Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na
2012-05-01
Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic change would be relatively accurate.
Lin, Meng-lung; Cao, Yu; Wang, Shin
2008-01-01
In this paper, the Lizejian wetland landscape patterns in northeastern Taiwan of China were established by landscape indices and aerial photo interpretation, and a parallel analysis was made on them. The results showed that landscape indices could only indicate the landscape geometric characteristics of the wetland at patch and landscape levels, but could not present its spatial and functional characteristics observed from aerial photos. Combining aerial photo interpretation with landscape indices could be helpful to the holistic understanding of Lizejian wetland' s landscape structure and function, and improve the landscape pattern analysis. The new method for assessing landscape structure from a holistic point of view would play an important role in future landscape ecology research.
RS- and GIS-based study on landscape pattern change in the Poyang Lake wetland area, China
NASA Astrophysics Data System (ADS)
Chen, Xiaoling; Li, Hui; Bao, Shuming; Wu, Zhongyi; Fu, Weijuan; Cai, Xiaobin; Zhao, Hongmei; Guo, Peng
2006-10-01
As wetland has been recognized as an important component of ecosystem, it is received ever-increasing attention worldwide. Poyang Lake wetlands, the international wetlands and the largest bird habitat in Asia, play an important role in biodiversity and ecologic protection. However, with the rapid economic growth and urbanization, landscape patterns in the wetlands have dramatically changed in the past three decades. To better understand the wetland landscape dynamics, remote sensing, geographic information system technologies, and the FRAGSTATS landscape analysis program were used to measure landscape patterns. Statistical approach was employed to illustrate the driving forces. In this study, Landsat images (TM and ETM+) from 1989 and 2000 were acquired for the wetland area. The landscapes in the wetland area were classified as agricultural land, urban, wetland, forest, grassland, unused land, and water body using a combination of supervised and unsupervised classification techniques integrated with Digital Elevation Model (DEM). Landscape indices, which are popular for the quantitative analysis of landscape pattern, were then employed to analyze the landscape pattern changes between the two dates in a GIS. From this analysis an understanding of the spatial-temporal patterns of landscape evolution was generated. The results show that wetland area was reduced while fragmentation was increased over the study period. Further investigation was made to examine the relationship between landscape metrics and some other parameters such as urbanization to address the driving forces for those changes. The urban was chosen as center to conduct buffer analysis in a GIS to study the impact of human-induced activities on landscape pattern dynamics. It was found that the selected parameters were significantly correlated with the landscape metrics, which may well indicate the impact of human-induced activities on the wetland landscape pattern dynamics and account for the driving forces.
Analysis of sea use landscape pattern based on GIS: a case study in Huludao, China.
Suo, Anning; Wang, Chen; Zhang, Minghui
2016-01-01
This study aims to analyse sea use landscape patterns on a regional scale based on methods of landscape ecology integrated with sea use spatial characteristics. Several landscape-level analysis indices, such as the dominance index, complex index, intensivity index, diversity index and sea congruency index, were established using Geographic Information System (GIS) and applied in Huludao, China. The results indicated that sea use landscape analysis indices, which were created based on the characteristics of sea use spatial patterns using GIS, are suitable to quantitatively describe the landscape patterns of sea use. They are operable tools for the landscape analysis of sea use. The sea use landscape in Huludao was dominated by fishing use with a landscape dominance index of 0.724. The sea use landscape is a complex mosaic with high diversity and plenty of fishing areas, as shown by the landscape complex index of 27.21 and the landscape diversity index of 1.25. Most sea use patches correspond to the marine functional zonation plan and the sea use congruency index is 0.89 in the fishing zone and 0.92 in the transportation zone.
Landscape patterns from mathematical morphology on maps with contagion
Kurt Riitters; Peter Vogt; Pierre Soille; Christine Estreguil
2009-01-01
The perceived realism of simulated maps with contagion (spatial autocorrelation) has led to their use for comparing landscape pattern metrics and as habitat maps for modeling organism movement across landscapes. The objective of this study was to conduct a neutral model analysis of pattern metrics defined by morphological spatial pattern analysis (MSPA) on maps with...
[Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis.
Yu, Ya Ping; Yin, Hai Wei; Kong, Fan Hua; Wang, Jing Jing; Xu, Wen Bin
2016-07-01
Based on ArcGIS, Erdas, GuidosToolbox, Conefor and other software platforms, using morphological spatial pattern analysis (MSPA) and landscape connectivity analysis methods, this paper quantitatively analysed the scale effect, edge effect and distance effect of the Nanjing urban green infrastructure network pattern in 2013 by setting different pixel sizes (P) and edge widths in MSPA analysis, and setting different dispersal distance thresholds in landscape connectivity analysis. The results showed that the type of landscape acquired based on the MSPA had a clear scale effect and edge effect, and scale effects only slightly affected landscape types, whereas edge effects were more obvious. Different dispersal distances had a great impact on the landscape connectivity, 2 km or 2.5 km dispersal distance was a critical threshold for Nanjing. When selecting the pixel size 30 m of the input data and the edge wide 30 m used in the morphological model, we could get more detailed landscape information of Nanjing UGI network. Based on MSPA and landscape connectivity, analysis of the scale effect, edge effect, and distance effect on the landscape types of the urban green infrastructure (UGI) network was helpful for selecting the appropriate size, edge width, and dispersal distance when developing these networks, and for better understanding the spatial pattern of UGI networks and the effects of scale and distance on the ecology of a UGI network. This would facilitate a more scientifically valid set of design parameters for UGI network spatiotemporal pattern analysis. The results of this study provided an important reference for Nanjing UGI networks and a basis for the analysis of the spatial and temporal patterns of medium-scale UGI landscape networks in other regions.
NASA Astrophysics Data System (ADS)
Chen, Meiwu; Zong, Yueguang; Ma, Qiang; Li, Jian
2007-06-01
The study on landscape pattern is an important field of urban land use and ecological change. Since 1990s, the widely accepted Patch-Corridor-Matrix model is generally used in qualitative description of landscape pattern. In recent years, quantitative evaluation on urban landscape dynamics is becoming hot in research. By making a critical review on existing research methods of landscape pattern, a new approach based on RS/GIS is put forward in this paper, comprising three steps, "General pattern characteristics - Gradient differentiation feature- Directional signature of the landscape", and we call it GGD. This method is applied to the case study of Xi'an metropolitan area in China. The result shows that the method is effective on quantitative study of urban landscape. The preparation of the method GGD is setting up research platform based on RS and GIS. By using the software of Geographical Information System (Arcgis9.0 & Erdas), the authors got the interpretation of remote sensing images of different years, and carried on the division of the landscape type of the research region. By calculating various index of landscape level with software Fragstats3.3 as an assistant tool and adopting three steps of GGD combined with landscape index, this paper can assesses the landscape spatial pattern of urban area: 1) General pattern characteristics analysis is to get transition probability of various landscape through Markov chain and to predict the landscape transformation by introducing CA model. The analysis emphasizes on total landscape structure and its change over time; 2) Gradient characteristic analysis, which makes gradient zone by taking city as a center outwardly with certain distance and contrastively analyzes the landscape index of each subarea, stresses the spatial character of landscape pattern, verifies urban morphology theories and provides the quantitative warranty for establishment of urban modality. Therefore, the analysis is useful for supervising urban expanding speed; 3)Direction characteristic analysis, which is setting up radiate strip on west-east, south-north, southwest-northeast and northwest-southeast and form certain width on each direction, can precisely and quantitatively indicate different characteristic of urban landscape at each development direction, and by combined with gradient analysis it is highly advantageous to the examination and planning of urban expanding direction. In the case study on Xi'an metropolitan area, remote sensing images of 1988 and 2005 Landsat-TM were handled, and the division of the landscape type of the region was also carried on. According to the above approach, the result was got and some valuable information was showed as follows: 1) The diversity of overall landscape of Xi'an metropolitan area tends to increase and the degree of fragmentation tends to deepen. With the increase of urbanization level, the visual component of landscape is more and more diversified, the shapes of landscape is more and more complicated and ecologically more and more fragmented. In the region where urbanization level is low, natural landscape is the main component of the landscape, the diversity of the landscape is low. And because landscape is seriously disturbed by human activities with urbanization, fragmentation of the landscape emerges periodically. 2) In the process of transect gradient analysis, the landscape pattern index can explore the urbanization gradient, and its trend to reduce gradually towards the suburban. The landscape of area with a high urbanization level is mainly man-created, and its patches show large number, small area, simple shape and higher landscape heterogeneity. The transect gradient analysis on different time series indicates the relationship between urbanization level and landscape pattern. The landscape of urban area suffers intensely from human being, and its pattern component and spatial collocation depends on the interference intensity to a large degree. In the area with a high urbanization level, its pattern component is more man-created and less natural landscape. The landscape collocation characteristic of its patches takes on a large number, little average area, simple shape and low polymerization degree. 3) Analysis of direction and gradient of Xi'an metropolitan area can quantitatively reflect influence of urbanization and characteristics of urban landscape in the main development axes of north-south and east. Result shows that the degree of internal integration between Xi'an city and Xianyang city is gradually enhanced with the quickly urbanization course in China.
A factor analysis of landscape pattern and structure metrics
Kurt H. Riitters; R.V. O' Neill; C.T. Hunsaker; James D. Wickham; D.H. Yankee; S.P. Timmins; K.B. Jones; B.L. Jackson
1995-01-01
Fifty-five metrics of landscape pattern and structure were calculated for 85 maps of land use and land cover. A multivariate factor analysis was used to identify the common axes (or dimensions) of pattern and structure which were measured by a reduced set of 26 metrics. The first six factors explained about 87% of the variation in the 26 landscape metrics. These...
Yu, Long-Sheng; Fu, Yi-Fu; Yu, Huai-Yi; Li, Zhi-Qin
2011-01-01
In order to understand the landscape pattern gradient dynamics and desakota features in rapid urbanization area, this paper took the rapidly urbanizing Panyu District of Guangzhou City as a case, and analyzed its land use and land cover data, based on four Landsat TM images from 1990 to 2008. With the combination of gradient analysis and landscape pattern analysis, and by using the landscape indices in both class and landscape scales, the spatial dynamics and desakota feature of this rapidly urbanizing district were quantified. In the study district, there was a significant change in the landscape pattern, and a typical desakota feature presented along buffer gradient zones. Urban landscape increased and expanded annually, accompanied with serious fragmentation of agricultural landscape. The indices patch density, contagion, and landscape diversity, etc., changed regularly in the urbanization gradient, and the peak of landscape indices appeared in the gradient zone of 4-6 km away from the urban center. The landscape patterns at time series also reflected the differences among the dynamics in different gradient zones. The landscape pattern in desakota region was characterized by complex patch shape, high landscape diversity and fragmentation, and remarkable landscape dynamics. The peaks of landscape indices spread from the urban center to border areas, and desakota region was expanding gradually. The general trend of spatiotemporal dynamics in desakota region and its driving forces were discussed, which could be benefit to the regional land use policy-making and sustainable development planning.
