fires that lower wind speed corresponded with higher fire severity, although the highest fire severity in the Williams fire occurred during increased wind speed. Additionally, in the vegetation types that were associated with lower severity, burn severity was lowest when the time since last fire was fewer than 11 and 17 years for the Williams and Hoover fires, respectively. Based on the factors and patterns identified, managers can anticipate the effects of management ignited and naturally ignited fires at the forest stand and the landscape levels. ?? 2007 Springer Science+Business Media, Inc.

  15. Modeling the effects of fire severity and climate warming on active layer and soil carbon dynamics of black spruce forests across the landscape in interior Alaska

    USGS Publications Warehouse

    Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m−2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.

  16. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    PubMed Central

    Baker, William L.

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984–2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984–2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046–2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests. PMID:26351850

  17. Landscape anthropogenic disturbance in the Mediterranean ecosystem: is the current landscape sustainable?

    NASA Astrophysics Data System (ADS)

    Biondi, Guido; D'Andrea, Mirko; Fiorucci, Paolo; Franciosi, Chiara; Lima, Marco

    2013-04-01

    Mediterranean landscape during the last centuries has been subject to strong anthropogenic disturbances who shifted natural vegetation cover in a cultural landscape. Most of the natural forest were destroyed in order to allow cultivation and grazing activities. In the last century, fast growing conifer plantations were introduced in order to increase timber production replacing slow growing natural forests. In addition, after the Second World War most of the grazing areas were changed in unmanaged mediterranean conifer forest frequently spread by fires. In the last decades radical socio economic changes lead to a dramatic abandonment of the cultural landscape. One of the most relevant result of these human disturbances, and in particular the replacement of deciduous forests with coniferous forests, has been the increasing in the number of forest fires, mainly human caused. The presence of conifers and shrubs, more prone to fire, triggered a feedback mechanism that makes difficult to return to the stage of potential vegetation causing huge economic, social and environmental damages. The aim of this work is to investigate the sustainability of the current landscape. A future landscape scenario has been simulated considering the natural succession in absence of human intervention assuming the current fire regime will be unaltered. To this end, a new model has been defined, implementing an ecological succession model coupled with a simply Forest Fire Model. The ecological succession model simulates the vegetation dynamics using a rule-based approach discrete in space and time. In this model Plant Functional Types (PFTs) are used to describe the landscape. Wildfires are randomly ignited on the landscape, and their propagation is simulated using a stochastic cellular automata model. The results show that the success of the natural succession toward a potential vegetation cover is prevented by the frequency of fire spreading. The actual landscape is then unsustainable because of the high cost of fire fighting activities. The right path to success consists in development of suitable land use planning and forest management to mitigate the consequences of past anthropogenic disturbances.

  18. The interaction of fire and mankind: Introduction†

    PubMed Central

    Chaloner, William G.

    2016-01-01

    Fire has been an important part of the Earth system for over 350 Myr. Humans evolved in this fiery world and are the only animals to have used and controlled fire. The interaction of mankind with fire is a complex one, with both positive and negative aspects. Humans have long used fire for heating, cooking, landscape management and agriculture, as well as for pyrotechnologies and in industrial processes over more recent centuries. Many landscapes need fire but population expansion into wildland areas creates a tension between different interest groups. Extinguishing wildfires may not always be the correct solution. A combination of factors, including the problem of invasive plants, landscape change, climate change, population growth, human health, economic, social and cultural attitudes that may be transnational make a re-evaluation of fire and mankind necessary. The Royal Society meeting on Fire and mankind was held to address these issues and the results of these deliberations are published in this volume. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216519

  19. The use of shaded fuelbreaks in landscape fire management

    Treesearch

    James K. Agee; Bernie Bahro; Mark A. Finney; Philip N. Omi; David B. Sapsis; Carl N. Skinner; Jan W. van Wagtendonk; C. Phillip Weatherspoon

    2000-01-01

    Shaded fuelbreaks and larger landscape fuel treatments, such as prescribed fire, are receiving renewed interest as forest protection strategies in the western United States. The effectiveness of fuelbreaks remains a subject of debate because of differing fuelbreak objectives, prescriptions for creation and maintenance, and their placement in landscapes with differing...

  20. Fire and landscapes: patterns and processes

    Treesearch

    Jan W. Van Wagtendonk

    2004-01-01

    Fire has been a pervasive influence on the Sierra Nevadan landscape for millennia. Lake sediments containing charcoal and pollen indicate that fires have occurred for at least the past 13,000 years. Brunelle and Anderson (2003) found that charcoal accumulation varied with vegetation and temperature, increasing during warm periods dominated by oaks (Quercus...

  1. The effect of urban growth on landscape-scale restoration for a fire-dependent songbird.

    PubMed

    Pickens, Bradley A; Marcus, Jeffrey F; Carpenter, John P; Anderson, Scott; Taillie, Paul J; Collazo, Jaime A

    2017-04-15

    A landscape-scale perspective on restoration ecology has been advocated, but few studies have informed restoration with landscape metrics or addressed broad-scale threats. Threats such as urban growth may affect restoration effectiveness in a landscape context. Here, we studied longleaf pine savanna in the rapidly urbanizing southeastern United States where a habitat-specialist bird, Bachman's sparrow (Peucaea aestivalis), is closely associated with savanna vegetation structure and frequent fire. Our objectives were to construct a species distribution model for Bachman's sparrow, determine the relationship between fire and urbanization, quantify the urban growth effect (2010-2090), identify potential restoration areas, and determine the interaction between restoration potential and urban growth by 2050. Number of patches, patch size, and isolation metrics were used to evaluate scenarios. The species distribution model was 88% accurate and emphasized multiscale canopy cover characteristics, fire, and percent habitat. Fires were less common <600 m from urban areas, and this fire suppression effect exacerbated urban growth effects. For restoration scenarios, canopy cover reduction by 30% resulted in nearly double the amount of habitat compared to the prescribed fire scenario; canopy cover reduction resulted in larger patch sizes and less patch isolation compared to current conditions. The effect of urban growth on restoration scenarios was unequal. Seventy-four percent of restoration areas from the prescribed fire scenario overlapped with projected urban growth, whereas the canopy cover reduction scenario only overlapped by 9%. We emphasize the benefits of simultaneously considering the effects of urban growth and landscape-scale restoration potential to promote a landscape with greater patch sizes and less isolation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates

    USGS Publications Warehouse

    Loehman, Rachel A.; Keane, Robert E.; Holsinger, Lisa M.; Wu, Zhiwei

    2016-01-01

    ContextInteractions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs.ObjectivesWe used the mechanistic ecosystem-fire process model FireBGCv2 to model interactions of wildland fire, mountain pine beetle (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola) under current and future climates, across three diverse study areas.MethodsWe assessed changes in tree basal area as a measure of landscape response over a 300-year simulation period for the Crown of the Continent in north-central Montana, East Fork of the Bitterroot River in western Montana, and Yellowstone Central Plateau in western Wyoming, USA.ResultsInteracting disturbances reduced overall basal area via increased tree mortality of host species. Wildfire decreased basal area more than beetles or rust, and disturbance interactions modeled under future climate significantly altered landscape basal area as compared with no-disturbance and current climate scenarios. Responses varied among landscapes depending on species composition, sensitivity to fire, and pathogen and beetle suitability and susceptibility.ConclusionsUnderstanding disturbance interactions is critical for managing landscapes because forest responses to wildfires, pathogens, and beetle attacks may offset or exacerbate climate influences, with consequences for wildlife, carbon, and biodiversity.

  3. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  4. The ecology of population dispersal: Modeling alternative basin-plateau foraging strategies to explain the Numic expansion.

    PubMed

    Magargal, Kate E; Parker, Ashley K; Vernon, Kenneth Blake; Rath, Will; Codding, Brian F

    2017-07-08

    The expansion of Numic speaking populations into the Great Basin required individuals to adapt to a relatively unproductive landscape. Researchers have proposed numerous social and subsistence strategies to explain how and why these settlers were able to replace any established populations, including private property and intensive plant processing. Here we evaluate these hypotheses and propose a new strategy involving the use of landscape fire to increase resource encounter rates. Implementing a novel, spatially explicit, multi-scalar prey choice model, we examine how individual decisions approximating each alternative strategy (private property, anthropogenic fire, and intensive plant processing) would aggregate at the patch and band level to confer an overall benefit to this colonizing population. Analysis relies on experimental data reporting resource profitability and abundance, ecological data on the historic distribution of vegetation patches, and ethnohistoric data on the distribution of Numic bands. Model results show that while resource privatization and landscape fires produce a substantial advantage, intensified plant processing garners the greatest benefit. The relative benefits of alternative strategies vary significantly across ecological patches resulting in variation across ethnographic band ranges. Combined, a Numic strategy including all three alternatives would substantially increase subsistence yields. The application of a strategy set that includes landscape fire, privatization and intensified processing of seeds and nuts, explains why the Numa were able to outcompete local populations. This approach provides a framework to help explain how individual decisions can result in such population replacement events throughout human history. © 2017 Wiley Periodicals, Inc.

  5. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes

    PubMed Central

    Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of natural lightning ignitions should be useful as a basis for ecological fire management of humid savanna-grassland landscapes worldwide. PMID:25574667

  6. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    PubMed

    Platt, William J; Orzell, Steve L; Slocum, Matthew G

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993-2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997-2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of natural lightning ignitions should be useful as a basis for ecological fire management of humid savanna-grassland landscapes worldwide.

  7. Climate change and vulnerability of bull trout (Salvelinus confluentus) in a fire-prone landscape.

    USGS Publications Warehouse

    Falke, Jeffrey A.; Flitcroft, Rebecca L; Dunham, Jason B.; McNyset, Kristina M.; Hessburg, Paul F.; Reeves, Gordon H.

    2015-01-01

    Linked atmospheric and wildfire changes will complicate future management of native coldwater fishes in fire-prone landscapes, and new approaches to management that incorporate uncertainty are needed to address this challenge. We used a Bayesian network (BN) approach to evaluate population vulnerability of bull trout (Salvelinus confluentus) in the Wenatchee River basin, Washington, USA, under current and future climate and fire scenarios. The BN was based on modeled estimates of wildfire, water temperature, and physical habitat prior to, and following, simulated fires throughout the basin. We found that bull trout population vulnerability depended on the extent to which climate effects can be at least partially offset by managing factors such as habitat connectivity and fire size. Moreover, our analysis showed that local management can significantly reduce the vulnerability of bull trout to climate change given appropriate management actions. Tools such as our BN that explicitly integrate the linked nature of climate and wildfire, and incorporate uncertainty in both input data and vulnerability estimates, will be vital in effective future management to conserve native coldwater fishes.

  8. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  9. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes

    NASA Astrophysics Data System (ADS)

    Williamson, G. J.; Bowman, D. M. J. S.; Price, O. F.; Henderson, S. B.; Johnston, F. H.

    2016-12-01

    Prescribed burning is used to reduce the occurrence, extent and severity of uncontrolled fires in many flammable landscapes. However, epidemiologic evidence of the human health impacts of landscape fire smoke emissions is shaping fire management practice through increasingly stringent environmental regulation and public health policy. An unresolved question, critical for sustainable fire management, concerns the comparative human health effects of smoke from wild and prescribed fires. Here we review current knowledge of the health effects of landscape fire emissions and consider the similarities and differences in smoke from wild and prescribed fires with respect to the typical combustion conditions and fuel properties, the quality and magnitude of air pollution emissions, and the potential for dispersion to large populations. We further examine the interactions between these considerations, and how they may shape the longer term smoke regimes to which populations are exposed. We identify numerous knowledge gaps and propose a conceptual framework that describes pathways to better understanding of the health trade-offs of prescribed and wildfire smoke regimes.

  10. Challenges and approaches in planning fuel treatments across fire-excluded forested landscapes

    Treesearch

    B.M. Collins; S.L. Stephens; J.J. Moghaddas; J. Battles

    2010-01-01

    Placing fuel reduction treatments across entire landscapes such that impacts associated with high-intensity fire are lessened is a difficult goal to achieve, largely because of the immense area needing treatment. As such, fire scientists and managers have conceptually developed and are refining methodologies for strategic placement of fuel treatments that...

  11. Simulating the interactions of forest structure, fire regime, and plant invasion in the southern Appalachians using LANDIS

    Treesearch

    Weimin Xi; Szu-Hung Chen; Andrew G. Birt; John D. Waldron; Charles W. Lafon; David M. Cairns; Maria D. Tchakerian; Kier D. Klepzig; Robert N. Coulson

    2011-01-01

    Southern Appalachian forests face multiple environmental threats, including periodic fires, insect outbreaks, and more recently, exotic invasive plants. Past studies suggest these multiple disturbances interact to shape species-rich forest landscape, and they hypothesize that changes in fire regimes and increasing landscape fragmentation may influence invasive...

  12. Use of ordinary kriging to interpolate observations of fire radiative heat flux sampled with airborne imagery

    NASA Astrophysics Data System (ADS)

    Klauberg Silva, C.; Hudak, A. T.; Bright, B. C.; Dickinson, M. B.; Kremens, R.; Paugam, R.; Mell, W.

    2016-12-01

    Biomass burning has impacts on air pollution at local to regional scales and contributes to greenhouse gases and affects carbon balance at the global scale. Therefore, is important to accurately estimate and manage carbon pools (fuels) and fluxes (gases and particulate emissions having public health implications) associated with wildland fires. Fire radiative energy (FRE) has been shown to be linearly correlated with biomass burned in small-scale experimental fires but not at the landscape level. Characterization of FRE density (FRED) flux in J m-2 from a landscape-level fire presents an undersampling problem. Specifically, airborne acquisitions of long-wave infrared radiation (LWIR) from a nadir-viewing LWIR camera mounted on board fixed-wing aircraft provide only samples of FRED from a landscape-level fire, because of the time required to turn the plane around between passes, and a fire extent that is broader than the camera field of view. This undersampling in time and space produces apparent firelines in an image of observed FRED, capturing the fire spread only whenever and wherever the scene happened to be imaged. We applied ordinary kriging to images of observed FRED from five prescribed burns collected in forested and non-forested management units burned at Eglin Air Force Base in Florida USA in 2011 and 2012. The three objectives were to: 1. more realistically map FRED, 2. more accurately estimate total FRED as predicted from fuel consumption measurements, and 3. compare the sampled and kriged FRED maps to modeled estimates of fire rate of spread (ROS). Observed FRED was integrated from LWIR images calibrated to units of fire radiative flux density (FRFD) in W m-2. Iterating the kriging analysis 2-10 times (depending on the burn unit) led to more accurate FRED estimates, both in map form and in terms of total FRED, as corroborated by independent estimates of fuel consumption and ROS.

  13. Fire, humans and landscape. Is there a connection?

    NASA Astrophysics Data System (ADS)

    Valese, Eva; Ascoli, Davide; Conedera, Marco; Held, Alex

    2013-04-01

    Fire evolved on the earth under the direct influence of climate and the accumulation of burnable biomass at various times and spatial scales. As a result, fire regimes depend not only on climatic and biological factors, but also greatly reflect the cultural background of how people do manage ecosystems and fire. A new awareness among scientists and managers has been rising about the ecological role of fire and the necessity to understand its past natural and cultural dynamics in different ecosystems, in order to preserve present ecosystem functionality and minimize management costs and negative impacts. As a consequence we assisted in the last decades to a general shift from the fire control to the fire management approach, where fire prevention, fire danger rating, fire ecology, fire pre-suppression and suppression strategies are fully integrated in the landscape management. Nowadays, a large number of authors recognize that a total suppression strategy, as the one adopted during last decades, leads to a fire paradox: the more we fight for putting out all fires, the more extreme events occur and cause long term damages. The aim of this review is to provide a state of art about the connection between fire, humans and landscape, along time and space. Negative and positive impacts on ecosystem services and values are put in evidence, as well as their incidence on human aptitude to fire use as to fire suppression. In order to capture a consistent fragment of fire history, palaeofires and related palynological studies are considered. They enable a valuable, even if partial, look at the millenary fire regime. Actual strategies and future directions are described in order to show what are the alternatives for living with fire, since removing completely this disturbance from earth is not a option, nor feasible neither advisable. Examples from the world, in particular from the Alps and the Mediterranean basin, are shown for better illustrating the signature of anthropogenic fire on landscapes.

  14. Mapping Post-Fire Vegetation Recovery at Different Lithologies of Taygetos mt (greece) with Multi-Temporal Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Vassilakis, Emmanuel; Mallinis, George; Christopoulou, Anastasia; Farangitakis, Georgios-Pavlos; Papanikolaou, Ioannis; Arianoutsou, Margarita

    2017-04-01

    Mt Taygetos (2407m), located at southern Peloponnese (Greece) suffered a large fire during the summer of 2007. The fire burned approximately 45% of the area covered by the endemic Greek fir (Abies cephalonica) and Black Pine (Pinus nigra) forest ecosystems. The aim of the current study is to examine the potential differences on post-fire vegetation recovery imposed by the lithology as well as the geomorphology of the given area over sites of the same climatic and landscape conditions (elevation, aspect, slope etc.). The main lithologies consist of carbonate, permeable, not easily erodible formations (limestones and marbles) and clastic, impermeable (schists, slate and flysch) erodible ones. A time-series of high spatial resolution satellite images were interpreted, analyzed and compared in order to detect changes in vegetation coverage which could prioritize areas of interest for fieldwork campaigns. The remote sensing datasets were acquired before (Ikonos-2), a few months after (Quickbird-2) and some years after (Worldview-3) the 2007 fire. High resolution Digital Elevation Model was used for the ortho-rectification and co-registration of the remote sensing data, but also for the extraction of the mountainous landscape characteristics. The multi-temporal image dataset was analyzed through GEographic-Object Based Image Analysis (GEOBIA). Objects corresponding to different vegetation types through time were identified through spectral and textural features. The classification results were combined with basic layers such as lithological outcrops, pre-fire vegetation, landscape morphology etc., supplementing a spatial geodatabase used for classifying burnt areas with varying post-fire plant community recovery. We validated the results of the classification during fieldwork and found that at a local scale, where the landscape features are quite similar, the bedrock type proves to be an important factor for vegetation recovery, as it clearly defines the soil generation along with its properties. Plant species recovery seems to be controlled by the local lithology as it was found weaker in plots overlying limestones and marbles, comparing to that observed over schists, even for the same species. In conclusion, post-fire vegetation recovery seems to be a complex process controlled not only from species biology, but also from the geological features.

  15. Small-area estimation of forest attributes within fire boundaries

    Treesearch

    T. Frescino; G. Moisen; K. Adachi; J. Breidt

    2014-01-01

    Wildfires are gaining more attention every year as they burn more frequently, more intensely, and across larger landscapes. Generating timely estimates of forest resources within fire perimeters is important for land managers to quickly determine the impact of fi res on U.S. forests. The U.S. Forest Service’s Forest Inventory and Analysis (FIA) program needs tools to...

  16. The interaction of fire and mankind: Introduction.

    PubMed

    Scott, Andrew C; Chaloner, William G; Belcher, Claire M; Roos, Christopher I

    2016-06-05

    Fire has been an important part of the Earth system for over 350 Myr. Humans evolved in this fiery world and are the only animals to have used and controlled fire. The interaction of mankind with fire is a complex one, with both positive and negative aspects. Humans have long used fire for heating, cooking, landscape management and agriculture, as well as for pyrotechnologies and in industrial processes over more recent centuries. Many landscapes need fire but population expansion into wildland areas creates a tension between different interest groups. Extinguishing wildfires may not always be the correct solution. A combination of factors, including the problem of invasive plants, landscape change, climate change, population growth, human health, economic, social and cultural attitudes that may be transnational make a re-evaluation of fire and mankind necessary. The Royal Society meeting on Fire and mankind was held to address these issues and the results of these deliberations are published in this volume.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  17. Paleolandscape Modeling of Climatic vs Anthropogenic Fires Regimes in the southern Sierra Nevada, California using LANDIS-II

    NASA Astrophysics Data System (ADS)

    Klimaszewski-Patterson, A.; Mensing, S. A.; Weisberg, P.; Scheller, R. M.

    2016-12-01

    Humans have altered landscapes across North America for millennia. Ethnographic accounts record regular Native Californian use of fire, but not the exact quantity, frequency, or range to which fire use and management were employed. Previous paleoecological work at Holey Meadow (HLY), Sequoia National Forest, California (Klimaszewski-Patterson and Mensing, 2015) indicated two anomolous periods of forest composition (1550-1000 and 750-100 cal yr BP) over the 2000 years that were inconsistent climatic expections. This research uses the forest succession landscape model LANDIS-II to investigate whether the observed changes in forest composition at HLY can be explained by climatic fires, or whether the addition of Native American-set surface fires is necessary. Simulated outputs of vegetation from LANDS-II were compared to the pollen record at HLY. Results suggest that Native American-set surface fires (anthropogenic fire regime) are most consistent both the pollen and charcoal records from HLY, as well as nearby and regional fire scar records. Climatic fires alone do not seem to explain the paleorecord, and this indicate that HLY may represent an anthropogenically-modified landscape.

  18. Comparing fire spread algorithms using equivalence testing and neutral landscape models

    Treesearch

    Brian R. Miranda; Brian R. Sturtevant; Jian Yang; Eric J. Gustafson

    2009-01-01

    We demonstrate a method to evaluate the degree to which a meta-model approximates spatial disturbance processes represented by a more detailed model across a range of landscape conditions, using neutral landscapes and equivalence testing. We illustrate this approach by comparing burn patterns produced by a relatively simple fire spread algorithm with those generated by...

  19. Network analysis of wildfire transmission and implications for risk governance

    PubMed Central

    Ager, Alan A.; Evers, Cody R.; Day, Michelle A.; Preisler, Haiganoush K.; Barros, Ana M. G.; Nielsen-Pincus, Max

    2017-01-01

    We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments. PMID:28257416

  20. Network analysis of wildfire transmission and implications for risk governance.

    PubMed

    Ager, Alan A; Evers, Cody R; Day, Michelle A; Preisler, Haiganoush K; Barros, Ana M G; Nielsen-Pincus, Max

    2017-01-01

    We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments.

  1. Postfire encroachment of Fabiana imbricata is real? Assessing changes of shrubland occupation during 40 years in NW Patagonia steppe

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Oddi, Facundo; Ghermandi, Luciana

    2014-05-01

    Landscapes are dynamic in space and time, being spatio-temporal processes of particular interest for landscape ecology. In particular, grasslands can change their structure through the expansion of shrubs in the landscape matrix. Shrub encroachment affect biodiversity as well as forage availability that is the key component of the productive use of rangelands. However, despite its recognition as a global problem, knowledge on the rates, dynamics and encroachment patterns is even scarce. For example, although it is generally accepted that fire control shrub encroachment, certain shrubby species could be favored by the occurrence of fire. In northwestern Patagonian steppe, Fabiana imbricata form large monospecific shrublands that are part of the landscape mosaic and its dynamics of regeneration is strongly related to fire. This long-lived shrub (≡ 150 years) is a typical seeder that is killed by fire and recruits seedlings almost exclusively in post-fire, establishing even-age patches. Our objective was to determine whether F. imbricata shrublands have expanded during the last 40 years in a landscape fire prone. The study area corresponds to San Ramon ranch (22,000 ha) located in northwestern Patagonia steppe, Argentina (latitude -41° 04'; longitude -70° 51'). Two distribution maps of the species were made that corresponds to the study area in 1968 and 2011. The 1968 map was elaborated from the digitalization of aerial photographs (1:45000) while the 2011 map was produced with very high resolution satellite images, current aerial photographs and GPS field data. Both maps were loaded into a GIS environment, in which landscape metrics at patch and class level were determined and then compared. From remote sensing and dendroecological techniques, we know that the study area was almost entirely affected by fires during the study period. Therefore, the comparison of both maps allows us to know post-fire changes in the shrublands spatial configuration at the landscape scale and to infer the fire effect on these changes. Our results show that during the studied period F. imbricata shrublands has expanded over the grassland. Nowadays, the species occupies 20% more area than in 1968 and this area, is divided into a smaller number of patches that are closer to each other. The observed change in the shrublands spatial pattern is evidence of a post-fire shrub encroachment. These results contribute to the understanding of the role of fire in vegetation dynamics in fire prone ecosystems

  2. Fire modulates climate change response of simulated aspen distribution across topoclimatic gradients in a semi-arid montane landscape

    USGS Publications Warehouse

    Yang, Jian; Weisberg, Peter J.; Shinneman, Douglas; Dilts, Thomas E.; Earnst, Susan L.; Scheller, Robert M

    2015-01-01

    Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of aspen and associated conifer and shrub species over the next 150 years under various climate-fire scenarios. Results Simulations suggest that many aspen stands could persist without fire for centuries under current climate conditions. However, a simulated 2–5 °C increase in temperature caused a substantial reduction of aspen coverage at lower elevations and a modest increase at upper elevations, leading to an overall reduction of aspen range at the landscape level. Increasing fire activity may favor aspen increase at its upper elevation limits adjacent to coniferous forest, but may also favor reduction of aspen at lower elevation limits adjacent to xeric shrubland. Conclusions Our study highlights the importance of incorporating fine-scale terrain effects on climatic water deficit and ecohydrology when modeling species distribution response to climate change. This modeling study suggests that climate mitigation and adaptation strategies that use fire would benefit from consideration of spatial context at landscape scales.

  3. An Evaluation of Fuel-Reduction Treatments Across a Landscape Gradient in Piedmont Forests: Preliminary Results of the National Fire and Fire Surrogate Study

    Treesearch

    Thomas A. Waldrop; Dallas W. Glass; Sandra Rideout; Victor B. Shelburne

    2004-01-01

    The National Fire and Fire Surrogate (NFFS) Study is a large-scale study of the impacts of fuel-reduction treatments on ecological and economic variables. This paper examines prescribed burning and thinning as fuel-reduction treatments on one site of the national study, the southeastern Piedmont. Fuel loads were examined across a landscape gradient before and after...

  4. Spatial bottom-up controls on fire likelihood vary across western North America

    Treesearch

    Sean A. Parks; Marc-Andre Parisien; Carol Miller

    2012-01-01

    The unique nature of landscapes has challenged our ability to make generalizations about the effects of bottom-up controls on fire regimes. For four geographically distinct fire-prone landscapes in western North America, we used a consistent simulation approach to quantify the influence of three key bottom-up factors, ignitions, fuels, and topography, on spatial...

  5. Influence of climate and environment on post-fire recovery of mountain big sagebrush

    Treesearch

    Zachary J. Nelson; Peter J. Weisberg; Stanley G. Kitchen

    2014-01-01

    In arid and semi-arid landscapes around the world, wildfire plays a key role in maintaining species diversity. Dominant plant associations may depend upon particular fire regime characteristics for their persistence. Mountain shrub communities in high-elevation landscapes of the Intermountain West, USA, are strongly influenced by the post-fire recovery dynamics of the...

  6. Modeling fire and other disturbance processes using LANDIS

    Treesearch

    Stephen R. Shifley; Jian Yang; Hong He

    2009-01-01

    LANDIS is a landscape decision support tool that models spatial relationships to help managers and planners examine the large-scale, long-term, cumulative effects of succession, harvesting, wildfire, prescribed fire, insects, and disease. It can operate on forest landscapes from a few thousand to a few million acres in extent. Fire modeling capabilities in LANDIS are...

  7. Comparing modern and presettlement forest dynamics of a subboreal wilderness: Does spruce budworm enhance fire risk?

    Treesearch

    Brian R Sturtevant; Brian R Miranda; Douglas J Shinneman; Eric J Gustafson; Peter T. Wolter

    2012-01-01

    Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to...

  8. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.

    2013-01-01

    While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.

  9. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape.

    PubMed

    Zald, Harold S J; Dunn, Christopher J

    2018-04-26

    Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing fire resilience for multiple objectives in multi-owner landscapes. © 2018 by the Ecological Society of America.

  10. Contributions of ignitions, fuels, and weather to the spatial patterns of burn probability of a boreal landscape

    Treesearch

    Marc-Andre Parisien; Sean A. Parks; Carol Miller; Meg A. Krawchuck; Mark Heathcott; Max A. Moritz

    2011-01-01

    The spatial pattern of fire observed across boreal landscapes is the outcome of complex interactions among components of the fire environment. We investigated how the naturally occurring patterns of ignitions, fuels, and weather generate spatial pattern of burn probability (BP) in a large and highly fireprone boreal landscape of western Canada, Wood Buffalo National...

  11. A Fire Severity Mapping System (FSMS) for real-time management applications and long term planning: Developing a map of the landscape potential for severe fire in the western United States

    Treesearch

    Gregory K. Dillon; Zachary A. Holden; Penny Morgan; Bob Keane

    2009-01-01

    The Fire Severity Mapping System project is geared toward providing fire managers across the western United States with critical information for dealing with and planning for the ecological effects of wildfire at multiple levels of thematic, spatial, and temporal detail. For this project, we are developing a comprehensive, west-wide map of the landscape potential for...

  12. Vegetation-site relationships and fire history of a savanna-glade-woodland mosaic in the Ozarks

    Treesearch

    Sean E. Jenkins; Richard Guyette; Alan J. Rebertus

    1997-01-01

    There is a growing interest in reconstructing past disturbance regimes and how they influenced plant composition, structure and landscape pattern. Such information is useful to resource managers for determining the effects of fire suppression on vegetation or tailoring prescribed fires to restore community and landscape diversity. In the spring of 1995, the National...

  13. Effects of landscape position and season of burn on fire temperature in Southern Ohio's mixed oak forests

    Treesearch

    Doug J. Schwemlein; Roger A. Williams

    2007-01-01

    The use of fire to maintain and restore oak (Quercus spp.) ecosystems is becoming an increasingly accepted silvicultural tool; however, specific management recommendations have been slow to develop as past studies have shown mixed results. By examining fire temperature in response to landscape position and season of burn, we attempted to offer...

  14. Longleaf pine forests and woodlands: old growth under fire!

    Treesearch

    Joan L. Walker

    1999-01-01

    The author discusses a once widespread forest type of the Southeast – longleaf pine dominated forests and woodlands. This system depends on fire – more or less frequent, and often of low intensity. Because human-mediated landscape fragmentation has drastically changed the behavior of fire on longleaf pine dominated landscapes, these forests and woodlands will never be...

  15. Restoring fire to long-unburned Pinus palustris ecosystems: novel fire effects and consequences for long-unburned ecosystems

    Treesearch

    Morgan J. Varner; Doria r. Gordon; Francis E. Putz; J. Kevin Hiers

    2005-01-01

    Biologically rich savannas and woodlands dominated by Pinus palustris once dominated the southeastern U.S. landscape. With European settlement, fire suppression, and landscape fragmentation, this ecosystem has been reduced in area by 97%. Half of remnant forests are not burned with sufficient frequency, leading to declines in plant and animal species...

  16. Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA

    PubMed Central

    Heady, Paul A.; Hayes, John P.; Frick, Winifred F.

    2013-01-01

    Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts. PMID:23483936

  17. Conserving old-growth forest diversity in disturbance-prone landscapes.

    PubMed

    Spies, Thomas A; Hemstrom, Miles A; Youngblood, Andrew; Hummel, Susan

    2006-04-01

    A decade after its creation, the Northwest Forest Plan is contributing to the conservation of old-growth forests on federal land. However the success and outlook for the plan are questionable in the dry provinces, where losses of old growth to wildfire have been relatively high and risks of further loss remain. We summarize the state of knowledge of old-growth forests in the plan area, identify challenges to conserve them, and suggest some conservation approaches that might better meet the goals of the plan. Historically, old-growth forests in these provinces ranged from open, patchy stands, maintained by frequent low-severity fire, to a mosaic of dense and open stands maintained by mixed-severity fires. Old-growth structure and composition were spatially heterogeneous, varied strongly with topography and elevation, and were shaped by a complex disturbance regime of fire, insects, and disease. With fire suppression and cutting of large pines (Pinus spp.) and Douglas-firs (Pseudotsuga menziesii [Mirbel] Franco), old-growth diversity has declined and dense understories have developed across large areas. Challenges to conserving these forests include a lack of definitions needed for planning of fire-dependent old-growth stands and landscapes, and conflicts in conservation goals that can be resolved only at the landscape level. Fire suppression has increased the area of the dense, older forest favored by Northern Spotted Owls (Strix occidentalis caurina) but increased the probability of high-severity fire. The plan allows for fuel reduction in late-successional reserves; fuel treatments, however apparently have not happened at a high enough rate or been applied in a landscape-level approach. Landscape-level strategies are needed that prioritize fuel treatments by vegetation zones, develop shaded fuel breaks in strategic positions, and thin and apply prescribed fire to reduce ladder fuels around remaining old trees. Evaluations of the current and alternative strategies are needed to determine whether the current reserve-matrix approach is the best strategy to meet plan goals in these dynamic landscapes.

  18. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically complex fuelbeds from inventory observations and converting thosemore » into a set of custom fuel models that can be mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an 80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We performed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the cluster centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against both rate of spread and flame length. The clusters based on FCCS fire behavior parameters represent reasonably identifiable stand conditions, being: (1) pine dominated stands with more litter and down woody debriscomponents than other stands, (2) hardwood and pine stands with no shrubs, (3) hardwood dominated stands with low shrub and high non-woody biomass and high down woody debris, (4) stands with high grass and forb (i.e., non-woody) biomass as well as substantial shrub biomass, (5) stands with both high shrub and litter biomass, (6) pine-mixed hardwood stands with moderate litter biomass and low shrub biomass, and (7) baldcypress-tupelo stands. Models representing these stand clusters generated flame lengths from 0.6 to 2.3 musing a 30 km h{sub 1} wind speed and fireline intensities of 100-1500 kW m{sub 1} that are typical within the range of experience on this landscape. The fuel models ranked 1 < 2 < 7 < 5 < 4 < 3 < 6 in terms of both flame length and fireline intensity. The method allows for ecologically complex data to be utilized in order to create a landscape representative of measured fuel conditions and to create models that interface with geospatial fire models.« less

  19. Historic range of variability in landscape structure in subalpine forests of the Greater Yellowstone Area, USA

    USGS Publications Warehouse

    Tinker, D.B.; Romme, W.H.; Despain, Don G.

    2003-01-01

    A measure of the historic range of variability (HRV) in landscape structure is essential for evaluating current landscape patterns of Rocky Mountain coniferous forests that have been subjected to intensive timber harvest. We used a geographic information system (GIS) and FRAGSTATS to calculate key landscape metrics on two ???130,000-ha landscapes in the Greater Yellowstone Area, USA: one in Yellowstone National Park (YNP), which has been primarily shaped by natural fires, and a second in the adjacent Targhee National Forest (TNF), which has undergone intensive clearcutting for nearly 30 years. Digital maps of the current and historical landscape in YNP were developed from earlier stand age maps developed by Romme and Despain. Maps of the TNF landscape were adapted from United States Forest Service Resource Information System (RIS) data. Key landscape metrics were calculated at 20-yr intervals for YNP for the period from 1705-1995. These metrics were used to first evaluate the relative effects of small vs. large fire events on landscape structure and were then compared to similar metrics calculated for both pre- and post-harvest landscapes of the TNF. Large fires, such as those that burned in 1988, produced a structurally different landscape than did previous, smaller fires (1705-1985). The total number of patches of all types was higher after 1988 (694 vs. 340-404 before 1988), and mean patch size was reduced by almost half (186 ha vs. 319-379 ha). The amount of unburned forest was less following the 1988 fires (63% vs. 72-90% prior to 1988), yet the number of unburned patches increased by nearly an order of magnitude (230 vs. a maximum of 41 prior to 1988). Total core area and mean core area per patch decreased after 1988 relative to smaller fires (???73,700 ha vs. 87,000-110,000 ha, and 320 ha vs. 2,123 ha, respectively). Notably, only edge density was similar (17 m ha-1 after 1988) to earlier landscapes (9.8-14.2 m ha-1). Three decades of timber harvesting dramatically altered landscape structure in the TNF. Total number of patches increased threefold (1,481 after harvest vs. 437 before harvest), and mean patch size decreased by ???70% (91.3 ha vs. 309 ha). None of the post-harvest landscape metrics calculated for the TNF fell within the HRV as defined in YNP, even when the post-1988 landscape was considered. In contrast, pre-harvest TNF landscape metrics were all within, or very nearly within, the HRV for YNP While reference conditions such as those identified by this study are useful for local and regional landscape evaluation and planning, additional research is necessary to understand the consequences of changes in landscape structure for population, community, ecosystem, and landscape function.

  20. Modeling Climate Change Impacts on Landscape Evolution, Fire, and Hydrology

    NASA Astrophysics Data System (ADS)

    Sheppard, B. S.; O Connor, C.; Falk, D. A.; Garfin, G. M.