Li, Tuansheng
2004-03-01
Based on the TM image of Yulin sheet and with the help of ERDAS, ARC/INFO and ARC/VIEW software, the landscape of Yulin sheet was classified. Using the spatial pattern analysis software FRAGSTATS of the vector version, a set of landscape indices were calculated at three scale levels of patches, classes and landscape. The results showed that landscape pattern indices could be successfully used in characterizing the spatial pattern of the studied area. However, this study should be further extended to the landscape of the same area in other period to analyze its dynamic change. FRAGSTATS was a good software, but should be improved by adding some indices such as PD2 developed by us.
Multitemporal spatial pattern analysis of Tulum's tropical coastal landscape
NASA Astrophysics Data System (ADS)
Ramírez-Forero, Sandra Carolina; López-Caloca, Alejandra; Silván-Cárdenas, José Luis
2011-11-01
The tropical coastal landscape of Tulum in Quintana Roo, Mexico has a high ecological, economical, social and cultural value, it provides environmental and tourism services at global, national, regional and local levels. The landscape of the area is heterogeneous and presents random fragmentation patterns. In recent years, tourist services of the region has been increased promoting an accelerate expansion of hotels, transportation and recreation infrastructure altering the complex landscape. It is important to understand the environmental dynamics through temporal changes on the spatial patterns and to propose a better management of this ecological area to the authorities. This paper addresses a multi-temporal analysis of land cover changes from 1993 to 2000 in Tulum using Thematic Mapper data acquired by Landsat-5. Two independent methodologies were applied for the analysis of changes in the landscape and for the definition of fragmentation patterns. First, an Iteratively Multivariate Alteration Detection (IR-MAD) algorithm was used to detect and localize land cover change/no-change areas. Second, the post-classification change detection evaluated using the Support Vector Machine (SVM) algorithm. Landscape metrics were calculated from the results of IR-MAD and SVM. The analysis of the metrics indicated, among other things, a higher fragmentation pattern along roadways.
Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei
2014-01-01
Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning. PMID:25251460
Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei
2014-01-01
Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.
Impact of scale on morphological spatial pattern of forest
Katarzyna Ostapowicz; Peter Vogt; Kurt H. Riitters; Jacek Kozak; Christine Estreguil
2008-01-01
Assessing and monitoring landscape pattern structure from multi-scale land-cover maps can utilize morphological spatial pattern analysis (MSPA), only if various influences of scale are known and taken into account. This paper lays part of the foundation for applying MSPA analysis in landscape monitoring by quantifying scale effects on six classes of spatial patterns...
A hierarchical approach to forest landscape pattern characterization.
Wang, Jialing; Yang, Xiaojun
2012-01-01
Landscape spatial patterns have increasingly been considered to be essential for environmental planning and resources management. In this study, we proposed a hierarchical approach for landscape classification and evaluation by characterizing landscape spatial patterns across different hierarchical levels. The case study site is the Red Hills region of northern Florida and southwestern Georgia, well known for its biodiversity, historic resources, and scenic beauty. We used one Landsat Enhanced Thematic Mapper image to extract land-use/-cover information. Then, we employed principal-component analysis to help identify key class-level landscape metrics for forests at different hierarchical levels, namely, open pine, upland pine, and forest as a whole. We found that the key class-level landscape metrics varied across different hierarchical levels. Compared with forest as a whole, open pine forest is much more fragmented. The landscape metric, such as CONTIG_MN, which measures whether pine patches are contiguous or not, is more important to characterize the spatial pattern of pine forest than to forest as a whole. This suggests that different metric sets should be used to characterize landscape patterns at different hierarchical levels. We further used these key metrics, along with the total class area, to classify and evaluate subwatersheds through cluster analysis. This study demonstrates a promising approach that can be used to integrate spatial patterns and processes for hierarchical forest landscape planning and management.
Landscape metrics for three-dimension urban pattern recognition
NASA Astrophysics Data System (ADS)
Liu, M.; Hu, Y.; Zhang, W.; Li, C.
2017-12-01
Understanding how landscape pattern determines population or ecosystem dynamics is crucial for managing our landscapes. Urban areas are becoming increasingly dominant social-ecological systems, so it is important to understand patterns of urbanization. Most studies of urban landscape pattern examine land-use maps in two dimensions because the acquisition of 3-dimensional information is difficult. We used Brista software based on Quickbird images and aerial photos to interpret the height of buildings, thus incorporating a 3-dimensional approach. We estimated the feasibility and accuracy of this approach. A total of 164,345 buildings in the Liaoning central urban agglomeration of China, which included seven cities, were measured. Twelve landscape metrics were proposed or chosen to describe the urban landscape patterns in 2- and 3-dimensional scales. The ecological and social meaning of landscape metrics were analyzed with multiple correlation analysis. The results showed that classification accuracy compared with field surveys was 87.6%, which means this method for interpreting building height was acceptable. The metrics effectively reflected the urban architecture in relation to number of buildings, area, height, 3-D shape and diversity aspects. We were able to describe the urban characteristics of each city with these metrics. The metrics also captured ecological and social meanings. The proposed landscape metrics provided a new method for urban landscape analysis in three dimensions.
Yu, Hai-yang; Zhang, Fei; Wang, Juan; Zhou, Mei
2015-12-01
The theory of land economic ecological niche was used to analyze the regional landscape pattern in this article, with an aim to provide a new method for the characterization and representation of landscape pattern. The Jinghe County region, which is ecologically fragile, was selected as an example for the study, and the Landsat images of 1990, 1998, 2011 and 2013 were selected as remote sensing data. The land economic ecological niche of land use types calculated by ecostate-ecorole theory, combined with landscape ecology theory, was discussed in application of land economic ecological niche in county landscape pattern analysis. The results showed that, during the study period, the correlations between land economic ecological niche of farmland, construction land, and grassland with the parameters, including landscape patch number (NP), aggregated index (AI), fragmented index (FN) and fractal dimension (FD), were significant. Regional landscape was driven by the changes of land economic ecological niche, and the trend of economic development could be represented by land economic ecological niche change in Jinghe County. Land economic ecological niche was closely related with the land use types which could yield direct economic benefits, which could well explain the landscape pattern characteristics in Jinghe County when combined with the landscape indices.
Samuel A. Cushman; Kevin McGarigal
2007-01-01
Integrating temporal variabilily into spatial analyses is one of the abiding challenges in landscape ecology. In this chapter we use landscape trajectory analysis to assess changes in landscape patterns over time. Landscape trajectory analysis is an approach to quantify changes in landscape structure over time. There are three key concepts which underlie the...
Smiraglia, D; Ceccarelli, T; Bajocco, S; Perini, L; Salvati, L
2015-10-01
This study implements an exploratory data analysis of landscape metrics and a change detection analysis of land use and population density to assess landscape dynamics (1954-2008) in two physiographic zones (plain and hilly-mountain area) of Emilia Romagna, northern Italy. The two areas are characterized by different landscape types: a mixed urban-rural landscape dominated by arable land and peri-urban settlements in the plain and a traditional agro-forest landscape in the hilly-mountain area with deciduous and conifer forests, scrublands, meadows, and crop mosaic. Urbanization and, to a lesser extent, agricultural intensification were identified as the processes underlying landscape change in the plain. Land abandonment determining natural forestation and re-forestation driven by man was identified as the process of change most representative of the hilly-mountain area. Trends in landscape metrics indicate a shift toward more fragmented and convoluted patterns in both areas. Number of patches, the interspersion and juxtaposition index, and the large patch index are the metrics discriminating the two areas in terms of landscape patterns in 1954. In 2008, mean patch size, edge density, interspersion and juxtaposition index, and mean Euclidean nearest neighbor distance were the metrics with the most different spatial patterns in the two areas. The exploratory data analysis of landscape metrics contributed to link changes over time in both landscape composition and configuration providing a comprehensive picture of landscape transformations in a wealthy European region. Evidence from this study are hoped to inform sustainable land management designed for homogeneous landscape units in similar socioeconomic contexts.
Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B
2018-06-01
Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R 2 ) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.
NASA Astrophysics Data System (ADS)
Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B.
2018-06-01
Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination ( R 2) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.
Mapping Candidate Ecological Restoration Areas Using Morphological Spatial Pattern Analysis (MSPA)
Morphological Spatial Pattern Analysis (MSPA) has been widely adopted by landscape ecologists over the past decade. A few examples of its many uses include: 1) quantifying landscape indicators and fragmentation in continental forest assessments, 2) explaining interior-exterior p...
NASA Astrophysics Data System (ADS)
Dai, Erfu; Wu, Zhuo; Du, Xiaodian
2017-04-01
Urbanization is an irreversible trend worldwide, especially in rapidly developing China. Accelerated urbanization has resulted in rapid urban sprawl and urban landscape pattern changes. Quantifying the spatiotemporal dynamics of urban land use and landscape pattern not only can reveal the characteristics of social transfer and economic development, but also can provide insights into the driving mechanisms of land use changes. In this study, we integrated remote sensing (RS), geographic information system (GIS), landscape metrics, and gradient analysis to quantitatively compare the spatiotemporal dynamics of land use, urban sprawl, and landscape pattern for nine cities in the Pearl River Delta from 1985‒2000. For the whole study region, urbanization was obvious. The results show an increase in urban buildup land and shrinkage of cropland in the Pearl River Delta. However, the nine cities differed greatly in terms of the process and magnitude of urban sprawl for both the spatial and temporal dimensions. This was most evident for the cities of Guangzhou and Shenzhen. Gradient analysis on urban landscape changes could deepen understanding of the stages of urban development and provide a scientific foundation for future urban planning and land management strategies in China.
Griffith, J.A.; Stehman, S.V.; Sohl, Terry L.; Loveland, Thomas R.
2003-01-01
Temporal trends in landscape pattern metrics describing texture, patch shape and patch size were evaluated in the US Middle Atlantic Coastal Plain Ecoregion. The landscape pattern metrics were calculated for a sample of land use/cover data obtained for four points in time from 1973-1992. The multiple sampling dates permit evaluation of trend, whereas availability of only two sampling dates allows only evaluation of change. Observed statistically significant trends in the landscape pattern metrics demonstrated that the sampling-based monitoring protocol was able to detect a trend toward a more fine-grained landscape in this ecoregion. This sampling and analysis protocol is being extended spatially to the remaining 83 ecoregions in the US and temporally to the year 2000 to provide a national and regional synthesis of the temporal and spatial dynamics of landscape pattern covering the period 1973-2000.