    2015-12-01

    Landscape disturbances such as wildfire interact with climate variability to influence hydrologic regimes. We coupled landscape, fire, and hydrologic models and forced them using projected climate to demonstrate climate change impacts anticipated at Fort Huachuca in southeastern Arizona, USA. The US Department of Defense (DoD) recognizes climate change as a trend that has implications for military installations, national security and global instability. The goal of this DoD Strategic Environmental Research and Development Program (SERDP) project (RC-2232) is to provide decision making tools for military installations in the southwestern US to help them adapt to the operational realities associated with climate change. For this study we coupled the spatially explicit fire and vegetation dynamics model FireBGCv2 with the Automated Geospatial Watershed Assessment tool (AGWA) to evaluate landscape vegetation change, fire disturbance, and surface runoff in response to projected climate forcing. A projected climate stream for the years 2005-2055 was developed from the Multivariate Adaptive Constructed Analogs (MACA) 4 km statistical downscaling of the CanESM2 GCM using Representative Concentration Pathway (RCP) 8.5. AGWA, an ArcGIS add-in tool, was used to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and the KINematic runoff and EROSion2 (KINEROS2) models based on GIS layers. Landscape raster data generated by FireBGCv2 project an increase in fire and drought associated tree mortality and a decrease in vegetative basal area over the years of simulation. Preliminary results from SWAT modeling efforts show an increase to surface runoff during years following a fire, and for future winter rainy seasons. Initial results from KINEROS2 model runs show that peak runoff rates are expected to increase 10-100 fold as a result of intense rainfall falling on burned areas.

  1. Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Scheller, R.; Kretchun, A.

    2017-12-01

    Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.

  2. Testing the assumptions of the pyrodiversity begets biodiversity hypothesis for termites in semi-arid Australia.

    PubMed

    Davis, Hayley; Ritchie, Euan G; Avitabile, Sarah; Doherty, Tim; Nimmo, Dale G

    2018-04-01

    Fire shapes the composition and functioning of ecosystems globally. In many regions, fire is actively managed to create diverse patch mosaics of fire-ages under the assumption that a diversity of post-fire-age classes will provide a greater variety of habitats, thereby enabling species with differing habitat requirements to coexist, and enhancing species diversity (the pyrodiversity begets biodiversity hypothesis). However, studies provide mixed support for this hypothesis. Here, using termite communities in a semi-arid region of southeast Australia, we test four key assumptions of the pyrodiversity begets biodiversity hypothesis (i) that fire shapes vegetation structure over sufficient time frames to influence species' occurrence, (ii) that animal species are linked to resources that are themselves shaped by fire and that peak at different times since fire, (iii) that species' probability of occurrence or abundance peaks at varying times since fire and (iv) that providing a diversity of fire-ages increases species diversity at the landscape scale. Termite species and habitat elements were sampled in 100 sites across a range of fire-ages, nested within 20 landscapes chosen to represent a gradient of low to high pyrodiversity. We used regression modelling to explore relationships between termites, habitat and fire. Fire affected two habitat elements (coarse woody debris and the cover of woody vegetation) that were associated with the probability of occurrence of three termite species and overall species richness, thus supporting the first two assumptions of the pyrodiversity hypothesis. However, this did not result in those species or species richness being affected by fire history per se. Consequently, landscapes with a low diversity of fire histories had similar numbers of termite species as landscapes with high pyrodiversity. Our work suggests that encouraging a diversity of fire-ages for enhancing termite species richness in this study region is not necessary.

  3. Testing the assumptions of the pyrodiversity begets biodiversity hypothesis for termites in semi-arid Australia

    PubMed Central

    Davis, Hayley; Ritchie, Euan G.; Avitabile, Sarah; Doherty, Tim

    2018-01-01

    Fire shapes the composition and functioning of ecosystems globally. In many regions, fire is actively managed to create diverse patch mosaics of fire-ages under the assumption that a diversity of post-fire-age classes will provide a greater variety of habitats, thereby enabling species with differing habitat requirements to coexist, and enhancing species diversity (the pyrodiversity begets biodiversity hypothesis). However, studies provide mixed support for this hypothesis. Here, using termite communities in a semi-arid region of southeast Australia, we test four key assumptions of the pyrodiversity begets biodiversity hypothesis (i) that fire shapes vegetation structure over sufficient time frames to influence species' occurrence, (ii) that animal species are linked to resources that are themselves shaped by fire and that peak at different times since fire, (iii) that species’ probability of occurrence or abundance peaks at varying times since fire and (iv) that providing a diversity of fire-ages increases species diversity at the landscape scale. Termite species and habitat elements were sampled in 100 sites across a range of fire-ages, nested within 20 landscapes chosen to represent a gradient of low to high pyrodiversity. We used regression modelling to explore relationships between termites, habitat and fire. Fire affected two habitat elements (coarse woody debris and the cover of woody vegetation) that were associated with the probability of occurrence of three termite species and overall species richness, thus supporting the first two assumptions of the pyrodiversity hypothesis. However, this did not result in those species or species richness being affected by fire history per se. Consequently, landscapes with a low diversity of fire histories had similar numbers of termite species as landscapes with high pyrodiversity. Our work suggests that encouraging a diversity of fire-ages for enhancing termite species richness in this study region is not necessary. PMID:29765661

  4. Evaluating the effects of fire and landscape characteristics on the export of carbon, nutrients and ions from watersheds of the Taiga Plains and Taiga Shield ecoregions of the NWT

    NASA Astrophysics Data System (ADS)

    Mengistu, S. G.; Tank, S. E.; Olefeldt, D.; Spence, C.; Quinton, W. L.; Dion, N.

    2016-12-01

    Fire is a natural process that can significantly modify landscapes and ecosystems. In permafrost-affected terrains, fire-induced changes to soils and active layer depths can have important implications for hydrological flow paths and the chemistry of runoff water, and therefore also the health and functioning of recipient aquatic ecosystems. Although the effects of fire on water chemistry have been relatively well studied in non-permafrost affected landscapes, less attention has been given to how fire affects northern aquatic ecosystems, particularly those of the Northwest Territories (NWT), despite an increasing frequency of fire in this region. To address this gap, we make use of a recent large-scale burn that occurred across the discontinuous permafrost landscape of the southern NWT, to explore how fire and variations in landscape characteristics affect water chemistry in this area. The study collected water chemistry samples during the summers of 2015 and 2016 from paired watersheds in the Taiga Shield (Boundary Creek / Baker Creek) and Taiga Plains (Spence Creek / Scotty Creek) ecoregions, in addition to a synoptic survey that measured discharge and water chemistry across a series of 50 watersheds in these two regions. We specifically targeted the Taiga Shield and Plains since differences in soil characteristics between these two regions were expected to lead to differences in how recipient aquatic systems respond to fire. Preliminary results from the paired catchment work show a clear spike in the chemistry of fire-affected watersheds early in the ice-free season, followed by a period when stream water chemistry in burned watersheds declines to a level that is similar to that in the unburned analogs. While average electrical conductivity, Ca, Na, and Hg concentrations were highest in the Plains watersheds, constituents including average TN, TP, Al, DOC, Fe, K, Mg, and Cl appeared to be the highest for the fire-affected Shield watershed. Preliminary results also indicated that watershed characteristics pertinent to landcover and topography are vital controls of biogeochemical processes and their relationships in these subarctic watersheds. The overarching goal of this work is to assess how fire interacts cumulatively with other forms of landscape variation to affect aquatic ecosystems in the southern NWT.

  5. Fire reinforces structure of pondcypress (Taxodium distichum var. imbricarium) domes in a wetland landscape

    USGS Publications Warehouse

    Watts, Adam C.; Kobziar, Leda N.; Snyder, James R.

    2012-01-01

    Fire periodically affects wetland forests, particularly in landscapes with extensive fire-prone uplands. Rare occurrence and difficulty of access have limited efforts to understand impacts of wildfires fires in wetlands. Following a 2009 wildfire, we measured tree mortality and structural changes in wetland forest patches. Centers of these circular landscape features experienced lower fire severity, although no continuous patch-size or edge effect was evident. Initial survival of the dominant tree, pondcypress (Taxodium distichum var. imbricarium), was high (>99%), but within one year of the fire approximately 23% of trees died. Delayed mortality was correlated with fire severity, but unrelated to other hypothesized factors such as patch size or edge distance. Tree diameter and soil elevation were important predictors of mortality, with smaller trees and those in areas with lower elevation more likely to die following severe fire. Depressional cypress forests typically exhibit increasing tree size towards their interiors, and differential mortality patterns were related to edge distance. These patterns result in the exaggeration of a dome-shaped profile. Our observations quantify roles of fire and hydrology in determining cypress mortality in these swamps, and imply the existence of feedbacks that maintain the characteristic shape of cypress domes.

  6. Simulating fire and forest dynamics for a coordinated landscape fuel treatment project in the Sierra Nevada

    Treesearch

    Brandon M. Collins; Scott L. Stephens; Gary B. Roller; John Battles

    2011-01-01

    We evaluate an actual landscape fuel treatment project that was designed by local U. S. Forest Service managers in the northern Sierra Nevada. We model the effects of this project at reducing landscape-level fire behavior at multiple time steps, up to nearly 30 yr beyond treatment implementation. Additionally, we modeled planned treatments under multiple diameter-...

  7. Chapter 3: Simulating fire hazard across landscapes through time: integrating state-and-transition models with the Fuel Characteristic Classification System

    Treesearch

    Jessica E. Halofsky; Stephanie K. Hart; Miles A. Hemstrom; Joshua S. Halofsky; Morris C. Johnson

    2014-01-01

    Information on the effects of management activities such as fuel reduction treatments and of processes such as vegetation growth and disturbance on fire hazard can help land managers prioritize treatments across a landscape to best meet management goals. State-and-transition models (STMs) allow landscape-scale simulations that incorporate effects of succession,...

  8. Reproductive plasticity and landscape heterogeneity benefit a ground-nesting bird in a fire-prone ecosystem.

    PubMed

    Carroll, J Matthew; Hovick, Torre J; Davis, Craig A; Elmore, Robert Dwayne; Fuhlendorf, Samuel D

    2017-10-01

    Disturbance is critical for the conservation of rangeland ecosystems worldwide and many of these systems are fire dependent. Although it is well established that restoring fire as an ecological process can lead to increased biodiversity in grasslands and shrublands, the underlying mechanisms driving community patterns are poorly understood for fauna in fire-prone landscapes. Much of this uncertainty stems from the paucity of studies that examine the effects of fire at scales relevant to organism life histories. We assessed the response of a non-migratory ground-dwelling bird to disturbance (i.e., prescribed fire) and environmental stochasticity over the course of a 4-yr period, which spanned years of historic drought and record rainfall. Specifically, we investigated the nesting ecology of Northern Bobwhite (Colinus virginianus; hereafter Bobwhite) to illuminate possible avenues by which individuals respond to dynamic landscape patterns during a critical reproductive stage (i.e., nesting) in a mixed-grass shrubland in western Oklahoma, USA. We found that Bobwhites exhibited extreme plasticity in nest substrate use among time since fire categories (TSF) and subsequently maintained high nest survival (e.g., 57-70%). Bobwhites were opportunistic in nest substrate use among TSF categories (i.e., 72% of nest sites in shrubs in 0-12 months post fire compared to 71% in herbaceous vegetation in >36 months post fire), yet nesting decisions were first filtered by similar structural components (i.e., vertical and horizontal cover) within the vicinity of nest sites regardless of TSF category. Despite being a non-migratory and comparatively less mobile ground-nesting bird species, Bobwhites adjusted to dynamic vegetation mosaics on a fire-prone landscape under stochastic climatic conditions that culminated in stable and high nest survival. Broadly, our findings provide a unique depiction of organism response strategies to fire at scales relevant to a critical life-stage, a topic that has been previously understudied and poorly understood. We also demonstrate how doing so can better inform conservation practices aimed at restoring fire regimes on grassland and shrubland landscapes. © 2017 by the Ecological Society of America.

  9. Fire history and age structure analysis in the Sherburne National Wildlife Refuge: Establishing reference conditions in a remnant oak savanna woodland

    Treesearch

    Kurt F. Kipfmueller; Tim Hepola

    2007-01-01

    Oak savanna woodlands were once a dominant ecotone throughout the upper Midwest. These ecosystems represented a transitional zone between prairie communities to the west that eventually graded into Big Woods forest. Most of the oak savanna landscapes of most of the Midwest were extensively homesteaded and farmed during the middle 1800s and few intact savanna landscapes...

  10. The development of landscape-scale ecological units and their application to the greater Huachuca Mountains fire planning process

    Treesearch

    Larry E. Laing; David Gori; James T. Jones

    2005-01-01

    The multi-partner Greater Huachuca Mountains fire planning effort involves over 500,000 acres of public and private lands. This large area supports distinct landscapes that have evolved with fire. Utilizing GIS as a tool, the United States Forest Service (USFS), General Ecosystem Survey (GES), and Natural Resources Conservation Service (NRCS) State Soil Geographic...

  11. Subalpine vegetation pattern three decades after stand-replacing fire: Effects of landscape context and topography on plant community composition, tree regeneration, and diversity

    Treesearch

    Jonathan D. Coop; Robert T. Massatti; Anna W. Schoettle

    2010-01-01

    These subalpine wildfires generated considerable, persistent increases in plant species richness at local and landscape scales, and a diversity of plant communities. The findings suggest that fire suppression in such systems must lead to reduced diversity. Concerns about post-fire invasion by exotic plants appear unwarranted in high-elevation wilderness settings.

  12. Landscape patterns of montane forest age structure relative to fire history at Cheesman Lake in the Colorado Front Range

    Treesearch

    Laurie S. Huckaby; Merrill R. Kaufmann; Jason M. Stoker; Paula J. Fornwalt

    2001-01-01

    Lack of Euro-American disturbance, except fire suppression, has preserved the patterns of forest structure that resulted from the presettlement disturbance regime in a ponderosa pine/Douglas-fir landscape at Cheesman Lake in the Colorado Front Range. A mixed-severity fire regime and variable timing of tree recruitment created a heterogeneous forest age structure with...

  13. Empirical relationships between tree fall and landscape-level amounts of logging and fire

    PubMed Central

    Blanchard, Wade; Blair, David; McBurney, Lachlan; Stein, John; Banks, Sam C.

    2018-01-01

    Large old trees are critically important keystone structures in forest ecosystems globally. Populations of these trees are also in rapid decline in many forest ecosystems, making it important to quantify the factors that influence their dynamics at different spatial scales. Large old trees often occur in forest landscapes also subject to fire and logging. However, the effects on the risk of collapse of large old trees of the amount of logging and fire in the surrounding landscape are not well understood. Using an 18-year study in the Mountain Ash (Eucalyptus regnans) forests of the Central Highlands of Victoria, we quantify relationships between the probability of collapse of large old hollow-bearing trees at a site and the amount of logging and the amount of fire in the surrounding landscape. We found the probability of collapse increased with an increasing amount of logged forest in the surrounding landscape. It also increased with a greater amount of burned area in the surrounding landscape, particularly for trees in highly advanced stages of decay. The most likely explanation for elevated tree fall with an increasing amount of logged or burned areas in the surrounding landscape is change in wind movement patterns associated with cutblocks or burned areas. Previous studies show that large old hollow-bearing trees are already at high risk of collapse in our study area. New analyses presented here indicate that additional logging operations in the surrounding landscape will further elevate that risk. Current logging prescriptions require the protection of large old hollow-bearing trees on cutblocks. We suggest that efforts to reduce the probability of collapse of large old hollow-bearing trees on unlogged sites will demand careful landscape planning to limit the amount of timber harvesting in the surrounding landscape. PMID:29474487

  14. Empirical relationships between tree fall and landscape-level amounts of logging and fire.

    PubMed

    Lindenmayer, David B; Blanchard, Wade; Blair, David; McBurney, Lachlan; Stein, John; Banks, Sam C

    2018-01-01

    Large old trees are critically important keystone structures in forest ecosystems globally. Populations of these trees are also in rapid decline in many forest ecosystems, making it important to quantify the factors that influence their dynamics at different spatial scales. Large old trees often occur in forest landscapes also subject to fire and logging. However, the effects on the risk of collapse of large old trees of the amount of logging and fire in the surrounding landscape are not well understood. Using an 18-year study in the Mountain Ash (Eucalyptus regnans) forests of the Central Highlands of Victoria, we quantify relationships between the probability of collapse of large old hollow-bearing trees at a site and the amount of logging and the amount of fire in the surrounding landscape. We found the probability of collapse increased with an increasing amount of logged forest in the surrounding landscape. It also increased with a greater amount of burned area in the surrounding landscape, particularly for trees in highly advanced stages of decay. The most likely explanation for elevated tree fall with an increasing amount of logged or burned areas in the surrounding landscape is change in wind movement patterns associated with cutblocks or burned areas. Previous studies show that large old hollow-bearing trees are already at high risk of collapse in our study area. New analyses presented here indicate that additional logging operations in the surrounding landscape will further elevate that risk. Current logging prescriptions require the protection of large old hollow-bearing trees on cutblocks. We suggest that efforts to reduce the probability of collapse of large old hollow-bearing trees on unlogged sites will demand careful landscape planning to limit the amount of timber harvesting in the surrounding landscape.

  15. Vulnerability of landscape carbon fluxes to future climate and fire in the Greater Yellowstone Ecosystem

    Treesearch

    Erica A. H. Smithwick; Anthony L. Westerling; Monica G. Turner; William H. Romme; Michael G. Ryan

    2011-01-01

    More frequent fires under climate warming are likely to alter terrestrial carbon (C) stocks by reducing the amount of C stored in biomass and soil. However, the thresholds of fire frequency that could shift landscapes from C sinks to C sources under future climates are not known. We used the Greater Yellowstone Ecosystem (GYE) as a case study to explore the conditions...

  16. A sub-grid, mixture-fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results

    Treesearch

    M. M. Clark; T. H. Fletcher; R. R. Linn

    2010-01-01

    The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixture– fraction model relying on thermodynamic...

  17. Management of fire affected areas. Beyond the environmental question

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo

    2016-04-01

    Fire is considered a natural element of the ecosystems. With exception of the polar areas, fire visited with more or less frequency all the earth biomes, determining the ecosystems characteristics, to the point that several species are fire-dependent to survive and are very resilient to their impact. Fire was a fundamental element for human evolution, which allowed us to cook, manipulation of metals, hunt, protect from predators and clear fields for agriculture. In some extension, we are only humans because of fire. In the last millennium fire was used to shape the landscape as we know today. One good example of this is the Mediterranean environment, a landscape where the ecology is not understood without the presence of fire. Until the end of the first half of the last century, fire was used frequently by farmers to landscape management. However, due to rural abandonment, change of life styles, disconnection with rural environment and lack of understanding of fire role in the ecosystems. The perception of fire changed and nowadays is understood by the population as a threat to the ecosystems, rather than a tool that helped to manage the landscape and help us in our evolution. This change of vision promoted the idea that fire has negative impacts in the ecosystems and should be banned from the nature. Something that is impossible. All these perceptions facilitated the implementation of fire-suppression policies, which today are recognized by science as one of the causes of the occurrence of frequent high-severity wildfires, with important impacts on the ecosystems, economy and society. However, most of the ecosystems can regenerate sooner or later, depending of the fire severity and the ecosystem affected. Thus, fire is not an ecological, but social and economic problem, due to lives loss and the temporary destruction of ecosystems, which local communities depend on. In this context, when we are managing fire affected areas, it goes much beyond environmental questions, and our actions aim more to reduce the social and economic impacts of fire.

  18. Portable air cleaners should be at the forefront of the public health response to landscape fire smoke.

    PubMed

    Barn, Prabjit K; Elliott, Catherine T; Allen, Ryan W; Kosatsky, Tom; Rideout, Karen; Henderson, Sarah B

    2016-11-25

    Landscape fires can produce large quantities of smoke that degrade air quality in both remote and urban communities. Smoke from these fires is a complex mixture of fine particulate matter and gases, exposure to which is associated with increased respiratory and cardiovascular morbidity and mortality. The public health response to short-lived smoke events typically advises people to remain indoors with windows and doors closed, but does not emphasize the use of portable air cleaners (PAC) to create private or public clean air shelters. High efficiency particulate air filters and electrostatic precipitators can lower indoor concentrations of fine particulate matter and improve respiratory and cardiovascular outcomes. We argue that PACs should be at the forefront of the public health response to landscape fire smoke events.

  19. Wildland fire limits subsequent fire occurrence

    Treesearch

    Sean A. Parks; Carol Miller; Lisa M. Holsinger; Scott Baggett; Benjamin J. Bird

    2016-01-01

    Several aspects of wildland fire are moderated by site- and landscape-level vegetation changes caused by previous fire, thereby creating a dynamic where one fire exerts a regulatory control on subsequent fire. For example, wildland fire has been shown to regulate the size and severity of subsequent fire. However, wildland fire has the potential to influence...

  20. Wildfires and post-fire erosion risk in a coastal area under severe anthropic pressure associated with the touristic fluxes

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Arca, Bachisio; Pellizzaro, Grazia; Valeriano Pintus, Gian; Ferrara, Roberto; Duce, Pierpaolo

    2017-04-01

    In the last decades a rapid and intense development of the tourism industry led to an increasing of anthropic pressure on several coastal areas of Sardinia. This fact not only modified the coastal aesthetics, but has also generated an increase of risk for the environment. This phenomenon affected also the ancient structure of the landscape with a negative impact mainly caused by the following factors: land abandonment, wildfire occurrence, post-fire erosion, urbanization. These regional changes can be analyzed in detail by considering the geo-diachronic dynamics. The main objectives of this work were i) to perform a diachronic analysis of land use and land cover dynamics, ii) to analyse the recent dynamics of wildfires, and iii) to predict the soil erosion risk in relation to land use change occurred between the 1950s and the 2000s. The study was realized in a coastal area located in North-East Sardinia where the geo-historical processes were summarized and organized in a geographic information system that has been employed to examine the landscape variations at three different time steps: 1954, 1977 and 2000. In addition, different scenarios of wildfire propagation were simulated by FlamMap in order to estimate the spatial pattern of fire danger factors in the study area. Afterwards, maps of post-fire soil erosion were produced to identify the temporal and spatial variations of the erosion risk. The results show how the changes in land use and the significant and rapid increase of the residential areas affect the risk of both wildfires and post-fire soil erosion. The study reveals the capabilities of this type of approach and can be used by management agencies and policy makers e in sustainable landscape management planning. This approach can be extended to other regions of the Mediterranean basin characterized by complex interactions among landscape and anthropic factors affecting the environmental risk.

  1. Testing a basic assumption of shrubland fire management: Does the hazard of burning increase with the age of fuels?

    USGS Publications Warehouse

    Moritz, Max A.; Keeley, Jon E.; Johnson, Edward A.; Schaffner, Andrew A.

    2004-01-01

    This year's catastrophic wildfires in southern California highlight the need for effective planning and management for fire-prone landscapes. Fire frequency analysis of several hundred wildfires over a broad expanse of California shrublands reveals that there is generally not, as is commonly assumed, a strong relationship between fuel age and fire probabilities. Instead, the hazard of burning in most locations increases only moderately with time since the last fire, and a marked age effect of fuels is observed only in limited areas. Results indicate a serious need for a re-evaluation of current fire management and policy, which is based largely on eliminating older stands of shrubland vegetation. In many shrubland ecosystems exposed to extreme fire weather, large and intense wildfires may need to be factored in as inevitable events.

  2. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    PubMed Central

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies. PMID:23658726

  3. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    PubMed

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and socioeconomic factors such as fire suppression strategies.

  4. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Arsenault, André; Baker, William L.; DellaSala, Dominick A.; Hutto, Richard L.; Klenner, Walt; Moritz, Max A.; Sherriff, Rosemary L.; Veblen, Thomas T.; Williams, Mark A.

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to “restore” forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America. PMID:24498383

  5. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    PubMed

    Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America.

  6. Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program.

    PubMed

    Urgenson, Lauren S; Ryan, Clare M; Halpern, Charles B; Bakker, Jonathan D; Belote, R Travis; Franklin, Jerry F; Haugo, Ryan D; Nelson, Cara R; Waltz, Amy E M

    2017-02-01

    Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.

  7. Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program

    NASA Astrophysics Data System (ADS)

    Urgenson, Lauren S.; Ryan, Clare M.; Halpern, Charles B.; Bakker, Jonathan D.; Belote, R. Travis; Franklin, Jerry F.; Haugo, Ryan D.; Nelson, Cara R.; Waltz, Amy E. M.

    2017-02-01

    Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.

  8. Landfire: Landscape Fire and Resource Management Planning Tools Project

    Treesearch

    Kevin C. Ryan; Kristine M. Lee; Matthew G. Rollins; Zhiliang Zhu; James Smith; Darren Johnson

    2006-01-01

    Managers are faced with reducing hazardous fuel, restoring fire regimes, and decreasing the threat of catastrophic wildfire. Often, the comprehensive, scientifically-credible data and applications needed to test alternative fuel treatments across multi-ownership landscapes are lacking. Teams from the USDA Forest Service, Department of the Interior, and The Nature...

  9. Landscape Assessment (LA)

    Treesearch

    Carl H. Key; Nathan C. Benson

    2006-01-01

    Landscape Assessment primarily addresses the need to identify and quantify fire effects over large areas, at times involving many burns. In contrast to individual case studies, the ability to compare results is emphasized along with the capacity to aggregate information across broad regions and over time. Results show the spatial heterogeneity of burns and how fire...

  10. Demographic and genetic viability of a medium-sized ground-dwelling mammal in a fire prone, rapidly urbanizing landscape.

    PubMed

    Ramalho, Cristina E; Ottewell, Kym M; Chambers, Brian K; Yates, Colin J; Wilson, Barbara A; Bencini, Roberta; Barrett, Geoff

    2018-01-01

    The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare.

  11. Demographic and genetic viability of a medium-sized ground-dwelling mammal in a fire prone, rapidly urbanizing landscape

    PubMed Central

    Ottewell, Kym M.; Chambers, Brian K.; Yates, Colin J.; Wilson, Barbara A.; Bencini, Roberta; Barrett, Geoff

    2018-01-01

    The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare. PMID:29444118

  12. Joint modeling of human dwellings and the natural ecosystem at the wildland-urban interface helps mitigation of forest-fire risk

    NASA Astrophysics Data System (ADS)

    Ghil, M.; Spyratos, V.; Bourgeron, P. S.

    2007-12-01

    The late summer of 2007 has seen again a large number of catastrophic forest fires in the Western United States and Southern Europe. These fires arose in or spread to human habitats at the so-called wildland-urban interface (WUI). Within the conterminous United States alone, the WUI occupies just under 10 percent of the surface and contains almost 40 percent of all housing units. Recent dry spells associated with climate variability and climate change make the impact of such catastrophic fires a matter of urgency for decision makers, scientists and the general public. In order to explore the qualitative influence of the presence of houses on fire spread, we considered only uniform landscapes and fire spread as a simple percolation process, with given house densities d and vegetation flammabilities p. Wind, topography, fuel heterogeneities, firebrands and weather affect actual fire spread. The present theoretical results would therefore, need to be integrated into more detailed fire models before practical, quantitative applications of the present results. Our simple fire-spread model, along with housing and vegetation data, shows that fire-size probability distributions can be strongly modified by the density d and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability p and house density d. The sharpness of this transition is related to the critical thresholds that arise in percolation theory for an infinite domain; it is their translation into our model's finite-area domain, which is a more realistic representation of actual fire landscapes. Many actual fire landscapes in the United States appear to have spreading properties close to this transition zone. Hence, and despite having neglected additional complexities, our idealized model's results indicate that more detailed models used for assessing fire risk in the WUI should integrate the density and flammability of houses in these areas. Furthermore, our results imply that fire proofing houses and their immediate surroundings within the WUI would not only reduce the houses' flammability and increase the security of the inhabitants, but also reduce fire risk for the entire landscape.

  13. [Application of spatially explicit landscape model in soil loss study in Huzhong area].

    PubMed

    Xu, Chonggang; Hu, Yuanman; Chang, Yu; Li, Xiuzhen; Bu, Renchang; He, Hongshi; Leng, Wenfang

    2004-10-01

    Universal Soil Loss Equation (USLE) has been widely used to estimate the average annual soil loss. In most of the previous work on soil loss evaluation on forestland, cover management factor was calculated from the static forest landscape. The advent of spatially explicit forest landscape model in the last decade, which explicitly simulates the forest succession dynamics under natural and anthropogenic disturbances (fire, wind, harvest and so on) on heterogeneous landscape, makes it possible to take into consideration the change of forest cover, and to dynamically simulate the soil loss in different year (e.g. 10 years and 20 years after current year). In this study, we linked a spatially explicit landscape model (LANDIS) with USLE to simulate the soil loss dynamics under two scenarios: fire and no harvest, fire and harvest. We also simulated the soil loss with no fire and no harvest as a control. The results showed that soil loss varied periodically with simulation year, and the amplitude of change was the lowest under the control scenario and the highest under the fire and no harvest scenario. The effect of harvest on soil loss could not be easily identified on the map; however, the cumulative effect of harvest on soil loss was larger than that of fire. Decreasing the harvest area and the percent of bare soil increased by harvest could significantly reduce soil loss, but had no significant effects on the dynamic of soil loss. Although harvest increased the annual soil loss, it tended to decrease the variability of soil loss between different simulation years.

  14. Combined Hydrologic (AGWA-KINEROS2) and Hydraulic (HEC2) Modeling for Post-Fire Runoff and Inundation Risk Assessment through a Set of Python Tools

    NASA Astrophysics Data System (ADS)

    Barlow, J. E.; Goodrich, D. C.; Guertin, D. P.; Burns, I. S.

    2016-12-01

    Wildfires in the Western United States can alter landscapes by removing vegetation and changing soil properties. These altered landscapes produce more runoff than pre-fire landscapes which can lead to post-fire flooding that can damage infrastructure and impair natural resources. Resources, structures, historical artifacts and others that could be impacted by increased runoff are considered values at risk. .The Automated Geospatial Watershed Assessment tool (AGWA) allows users to quickly set up and execute the Kinematic Runoff and Erosion model (KINEROS2 or K2) in the ESRI ArcMap environment. The AGWA-K2 workflow leverages the visualization capabilities of GIS to facilitate evaluation of rapid watershed assessments for post-fire planning efforts. High relative change in peak discharge, as simulated by K2, provides a visual and numeric indicator to investigate those channels in the watershed that should be evaluated for more detailed analysis, especially if values at risk are within or near that channel. Modeling inundation extent along a channel would provide more specific guidance about risk along a channel. HEC-2 and HEC-RAS can be used for hydraulic modeling efforts at the reach and river system scale. These models have been used to address flood boundaries and, accordingly, flood risk. However, data collection and organization for hydraulic models can be time consuming and therefore a combined hydrologic-hydraulic modeling approach is not often employed for rapid assessments. A simplified approach could streamline this process and provide managers with a simple workflow and tool to perform a quick risk assessment for a single reach. By focusing on a single reach highlighted by large relative change in peak discharge, data collection efforts can be minimized and the hydraulic computations can be performed to supplement risk analysis. The incorporation of hydraulic analysis through a suite of Python tools (as outlined by HEC-2) with AGWA-K2 will allow more rapid applications of combined hydrologic-hydraulic modeling. This combined modeling approach is built in the ESRI ArcGIS application to enable rapid model preparation, execution and result visualization for risk assessment in post-fire environments.

  15. Assessing Landscape Scale Wildfire Exposure for Highly Valued Resources in a Mediterranean Area

    NASA Astrophysics Data System (ADS)

    Alcasena, Fermín J.; Salis, Michele; Ager, Alan A.; Arca, Bachisio; Molina, Domingo; Spano, Donatella

    2015-05-01

    We used a fire simulation modeling approach to assess landscape scale wildfire exposure for highly valued resources and assets (HVR) on a fire-prone area of 680 km2 located in central Sardinia, Italy. The study area was affected by several wildfires in the last half century: some large and intense fire events threatened wildland urban interfaces as well as other socioeconomic and cultural values. Historical wildfire and weather data were used to inform wildfire simulations, which were based on the minimum travel time algorithm as implemented in FlamMap. We simulated 90,000 fires that replicated recent large fire events in the area spreading under severe weather conditions to generate detailed maps of wildfire likelihood and intensity. Then, we linked fire modeling outputs to a geospatial risk assessment framework focusing on buffer areas around HVR. The results highlighted a large variation in burn probability and fire intensity in the vicinity of HVRs, and allowed us to identify the areas most exposed to wildfires and thus to a higher potential damage. Fire intensity in the HVR buffers was mainly related to fuel types, while wind direction, topographic features, and historically based ignition pattern were the key factors affecting fire likelihood. The methodology presented in this work can have numerous applications, in the study area and elsewhere, particularly to address and inform fire risk management, landscape planning and people safety on the vicinity of HVRs.

  16. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liu, Zhihua; Liang, Yu

    2014-09-15

    Fire significantly affects species composition, structure, and ecosystem processes in boreal forests. Our study objective was to identify the relative effects of climate, vegetation, topography, and human activity on fire occurrence in Chinese boreal forest landscapes. We used historical fire ignition for 1966-2005 and the statistical method of Kernel Density Estimation to derive fire-occurrence density (number of fires/km(2)). The Random Forest models were used to quantify the relative effects of climate, vegetation, topography, and human activity on fire-occurrence density. Our results showed that fire-occurrence density tended to be spatially clustered. Human-caused fire occurrence was highly clustered at the southern part of the region, where human population density is high (comprising about 75% of the area's population). In the north-central areas where elevations are the highest in the region and less densely populated, lightning-caused fires were clustered. Climate factors (e.g., fine fuel and duff moisture content) were important at both regional and landscape scales. Human activity factors (e.g., distance to nearest settlement and road) were secondary to climate as the primary fire occurrence factors. Predictions of fire regimes often assume a strong linkage between climate and fire but usually with less emphasis placed on the effects of local factors such as human activity. We therefore suggest that accurate forecasting of fire regime should include human influences such as those measured by forest proximity to roads and human settlements. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy.

    PubMed

    Salis, Michele; Ager, Alan A; Alcasena, Fermin J; Arca, Bachisio; Finney, Mark A; Pellizzaro, Grazia; Spano, Donatella

    2015-01-01

    In this paper, we applied landscape scale wildfire simulation modeling to explore the spatiotemporal patterns of wildfire likelihood and intensity in the island of Sardinia (Italy). We also performed wildfire exposure analysis for selected highly valued resources on the island to identify areas characterized by high risk. We observed substantial variation in burn probability, fire size, and flame length among time periods within the fire season, which starts in early June and ends in late September. Peak burn probability and flame length were observed in late July. We found that patterns of wildfire likelihood and intensity were mainly related to spatiotemporal variation in ignition locations, fuel moisture, and wind vectors. Our modeling approach allowed consideration of historical patterns of winds, ignition locations, and live and dead fuel moisture on fire exposure factors. The methodology proposed can be useful for analyzing potential wildfire risk and effects at landscape scale, evaluating historical changes and future trends in wildfire exposure, as well as for addressing and informing fuel management and risk mitigation issues.

  18. Torpor and basking after a severe wildfire: mammalian survival strategies in a scorched landscape.

    PubMed

    Matthews, Jaya K; Stawski, Clare; Körtner, Gerhard; Parker, Cassandra A; Geiser, Fritz

    2017-02-01

    Wildfires can completely obliterate above-ground vegetation, yet some small terrestrial mammals survive during and after fires. As knowledge about the physiological and behavioural adaptations that are crucial for post-wildfire survival is scant, we investigated the thermal biology of a small insectivorous marsupial (Antechinus flavipes) after a severe forest fire. Some populations of antechinus survived the fire in situ probably by hiding deep in rocky crevices, the only fire-proof sites near where they were trapped. We hypothesised that survival in the post-fire landscape was achieved by decreasing daytime activity and using torpor frequently to save energy. Indeed, daytime activity was less common and torpor expression was substantially higher (≥2-fold) at the post-fire site than observed in an unburnt control site and also in comparison to a laboratory study, both when food was provided ad libitum and withheld. Basking in the post-fire site was also recorded, which was likely used to further reduce energy expenditure. Our data suggest that torpor and basking are used by this terrestrial mammal to reduce energy and foraging requirements, which is important in a landscape where food and shelter are limited and predation pressure typically is increased.

  19. The relationship between particulate pollution levels in Australian cities, meteorology, and landscape fire activity detected from MODIS hotspots.

    PubMed

    Price, Owen F; Williamson, Grant J; Henderson, Sarah B; Johnston, Fay; Bowman, David M J S

    2012-01-01

    Smoke from bushfires is an emerging issue for fire managers because of increasing evidence for its public health effects. Development of forecasting models to predict future pollution levels based on the relationship between bushfire activity and current pollution levels would be a useful management tool. As a first step, we use daily thermal anomalies detected by the MODIS Active Fire Product (referred to as "hotspots"), pollution concentrations, and meteorological data for the years 2002 to 2008, to examine the statistical relationship between fire activity in the landscapes and pollution levels around Perth and Sydney, two large Australian cities. Resultant models were statistically significant, but differed in their goodness of fit and the distance at which the strength of the relationship was strongest. For Sydney, a univariate model for hotspot activity within 100 km explained 24% of variation in pollution levels, and the best model including atmospheric variables explained 56% of variation. For Perth, the best radius was 400 km, explaining only 7% of variation, while the model including atmospheric variables explained 31% of the variation. Pollution was higher when the atmosphere was more stable and in the presence of on-shore winds, whereas there was no effect of wind blowing from the fires toward the pollution monitors. Our analysis shows there is a good prospect for developing region-specific forecasting tools combining hotspot fire activity with meteorological data.

  20. Resilience Through Disturbance: Effects of Wildfire on Vegetation and Water Balance in the Sierra Nevadas

    NASA Astrophysics Data System (ADS)

    Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Tague, N.

    2015-12-01

    A century of fire suppression in the Western United States has drastically altered the historically fire-adapated ecology in California's Sierra Nevada Mountains. Fire suppression is understood to have increased the forest cover, as well as the stem density, canopy cover and water demand of montane forests, reducing resilience of the forests to drought, and increasing the risk of catastrophic fire by drying the landscape and increasing fuel loads. The potential to reverse these trends by re-introducing fire into the Sierra Nevada is highly promising, but the likely effects on vegetation structure and water balance are poorly quantified. The Illilouette Creek Basin in Yosemite National Park represents a unique experiment in the Sierra Nevada, in which managers have moved from fire suppression to allowing a near-natural fire regime to prevail since 1972. Changes in vegetation structure in the Illilouette since the restoration of natural burning provides a unique opportunity to examine how frequent, mixed severity fires can reshape the Sierra Nevada landscape. We characterize these changes from 1969 to the present using a combination of Landsat products and high-resolution aerial imagery. We describe how the landscape structure has changed in terms of vegetation composition and its spatial organization, and explore the drivers of different post-fire vegetation type transitions (e.g. forest to shrubland vs. forest to meadow). By upscaling field data using vegetation maps and Landsat wetness indices, we explore how these vegetation transitions have impacted the water balance of the Illilouette Creek Basin, potentially increasing its resilience in the face of drought, climate change, and catastrophic fire. In a region that is adapted to frequent disturbance from fire, this work helps us understand how allowing such natural disturbances to take place can increase the sustainability of diverse landscapes in the long term.

  1. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).

    PubMed

    Alves, Daniel Borini; Pérez-Cabello, Fernando

    2017-12-01

    Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape

    USGS Publications Warehouse

    Eyes, Stephanie; Roberts, Susan L.; Johnson, Matthew D.

    2017-01-01

    Fire is a dynamic ecosystem process of mixed-conifer forests of the Sierra Nevada, but there is limited scientific information addressing wildlife habitat use in burned landscapes. Recent studies have presented contradictory information regarding the effects of stand-replacing wildfires on Spotted Owls (Strix occidentalis) and their habitat. While fire promotes heterogeneous forest landscapes shown to be favored by owls, high severity fire may create large canopy gaps that can fragment the closed-canopy habitat preferred by Spotted Owls. We used radio-telemetry to determine whether foraging California Spotted Owls (S. o. occidentalis) in Yosemite National Park, California, USA, showed selection for particular fire severity patch types within their home ranges. Our results suggested that Spotted Owls exhibited strong habitat selection within their home ranges for locations near the roost and edge habitats, and weak selection for lower fire severity patch types. Although owls selected high contrast edges with greater relative probabilities than low contrast edges, we did not detect a statistical difference between these probabilities. Protecting forests from stand-replacing fires via mechanical thinning or prescribed fire is a priority for management agencies, and our results suggest that fires of low to moderate severity can create habitat conditions within California Spotted Owls' home ranges that are favored for foraging.

  3. Holocene fire activity and vegetation response in South-Eastern Iberia

    NASA Astrophysics Data System (ADS)

    Gil-Romera, Graciela; Carrión, José S.; Pausas, Juli G.; Sevilla-Callejo, Miguel; Lamb, Henry F.; Fernández, Santiago; Burjachs, Francesc

    2010-05-01

    Since fire has been recognized as an essential disturbance in Mediterranean landscapes, the study of long-term fire ecology has developed rapidly. We have reconstructed a sequence of vegetation dynamics and fire changes across south-eastern Iberia by coupling records of climate, fire, vegetation and human activities. We calculated fire activity anomalies (FAAs) in relation to 3 ka cal BP for 10-8 ka cal BP, 6 ka cal BP, 4 ka cal BP and the present. For most of the Early to the Mid-Holocene uneven, but low fire events were the main vegetation driver at high altitudes where broadleaved and coniferous trees presented a highly dynamic post-fire response. At mid-altitudes in the mainland Segura Mountains, fire activity remained relatively stable, at similar levels to recent times. We hypothesize that coastal areas, both mountains and lowlands, were more fire-prone landscapes as biomass was more likely to have accumulated than in the inland regions, triggering regular fire events. The wet and warm phase towards the Mid-Holocene (between ca 8 and 6 ka cal BP) affected the whole region and promoted the spread of mesophytic forest co-existing with Pinus, as FAAs appear strongly negative at 6 ka cal BP, with a less important role of fire. Mid and Late Holocene landscapes were shaped by an increasing aridity trend and the rise of human occupation, especially in the coastal mountains where forest disappeared from ca 2 ka cal BP. Mediterranean-type vegetation (evergreen oaks and Pinus pinaster- halepensis types) showed the fastest post-fire vegetation dynamics over time.

  4. Carbon, fire, and fuels: The importance of fuels and fuel characterization and the status of wildland fire fuels data for the United States

    NASA Astrophysics Data System (ADS)

    French, N. H. F.; Prichard, S.; McKenzie, D.; Kennedy, M. C.; Billmire, M.; Ottmar, R. D.; Kasischke, E. S.

    2016-12-01

    Quantification of emissions of carbon during combustion relies on knowing three general variables: how much landscape is impacted by fire (burn area), how much carbon is in that landscape (fuel loading), and fuel properties that determine the fraction that is consumed (fuel condition). These variables also determine how much carbon remains at the site in the form of unburned organic material or char, and therefore drive post-fire carbon dynamics and pools. In this presentation we review the importance of understanding fuel type, fuel loading, and fuel condition for quantifying carbon dynamics properly during burning and for measuring and mapping fuels across landscapes, regions, and continents. Variability in fuels has been shown to be a major driver of uncertainty in fire emissions, but has had little attention until recently. We review the current state of fuel characterization for fire management and carbon accounting, and present a new approach to quantifying fuel loading for use in fire-emissions mapping and for improving fire-effects assessment. The latest results of a study funded by the Joint Fire Science Program (JFSP) are presented, where a fuel loading database is being built to quantify variation in fuel loadings, as represented in the Fuel Characteristic Classification System (FCCS), across the conterminous US and Alaska. Statistical assessments of these data at multiple spatial scales will improve tools used by fire managers and scientists to quantify fire's impact on the land, atmosphere, and carbon cycle.

  5. Oak regeneration across a heterogeneous landscape in Ohio: some limited success after thinning, two fires, and seven years

    Treesearch

    Louis Iverson; Todd Hutchinson; Anantha Prasad; Matthew Peters

    2009-01-01

    We document an increase in oak and hickory advance regeneration, depending on landscape position, in the sixth year (2006) after mechanical thinning (2000) and repeated prescribed fires (2001 and 2005) across two sites (Raccoon Ecological Management Area and Zaleski State Forest) in southern Ohio.

  6. Fire management over large landscapes: a hierarchical approach

    Treesearch

    Kenneth G. Boykin

    2008-01-01

    Management planning for fires becomes increasingly difficult as scale increases. Stratification provides land managers with multiple scales in which to prepare plans. Using statistical techniques, Geographic Information Systems (GIS), and meetings with land managers, we divided a large landscape of over 2 million acres (White Sands Missile Range) into parcels useful in...

  7. Restoring fire-prone Inland Pacific landscapes: seven core principles

    Treesearch

    Paul F. Hessburg; Derek J. Churchill; Andrew J. Larson; Ryan D. Haugo; Carol Miller; Thomas A. Spies; Malcolm P. North; Nicholas A. Povak; R. Travis Belote; Peter H. Singleton; William L. Gaines; Robert E. Keane; Gregory H. Aplet; Scott L. Stephens; Penelope Morgan; Peter A. Bisson; Bruce E. Rieman; R. Brion Salter; Gordon H. Reeves

    2015-01-01

    Context More than a century of forest and fire management of Inland Pacific landscapes has transformed their successional and disturbance dynamics. Regional connectivity of many terrestrial and aquatic habitats is fragmented, flows of some ecological and physical processes have been altered in space and time, and the frequency, size and intensity of many disturbances...

  8. Restoring historic landscape patterns through management: Restoring fire mosaics on the landscape

    Treesearch

    Cathy Stewart

    1996-01-01

    Seral, fire dependent lodgepole pine (Pinus contorta Dougl.) communities are an important component of upper elevation forests throughout the Northern Rockies, where they cover 4 million acres, or about 17 percent of the land base. On the Bitterroot National Forest, lodgepole pine occurs mostly between 5,500 and 7,500 feet.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genet, Helene; McGuire, A. David; Barrett, K.

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and testedmore » a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m 2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.« less

  10. Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America

    USGS Publications Warehouse

    Krawchuk, Meg A.; Haire, Sandra L.; Coop, Jonathan D.; Parisien, Marc-Andre; Whitman, Ellen; Chong, Geneva W.; Miller, Carol

    2016-01-01

    for seven study fires that burned in conifer-dominated forested landscapes of the Western Cordillera of Canada between 2001 and 2014. We fit nine models, each for distinct levels of fire weather and terrain ruggedness. Our framework revealed that the predictability and abundance of fire refugia varied among these environmental settings. We observed highest predictability under moderate fire weather conditions and moderate terrain ruggedness (ROC-AUC = 0.77), and lowest predictability in flatter landscapes and under high fire weather conditions (ROC-AUC = 0.63–0.68). Catchment slope, local aspect, relative position, topographic wetness, topographic convergence, and local slope all contributed to discriminating where refugia occur but the relative importance of these topographic controls differed among environments. Our framework allows us to characterize the predictability of contemporary fire refugia across multiple environmental settings and provides important insights for ecosystem resilience, wildfire management, conservation planning, and climate change adaptation.

  11. Aboriginal hunting buffers climate-driven fire-size variability in Australia's spinifex grasslands.

    PubMed

    Bliege Bird, Rebecca; Codding, Brian F; Kauhanen, Peter G; Bird, Douglas W

    2012-06-26

    Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet-dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes.

  12. Are prescribed fire and thinning dominant processes affecting snag occurrence at a landscape scale?

    DOE PAGES

    Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.

    2014-11-01

    Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less

  13. Wildland Arson as Clandestine Resource Management: A Space-Time Permutation Analysis and Classification of Informal Fire Management Regimes in Georgia, USA

    NASA Astrophysics Data System (ADS)

    Coughlan, Michael R.

    2016-05-01

    Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.

  14. Wildland Arson as Clandestine Resource Management: A Space-Time Permutation Analysis and Classification of Informal Fire Management Regimes in Georgia, USA.

    PubMed

    Coughlan, Michael R

    2016-05-01

    Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.

  15. Studying the effects of fuel treatment based on burn probability on a boreal forest landscape.

    PubMed

    Liu, Zhihua; Yang, Jian; He, Hong S

    2013-01-30

    Fuel treatment is assumed to be a primary tactic to mitigate intense and damaging wildfires. However, how to place treatment units across a landscape and assess its effectiveness is difficult for landscape-scale fuel management planning. In this study, we used a spatially explicit simulation model (LANDIS) to conduct wildfire risk assessments and optimize the placement of fuel treatments at the landscape scale. We first calculated a baseline burn probability map from empirical data (fuel, topography, weather, and fire ignition and size data) to assess fire risk. We then prioritized landscape-scale fuel treatment based on maps of burn probability and fuel loads (calculated from the interactions among tree composition, stand age, and disturbance history), and compared their effects on reducing fire risk. The burn probability map described the likelihood of burning on a given location; the fuel load map described the probability that a high fuel load will accumulate on a given location. Fuel treatment based on the burn probability map specified that stands with high burn probability be treated first, while fuel treatment based on the fuel load map specified that stands with high fuel loads be treated first. Our results indicated that fuel treatment based on burn probability greatly reduced the burned area and number of fires of different intensities. Fuel treatment based on burn probability also produced more dispersed and smaller high-risk fire patches and therefore can improve efficiency of subsequent fire suppression. The strength of our approach is that more model components (e.g., succession, fuel, and harvest) can be linked into LANDIS to map the spatially explicit wildfire risk and its dynamics to fuel management, vegetation dynamics, and harvesting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Hydrologic Vulnerability and Risk Assessment Associated With the Increased Role of Fire on Western Landscapes, Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Spaeth, K. E.; Hardegree, S. P.; Clark, P. E.; Moffet, C. A.; Al-Hamdan, O. Z.; Boll, J.

    2010-12-01

    Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natural resources, property, and human life are at risk. Extensive conversion of 4-7 million hectares of Great Basin shrub-steppe to cheatgrass-dominated (Bromus tectorum) grasslands has increased the frequency and size of wildland fires within these ecosystems. Fire frequencies have increased by more than an order of magnitude and occur on 3-10 year intervals across much of the cheatgrass-dominated landscape. Extensive tree (Pinus spp. and Juniperus spp.) encroachment into wooded shrub-steppe has increased heavy fuel loads. Ladder fuels in these ecosystems promote rapidly spreading, high-intensity and severe ground-surface-crown fires. These altered fuel structures across much of the historical Great Basin shrub-steppe have initiated an upsurge in large rangeland wildfires and have increased the spatial and temporal vulnerability of these landscapes to amplified runoff and erosion. Resource and infrastructure damages, and loss of life have been reported due to flooding following recent large-scale burning of western rangelands and dry forests. We present a decade of post-fire rangeland hydrologic research that provides a foundation for conceptual modeling of the hydrologic impacts associated with an increased role of rangeland wildfires. We highlight advancements in predictive tools to address this large-scale phenomenon and discuss vital research voids requiring attention. Our geographic emphasis is the Great Basin Region, however, these concepts likely extend elsewhere given the increased role of fire in many geographic regions and across rangeland-to-forest ecotones in the western United States.

  17. Learning from wilderness: The social dimension of fire management

    Treesearch

    Anne E. Black

    2009-01-01

    In 2008, the U.S. Forest Service (USFS) began piloting a "new" concept in fire management: managing "fire as fire" on the landscape; no more black-and-white distinctions between "good" fire and "bad" fire. Instead, under the new direction, the USFS manages the fire based on what the land, the long-term objectives, the land...

  18. Assessing landscape scale wildfire exposure for highly valued resources in a Mediterranean area.

    PubMed

    Alcasena, Fermín J; Salis, Michele; Ager, Alan A; Arca, Bachisio; Molina, Domingo; Spano, Donatella

    2015-05-01

    We used a fire simulation modeling approach to assess landscape scale wildfire exposure for highly valued resources and assets (HVR) on a fire-prone area of 680 km(2) located in central Sardinia, Italy. The study area was affected by several wildfires in the last half century: some large and intense fire events threatened wildland urban interfaces as well as other socioeconomic and cultural values. Historical wildfire and weather data were used to inform wildfire simulations, which were based on the minimum travel time algorithm as implemented in FlamMap. We simulated 90,000 fires that replicated recent large fire events in the area spreading under severe weather conditions to generate detailed maps of wildfire likelihood and intensity. Then, we linked fire modeling outputs to a geospatial risk assessment framework focusing on buffer areas around HVR. The results highlighted a large variation in burn probability and fire intensity in the vicinity of HVRs, and allowed us to identify the areas most exposed to wildfires and thus to a higher potential damage. Fire intensity in the HVR buffers was mainly related to fuel types, while wind direction, topographic features, and historically based ignition pattern were the key factors affecting fire likelihood. The methodology presented in this work can have numerous applications, in the study area and elsewhere, particularly to address and inform fire risk management, landscape planning and people safety on the vicinity of HVRs.

  19. Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar

    PubMed Central

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632

  20. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    PubMed

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  1. Identifying past fire regimes throughout the Holocene in Ireland using new and established methods of charcoal analysis

    NASA Astrophysics Data System (ADS)

    Hawthorne, Donna; Mitchell, Fraser J. G.

    2016-04-01

    Globally, in recent years there has been an increase in the scale, intensity and level of destruction caused by wildfires. This can be seen in Ireland where significant changes in vegetation, land use, agriculture and policy, have promoted an increase in fires in the Irish landscape. This study looks at wildfire throughout the Holocene and draws on lacustrine charcoal records from seven study sites spread across Ireland, to reconstruct the past fire regimes recorded at each site. This work utilises new and accepted methods of fire history reconstruction to provide a recommended analytical procedure for statistical charcoal analysis. Digital charcoal counting was used and fire regime reconstructions carried out via the CharAnalysis programme. To verify this record new techniques are employed; an Ensemble-Member strategy to remove the objectivity associated with parameter selection, a Signal to Noise Index to determine if the charcoal record is appropriate for peak detection, and a charcoal peak screening procedure to validate the identified fire events based on bootstrapped samples. This analysis represents the first study of its kind in Ireland, examining the past record of fire on a multi-site and paleoecological timescale, and will provide a baseline level of data which can be built on in the future when the frequency and intensity of fire is predicted to increase.

  2. Fire feedbacks facilitate invasion of pine savannas by Brazilian pepper (Schinus terebinthifolius).

    PubMed

    Stevens, Jens T; Beckage, Brian

    2009-10-01

    * Fire disturbance can mediate the invasion of ecological communities by nonnative species. Nonnative plants that modify existing fire regimes may initiate a positive feedback that can facilitate their continued invasion. Fire-sensitive plants may successfully invade pyrogenic landscapes if they can inhibit fire in the landscape. * Here, we investigated whether the invasive shrub Brazilian pepper (Schinus terebinthifolius) can initiate a fire-suppression feedback in a fire-dependent pine savanna ecosystem in the southeastern USA. * We found that prescribed burns caused significant (30-45%) mortality of Brazilian pepper at low densities and that savannas with more frequent fires contained less Brazilian pepper. However, high densities of Brazilian pepper reduced fire temperature by up to 200 degrees C, and experienced as much as 80% lower mortality. * A cellular automaton model was used to demonstrate that frequent fire may control low-density populations, but that Brazilian pepper may reach a sufficient density during fire-free periods to initiate a positive feedback that reduces the frequency of fire and converts the savanna to an invasive-dominated forest.

  3. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest

    Treesearch

    Calvin A. Farris; Christopher H. Baisan; Donald A. Falk; Stephen R. Yool; Thomas W. Swetnam

    2010-01-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire...

  4. Prehistoric fires and the shaping of colonial transported landscapes in southern California: A paleoenvironmental study at Dune Pond, Santa Barbara County

    NASA Astrophysics Data System (ADS)

    Ejarque, Ana; Anderson, R. Scott; Simms, Alexander R.; Gentry, Beau J.

    2015-03-01

    Using a novel combination of paleoecologic proxies including pollen, non-pollen palynomorphs (NPPs), macroscopic charcoal, and Spheroidal Carbonaceous Particles (SCPs), 5000 years of landscape change, fire history and land-use have been reconstructed from Dune Pond, Santa Barbara County, California. The pond was sensitive to Holocene regional climatic variability, showing different phases of lower (4600-3700 cal yr BP, 2100-700 cal yr BP, historical period) and higher (3700-2100 cal yr BP, 700-150 cal yr BP) local moisture availability. During this period the landscape was dominated by a coastal mosaic vegetation including dune mats, coastal scrub and salt marshes on the dunes and backdunes, with chaparral and oak woodland growing in the valley plains and foothills. Fire was intimately linked with such dominating mosaic vegetation, and the combination of wet conditions and the presence of nearby human settlement were a trigger favoring coastal fires for at least two periods: from 3100 to 1500 cal yr BP and from 650 cal yr BP until the 18th century. In both cases fire was an important tool to keep an open coastal landscape attractive to hunting wildlife. Finally, matching this varied range of high-resolution paleoecological proxies with historical records we could characterize the development of colonial transported landscapes following the Euro-American settlement of Santa Barbara. The introduction of livestock grazing by Spanish colonists favored erosive processes and the introduction of fecal-borne parasites in freshwater bodies, negatively impacted salt and brackish coastal marshes, and promoted the invasion of alien grasses and ruderals. This agro-pastoral landscape was consolidated during the American period, with a greater role for cultivation, the development of industrial activities and increased population. Despite negative environmental consequences such as the loss of native habitats, exotic land-uses and plants introduced during the historical period significantly contributed to the configuration of a cultural landscape which forms part of the cultural heritage of California.

  5. Landscape-scale patterns of fire and drought on the high plains, USA

    Treesearch

    Paulette Ford; Charles Jackson; Matthew Reeves; Benjamin Bird; Dave Turner

    2015-01-01

    We examine 31 years (1982-2012) of temperature, precipitation and natural wildfire occurrence data for Federal and Tribal lands to determine landscape-scale patterns of drought and fire on the southern and central High Plains of the western United States. The High Plains states of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas and...

  6. Using topography to meet wildlife and fuels treatment objectives in fire-suppressed landscapes

    Treesearch

    Emma C. Underwood; Joshua H. Viers; James F. Quinn; Malcolm North

    2010-01-01

    Past forest management practices, fire suppression, and climate change are increasing the need to actively manage California Sierra Nevada forests for multiple environmental amenities. Here we present a relatively low-cost, repeatable method for spatially parsing the landscape to help the U.S. Forest Service manage for different forest and fuel conditions to meet...

  7. Managing wildfire risk in fire-prone landscapes: how are private landowners contributing?

    Treesearch

    Joan O’Callaghan; A. Paige Fischer; Susan Charnley

    2013-01-01

    The fire-prone landscapes of the West include both public and private lands. Wildfire burns indiscriminately across property boundaries, which means that the way potential fuels are managed on one piece of property can affect wildfire risk on neighboring lands. Paige Fischer and Susan Charnley, social scientists with the Pacific Northwest Research Station, surveyed...

  8. Chapter 12 - Mapping wildland fuel across large regions for the LANDFIRE Prototype Project

    Treesearch

    Robert E. Keane; Tracey Frescino; Matthew C. Reeves; Jennifer L. Long

    2006-01-01

    The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required that the entire array of wildland fuel characteristics be mapped to provide fire and landscape managers with consistent baseline geo-spatial information to plan projects for hazardous fuel mitigation and to improve public and firefighter safety. Fuel...

  9. Challenges and needs in fire management: A landscape simulation modeling perspective [chapter 4

    Treesearch

    Robert E. Keane; Geoffrey J. Cary; Mike D. Flannigan

    2011-01-01

    Fire management will face many challenges in the future from global climate change to protecting people, communities, and values at risk. Simulation modeling will be a vital tool for addressing these challenges but the next generation of simulation models must be spatially explicit to address critical landscape ecology relationships and they must use mechanistic...

  10. Climate change and vulnerability of bull trout (Salvelinus confluentus ) in a fire-prone landscape

    Treesearch

    Jeffrey A. Falke; Rebecca L. Flitcroft; Jason B. Dunham; Kristina M. McNyset; Paul F. Hessburg; Gordon H. Reeves; C. Tara Marshall

    2015-01-01

    Linked atmospheric and wildfire changes will complicate future management of native coldwater fishes in fire-prone landscapes, and new approaches to management that incorporate uncertainty are needed to address this challenge. We used a Bayesian network (BN) approach to evaluate population vulnerability of bull trout (Salvelinus confluentus) in the Wenatchee River...

  11. Examining fire-prone forest landscapes as coupled human and natural systems

    Treesearch

    Thomas A. Spies; Eric M. White; Jeffrey D. Kline; A. Paige Fisher; Alan Ager; John Bailey; John Bolte; Jennifer Koch; Emily Platt; Christine S. Olsen; Derric Jacobs; Bruce Shindler; Michelle M. Steen-Adams; Roger Hammer

    2014-01-01

    Fire-prone landscapes are not well studied as coupled human and natural systems (CHANS) and present many challenges for understanding and promoting adaptive behaviors and institutions. Here, we explore how heterogeneity, feedbacks, and external drivers in this type of natural hazard system can lead to complexity and can limit the development of more adaptive approaches...

  12. Post-fire vegetation behaviour in large burnt scars from 2005 fire season in Spain

    NASA Astrophysics Data System (ADS)

    Bastos, A.; Gouveia, C. M.; DaCamara, C. C.; Trigo, R. M.

    2012-04-01

    Wildfires have a wide diversity of impacts on landscape which, in turn, depend on the interaction of fire regimes (e.g. intensity, extent, frequency) and the response of vegetation to them in short and long-terms. The increase in erosion rates and the loss of nutrients by runoff in the first months following the fire are among the major impacts of wildfires. A minimum of 30% of vegetation cover is enough to protect soils against erosion but vegetation may require a long period to reach this threshold after severe fires. Since erosion risk is strongly linked to vegetation recovery rates, post-fire vegetation monitoring becomes crucial in land management. Fire regimes in the Mediterranean have been changing in the past decades due to modifications in both socio-economic and climate patterns. Although many vegetation species in Mediterranean ecosystems are adapted to wildfires, changes in fire regime characteristics affect the ability of ecosystems to recover to their previous state. In Spain, fire is an important driver of changes in landscape composition, leading to dominance of shrubland following fire and to a major decrease of pine woodlands (Viedma et al., 2006). Remote sensing is a powerful tool in land management, allowing vegetation monitoring on large spatial scales for relatively long periods of time. In order to assess vegetation dynamics, monthly NDVI data from 1998-2009 from SPOT/VEGETATION at 1km spatial resolution over the Iberian Peninsula were used. This work focuses on 2005 fire season in Spain, which registered the highest amount of burnt area since 1994, with more than 188000 ha burnt. Burnt scars in this fire season were identified by cluster analysis. Post-fire vegetation recovery was assessed based on the monoparametric model developed by Gouveia et al. (2010) that was applied to four large scars located in different geographical settings with different land cover characteristics. While the two northern regions presented fast recovery, in the remaining areas (centre and south), vegetation recovered very slowly and irregularly. Four years following the fire, vegetation density in these two scars was still markedly below pre-fire levels. Spatial patterns of recovery times were assessed in order to evaluate the influence of physical factors such as fire damage, pre-fire vegetation density and land-cover type, in post-fire behaviour of vegetation for each scar. Pre-fire land-cover type raised as a key factor that may partially explain the differences observed, with shrublands and mixed forests recovering faster than coniferous. Gouveia C., DaCamara C.C. and Trigo R.M.: Post fire vegetation recovery in Portugal based on SPOT-VEGETATION data, Natural Hazards and Earth System Sciences, 10, 673-684, 2010. Viedma, O., Moreno, J.M. and Rieiro, I.: Interactions between land use/land cover change, forest fires and landscape structure in Sierra de Gredos (central Spain), Environmental Conservation, 33, 212-222, 2006.

  13. Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA

    NASA Astrophysics Data System (ADS)

    Jackson, Molly; Roering, Joshua J.

    2009-06-01

    The role of fire in shaping steep, forested landscapes depends on a suite of hydrologic, biologic, and geological characteristics, including the propensity for hydrophobic soil layers to promote runoff erosion during subsequent rainfall events. In the Oregon Coast Range, several studies postulate that fire primarily modulates sediment production via root reinforcement and shallow landslide susceptibility, although few studies have documented post-fire geomorphic response. Here, we describe field observations and topographic analyses for three sites in the central Oregon Coast Range that burned in 1999, 2002, and 2003. The fires generated strongly hydrophobic soil layers that did not promote runoff erosion because the continuity of the layers was interrupted by pervasive discontinuities that facilitated rapid infiltration. At each of our sites, fire generated significant colluvial transport via dry ravel, consistent with other field-based studies in the western United States. Fire-driven dry ravel accumulation in low-order valleys of our Sulphur Creek site equated to a slope-averaged landscape lowering of 2.5 mm. Given Holocene estimates of fire frequency, these results suggest that fire may contribute 10-20% of total denudation across steep, dissected portions of the Oregon Coast Range. In addition, we documented more rapid decline of root strength at our sites than has been observed after timber harvest, suggesting that root strength was compromised prior to fire or that intense heat damaged roots in the shallow subsurface. Given that fire frequencies in the Pacific Northwest are predicted to increase with continued climate change, our findings highlight the importance of fire-induced dry ravel and post-fire debris flow activity in controlling sediment delivery to channels.

  14. Patch to landscape patterns in post fire recruitment of a serotinous conifer

    USGS Publications Warehouse

    Ne'eman, Gidi; Fotheringham, C.J.; Keeley, J.E.

    1999-01-01

    Obligate seeding species are highly specialized to fire disturbance and many conifers such as cypress, which are adapted to high intensity stand-replacing fires, have canopy seed banks stored in serotinous cones. Resilience of these trees to fire disturbance is a function of disturbance frequency and one focus of this study was to determine the effect of patch age on postfire recruitment. A second focus was to determine the extent to which fire induced a landscape level change in the location of the forest boundary. Prior to a fire in 1994, a large Cupressus sargentii forest was a mosaic landscape of different aged patches of nearly pure cypress bordered by chaparral. Patches less than 60 years of age were relatively dense with roughly one tree every 1-2 m2 but older patches had thinned to one tree every 3-15 m2. Older trees had substantially greater canopy cone crops but the stand level seed bank size was not significantly correlated with stand age. Fire-dependent obligate seeding species are sensitive to fire return interval because of potential changes in the size of seed banks - facing both a potential 'immaturity risk' and a 'senescence risk'. At our site, C. sargentii regeneration was substantial in stands as young as 20 years, suggesting that fire return interval would need to be shorter than this to pose any significant risk. Reduced seedling recruitment in stands nearly 100 years of age may indicate risk from senescence is greater, however, even the lowest density seedling recruitment was many times greater than the density of mature forests - thus this cypress would appear to be resilient to a wide range of fire return intervals. Changes in landscape patterning of forest and chaparral are unlikely except after fire. Factors that inhibit tree establishment within the shrubland, as well as factors that affect shrub establishment within the forest border likely affect the 'permeability' of this ecotone. After the 1994 fire this boundary appeared to be stable in that cypress recruited best within the shadow of burned canopies and cypress were weak invaders of adjacent shrublands.

  15. Terrestrial ecosystems: national inventory of vegetation and land use

    USGS Publications Warehouse

    Gergely, Kevin J.; McKerrow, Alexa

    2013-11-12

    The Gap Analysis Program (GAP)/Landscape Fire and Resource Management Planning Tools (LANDFIRE) National Terrestrial Ecosystems Data represents detailed data on the vegetation and land-use patterns of the United States, including Alaska, Hawaii, and Puerto Rico. This national dataset combines detailed land cover data generated by the GAP with LANDFIRE data (http://www.landfire.gov/). LANDFIRE is an interagency vegetation, fire, and fuel characteristics mapping program sponsored by the U.S. Department of the Interior (DOI) and the U.S. Department of Agriculture Forest Service.

  16. Influences of prior wildfires on vegetation response to subsequent fire in a reburned Southwestern landscape.

    PubMed

    Coop, Jonathan D; Parks, Sean A; McClernan, Sarah R; Holsinger, Lisa M

    2016-03-01

    Large and severe wildfires have raised concerns about the future of forested landscapes in the southwestern United States, especially under repeated burning. In 2011, under extreme weather and drought conditions, the Las Conchas fire burned over several previous burns as well as forests not recently exposed to fire. Our purpose was to examine the influences of prior wildfires on plant community composition and structure, subsequent burn severity, and vegetation response. To assess these relationships, we used satellite-derived measures of burn severity and a nonmetric multidimensional scaling of pre- and post- Las Conchas field samples. Earlier burns were associated with shifts from forested sites to open savannas and meadows, oak scrub, and ruderal communities. These non-forested vegetation types exhibited both resistance to subsequent fire, measured by reduced burn severity, and resilience to reburning, measured by vegetation recovery relative to forests not exposed to recent prior fire. Previous shifts toward non-forested states were strongly reinforced by reburning. Ongoing losses of forests and their ecological values confirm the need for restoration interventions. However, given future wildfire and climate projections, there may also be opportunities presented by transformations toward fire-resistant and resilient vegetation types within portions of the landscape.

  17. Fire activity increasing as climate changes

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie; Showstack, Randy

    2013-01-01

    Analysis of images from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellites shows that more than 2.5 million hectares were burned in 2012 from January through August in the United States. The amount is less than a record 3.2 million hectares in 2011 but greater than the area burned in 12 of 15 years since satellite monitoring began, scientists reported at the AGU Fall Meeting. With satellites "we can detect fires as they're actively burning," said Louis Giglio of the University of Maryland, College Park, at a press conference on 4 December. "We can also map the cumulative area burned on the landscape after the fire's over." He noted that "2012 has been a particularly big fire year" in the United States.

  18. Opposing resonses to ecological gradients structure amphibian and reptile communities across a temperate grassland-savanna-forest landscape

    USGS Publications Warehouse

    Grundel, Ralph; Beamer, David; Glowacki, Gary A.; Frohnapple, Krystal; Pavlovic, Noel B.

    2014-01-01

    Temperate savannas are threatened across the globe. If we prioritize savanna restoration, we should ask how savanna animal communities differ from communities in related open habitats and forests. We documented distribution of amphibian and reptile species across an open-savanna–forest gradient in the Midwest U.S. to determine how fire history and habitat structure affected herpetofaunal community composition. The transition from open habitats to forests was a transition from higher reptile abundance to higher amphibian abundance and the intermediate savanna landscape supported the most species overall. These differences warn against assuming that amphibian and reptile communities will have similar ecological responses to habitat structure. Richness and abundance also often responded in opposite directions to some habitat characteristics, such as cover of bare ground or litter. Herpetofaunal community species composition changed along a fire gradient from infrequent and recent fires to frequent but less recent fires. Nearby (200-m) wetland cover was relatively unimportant in predicting overall herpetofaunal community composition while fire history and fire-related canopy and ground cover were more important predictors of composition, diversity, and abundance. Increased developed cover was negatively related to richness and abundance. This indicates the importance of fire history and fire related landscape characteristics, and the negative effects of development, in shaping the upland herpetofaunal community along the native grassland–forest continuum.

  19. Burning, fire prevention and landscape productions among the Pemon, Gran Sabana, Venezuela: toward an intercultural approach to wildland fire management in Neotropical Savannas.

    PubMed

    Sletto, Bjørn; Rodriguez, Iokiñe

    2013-01-30

    Wildland fire management in savanna landscapes increasingly incorporates indigenous knowledge to pursue strategies of controlled, prescriptive burning to control fuel loads. However, such participatory approaches are fraught with challenges because of contrasting views on the role of fire and the practices of prescribed burning between indigenous and state fire managers. Also, indigenous and state systems of knowledge and meanings associated with fire are not monolithic but instead characterized by conflicts and inconsistencies, which require new, communicative strategies in order to develop successful, intercultural approaches to fire management. This paper is based on long-term research on indigenous Pemon social constructs, rules and regulations regarding fire use, and traditional system of prescribed burning in the Gran Sabana, Venezuela. The authors review factors that act as constraints against successful intercultural fire management in the Gran Sabana, including conflicting perspectives on fire use within state agencies and in indigenous communities, and propose strategies for research and communicative planning to guide future efforts for more participatory and effective fire management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagestad, Jerry; Brooks, Matthew; Cullinan, Valerie

    Mojave Desert ecosystem processes are dependent upon the amount and seasonality of precipitation. Multi-decadal periods of drought or above-average rainfall affect landscape vegetation condition, biomass and susceptibility to fire. The seasonality of precipitation events can also affect the likelihood of lightning, a key ignition source for fires. To develop an understanding of precipitation regimes and fire patterns we used monthly average precipitation data and GIS data representing burned areas from 1971-2010. We applied a K-means cluster analysis to the monthly precipitation data identifying three distinct precipitation seasons; winter (October – March), spring (April-June) and summer (July-September) and four discrete precipitationmore » regimes within the Mojave ecoregion.« less

  1. Relative impact of weather vs. fuels on fire regimes in coastal California

    Treesearch

    Jon E. Keeley

    2008-01-01

    Extreme fire weather is of over riding importance in determining fire behavior in coastal chaparral and on these landscapes fire suppression policy has not resulted in fire exclusion. There is regional variation in foehn winds, which are most important in southern California. Under these severe fire weather conditions fuel age does not constrain fire behavior. As a...

  2. Climate and human intervention effects on future fire activity and consequences for air pollution across the 21st century

    NASA Astrophysics Data System (ADS)

    Val Martin, M.; Pierce, J. R.; Heald, C. L.; Li, F.; Lawrence, D. M.; Wiedinmyer, C.; Tilmes, S.; Vitt, F.

    2016-12-01

    Emissions of aerosols and gases from fires have been shown to adversely affect air quality across the world. Fire activity is strongly related to climate and anthropogenic activities. Current fire projections for the 21st century seem very uncertain, ranging from increasing to declining depending on the climate, land cover change and population growth scenarios used. Here we present an analysis of the changes in future wildfire activity and consequences on air quality, with focus on PM2.5 and surface O3 over regions vulnerable to fire. We use the global Community Earth System Model (CESM) with a process-based fire model to simulate emissions from agriculture, peatland, deforestation and landscape fires for present-day and throughout the current century. We consider two future Representative Concentration Pathways climate scenarios combined with population density changes predicted from Shared Socio-economic Pathways to project climate and demographic effects on fire activity and further consequences for future air quality.