NASA Astrophysics Data System (ADS)
Liu, Hua
A new synthesis of remote sensing and landscape ecology approaches was developed to establish relationships between the landscape patterns and land surface temperatures (LST) in the city of Indianapolis, Indiana, United States. Land use and land cover (LULC) and LST images were derived from Terra Satellite's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. An analytical procedure using landscape metrics was developed, applying configuration analysis of landscape patterns and land surface temperature zones. Detailed landscape pattern analyses at the landscape and class scales were conducted using landscape metrics in the City of Indianapolis. The effects of spatial resolution on the identification of the relationship were examined in the same city. The best level of equalization between the LULC and LST maps was determined based on minimum distance analysis in landscape metrics space. The analyses of relationships between the landscape patterns and land surface temperatures, and scaling effects were applied to the spread of West Nile Virus (WNV) in the City of Chicago, Illinois. Results show that urban, forest, and grassland were the main landscape components in Indianapolis. They possessed relatively higher fractal dimensions but lower spatial aggregation levels in April 5, 2004, June 16, 2001, and October 3, 2000, but not in February 6, 2006. Obvious seasonal differences existed with the most distinct landscape pattern detected on February 6, 2006. Urban was the dominant LULC type in high-temperature zones, while water and vegetation mainly fell in low-temperature zones. For each individual date, the metrics of LST zones apparently corresponded to the metrics of LULC types. In the study of scaling-up effect analysis, Patch Percentage, Patch Density, and Landscape Shape index were found to be able to effectively quantify the spatial changes of LULC types and temperature zones at different scales without contradiction. Urban, forest, and grassland in each season were more easily affected by the process in Patch Density and Landscape Shape index. Ninety meters was believed to be the optimal spatial resolution to examine relationships between landscape patterns and LSTs in the City of Indianapolis. In the study of the spread of West Nile Virus in the City of Chicago, WNV was found to have been spread throughout all of Cook County since 2001. Landscape factors, like landscape aggregation index and areas of urban, grass, and water showed a strong correlation with the number of WNV infections. Socioeconomic conditions, like population above 65 years old also showed a strong relationship with the spread of WNV in Cook County. Thermal conditions of water had a lower but still significant correlation to the spread of WNV. This research offers an opportunity to explore the mechanism of interaction between urban landscape patterns and land surface temperatures at different spatial scales, and show the effects of landscape pattern and land surface temperature on the spread of West Nile Virus. This study can be useful for urban planning and environmental management practices in the studied areas. It also contributes to public health management and protection.
Process-Driven Ecological Modeling for Landscape Change Analysis
NASA Astrophysics Data System (ADS)
Altman, S.; Reif, M. K.; Swannack, T. M.
2013-12-01
Landscape pattern is an important driver in ecosystem dynamics and can control system-level functions such as nutrient cycling, connectivity, biodiversity and carbon sequestration. However, the links between process, pattern and function remain ambiguous. Understanding the quantitative relationship between ecological processes and landscape pattern across temporal and spatial scales is vital for successful management and implementation of ecosystem-level projects. We used remote sensing imagery to develop critical landscape metrics to understand the factors influencing landscape change. Our study area, a coastal area in southwest Florida, is highly dynamic with critically eroding beaches and a range of natural and developed land cover types. Hurricanes in 2004 and 2005 caused a breach along the coast of North Captiva Island that filled in by 2010. We used a time series of light detection and ranging (lidar) elevation data and hyperspectral imagery from 2006 and 2010 to determine land cover changes. Landscape level metrics used included: Largest Patch Index, Class Area, Area-weighted mean area, Clumpiness, Area-weighted Contiguity Index, Number of Patches, Percent of landcover, Area-weighted Shape. Our results showed 1) 27% increase in sand/soil class as the channel repaired itself and shoreline was reestablished, 2) 40% decrease in the mudflat class area due to conversion to sand/soil and water, 3) 30% increase in non-wetland vegetation class as a result of new vegetation around the repaired channel, and 4) the water class only slightly increased though there was a marked increase in the patch size area. Thus, the smaller channels disappeared with the infilling of the channel, leaving much larger, less complex patches behind the breach. Our analysis demonstrated that quantification of landscape pattern is critical to linking patterns to ecological processes and understanding how both affect landscape change. Our proof of concept indicated that ecological processes can correlate to landscape pattern and that ecosystem function changes significantly as pattern changes. However, the number of links between landscape metrics and ecological processes are highly variable. Extensively studied processes such as biodiversity can be linked to numerous landscape metrics. In contrast, correlations between sediment cycling and landscape pattern have only been evaluated for a limited number of metrics. We are incorporating these data into a relational database linking landscape and ecological patterns, processes and metrics. The database will be used to parameterize site-specific landscape evolution models projecting how landscape pattern will change as a result of future ecosystem restoration projects. The model is a spatially-explicit, grid-based model that projects changes in community composition based on changes in soil elevations. To capture scalar differences in landscape change, local and regional landscape metrics are analyzed at each time step and correlated with ecological processes to determine how ecosystem function changes with scale over time.
NASA Astrophysics Data System (ADS)
Plexida, Sofia G.; Sfougaris, Athanassios I.; Ispikoudis, Ioannis P.; Papanastasis, Vasilios P.
2014-02-01
This paper investigates the spatial heterogeneity of three landscapes along an altitudinal gradient and different human land use. The main aim was the identification of appropriate landscape indicators using different extents. ASTER image was used to create a land cover map consisting of three landscapes which differed in altitude and land use. A number of landscape metrics quantifying patch complexity, configuration, diversity and connectivity were derived from the thematic map at the landscape level. There were significant differences among the three landscapes regarding these four aspects of landscape heterogeneity. The analysis revealed a specific pattern of land use where lowlands are being increasingly utilized by humans (percentage of agricultural land = 65.84%) characterized by physical connectedness (high values of Patch Cohesion Index) and relatively simple geometries (low values of fractal dimension index). The landscape pattern of uplands was found to be highly diverse based upon the Shannon Diversity index. After selecting the scale (600 ha) where metrics values stabilized, it was shown that metrics were more correlated at the small scale of 60 ha. From the original 24 metrics, 14 individual metrics with high Spearman correlation coefficient and Variance Inflation Factor criterion were eliminated, leaving 10 representative metrics for subsequent analysis. Data reduction analysis showed that Patch Density, Area-Weighted Mean Fractal Dimension Index and Patch Cohesion Index are suitable to describe landscape patterns irrespective of the scale. A systematic screening of these metrics could enhance a deeper understanding of the results obtained by them and contribute to a sustainable landscape management of Mediterranean landscapes.
Dynamic Changes of Landscape Pattern and Vulnerability Analysis in Qingyi River Basin
NASA Astrophysics Data System (ADS)
Li, Ziwei; Xie, Chaoying; He, Xiaohui; Guo, Hengliang; Wang, Li
2017-11-01
Environmental vulnerability research is one of the core areas of global environmental change research. Over the past 10 years, ecologically fragile zones or transition zones had been significantly affected by environmental degradation and climate change and human activities. In this paper, we analyzed the spatial and temporal changes of landscape pattern and landscape vulnerability degree in Qingyi River Basin by calculating the landscape sensitivity index and landscape restoration degree index based on Landsat images of 2005, 2010 and 2015. The results showed that: (1) The top conversion area was farmland, woodland and grassland area decreased, city land and rural residential land increased fastest. (2) The fragility of the landscape pattern along the Qingyi River gradually increased between 2005 and 2015, the downstream area was influenced by the influence of human activities. (3) Landscape pattern changes and fragility are mainly affected by urbanization. These findings are helpful for understanding the evolution of landscape pattern as well as urban ecology, which both have significant implications for urban planning and minimize the potential environmental impacts of urbanization in Qingyi River Basin.
Nancy Diaz; Dean Apostol
1992-01-01
This publication presents a Landscape Design and Analysis Process, along with some simple methods and tools for describing landscapes and their function. The information is qualitative in nature and highlights basic concepts, but does not address landscape ecology in great depth. Readers are encouraged to consult the list of selected references in Chapter 2 if they...
Griffith, J.A.; Trettin, C.C.; O'Neill, R. V.
2002-01-01
Geographic information systems (GIS) are increasingly being used in environmental impact assessments (EIA) because GIS is useful for analysing spatial impacts of various development scenarios. Spatially representing these impacts provides another tool for landscape ecology in environmental and geographical investigations by facilitating analysis of the effects of landscape patterns on ecological processes and examining change over time. Landscape ecological principles are applied in this study to a hypothetical geothermal development project on the Island of Hawaii. Some common landscape pattern metrics were used to analyse dispersed versus condensed development scenarios and their effect on landscape pattern. Indices of fragmentation and patch shape did not appreciably change with additional development. The amount of forest to open edge, however, greatly increased with the dispersed development scenario. In addition, landscape metrics showed that a human disturbance had a greater simplifying effect on patch shape and also increased fragmentation than a natural disturbance. The use of these landscape pattern metrics can advance the methodology of applying GIS to EIA.
Yang, Jin Yao; Huang, Lu; Yan, Li Jiao; Huo, Si Gao
2016-08-01
With the stable development of new countryside construction and new-type urbanization, the changing of the landscape pattern in countryside attracts more attention, especially in the ethnic townships which are hardly accessible. To explore the development of these areas, it is crucial to understand the spatial and temporal variation of the landscape pattern. In this paper, the landscape pattern change was analyzed at both patch type level and landscape level based on the landscape ecology theory. The land use data (format: vector) got from Aerla Town (a typical Daur ethnic township in Inner Mongolia) for the duration from 2008 to 2013 was studied by ArcGIS platform and Fragstats. For the type level, the grassland, farmland, and forest turned into building land gra-dually. Regarding the landscape level, the landscape diversity index and landscape connectivity index were relatively low, the heterogeneity index and the landscape fragmentation were relatively high. With considering the correlation analysis and grey correlation of the above indexes as well as the social and economic development in Aerla Town, the results indicated that population change and GDP growth were the main driving forces of landscape pattern change. Finally, the driving forces which resulted in the variation of landscape pattern with the incorporation of the economic, cultural, policy, and natural effects were discussed. The research could provide basic information and theoretical foundation for the development of minority areas in Northeast China.
A multi-scale analysis of landscape statistics
Douglas H. Cain; Kurt H. Riitters; Kenneth Orvis
1997-01-01
It is now feasible to monitor some aspects of landscape ecological condition nationwide using remotely- sensed imagery and indicators of land cover pattern. Previous research showed redundancies among many reported pattern indicators and identified six unique dimensions of land cover pattern. This study tested the stability of those dimensions and representative...
Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong
2015-04-01
Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal pollution control and remediation, especially for agricultural soils in the PRD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Andre M.
2009-07-17
The advanced geospatial information extraction and analysis capabilities of a Geographic Information System (GISs) and Artificial Neural Networks (ANNs), particularly Self-Organizing Maps (SOMs), provide a topology-preserving means for reducing and understanding complex data relationships in the landscape. The Adaptive Landscape Classification Procedure (ALCP) is presented as an adaptive and evolutionary capability where varying types of data can be assimilated to address different management needs such as hydrologic response, erosion potential, habitat structure, instrumentation placement, and various forecast or what-if scenarios. This paper defines how the evaluation and analysis of spatial and/or temporal patterns in the landscape can provide insight intomore » complex ecological, hydrological, climatic, and other natural and anthropogenic-influenced processes. Establishing relationships among high-dimensional datasets through neurocomputing based pattern recognition methods can help 1) resolve large volumes of data into a structured and meaningful form; 2) provide an approach for inferring landscape processes in areas that have limited data available but exhibit similar landscape characteristics; and 3) discover the value of individual variables or groups of variables that contribute to specific processes in the landscape. Classification of hydrologic patterns in the landscape is demonstrated.« less
Geographic techniques and recent applications of remote sensing to landscape-water quality studies
Griffith, J.A.
2002-01-01
This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.