  3. Have plants evolved to self-immolate?

    PubMed Central

    Bowman, David M. J. S.; French, Ben J.; Prior, Lynda D.

    2014-01-01

    By definition fire prone ecosystems have highly combustible plants, leading to the hypothesis, first formally stated by Mutch in 1970, that community flammability is the product of natural selection of flammable traits. However, proving the “Mutch hypothesis” has presented an enormous challenge for fire ecologists given the difficulty in establishing cause and effect between landscape fire and flammable plant traits. Individual plant traits (such as leaf moisture content, retention of dead branches and foliage, oil rich foliage) are known to affect the flammability of plants but there is no evidence these characters evolved specifically to self-immolate, although some of these traits may have been secondarily modified to increase the propensity to burn. Demonstrating individual benefits from self-immolation is extraordinarily difficult, given the intersection of the physical environmental factors that control landscape fire (fuel production, dryness and ignitions) with community flammability properties that emerge from numerous traits of multiple species (canopy cover and litter bed bulk density). It is more parsimonious to conclude plants have evolved mechanisms to tolerate, but not promote, landscape fire. PMID:25414710

  4. Risk and Cooperation: Managing Hazardous Fuel in Mixed Ownership Landscapes

    NASA Astrophysics Data System (ADS)

    Fischer, A. Paige; Charnley, Susan

    2012-06-01

    Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions that cross ownership boundaries. Cooperation depends on people's beliefs and norms about reciprocity and perceptions of the risks and benefits of interacting with others. Using logistic regression tests on mail survey data and qualitative analysis of interviews with landowners, we examined the relationship between perceived wildfire risk and cooperation in the management of hazardous fuel by nonindustrial private forest (NIPF) owners in fire-prone landscapes of eastern Oregon. We found that NIPF owners who perceived a risk of wildfire to their properties, and perceived that conditions on nearby public forestlands contributed to this risk, were more likely to have cooperated with public agencies in the past to reduce fire risk than owners who did not perceive a risk of wildfire to their properties. Wildfire risk perception was not associated with past cooperation among NIPF owners. The greater social barriers to private-private cooperation than to private-public cooperation, and perceptions of more hazardous conditions on public compared with private forestlands may explain this difference. Owners expressed a strong willingness to cooperate with others in future cross-boundary efforts to reduce fire risk, however. We explore barriers to cooperative forest management across ownerships, and identify models of cooperation that hold potential for future collective action to reduce wildfire risk.

  5. Risk and cooperation: managing hazardous fuel in mixed ownership landscapes.

    PubMed

    Fischer, A Paige; Charnley, Susan

    2012-06-01

    Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions that cross ownership boundaries. Cooperation depends on people's beliefs and norms about reciprocity and perceptions of the risks and benefits of interacting with others. Using logistic regression tests on mail survey data and qualitative analysis of interviews with landowners, we examined the relationship between perceived wildfire risk and cooperation in the management of hazardous fuel by nonindustrial private forest (NIPF) owners in fire-prone landscapes of eastern Oregon. We found that NIPF owners who perceived a risk of wildfire to their properties, and perceived that conditions on nearby public forestlands contributed to this risk, were more likely to have cooperated with public agencies in the past to reduce fire risk than owners who did not perceive a risk of wildfire to their properties. Wildfire risk perception was not associated with past cooperation among NIPF owners. The greater social barriers to private-private cooperation than to private-public cooperation, and perceptions of more hazardous conditions on public compared with private forestlands may explain this difference. Owners expressed a strong willingness to cooperate with others in future cross-boundary efforts to reduce fire risk, however. We explore barriers to cooperative forest management across ownerships, and identify models of cooperation that hold potential for future collective action to reduce wildfire risk.

  6. Mapping landscape fire frequency for fire regime condition class

    Treesearch

    Dale A. Hamilton; Wendel J. Hann

    2015-01-01

    Fire Regime Condition Class (FRCC) is a departure index that compares the current amounts of the different vegetation succession classes, fire frequency, and fire severity to historic reference conditions. FRCC assessments have been widely used for evaluating ecosystem status in many areas of the U.S. in reports such as land use plans, fire management plans, project...

  7. Fire history and pattern in a Cascade Range landscape.

    Treesearch

    Peter H. Morrison; Frederick J. Swanson

    1990-01-01

    Fire history from years 1150 to 1985 was reconstructed by analyzing forest stands in two 1940-hectare areas in the central-western Cascade Range of Oregon. Serving as records for major fire episodes, these stands revealed a highly variable fire regime. The steeper, more dissected, lower elevation Cook-Quentin study area experienced more frequent fires (natural fire...

  8. The quest for all-purpose plants

    Treesearch

    Susan L. Frommer; David R. Weise

    1995-01-01

    The fire safety of a home in the wildland/urban interface is influenced by several factors-one of which is the presence and proximity of vegetation to the home. Landscaping may either provide a significant barrier to fire spread and thus potentially increase a home's fire safety or favor fire spread and reduce a home's fire safety. However, fire safety of...

  9. Gran Sabana fires (SE Venezuela): a paleoecological perspective

    NASA Astrophysics Data System (ADS)

    Montoya, Encarni; Rull, Valentí

    2011-11-01

    Fires are among the most important risks for tropical ecosystems in a future climatic change scenario. Recently, paleoecological research has been addressed to discern the role played by fire in neotropical landscapes. However, given the magnitude of the Neotropics, many studies are relegated to infer just local trends. Here we present the compilation of the paleo-fire records developed until now in the southern Gran Sabana (SE Venezuela) with the aim to describe the fire history as well as to infer the possible forcing factors implied. In this sense, southern Gran Sabana has been under fire perturbation since the Lateglacial, with the concomitant effects upon vegetation, and persisted during the Holocene. Around 2000 cal yr BP onwards, the fire activity highly increased promoting the expansion of pre-existing savannas, the decrease of forests and the appearance and establishment of Mauritia palm swamps. The continuous fire incidence registered for several thousands of years has likely promoted the supremacy of treeless savannas upon other vegetation types and the degradation to secondary landscapes. Based on the available evidence, the anthropogenic nature of this high fire activity has been postulated. If so, it could be hypothesized that the timing arrival of Pemón, the present-day indigenous culture in the Gran Sabana, would be ca 2000 cal yr BP onwards, rather than the last centuries, as it has been formerly assumed. The implications of these ancient practices in the area are also discussed for present Gran Sabana landscapes sustainability and future conservation strategies.

  10. The Relationship between Particulate Pollution Levels in Australian Cities, Meteorology, and Landscape Fire Activity Detected from MODIS Hotspots

    PubMed Central

    Price, Owen F.; Williamson, Grant J.; Henderson, Sarah B.; Johnston, Fay; Bowman, David M. J. S.

    2012-01-01

    Smoke from bushfires is an emerging issue for fire managers because of increasing evidence for its public health effects. Development of forecasting models to predict future pollution levels based on the relationship between bushfire activity and current pollution levels would be a useful management tool. As a first step, we use daily thermal anomalies detected by the MODIS Active Fire Product (referred to as “hotspots”), pollution concentrations, and meteorological data for the years 2002 to 2008, to examine the statistical relationship between fire activity in the landscapes and pollution levels around Perth and Sydney, two large Australian cities. Resultant models were statistically significant, but differed in their goodness of fit and the distance at which the strength of the relationship was strongest. For Sydney, a univariate model for hotspot activity within 100 km explained 24% of variation in pollution levels, and the best model including atmospheric variables explained 56% of variation. For Perth, the best radius was 400 km, explaining only 7% of variation, while the model including atmospheric variables explained 31% of the variation. Pollution was higher when the atmosphere was more stable and in the presence of on-shore winds, whereas there was no effect of wind blowing from the fires toward the pollution monitors. Our analysis shows there is a good prospect for developing region-specific forecasting tools combining hotspot fire activity with meteorological data. PMID:23071788

  11. Comparing the role of fuel breaks across southern California national forests

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.; Brennan, Teresa J.

    2011-01-01

    Fuel treatment of wildland vegetation is the primary approach advocated for mitigating fire risk at the wildland-urban interface (WUI), but little systematic research has been conducted to understand what role fuel treatments play in controlling large fires, which factors influence this role, or how the role of fuel treatments may vary over space and time. We assembled a spatial database of fuel breaks and fires from the last 30 years in four southern California national forests to better understand which factors are consistently important for fuel breaks in the control of large fires. We also explored which landscape features influence where fires and fuel breaks are most likely to intersect. The relative importance of significant factors explaining fuel break outcome and number of fire and fuel break intersections varied among the forests, which reflects high levels of regional landscape diversity. Nevertheless, several factors were consistently important across all the forests. In general, fuel breaks played an important role in controlling large fires only when they facilitated fire management, primarily by providing access for firefighting activities. Fire weather and fuel break maintenance were also consistently important. Models and maps predicting where fuel breaks and fires are most likely to intersect performed well in the regions where the models were developed, but these models did not extend well to other regions, reflecting how the environmental controls of fire regimes vary even within a single ecoregion. Nevertheless, similar mapping methods could be adopted in different landscapes to help with strategic location of fuel breaks. Strategic location of fuel breaks should also account for access points near communities, where fire protection is most important.

  12. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity.

    PubMed

    Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S

    2015-05-01

    Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance.

  13. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity

    PubMed Central

    Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S

    2015-01-01

    Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance. PMID:26140206

  14. Predicting watershed sediment yields after wildland fire with the InVEST sediment retention model at large geographic extent in the western USA: accuracy and uncertainties

    NASA Astrophysics Data System (ADS)

    Sankey, J. B.; Kreitler, J.; McVay, J.; Hawbaker, T. J.; Vaillant, N.; Lowe, S. E.

    2014-12-01

    Wildland fire is a primary threat to watersheds that can impact water supply through increased sedimentation, water quality decline, and change the timing and amount of runoff leading to increased risk from flood and sediment natural hazards. It is of great societal importance in the western USA and throughout the world to improve understanding of how changing fire frequency, extent, and location, in conjunction with fuel treatments will affect watersheds and the ecosystem services they supply to communities. In this work we assess the utility of the InVEST Sediment Retention Model to accurately characterize vulnerability of burned watersheds to erosion and sedimentation. The InVEST tools are GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., RUSLE -Revised Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. We evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured post-fire sedimentation rates available for many watersheds in different rainfall regimes throughout the western USA from an existing, large USGS database of post-fire sediment yield [synthesized in Moody J, Martin D (2009) Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. International Journal of Wildland Fire 18: 96-115]. The ultimate goal of this work is to calibrate and implement the model to accurately predict variability in post-fire sediment yield as a function of future landscape heterogeneity predicted by wildfire simulations, and future landscape fuel treatment scenarios, within watersheds.

  15. Fire mosaics and reptile conservation in a fire-prone region.

    PubMed

    Nimmo, D G; Kelly, L T; Spence-Bailey, L M; Watson, S J; Taylor, R S; Clarke, M F; Bennett, A F

    2013-04-01

    Fire influences the distribution of fauna in terrestrial biomes throughout the world. Use of fire to achieve a mosaic of vegetation in different stages of succession after burning (i.e., patch-mosaic burning) is a dominant conservation practice in many regions. Despite this, knowledge of how the spatial attributes of vegetation mosaics created by fire affect fauna is extremely scarce, and it is unclear what kind of mosaic land managers should aim to achieve. We selected 28 landscapes (each 12.6 km(2) ) that varied in the spatial extent and diversity of vegetation succession after fire in a 104,000 km(2) area in the semiarid region of southeastern Australia. We surveyed for reptiles at 280 sites nested within the 28 landscapes. The landscape-level occurrence of 9 of the 22 species modeled was associated with the spatial extent of vegetation age classes created by fire. Biogeographic context and the extent of a vegetation type influenced 7 and 4 species, respectively. No species were associated with the diversity of vegetation ages within a landscape. Negative relations between reptile occurrence and both extent of recently burned vegetation (≤10 years postfire, n = 6) and long unburned vegetation (>35 years postfire, n = 4) suggested that a coarse-grained mosaic of areas (e.g. >1000 ha) of midsuccessional vegetation (11-35 years postfire) may support the fire-sensitive reptile species we modeled. This age class coincides with a peak in spinifex cover, a keystone structure for reptiles in semiarid and arid Australia. Maintaining over the long term a coarse-grained mosaic of large areas of midsuccessional vegetation in mallee ecosystems will need to be balanced against the short-term negative effects of large fires on many reptile species and a documented preference by species from other taxonomic groups, particularly birds, for older vegetation. © 2012 Society for Conservation Biology.

  16. Evaluation of short-term changes of hydrological response in mountainous basins of the Vitim Plateau (Russia) after forest fires based on data analysis and hydrological modelling

    NASA Astrophysics Data System (ADS)

    Semenova, O. M.; Lebedeva, L. S.; Nesterova, N. V.; Vinogradova, T. A.

    2015-06-01

    Twelve mountainous basins of the Vitim Plateau (Eastern Siberia, Russia) with areas ranging from 967 to 18 200 km2 affected by extensive fires in 2003 (from 13 to 78% of burnt area) were delineated based on MODIS Burned Area Product. The studied area is characterized by scarcity of hydrometeorological observations and complex hydrological processes. Combined analysis of monthly series of flow and precipitation was conducted to detect short-term fire impact on hydrological response of the basins. The idea of basin-analogues which have significant correlation of flow with "burnt" watersheds in stationary (pre-fire) period with the assumption that fire impact produced an outlier of established dependence was applied. Available data allowed for qualitative detection of fire-induced changes at two basins from twelve studied. Summer flow at the Amalat and Vitimkan Rivers (22 and 78% proportion of burnt area in 2003, respectively) increased by 40-50% following the fire.The impact of fire on flow from the other basins was not detectable.The hydrological model Hydrograph was applied to simulate runoff formation processes for stationary pre-fire and non-stationary post-fire conditions. It was assumed that landscape properties changed after the fire suggest a flow increase. These changes were used to assess the model parameters which allowed for better model performance in the post-fire period.

  17. Thinning, fire, and oak regeneration across a heterogeneous landscape in the eastern U.S.: 7-year results

    Treesearch

    Louis R. Iverson; Todd F. Hutchinson; Anantha M. Prasad; Matthew P. Peters

    2008-01-01

    We document an increase in oak and hickory advance regeneration, depending on landscape position, in the sixth year following mechanical thinning and repeated prescribed fires in southern Ohio, USA. Oak-dominated communities provide a multitude of human and natural resource values throughout the eastern United States, but their long-term sustainability is threatened...

  18. Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern, climate and weather

    Treesearch

    Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Mike D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot

    2006-01-01

    The relative importance of variables in determining area burned is an important management consideration although gaining insights from existing empirical data has proven difficult. The purpose of this study was to compare the sensitivity of modeled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The...

  19. Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern, climate and weather.

    Treesearch

    Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Mike D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot

    2006-01-01

    The purpose of this study was to compare the sensitivity of nlodelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer &...

  20. Comparison of the sensitivity of landscape-fire-succession models to variation in terrain, fuel pattern, climate and weather

    Treesearch

    Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Michael D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot

    2006-01-01

    The purpose of this study was to compare the sensitivity of modelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer &...

  1. Jointly optimizing selection of fuel treatments and siting of forest biomass-based energy production facilities for landscape-scale fire hazard reduction.

    Treesearch

    Peter J. Daugherty; Jeremy S. Fried

    2007-01-01

    Landscape-scale fuel treatments for forest fire hazard reduction potentially produce large quantities of material suitable for biomass energy production. The analytic framework FIA BioSum addresses this situation by developing detailed data on forest conditions and production under alternative fuel treatment prescriptions, and computes haul costs to alternative sites...

  2. Landscape-scale fuel treatment and wildfire impacts on carbon stocks and fire hazard in California spotted owl habitat

    Treesearch

    Lindsay A. Chiono; Danny L. Fry; Brandon M. Collins; Andrea H. Chatfield; Scott L. Stephens

    2017-01-01

    Forest managers are challenged with meeting numerous demands that often include wildlife habitat and carbon (C) sequestration. We used a probabilistic framework of wildfire occurrence to (1) estimate the potential for fuel treatments to reduce fire risk and hazard across the landscape and within protected California spotted owl (Strix occidentalis...

  3. Using the forest, people, fire agent-based social network model to investigate interactions in social-ecological systems

    Treesearch

    Paige Fischer; Adam Korejwa; Jennifer Koch; Thomas Spies; Christine Olsen; Eric White; Derric Jacobs

    2013-01-01

    Wildfire links social and ecological systems in dry-forest landscapes of the United States. The management of these landscapes, however, is bifurcated by two institutional cultures that have different sets of beliefs about wildfire, motivations for managing wildfire risk, and approaches to administering policy. Fire protection, preparedness, and response agencies often...

  4. Predicting sediment delivery from debris flows after wildfire

    NASA Astrophysics Data System (ADS)

    Nyman, Petter; Smith, Hugh G.; Sherwin, Christopher B.; Langhans, Christoph; Lane, Patrick N. J.; Sheridan, Gary J.

    2015-12-01

    Debris flows are an important erosion process in wildfire-prone landscapes. Predicting their frequency and magnitude can therefore be critical for quantifying risk to infrastructure, people and water resources. However, the factors contributing to the frequency and magnitude of events remain poorly understood, particularly in regions outside western USA. Against this background, the objectives of this study were to i) quantify sediment yields from post-fire debris flows in southeast Australian highlands and ii) model the effects of landscape attributes on debris flow susceptibility. Sediment yields from post-fire debris flows (113-294 t ha- 1) are 2-3 orders of magnitude higher than annual background erosion rates from undisturbed forests. Debris flow volumes ranged from 539 to 33,040 m3 with hillslope contributions of 18-62%. The distribution of erosion and deposition above the fan were related to a stream power index, which could be used to model changes in yield along the drainage network. Debris flow susceptibility was quantified with a logistic regression and an inventory of 315 debris flow fans deposited in the first year after two large wildfires (total burned area = 2919 km2). The differenced normalised burn ratio (dNBR or burn severity), local slope, radiative index of dryness (AI) and rainfall intensity (from rainfall radar) were significant predictors in a susceptibility model, which produced excellent results in terms identifying channels that were eroded by debris flows (Area Under Curve, AUC = 0.91). Burn severity was the strongest predictor in the model (AUC = 0.87 when dNBR is used as single predictor) suggesting that fire regimes are an important control on sediment delivery from these forests. The analysis showed a positive effect of AI on debris flow probability in landscapes where differences in moisture regimes due to climate are associated with large variation in soil hydraulic properties. Overall, the results from this study based in the southeast Australian highlands provide a novel basis upon which to model sediment delivery from post-fire debris flows. The modelling approach has wider relevance to post-fire debris flow prediction both from risk management and landscape evolution perspectives.

  5. Tree species richness decreases while species evenness increases with disturbance frequency in a natural boreal forest landscape.

    PubMed

    Yeboah, Daniel; Chen, Han Y H; Kingston, Steve

    2016-02-01

    Understanding species diversity and disturbance relationships is important for biodiversity conservation in disturbance-driven boreal forests. Species richness and evenness may respond differently with stand development following fire. Furthermore, few studies have simultaneously accounted for the influences of climate and local site conditions on species diversity. Using forest inventory data, we examined the relationships between species richness, Shannon's index, evenness, and time since last stand-replacing fire (TSF) in a large landscape of disturbance-driven boreal forest. TSF has negative effect on species richness and Shannon's index, and a positive effect on species evenness. Path analysis revealed that the environmental variables affect richness and Shannon's index only through their effects on TSF while affecting evenness directly as well as through their effects on TSF. Synthesis and applications. Our results demonstrate that species richness and Shannon's index decrease while species evenness increases with TSF in a boreal forest landscape. Furthermore, we show that disturbance frequency, local site conditions, and climate simultaneously influence tree species diversity through complex direct and indirect effects in the studied boreal forest.

  6. Differential impacts of wildfire on the population dynamics of an old-forest species.

    PubMed

    Rockweit, Jeremy T; Franklin, Alan B; Carlson, Peter C

    2017-06-01

    Ecological disturbances shape and maintain natural communities, but climate change and human land use can alter disturbance regimes and affect population persistence and vital rates in unpredictable ways. Species inhabiting landscapes shaped by wildfire have evolved mechanisms allowing them to persist under this dynamic disturbance type, which creates habitats of varying quality for these species. We utilized data from a 26-yr demographic study of northern spotted owls to analyze the influence of wildfire on apparent survival and recruitment rates. Wildfires occurred across different years and affected different spotted owl territories, which allowed us to implement a retrospective Before-After-Control-Impact (BACI) analysis and model the potential effect of wildfire extent and severity. Our results indicated that mixed-severity fires that burned at predominantly low-severity had little effect on survival and recruitment while fires characterized by more medium to high burn severities negatively affected spotted owl survival, with varying effects on recruitment. Reduced survival and increased recruitment rates on some territories affected by medium to high severity fires suggested that post-fire habitat quality was reduced resulting in territories that were marginally capable of supporting owls. We hypothesize these territories may have represented "sinks" that were supported by nearby "source" territories in a spatially heterogeneous landscape created by the mixed-severity fire regime of the region. © 2017 by the Ecological Society of America.

  7. Bat activity following restoration prescribed burning in the central Appalachian Upland and riparian habitats

    USGS Publications Warehouse

    Austin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Muthersbaugh, Michael; Powers, Karen E.

    2018-01-01

    After decades of fire suppression in eastern North America, land managers now are prioritizing prescribed fire as a management tool to restore or maintain fire-adapted vegetation communities. However, in long—fire-suppressed landscapes, such as the central and southern Appalachians, it is unknown how bats will respond to prescribed fire in both riparian and upland forest habitats. To address these concerns, we conducted zero-crossing acoustic surveys of bat activity in burned, unburned, riparian, and non-riparian areas in the central Appalachians, Virginia, USA. Burn and riparian variables had model support (ΔAICc < 4) to explain activity of all bat species. Nonetheless, parameter estimates for these conditions were small and confidence intervals overlapped zero for all species, indicating effect sizes were marginal. Our results suggest that bats respond to fire differently between upland and riparian forest habitats, but overall, large landscape-level prescribed fire has a slightly positive to neutral impact on all bats species identified at our study site post—fire application.

  8. Benefits of hindsight: reestablishing fire on the landscape.

    Treesearch

    Sally Duncan

    2001-01-01

    Well-intentioned fire suppression efforts during the last 80 to 100 years have altered the structure of low-elevation forests in the interior Northwest. Historically, nondestructive, frequent, low-intensity fires have given way to larger, infrequent, severe, high-intensity fires. Because of altered fire behavior, forests now have increased fuel, and consequently, are...

  9. Classifying and comparing spatial models of fire dynamics

    Treesearch

    Geoffrey J. Cary; Robert E. Keane; Mike D. Flannigan

    2007-01-01

    Wildland fire is a significant disturbance in many ecosystems worldwide and the interaction of fire with climate and vegetation over long time spans has major effects on vegetation dynamics, ecosystem carbon budgets, and patterns of biodiversity. Landscape-Fire-Succession Models (LFSMs) that simulate the linked processes of fire and vegetation development in a spatial...

  10. Returning fire to the land: celebrating traditional knowledge and fire

    Treesearch

    Frank K. Lake; Vita Wright; Penelope Morgan; Mary McFadzen; Dave McWethy; Camille Stevens-Rumann

    2017-01-01

    North American tribes have traditional knowledge about fire effects on ecosystems, habitats, and resources. For millennia, tribes have used fire to promote valued resources. Sharing our collective understanding of fire, derived from traditional and western knowledge systems, can benefit landscapes and people. We organized two workshops to investigate how traditional...

  11. Fire in southern forest landscapes

    Treesearch

    John A. Stanturf; Dale D. Wade; Thomas A. Waldrop; Deborah K. Kennard; Gary L. Achtemeier

    2002-01-01

    Other than land clearing for urban development (Wear and others 1998), no disturbance is more common in southern forests than fire. The pervasive role of fire predates human activity in the South (Komarek 1964, 1974), and humans magnified that role. Repeating patterns of fire behavior lead to recognizable fire regimes, with temporal and spatial dimensions....

  12. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands

    PubMed Central

    Bliege Bird, Rebecca; Codding, Brian F.; Kauhanen, Peter G.

    2012-01-01

    Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet–dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes. PMID:22689979

  13. No Smoke Without Fire: the hidden costs of early life exposure to landscape fire emissions in Indonesia

    NASA Astrophysics Data System (ADS)

    Jina, A.; Marlier, M. E.

    2012-12-01

    Air pollution from landscape fire emissions can have devastating effects upon public health. The consequent health costs place a burden upon the economies of many nations, particularly in developing countries. Recent research has assessed contemporaneous mortality due to respiratory infections or cardiovascular disease, but little has looked at the potential long-term consequences and hidden costs of exposure to fire pollution at a population scale. The difficulty of quantifying these costs is partly due to incomplete or inaccurate health data in many developing countries, and is further compounded by sparse air pollution monitoring data. While satellite data partially compensates for this, there can still be significant gaps in data availability and difficulty in retrieving surface concentrations. In this study, we demonstrate the dramatic long-term health and human development consequences of fine particulate matter (PM2.5) exposure by using modeled PM2.5 to quantify repeated exposure to landscape fire emissions in Indonesia, which is prone to large, catastrophic fires during El Niño conditions. Surface PM2.5 concentrations at 2x2.5° resolution are obtained from GISS-E2-Puccini (the new version of the NASA GISS ModelE general circulation model), run with monthly fire emissions from the Global Fire Emissions Database version 3 (GFED3). 24-hour ambient PM2.5 concentrations across Indonesia are matched to geographically and socioeconomically representative longitudinal surveys conducted by the Indonesian government. We find important medium- to long-term morbidity associated with early life exposure to ambient air pollution from fire emissions. Our analysis indicates that children exposed to high levels of PM2.5 in utero are more likely to suffer from impaired physical and cognitive development. A one standard deviation increase in ambient air pollution, derived from the GISS-E2-Puccini model, leads to effects that are directly comparable to those from indoor air pollution. In addition, income shocks due to pollution-caused family illness can lead to an antenatal amplification of these in utero effects. The impacts of exposure in early life can be difficult to reverse, leading to a persistent effects upon a society which may contribute a significant cost to the more readily demonstrated losses associated with immediate health impacts.

  14. Biophysical Interactions within Step-Pool Mountain Streams Following Wildfire

    NASA Astrophysics Data System (ADS)

    Parker, A.; Chin, A.; O'Dowd, A. P.

    2014-12-01

    Recovery of riverine ecosystems following disturbance is driven by a variety of interacting processes. Wildfires pose increasing disturbances to riverine landscapes, with rising frequencies and magnitudes owing to warming climates and increased fuel loads. The effects of wildfire include loss of vegetation, elevated runoff and flash floods, erosion and deposition, and changing biological habitats and communities. Understanding process interactions in post-fire landscapes is increasingly urgent for successful management and restoration of affected ecosystems. In steep channels, steps and pools provide prominent habitats for organisms and structural integrity in high energy environments. Step-pools are typically stable, responding to extreme events with recurrence intervals often exceeding 50 years. Once wildfire occurs, however, intensification of post-fire flood events can potentially overpower the inherent stability of these systems, with significant consequences for aquatic life and human well-being downstream. This study examined the short-term response of step-pool streams following the 2012 Waldo Canyon Fire in Colorado. We explored interacting feedbacks among geomorphology, hydrology, and ecology in the post-fire environment. At selected sites with varying burn severity, we established baseline conditions immediately after the fire with channel surveys, biological assessment using benthic macroinvertebrates, sediment analysis including pebble counts, and precipitation gauging. Repeat measurements after major storm events over several years enabled analysis of the interacting feedbacks among post-fire processes. We found that channels able to retain the step-pool structure changed less and facilitated recovery more readily. Step habitats maintained higher percentages of sensitive macroinvertebrate taxa compared to pools through post-fire floods. Sites burned with high severity experienced greater reduction in the percentage of sensitive taxa. The decimation of macroinvertebrates closely coincides with the physical destruction of the step-pool morphology. The role that step-pools play in enhancing the ecological quality of fluvial systems, therefore, provides a key focus for effective management and restoration of aquatic resources following wildfires.

  15. Community participation in fire management planning: The Trinity county fire safe council's fire plan

    Treesearch

    Yvonne Everett

    2008-01-01

    In 1999, Trinity County CA, initiated a participatory fire management planning effort. Since that time, the Trinity County Fire Safe Council has completed critical portions of a fire safe plan and has begun to implement projects defined in the plan. Completion of a GIS based, landscape scale fuels reduction element in the plan defined by volunteer fire fighters, agency...

  16. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression

    Treesearch

    Sean A. Parks; Lisa M. Holsinger; Carol Miller; Cara R. Nelson

    2015-01-01

    Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-...

  17. A landscape-scale wildland fire study using coupled weather-wildland fire model and airborne remote sensing

    Treesearch

    J.L. Coen; Philip Riggan

    2011-01-01

    We examine the Esperanza fire, a Santa Ana-driven wildland fire that occurred in complex terrain in spatially heterogeneous chaparral fuels, using airborne remote sensing imagery from the FireMapper thermal-imaging radiometer and a coupled weather-wildland fire model. The radiometer data maps fire intensity and is used to evaluate the error in the extent of the...

  18. Measuring the effect of fuel treatments on forest carbon using landscape risk analysis

    NASA Astrophysics Data System (ADS)

    Ager, A. A.; Finney, M. A.; McMahan, A.; Cathcart, J.

    2010-12-01

    Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon pools to account for stochastic wildfire occurrence. The study area was a 68 474 ha watershed located on the Fremont-Winema National Forest in southeastern Oregon, USA. Fuel reduction treatments were simulated on 10% of the watershed (19% of federal forestland). We simulated 30 000 wildfires with random ignition locations under both treated and untreated landscapes to estimate the change in burn probability by flame length class resulting from the treatments. Carbon loss functions were then calculated with the Forest Vegetation Simulator for each stand in the study area to quantify change in carbon as a function of flame length. We then calculated the expected change in carbon from a random ignition and wildfire as the sum of the product of the carbon loss and the burn probabilities by flame length class. The expected carbon difference between the non-treatment and treatment scenarios was then calculated to quantify the effect of fuel treatments. Overall, the results show that the carbon loss from implementing fuel reduction treatments exceeded the expected carbon benefit associated with lowered burn probabilities and reduced fire severity on the treated landscape. Thus, fuel management activities resulted in an expected net loss of carbon immediately after treatment. However, the findings represent a point in time estimate (wildfire immediately after treatments), and a temporal analysis with a probabilistic framework used here is needed to model carbon dynamics over the life cycle of the fuel treatments. Of particular importance is the long-term balance between emissions from the decay of dead trees killed by fire and carbon sequestration by forest regeneration following wildfire.

  19. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States

    Treesearch

    LaWen T. Hollingsworth; Laurie L. Kurth; Bernard R. Parresol; Roger D. Ottmar; Susan J. Prichard

    2012-01-01

    Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation...

  20. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Treesearch

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  1. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation

    NASA Astrophysics Data System (ADS)

    Conedera, Marco; Tinner, Willy; Neff, Christophe; Meurer, Manfred; Dickens, Angela F.; Krebs, Patrik

    2009-03-01

    Biomass burning and resulting fire regimes are major drivers of vegetation changes and of ecosystem dynamics. Understanding past fire dynamics and their relationship to these factors is thus a key factor in preserving and managing present biodiversity and ecosystem functions. Unfortunately, our understanding of the disturbance dynamics of past fires is incomplete, and many open questions exist relevant to these concepts and the related methods. In this paper we describe the present status of the fire-regime concept, discuss the notion of the fire continuum and related proxies, and review the most important existing approaches for reconstructing fire history at centennial to millennial scales. We conclude with a short discussion of selected directions for future research that may lead to a better understanding of past fire-regime dynamics. In particular, we suggest that emphasis should be laid on (1) discriminating natural from anthropogenic fire-regime types, (2) improving combined analysis of fire and vegetation reconstructions to study long-term fire ecology, and (3) overcoming problems in defining temporal and spatial scales of reference, which would allow better use of past records to gain important insights for landscape, fire and forest management.

  2. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales.

    PubMed

    Avitabile, Sarah C; Nimmo, Dale G; Bennett, Andrew F; Clarke, Michael F

    2015-01-01

    Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter). Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood), they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales.

  3. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales

    PubMed Central

    Avitabile, Sarah C.; Nimmo, Dale G.; Bennett, Andrew F.; Clarke, Michael F.

    2015-01-01

    Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter). Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood), they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales. PMID:26571383

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burnmore » severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for -50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.« less

  5. Changes in canopy fuels and fire behavior after ponderosa pine restoration treatments: A landscape perspective

    Treesearch

    J. P. Roccaforte; P. Z. Fule

    2008-01-01

    (Please note, this is an abstract only) We modeled crown fire behavior and assessed changes in canopy fuels before and after the implementation of restoration treatments in a ponderosa pine landscape at Mt. Trumbull, Arizona. We measured 117 permanent plots before (1996/1997) and after (2003) thinning and burning treatments. The plots are evenly distributed across the...

  6. Relative importance of fuel management, ignition management and weather for area burned: Evidence from five landscape-fire-succession models

    Treesearch

    Geoffrey J. Cary; Mike D. Flannigan; Robert E. Keane; Ross A. Bradstock; Ian D. Davies; James M. Lenihan; Chao Li; Kimberley A. Logan; Russell A. Parsons

    2009-01-01

    The behaviour of five landscape fire models (CAFE, FIRESCAPE, LAMOS(HS), LANDSUM and SEMLAND) was compared in a standardised modelling experiment. The importance of fuel management approach, fuel management effort, ignition management effort and weather in determining variation in area burned and number of edge pixels burned (a measure of potential impact on assets...

  7. 36 CFR 294.41 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fires; or (ii) Landscape patterns; and (4) Vegetation attributes have been significantly altered from... semi-primitive motorized classes of dispersed recreation; (6) Reference landscapes; (7) Natural-appearing landscapes with high scenic quality; (8) Traditional cultural properties and sacred sites; and (9...

  8. 36 CFR 294.41 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fires; or (ii) Landscape patterns; and (4) Vegetation attributes have been significantly altered from... semi-primitive motorized classes of dispersed recreation; (6) Reference landscapes; (7) Natural-appearing landscapes with high scenic quality; (8) Traditional cultural properties and sacred sites; and (9...

  9. The pyrohealth transition: how combustion emissions have shaped health through human history.

    PubMed

    Johnston, Fay H; Melody, Shannon; Bowman, David M J S

    2016-06-05

    Air pollution from landscape fires, domestic fires and fossil fuel combustion is recognized as the single most important global environmental risk factor for human mortality and is associated with a global burden of disease almost as large as that of tobacco smoking. The shift from a reliance on biomass to fossil fuels for powering economies, broadly described as the pyric transition, frames key patterns in human fire usage and landscape fire activity. These have produced distinct patters of human exposure to air pollution associated with the Agricultural and Industrial Revolutions and post-industrial the Earth global system-wide changes increasingly known as the Anthropocene. Changes in patterns of human fertility, mortality and morbidity associated with economic development have been previously described in terms of demographic, epidemiological and nutrition transitions, yet these frameworks have not explicitly considered the direct consequences of combustion emissions for human health. To address this gap, we propose a pyrohealth transition and use data from the Global Burden of Disease (GBD) collaboration to compare direct mortality impacts of emissions from landscape fires, domestic fires, fossil fuel combustion and the global epidemic of tobacco smoking. Improving human health and reducing the environmental impacts on the Earth system will require a considerable reduction in biomass and fossil fuel combustion.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  10. The pyrohealth transition: how combustion emissions have shaped health through human history

    PubMed Central

    Johnston, Fay H.; Melody, Shannon

    2016-01-01

    Air pollution from landscape fires, domestic fires and fossil fuel combustion is recognized as the single most important global environmental risk factor for human mortality and is associated with a global burden of disease almost as large as that of tobacco smoking. The shift from a reliance on biomass to fossil fuels for powering economies, broadly described as the pyric transition, frames key patterns in human fire usage and landscape fire activity. These have produced distinct patters of human exposure to air pollution associated with the Agricultural and Industrial Revolutions and post-industrial the Earth global system-wide changes increasingly known as the Anthropocene. Changes in patterns of human fertility, mortality and morbidity associated with economic development have been previously described in terms of demographic, epidemiological and nutrition transitions, yet these frameworks have not explicitly considered the direct consequences of combustion emissions for human health. To address this gap, we propose a pyrohealth transition and use data from the Global Burden of Disease (GBD) collaboration to compare direct mortality impacts of emissions from landscape fires, domestic fires, fossil fuel combustion and the global epidemic of tobacco smoking. Improving human health and reducing the environmental impacts on the Earth system will require a considerable reduction in biomass and fossil fuel combustion. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216506

  11. Social Networks and Adaptation to Environmental Change: The Case of Central Oregon's Fire-Prone Forest Landscape

    NASA Astrophysics Data System (ADS)

    Fischer, A.

    2012-12-01

    Social networks are the patterned interactions among individuals and organizations through which people refine their beliefs and values, negotiate meanings for things and develop behavioral intentions. The structure of social networks has bearing on how people communicate information, generate and retain knowledge, make decisions and act collectively. Thus, social network structure is important for how people perceive, shape and adapt to the environment. We investigated the relationship between social network structure and human adaptation to wildfire risk in the fire-prone forested landscape of Central Oregon. We conducted descriptive and non-parametric social network analysis on data gathered through interviews to 1) characterize the structure of the network of organizations involved in forest and wildfire issues and 2) determine whether network structure is associated with organizations' beliefs, values and behaviors regarding fire and forest management. Preliminary findings indicate that fire protection and forest-related organizations do not frequently communicate or cooperate, suggesting that opportunities for joint problem-solving, innovation and collective action are limited. Preliminary findings also suggest that organizations with diverse partners are more likely to hold adaptive beliefs about wildfire and work cooperatively. We discuss the implications of social network structure for adaptation to changing environmental conditions such as wildfire risk.

  12. Feedbacks in human-landscape systems

    NASA Astrophysics Data System (ADS)

    Chin, Anne

    2015-04-01

    As human interactions with Earth systems intensify in the "Anthropocene", understanding the complex relationships among human activity, landscape change, and societal responses to those changes is increasingly important. Interdisciplinary research centered on the theme of "feedbacks" in human-landscape systems serves as a promising focus for unraveling these interactions. Deciphering interacting human-landscape feedbacks extends our traditional approach of considering humans as unidirectional drivers of change. Enormous challenges exist, however, in quantifying impact-feedback loops in landscapes with significant human alterations. This paper illustrates an example of human-landscape interactions following a wildfire in Colorado (USA) that elicited feedback responses. After the 2012 Waldo Canyon Fire, concerns for heightened flood potential and debris flows associated with post-fire hydrologic changes prompted local landowners to construct tall fences at the base of a burned watershed. These actions changed the sediment transport regime and promoted further landscape change and human responses in a positive feedback cycle. The interactions ultimately increase flood and sediment hazards, rather than dampening the effects of fire. A simple agent-based model, capable of integrating social and hydro-geomorphological data, demonstrates how such interacting impacts and feedbacks could be simulated. Challenges for fully capturing human-landscape feedback interactions include the identification of diffuse and subtle feedbacks at a range of scales, the availability of data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, and the varied metrics and data needed to represent both the physical and human systems. By collaborating with social scientists with expertise in the human causes of landscape change, as well as the human responses to those changes, geoscientists could more fully recognize and anticipate the coupled human-landscape interactions that will drive the evolution of Earth systems into the future.

  13. El Niño and health risks from landscape fire emissions in Southeast Asia.

    PubMed

    Marlier, Miriam E; DeFries, Ruth S; Voulgarakis, Apostolos; Kinney, Patrick L; Randerson, James T; Shindell, Drew T; Chen, Yang; Faluvegi, Greg

    2013-01-01

    Emissions from landscape fires affect both climate and air quality 1 . In this study, we combine satellite-derived fire estimates and atmospheric modeling to quantify health effects from fire emissions in Southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity due to coupling between El Niño-induced droughts and anthropogenic land use change 2,3 . We show that during strong El Niño years, fires contribute up to 200 μg/m 3 and 50 ppb in annual average fine particulate matter (PM 2.5 ) and ozone (O 3 ) surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization (WHO) 50 μg/m 3 24-hour PM 2.5 interim target (IT-2) 4 and an estimated 10,800 (6,800-14,300) person (~2%) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity, and maintaining ecosystem services.

  14. Why were California's wine country fires so destructive?

    USGS Publications Warehouse

    Keeley, Jon E.

    2017-01-01

    As of late October more than a dozen wildfires north of San Francisco had killed more than 40 people, burned approximately 160,000 acres and destroyed more than 7,000 structures.This tragic loss of life and property is unprecedented in California. However, the fires are not anomalous events in terms of their size, intensity or the speed with which they spread. Indeed, the path of the destructive Tubbs fire in Napa and Sonoma counties mirrors that of the Hanley fire of 1964. This extreme wind-driven fire burned under similar conditions, across much of the same landscape and covered an area substantially greater than the recent Tubbs fire.Strikingly, though, no lives were lost during the Hanley fire and only 29 structures were destroyed. Why did these two fires, 50 years apart, burn on the same general landscape, under similar extreme winds, with such different human impacts? Fire scientists will study these events intensively to parse out the relative importance of various factors. But it is clear that two factors probably were major contributors: wind and population growth.

  15. El Niño and health risks from landscape fire emissions in southeast Asia

    NASA Astrophysics Data System (ADS)

    Marlier, Miriam E.; Defries, Ruth S.; Voulgarakis, Apostolos; Kinney, Patrick L.; Randerson, James T.; Shindell, Drew T.; Chen, Yang; Faluvegi, Greg

    2013-02-01

    Emissions from landscape fires affect both climate and air quality. Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Niño-induced droughts and anthropogenic land-use change. We show that during strong El Niño years, fires contribute up to 200μgm-3 and 50ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50μgm-3 24-hr PM2.5 interim target and an estimated 10,800 (6,800-14,300)-person (~ 2%) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services.

  16. El Nino and Health Risks from Landscape Fire Emissions in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Marlier, Miriam E.; Defries, Ruth S.; Voulgarakis, Apostolos; Kinney, Patrick L.; Randerson, James T.; Shindell, Drew T.; Chen, Yang; Faluvegi, Greg

    2013-01-01

    Emissions from landscape fires affect both climate and air quality. Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Nino-induced droughts and anthropogenic land-use change. We show that during strong El Nino years, fires contribute up to 200 micrograms per cubic meter and 50 ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50 micrograms per cubic metre 24-hr PM(sub 2.5) interim target and an estimated 10,800 (6,800-14,300)-person (approximately 2 percent) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services.

  17. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  18. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires

    PubMed Central

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I.

    2016-01-01

    Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire. PMID:27780249

  19. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires.

    PubMed

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I

    2016-01-01

    Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.

  20. Fire in Eastern Hardwood Forests through 14,000 Years

    Treesearch

    Martin A. Spetich; Roger W. Perry; Craig A. Harper; Stacy L. Clark

    2011-01-01

    Fire helped shape the structure and species composition of hardwood forests of the eastern United States over the past 14,000 years. Periodic fires were common in much of this area prior to European settlement, and fire-resilient species proliferated. Early European settlers commonly adopted Native American techniques of applying fire to the landscape. As the demand...

  1. Evaluating the ecological benefits of wildfire by integrating fire and ecosystem simulation models

    Treesearch

    Robert E. Keane; Eva Karau

    2010-01-01

    Fire managers are now realizing that wildfires can be beneficial because they can reduce hazardous fuels and restore fire-dominated ecosystems. A software tool that assesses potential beneficial and detrimental ecological effects from wildfire would be helpful to fire management. This paper presents a simulation platform called FLEAT (Fire and Landscape Ecology...

  2. Fire on the mountain: birds and burns in the Rocky Mountains

    Treesearch

    Natasha B. Kotliar; Victoria A. Saab; Richard L. Hutto

    2005-01-01

    The diversity of climate and topography across the Rocky Mountains has resulted in a broad spectrum of fire regimes ranging from frequent, low-severity fires to infrequent stand-replacement events. Such variation in fire history contributes to landscape structure and dynamics, and in turn can influence subsequent fire behavior (Allen et al. 2002). In essence,...

  3. Fire behavior simulation in Mediterranean forests using the minimum travel time algorithm

    Treesearch

    Kostas Kalabokidis; Palaiologos Palaiologou; Mark A. Finney

    2014-01-01

    Recent large wildfires in Greece exemplify the need for pre-fire burn probability assessment and possible landscape fire flow estimation to enhance fire planning and resource allocation. The Minimum Travel Time (MTT) algorithm, incorporated as FlamMap's version five module, provide valuable fire behavior functions, while enabling multi-core utilization for the...

  4. Fire on the early western landscape: An annotated record of wildland fires 1776-1900

    Treesearch

    George E. Gruell

    1985-01-01

    Scientific and historical literature was searched for documented accounts of early fires in the '"interior West" - Montana, Wyoming, Idaho, Utah, Nevada, and eastern Oregon. One hundred and forty-five accounts of fires by 44 observers were found. The majority of accounts described fires in progress. A smaller proportion referred to burned areas...

  5. Ecological effects of the Hayman Fire - Part 1: Historical (pre-1860) and current (1860-2002) fire regimes

    Treesearch

    William H. Romme; Thomas T. Veblen; Merrill R. Kaufmann; Rosemary Sherriff; Claudia M. Regan

    2003-01-01

    To address historical and current fire regimes in the Hayman landscape, we first present the concepts of “historical range of variability” and ”fire regime” to provide the necessary conceptual tools for evaluating fire occurrence, fire behavior, and fire effects. Next we summarize historical (pre-1860) fire frequency and fire effects for the major forest types of the...

  6. Short- and long-term effects on fuels, forest structure, and wildfire potential from prescribed fire and resource benefit fire in southwestern forests, USA

    Treesearch

    Molly E. Hunter; Jose M. Iniguez; Leigh B. Lentile

    2011-01-01

    Prescribed and resource benefit fires are used to manage fuels in fire-prone landscapes in the Southwest. These practices, however, typically occur under different conditions, potentially leading to differences in fire behavior and effects. The objectives of this study were to investigate the effects of recent prescribed fires, resource benefit fires, and repeated...

  7. Hayman Fire case study: Summary [RMRS-GTR-114

    Treesearch

    Russell T. Graham

    2003-01-01

    Historically, wildfires burned Western forests creating and maintaining a variety of forest compositions and structures (Agee 1993). Prior to European settlement lightning along with Native Americans ignited fires routinely across many forested landscapes. After Euro-American settlement, fires continued to be quite common with fires ignited by settlers, railroads, and...

  8. Systems thinking and wildland fire management

    Treesearch

    Matthew P. Thompson; Christopher J. Dunn; David E. Calkin

    2017-01-01

    A changing climate, changing development and land use patterns, and increasing pressures on ecosystem services raise global concerns over growing losses associated with wildland fires. New management paradigms acknowledge that fire is inevitable and often uncontrollable, and focus on living with fire rather than attempting to eliminate it from the landscape. A notable...

  9. 36 CFR 294.21 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Has a geographic feature that aids in creating an effective fire break, such as a road or a ridge top; or (3) Is in condition class 3 as defined by HFRA. Fire hazard and risk: The fuel conditions on the landscape. Fire occurrence: The probability of wildfire ignition based on historic fire occurrence records...

  10. 36 CFR 294.21 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Has a geographic feature that aids in creating an effective fire break, such as a road or a ridge top; or (3) Is in condition class 3 as defined by HFRA. Fire hazard and risk: The fuel conditions on the landscape. Fire occurrence: The probability of wildfire ignition based on historic fire occurrence records...

  11. 36 CFR 294.21 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Has a geographic feature that aids in creating an effective fire break, such as a road or a ridge top; or (3) Is in condition class 3 as defined by HFRA. Fire hazard and risk: The fuel conditions on the landscape. Fire occurrence: The probability of wildfire ignition based on historic fire occurrence records...

  12. Role of Fire and Landscape Position on Dissolved Organic Carbon Composition and Reactivity in the Yukon-Kuskokwim Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Bristol, E. M.; Dabrowski, J. S.; Jimmie, J. A.; Peter, D. L.; Holmes, R. M.; Mann, P. J.; Natali, S.; Schade, J. D.

    2017-12-01

    The Yukon-Kuskokwim Delta in southwest, Alaska is characterized by discontinuous permafrost, which is vulnerable to thaw induced by climate change. Recent fires in the delta have caused dramatic changes in the landscape, likely changing carbon dynamics, and potentially altering dissolved organic carbon (DOC) composition and DOC concentrations in aquatic ecosystems. These changes, in turn, likely affect microbial respiration and hydrologic C export from watersheds in the delta. In this study, we investigated how landscape position and fire history drive changes in DOC composition and reactivity in aquatic ecosystems. We surveyed soil pore waters, ponds, fens, and streams at varying landscape positions in burned and unburned landscapes. We also conducted a laboratory experiment to compare the role of photooxidation, photodegradation, and microbial respiration in altering DOC composition and concentration. Surface waters in burned regions were higher in temperature and inorganic nitrogen concentrations. Higher conductivity in burned areas suggests that fire is deepening the water table, causing water to flow through a more mineral soil horizon. While DOC concentrations did not vary significantly by landscape position or fire history, optical properties of DOC suggest that DOC molecular weight is lower in burned regions and decreases along flow paths. Similarly, our incubation experiment indicated that changes in DOC composition are driven by exposure to light more than bacterial respiration, and that photochemical reactivity declines along flow paths. Percent DOC loss was greatest in waters exposed to both light and bacterial, and percent DOC loss from burned watershed waters was correlated with optical properties. Based on our findings, we predict that the combination of increased surface water temperatures, increased inorganic nitrogen concentrations, and lower molecular weight DOC will increase bacterial respiration of DOC in watersheds burned by wildfire. Further research is needed to better understand the changing hydrology in burned tundra, and the relationship between photooxidation and biological mineralization of DOC.

  13. Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico

    Treesearch

    Ashley E. Van Beusekom; William A. Gould; A. Carolina Monmany; Azad Henareh Khalyani; Maya Quiñones; Stephen J. Fain; Maria José Andrade-Núñez; Grizelle González

    2018-01-01

    Abstract Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant...

  14. Effects of fire on fish populations: Landscape perspectives on persistence of native fishes and nonnative fish invasions

    Treesearch

    Jason B. Dunham; Michael K. Young; Robert E. Gresswell; Bruce E. Rieman

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests...

  15. Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: Model evaluation, development, and thresholds

    Treesearch

    Lindsay M. Grayson; Robert A. Progar; Sharon M. Hood

    2017-01-01

    Fire is a driving force in the North American landscape and predicting post-fire tree mortality is vital to land management. Post-fire tree mortality can have substantial economic and social impacts, and natural resource managers need reliable predictive methods to anticipate potential mortality following fire events. Current fire mortality models are limited to a few...

  16. Dynamic Disturbance Processes Create Dynamic Lek Site Selection in a Prairie Grouse.

    PubMed

    Hovick, Torre J; Allred, Brady W; Elmore, R Dwayne; Fuhlendorf, Samuel D; Hamilton, Robert G; Breland, Amber

    2015-01-01

    It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993-2012) of Greater Prairie-Chicken (Tympanuchus cupido) lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy's Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65%) moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken's distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas) and management plans not view lek locations as static points, but rather as sites that shift around the landscape in response to shifting vegetation structure. Acknowledging shifting lek locations in these landscapes will help ensure conservation efforts are successful by targeting the appropriate areas for protection and management.

  17. Fire risk in the road landscape patterns of the state of Paraná, Brazil - planning grants for the wildland-urban interface

    Treesearch

    Daniela Biondi; Antonio Carlos Batista; Angeline Martini

    2013-01-01

    Urban growth worldwide has generated great concern in the planning of the different environments belonging to the wildland-urban interface. One of the problems that arise is the landscape treatment given to roads, which must not only comply with aesthetic and ecological principles, but also be functional, adding functions relating to forest fire prevention and control...

  18. Fire in the wildland-urban interface: Selecting and maintaining firewise plants for landscaping

    Treesearch

    J. Douglas Doran; Cotton K. Randall; Alan J. Long

    2004-01-01

    One of the major issues in the southern wildland-urban interface is the loss of homes to wildfire. For homeowners who live in an area with a medium to high risk of wildfire, this document provides useful information for protecting your property (see University of Florida/IFAS publication FOR 71 "Landscaping in Florida with Fire in Mind” to determine your wildfire...

  19. Understanding the role of wildland fire, insects, and disease in predicting climate change effects on whitebark pine: Simulating vegetation, disturbance, and climate dynamics in a northern Rocky Mountain landscape

    Treesearch

    Robert Keane; Rachel Loehman

    2010-01-01

    Climate changes are projected to profoundly influence vegetation patterns and community compositions, either directly through increased species mortality and shifts in species distributions, or indirectly through disturbance dynamics such as increased wildfire activity and extent, shifting fire regimes, and pathogenesis. High-elevation landscapes have been shown to be...

  20. Fire management strategies to maintain species population processes in a fragmented landscape of fire-interval extremes.

    PubMed

    Tulloch, Ayesha I T; Pichancourt, Jean-Baptiste; Gosper, Carl R; Sanders, Angela; Chadès, Iadine

    2016-10-01

    Changed fire regimes have led to declines of fire-regime-adapted species and loss of biodiversity globally. Fire affects population processes of growth, reproduction, and dispersal in different ways, but there is little guidance about the best fire regime(s) to maintain species population processes in fire-prone ecosystems. We use a process-based approach to determine the best range of fire intervals for keystone plant species in a highly modified Mediterranean ecosystem in southwestern Australia where current fire regimes vary. In highly fragmented areas, fires are few due to limited ignitions and active suppression of wildfire on private land, while in highly connected protected areas fires are frequent and extensive. Using matrix population models, we predict population growth of seven Banksia species under different environmental conditions and patch connectivity, and evaluate the sensitivity of species survival to different fire management strategies and burning intervals. We discover that contrasting, complementary patterns of species life-histories with time since fire result in no single best fire regime. All strategies result in the local patch extinction of at least one species. A small number of burning strategies secure complementary species sets depending on connectivity and post-fire growing conditions. A strategy of no fire always leads to fewer species persisting than prescribed fire or random wildfire, while too-frequent or too-rare burning regimes lead to the possible local extinction of all species. In low landscape connectivity, we find a smaller range of suitable fire intervals, and strategies of prescribed or random burning result in a lower number of species with positive growth rates after 100 years on average compared with burning high connectivity patches. Prescribed fire may reduce or increase extinction risk when applied in combination with wildfire depending on patch connectivity. Poor growing conditions result in a significantly reduced number of species exhibiting positive growth rates after 100 years of management. By exploring the consequences of managing fire, we are able to identify which species are likely to disappear under a given fire regime. Identifying the appropriate complementarity of fire intervals, and their species-specific as well as community-level consequences, is crucial to reduce local extinctions of species in fragmented fire-prone landscapes. © 2016 by the Ecological Society of America.

  1. Oregon: Biscuit Wildfire

    Atmospheric Science Data Center

    2014-05-15

    ... SpectroRadiometer (MISR) portrays the fire underway and the burn scars on the landscape after the event. Vegetated regions appear red in ... the fire had been fully contained. A large, dark-colored burn scar at the site of the Biscuit Fire indicates the area consumed, which ...

  2. Humans, Topograpghy, and Wildland Fire: The Ingredients for Long-term Patterns in Ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography, and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These factors can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  3. Humans, topography, and wildland fire: The ingredients for long-term patterns in ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography,and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These facters can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  4. Fire history of oak­pine forests in the Lower Boston Mountains, Arkansas, USA

    Treesearch

    R.P. Guyette; Martin A. Spetich

    2003-01-01

    Perspective on present day issues associated with wildland fire can be gained by studying the long-term interactions among humans, landscape, and fire. Fire frequency and extent over the last 320 years document these interactions north of the Arkansas River on the southern edge of the Lower Boston Mountains. Dendrochronological methods were used to construct three fire...

  5. High-severity fire: Evaluating its key drivers and mapping its probability across western US forests

    Treesearch

    Sean A. Parks; Lisa M. Holsinger; Matthew H. Panunto; W. Matt Jolly; Solomon Z. Dobrowski; Gregory K. Dillon

    2018-01-01

    Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the...

  6. Prescribed fire to restore shrublands to grasslands

    Treesearch

    Carlton M. Britton; David B. Wester; Brent J. Racher

    2007-01-01

    Prescribed burning to restore grasslands is more complicated than just setting a fire or, worse, letting a fire burn. We will examine how fire may be used to restore a more desirable landscape. First, any area that might be considered for prescribed fire should be thoroughly evaluated. Soils are paramount as they will indicate what we can expect from a given site. Then...

  7. Evaluating risks and benefits of wildland fire at landscape scales

    Treesearch

    Carol Miller; Peter B. Landres; Paul B. Alaback

    2000-01-01

    Fire suppression has resulted in severe management challenges, especially in the wildland-urban interface zone. Fire managers seek to reduce fuels and risks in the interface zone, while striving to return the natural role of fire to wildland ecosystems. Managers must balance the benefits of wildland fire on ecosystem health against the values that need to be protected...

  8. Large forest fires in Canada, 1959-1997

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.

    2002-01-01

    A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ˜97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ˜2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.

  9. Large forest fires in Canada, 1959-1997

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.

    2003-01-01

    A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ~97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ~2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.

  10. Mediterranean fire histories since the Last Glacial Maximum from lake sedimentary micro- charcoals

    NASA Astrophysics Data System (ADS)

    Roberts, C.; Turner, R.

    2006-12-01

    Microscopic charcoal analysis has been used to reconstruct past fire activity over a range of spatial and temporal scales in Europe, the Americas and Australasia. By contrast, and despite the importance of fire in its modern landscape ecology, few systematic attempts have been made in the circum-Mediterranean region to reconstruct long-term fire histories using micro-charcoals or other methods of analysis. This study has used non-destructive methods of charcoal extraction based on sieving plus heavy-liquid separation (Turner et al in press In: Charcoal from the past: cultural and palaeoenvironmental implications. BAR International Series, Archaeopress, Oxford) along with contiguous core sampling of sedimentary core sequences from a number of East Mediterranean lakes that span the last glacial-interglacial climatic transition. At Eski Acýgöl, central Turkey (Roberts et al. Holocene, 2001, 11, 719-734), then a deepwater crater lake, overall micro-charcoal concentrations in sediments are low and were dominated by influx from regional-landscape rather than local- scale fire events. This record therefore provides a good proxy for overall fire frequency/intensity across the central Anatolia plateau, whose (hypothetical) modern "natural" vegetation is predominantly open oak-grass- Artemisia parkland. Shallow water sites such as Akgöl typically record much higher overall micro-charcoal abundance as a result of local-scale burning of the marsh surface at times of lowered water table, and thus received episodic local charcoal influx superimposed on background regional airborne sources. These results indicate that site type / catchment area and sampling / analytic methodology can critically influence reconstructed fire histories. We have correlated our charcoal records with existing multi-proxy data from the same cores (stable isotopes and pollen). This shows that climatic variations and biomass availability were the main factors controlling the timing of regional fire activity from the Last Glacial Maximum through to the Early Holocene. The Holocene portion of the Eski Acýgöl record contains a significant cyclicity with a periodicity of 1400 to 1500 years which may be linked with external (e.g. solar) forcing.

  11. Integration of climatic water deficit and fine-scale physiography in process-based modeling of forest landscape resilience to large-scale tree mortality

    NASA Astrophysics Data System (ADS)

    Yang, J.; Weisberg, P.; Dilts, T.

    2016-12-01

    Climate warming can lead to large-scale drought-induced tree mortality events and greatly affect forest landscape resilience. Climatic water deficit (CWD) and its physiographic variations provide a key mechanism in driving landscape dynamics in response to climate change. Although CWD has been successfully applied in niche-based species distribution models, its application in process-based forest landscape models is still scarce. Here we present a framework incorporating fine-scale influence of terrain on ecohydrology in modeling forest landscape dynamics. We integrated CWD with a forest landscape succession and disturbance model (LANDIS-II) to evaluate how tree species distribution might shift in response to different climate-fire scenarios across an elevation-aspect gradient in a semi-arid montane landscape of northeastern Nevada, USA. Our simulations indicated that drought-intolerant tree species such as quaking aspen could experience greatly reduced distributions in the more arid portions of their existing ranges due to water stress limitations under future climate warming scenarios. However, even at the most xeric portions of its range, aspen is likely to persist in certain environmental settings due to unique and often fine-scale combinations of resource availability, species interactions and disturbance regime. The modeling approach presented here allowed identification of these refugia. In addition, this approach helped quantify how the direction and magnitude of fire influences on species distribution would vary across topoclimatic gradients, as well as furthers our understanding on the role of environmental conditions, fire, and inter-specific competition in shaping potential responses of landscape resilience to climate change.

  12. Fire and the herbaceous layer of eastern oak forests

    Treesearch

    Todd Hutchinson

    2006-01-01

    Across oak forest landscapes, the herbaceous layer supports the great majority of plant diversity. As the use of prescribed fire increases, it is important to better understand its effects on biodiversity. This paper reviews the current ?state of the knowledge? regarding fire effects on herbaceous layer vegetation. In typical dormant-season fires, direct heating...

  13. Evaluating spatially explicit burn probabilities for strategic fire management planning

    Treesearch

    C. Miller; M.-A. Parisien; A. A. Ager; M. A. Finney

    2008-01-01

    Spatially explicit information on the probability of burning is necessary for virtually all strategic fire and fuels management planning activities, including conducting wildland fire risk assessments, optimizing fuel treatments, and prevention planning. Predictive models providing a reliable estimate of the annual likelihood of fire at each point on the landscape have...

  14. Whither wildlife without fire?

    Treesearch

    L.A. Brennan; R.T. Engstrom; W.E. Palmer

    1998-01-01

    Fire is a major ecosystem process that has been pervasive across the southern forest landscape on an evolutionary time scale. Wildlife evolved in response to frequent lightning-ignited burns that shaped the biota of the Southeast. Despite the dominant role that fire has played on an evolutionary scale, the use of prescribed fire as a forest wildlife management tool...

  15. Fire in the eastern United States: influence on wildlife habitat

    Treesearch

    D. H. Van Lear; R. F. Harlow

    2002-01-01

    Fire is a major influence shaping wildlife habitats in the eastern United States. Lightning- and Indian-ignited fires burned frequently and extensively over the pre-Columbian landscape and shaped the character of numerous ecosystems. Depending upon the frequency, intensity, and severity of the fires, various assemblages of plants developed along environmental gradients...

  16. Restoring indigenous prescribed fires to California oak woodlands

    Treesearch

    Don L. Hankins

    2015-01-01

    It is recognized that California Indians have stewarded the landscape for millennia. As such, the coupling of fire and culture are interrelated and interdependent in many California ecosystems including oak woodlands. Colonization and subsequent governmental fire policy mandates have disrupted the cultural use of fire, which in turn has disrupted ecological functions...

  17. Developing the U.S. Wildland Fire Decision Support System

    Treesearch

    Erin Noonan-Wright; Tonja S. Opperman; Mark A. Finney; Tom Zimmerman; Robert C. Seli; Lisa M. Elenz; David E. Calkin; John R. Fiedler

    2011-01-01

    A new decision support tool, the Wildland Fire Decision Support System (WFDSS) has been developed to support risk-informed decision-making for individual fires in the United States. WFDSS accesses national weather data and forecasts, fire behavior prediction, economic assessment, smoke management assessment, and landscape databases to efficiently formulate and apply...

  18. The science of firescapes: Achieving fire-resilient communities

    Treesearch

    Alistair M. S. Smith; Crystal A. Kolden; Travis B. Paveglio; Mark A. Cochrane; David MJS Bowman; Max A. Moritz; Andrew D. Kliskey; Lilian Alessa; Andrew T. Hudak; Chad M. Hoffman; James A. Lutz; Lloyd P. Queen; Scott J. Goetz; Philip E. Higuera; Luigi Boschetti; Mike Flannigan; Kara M. Yedinak; Adam C. Watts; Eva K. Strand; Jan W. van Wagtendonk; John W. Anderson; Brian J. Stocks; John T. Abatzoglou

    2016-01-01

    Wildland fire management has reached a crossroads. Current perspectives are not capable of answering interdisciplinary adaptation and mitigation challenges posed by increases in wildfire risk to human populations and the need to reintegrate fire as a vital landscape process. Fire science has been, and continues to be, performed in isolated "silos," including...

  19. The long term recovery of heat and moisture fluxes to the atmosphere following fire in Australia's tropical savanna

    NASA Astrophysics Data System (ADS)

    Tapper, N.; Beringer, J.; Hutley, L.; Coutts, A.

    2003-04-01

    Fire is probably the greatest natural and anthropogenic environmental disturbance in Australia's tropical savannas, with the vast area burned each year (up to 250,000 km^2) likely to increase with predicted regional climate change. Globally savanna ecosystems cover 11.5% of the global landscape (Scholes and Hall 1996). As much as 75% of this landscape burns annually (Hao et al., 1990), accounting for more than 40% of all global biomass consumed (Hao and Ward 1993). These landscape-scale fires undoubtedly have massive impacts on regional water, energy and carbon dioxide exchanges and as a result may have important feedbacks to the atmosphere and regional climate. Fire may influence climate directly through the emission of smoke and trace gases from burning, but there are other important impacts of fire that may affect the atmosphere. Fire and the subsequent fire scars are likely to radically alter the surface energy budgets of tropical savannas through reduced surface albedo, increased available energy for partitioning into the convective fluxes, and increased substrate heat flux. The aerodynamic and biological properties of the ecosystem may also change, affecting surface-atmosphere coupling. There is a clear potential to influence atmospheric motion and moist convection at a range of scales. Potential fire scar impacts such as those mentioned above have previously been largely ignored and are the focus of the Savanna Fire Experiment (SAFE). Tower measurements of radiation, heat, moisture and CO_2 fluxes above burned and unburned savanna near Darwin, Australia, were initiated in August 2001 to observe the impacts of fire and fire scarring on flux exchange with the atmosphere, along with the longer term post-fire recovery of fluxes. Intensive field campaigns were mounted in the dry (fire) seasons of both 2001 and 2002, with flux recovery observed into the each of the subsequent monsoon seasons. Results and an early analysis of the time series of heat and moisture flux data are presented in this paper and the wider implications of the work are discussed. Hao, W. M., and D. E. Ward. 1993. Methane production from global biomass burning. Journal of Geophysical Research 98: 20657-61. Hao, W. M., M.-H. Liu, and P. J. Crutzen. 1990. Estimates of annual and regional releases of CO2, and other trace gases to the atmosphere from fires in the tropics, based on FAO statistics for the period 1975--1980. In. Fire in the Tropical Biota, Ecological Studies 84. Ed. J. G. Goldammer, 440--462. New York: Springer-Verlag. Scholes, R.J. and D.O. Hall 1996. The carbon budget of tropical savannas, woodlands and grasslands. In Global Change: Effects on Coniferous Forests and Gransslands. Ed. A.I. Breymeyer, D.O. Hall, J.M. Melillo and G.I. Ågren John Wiley and Sons, New York.

  20. Recent Arctic tundra fire initiates widespread thermokarst development.

    PubMed

    Jones, Benjamin M; Grosse, Guido; Arp, Christopher D; Miller, Eric; Liu, Lin; Hayes, Daniel J; Larsen, Christopher F

    2015-10-29

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.

  1. Recent Arctic tundra fire initiates widespread thermokarst development

    PubMed Central

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric; Liu, Lin; Hayes, Daniel J.; Larsen, Christopher F.

    2015-01-01

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions. PMID:26511650

  2. Recent Arctic tundra fire initiates widespread thermokarst development

    DOE PAGES

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; ...

    2015-10-29

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burnmore » severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for -50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.« less

  3. Recent Arctic tundra fire initiates widespread thermokarst development

    USGS Publications Warehouse

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric K.; Liu, Lingli; Hayes, Daniel J.; Larsen, Christopher F.

    2015-01-01

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.

  4. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity

    Treesearch

    K. Barrett; A.D. McGuire; E.E. Hoy; E.S. Kasischke

    2011-01-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the...

  5. Spatial characteristics of fire severity in relation to fire growth in a Rocky Mountain subalpine forest

    Treesearch

    Calvin A. Farris; Ellis Q. Margolis; John A. Kupfer

    2008-01-01

    We compared the spatial characteristics of fire severity patches within individual fire “runs” (contiguous polygons burned during a given day) resulting from a 72,000 ha fire in centralIdaho in 1994. Our hypothesis was that patch characteristics of four fire severity classes (high, moderate, low, and unburned), as captured by five landscape metrics, would...

  6. Reducing Community Vulnerability to Wildland Fires in Southern California

    NASA Astrophysics Data System (ADS)

    Keeley, J. E.

    2010-12-01

    In the US fires are not treated like other hazards such as earthquakes but rather as preventable through landscape fuel treatments and aggressive fire suppression. In southern California extreme fire weather has made it impossible to control all fires and thus loss of homes and lives is a constant threat to communities. There is growing evidence that indicate we are not likely to ever eliminate fires on these landscapes. Thus, it is time to reframe the fire problem and think of fires like we do with other natural hazards such as earthquakes. We do not attempt to stop earthquakes, rather the primary emphasis is on altering human infrastructure in ways that minimize community vulnerability. In other words we need to change our approach from risk elimination to risk management. This approach means we accept that we cannot eliminate fires but rather learn to live with fire by communities becoming more fire adapted. We potentially can make great strides in reducing community vulnerability by finding those factors with high impacts and are sensitive to changes in management. Presently, decision makers have relatively little guidance about which of these is likely to have the greatest impact. Future reductions in fire risk to communities requires we address both wildland and urban elements that contribute to destructive losses. Damage risk or D is determined by: D = f (I, S, E, G, H) where I = the probability of a fire starting in the landscape S = the probability of the fire reaching a size sufficient to reach the urban environment E = probability of it encroaching into the urban environment G = probability of fire propagating within the built environment H = probability of a fire, once within the built environment, resulting in the destruction of a building. In southern California, reducing I through more strategic fire prevention has potential for reducing fire risk. There are many ignition sources that could be reduced, such as replacing power line ignitions with underground lines, strategically employing arson patrols during Santa Ana wind events, enforcing regulations on power equipment use in wildland areas, k-rail barriers along roads to reduce fire spread into wildland areas etc. S, or the probability of fire reaching urban environments has historically been the primary focus of state and federal fire management activities. There is a need for greater focus on understanding the most strategic application of wildland fuel treatments. E, the probability of fire encroaching into the urban environment, has largely been addressed in the past by attention to wildland-urban interface (WUI) fuel treatments. The one factor that has perhaps the greatest potential for impacting E are patterns of urban growth, both in strategic placement and spatial patterning within communities, and this is an area where alternative future growth scenarios could have huge impacts on fire outcomes. G, the chance of fire propagating within the urban environment is a function of urban fuels, which include both home construction and landscaping. This area has the potential for effecting large changes in fire losses dependent upon future regulations on plantings in the urban environment.

  7. Virtualization of Fuelbeds: Building the Next Generation of Fuels Data for Multiple-Scale Fire Modeling and Ecological Analysis

    NASA Astrophysics Data System (ADS)

    Rowell, Eric Martin

    The primary goal of this research is to advance methods for deriving fine-grained, scalable, wildland fuels attributes in 3-dimensions using terrestrial and airborne laser scanning technology. It is fundamentally a remote sensing research endeavor applied to the problem of fuels characterization. Advancements in laser scanning are beginning to have significant impacts on a range of modeling frameworks in fire research, especially those utilizing 3-dimensional data and benefiting from efficient data scaling. The pairing of laser scanning and fire modeling is enabling advances in understanding how fuels variability modulates fire behavior and effects. This dissertation details the development of methods and techniques to characterize and quantify surface fuelbeds using both terrestrial and airborne laser scanning. The primary study site is Eglin Airforce Base, Florida, USA, which provides a range of fuel types and conditions in a fire-adapted landscape along with the multi-disciplinary expertise, logistical support, and prescribed fire necessary for detailed characterization of fire as a physical process. Chapter 1 provides a research overview and discusses the state of fuels science and the related needs for highly resolved fuels data in the southeastern United States. Chapter 2, describes the use of terrestrial laser scanning for sampling fuels at multiple scales and provides analysis of the spatial accuracy of fuelbed models in 3-D. Chapter 3 describes the development of a voxel-based occupied volume method for predicting fuel mass. Results are used to inform prediction of landscape-scale fuel load using airborne laser scanning metrics as well as to predict post-fire fuel consumption. Chapter 4 introduces a novel fuel simulation approach which produces spatially explicit, statistically-defensible estimates of fuel properties and demonstrates a pathway for resampling observed data. This method also can be directly compared to terrestrial laser scanning data to assess how energy interception of the laser pulse affects characterization of the fuelbed. Chapter 5 discusses the contribution of this work to fire science and describes ongoing and future research derived from this work. Chapters 2 and 4 have been published in International Journal of Wildland Fire and Canadian Journal of Remote Sensing, respectively, and Chapter 3 is in preparation for publication.

  8. Genetic variation reveals influence of landscape connectivity on population dynamics and resiliency of western trout in disturbance-prone habitats

    USGS Publications Warehouse

    Helen M. Neville,; Gresswell, Robert E.; Dunham, Jason B.