Vegetation Patterns and Degradation Thresholds in the Mulga Landscapes of Australia
NASA Astrophysics Data System (ADS)
Azadi, Samira; Saco, Patricia; Moreno-de las Heras, Mariano; Willgoose, Garry
2017-04-01
Drylands are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches dense vegetation within bare soil. This 'patterned' or 'patchy' vegetation cover is sensitive to human pressures. Previous work suggests that within these landscapes there is a critical vegetation cover threshold below which the landscape functionality is lost. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity that induces loss of resources (i.e., leakiness). In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects affect ecosystem functionality. Here we present the results of exploring the impact of degradation processes induced by vegetation disturbances (mainly grazing) on ecosystem functionality and connectivity in semiarid landscapes with various types of vegetation patterns. The sites are carefully selected in Mulga landscapes bioregion (New South Wales, Queensland) and in sites of Northern Territory in Australia, which display similar vegetation characteristics but with different vegetation patterns and good quality rainfall information. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades). Using MODIS NDVI and local precipitation data, we compute rainfall use efficiency and precipitation marginal response in order to assess the ecosystem functionality. We use vegetation binary maps and digital elevation models to estimate mean Flowlength as an indicator of structural hydrologic connectivity. We compare the trends for several sites with varying vegetation patterns (i.e., banded versus spotted patterns). Our results show that disturbances increase hydrologic connectivity and suggest threshold behaviour that affects landscape functionality. Though this threshold behaviour is found in all sites, the plots in higher rainfall landscapes with banded vegetation patterns show evidence of higher resilience. We will also present some preliminary modelling results that complement this analysis and capture the coevolution of vegetation and landforms (erosion), leading to this type of threshold behaviour.
INTEGRATING A LANDSCAPE HYDROLOGIC ANALYSIS FOR WATERSHED ASSESSMENT
Methods to provide linkages between a hydrologic modeling tool (AGW A) and landscape assessment tool (A TtILA) for determining the vulnerability of semi-arid landscapes to natural and human-induced landscape pattern changes have been developed. The objective of this study is to ...
Landscape‐level patterns in fawn survival across North America
Gingery, Tess M.; Diefenbach, Duane R.; Wallingford, Bret D.; Rosenberry, Christopher S.
2018-01-01
A landscape‐level meta‐analysis approach to examining early survival of ungulates may elucidate patterns in survival not evident from individual studies. Despite numerous efforts, the relationship between fawn survival and habitat characteristics remains unclear and there has been no attempt to examine trends in survival across landscape types with adequate replication. In 2015–2016, we radiomarked 98 white‐tailed deer (Odocoileus virginianus) fawns in 2 study areas in Pennsylvania. By using a meta‐analysis approach, we compared fawn survival estimates from across North America using published data from 29 populations in 16 states to identify patterns in survival and cause‐specific mortality related to landscape characteristics, predator communities, and deer population density. We modeled fawn survival relative to percentage of agricultural land cover and deer density. Estimated average survival to 3–6 months of age was 0.414 ± 0.062 (SE) in contiguous forest landscapes (no agriculture) and for every 10% increase in land area in agriculture, fawn survival increased 0.049 ± 0.014. We classified cause‐specific mortality as human‐caused, natural (excluding predation), and predation according to agriculturally dominated, forested, and mixed (i.e., both agricultural and forest cover) landscapes. Predation was the greatest source of mortality in all landscapes. Landscapes with mixed forest and agricultural cover had greater proportions and rates of human‐caused mortalities, and lower proportions and rates of mortality due to predators, when compared to forested landscapes. Proportion and rate of natural deaths did not differ among landscapes. We failed to detect any relationship between fawn survival and deer density. The results highlight the need to consider multiple spatial scales when accounting for factors that influence fawn survival. Furthermore, variation in mortality sources and rates among landscapes indicate the potential for altered landscape mosaics to influence fawn survival rates. Wildlife managers can use the meta‐analysis to identify factors that will facilitate comparisons of results among studies and advance a better understanding of patterns in fawn survival.
Classification of Farmland Landscape Structure in Multiple Scales
NASA Astrophysics Data System (ADS)
Jiang, P.; Cheng, Q.; Li, M.
2017-12-01
Farmland is one of the basic terrestrial resources that support the development and survival of human beings and thus plays a crucial role in the national security of every country. Pattern change is the intuitively spatial representation of the scale and quality variation of farmland. Through the characteristic development of spatial shapes as well as through changes in system structures, functions and so on, farmland landscape patterns may indicate the landscape health level. Currently, it is still difficult to perform positioning analyses of landscape pattern changes that reflect the landscape structure variations of farmland with an index model. Depending on a number of spatial properties such as locations and adjacency relations, distance decay, fringe effect, and on the model of patch-corridor-matrix that is applied, this study defines a type system of farmland landscape structure on the national, provincial, and city levels. According to such a definition, the classification model of farmland landscape-structure type at the pixel scale is developed and validated based on mathematical-morphology concepts and on spatial-analysis methods. Then, the laws that govern farmland landscape-pattern change in multiple scales are analyzed from the perspectives of spatial heterogeneity, spatio-temporal evolution, and function transformation. The result shows that the classification model of farmland landscape-structure type can reflect farmland landscape-pattern change and its effects on farmland production function. Moreover, farmland landscape change in different scales displayed significant disparity in zonality, both within specific regions and in urban-rural areas.
Larsen, Laurel G.; Harvey, Judson W.
2011-01-01
In general, the stability of different wetland pattern types is most strongly related to factors controlling the erosion and deposition of sediment at vegetation patch edges, the magnitude of sediment redistribution by flow, patch elevation relative to water level, and the variability of erosion rates in vegetation patches with low flow-resistance. As we exemplify in our case-study of the Everglades ridge and slough landscape, feedback between flow and vegetation also causes hysteresis in landscape evolution trajectories that will affect the potential for landscape restoration. Namely, even if the hydrologic conditions that historically produced higher flows are restored, degraded portions of the ridge and slough landscape are unlikely to revert to their former patterning. As wetlands and floodplains worldwide become increasingly threatened by climate change and urbanization, the greater mechanistic understanding of landscape pattern and process that our analysis provides will improve our ability to forecast and manage the behavior of these ecosystems.
Sun, Ran-Hao; Chen, Li-Ding; Wang, Wei; Wang, Zhao-Ming
2012-06-01
Understanding the effect of land cover pattern on nutrient losses is of great importance in management of water resources. The extensive application of mechanism models is limited in large-scale watersheds owing to the intensive data and calibration requirements. On the other hand, the traditional landscape indexes only take the areas and types of land cover into account, considering less about their topographic features and spatial patterns. We constructed a location-weighted landscape index (LWLI) based on the Lorenz curve, which plots the cumulative proportion of areas for sink and source landscapes respectively against cumulative proportion of their relative location to the outlet in a watershed, including relative elevation, distance and slope. We assessed the effect of land cover pattern on total nitrogen losses in the Haihe River. Firstly, 26 watersheds were derived from 1: 250 000 digital elevation model (DEM), and their "source" and "sink" landscape types were identified from Landsat TM images in 2007. The source" landscapes referred to the paddy land, dry land and residential area, correspondingly the "sink" landscapes referred to the forest and grassland. Secondly, LWLI was calculated according to the landscape types and spatial patterns for each watershed. Thirdly, we accessed the effect of land cover pattern on total nitrogen (TN) flux according to the value of LWLI, comparing with the area proportion of sink-source landscapes. The correlation coefficients were different in three parts of Haihe River, i. e., 0.86, 0.67 and 0.65 in the Yanshan Mts, Taihang Mts and lower Haihe River. The results showed strong correlations between TN and LWLI in contrast to the weak correlations between TN and area proportion of sink and source landscape types. This study indicates the spatial pattern of land cover is essential for accessing the nutrient losses, and the location-weighted landscape pattern analysis may be an alternate to existing water quality models, especially in large watershed scales. The sink-source index is sufficiently simple that it can be compared across watersheds and be easily interpreted, and potentially be used in landscape pattern optimal designing and planning.
[Dynamic evolution of wetland landscape spatial pattern in Nansi Lake, China].
Chen, Zhi Cong; Xie, Xiao Ping; Bai, Mao Wei
2016-10-01
Based on Landsat images in 1987, 2002 and 2014 from Nansi Lake located in Shandong Province, landscape pattern index, dynamic index, landscape gradient and gridding model were used for analysis of the wetland distribution in the lake. The results showed that the landscape contagion index and aggregation index gradually decreased from 1987 to 2014, while the landscape diversity index and evenness index gradually increased. The distribution of landscape area was more uniform while its patterns trended to be fragmented. Human activities impacted Nansi wetland distribution and the disturbance presented an increasing trend. The total area of Nansi wetland gradually increased during the study period. The area of lake first decreased then increased, and the area reached the maximum in 2014. The area of the ponds along the riparian zone had increased gradually, but the increasing speed slowed down. The area of the rivers remained stable, while the area of the swamps decreased continually during the period. The change of landscape pattern of Nansi Lake wetland mainly resulted from agricultural activities, establishment of Nansi Lake Natural Reserve, and the South-to-North Water Diversion Project.
Samberg, Leah H; Fishman, Lila; Allendorf, Fred W
2013-01-01
Conservation strategies are increasingly driven by our understanding of the processes and patterns of gene flow across complex landscapes. The expansion of population genetic approaches into traditional agricultural systems requires understanding how social factors contribute to that landscape, and thus to gene flow. This study incorporates extensive farmer interviews and population genetic analysis of barley landraces (Hordeum vulgare) to build a holistic picture of farmer-mediated geneflow in an ancient, traditional agricultural system in the highlands of Ethiopia. We analyze barley samples at 14 microsatellite loci across sites at varying elevations and locations across a contiguous mountain range, and across farmer-identified barley types and management strategies. Genetic structure is analyzed using population-based and individual-based methods, including measures of population differentiation and genetic distance, multivariate Principal Coordinate Analysis, and Bayesian assignment tests. Phenotypic analysis links genetic patterns to traits identified by farmers. We find that differential farmer management strategies lead to markedly different patterns of population structure across elevation classes and barley types. The extent to which farmer seed management appears as a stronger determinant of spatial structure than the physical landscape highlights the need for incorporation of social, landscape, and genetic data for the design of conservation strategies in human-influenced landscapes. PMID:24478796
Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises
Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143
Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.
Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.
Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Faria, Deborah
2016-01-01
Biodiversity maintenance in human-altered landscapes (HALs) depends on the species turnover among localities, but the patterns and determinants of β-diversity in HALs are poorly known. In fact, declines, increases and neutral shifts in β-diversity have all been documented, depending on the landscape, ecological group and spatial scale of analysis. We shed some light on this controversy by assessing the patterns and predictors of bird β-diversity across multiple spatial scales considering forest specialist and habitat generalist bird assemblages. We surveyed birds from 144 point counts in 36 different forest sites across two landscapes with different amount of forest cover in the Brazilian Atlantic forest. We analysed β-diversity among points, among sites and between landscapes with multiplicative diversity partitioning of Hill numbers. We tested whether β-diversity among points was related to within-site variations in vegetation structure, and whether β-diversity among sites was related to site location and/or to differences among sites in vegetation structure and landscape composition (i.e. per cent forest and pasture cover surrounding each site). β-diversity between landscapes was lower than among sites and among points in both bird assemblages. In forest specialist birds, the landscape with less forest cover showed the highest β-diversity among sites (bird differentiation among sites), but generalist birds showed the opposite pattern. At the local scale, however, the less forested landscape showed the lowest β-diversity among points (bird homogenization within sites), independently of the bird assemblage. β-diversity among points was weakly related to vegetation structure, but higher β-diversity values were recorded among sites that were more isolated from each other, and among sites with higher differences in landscape composition, particularly in the less forested landscape. Our findings indicate that patterns of bird β-diversity vary across scales and are strongly related to landscape composition. Bird assemblages are shaped by both environmental filtering and dispersal limitation, particularly in less forested landscapes. Conservation and management strategies should therefore prevent deforestation in this biodiversity hotspot. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Dimensions of landscape preferences from pairwise comparisons
F. González Bernaldez; F. Parra
1979-01-01
Analysis of landscape preferences allows the detection of major dimensions as:(1) the opposition between "natural and humanized", (comprising features like vegetation cover, cultivation, pattern of landscape elements, artifacts, excavations, etc.); (2) polarity "precision/ambiguity" (involving opposition between: predominance of straight, vertical...
Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy.
Yu, Zhoulu; Wang, Yaohui; Deng, Jinsong; Shen, Zhangquan; Wang, Ke; Zhu, Jinxia; Gan, Muye
2017-06-06
Accurately quantifying the variation of urban green space is the prerequisite for fully understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of urban green space is still insufficient due to multiple challenges that remain in mapping green spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to demonstrate an analysis methodology that integrates sub-pixel mapping technology and landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric analysis was then employed to characterize the variation pattern of urban green space patches. Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of urban greenness occurred in the city core from 2002 to 2013, characterized by the significant increase of small-sized green space patches. The green space network has been formed as a consequence of new urban greening strategies in Hangzhou. These strategies have greatly fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis further revealed a distinct pattern of urban green space landscape variation in the process of urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our approach revealed the subtle variation of urban green space patches which are otherwise easy to overlook. Findings from this study will help us to refine our understanding of the evolution of heterogeneous urban environments.
Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy
Yu, Zhoulu; Wang, Yaohui; Deng, Jinsong; Shen, Zhangquan; Wang, Ke; Zhu, Jinxia; Gan, Muye
2017-01-01
Accurately quantifying the variation of urban green space is the prerequisite for fully understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of urban green space is still insufficient due to multiple challenges that remain in mapping green spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to demonstrate an analysis methodology that integrates sub-pixel mapping technology and landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric analysis was then employed to characterize the variation pattern of urban green space patches. Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of urban greenness occurred in the city core from 2002 to 2013, characterized by the significant increase of small-sized green space patches. The green space network has been formed as a consequence of new urban greening strategies in Hangzhou. These strategies have greatly fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis further revealed a distinct pattern of urban green space landscape variation in the process of urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our approach revealed the subtle variation of urban green space patches which are otherwise easy to overlook. Findings from this study will help us to refine our understanding of the evolution of heterogeneous urban environments. PMID:28587309
NASA Astrophysics Data System (ADS)
Blume, T.; Hassler, S. K.; Weiler, M.
2017-12-01
Hydrological science still struggles with the fact that while we wish for spatially continuous images or movies of state variables and fluxes at the landscape scale, most of our direct measurements are point measurements. To date regional measurements resolving landscape scale patterns can only be obtained by remote sensing methods, with the common drawback that they remain near the earth surface and that temporal resolution is generally low. However, distributed monitoring networks at the landscape scale provide the opportunity for detailed and time-continuous pattern exploration. Even though measurements are spatially discontinuous, the large number of sampling points and experimental setups specifically designed for the purpose of landscape pattern investigation open up new avenues of regional hydrological analyses. The CAOS hydrological observatory in Luxembourg offers a unique setup to investigate questions of temporal stability, pattern evolution and persistence of certain states. The experimental setup consists of 45 sensor clusters. These sensor clusters cover three different geologies, two land use classes, five different landscape positions, and contrasting aspects. At each of these sensor clusters three soil moisture/soil temperature profiles, basic climate variables, sapflow, shallow groundwater, and stream water levels were measured continuously for the past 4 years. We will focus on characteristic landscape patterns of various hydrological state variables and fluxes, studying their temporal stability on the one hand and the dependence of patterns on hydrological states on the other hand (e.g. wet vs dry). This is extended to time-continuous pattern analysis based on time series of spatial rank correlation coefficients. Analyses focus on the absolute values of soil moisture, soil temperature, groundwater levels and sapflow, but also investigate the spatial pattern of the daily changes of these variables. The analysis aims at identifying hydrologic signatures of the processes or landscape characteristics acting as major controls. While groundwater, soil water and transpiration are closely linked by the water cycle, they are controlled by different processes and we expect this to be reflected in interlinked but not necessarily congruent patterns and responses.
Hoos, A.B.; McMahon, G.
2009-01-01
Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States - higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.
Hoos, Anne B.; McMahon, Gerard
2009-01-01
Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States—higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.
Scale dependent inference in landscape genetics
Samuel A. Cushman; Erin L. Landguth
2010-01-01
Ecological relationships between patterns and processes are highly scale dependent. This paper reports the first formal exploration of how changing scale of research away from the scale of the processes governing gene flow affects the results of landscape genetic analysis. We used an individual-based, spatially explicit simulation model to generate patterns of genetic...
Suir, Glenn M.; Evers, D. Elaine; Steyer, Gregory D.; Sasser, Charles E.
2013-01-01
Coastal Louisiana is a dynamic and ever-changing landscape. From 1956 to 2010, over 3,734 km2 of Louisiana's coastal wetlands have been lost due to a combination of natural and human-induced activities. The resulting landscape constitutes a mosaic of conditions from highly deteriorated to relatively stable with intact landmasses. Understanding how and why coastal landscapes change over time is critical to restoration and rehabilitation efforts. Historically, changes in marsh pattern (i.e., size and spatial distribution of marsh landmasses and water bodies) have been distinguished using visual identification by individual researchers. Difficulties associated with this approach include subjective interpretation, uncertain reproducibility, and laborious techniques. In order to minimize these limitations, this study aims to expand existing tools and techniques via a computer-based method, which uses geospatial technologies for determining shifts in landscape patterns. Our method is based on a raster framework and uses landscape statistics to develop conditions and thresholds for a marsh classification scheme. The classification scheme incorporates land and water classified imagery and a two-part classification system: (1) ratio of water to land, and (2) configuration and connectivity of water within wetland landscapes to evaluate changes in marsh patterns. This analysis system can also be used to trace trajectories in landscape patterns through space and time. Overall, our method provides a more automated means of quantifying landscape patterns and may serve as a reliable landscape evaluation tool for future investigations of wetland ecosystem processes in the northern Gulf of Mexico.
Environmental management practices are trending away from simple, local- scale assessments toward complex, multiple-stressor regional assessments. Landscape ecology provides the theory behind these assessments while geographic information systems (GIS) supply the tools to impleme...
Buma, Brian; Costanza, Jennifer K; Riitters, Kurt
2017-11-21
The scale of investigation for disturbance-influenced processes plays a critical role in theoretical assumptions about stability, variance, and equilibrium, as well as conservation reserve and long-term monitoring program design. Critical consideration of scale is required for robust planning designs, especially when anticipating future disturbances whose exact locations are unknown. This research quantified disturbance proportion and pattern (as contagion) at multiple scales across North America. This pattern of scale-associated variability can guide selection of study and management extents, for example, to minimize variance (measured as standard deviation) between any landscapes within an ecoregion. We identified the proportion and pattern of forest disturbance (30 m grain size) across multiple landscape extents up to 180 km 2 . We explored the variance in proportion of disturbed area and the pattern of that disturbance between landscapes (within an ecoregion) as a function of the landscape extent. In many ecoregions, variance between landscapes within an ecoregion was minimal at broad landscape extents (low standard deviation). Gap-dominated regions showed the least variance, while fire-dominated showed the largest. Intensively managed ecoregions displayed unique patterns. A majority of the ecoregions showed low variance between landscapes at some scale, indicating an appropriate extent for incorporating natural regimes and unknown future disturbances was identified. The quantification of the scales of disturbance at the ecoregion level provides guidance for individuals interested in anticipating future disturbances which will occur in unknown spatial locations. Information on the extents required to incorporate disturbance patterns into planning is crucial for that process.
Regular Topographic Patterning of Karst Depressions Suggests Landscape Self-Organization
NASA Astrophysics Data System (ADS)
Quintero, C.; Cohen, M. J.
2017-12-01
Thousands of wetland depressions that are commonly host to cypress domes dot the sub-tropical limestone landscape of South Florida. The origin of these depression features has been the topic of debate. Here we build upon the work of previous surveyors of this landscape to analyze the morphology and spatial distribution of depressions on the Big Cypress landscape. We took advantage of the emergence and availability of high resolution Light Direction and Ranging (LiDAR) technology and ArcMap GIS software to analyze the structure and regularity of landscape features with methods unavailable to past surveyors. Six 2.25 km2 LiDAR plots within the preserve were selected for remote analysis and one depression feature within each plot was selected for more intensive sediment and water depth surveying. Depression features on the Big Cypress landscape were found to show strong evidence of regular spatial patterning. Periodicity, a feature of regularly patterned landscapes, is apparent in both Variograms and Radial Spectrum Analyses. Size class distributions of the identified features indicate constrained feature sizes while Average Nearest Neighbor analyses support the inference of dispersed features with non-random spacing. The presence of regular patterning on this landscape strongly implies biotic reinforcement of spatial structure by way of the scale dependent feedback. In characterizing the structure of this wetland landscape we add to the growing body of work dedicated to documenting how water, life and geology may interact to shape the natural landscapes we see today.
Relationship Between Landcover Pattern and Surface Net Radiation in AN Coastal City
NASA Astrophysics Data System (ADS)
Zhao, X.; Liu, L.; Liu, X.; Zhao, Y.
2016-06-01
Taking Xiamen city as the study area this research first retrieved surface net radiation using meteorological data and Landsat 5 TM images of the four seasons in the year 2009. Meanwhile the 65 different landscape metrics of each analysis unit were acquired using landscape analysis method. Then the most effective landscape metrics affecting surface net radiation were determined by correlation analysis, partial correlation analysis, stepwise regression method, etc. At both class and landscape levels, this paper comprehensively analyzed the temporal and spatial variations of the surface net radiation as well as the effects of land cover pattern on it in Xiamen from a multi-seasonal perspective. The results showed that the spatial composition of land cover pattern shows significant influence on surface net radiation while the spatial allocation of land cover pattern does not. The proportions of bare land and forest land are effective and important factors which affect the changes of surface net radiation all the year round. Moreover, the proportion of forest land is more capable for explaining surface net radiation than the proportion of bare land. So the proportion of forest land is the most important and continuously effective factor which affects and explains the cross-seasonal differences of surface net radiation. This study is helpful in exploring the formation and evolution mechanism of urban heat island. It also gave theoretical hints and realistic guidance for urban planning and sustainable development.