    2012-01-01

    Salmonid fishes have evolved and persisted in dynamic ecosystems where disturbance events vary in frequency, magnitude, timing, and duration, as well as the specific nature of associated effects (e.g., changes in thermal or flow regimes, geomorphology, or water chemistry). In the western United States, one of the major drivers of disturbance in stream ecosystems is fire. Although there is a growing consensus that fish populations can ultimately benefit from the productive and heterogeneous habitats created by fire, to persist they obviously have to withstand the immediate and shorter-term effects of fire, which can reduce or even extirpate local populations. Movement among interconnected stream habitats is thought to be an important strategy enabling persistence during and following fire, and there is mounting concern that the extensive isolation of salmonid populations in fragmented habitats is reducing their resiliency to fire. In spite of this concern, there are few direct observations of salmonid responses to fire. In fact, guidance is based largely on a broader understanding of the influences of landscape structure and disturbance in general on salmonid fishes, and there is considerable uncertainty about how best to manage for salmonid resilience to wildfire. Studies are limited by the difficult logistics of following fish responses in the face of unpredictable events such as wildfires. Therefore, BACI (Before-After-Control-Impact) study designs are nearly impossible, and replication is similarly challenging because fires are often low-frequency events. Furthermore, conventional ecological study approaches (e.g., studies of fish distribution, abundance, life histories, and movement) are logistically difficult to implement. Overall, a major challenge to understanding resilience of salmonid populations in fire-prone environments is related to moving beyond localized case studies to those with broader applicability in wildfire management . Genetic data can be useful for overcoming many of the limitations inherent in ecological studies. Here we review several case studies of western trout where population genetic data have provided insight about fish responses to fragmentation and disturbance more generally, and specifically in relation to fire. Results of these studies confirm the importance of movement and landscape connectivity for ensuring fish persistence in fire-prone landscapes, and highlight the usefulness of genetic approaches for broad-scale evaluation and monitoring of population responses to fire and related management actions.

  9. Recent land-use and land-cover changes and its driving factors in a fire-prone area of southwestern Turkey.

    PubMed

    Viedma, Olga; Moreno, José M; Güngöroglu, Cumhur; Cosgun, Ufuk; Kavgacı, Ali

    2017-07-15

    During the last decades, contrasted trends in forest fires among countries around the Mediterranean basin have been observed. In the northern/western countries, Land Use-Land Cover (LULC) changes led to more hazardous landscapes, with consequent increases in fires. This contrasted with fire trends in southern/eastern countries. The recent incidence of large fires in some of the latter prompted the question of whether they are now following the path of their neighbors decades earlier. In this study, we investigated recent LULC changes in southwestern Turkey, focusing on those that could affect fire, and the factors driving them. To this end, LULC maps at different time steps (1975, 1990, 2000 and 2010) were obtained from Landsat images, together with relevant socioeconomic data. Generalized linear mixed models (GLMMs) were applied to assess the effects of socioeconomic and geophysical factors on the dominant LULC changes over time. Over the whole period studied, the most important LULC changes were deforestation followed by afforestation. Deforestation was positively related to high livestock density and proximity to villages and increased forest interfaces with other LULC types. We found no evidence that LULC changes were making the landscape more hazardous as there was a net decrease in fuels biomass and the landscape became more fragmented over time. However, despite the area being heavily used and relatively fragmented, large fires can occur driven by severe weather. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Baker, William L.; DellaSala, Dominick A.; Williams, Mark A.

    2016-01-01

    In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper. PMID:27195808

  11. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    PubMed

    Odion, Dennis C; Hanson, Chad T; Baker, William L; DellaSala, Dominick A; Williams, Mark A

    2016-01-01

    In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper.

  12. Fire regimes of quaking aspen in the Mountain West

    USGS Publications Warehouse

    Shinneman, Douglas J.; Baker, William L.; Rogers, Paul C.; Kulakowski, Dominik

    2013-01-01

    Quaking aspen (Populus tremuloides Michx.) is the most widespread tree species in North America, and it is found throughout much of the Mountain West (MW) across a broad range of bioclimatic regions. Aspen typically regenerates asexually and prolifically after fire, and due to its seral status in many western conifer forests, aspen is often considered dependent upon disturbance for persistence. In many landscapes, historical evidence for post-fire aspen establishment is clear, and following extended fire-free periods senescing or declining aspen overstories sometimes lack adequate regeneration and are succeeding to conifers. However, aspen also forms relatively stable stands that contain little or no evidence of historical fire. In fact, aspen woodlands range from highly fire-dependent, seral communities to relatively stable, self-replacing, non-seral communities that do not require fire for persistence. Given the broad geographic distribution of aspen, fire regimes in these forests likely co-vary spatially with changing community composition, landscape setting, and climate, and temporally with land use and climate – but relatively few studies have explicitly focused on these important spatiotemporal variations. Here we reviewed the literature to summarize aspen fire regimes in the western US and highlight knowledge gaps. We found that only about one-fourth of the 46 research papers assessed for this review could be considered fire history studies (in which mean fire intervals were calculated), and all but one of these were based primarily on data from fire-scarred conifers. Nearly half of the studies reported at least some evidence of persistent aspen in the absence of fire. We also found that large portions of the MW have had little or no aspen fire history research. As a result of this review, we put forth a classification framework for aspen that is defined by key fire regime parameters (fire severity and probability), and that reflects underlying biophysical settings and correlated aspen functional types. We propose the following aspen fire regime types: (1) fire-independent, stable aspen; (2) fire-influenced, stable aspen; (3) fire-dependent, seral, conifer-aspen mix; (4) fire-dependent, seral, montane aspen-conifer; and (5) fire-dependent, seral, subalpine aspen-conifer. Closing research gaps and validating our proposed aspen fire regime classification will likely require additional site-specific research, enhanced dendrochronology techniques, charcoal and pollen record analysis, spatially-explicit modeling, and other techniques. We hope to encourage development of site-appropriate disturbance ecology characterizations, in order to aid efforts to manage and restore aspen communities and to diagnose key factors contributing to changes in aspen.

  13. Holocene fire, vegetation, and climate dynamics inferred from charcoal and pollen record in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Wenwei; Zhao, Yan; Qin, Feng

    2017-10-01

    Understanding fire history and its driving mechanisms can provide valuable insights into present fire regime (intensity, severity and frequency), the interplay between vegetation and fire, and trigger of fire activities. Here we reconstruct the Holocene fire history in the Zoige Basin on the eastern Tibetan Plateau, on the basis of sedimentary micro-charcoal record over the last 10.0 ka (1 ka = 1000 cal yr BP) and discuss the influences of vegetation and climate on fire dynamics. Our results show that regional fire was active at 10.0-3.3 ka and a significant decrease in fire activity characterized the period after 3.3 ka. The high regional fire frequency at 10.0-3.3 ka is consistent with the forested landscape suggested by high affinity scores of cool mixed forest biome (mainly consisted of spruce), implying that fire dynamics during this period was generally controlled by the variations of arboreal biomass and summer temperature. During 6.3-4.6 ka the prevailing Asian summer monsoon provided increased moisture to this region and thus suppressed fire activities to an extent, despite the availability of abundant biomass. Declined tree biomass after 3.3 ka probably accounted for the decreased fire activities. In addition, two successive fire events at ca. 3.5-3.3 ka were likely responsible for the subsequent abrupt decline of forest components in the landscape.

  14. Efficacy of landscape scale woodland and savanna restoration at multiple spatial and temporal scales

    USGS Publications Warehouse

    Pittman, H. Tyler; Krementz, David G.

    2016-01-01

    The loss of historic ecosystem conditions has led forest managers to implement woodland and savanna ecosystem restoration on a landscape scale (≥10,000 ha) in the Ozark Plateau of Arkansas. Managers are attempting to restore and conserve these ecosystems through the reintroduction of disturbance, mainly short-rotation early-growing-season prescribed fire. Short-rotation early-growing season prescribed fire in the Ozarks typically occurs immediately before bud-break, through bud-break, and before leaf-out, and fire events occur on a three-to five-year interval. We examined short-rotation early-growing season prescribed fire as a restoration tool on vegetation characteristics. We collected vegetation measurements at 70 locations annually from 2011 to 2012 in and around the White Rock Ecosystem Restoration Area (WRERA), Ozark-St. Francis National Forest, Arkansas, and used generalized linear models to investigate the impact and efficacy of prescribed fire on vegetation structure. We found the number of large shrubs (>5 cm base diameter) decreased and small shrubs (<5 cm ground diameter) increased with prescribed fire severity. We found that horizontal understory cover from ground level to 1 m in height increased with time-since-prescribed-fire and woody ground cover decreased with the number of prescribed fire treatments. Using LANDFIRE datasets at the landscape scale, we found that since the initiation of a short-rotation early-growing season prescribed fire management regime, forest canopy cover has not reverted to levels characteristic of woodlands and savannas or reached restoration objectives over large areas. Without greater reductions in forest canopy cover and increases in forest-canopy cover heterogeneity, advanced regeneration will be limited in success, and woodland and savanna conditions will not return soon or to the extent desired.

  15. Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale

    USGS Publications Warehouse

    MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah

    2000-01-01

    Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.

  16. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    PubMed

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.

  17. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient

    PubMed Central

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The “varying constraints hypothesis” of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels—the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)—using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied—early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia. PMID:27441689

  18. Utilizing random forests imputation of forest plot data for landscape-level wildfire analyses

    Treesearch

    Karin L. Riley; Isaac C. Grenfell; Mark A. Finney; Nicholas L. Crookston

    2014-01-01

    Maps of the number, size, and species of trees in forests across the United States are desirable for a number of applications. For landscape-level fire and forest simulations that use the Forest Vegetation Simulator (FVS), a spatial tree-level dataset, or “tree list”, is a necessity. FVS is widely used at the stand level for simulating fire effects on tree mortality,...

  19. Modeling Multiple-Core Updraft Plume Rise for an Aerial Ignition Prescribed Burn by Coupling Daysmoke with a Cellular Automata Fire Model

    Treesearch

    G. L Achtemeier; S. L. Goodrick; Y. Liu

    2012-01-01

    Smoke plume rise is critically dependent on plume updraft structure. Smoke plumes from landscape burns (forest and agricultural burns) are typically structured into “sub-plumes” or multiple-core updrafts with the number of updraft cores depending on characteristics of the landscape, fire, fuels, and weather. The number of updraft cores determines the efficiency of...

  20. Developing computer-based participatory approaches to mapping landscape values for landscape and resource management

    Treesearch

    Steve Carver; Alan Watson; Tim Waters; Roian Matt; Kari Gunderson; Brett Davis

    2009-01-01

    The last 50 years or so have seen a steady increase in the rate of destructive wildfires across the world, partly as a result of climate change and partly as a result of encroachment of human settlement on fire-based ecosystems (Russell et al. 2004; Westerling et al. 2006). Years of active fire suppression in such areas has inevitably led to the build-up of hazardous...

  1. Landscape fuel reduction, forest fire, and biophysical linkages to local habitat use and local persistence of fishers (Pekania pennanti) in Sierra Nevada mixed-conifer forests

    Treesearch

    R.A. Sweitzer; B.J. Furnas; R.H. Barrett; Kathryn Purcell; Craig Thompson

    2016-01-01

    Fire suppression and logging have contributed to major changes in California’s Sierra Nevada forests. Strategically placed landscape treatments (SPLATS) are being used to reduce density of trees, shrubs, and surface fuels to limit wildfire intensity and spread, but may negatively impact fishers (Pekania pennanti). We used camera traps to survey for...

  2. Pinon and Juniper Field Guide: Asking the Right Questions to Select Appropriate Management Actions

    USGS Publications Warehouse

    Tausch, R.J.; Miller, R.F.; Roundy, B.A.; Chambers, J.C.

    2009-01-01

    Pinon-juniper woodlands are an important vegetation type in the Great Basin. Old-growth and open shrub savanna woodlands have been present over much of the last several hundred years. Strong evidence indicates these woodlands have experienced significant tree infilling and major expansion in their distribution since the late 1800s by encroaching into surrounding landscapes once dominated by shrubs and herbaceous vegetation. Both infilling and expansion affects soil resources, plant community structure and composition, water and nutrient cycles, forage production, wildlife habitat, biodiversity, and fire patterns across the landscape. Another impact is the shift from historic fire regimes to larger and more intense wildfires that are increasingly determining the future of this landscape. This publication helps biologists and land managers consider how to look at expansion of woodlands and determine what questions to ask to develop a management strategy, including prescribed fire or other practices.

  3. Satellite remote sensing of landscape freeze/thaw state dynamics for complex Topography and Fire Disturbance Areas Using multi-sensor radar and SRTM digital elevation models

    NASA Technical Reports Server (NTRS)

    Podest, Erika; McDonald, Kyle; Kimball, John; Randerson, James

    2003-01-01

    We characterize differences in radar-derived freeze/thaw state, examining transitions over complex terrain and landscape disturbance regimes. In areas of complex terrain, we explore freezekhaw dynamics related to elevation, slope aspect and varying landcover. In the burned regions, we explore the timing of seasonal freeze/thaw transition as related to the recovering landscape, relative to that of a nearby control site. We apply in situ biophysical measurements, including flux tower measurements to validate and interpret the remotely sensed parameters. A multi-scale analysis is performed relating high-resolution SAR backscatter and moderate resolution scatterometer measurements to assess trade-offs in spatial and temporal resolution in the remotely sensed fields.

  4. Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century.

    PubMed

    Serra-Diaz, Josep M; Maxwell, Charles; Lucash, Melissa S; Scheller, Robert M; Laflower, Danelle M; Miller, Adam D; Tepley, Alan J; Epstein, Howard E; Anderson-Teixeira, Kristina J; Thompson, Jonathan R

    2018-04-30

    The impacts of climatic changes on forests may appear gradually on time scales of years to centuries due to the long generation times of trees. Consequently, current forest extent may not reflect current climatic patterns. In contrast with these lagged responses, abrupt transitions in forests under climate change may occur in environments where alternative vegetation states are influenced by disturbances, such as fire. The Klamath forest landscape (northern California and southwest Oregon, USA) is currently dominated by high biomass, biodiverse temperate coniferous forests, but climate change could disrupt the mechanisms promoting forest stability (e.g. growth, regeneration and fire tolerance). Using a landscape simulation model, we estimate that about one-third of the Klamath forest landscape (500,000 ha) could transition from conifer-dominated forest to shrub/hardwood chaparral, triggered by increased fire activity coupled with lower post-fire conifer establishment. Such shifts were widespread under the warmer climate change scenarios (RCP 8.5) but were surprisingly prevalent under the climate of 1949-2010, reflecting the joint influences of recent warming trends and the legacy of fire suppression that may have enhanced conifer dominance. Our results demonstrate that major forest ecosystem shifts should be expected when climate change disrupts key stabilizing feedbacks that maintain the dominance of long-lived, slowly regenerating trees.

  5. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support

    Treesearch

    Zachary A. Holden; W. Matt Jolly

    2011-01-01

    Fire danger rating systems commonly ignore fine scale, topographically-induced weather variations. These variations will likely create heterogeneous, landscape-scale fire danger conditions that have never been examined in detail. We modeled the evolution of fuel moistures and the Energy Release Component (ERC) from the US National Fire Danger Rating System across the...

  6. Stand-replacing patches within a ‘mixed severity’ fire regime: quantitative characterization using recent fires in a long-established natural fire area

    Treesearch

    B.M. Collins; S.L. Stephens

    2010-01-01

    The complexity inherent in variable, or mixed-severity fire regimes makes quantitative characterization of important fire regime attributes (e.g., proportion of landscape burned at different severities, size and distribution of stand-replacing patches) difficult. As a result, there is ambiguity associated with the term ‘mixed-severity’. We address...

  7. Relating fire-caused change in forest structure to remotely sensed estimates of fire severity

    Treesearch

    Jamie M. Lydersen; Brandon M. Collins; Jay D. Miller; Danny L. Fry; Scott L. Stephens

    2016-01-01

    Fire severity maps are an important tool for understanding fire effects on a landscape. The relative differenced normalized burn ratio (RdNBR) is a commonly used severity index in California forests, and is typically divided into four categories: unchanged, low, moderate, and high. RdNBR is often calculated twice--from images collected the year of the fire (initial...

  8. The use of geographic information for fire management planning in Yosemite National Park

    USGS Publications Warehouse

    Van Wagtendonk, Jan W.; van Wagtendonk, Kent A.; Meyer, Joseph B.; Paintner, Kara J.

    2002-01-01

    Fire has played a critical role in the ecosystems of Yosemite National park for millennia. Before the advent of Euro-Americans, lightning fires and fires set by Native Americans burned freely across the landscape. These fires burned periodically, with the interval between fires dependent on the availability of ignition sources, adequate fuels, and weather conducive to burning. As a result, different vegetation types burned at different intervals.

  9. Dynamically incorporating late-successional forest in sustainable landscapes

    Treesearch

    Ann E. Camp; Paul F. Hessburg; Richard L. Everett

    1996-01-01

    Ecosystems and landscapes change over time as a function of vegetation characteristics and disturbance regimes, including fire. Interactions between disturbance events and forest development (succession) create patterns of vegetation across landscapes. These patterns result from, and change with respect to, species compositions and structures that arise from...

  10. Burn severity mapping using simulation modeling and satellite imagery

    Treesearch

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  11. Modeling long-term effects of altered fire regimes following Southern Pine Beetle outbreaks (North Carolina).

    Treesearch

    Weiman Xi; John Waldron; Charles Lafon; David Cairns; Andrew Birt; Maria Tchakerian; Robert Coulson; Kier Klepzig

    2009-01-01

    Periodic fires are an important factor shaping the species-rich southern Appalachian forest landscape, and fire regimes in this region have changed significantly over time. The role of fire in maintaining Appalachian forests has been debated and increasingly studied (Delcourt and Delcourt 1998). Experimental studies have shown that pine...

  12. National Fire Plan Research and Development 2002 Business Summary

    Treesearch

    USDA Forest Service

    2003-01-01

    This report summarizes the progress made by Forest Service NFP R&D in FY2002, the second year of NFP funding. Fire research conducted by Forest Service R&D is working to provide the scientific foundation necessary to increase firefighting safety and effectiveness, enhance restoration of fire-scarred landscapes, reduce fire risk through improved management of...

  13. Weather, fuels, and topography impede wildland fire spread in western US landscapes

    Treesearch

    Lisa Holsinger; Sean A. Parks; Carol Miller

    2016-01-01

    As wildland fire activity continues to surge across the western US, it is increasingly important that we understand and quantify the environmental drivers of fire and how they vary across ecosystems. At daily to annual timescales, weather, fuels, and topography are known to influence characteristics such as area burned and fire severity. An understudied facet...

  14. Living more safely in the chaparral-urban interface

    Treesearch

    Klaus W. H. Radtke

    1983-01-01

    Urban encroachment into chaparral areas has accelerated the fire-flood-erosion cycle. Preventative maintenance measures can help reduce the damage from fire and flood. This report describes the chaparral environment; how to cope with problems in watershed management, how to landscape for fire and soil erosion control, how to plan for home safety from fire, how to treat...

  15. Climate change, forests, fire, water, and fish: Building resilient landscapes, streams, and managers

    Treesearch

    Charles Luce; Penny Morgan; Kathleen Dwire; Daniel Isaak; Zachary Holden; Bruce Rieman

    2012-01-01

    Fire will play an important role in shaping forest and stream ecosystems as the climate changes. Historic observations show increased dryness accompanying more widespread fire and forest die-off. These events punctuate gradual changes to ecosystems and sometimes generate stepwise changes in ecosystems. Climate vulnerability assessments need to account for fire in their...

  16. The use of witness trees as pyro-indicators for mapping past fire conditions

    Treesearch

    Melissa A. Thomas-Van Gundy; Gregory J. Nowacki

    2013-01-01

    Understanding and mapping presettlement fire regimes is vitally important for ecosystem restoration, helping ensure the proper placement of fire back into ecosystems that formerly burned. Witness trees can support this endeavor by serving as pyro-indicators of the past. We mapped fire-adapted traits across a landscape by categorizing trees into two classes, pyrophiles...

  17. Near-term probabilistic forecast of significant wildfire events for the Western United States

    Treesearch

    Haiganoush K. Preisler; Karin L. Riley; Crystal S. Stonesifer; Dave E. Calkin; Matt Jolly

    2016-01-01

    Fire danger and potential for large fires in the United States (US) is currently indicated via several forecasted qualitative indices. However, landscape-level quantitative forecasts of the probability of a large fire are currently lacking. In this study, we present a framework for forecasting large fire occurrence - an extreme value event - and evaluating...

  18. Accelerated restoration: new landscape tools to prioritize projects and analyze tradeoffs

    Treesearch

    Alan Ager; Paul Meznarich

    2014-01-01

    The catastrophic fires and tragic losses during the 2013 fire season have resulted in many discussions about fire management policies aimed at protecting communities and restoring fire-resilient forests from the growing incidence of severe wildfires. Forest Service scientist Alan Ager has been exploring how concepts in spatial ecology and operations research can be...

  19. A Coupled Model for Simulating Future Wildfire Regimes in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Bart, R. R.; Kennedy, M. C.; Tague, C.; Hanan, E. J.

    2017-12-01

    Higher temperatures and larger fuel loads in the western U.S. have increased the size and intensity of wildfires over the past decades. However, it is unclear if this trend will continue over the long-term since increased wildfire activity has the countering effect of reducing landscape fuel loads, while higher temperatures alter the rate of vegetation recovery following fire. In this study, we introduce a coupled ecohydrologic-fire model for investigating how changes in vegetation, forest management, climate, and hydrology may affect future fire regimes. The spatially-distributed ecohydrologic model, RHESSys, simulates hydrologic, carbon and nutrient fluxes at watershed scales; the fire-spread model, WMFire, stochastically propagates fire on a landscape based on conditions in the ecohydrologic model. We use the coupled model to replicate fire return intervals in multiple ecoregions within the western U.S., including the southern Sierra Nevada and southern California. We also examine the sensitivity of fire return intervals to various model processes, including litter production, fire severity, and post-fire vegetation recovery rates. Results indicate that the coupled model is able to replicate expected fire return intervals in the selected locations. Fire return intervals were highly sensitive to the rate of vegetation growth, with longer fire return intervals associated with slower growing vegetation. Application of the model is expected to aid in our understanding of how fuel treatments, climate change and droughts may affect future fire regimes.

  20. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    NASA Technical Reports Server (NTRS)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2018-01-01

    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.

  1. Wildfire patterns and landscape changes in Mediterranean oak woodlands.

    PubMed

    Guiomar, N; Godinho, S; Fernandes, P M; Machado, R; Neves, N; Fernandes, J P

    2015-12-01

    Fire is infrequent in the oak woodlands of southern Portugal (montado) but large and severe fires affected these agro-forestry systems in 2003-2005. We hypothesised transition from forest to shrubland as a fire-driven process and investigated the links between fire incidence and montado change to other land cover types, particularly those related with the presence of pioneer communities (generically designed in this context as "transitions to early-successional communities"). We present a landscape-scale framework for assessing the probability of transition from montado to pioneer communities, considering three sets of explanatory variables: montado patterns in 1990 and prior changes from montado to early-successional communities (occurred between 1960 and 1990), fire patterns, and spatial factors. These three sets of factors captured 78.2% of the observed variability in the transitions from montado to pioneer vegetation. The contributions of fire patterns and spatial factors were high, respectively 60.6% and 43.4%, the influence of montado patterns and former changes in montado being lower (34.4%). The highest amount of explained variation in the occurrence of transitions from montado to early-successional communities was related to the pure effect of fire patterns (19.9%). Low spatial connectedness in montado landscape can increase vulnerability to changes, namely to pioneer vegetation, but the observed changes were mostly explained by fire characteristics and spatial factors. Among all metrics used to characterize fire patterns and extent, effective mesh size provided the best modelling results. Transitions from montado to pioneer communities are more likely in the presence of high values of the effective mesh size of total burned area. This cross-boundary metric is an indicator of the influence of large fires in the distribution of the identified transitions and, therefore, we conclude that the occurrence of large fires in montado increases its probability of transition to shrubland. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Historical fire and vegetation dynamics in dry forests of the interior Pacific Northwest, USA, and relationships to northern spotted owl (Strix occidentalis caurina) habitat conservation

    Treesearch

    Rebecca S.H. Kennedy; Michael C. Wimberly

    2009-01-01

    Regional conservation planning frequently relies on general assumptions about historical disturbance regimes to inform decisions about landscape restoration, reserve allocations, and landscape management. Spatially explicit simulations of landscape dynamics provide quantitative estimates of landscape structure and allow for the testing of alternative scenarios. We used...

  3. Forest landscape models, a tool for understanding the effect of the large-scale and long-term landscape processes

    Treesearch

    Hong S. He; Robert E. Keane; Louis R. Iverson

    2008-01-01

    Forest landscape models have become important tools for understanding large-scale and long-term landscape (spatial) processes such as climate change, fire, windthrow, seed dispersal, insect outbreak, disease propagation, forest harvest, and fuel treatment, because controlled field experiments designed to study the effects of these processes are often not possible (...

  4. Landscape management using historical fire regimes: Blue River, Oregon.

    Treesearch

    J.H. Cissel; F.J. Swanson; P.J. Weisberg

    1999-01-01

    Landscapes administered for timber production by the U.S. Forest Service in the Pacific Northwest in the 1950s-1980s were managed with dispersed patch clearcutting, and then briefly in the late 1980s with aggregated patch clearcutting. In the late 1990s, use of historical landscape patterns and disturbance regimes as a guide for landscape management has emerged as an...

  5. Fire and the distribution and uncertainty of carbon sequestered as above-ground tree biomass in Yosemite and Sequoia & Kings Canyon National Parks

    USGS Publications Warehouse

    Lutz, James A.; Matchett, John R.; Tarnay, Leland W.; Smith, Douglas F.; Becker, Kendall M.L.; Furniss, Tucker J.; Brooks, Matthew L.

    2017-01-01

    Fire is one of the principal agents changing forest carbon stocks and landscape level distributions of carbon, but few studies have addressed how accurate carbon accounting of fire-killed trees is or can be. We used a large number of forested plots (1646), detailed selection of species-specific and location-specific allometric equations, vegetation type maps with high levels of accuracy, and Monte Carlo simulation to model the amount and uncertainty of aboveground tree carbon present in tree species (hereafter, carbon) within Yosemite and Sequoia & Kings Canyon National Parks. We estimated aboveground carbon in trees within Yosemite National Park to be 25 Tg of carbon (C) (confidence interval (CI): 23–27 Tg C), and in Sequoia & Kings Canyon National Park to be 20 Tg C (CI: 18–21 Tg C). Low-severity and moderate-severity fire had little or no effect on the amount of carbon sequestered in trees at the landscape scale, and high-severity fire did not immediately consume much carbon. Although many of our data inputs were more accurate than those used in similar studies in other locations, the total uncertainty of carbon estimates was still greater than ±10%, mostly due to potential uncertainties in landscape-scale vegetation type mismatches and trees larger than the ranges of existing allometric equations. If carbon inventories are to be meaningfully used in policy, there is an urgent need for more accurate landscape classification methods, improvement in allometric equations for tree species, and better understanding of the uncertainties inherent in existing carbon accounting methods.

  6. Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire

    DOE PAGES

    Knelman, Joseph E.; Graham, Emily B.; Ferrenberg, Scott; ...

    2017-09-15

    In post-disturbance landscapes nutrient availability has proven a major control on ecological succession. In this study, we examined variation in connections between soil nutrient availability and decomposition extracellular enzyme activity (EEA) across post fire secondary succession in forest soils as well as after a secondary flood disturbance. We also examined possible linkages between edaphic properties and bacterial communities based on 16S rRNA gene analysis. We found that with advancing succession in a post-fire landscape, the relationship between soil nutrients and EEA became stronger over time. In general, late successional soils showed stronger connections between EEA and soil nutrient status, whilemore » early successional soils were marked by a complete decoupling of nutrients and EEA. We also found that soil moisture and bacterial communities of post-fire disturbance soils were susceptible to change following the secondary flood disturbance, while undisturbed, reference forest soils were not. Our results demonstrate that nutrient pools correlating with EEA change over time. While past work has largely focused on ecosystem succession on decadal timescales, our work suggests that nutrients shift in their relative importance as a control of decomposition EEA in the earliest stages of secondary succession. Furthermore, this work emphasizes the relevance of successional stage, even on short timescales, in predicting rates of carbon and nitrogen cycling, especially as disturbances become more frequent in a rapidly changing world.« less

  7. Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knelman, Joseph E.; Graham, Emily B.; Ferrenberg, Scott

    In post-disturbance landscapes nutrient availability has proven a major control on ecological succession. In this study, we examined variation in connections between soil nutrient availability and decomposition extracellular enzyme activity (EEA) across post fire secondary succession in forest soils as well as after a secondary flood disturbance. We also examined possible linkages between edaphic properties and bacterial communities based on 16S rRNA gene analysis. We found that with advancing succession in a post-fire landscape, the relationship between soil nutrients and EEA became stronger over time. In general, late successional soils showed stronger connections between EEA and soil nutrient status, whilemore » early successional soils were marked by a complete decoupling of nutrients and EEA. We also found that soil moisture and bacterial communities of post-fire disturbance soils were susceptible to change following the secondary flood disturbance, while undisturbed, reference forest soils were not. Our results demonstrate that nutrient pools correlating with EEA change over time. While past work has largely focused on ecosystem succession on decadal timescales, our work suggests that nutrients shift in their relative importance as a control of decomposition EEA in the earliest stages of secondary succession. Furthermore, this work emphasizes the relevance of successional stage, even on short timescales, in predicting rates of carbon and nitrogen cycling, especially as disturbances become more frequent in a rapidly changing world.« less

  8. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Ecosystems

    NASA Technical Reports Server (NTRS)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2017-01-01

    The combined effects of repeated fires, climate, and landscape features (e.g., edges) need greater focus in fire ecology studies, which usually emphasize characteristics of the most recent fire and not fire history. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells that represented potential territories because frequent fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities between states varied annually as functions of environmental covariates. Covariates included vegetative type, edges, precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presenceabsence of fire covariate, but also fire history covariates: time since the previous fire, the maximum fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Measuring territory quality states and environmental covariates each year combined with multistate modeling provided a useful empirical approach to quantify the effects of repeated fire in combinations with environmental variables on transition probabilities that drive management strategies and ecosystem change.

  9. Feature mapping on extensive landscapes using GPS-enabled computers

    USDA-ARS?s Scientific Manuscript database

    Landscapes in the western United States are vast yet managers are called upon to know them intimately so they can respond to natural events such as anthropogenic disturbance, fire, insect outbreaks, and invasive species. These landscapes are not static and naturally change with season and the progr...

  10. 77 FR 775 - Nez Perce-Clearwater National Forests; Idaho; Clear Creek Integrated Restoration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... species distributions habitat complexity (diversity) and landscape pattern across the forested portions of..., improve long term resistance and resilience at the landscape level; restore natural fire regimes and... landscape that is more highly fragmented than what would be expected through natural disturbance. Ladder...

  11. 77 FR 9621 - Nez Perce-Clearwater National Forests; Idaho; Clear Creek Integrated Restoration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ..., vegetative species distributions, habitat complexity (diversity) and landscape patterns across the forested... resistance and resilience at the landscape level; reduce fuels; improve watershed conditions; improve elk... practices and fire suppression have created a landscape that is more highly fragmented than would be...

  12. Range and variation in landscape patch dynamics: Implications for ecosystem management

    Treesearch

    Robert E. Keane; Janice L. Garner; Casey Teske; Cathy Stewart; Paul Hessburg

    2001-01-01

    Northern Rocky Mountain landscape patterns are shaped primarily by fire and succession, and conversely, these vegetation patterns influence burning patterns and plant colonization processes. Historical range and variability (HRV) of landscape pattern can be quantified from three sources: (1) historical chronosequences, (2) spatial series, and (3) simulated...

  13. Mixed severity fire effects within the Rim fire: Relative importance of local climate, fire weather, topography, and forest structure

    Treesearch

    Van R. Kane; C. Alina Cansler; Nicholas A. Povak; Jonathan T. Kane; Robert J. McGaughey; James A. Lutz; Derek J. Churchill; Malcolm P. North

    2015-01-01

    Recent and projected increases in the frequency and severity of large wildfires in the western U.S. makes understanding the factors that strongly affect landscape fire patterns a management priority for optimizing treatment location. We compared the influence of variations in the local environment on burn severity patterns on the large 2013 Rim fire that burned under...

  14. Use of ordinary kriging and Gaussian conditional simulation to interpolate airborne fire radiative energy density estimates

    Treesearch

    C. Klauberg; A. T. Hudak; B. C. Bright; L. Boschetti; M. B. Dickinson; R. L. Kremens; C. A. Silva

    2018-01-01

    Fire radiative energy density (FRED, J m-2) integrated from fire radiative power density (FRPD, W m-2) observations of landscape-level fires can present an undersampling problem when collected from fixed-wing aircraft. In the present study, the aircraft made multiple passes over the fire at ~3 min intervals, thus failing to observe most of the FRPD emitted as the flame...

  15. Using simulated historical time series to prioritize fuel treatments on landscapes across the United States: The LANDFIRE prototype project

    Treesearch

    Robert E. Keane; Matthew Rollins; Zhi-Liang Zhu

    2007-01-01

    Canopy and surface fuels in many fire-prone forests of the United States have increased over the last 70 years as a result of modern fire exclusion policies, grazing, and other land management activities. The Healthy Forest Restoration Act and National Fire Plan establish a national commitment to reduce fire hazard and restore fire-adapted ecosystems across the USA....

  16. Twentieth-century fire patterns in the Selway-Bitterroot Wilderness Area, Idaho/Montana, and the Gila/Aldo Leopold Wilderness Complex, New Mexico

    Treesearch

    Matthew Rollins; Tom Swetnam; Penelope Morgan

    2000-01-01

    Twentieth century fire patterns were analyzed for two large, disparate wilderness areas in the Rocky Mountains. Spatial and temporal patterns of fires were represented as GIS-based digital fire atlases compiled from archival Forest Service data. We find that spatial and temporal fire patterns are related to landscape features and changes in land use. The rate and...

  17. Landscape influences on dispersal behaviour: a theoretical model and empirical test using the fire salamander, Salamandra infraimmaculata.

    PubMed

    Kershenbaum, Arik; Blank, Lior; Sinai, Iftach; Merilä, Juha; Blaustein, Leon; Templeton, Alan R

    2014-06-01

    When populations reside within a heterogeneous landscape, isolation by distance may not be a good predictor of genetic divergence if dispersal behaviour and therefore gene flow depend on landscape features. Commonly used approaches linking landscape features to gene flow include the least cost path (LCP), random walk (RW), and isolation by resistance (IBR) models. However, none of these models is likely to be the most appropriate for all species and in all environments. We compared the performance of LCP, RW and IBR models of dispersal with the aid of simulations conducted on artificially generated landscapes. We also applied each model to empirical data on the landscape genetics of the endangered fire salamander, Salamandra infraimmaculata, in northern Israel, where conservation planning requires an understanding of the dispersal corridors. Our simulations demonstrate that wide dispersal corridors of the low-cost environment facilitate dispersal in the IBR model, but inhibit dispersal in the RW model. In our empirical study, IBR explained the genetic divergence better than the LCP and RW models (partial Mantel correlation 0.413 for IBR, compared to 0.212 for LCP, and 0.340 for RW). Overall dispersal cost in salamanders was also well predicted by landscape feature slope steepness (76%), and elevation (24%). We conclude that fire salamander dispersal is well characterised by IBR predictions. Together with our simulation findings, these results indicate that wide dispersal corridors facilitate, rather than hinder, salamander dispersal. Comparison of genetic data to dispersal model outputs can be a useful technique in inferring dispersal behaviour from population genetic data.