Pe'er, Guy; Zurita, Gustavo A.; Schober, Lucia; Bellocq, Maria I.; Strer, Maximilian; Müller, Michael; Pütz, Sandro
2013-01-01
Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model “G-RaFFe” generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature. PMID:23724108
Pe'er, Guy; Zurita, Gustavo A; Schober, Lucia; Bellocq, Maria I; Strer, Maximilian; Müller, Michael; Pütz, Sandro
2013-01-01
Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model "G-RaFFe" generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature.
ANALYSIS OF LANDSCAPE AND WATER QUALITY IN THE NEW YORK CATSKILL - DELAWARE WATERSHED (1973-1998)
The primary goal of this study is to improve risk assessment through the development of methods and tools for characterization of landscape and water resource change. Exploring the relationship between landscape pattern and water quality in the Catskill-Delaware basins will impro...
Effects of Urban Landscape Pattern on PM2.5 Pollution—A Beijing Case Study
Wu, Jiansheng; Xie, Wudan; Li, Weifeng; Li, Jiacheng
2015-01-01
PM2.5 refers to particulate matter (PM) in air that is less than 2.5μm in aerodynamic diameter, which has negative effects on air quality and human health. PM2.5 is the main pollutant source in haze occurring in Beijing, and it also has caused many problems in other cities. Previous studies have focused mostly on the relationship between land use and air quality, but less research has specifically explored the effects of urban landscape patterns on PM2.5. This study considered the rapidly growing and heavily polluted Beijing, China. To better understand the impact of urban landscape pattern on PM2.5 pollution, five landscape metrics including PLAND, PD, ED, SHEI, and CONTAG were applied in the study. Further, other data, such as street networks, population density, and elevation considered as factors influencing PM2.5, were obtained through RS and GIS. By means of correlation analysis and stepwise multiple regression, the effects of landscape pattern on PM2.5 concentration was explored. The results showed that (1) at class-level, vegetation and water were significant landscape components in reducing PM2.5 concentration, while cropland played a special role in PM2.5 concentration; (2) landscape configuration (ED and PD) features at class-level had obvious effects on particulate matter; and (3) at the landscape-level, the evenness (SHEI) and fragmentation (CONTAG) of the whole landscape related closely with PM2.5 concentration. Results of this study could expand our understanding of the role of urban landscape pattern on PM2.5 and provide useful information for urban planning. PMID:26565799
Garcia, Vhon Oliver S; Ivy, Catherine; Fu, Jinzhong
2017-11-01
Amphibians are often considered excellent environmental indicator species. Natural and man-made landscape features are known to form effective genetic barriers to amphibian populations; however, amphibians with different characteristics may have different species-landscape interaction patterns. We conducted a comparative landscape genetic analysis of two closely related syntopic frog species from central China, Pelophylax nigromaculatus ( PN ) and Fejervarya limnocharis ( FL ). These two species differ in several key life history traits; PN has a larger body size and larger clutch size, and reaches sexual maturity later than FL . Microsatellite DNA data were collected and analyzed using conventional ( F ST , isolation by distance (IBD), AMOVA) and recently developed (Bayesian assignment test, isolation by resistance) landscape genetic methods. As predicted, a higher level of population structure in FL ( F ST ' = 0.401) than in PN ( F ST ' = 0.354) was detected, in addition to FL displaying strong IBD patterns ( r = .861) unlike PN ( r = .073). A general north-south break in FL populations was detected, consistent with the IBD pattern, while PN exhibited clustering of northern- and southern-most populations, suggestive of altered dispersal patterns. Species-specific resistant landscape features were also identified, with roads and land cover the main cause of resistance to FL , and elevation the main influence on PN . These different species-landscape interactions can be explained mostly by their life history traits, revealing that closely related and ecologically similar species have different responses to the same landscape features. Comparative landscape genetic studies are important in detecting such differences and refining generalizations about amphibians in monitoring environmental changes.
Effects of Urban Landscape Pattern on PM2.5 Pollution--A Beijing Case Study.
Wu, Jiansheng; Xie, Wudan; Li, Weifeng; Li, Jiacheng
2015-01-01
PM2.5 refers to particulate matter (PM) in air that is less than 2.5 μm in aerodynamic diameter, which has negative effects on air quality and human health. PM2.5 is the main pollutant source in haze occurring in Beijing, and it also has caused many problems in other cities. Previous studies have focused mostly on the relationship between land use and air quality, but less research has specifically explored the effects of urban landscape patterns on PM2.5. This study considered the rapidly growing and heavily polluted Beijing, China. To better understand the impact of urban landscape pattern on PM2.5 pollution, five landscape metrics including PLAND, PD, ED, SHEI, and CONTAG were applied in the study. Further, other data, such as street networks, population density, and elevation considered as factors influencing PM2.5, were obtained through RS and GIS. By means of correlation analysis and stepwise multiple regression, the effects of landscape pattern on PM2.5 concentration was explored. The results showed that (1) at class-level, vegetation and water were significant landscape components in reducing PM2.5 concentration, while cropland played a special role in PM2.5 concentration; (2) landscape configuration (ED and PD) features at class-level had obvious effects on particulate matter; and (3) at the landscape-level, the evenness (SHEI) and fragmentation (CONTAG) of the whole landscape related closely with PM2.5 concentration. Results of this study could expand our understanding of the role of urban landscape pattern on PM2.5 and provide useful information for urban planning.
NASA Astrophysics Data System (ADS)
Zhang, Yuhu; Yu, Changqing; Qi, Jiaguo; Zhang, Zili; Shi, Qinshan
2007-11-01
The problem of efficient use of multi-temporal remotely sensed data for land-cover and landscape pattern dynamics has already considerable attention in landscape ecology and some other disciplines. This research develops and tests a methodological approach to monitor and analysis landscape dynamics change of Yongding river watershed (Mentougou section) as study area from 1988 to 2005, The result shows that the OIF is the best method of optimal bands selection in Landsat TM remote sensing data, TM3, 4, 5 bands is optimal band combination ;the Mentougou Reach of Yongding river watershed landscape changed significantly in terms of its composition over the period 1988-2005, The total landscape patches of study area in 2005 are more those in 1988,2001, Mean patch size(MPS)decreased sharply, Number of patches(NP) increased sharply, The landscape pattern takes on the fragmentation trends under the effect on the human activity. The forest (woodland and shrubland)are the main landscape matrix. with a significant decrease in croplands and a increase in built-up (residential, urban land) and industrial minerals mining land(coal, open-pit)over the 17 years, And the underlying socio-economic and other drivers of landscape change in study area are discussed.
Analysis of Alaskan burn severity patterns using remotely sensed data
Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.
2007-01-01
Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.
Large-scale distribution patterns of mangrove nematodes: A global meta-analysis.
Brustolin, Marco C; Nagelkerken, Ivan; Fonseca, Gustavo
2018-05-01
Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat-forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small-bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta-analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean-Southwest Atlantic, Western Indian, Central Indo-Pacific, and Southwest Pacific biogeographic regions. We used random-effects meta-analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove-associated taxa. Global-scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small-bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.
NASA Astrophysics Data System (ADS)
Potter, C. S.
2016-12-01
The central California coastal landscape has a history of frequent large wildfires that have threatened or destroyed many residential structures at the wildland interface. This study starts with the largest wildfires on the Central Coast over the past 30 years and analyzes the fraction and landscape patterns of high severity burned (HBS) areas from the Landsat-based Monitoring Trends in Burn Severity (MTBS) data base as a function of weather conditions and topographic variations. Results indicate that maximum temperatures at the time of fire and the previous 12 months of rainfall explained a significant portion of the variation in total area burned and the fraction of HBS area. Average patch size and aggregation metrics of HBS areas were included in the analysis framework. Within each burned area, the Landsat (30-meter resolution) differenced Normalized Burn Ratio (dNBR), a continuous index of vegetation burn severity, was correlated against slope, aspect, and elevation to better understand landscape level-controls over HBS patches. The Landsat dNBR analysis framework is being extended next to the island of Sardinia, Italy for a comparison of Mediterranean climates and wildfire patterns since the mid-1980s.
van Strien, Maarten J; Slager, Cornelis T J; de Vries, Bauke; Grêt-Regamey, Adrienne
2016-06-01
Many studies have assessed the effect of landscape patterns on spatial ecological processes by simulating these processes in computer-generated landscapes with varying composition and configuration. To generate such landscapes, various neutral landscape models have been developed. However, the limited set of landscape-level pattern variables included in these models is often inadequate to generate landscapes that reflect real landscapes. In order to achieve more flexibility and variability in the generated landscapes patterns, a more complete set of class- and patch-level pattern variables should be implemented in these models. These enhancements have been implemented in Landscape Generator (LG), which is a software that uses optimization algorithms to generate landscapes that match user-defined target values. Developed for participatory spatial planning at small scale, we enhanced the usability of LG and demonstrated how it can be used for larger scale ecological studies. First, we used LG to recreate landscape patterns from a real landscape (i.e., a mountainous region in Switzerland). Second, we generated landscape series with incrementally changing pattern variables, which could be used in ecological simulation studies. We found that LG was able to recreate landscape patterns that approximate those of real landscapes. Furthermore, we successfully generated landscape series that would not have been possible with traditional neutral landscape models. LG is a promising novel approach for generating neutral landscapes and enables testing of new hypotheses regarding the influence of landscape patterns on ecological processes. LG is freely available online.
FRAGSTATS: spatial pattern analysis program for quantifying landscape structure.
Kevin McGarigal; Barbara J. Marks
1995-01-01
This report describes a program, FRAGSTATS, developed to quantify landscape structure. FRAGSTATS offers a comprehensive choice of landscape metrics and was designed to be as versatile as possible. The program is almost completely automated and thus requires little technical training. Two separate versions of FRAGSTATS exist: one for vector images and one for raster...
Chapter 6. Landscape Analysis for Habitat Monitoring
Samuel A. Cushman; Kevin McGarigal; Kevin S. McKelvey; Christina D. Vojta; Claudia M. Regan
2013-01-01
The primary objective of this chapter is to describe standardized methods for measur¬ing and monitoring attributes of landscape pattern in support of habitat monitoring. This chapter describes the process of monitoring categorical landscape maps in which either selected habitat attributes or different classes of habitat quality are represented as different patch types...
GUIDOS: tools for the assessment of pattern, connectivity, and fragmentation
NASA Astrophysics Data System (ADS)
Vogt, Peter
2013-04-01
Pattern, connectivity, and fragmentation can be considered as pillars for a quantitative analysis of digital landscape images. The free software toolbox GUIDOS (http://forest.jrc.ec.europa.eu/download/software/guidos) includes a variety of dedicated methodologies for the quantitative assessment of these features. Amongst others, Morphological Spatial Pattern Analysis (MSPA) is used for an intuitive description of image pattern structures and the automatic detection of connectivity pathways. GUIDOS includes tools for the detection and quantitative assessment of key nodes and links as well as to define connectedness in raster images and to setup appropriate input files for an enhanced network analysis using Conefor Sensinode. Finally, fragmentation is usually defined from a species point of view but a generic and quantifiable indicator is needed to measure fragmentation and its changes. Some preliminary results for different conceptual approaches will be shown for a sample dataset. Complemented by pre- and post-processing routines and a complete GIS environment the portable GUIDOS Toolbox may facilitate a holistic assessment in risk assessment studies, landscape planning, and conservation/restoration policies. Alternatively, individual analysis components may contribute to or enhance studies conducted with other software packages in landscape ecology.