  18. Optimization of Landscape Services under Uncoordinated Management by Multiple Landowners

    PubMed Central

    Porto, Miguel; Correia, Otília; Beja, Pedro

    2014-01-01

    Landscapes are often patchworks of private properties, where composition and configuration patterns result from cumulative effects of the actions of multiple landowners. Securing the delivery of services in such multi-ownership landscapes is challenging, because it is difficult to assure tight compliance to spatially explicit management rules at the level of individual properties, which may hinder the conservation of critical landscape features. To deal with these constraints, a multi-objective simulation-optimization procedure was developed to select non-spatial management regimes that best meet landscape-level objectives, while accounting for uncoordinated and uncertain response of individual landowners to management rules. Optimization approximates the non-dominated Pareto frontier, combining a multi-objective genetic algorithm and a simulator that forecasts trends in landscape pattern as a function of management rules implemented annually by individual landowners. The procedure was demonstrated with a case study for the optimum scheduling of fuel treatments in cork oak forest landscapes, involving six objectives related to reducing management costs (1), reducing fire risk (3), and protecting biodiversity associated with mid- and late-successional understories (2). There was a trade-off between cost, fire risk and biodiversity objectives, that could be minimized by selecting management regimes involving ca. 60% of landowners clearing the understory at short intervals (around 5 years), and the remaining managing at long intervals (ca. 75 years) or not managing. The optimal management regimes produces a mosaic landscape dominated by stands with herbaceous and low shrub understories, but also with a satisfactory representation of old understories, that was favorable in terms of both fire risk and biodiversity. The simulation-optimization procedure presented can be extended to incorporate a wide range of landscape dynamic processes, management rules and quantifiable objectives. It may thus be adapted to other socio-ecological systems, particularly where specific patterns of landscape heterogeneity are to be maintained despite imperfect management by multiple landowners. PMID:24465833

  19. Managing the human component of fire regimes: lessons from Africa.

    PubMed

    Archibald, Sally

    2016-06-05

    Human impacts on fire regimes accumulated slowly with the evolution of modern humans able to ignite fires and manipulate landscapes. Today, myriad voices aim to influence fire in grassy ecosystems to different ends, and this is complicated by a colonial past focused on suppressing fire and preventing human ignitions. Here, I review available evidence on the impacts of people on various fire characteristics such as the number and size of fires, fire intensity, fire frequency and seasonality of fire in African grassy ecosystems, with the intention of focusing the debate and identifying areas of uncertainty. Humans alter seasonal patterns of fire in grassy systems but tend to decrease total fire emissions: livestock have replaced fire as the dominant consumer in many parts of Africa, and fragmented landscapes reduce area burned. Humans alter the season and time of day when fires occur, with important implications for fire intensity, tree-grass dynamics and greenhouse gas (GHG) emissions. Late season fires are more common when fire is banned or illegal: these later fires are far more intense but emit fewer GHGs. The types of fires which preserve human livelihoods and biodiversity are not always aligned with the goal of reducing GHG concentrations. Current fire management challenges therefore involve balancing the needs of a large rural population against national and global perspectives on the desirability of different types of fire, but this cannot happen unless the interests of all parties are equally represented. In the future, Africa is expected to urbanize and land use to intensify, which will imply different trajectories for the continent's fire regimes.This article is part of the themed issue 'The interaction of fire and mankind. © 2016 The Author(s).

  20. Managing the human component of fire regimes: lessons from Africa

    PubMed Central

    Archibald, Sally

    2016-01-01

    Human impacts on fire regimes accumulated slowly with the evolution of modern humans able to ignite fires and manipulate landscapes. Today, myriad voices aim to influence fire in grassy ecosystems to different ends, and this is complicated by a colonial past focused on suppressing fire and preventing human ignitions. Here, I review available evidence on the impacts of people on various fire characteristics such as the number and size of fires, fire intensity, fire frequency and seasonality of fire in African grassy ecosystems, with the intention of focusing the debate and identifying areas of uncertainty. Humans alter seasonal patterns of fire in grassy systems but tend to decrease total fire emissions: livestock have replaced fire as the dominant consumer in many parts of Africa, and fragmented landscapes reduce area burned. Humans alter the season and time of day when fires occur, with important implications for fire intensity, tree–grass dynamics and greenhouse gas (GHG) emissions. Late season fires are more common when fire is banned or illegal: these later fires are far more intense but emit fewer GHGs. The types of fires which preserve human livelihoods and biodiversity are not always aligned with the goal of reducing GHG concentrations. Current fire management challenges therefore involve balancing the needs of a large rural population against national and global perspectives on the desirability of different types of fire, but this cannot happen unless the interests of all parties are equally represented. In the future, Africa is expected to urbanize and land use to intensify, which will imply different trajectories for the continent's fire regimes. This article is part of the themed issue ‘The interaction of fire and mankind. PMID:27216516

  1. Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts

    Treesearch

    Matthew P. Thompson; Karin L. Riley; Dan Loeffler; Jessica R. Haas

    2017-01-01

    The primary theme of this study is the cost-effectiveness of fuel treatments at multiple scales of investment. We focused on the nexus of fuel management and suppression response planning, designing spatial fuel treatment strategies to incorporate landscape features that provide control opportunities that are relevant to fire operations. Our analysis explored the...

  2. Forest wildfire, fuel reduction treatments, and landscape carbon stocks: a sensitivity analysis

    Treesearch

    John L. Campbell; Alan A. Ager

    2013-01-01

    Fuel reduction treatments prescribed in fire-suppressed forests of western North America pose an apparent paradox with respect to terrestrial carbon management. Such treatments have the immediate effect of reducing forest carbon stocks but likely reduce future carbon losses through the combustion and mortality caused by high-severity wildfires. Assessing the long-term...

  3. Post-fire tree establishment patterns at the alpine treeline ecotone: Mount Rainier National Park, Washington, USA

    Treesearch

    Kirk M. Stueve; Dawna L. Cerney; Regina M. Rochefort; Laurie L. Kurth

    2009-01-01

    We performed classification analysis of 1970 satellite imagery and 2003 aerial photography to delineate establishment. Local site conditions were calculated from a LIDAR-based DEM, ancillary climate data, and 1970 tree locations in a GIS. We used logistic regression on a spatially weighted landscape matrix to rank variables.

  4. Predicting fire impact from plant traits?

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Ottink, Roos; Zylstra, Philip; Cornelissen, Hans; Fernandes, Paulo

    2017-04-01

    Fire can considerably increase the landscape's vulnerability to flooding and erosion, which is in part caused by fire-induced soil heating, vegetation removal and resulting hydrological changes. While the magnitude of these fire effects and ecosystem responses is frequently studied, there is still little attention for the fundamental mechanisms that drive these changes. One example is on the effect of plants: while it is known that plants can alter the fire environment, there is a major knowledge gap regarding the fundamental mechanisms by which vegetation mediates fire impact on soil and hydrology. Essential to identifying these mechanisms is consideration of the effects of vegetation on flammability and fire behaviour, which are studied both in ecology and traditional fire science. Here we discuss the challenges of integrating these very distinct fields and the potential benefits of this integration for improved understanding of fire effects on soil and hydrology. We furthermore present results of a study in which we assessed the spatial drivers controlling the proportion of live and dead fuel in a natural park in northern Portugal, and evaluated the impacts on the spatial variability of fire behaviour and potential soil heating using BehavePlus modeling. Better understanding of the role of (spatial variability in) plant traits on fire impact can facilitate the development of risk maps to ultimately help predict and mitigate fire risk and impact across landscapes.

  5. Using Google Earth Engine To Apply Spectral Mixture Analysis Over Landsat 5TM Imagery To Map Fire Scars In The Alto Teles Pires River Basin, Mato Grosso State, Brazil.

    NASA Astrophysics Data System (ADS)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2016-12-01

    The two most extensive biomes in Brazil, the Amazon Forest and the Cerrado (the Brazilian savanna), are subject to many fire events every dry season. Both biomes are well-known for their ecological and environmental importance but, due to the intensive human occupation over the last decades, they have been experiencing high deforestation rates with much of their natural landscape being converted to agriculture and pasture uses. The Cerrado, as a savanna, has naturally evolved adapted to fire. According to some researchers, this biome has been exposed to fire for the last 25 million years, forging the diversification of many C4 grass species, for example. The Amazon forest does not have similar characteristics and studies have shown that forest areas that have been already burned become more prone to recurrent burns. Forest patches that are close to open areas have their edges exposed to higher insolation and greater turbulence, drying the understory vegetation and litter, turning those areas more susceptible to fire events. In cases where grass species become established in the understory they can be a renewable source of fuel for recurrent burns. This study aimed to identify and map fire scars present in the region of Alto Teles Pires river basin, State of Mato Grosso - Brazil, during 10 years (2002-2011). This region is located in the transition zone between the two biomes and is known for its high deforestation rates. By taking advantage of the Landsat 5TM imagery collection present in Google Earth Engine platform as well as applying Spectral Mixture Analysis (SMA) techniques over them it was possible to estimate fractions of Green Vegetation (GV), Non-Photosynthetic Vegetation (NPV), and Soil targets, which are the surfaces that compose the vast majority of the landscape in the study region. Iteratively running SMA analysis over the imagery using burned vegetation endmembers allowed us to further identify fire scars present in the region, returning excellent accuracy. Burned vegetation endmembers were extracted from Landsat 5TM imagery that cover burned control areas that are part of the Projeto Fogo, a project that has been under development for the last 27 year in an ecological reserve (Roncador Ecological Reserve) close to Brasilia, Distrito Federal, Brazil.

  6. Managing the unexpected in prescribed fire and fire use operations: a workshop on the High Reliability Organization

    Treesearch

    Paul (tech. ed.) Keller

    2004-01-01

    Fire management, and forest and rangeland fuels management, over the past century have altered the wildland fire situation dramatically, thus also altering the institutional approach to how to deal with the changing landscape. Also, climate change, extended drought, increased insect and disease outbreaks, and invasions of exotic plant species have added complications...

  7. Historic fire regimes of eastern Great Basin (USA) mountains reconstructed from tree rings

    Treesearch

    Stanley G. Kitchen

    2010-01-01

    Management of natural landscapes requires knowledge of key disturbance processes and their effects. Fire and forest histories provide valuable insight into how fire and vegetation varied and interacted in the past. I constructed multi-century fire chronologies for 10 sites on six mountain ranges representative of the eastern Great Basin (USA), a region in which...

  8. Pre-fire treatment effects and understory plant community response on the Rodeo-Chediski Fire, Arizona

    Treesearch

    Amanda M. Kuenzi

    2006-01-01

    High severity wildfires have been increasing across southwestern ponderosa pine forests in recent decades. As the effects of wildfire become more widespread across the landscape, the need for information about the ecological effects of fire on understory vegetation is mounting. We investigated understory plant community response to the Rodeo-Chediski fire by conducting...

  9. Conditions inside fisher dens during prescribed fires; what is the risk posed by spring underburns?

    Treesearch

    Craig M. Thompson; Kathryn L. Purcell

    2016-01-01

    The use of spring prescribed fires to reduce accumulated fuel loads in western forests and facilitate the return of natural fire regimes is a controversial topic. While spring burns can be effective at reducing fuel loads and restoring heterogeneous landscapes, concerns exist over the potential impacts of unnaturally-timed fires to native species. To protect native...

  10. First-order fire effects models for land Management: Overview and issues

    Treesearch

    Elizabeth D. Reinhardt; Matthew B. Dickinson

    2010-01-01

    We give an overview of the science application process at work in supporting fire management. First-order fire effects models, such as those discussed in accompanying papers, are the building blocks of software systems designed for application to landscapes over time scales from days to centuries. Fire effects may be modeled using empirical, rule based, or process...

  11. Fire history in the ponderosa pine/Douglas-fir forests on the east slope of the Washington Cascades.

    Treesearch

    Richard L. Everett; Richard Schellhaas; Dave Keenum

    2000-01-01

    We collected 490 and 233 fire scars on two ponderosa pine (Pinus ponderosa)/Douglas-fir (Pseudotsuga menziesii) dominated landscapes on the east slope of the Washington Cascades that contained a record of 3901 and 2309 cross-dated fire events. During the pre-settlement period (1700/1750±1860), the Weibull median fire-free...

  12. Fire history, effects and management in southern Nevada [Chapter 5

    Treesearch

    Mathew L. Brooks; Jeanne C. Chambers; Randy A. McKinley

    2013-01-01

    Fire can be both an ecosystem stressor (Chapter 2) and a critical ecosystem process, depending on when, where, and under what conditions it occurs on the southern Nevada landscape. Fire can also pose hazards to human life and property, particularly in the wildland/urban interface (WUI). The challenge faced by land managers is to prevent fires from occurring where they...

  13. Progress in wilderness fire science: Embracing complexity

    Treesearch

    Carol Miller; Gregory H. Aplet

    2016-01-01

    Wilderness has played an invaluable role in the development of wildland fire science. Since Agee’s review of the subject 15 years ago, tremendous progress has been made in the development of models and data, in understanding the complexity of wildland fire as a landscape process, and in appreciating the social factors that influence the use of wilderness fire....

  14. Wildland Fire Use - Challenges Associated With Program Management Across Multiple Ownerships and Land Use Situations

    Treesearch

    Thomas Zimmerman; Michael Frary; Shelly Crook; Brett Fay; Patricia Koppenol; Richard Lasko

    2006-01-01

    The application and use of wildland fire for a range of beneficial ecological objectives is rapidly expanding across landscapes supporting diverse vegetative complexes and subject to multiple societal uses. Wildland fire use originated in wilderness and has become a proven practice successful in meeting ecological needs. The use of wildland fire in non-wilderness is...

  15. A tale of two fires: The relative effectiveness of past wildfires in mitigating wildfire behavior and effects

    Treesearch

    Robert W. Gray; Susan J. Prichard

    2015-01-01

    The incidence of large, costly landscape-scale fires in western North America is increasing. To combat these fires, researchers and managers have expressed increased interest in investigating the effectiveness of past, stand-replacing wildfires as bottom-up controls on fire spread and severity. Specifically, how effective are past wildfires in mitigating the behavior...

  16. High-Resolution View of Fires and Smoke near Sydney, Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Smoke obscures much of the landscape near Sydney, Australia, in the true-color image above (top). However, the areas with active fires are revealed by the false-color image (bottom), which was made using shortwave infrared data that are sensitive to heat and provide the ability to 'see' through smoke. In the bottom scene, the black areas show fresh burn scars, while greens show landscape untouched by fire. Apparently, the fire burned up to the edge of a road (the thin black line snaking from the lefthand side of the image and disappearing off the bottom) and was unable to jump across. The thick dark line along the bottom of the scene is a river. Both images were made using data acquired on December 28, 2001, by the Advanced Land Imager (ALI), flying aboard NASA's Earth Observing-1 (EO-1) satellite. For more images of the recent fires in Australia, read Smoke Blankets New South Wales, Australia, Fires Continue to Rage Near Sydney, Australia, and Severe Bush Fires Near Sydney, Australia. For more information about the effects of fire on the environment, read the Biomass Burning fact sheet. Images by Robert Simmon, based on data provided by Lawrence Ong, EO-1 Science Team

  17. Fire in Australian savannas: from leaf to landscape

    PubMed Central

    Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri

    2015-01-01

    Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. PMID:25044767

  18. Sanford Prescribed Fire Review

    Treesearch

    Scott Conroy; Jim Saveland; Mark Beighley; John Shive; Joni Ward; Marcus Trujillo; Paul Keller

    2003-01-01

    The Dixie National Forest has a long-standing history of successfully implementing prescribed fire and suppression programs. The Forest's safety record has been exemplary. The Forest is known Region-wide for its aggressive and innovative prescribed fire program. In particular, the Dixie National Forest is recognized for its leadership in introducing landscape-...

  19. The essence of fire regime-condition class assessment

    Treesearch

    McKinley-Ben Miller

    2008-01-01

    The interagency-Fire Regime / Condition Class - assessment process (FRCC) represents a contemporary and effective means of estimating the relative degree of difference or "departure" a subject landscape condition is currently in, as compared to the historic or reference ecological conditions. This process generally applied to fire adapted systems is science-...

  20. Vegetation recovery assessment following large wildfires in the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Bastos, A.; Gouveia, C. M.; Trigo, R. M.; DaCamara, C. C.

    2012-04-01

    Mediterranean ecosystems have evolved along with fire, adapting to quick recovering following wildfire events. However, vegetation species respond differently to the changes in fire regimes that have been observed in the past decades in the Mediterranean. These changes, which occurred mainly due to socio-economic and climatic changes, led to dramatic modifications of landscape composition and structure (Malkinson et al., 2011). Post-fire vegetation recovery depends on environmental factors such as landscape features and climatic variables and on specific plant traits; however it also depends on the differentiated response of each species to the characteristics of fire regimes, such as recurrence, severity and extent. The complexity of the interactions between these factors emphasizes the importance of assessing quantitatively post-fire recovery as well as the role of driving factors of regeneration over different regions in the Mediterranean. In 2006, Spain experienced the fire season with larger fires, restricted to a relatively small region of the province of Galicia, that represents more than 60% of total burned area of this fire season (92000ha out of 148827 ha). The 2007 fire season in Greece was remarkably severe, registering the highest value of burnt area (225734 ha) since 1980. Finally, in 2010 a very large wildfire of about 5000 ha occurred in Mount Carmel, Israel, with major social and environmental impacts. The work relies on monthly NDVI data from SPOT/VEGETATION at 1km spatial resolution over the period from September 1998 - August 2011 for Spain, Greece and Israel. Here we have applied the same sequential methodology developed at our laboratory, starting by the identification of very large burnt scars by means of a spatial cluster analysis followed by the application of the monoparametric model (Gouveia et al., 2010; Bastos et al., 2011) in order to study post-fire vegetation dynamics. Post-fire recovery times were estimated for burnt scars from each fire season considered in this study. The influence of driving factors such as pre-fire land-cover type and fire damage on vegetation recovery was assessed by means of a spatial analysis on recovery time fields. Finally, post-fire behaviour of vegetation over the selected regions and the role of the driving factors were compared. This work draws attention to the fact that the simple model applied by Bastos et al. (2011) to monitor vegetation recovery in Portugal following large wildfires is still applicable over other Mediterranean regions using coarse resolution remotely sensed data. Bastos A., Gouveia C., DaCamara C.C., and Trigo R.M.: Modelling post-fire vegetation recovery in Portugal. Biogeosciences, 8, 4559-4601, 2011. Gouveia C., DaCamara C.C. and Trigo R.M.: Post fire vegetation recovery in Portugal based on SPOT-VEGETATION data. Natural Hazards and Earth System Sciences, 10, 673-684, 2010. Malkinson D., Wittenberg, L., Beeri O. and Barzilai R.: Effects of repeated fires on the structure, composition, and dynamics of Mediterranean maquis: Short- and long-term perspectives. Ecosystems, 14, 478-488, 2011.

  1. An Analysis Framework Using Satellite Remote Sensing to Understand Landscape Patterns of High Severity Burns from Wildfires in Coastal Woodlands of California and Italy

    NASA Astrophysics Data System (ADS)

    Potter, C. S.

    2016-12-01

    The central California coastal landscape has a history of frequent large wildfires that have threatened or destroyed many residential structures at the wildland interface. This study starts with the largest wildfires on the Central Coast over the past 30 years and analyzes the fraction and landscape patterns of high severity burned (HBS) areas from the Landsat-based Monitoring Trends in Burn Severity (MTBS) data base as a function of weather conditions and topographic variations. Results indicate that maximum temperatures at the time of fire and the previous 12 months of rainfall explained a significant portion of the variation in total area burned and the fraction of HBS area. Average patch size and aggregation metrics of HBS areas were included in the analysis framework. Within each burned area, the Landsat (30-meter resolution) differenced Normalized Burn Ratio (dNBR), a continuous index of vegetation burn severity, was correlated against slope, aspect, and elevation to better understand landscape level-controls over HBS patches. The Landsat dNBR analysis framework is being extended next to the island of Sardinia, Italy for a comparison of Mediterranean climates and wildfire patterns since the mid-1980s.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollingsworth, LaWen T.; Kurth, Laurie,; Parresol, Bernard, R.

    Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation System. The fundamental fire intensity algorithms in these systems require surface fire behavior fuel models and canopy cover to model surface fire behavior. Canopy base height, stand height, and canopy bulk density are required in addition to surface fire behavior fuel models and canopy cover to model crown fire activity. Several surface fuelmore » and canopy classification efforts have used various remote sensing and ecological relationships as core methods to develop the spatial layers. All of these methods depend upon consistent and temporally constant interpretations of crown attributes and their ecological conditions to estimate surface fuel conditions. This study evaluates modeled fire behavior for an 80,000 ha tract of land in the Atlantic Coastal Plain of the southeastern US using three different data sources. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the US using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern US using satellite imagery. Differences in modeled fire behavior, data development, and data utility are summarized to assist in determining which data source may be most applicable for various land management activities and required analyses. Characterizing fire behavior under different fuel relationships provides insights for natural ecological processes, management strategies for fire mitigation, and positive and negative features of different modeling systems. A comparison of flame length, rate of spread, crown fire activity, and burn probabilities modeled with FlamMap shows some similar patterns across the landscape from all three data sources, but there are potentially important differences. All data sources showed an expected range of fire behavior. Average flame lengths ranged between 1 and 1.4 m. Rate of spread varied the greatest with a range of 2.4-5.7 m min{sup -1}. Passive crown fire was predicted for 5% of the study area using FCCS and LANDFIRE while passive crown fire was not predicted using SWRA data. No active crown fire was predicted regardless of the data source. Burn probability patterns across the landscape were similar but probability was highest using SWRA and lowest using FCCS.« less

  3. Historical and current forest and range landscapes in the interior Columbia River basin and portions of the Klamath and Great Basins. Part 1: Linking vegetation patterns and landscape vulnerability to potential insect and pathogen disturbances.

    Treesearch

    Paul F. Hessburg; Bradley G. Smith; Scott D. Kreiter; Craig A. Miller; R. Brion Salter; Cecilia H. McNicoll; Wendel J. Hann

    1999-01-01

    Management activities of the 20th century, especially fire exclusion, timber harvest, and domestic livestock grazing, have significantly modified vegetation spatial patterns of forests and ranges in the interior Columbia basin. Compositional patterns as well as patterns of living and dead structure have changed. Dramatic change in vital ecosystem processes such as fire...

  4. Research Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska

    DTIC Science & Technology

    2016-08-21

    USER GUIDE Research Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska SERDP Project...Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...forecast landscape change in response to projected changes in climate , fire regime, and fire management. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF

  5. Biomass and fire dynamics in a temperate forest-grassland mosaic: Integrating multi-species herbivory, climate, and fire with the FireBGCv2/GrazeBGC system

    Treesearch

    Robert A. Riggs; Robert E. Keane; Norm Cimon; Rachel Cook; Lisa Holsinger; John Cook; Timothy DelCurto; L.Scott Baggett; Donald Justice; David Powell; Martin Vavra; Bridgett Naylor

    2015-01-01

    Landscape fire succession models (LFSMs) predict spatially-explicit interactions between vegetation succession and disturbance, but these models have yet to fully integrate ungulate herbivory as a driver of their processes. We modified a complex LFSM, FireBGCv2, to include a multi-species herbivory module, GrazeBGC. The system is novel in that it explicitly...

  6. Quantifying postfire aeolian sediment transport using rare earth element tracers

    USGS Publications Warehouse

    Dukes, David; Gonzales, Howell B.; Ravi, Sujith; Grandstaff, David E.; Van Pelt, R. Scott; Li, Junran; Wang, Guan; Sankey, Joel B.

    2018-01-01

    Grasslands, which provide fundamental ecosystem services in many arid and semiarid regions of the world, are undergoing rapid increases in fire activity and are highly susceptible to postfire-accelerated soil erosion by wind. A quantitative assessment of physical processes that integrates fire-wind erosion feedbacks is therefore needed relative to vegetation change, soil biogeochemical cycling, air quality, and landscape evolution. We investigated the applicability of a novel tracer technique—the use of multiple rare earth elements (REE)—to quantify soil transport by wind and to identify sources and sinks of wind-blown sediments in both burned and unburned shrub-grass transition zone in the Chihuahuan Desert, NM, USA. Results indicate that the horizontal mass flux of wind-borne sediment increased approximately threefold following the fire. The REE tracer analysis of wind-borne sediments shows that the source of the horizontal mass flux in the unburned site was derived from bare microsites (88.5%), while in the burned site it was primarily sourced from shrub (42.3%) and bare (39.1%) microsites. Vegetated microsites which were predominantly sinks of aeolian sediments in the unburned areas became sediment sources following the fire. The burned areas showed a spatial homogenization of sediment tracers, highlighting a potential negative feedback on landscape heterogeneity induced by shrub encroachment into grasslands. Though fires are known to increase aeolian sediment transport, accompanying changes in the sources and sinks of wind-borne sediments may influence biogeochemical cycling and land degradation dynamics. Furthermore, our experiment demonstrated that REEs can be used as reliable tracers for field-scale aeolian studies.

  7. Landscape structure affects specialists but not generalists in naturally fragmented grasslands

    USGS Publications Warehouse

    Miller, Jesse E.D.; Damschen, Ellen Ingman; Harrison, Susan P.; Grace, James B.

    2015-01-01

    Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural landscapes become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. In this study, we asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure-defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index)-had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities, and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.

  8. Increasing resiliency in frequent fire forests: Lessons from the Sierra Nevada and western Australia

    Treesearch

    Scott L. Stephens

    2014-01-01

    This paper will primarily focus on the management and restoration of forests adapted to frequent, low-moderate intensity fire regimes. These are the forest types that are most at risk from large, high-severity wildfires and in many regions their fire regimes are changing. Fire as a landscape process can exhibit self-limiting characteristics in some forests which can...

  9. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA

    Treesearch

    Eric J. Gustafson; Patrick A. Zollner; Brian R. Sturtevant; S. He Hong; David J. Mladenoff

    2004-01-01

    We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial...

  10. EcoSmart Fire as structure ignition model in wildland urban interface: predictions and validations

    Treesearch

    Mark A. Dietenberger; Charles R. Boardman

    2016-01-01

    EcoSmartFire is a Windows program that models heat damage and piloted ignition of structures from radiant exposure to discrete landscaped tree fires. It calculates the radiant heat transfer from cylindrical shaped fires to the walls and roof of the structure while accounting for radiation shadowing, attenuation, and ground reflections. Tests of litter burn, a 0.6 m...

  11. Effects of fire at two frequencies on nitrogen transformations and soil chemistry in a nitrogen-enriched forest landscape

    Treesearch

    R. E. J. Boerner; J. A. Brinkman; E. K. Sutherland

    2004-01-01

    This study reports results of the application of dormant-season prescribed fire at two frequencies (periodic (two fires in 4 years) and annual) at four southern Ohio mixed-oak (Quercus spp.) forest sites to restore the ecosystem functional properties these sites had before the onset of fire suppression and chronic atmospheric deposition. Each forest...

  12. Fire history, effects, and management in southern Nevada [Chapter 5] (Executive Summary)

    Treesearch

    Matthew L. Brooks; Jeanne C. Chambers; Randy A. McKinley

    2013-01-01

    Fire can be both an ecosystem stressor and a critical ecosystem process, depending on when, where, and under what conditions it occurs on the southern Nevada landscape. Fire can also pose hazards to human life and property, particularly in the wildland/ urban interface (WUI). The challenge faced by land managers is to prevent fires from occurring where they are likely...

  13. Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras.

    Treesearch

    Paul F. Hessburg; James K. Agee; Jerry F. Franklin

    2005-01-01

    Prior to Euro-American settlement, dry ponderosa pine and mixed conifer forests (hereafter, the "dry forests") of the Inland Northwest were burned by frequent low- or mixed-severity fires. These mostly surface fires maintained low and variable tree densities, light and patchy ground fuels, simplified forest structure, and favored fire-tolerant trees, such as...

  14. An analytical framework for quantifying wildland fire risk and fuel treatment benefit

    Treesearch

    Joe H. Scott

    2006-01-01

    Federal wildland fire management programs have readily embraced the practice of fuel treatment. Wildland fire risk is quantified as expected annual loss ($ yr –1 or $ yr –1 ac –1). Fire risk at a point on the landscape is a function of the probability of burning at that point, the relative frequency...

  15. Prescribed burning consumes key forest structural components: implications for landscape heterogeneity.

    PubMed

    Holland, Greg J; Clarke, Michael F; Bennett, Andrew F

    2017-04-01

    Prescribed burning to achieve management objectives is a common practice in fire-prone regions worldwide. Structural components of habitat that are combustible and slow to develop are particularly susceptible to change associated with prescribed burning. We used an experimental, "whole-landscape" approach to investigate the effect of differing patterns of prescribed burning on key habitat components (logs, stumps, dead trees, litter cover, litter depth, and understorey vegetation). Twenty-two landscapes (each ~100 ha) were selected in a dry forest ecosystem in southeast Australia. Experimental burns were conducted in 16 landscapes (stratified by burn extent) while six served as untreated controls. We measured habitat components prior to and after burning. Landscape burn extent ranged from 22% to 89% across the 16 burn treatments. With the exception of dead standing trees (no change), all measures of habitat components declined as a consequence of burning. The degree of loss increased as the extent to which a landscape was burned also increased. Prescribed burning had complex effects on the spatial heterogeneity (beta diversity) of structural components within landscapes. Landscapes that were more heterogeneous pre-fire were homogenized by burning, while those that were more homogenous pre-fire tended to display greater differentiation post-burning. Thus, the notion that patch mosaic burning enhances heterogeneity at the landscape-scale depends on prior conditions. These findings have important management implications. Where prescribed burns must be undertaken, effects on important resources can be moderated via control of burn characteristics (e.g., burn extent). Longer-term impacts of prescribed burning will be strongly influenced by the return interval, given the slow rate at which some structural components accumulate (decades to centuries). Management of habitat structural components is important given the critical role they play in (1) provision of habitat resources for diverse organisms, (2) retention of moisture and nutrients in otherwise dry, low-productivity systems, and (3) carbon storage. © 2016 by the Ecological Society of America.

  16. Fire and riparian ecosystems in landscapes of the western USA

    Treesearch

    Kathleen A. Dwire; J. Boone Kauffman

    2003-01-01

    Despite the numerous values of riparian areas and the recognition of fire as a critical natural disturbance, few studies have investigated the behavior, properties, and influence of natural fire in riparian areas of the western USA. Riparian areas frequently differ from adjacent uplands in vegetative composition and structure, geomorphology, hydrology, microclimate,...

  17. Bending the carbon curve: fire management for carbon resilience under climate change

    Treesearch

    E. L. Loudermilk; R. M. Scheller; P. J. Weisberg; Alec Kretchun

    2017-01-01

    Forest landscapes are increasingly managed for fire resilience, particularly in the western US which has recently experienced drought and widespread, high-severity wildfires. Fuel reduction treatments have been effective where fires coincide with treated areas. Fuel treatments also have the potential to reduce drought-mortality if tree density is...

  18. Use of artificial landscapes to isolate controls on burn probability

    Treesearch

    Marc-Andre Parisien; Carol Miller; Alan A. Ager; Mark A. Finney

    2010-01-01

    Techniques for modeling burn probability (BP) combine the stochastic components of fire regimes (ignitions and weather) with sophisticated fire growth algorithms to produce high-resolution spatial estimates of the relative likelihood of burning. Despite the numerous investigations of fire patterns from either observed or simulated sources, the specific influence of...

  19. The role of prescribed burn associations in the application of prescribed fires in rangeland ecosystems

    USDA-ARS?s Scientific Manuscript database

    Although the ecological thresholds for restoring fire-adapted ecosystems back to their original state are better understood than in the past, the key hurdle to reintroducing historical fire regimes at landscape scales is a social one. The objectives of this study were to assess the human dimensions ...

  20. Landscape scale vegetation-type conversion and fire hazard in the San Francisco bay area open spaces

    USGS Publications Warehouse

    Russell, W.H.; McBride, J.R.

    2003-01-01

    Successional pressures resulting from fire suppression and reduced grazing have resulted in vegetation-type conversion in the open spaces surrounding the urbanized areas of the San Francisco bay area. Coverage of various vegetation types were sampled on seven sites using a chronosequence of remote images in order to measure change over time. Results suggest a significant conversion of grassland to shrubland dominated by Baccharis pilularison five of the seven sites sampled. An increase in Pseudotsuga menziesii coverage was also measured on the sites where it was present. Increases fuel and fire hazard were determined through field sampling and use of the FARSITE fire area simulator. A significant increase in biomass resulting from succession of grass-dominated to shrub-dominated communities was evident. In addition, results from the FARSITE simulations indicated significantly higher fire-line intensity, and flame length associated with shrublands over all other vegetation types sampled. These results indicate that the replacement of grass dominated with shrub-dominated landscapes has increased the probability of high intensity fires. ?? 2003 Elsevier Science B.V. All rights reserved.

  1. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    NASA Astrophysics Data System (ADS)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  2. From open to closed canopy: A century of change in Douglas-fir forest, Orcas Island, Washington

    USGS Publications Warehouse

    Peterson, D.L.; Hammer, R.D.

    2001-01-01

    During the past century, forest structure on south-facing slopes of Mount Constitution, Orcas Island, Washington, has changed from open-grown Douglas-fir (Pseudotsuga menziesii) mixed with prairie to primarily closed canopy forest. Density of open-grown Douglas-fir was approximately 7 stems/ha in the 19th century, while current density of trees in closed-canopy mature forest is 426 stems/ha. Trees occur at intermediate densities in areas of transition from savanna-like stands to closed canopy. Analysis of fire scars indicates that at least seven fires have occurred on Mount Constitution since 1736, but only one fire has occurred since 1893, which suggests that the recent increase in stem density has been caused primarily by fire exclusion. The high stem densities currently found in this landscape put the relict (120-350+ years old) Douglas-fir at risk from contemporary fires, which would likely be high-intensity crown fires. Given the transition of forests on Orcas Island during the 20th century to closed canopy structure, undisturbed open-grown coniferous forest is now extremely rare in the San Juan Islands.

  3. Using terrestrial light detection and ranging (lidar) technology for land-surface analysis in the Southwest

    USGS Publications Warehouse

    Soulard, Christopher E.; Bogle, Rian

    2011-01-01

    Emerging technologies provide scientists with methods to measure Earth processes in new ways. One of these technologies--ultra-high-resolution, ground-based light detection and ranging (lidar)--is being used by USGS Western Geographic Science Center scientists to characterize the role of wind and fire processes in shaping desert landscapes of the Southwest United States.

  4. Prescribed burning effects on soil enzyme activity in a southern Ohio hardwood forest: A landscape-scale analysis

    Treesearch

    Ralph E. J. Boerner; Kelly L. M. Decker; Elaine K. Sutherland

    2000-01-01

    We assessed the effect of a single, dormant season prescribed fire on soil enzyme activity in oak-hickory (Quercus-Carya) forests in southern Ohio, USA. Four enzymes specific for different C sources were chosen for monitoring: acid phosphatase, beta-glucosidase, chitinase and phenol oxidase. Postfire acid phosphatase activity was generally reduced by burning and...

  5. Effect of landscape-level fuel treatments on carbon emissions and storage over a 50 yr time cycle

    Treesearch

    K. Osborne; C. Dicus; C. Isbell; Alan Ager; D. Weise; M. Landram

    2011-01-01

    We investigated how multiple fuel treatment types, organized in varying spatial arrangements, and at increasing proportions of a mixed-conifer forest in the Klamath Mountains of northern California (~20,000 ha) variably affect carbon sequestration and emissions over a 50 year time period. Preliminary analysis of three fuel treatment scenarios (fire only, mechanical...

  6. Measurement repeatability of a large-scale inventory of forest fuels

    Treesearch

    J.A. Westfall; C.W. Woodall

    2007-01-01

    An efficient and accurate inventory of forest fuels at large scales is critical for assessment of forest fire hazards across landscapes. The Forest Inventory and Analysis (FIA) program of the USDA Forest Service conducts a national inventory of fuels along with blind remeasurement of a portion of inventory plots to monitor and improve data quality. The goal of this...

  7. ArcFuels: an ArcMap toolbar for fuel treatment planning and wildfire risk assessment

    Treesearch

    Nicole M. Vaillant; Alan A. Ager

    2014-01-01

    Fire behavior modeling and geospatial analysis can provide tremendous insight to land managers in defining both the benefits and potential impacts of fuel treatments in the context of land management goals and public expectations. ArcFuels is a streamlined fuel management planning and wildfire risk assessment system that creates a trans-scale (stand to large landscape...

  8. Wetland fire remote sensing research--The Greater Everglades example

    USGS Publications Warehouse

    Jones, John W.

    2012-01-01

    Fire is a major factor in the Everglades ecosystem. For thousands of years, lightning-strike fires from summer thunderstorms have helped create and maintain a dynamic landscape suited both to withstand fire and recover quickly in the wake of frequent fires. Today, managers in the Everglades National Park are implementing controlled burns to promote healthy, sustainable vegetation patterns and ecosystem functions. The U.S. Geological Survey (USGS) is using remote sensing to improve fire-management databases in the Everglades, gain insights into post-fire land-cover dynamics, and develop spatially and temporally explicit fire-scar data for habitat and hydrologic modeling.

  9. Fire effects in southwestern forests: Proceedings of the Second La Mesa Fire symposium

    USGS Publications Warehouse

    Allen, Craig D.

    1996-01-01

    In 1977, the La Mesa Fire burned across 15,444 acres of ponderosa pine forests on the adjoining lands of Bandelier National Monument, the Santa Fe National Forest, and Los Alamos National Laboratory. Following this event, several fire effects studies were initiated. The 16 papers herein document longer-term knowledge gained about the ecological effects of the fire and about Southwestern fire ecology in general. The presentations are also designed to give resource managers practical information for managing fire in local landscapes. Studies presented range from fire histories and avifauna to geomorphology and arthropods.