Evaluating methods to visualize patterns of genetic differentiation on a landscape.
House, Geoffrey L; Hahn, Matthew W
2018-05-01
With advances in sequencing technology, research in the field of landscape genetics can now be conducted at unprecedented spatial and genomic scales. This has been especially evident when using sequence data to visualize patterns of genetic differentiation across a landscape due to demographic history, including changes in migration. Two recent model-based visualization methods that can highlight unusual patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are increasingly used. While SpaceMix's model can infer long-distance migration, EEMS' model is more sensitive to short-distance changes in genetic differentiation, and it is unclear how these differences may affect their results in various situations. Here, we compare SpaceMix and EEMS side by side using landscape genetics simulations representing different migration scenarios. While both methods excel when patterns of simulated migration closely match their underlying models, they can produce either un-intuitive or misleading results when the simulated migration patterns match their models less well, and this may be difficult to assess in empirical data sets. We also introduce unbundled principal components (un-PC), a fast, model-free method to visualize patterns of genetic differentiation by combining principal components analysis (PCA), which is already used in many landscape genetics studies, with the locations of sampled individuals. Un-PC has characteristics of both SpaceMix and EEMS and works well with simulated and empirical data. Finally, we introduce msLandscape, a collection of tools that streamline the creation of customizable landscape-scale simulations using the popular coalescent simulator ms and conversion of the simulated data for use with un-PC, SpaceMix and EEMS. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Abdullah, Saiful Arif; Hezri, Adnan A.
2008-11-01
Agricultural expansion and deforestation are spatial processes of land transformation that impact on landscape pattern. In peninsular Malaysia, the conversion of forested areas into two major cash crops—rubber and oil palm plantations—has been identified as driving significant environmental change. To date, there has been insufficient literature studying the link between changes in landscape patterns and land-related development policies. Therefore, this paper examines: (i) the links between development policies and changes in land use/land cover and landscape pattern and (ii) the significance and implications of these links for future development policies. The objective is to generate insights on the changing process of land use/land cover and landscape pattern as a functional response to development policies and their consequences for environmental conditions. Over the last century, the development of cash crops has changed the country from one dominated by natural landscapes to one dominated by agricultural landscapes. But the last decade of the century saw urbanization beginning to impact significantly. This process aligned with the establishment of various development policies, from land development for agriculture between the mid 1950s and the 1970s to an emphasis on manufacturing from the 1980s onward. Based on a case study in Selangor, peninsular Malaysia, a model of landscape pattern change is presented. It contains three stages according to the relative importance of rubber (first stage: 1900-1950s), oil palm (second stage: 1960s-1970s), and urban (third stage: 1980s-1990s) development that influenced landscape fragmentation and heterogeneity. The environmental consequences of this change have been depicted through loss of biodiversity, geohazard incidences, and the spread of vector-borne diseases. The spatial ecological information can be useful to development policy formulation, allowing diagnosis of the country’s “health” and sustainability. The final section outlines the usefulness of landscape analysis in the policy-making process to prevent further fragmentation of the landscape and forest loss in Malaysia in the face of rapid economic development.
Abdullah, Saiful Arif; Hezri, Adnan A
2008-11-01
Agricultural expansion and deforestation are spatial processes of land transformation that impact on landscape pattern. In peninsular Malaysia, the conversion of forested areas into two major cash crops--rubber and oil palm plantations--has been identified as driving significant environmental change. To date, there has been insufficient literature studying the link between changes in landscape patterns and land-related development policies. Therefore, this paper examines: (i) the links between development policies and changes in land use/land cover and landscape pattern and (ii) the significance and implications of these links for future development policies. The objective is to generate insights on the changing process of land use/land cover and landscape pattern as a functional response to development policies and their consequences for environmental conditions. Over the last century, the development of cash crops has changed the country from one dominated by natural landscapes to one dominated by agricultural landscapes. But the last decade of the century saw urbanization beginning to impact significantly. This process aligned with the establishment of various development policies, from land development for agriculture between the mid 1950s and the 1970s to an emphasis on manufacturing from the 1980s onward. Based on a case study in Selangor, peninsular Malaysia, a model of landscape pattern change is presented. It contains three stages according to the relative importance of rubber (first stage: 1900--1950s), oil palm (second stage: 1960s--1970s), and urban (third stage: 1980s--1990s) development that influenced landscape fragmentation and heterogeneity. The environmental consequences of this change have been depicted through loss of biodiversity, geohazard incidences, and the spread of vector-borne diseases. The spatial ecological information can be useful to development policy formulation, allowing diagnosis of the country's "health" and sustainability. The final section outlines the usefulness of landscape analysis in the policy-making process to prevent further fragmentation of the landscape and forest loss in Malaysia in the face of rapid economic development.
Neutral model analysis of landscape patterns from mathematical morphology
Kurt H. Riitters; Peter Vogt; Pierre Soille; Jacek Kozak; Christine Estreguil
2007-01-01
Mathematical morphology encompasses methods for characterizing land-cover patterns in ecological research and biodiversity assessments. This paper reports a neutral model analysis of patterns in the absence of a structuring ecological process, to help set standards for comparing and interpreting patterns identified by mathematical morphology on real land-cover maps. We...
Landscape trends in Mid-Atlantic and Southeastern United States ecoregions
Griffith, J.A.; Stehman, S.V.; Loveland, Thomas R.
2003-01-01
Landscape pattern and composition metrics are potential indicators for broad-scale monitoring of change and for relating change to human and ecological processes. We used a probability sample of 20-km × 20-km sampling blocks to characterize landscape composition and pattern in five US ecoregions: the Middle Atlantic Coastal Plain, Southeastern Plains, Northern Piedmont, Piedmont, and Blue Ridge Mountains. Land use/land cover (LULC) data for five dates between 1972 and 2000 were obtained for each sample block. Analyses focused on quantifying trends in selected landscape pattern metrics by ecoregion and comparing trends in land cover proportions and pattern metrics among ecoregions. Repeated measures analysis of the landscape pattern documented a statistically significant trend in all five ecoregions towards a more fine-grained landscape from the early 1970s through 2000. The ecologically important forest cover class also became more fine-grained with time (i.e., more numerous and smaller forest patches). Trends in LULC, forest edge, and forest percent like adjacencies differed among ecoregions. These results suggest that ecoregions provide a geographically coherent way to regionalize the story of national land use and land cover change in the United States. This study provides new information on LULC change in the southeast United States. Previous studies of the region from the 1930s to the 1980s showed a decrease in landscape fragmentation and an increase in percent forest, while this study showed an increase in forest fragmentation and a loss of forest cover.
NASA Astrophysics Data System (ADS)
Larsen, L.; Christensen, A.; Harvey, J. W.; Ma, H.; Newman, S.; Saunders, C.; Twilley, R.
2017-12-01
Emergence of vegetation patterning in fluvial landscapes is a classic example of how autogenic processes can drive long term fluvial and geomorphic adjustments in aquatic ecosystems. Studies elucidating the physics of flow through vegetation patches have produced understanding of how patterning in topography and vegetation commonly emerges and what effect it has on long term geomorphic change. However, with regard to mechanisms underlying pattern existence and resilience, several knowledge gaps remain, including the role of landscape-scale flow-vegetation feedbacks, feedbacks that invoke additional biogeochemical or biological agents, and determination of the relative importance of autogenic processes relative to external drivers. Here we provide a synthesis of the processes over a range of scales known to drive vegetation patterning and sedimentation in low gradient fluvial landscapes, emphasizing recent field and modeling studies in the Everglades, FL and Wax Lake Delta, LA that address these gaps. In the Everglades, while flow routing and sediment redistribution at the patch scale is known to be a primary driver of vegetation pattern emergence, landscape-scale routing of flow, as driven by the landscape's connectivity, can set up positive feedbacks that influence the rate of pattern degradation. Recent flow release experiments reveal that an additional feedback, involving phosphorus concentrations, flow, and floating vegetation communities that are abundant under low phosphorus, low flow conditions further stabilizes the alternative landscape states established through local scale sediment redistribution. Biogeochemistry-vegetation-sediment feedbacks may also be important for geomorphic development of newly emerging landscapes such as the Wax Lake Delta. There, fine sediment deposition shapes hydrogeomorphic zones with vegetation patterns that stimulate the growth of biofilm, while biofilm characteristics override the physical characteristics of vegetation canopies in determining fine sediment deposition rates and influence nitrogen and carbon biogeochemistry. Emerging tools and data streams, such as information flow analysis of lidar-derived vegetation biovolume and topography, can help identify the relative roles of autogenic vs. external forcing in these landscapes.
Xiao, Cui; Xie, Xue-Fen; Wu, Tao; Jiang, Guo-Jun; Bian, Hua-Jing; Xu, Wei
2014-11-01
Abstract: The hemeroby type classification system of Ximen Island wetland of Zhejiang Province was established based on the multiple datasets: SOPT-5 image data with a spatial resolution of 5 m in 2007 and 2010, its wetland land cover and land use status, the National Land Use Classification (on trail), and sea area use classification of marine industry standards as well as remote sensing data features. Meanwhile, the dynamic relationship between the landscape pattern and the degree of hemeroby in Ximen Island was investigated with the landscape indices and hemeroby index (HI) derived from the landscape pattern index and GIS spatial analysis. The results showed that the wetland landscape spatial heterogeneity, fragmentation and dominance index dropped, and the landscape shape index complexity was low. The human disturbance center developed from a dispersion type to a concentration type. The landscape type of the disturbance center was bare land and settlement. The HI rose up from the sea to the land. Settlement, wharf and traffic land had the highest HI. The HI of the mudflat cultivation, mudflats and raft-cultivation dramatically changed. Marine-terrestrial interlaced zone showed a low total HI with unstable characteristics. The number of patches declined of undisturbed, partially disturbed and completely disturbed landscapes. Mean patch areas of partially disturbed and completely disturbed landscapes increased, and that of the undisturbed decreased. Mean shape index of the undisturbed landscape decreased, while the partially disturbed and completely disturbed landscapes showed a trend of shape complication.
Pillsbury, Finn C; Miller, James R
2008-07-01
Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.
[Wetland landscape pattern change based on GIS and RS: a review].
Kong, Fan-Ting; Xi, Min; Li, Yue; Kong, Fan-Long; Chen, Wan
2013-04-01
Wetland is an ecological landscape with most biodiversity in nature, which has unique ecological structure and function, and contains abundant natural resources to provide material guarantee for human's living and development. Wetland landscape pattern is the comprehensive result of various ecological processes, and has become a hot issue in wetland ecological study. At present, the combination of geographic information system (GIS) and remote sensing (RS) technologies is an important way to study the wetland landscape pattern change. This paper reviewed the research progress in the wetland landscape change based on GIS and RS from the aspects of the research methods of wetland landscape pattern, index of wetland landscape pattern, and driving forces of wetland landscape pattern evolution, and discussed the applications of the combination of GIS and RS in monitoring the wetland landscape pattern change, the index selection of wetland landscape pattern, and the driving mechanisms of the combined action of human and nature. Some deficiencies in the current studies were put forward, and the directions of the future-studies were prospected.