  10. Fire history on the California Channel Islands spanning human arrival in the Americas.

    PubMed

    Hardiman, Mark; Scott, Andrew C; Pinter, Nicholas; Anderson, R Scott; Ejarque, Ana; Carter-Champion, Alice; Staff, Richard A

    2016-06-05

    Recent studies have suggested that the first arrival of humans in the Americas during the end of the last Ice Age is associated with marked anthropogenic influences on landscape; in particular, with the use of fire which, would have given even small populations the ability to have broad impacts on the landscape. Understanding the impact of these early people is complicated by the dramatic changes in climate occurring with the shift from glacial to interglacial conditions. Despite these difficulties, we here attempt to test the extent of anthropogenic influence using the California Channel Islands as a smaller, landscape-scale test bed. These islands are famous for the discovery of the 'Arlington Springs Man', which are some of the earliest human remains in the Americas. A unifying sedimentary charcoal record is presented from Arlington Canyon, Santa Rosa Island, based on over 20 detailed sedimentary sections from eight key localities. Radiocarbon dating was based on thin, fragile, long fragments of charcoal in order to avoid the 'inbuilt' age problem. Radiocarbon dating of 49 such fragments has allowed inferences regarding the fire and landscape history of the Canyon ca 19-11 ka BP. A significant period of charcoal deposition is identified approximately 14-12.5 ka BP and bears remarkable closeness to an estimated age range of the first human arrival on the islands.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  11. Fire history on the California Channel Islands spanning human arrival in the Americas

    PubMed Central

    Hardiman, Mark; Scott, Andrew C.; Pinter, Nicholas; Anderson, R. Scott; Ejarque, Ana; Carter-Champion, Alice; Staff, Richard A.

    2016-01-01

    Recent studies have suggested that the first arrival of humans in the Americas during the end of the last Ice Age is associated with marked anthropogenic influences on landscape; in particular, with the use of fire which, would have given even small populations the ability to have broad impacts on the landscape. Understanding the impact of these early people is complicated by the dramatic changes in climate occurring with the shift from glacial to interglacial conditions. Despite these difficulties, we here attempt to test the extent of anthropogenic influence using the California Channel Islands as a smaller, landscape-scale test bed. These islands are famous for the discovery of the ‘Arlington Springs Man’, which are some of the earliest human remains in the Americas. A unifying sedimentary charcoal record is presented from Arlington Canyon, Santa Rosa Island, based on over 20 detailed sedimentary sections from eight key localities. Radiocarbon dating was based on thin, fragile, long fragments of charcoal in order to avoid the ‘inbuilt’ age problem. Radiocarbon dating of 49 such fragments has allowed inferences regarding the fire and landscape history of the Canyon ca 19–11 ka BP. A significant period of charcoal deposition is identified approximately 14–12.5 ka BP and bears remarkable closeness to an estimated age range of the first human arrival on the islands. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216524

  12. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States.

    PubMed

    Baker, William L; Williams, Mark A

    2018-03-01

    An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.

  13. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US.

    PubMed

    Hurteau, Matthew D

    2017-01-01

    Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010-2019), mid (2050-2059), and late (2090-2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8-48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.

  14. Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US

    PubMed Central

    2017-01-01

    Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010–2019), mid (2050–2059), and late (2090–2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8–48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink. PMID:28046079

  15. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression.

    PubMed

    Parks, Sean A; Holsinger, Lisa M; Miller, Carol; Nelson, Cara R

    2015-09-01

    Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-process feedback between vegetation and fire exist, they have been geographically limited or did not consider the influence of time between fires and weather. The availability of remotely sensed data identifying fire activity over the last four decades provides an opportunity to explicitly quantify-the ability of wildland fire to limit the progression of subsequent fire. Furthermore, advances in fire progression mapping now allow an evaluation of how daily weather as a top-down control modifies this effect. In this study, we evaluated the ability of wildland fire to create barriers that limit the spread of subsequent fire along a gradient representing time between fires in four large study areas in the western United States. Using fire progression maps in conjunction with weather station data, we also evaluated the influence of daily weather. Results indicate that wildland fire does limit subsequent fire spread in all four study areas, but this effect decays over time; wildland fire no longer limits subsequent fire spread 6-18 years after fire, depending on the study area. We also found that the ability of fire to regulate, subsequent fire progression was substantially reduced under extreme conditions compared to moderate weather conditions in all four study areas. This study increases understanding of the spatial feedbacks that can lead to self-regulating landscapes as well as the effects of top-down controls, such as weather, on these feedbacks. Our results will be useful to managers who seek to restore natural fire regimes or to exploit recent burns when managing fire.

  16. Overview and example application of the Landscape Treatment Designer

    Treesearch

    Alan A. Ager; Nicole M. Vaillant; David E. Owens; Stuart Brittain; Jeff Hamann

    2012-01-01

    The Landscape Treatment Designer (LTD) is a multicriteria spatial prioritization and optimization system to help design and explore landscape fuel treatment scenarios. The program fills a gap between fire model programs such as FlamMap, and planning systems such as ArcFuels, in the fuel treatment planning process. The LTD uses inputs on spatial treatment objectives,...

  17. Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens

    Treesearch

    Volker C. Radeloff; David J. Mladenoff; Eric J. Gustafson; Robert M. Scheller; Patrick A. Zollner; Hong S. Heilman; H. Resit Akcakaya

    2006-01-01

    Forest management shapes landscape patterns, and these patterns often differ significantly from those typical for natural disturbance regimes. This may affect wildlife habitat and other aspects of ecosystem function. Our objective was to examine the effects of different forest management decisions on landscape pattern in a fire adapted ecosystem. We used a factorial...

  18. Human relationships to fire prone ecosystems: Mapping values at risk on contested landscapes

    Treesearch

    Kari Gunderson; Steve Carver; Brett H. Davis

    2011-01-01

    A key problem in developing a better understanding of different responses to landscape level management actions, such as fuel treatments, is being able to confidently record and accurately spatially delineate the meanings stakeholders ascribe to the landscape. To more accurately understand these relationships with the Bitterroot National Forest, Montana, U.S.A., local...

  19. Historical range of variability in landscape structure: a simulation study in Oregon, USA.

    Treesearch

    Etsuko Nonaka; Thomas A. Spies

    2005-01-01

    We estimated the historical range of variability (HRV) of forest landscape structure under natural disturbance regimes at the scale of a physiographic province (Oregon Coast Range, 2 million ha) and evaluated the similarity to HRV of current and future landscapes under alternative management scenarios. We used a stochastic fire simulation model to simulate...

  20. Interactions of landscape disturbances and climate change dictate ecological pattern and process: spatial modeling of wildfire, insect, and disease dynamics under future climates

    Treesearch

    Rachel A. Loehman; Robert E. Keane; Lisa M. Holsinger; Zhiwei Wu

    2017-01-01

    Context: Interactions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs. Objectives We used the mechanistic...

  1. Coupling the Biophysical and Social Dimensions of Wildfire Risk to Improve Wildfire Mitigation Planning.

    PubMed

    Ager, Alan A; Kline, Jeffrey D; Fischer, A Paige

    2015-08-01

    We describe recent advances in biophysical and social aspects of risk and their potential combined contribution to improve mitigation planning on fire-prone landscapes. The methods and tools provide an improved method for defining the spatial extent of wildfire risk to communities compared to current planning processes. They also propose an expanded role for social science to improve understanding of community-wide risk perceptions and to predict property owners' capacities and willingness to mitigate risk by treating hazardous fuels and reducing the susceptibility of dwellings. In particular, we identify spatial scale mismatches in wildfire mitigation planning and their potential adverse impact on risk mitigation goals. Studies in other fire-prone regions suggest that these scale mismatches are widespread and contribute to continued wildfire dwelling losses. We discuss how risk perceptions and behavior contribute to scale mismatches and how they can be minimized through integrated analyses of landscape wildfire transmission and social factors that describe the potential for collaboration among landowners and land management agencies. These concepts are then used to outline an integrated socioecological planning framework to identify optimal strategies for local community risk mitigation and improve landscape-scale prioritization of fuel management investments by government entities. © 2015 Society for Risk Analysis.

  2. Quantifying Future PM2.5 and Associated Health Effects Due to Changes in US Wildfires

    NASA Astrophysics Data System (ADS)

    Pierce, J. R.; Val Martin, M.; Ford, B.; Zelasky, S.; Heald, C. L.; Li, F.; Lawrence, D. M.; Fischer, E. V.

    2017-12-01

    Fine particulate matter (PM2.5) from landscape fires has been shown to adversely affect visibility, air quality and and health across the US. Fire activity is strongly related to climate and human activities. Predictions based on climate scenarios and future land cover projections that consider socioeconomic development suggest that fire activity will rise dramatically over the next decades. As PM2.5 is associated with increased mortality and morbidity rates, increases in emissions from landscape fires may alter the health burden on the US population. Here we present an analysis of the changes in future wildfire activity and consequences for PM2.5 and health over the US from 2000 to 2100. We employ the global Community Earth System Model (CESM) with the IPCC RCP projections. Within CESM, we use a process-based global fire parameterization to project future climate-driven and human-caused fire emissions. From these simulations, we determine the current and future impact on PM2.5 concentrations and visibility for different regions of the US, and we also calculate the mortality attributable to PM2.5 and wildfire-specific PM2.5 using existing concentration-response functions. Results show that although total PM2.5 concentrations in the US are projected to be similar in 2100 as in 2000, the dominant source of PM2.5 will change. Under the RCP8.5 climate projection and SSP3 population projection, non-fire emissions (mostly anthropogenic) are projected to decrease, but PM2.5 from CONUS and non-US wildfires is projected to increase from approximately 20% of all PM2.5 in 2000 to 80% of all PM2.5 in 2100. Furthermore, although the US population is expected to decline between 2000 and 2100, the mortality attributable to wildfire smoke is expected to increase from 25,000 deaths per year in 2000 to 75,000 deaths per year in 2100.

  3. Fire as the dominant driver of central Canadian boreal forest carbon balance.

    PubMed

    Bond-Lamberty, Ben; Peckham, Scott D; Ahl, Douglas E; Gower, Stith T

    2007-11-01

    Changes in climate, atmospheric carbon dioxide concentration and fire regimes have been occurring for decades in the global boreal forest, with future climate change likely to increase fire frequency--the primary disturbance agent in most boreal forests. Previous attempts to assess quantitatively the effect of changing environmental conditions on the net boreal forest carbon balance have not taken into account the competition between different vegetation types on a large scale. Here we use a process model with three competing vascular and non-vascular vegetation types to examine the effects of climate, carbon dioxide concentrations and fire disturbance on net biome production, net primary production and vegetation dominance in 100 Mha of Canadian boreal forest. We find that the carbon balance of this region was driven by changes in fire disturbance from 1948 to 2005. Climate changes affected the variability, but not the mean, of the landscape carbon balance, with precipitation exerting a more significant effect than temperature. We show that more frequent and larger fires in the late twentieth century resulted in deciduous trees and mosses increasing production at the expense of coniferous trees. Our model did not however exhibit the increases in total forest net primary production that have been inferred from satellite data. We find that poor soil drainage decreased the variability of the landscape carbon balance, which suggests that increased climate and hydrological changes have the potential to affect disproportionately the carbon dynamics of these areas. Overall, we conclude that direct ecophysiological changes resulting from global climate change have not yet been felt in this large boreal region. Variations in the landscape carbon balance and vegetation dominance have so far been driven largely by increases in fire frequency.

  4. Grassland Fire and Cattle Grazing Regulate Reptile and Amphibian Assembly Among Patches

    NASA Astrophysics Data System (ADS)

    Larson, Danelle M.

    2014-12-01

    Fire and grazing are common management schemes of grasslands globally and are potential drivers of reptilian and amphibian (herpetofauna) metacommunity dynamics. Few studies have assessed the impacts of fire and cattle grazing on herpetofauna assemblages in grasslands. A patch-burn grazing study at Osage Prairie, MO, USA in 2011-2012 created landscape patches with treatments of grazing, fire, and such legacies. Response variables were measured before and after the application of treatments, and I used robust-design occupancy modeling to estimate patch occupancy and detection rate within patches, and recolonization and extinction (i.e., dispersal) across patches. I conducted redundancy analysis and a permuted multivariate analysis of variance to determine if patch type and the associated environmental factors explained herpetofauna assemblage. Estimates for reptiles indicate that occupancy was seasonally constant in Control patches ( ψ ~ 0.5), but declined to ψ ~ 0.15 in patches following the applications of fire and grazing. Local extinctions for reptiles were higher in patches with fire or light grazing ( ɛ ~ 0.7) compared to the controls. For the riparian herpetofaunal community, patch type and grass height were important predictors of abundance; further, the turtles, lizards, snakes, and adult amphibians used different patch types. The aquatic amphibian community was predicted by watershed and in-stream characteristics, irrespective of fire or grazing. The varying responses from taxonomic groups demonstrate habitat partitioning across multiple patch types undergoing fire, cattle grazing, and legacy effects. Prairies will need an array of patch types to accommodate multiple herpetofauna species.

  5. Identifying the Threshold of Dominant Controls on Fire Spread in a Boreal Forest Landscape of Northeast China

    PubMed Central

    Liu, Zhihua; Yang, Jian; He, Hong S.

    2013-01-01

    The relative importance of fuel, topography, and weather on fire spread varies at different spatial scales, but how the relative importance of these controls respond to changing spatial scales is poorly understood. We designed a “moving window” resampling technique that allowed us to quantify the relative importance of controls on fire spread at continuous spatial scales using boosted regression trees methods. This quantification allowed us to identify the threshold value for fire size at which the dominant control switches from fuel at small sizes to weather at large sizes. Topography had a fluctuating effect on fire spread across the spatial scales, explaining 20–30% of relative importance. With increasing fire size, the dominant control switched from bottom-up controls (fuel and topography) to top-down controls (weather). Our analysis suggested that there is a threshold for fire size, above which fires are driven primarily by weather and more likely lead to larger fire size. We suggest that this threshold, which may be ecosystem-specific, can be identified using our “moving window” resampling technique. Although the threshold derived from this analytical method may rely heavily on the sampling technique, our study introduced an easily implemented approach to identify scale thresholds in wildfire regimes. PMID:23383247

  6. An in situ investigation of the influence of a controlled burn on the thermophysical properties of a dry soil

    Treesearch

    W. J. Massman; J. M. Frank

    2004-01-01

    High soil temperatures associated with fire influence forests and their ability to regenerate after a fire by altering soil properties and soil chemistry and by killing microbes, plant roots, and seeds. Because intense wild fires are an increasingly common component of the landscape (Graham 2003) and because fire is frequently used by land managers to reduce surface...

  7. A case study comparison of landfire fuel loading and emissions generation on a mixed conifer forest in northern Idaho, USA

    Treesearch

    Josh Hyde; Eva K. Strand; Andrew T. Hudak; Dale Hamilton

    2015-01-01

    The use of fire as a land management tool is well recognized for its ecological benefits in many natural systems. To continue to use fire while complying with air quality regulations, land managers are often tasked with modeling emissions from fire during the planning process. To populate such models, the Landscape Fire and Resource Management Planning Tools (...

  8. Fuel and litter characteristics in fire-excluded and restored northern Mississippi oak-hickory woodlands

    Treesearch

    Darcy H. Hammond; J. Morgan Varner

    2016-01-01

    Oak-hickory communities are a widespread component of the landscape in the southeastern United States, often providing critical habitat and containing high plant species richness. With changing land use and fire exclusion, however, species composition has shifted in many areas to off-site species that are more fire-sensitive. These fire-sensitive species often create a...

  9. Fire in Australian savannas: from leaf to landscape.

    PubMed

    Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri

    2015-01-01

    Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  10. GIS-based probability assessment of natural hazards in forested landscapes of Central and South-Eastern Europe.

    PubMed

    Lorz, C; Fürst, C; Galic, Z; Matijasic, D; Podrazky, V; Potocic, N; Simoncic, P; Strauch, M; Vacik, H; Makeschin, F

    2010-12-01

    We assessed the probability of three major natural hazards--windthrow, drought, and forest fire--for Central and South-Eastern European forests which are major threats for the provision of forest goods and ecosystem services. In addition, we analyzed spatial distribution and implications for a future oriented management of forested landscapes. For estimating the probability of windthrow, we used rooting depth and average wind speed. Probabilities of drought and fire were calculated from climatic and total water balance during growing season. As an approximation to climate change scenarios, we used a simplified approach with a general increase of pET by 20%. Monitoring data from the pan-European forests crown condition program and observed burnt areas and hot spots from the European Forest Fire Information System were used to test the plausibility of probability maps. Regions with high probabilities of natural hazard are identified and management strategies to minimize probability of natural hazards are discussed. We suggest future research should focus on (i) estimating probabilities using process based models (including sensitivity analysis), (ii) defining probability in terms of economic loss, (iii) including biotic hazards, (iv) using more detailed data sets on natural hazards, forest inventories and climate change scenarios, and (v) developing a framework of adaptive risk management.

  11. Prioritizing land management efforts at a landscape scale: a case study using prescribed fire in Wisconsin.

    PubMed

    Hmielowski, Tracy L; Carter, Sarah K; Spaul, Hannah; Helmers, David; Radeloff, Volker C; Zedler, Paul

    2016-06-01

    One challenge in the effort to conserve biodiversity is identifying where to prioritize resources for active land management. Cost-benefit analyses have been used successfully as a conservation tool to identify sites that provide the greatest conservation benefit per unit cost. Our goal was to apply cost-benefit analysis to the question of how to prioritize land management efforts, in our case the application of prescribed fire to natural landscapes in Wisconsin, USA. We quantified and mapped frequently burned communities and prioritized management units based on a suite of indices that captured ecological benefits, management effort, and the feasibility of successful long-term management actions. Data for these indices came from LANDFIRE, Wisconsin's Wildlife Action Plan, and a nationwide wildland-urban interface assessment. We found that the majority of frequently burned vegetation types occurred in the southern portion of the state. However, the highest priority areas for applying prescribed fire occurred in the central, northwest, and northeast portion of the state where frequently burned vegetation patches were larger and where identified areas of high biological importance area occurred. Although our focus was on the use of prescribed fire in Wisconsin, our methods can be adapted to prioritize other land management activities. Such prioritization is necessary to achieve the greatest possible benefits from limited funding for land management actions, and our results show that it is feasible at scales that are relevant for land management decisions.

  12. A human-driven decline in global burned area

    NASA Astrophysics Data System (ADS)

    Andela, N.

    2017-12-01

    Fire regimes are changing rapidly across the globe, driven by human land management and climate. We assessed long-term trends in fire activity using multiple satellite data sets and developed a new global data set on individual fire dynamics to understand the implications of changing fire regimes. Despite warming climate, burned area declined across most of the tropics, contributing to a global decline in burned area of 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area was largest in savannas and grasslands, where agricultural expansion and intensification were primary drivers of declining fire activity. In tropical forests, frequent fires for deforestation and agricultural management yield a sharp rise in fire activity with the expansion of settled land uses, but the use of fire decreases with increasing investment in agricultural areas in both savanna and forested landscapes. Disparate patterns of recent socieconomic development resulted in contrasting fire trends between southern Africa (increase) and South America (decrease). A strong inverse relationship between burned area and economic development in savannas and grasslands suggests that despite potential increasing fire risk from climate change, ongoing socioeconomic development will likely sustain observed declines in fire in these ecosystems during coming decades. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. The spatiotemporal distribution of fire size, duration, speed and direction of spread provided new insights in continental scale differences in fire regimes driven by human and climatic factors. Understanding these dynamics over larger scales is critical to achieve a balance between conservation of fire-dependent ecosystems and increasing agricultural production to support growing populations that will require careful management of fire activity in human-dominated landscapes.

  13. Identifying drought response of semi-arid aeolian systems using near-surface luminescence profiles and changepoint analysis, Nebraska Sandhills.

    NASA Astrophysics Data System (ADS)

    Buckland, Catherine; Bailey, Richard; Thomas, David

    2017-04-01

    Two billion people living in drylands are affected by land degradation. Sediment erosion by wind and water removes fertile soil and destabilises landscapes. Vegetation disturbance is a key driver of dryland erosion caused by both natural and human forcings: drought, fire, land use, grazing pressure. A quantified understanding of vegetation cover sensitivities and resultant surface change to forcing factors is needed if the vegetation and landscape response to future climate change and human pressure are to be better predicted. Using quartz luminescence dating and statistical changepoint analysis (Killick & Eckley, 2014) this study demonstrates the ability to identify step-changes in depositional age of near-surface sediments. Lx/Tx luminescence profiles coupled with statistical analysis show the use of near-surface sediments in providing a high-resolution record of recent system response and aeolian system thresholds. This research determines how the environment has recorded and retained sedimentary evidence of drought response and land use disturbances over the last two hundred years across both individual landforms and the wider Nebraska Sandhills. Identifying surface deposition and comparing with records of climate, fire and land use changes allows us to assess the sensitivity and stability of the surface sediment to a range of forcing factors. Killick, R and Eckley, IA. (2014) "changepoint: An R Package for Changepoint Analysis." Journal of Statistical Software, (58) 1-19.

  14. Software applications to three-dimensional visualization of forest landscapes -- A case study demontrating the use of visual nature studio (VNS) in visualizing fire spread in forest landscapes

    Treesearch

    Brian J. Williams; Bo Song; Chou Chiao-Ying; Thomas M. Williams; John Hom

    2010-01-01

    Three-dimensional (3D) visualization is a useful tool that depicts virtual forest landscapes on computer. Previous studies in visualization have required high end computer hardware and specialized technical skills. A virtual forest landscape can be used to show different effects of disturbances and management scenarios on a computer, which allows observation of forest...

  15. Fire effects on soils: the human dimension

    PubMed Central

    2016-01-01

    Soils are among the most valuable non-renewable resources on the Earth. They support natural vegetation and human agro-ecosystems, represent the largest terrestrial organic carbon stock, and act as stores and filters for water. Mankind has impacted on soils from its early days in many different ways, with burning being the first human perturbation at landscape scales. Fire has long been used as a tool to fertilize soils and control plant growth, but it can also substantially change vegetation, enhance soil erosion and even cause desertification of previously productive areas. Indeed fire is now regarded by some as the seventh soil-forming factor. Here we explore the effects of fire on soils as influenced by human interference. Human-induced fires have shaped our landscape for thousands of years and they are currently the most common fires in many parts of the world. We first give an overview of fire effect on soils and then focus specifically on (i) how traditional land-use practices involving fire, such as slash-and-burn or vegetation clearing, have affected and still are affecting soils; (ii) the effects of more modern uses of fire, such as fuel reduction or ecological burns, on soils; and (iii) the ongoing and potential future effects on soils of the complex interactions between human-induced land cover changes, climate warming and fire dynamics. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216528

  16. Fire effects on soils: the human dimension.

    PubMed

    Santín, Cristina; Doerr, Stefan H

    2016-06-05

    Soils are among the most valuable non-renewable resources on the Earth. They support natural vegetation and human agro-ecosystems, represent the largest terrestrial organic carbon stock, and act as stores and filters for water. Mankind has impacted on soils from its early days in many different ways, with burning being the first human perturbation at landscape scales. Fire has long been used as a tool to fertilize soils and control plant growth, but it can also substantially change vegetation, enhance soil erosion and even cause desertification of previously productive areas. Indeed fire is now regarded by some as the seventh soil-forming factor. Here we explore the effects of fire on soils as influenced by human interference. Human-induced fires have shaped our landscape for thousands of years and they are currently the most common fires in many parts of the world. We first give an overview of fire effect on soils and then focus specifically on (i) how traditional land-use practices involving fire, such as slash-and-burn or vegetation clearing, have affected and still are affecting soils; (ii) the effects of more modern uses of fire, such as fuel reduction or ecological burns, on soils; and (iii) the ongoing and potential future effects on soils of the complex interactions between human-induced land cover changes, climate warming and fire dynamics.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  17. Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems.

    PubMed

    Mitchell, Stephen R; Harmon, Mark E; O'Connell, Kari E B

    2009-04-01

    Two forest management objectives being debated in the context of federally managed landscapes in the U.S. Pacific Northwest involve a perceived trade-off between fire restoration and carbon sequestration. The former strategy would reduce fuel (and therefore C) that has accumulated through a century of fire suppression and exclusion which has led to extreme fire risk in some areas. The latter strategy would manage forests for enhanced C sequestration as a method of reducing atmospheric CO2 and associated threats from global climate change. We explored the trade-off between these two strategies by employing a forest ecosystem simulation model, STANDCARB, to examine the effects of fuel reduction on fire severity and the resulting long-term C dynamics among three Pacific Northwest ecosystems: the east Cascades ponderosa pine forests, the west Cascades western hemlock-Douglas-fir forests, and the Coast Range western hemlock-Sitka spruce forests. Our simulations indicate that fuel reduction treatments in these ecosystems consistently reduced fire severity. However, reducing the fraction by which C is lost in a wildfire requires the removal of a much greater amount of C, since most of the C stored in forest biomass (stem wood, branches, coarse woody debris) remains unconsumed even by high-severity wildfires. For this reason, all of the fuel reduction treatments simulated for the west Cascades and Coast Range ecosystems as well as most of the treatments simulated for the east Cascades resulted in a reduced mean stand C storage. One suggested method of compensating for such losses in C storage is to utilize C harvested in fuel reduction treatments as biofuels. Our analysis indicates that this will not be an effective strategy in the west Cascades and Coast Range over the next 100 years. We suggest that forest management plans aimed solely at ameliorating increases in atmospheric CO2 should forgo fuel reduction treatments in these ecosystems, with the possible exception of some east Cascades ponderosa pine stands with uncharacteristic levels of understory fuel accumulation. Balancing a demand for maximal landscape C storage with the demand for reduced wildfire severity will likely require treatments to be applied strategically throughout the landscape rather than indiscriminately treating all stands.

  18. Holocene Vegetation and Fire Dynamics for Ecosystem Management in the Spruce-Moss Domain in Northwestern Québec

    NASA Astrophysics Data System (ADS)

    Andy, H.; Blarquez, O.; Grondin, P.

    2017-12-01

    Facing the depletion of the wood resource in Québec and possible threats such as climate change, actors of the forest sector urge the need for a scientific frame to the forest management. A set of reference conditions has been developed for defining management targets that will help to keep forests within their natural range of variability according to the preindustrial period (XIX-XX centuries). Those reference conditions are based on the stands age-class distribution under a given fire regime that enable to define the percentage of old-growth forest (>100 years) to be maintained in a landscape. For the western spruce-moss domain in Québec, the fire return interval (FRI) is equal to 150 years resulting in a target of 48% of old-growth forests. Yet, this target supposes that the environment and the ecosystem processes are homogeneous for an entire bioclimatic domain of 175 000 km2. By using a Redundancy Analysis (RDA) on modern inventories data on natural and human disturbances; climate and physical variables and forest composition, we were able to distinguish 5 main zones where interactions between stands and their environment are homogeneous and where local management targets could be developed. We then used 10 published sedimentary pollens and charcoal series in order to reconstruct the holocene fire and vegetation dynamics for those zones. Vegetation deduced from the analysis of the pollen diagrams showed that the long-term vegetation dynamics are zone specific indicating that the modern forest composition is a result of the Holocene trajectories occurring within each zone. Charcoals series were statistically analyzed for past fire detection and long-term FRI reconstruction. They suggest that for the entire territory the holocene FRI range from 174 to 265 years resulting in old-growth forests percentage within 44 and 65% depending on the zone. Hence, we conclude that current management targets should be revised to fit more with local forests ecosystem variability at the landscape scale and that reference condition should be supplemented with data on the long-term fire dynamics and forest composition variability.

  19. Mountains, fire, fire suppression, and the carbon cycle in the western United States

    Treesearch

    David Schimel

    2004-01-01

    Most mountain regions in the western United States are covered by forests, which are for the most part recovering from historical harvesting and have been experiencing active fire suppression over approximately the past 100 years (Tilman and others 2000). Whereas many western landscapes are currently perceived as pristine natural systems, the Rockies, Sierra Nevada,...

  20. Managing for fire in the interface: Challenges and opportunities

    Treesearch

    Alan J. Long; Dale D. Wade; Feank C. Beall

    2004-01-01

    Fire managers define the wildland-urban interface as all areas were flammable wildland fuels are adjacent to homes and communities. With this definition, the wild-land-urban interface may encompass a much broader landscape than traditionally perceived. For example, the Tunnel Fire in the Oakland hills in 1991 included a large area that, for practical purposes, could be...

  1. Forest fire effects on mercury deposition in the boreal forest

    Treesearch

    Emma L. Witt; Randall K. Kolka; Edward A. Nater; Trent R. Wickman

    2009-01-01

    The objective of this study was to determine how forest fire effects Hg deposition to nearby landscapes impacted by smoke plumes. Hg concentrations and deposition were hypothesized to increase in throughfall and open precipitation after fire, and canopy type was hypothesized to influence the magnitude of the increase. Conifer canopies, which are better able to scavenge...

  2. Fire behavior and effects: Principles for archaeologists [Chapter 2

    Treesearch

    Kevin C. Ryan; Cassandra Koerner

    2012-01-01

    Fire is a natural component of earth's ecosystems. Fire has impacted most landscapes of the Americas, having left evidence of its passing in trees, soils, fossils, and cultural artifacts (Andreae 1991; Benton and Reardon 2006; Biswell 1989; Bowman and others 2009; Boyd and others 2005; Cochrane and others 1999; DeBano and others 1998; Jurney and others 2004;...

  3. The scientific foundation of the LANDFIRE Prototype Project [Chapter 3

    Treesearch

    Robert E. Keane; Matthew Rollins

    2006-01-01

    The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, originated from a recent mapping project that developed a set of coarse-scale spatial data layers for wildland fire management describing fire hazard and ecological status for the conterminous United States (Hardy and others 2001; Schmidt and others 2002; www. fs...

  4. Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape

    Treesearch

    Frederick B. Pierson; Peter R. Robichaud; Corey A. Moffet; Kenneth E. Spaeth; Stuart P. Hardegree; Patrick E. Clark; C. Jason Williams

    2008-01-01

    Post-fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small-plot rainfall and concentrated flow...

  5. Optimal fire and fuels management

    Treesearch

    Evan Mercer; Greg Jones

    2007-01-01

    Record suppression costs have led to a multitude of fire cost reviews and cost studies by oversight agencies, and new rules and regulations. One of the most important and elusive issues in fire management is defining the "best" amount of fuel treatments to apply to a forested landscape. Research is developing tools and information that address a wide variety...

  6. Fuel treatment effects on modeled landscape level fire behavior in the northern Sierra Nevada

    Treesearch

    J.J. Moghaddas; B.M. Collins; K. Menning; E.E.Y. Moghaddas; S.L. Stephens

    2010-01-01

    Across the western United States, decades of fire exclusion combined with past management history have contributed to the current condition of extensive areas of high-density, shade-tolerant coniferous stands that are increasingly prone to high-severity fires. Here, we report the modeled effects of constructed defensible fuel profile zones and group selection...

  7. Smoke considerations for using fire in maintaining healthy forest ecosystems

    Treesearch

    Roger D. Ottmar; Mark D. Schaaf; Ernesto Alvarado

    1996-01-01

    Fire is the single most important ecological disturbance process throughout the interior Pacific Northwest (Mutch and others 1993; Agee 1994). It is also a natural process that helps maintain a diverse ecological landscape. Fire suppression and timber harvesting have drastically altered this process during the past 50 to 90 years. Natural resource specialists generally...

  8. Visualization and modeling of smoke transport over landscape scales

    Treesearch

    Glenn P. Forney; William Mell

    2007-01-01

    Computational tools have been developed at the National Institute of Standards and Technology (NIST) for modeling fire spread and smoke transport. These tools have been adapted to address fire scenarios that occur in the wildland urban interface (WUI) over kilometer-scale distances. These models include the smoke plume transport model ALOFT (A Large Open Fire plume...

  9. Influence of fire on Engelmann oak survival – patterns following prescribed fires and wildfires

    Treesearch

    Zachary Principe

    2015-01-01

    Engelmann oaks (Quercus engelmannii) are restricted to extreme southern California and northern Baja, California. Their entire range falls within a landscape increasingly prone to human induced wildfires. The influence of fire on seedlings and saplings has been well studied, but there is less information available on its effects on mature trees....

  10. Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure

    Treesearch

    T. Ryan McCarley; Crystal A. Kolden; Nicole M. Vaillant; Andrew T. Hudak; Alistair M. S. Smith; Brian M. Wing; Bryce S. Kellogg; Jason Kreitler

    2017-01-01

    Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots.While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often...

  11. Reducing hazardous fuels on nonindustrial private forests: factors influencing landowner decisions

    Treesearch

    A. Paige Fischer

    2011-01-01

    In mixed-ownership landscapes, fuels conditions on private lands have implications for fire risk on public lands and vice versa. The success of efforts to mitigate fire risk depends on the extent, efficacy, and coordination of treatments on nearby ownerships. Understanding factors in forest owners' decisions to address the risk of wildland fire is therefore...

  12. Ignition and flame travel on realistic building and landscape objects in changing environments

    Treesearch

    Mark A. Dietenberger

    2007-01-01

    Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures from close proximity of burning vegetations and (2) stopping flame travel from firebrands landing on combustible building objects. In using bench-scale and mid-scale fire tests to obtain fire growth...

  13. Invasive grasses change landscape structure and fire behavior in Hawaii

    Treesearch

    Lisa M. Ellsworth; Creighton M. Litton; Alexander P. Dale; Tomoaki Miura

    2014-01-01

    How does potential fire behavior differ in grass-invaded non-native forests vs open grasslands? How has land cover changed from 1950–2011 along two grassland/forest ecotones in Hawaii with repeated fires? A study on non-native forest with invasive grass understory and invasive grassland (Megathyrsus maximus) ecosystems on Oahu, Hawaii, USA was...

  14. Relationships between fire frequency and woody canopy cover in a semi-arid African savanna

    Treesearch

    Andrew T. Hudak; Bruce H. Brockett

    2003-01-01

    Landscape-scale fire patterns result from complex interactions among weather, ignition sources, vegetation type and the biophysical environment (Hargrove et al. 2000, Morgan et al. 2001, Keane et al. 2002, Hudak, Fairbanks & Brockett in press). Patch characteristics (e.g. woody canopy cover) influence fire characteristics, which in turn influence patch...

  15. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands

    Treesearch

    Jian Yang; Hong S. He; Stephen R. Shifley

    2008-01-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of...

  16. Black-tailed prairie dog (Cynomys ludovicianus) response to seasonality and frequency of fire

    Treesearch

    Felicia D. Archuleta

    2014-01-01

    Fragmentation of the landscape, habitat loss, and fire suppression, all a result of European settlement and activities, have precipitated both the decline of Black-tailed prairie dog (Cynomys ludovicianus) populations and the occurrence of fire throughout the Great Plains, including the Shortgrass steppe of northeastern New Mexico. The presence of Black-tailed prairie...

  17. Development and mapping of fuel characteristics and associated fire potentials for South America

    Treesearch

    M. Lucrecia Pettinari; Roger D. Ottmar; Susan J. Prichard; Anne G. Andreu; Emilio Chuvieco

    2014-01-01

    The characteristics and spatial distribution of fuels are critical for assessing fire hazard, fuel consumption, greenhouse gas emissions and other fire effects. However, fuel maps are difficult to generate and update, because many regions of the world lack fuel descriptions or adequate mapped vegetation attributes to assign these fuelbeds spatially across the landscape...

  18. Proceedings of the symposium on fire and watershed management

    Treesearch

    Neil H. Berg

    1989-01-01

    Wildfires have affected the landscape since the dawn of time and will continue to do so for the foreseeable future. Policies and practices in response to fire have varied, however, contingent upon a complex mix of values and attitudes overlaid by the technical acumen available to both "fight" the fire and reclaim the land afterwards.

  19. Working forests, forest health and management challenges in the redwood region

    Treesearch

    Ken Pimlott

    2017-01-01

    As California continues into a fifth year of drought, tree mortality enhanced by the unprecedented bark beetle epidemic contributes to wildfires that continue to increase in frequency and severity. Recent fires have posed increasing fire suppression challenges, life safety concerns, post fire watershed impacts and lasting damage to forested landscapes. The ability of...

  20. Prescribed burning supports grassland biodiversity - A multi-species study

    NASA Astrophysics Data System (ADS)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2017-04-01

    During ancient times, fire was an important factor shaping European landscapes. Nowadays, prescribed burning can be one of the most effective conservation tools for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. In a prescribed burning experiment, we studied the effects of fire on dry alkaline grasslands. We tested whether autumn prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in Hungary: in three sites, prescribed burning was applied in November 2011, while three sites remained unburnt. We studied the effects of fire on soil characteristics, plant biomass and on the vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soluble salt content increased significantly in the burnt sites, but soil pH, organic matter, potassium and phosphorous did not change. We found that prescribed fire had several positive effects from the nature conservation viewpoint. Diversity and the number of flowering shoots were higher, and the cover of the dominant grass was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control ones. Our findings suggest that prescribed burning fire did not harm arthropods; species-level analyses showed that out of the most abundant invertebrate species, the abundance of ten was not affected, one decreased and one increased after burning. Our findings highlight that mosaic prescribed fire is a viable management tool in open landscapes, because it supports plant diversity and does not threaten arthropods.

Top