Landscape ecological security response to land use change in the tidal flat reclamation zone, China.
Zhang, Runsen; Pu, Lijie; Li, Jianguo; Zhang, Jing; Xu, Yan
2016-01-01
As coastal development becomes a national strategy in Eastern China, land use and landscape patterns have been affected by reclamation projects. In this study, taking Rudong County, China as a typical area, we analyzed land use change and its landscape ecological security responses in the tidal flat reclamation zone. The results show that land use change in the tidal flat reclamation zone is characterized by the replacement of natural tidal flat with agricultural and construction land, which has also led to a big change in landscape patterns. We built a landscape ecological security evaluation system, which consists of landscape interference degree and landscape fragile degree, and then calculated the landscape ecological security change in the tidal flat reclamation zone from 1990 to 2008 to depict the life cycle in tidal flat reclamation. Landscape ecological security exhibited a W-shaped periodicity, including the juvenile stage, growth stage, and maturation stage. Life-cycle analysis demonstrates that 37 years is required for the land use system to transform from a natural ecosystem to an artificial ecosystem in the tidal flat reclamation zone.
Landscape analysis of pesticide use patterns and ecological exposure
Background/Question/Methods The pesticide exposure landscape in the US is spatially and temporally complex. Researchers studying ecological exposure and effects of pesticides must consider a number of dimensions when framing experiments and conducting assessments. These dimension...
Larsen, Laurel G.; Harvey, Judson W.
2010-01-01
Mechanisms reported to promote landscape self‐organization cannot explain vegetation patterning oriented parallel to flow. Recent catastrophic shifts in Everglades landscape pattern and ecological function highlight the need to understand the feedbacks governing these ecosystems. We modeled feedback between vegetation, hydrology, and sediment transport on the basis of a decade of experimentation. Results from more than 100 simulations showed that flows just sufficient to redistribute sediment from sparsely vegetated sloughs to dense ridges were needed for an equilibrium patterned landscape oriented parallel to flow. Surprisingly, although vegetation heterogeneity typically conveys resilience, in wetlands governed by flow/sediment feedbacks it indicates metastability, whereby the landscape is prone to catastrophic shifts. Substantial increases or decreases in flow relative to the equilibrium condition caused an expansion of emergent vegetation and loss of open‐water areas that was unlikely to revert upon restoration of the equilibrium hydrology. Understanding these feedbacks is critical in forecasting wetland responses to changing conditions and designing management strategies that optimize ecosystem services, such as carbon sequestration or habitat provision. Our model and new sensitivity analysis techniques address these issues and make it newly apparent that simply returning flow to predrainage conditions in the Everglades may not be sufficient to restore historic landscape patterns and processes.
Yao, Meng Yuan; Yan, Shi Jiang; Wu, Yan Lan
2016-12-01
Huizhou-Styled Village is a typical representative of the traditional Chinese ancient villages. It preserves plentiful information of the regional culture and ecological connotation. The Huizhou-Style is the apotheosis of harmony between the Chinese ancient people and nature. The research and protection of Huizhou-Styled Village plays a very important role in fields of ecology, geography, architecture and esthetics. This paper took Chengkan Village of Anhui Province as an exa-mple, and proposed a new model of ideal ecosystem oriented in theories of Feng-shui and psychological field. The new method of characterizing 3D landscape index was introduced to explore the spatial patterns of Huizhou-Styled Village and the functionality of the composited landscape components in a quantitative way. The results indicated that, Chengkan Village showed a spatially composited pattern of "mountain-forest-village-river-forest". It formed an ideal settlement ring structure with human architecture in the center and natural landscape around in the horizontal and vertical horizons. The traditional method based on the projection distance caused the deviation of the landscape index, such as underestimating the area and distance of landscape patch. The 3D landscape index of average patch area was 6.7% higher than the 2D landscape index. The increasing rate ofarea proportion in 3D index was 1.0% higher than that of 2D index in forest lands. Area proportion of the other landscapes decreased, especially the artificial landscapes like construction and cropland landscapes. The area and perimeter metric were underestimated, whereas the shape metric and the diversity metric were overestimated. This caused the underestimation of the dominance of natural patches was underestimated and the overestimation of the dominance of artificial patches during the analysis of landscape pattern. The 3D landscape index showed that the natural elements and their combination in Chengkan Village ecosystem reflected better ecological function, the key elements and the composited landscape ecosystem preserved higher stability, connectivity and aggregation. The quantitative confirmation showed that the Huizhou-Styled Village represented by Chengkan Village is an ideal ecosystem.
NASA Technical Reports Server (NTRS)
Rehder, J. B. (Principal Investigator)
1973-01-01
The author has identified the following significant results. ERTS-1 has proven to be an effective earth-orbiting monitor of landscape change. Its regional coverage for large areal monitoring has been effective for the detection and mapping of agricultural plowing regions, for general forest cover mapping, for flood mapping, for strip mine mapping, and for short-lived precipitation mapping patterns. Paramount to the entire study has been the temporal coverage provided by ERTS. Without the cyclic coverage on an 18 day basis, temporal coverage would have been inadequate for the detection and mapping of strip mining landscape change, the analysis of agricultural landscape change based on plowing patterns, the analysis of urban-suburban growth changes, and the mapping of the Mississippi River floods. Cost benefits from ERTS are unquestionably superior to aircraft systems in regard to large regional coverage and cyclic temporal parameters. For the analysis of landscape change in large regions such as statewide areas or even areas of 10,000 square miles, ERTS is of cost benefit consideration. Not only does the cost of imagery favor ERTS but the reduction of man-hours using ERTS has been in the magnitude of 1:10.
Supplementing land-use statistics with landscape metrics: some methodological considerations.
Herzog, F; Lausch, A
2001-11-01
Landscape monitoring usually relies on land-use statistics which reflect the share of land-sue/land cover types. In order to understand the functioning of landscapes, landscape pattern must be considered as well. Indicators which address the spatial configuration of landscapes are therefore needed. The suitability of landscape metrics, which are computed from the type, geometry and arrangement of patches, is examined. Two case studies in a surface mining region show that landscape metrics capture landscape structure but are highly dependent on the data model and on the methods of data analysis. For landscape metrics to become part of policy-relevant sets of environmental indicators, standardised procedures for their computation from remote sensing images must be developed.
Feldman, Daniel; Liu, Zuowei; Nath, Pran
2007-12-21
The minimal supersymmetric standard model with soft breaking has a large landscape of supersymmetric particle mass hierarchies. This number is reduced significantly in well-motivated scenarios such as minimal supergravity and alternatives. We carry out an analysis of the landscape for the first four lightest particles and identify at least 16 mass patterns, and provide benchmarks for each. We study the signature space for the patterns at the CERN Large Hadron Collider by analyzing the lepton+ (jet> or =2) + missing P{T} signals with 0, 1, 2, and 3 leptons. Correlations in missing P{T} are also analyzed. It is found that even with 10 fb{-1} of data a significant discrimination among patterns emerges.
Using Landscape metrics to analyze the landscape evolution under land abandonment
NASA Astrophysics Data System (ADS)
Pelorosso, Raffaele; Della Chiesa, Stefano; Gobattoni, Federica; Leone, Antonio
2010-05-01
The human actions and the human-linked land use changes are the main responsible of the present landscapes and vegetation patterns (Antrop, 2005; Pelorosso et al., 2009). Hence, revised concept of potential natural vegetation has been developed in landscape ecology. In fact, it cannot more be considered as the optimum for a certain landscape, but only as a general indication never widely reached. In particular Ingegnoli and Pignatti (2007) introduced the concept of fittest vegetation as "the most suitable or suited vegetation for the specific climate and geomorphic conditions, in a limited period of time and in a certain defined place with a particular range of incorporable disturbances (including man's) under natural or not natural conditions". Anthropic exploitation of land and its resources to obtain goods and services (Willemen et al, 2008) can be considered therefore the main cause of landscape change as an integrant part of nature, not external. The abandon of the land by farmers or other users it is one of the more felt problems for the marginal territories of Mediterranean basin. It is therefore caused by socio-economic changes of last decades and cause several impact on biodiversity (Geri et al. 2010) and hydro-geological assessment. A mountain landscape has however the capacity to provide goods like timber and services like aesthetic pleasure or regulation of water system. The necessity of a conservation strategy and the development of sustainable socio-economic management plan play a very important role in governing land and quality of life for people and ecosystems also for marginal territory. After a land abandonment, soil conditions and several climatic and orographic characteristic plus human disturbance affect the length of time required by secondary succession, throwing the establishment of vegetation with different association, structure and composition until a (stable or meta-stable) equilibrium is reached (Ingegnoli and Pignatti, 2007). In this view, therefore, not all the abandoned land will be covered by woods also after a reasonable time (e.g 20-30 years); open areas patches can resist over time as a consequence of different (more o less natural) disturbances, pointing out a landscape mosaic and vegetation pattern almost never completely homogeneous. This spatial and temporal differentiation of landscape pattern, therefore, require both the individuation of disturbances and their effect on land abandonment process to be analyzed for each different landscape. Many types of analysis and models were developed and used to understand the reason of abandonment, its evolution, likelihood future landscape scenarios and the leading consequences on environment and population in order to establish right land-uses to obtain suitable and sustainable goods and services from landscape itself. One of these analysis recurs to landscape metrics. Landscape metrics have been widely applied in ecology and landscape ecology (Rainis, 2003; Romero-Calcerrada and Perry, 2004 ; Narumalani et al., 2004; Rocchini et al., 2006) because they allow an objective description of the temporal pattern of landscape change and a comparison with other landscapes (Turner et al., 2001). Furthermore, a description of the shape, size and spatial arrangement of patches of vegetation can be used to link the observed pattern with the ecological processes that may have generated it (Rocchini et al., 2006). So these metrics can be used to see how an abandoned landscape can evolve under the effects of different constrictions that, also if not completely knew, have been affecting the present assessment. Through historical and recent aerial photos (1954-1985-1999) and several landscape metrics, the evolution of marginal municipality of central Apennine under abandonment is presented here. Temporal evolution of landscape metrics was discussed to underline the importance of such descriptors of vegetation pattern dynamics and the key role played by these useful tools for the evaluation of reachable future vegetation pattern equilibriums.
NASA Astrophysics Data System (ADS)
Singh, A.; Tejedor, A.; Grimaud, J. L.; Zaliapin, I. V.; Foufoula-Georgiou, E.
2016-12-01
Knowledge of the dynamics of evolving landscapes in terms of their geomorphic and topologic re-organization in response to changing climatic or tectonic forcing is of scientific and practical interest. Although several studies have addressed the large-scale response (e.g., change in mean relief), studies on the smaller-scale drainage pattern re-organization and quantification of landscape vulnerability to the timing, magnitude, and frequency of changing forcing are lacking. The reason is the absence of data for such an analysis. To that goal, a series of controlled laboratory experiments were conducted at the St. Anthony Falls laboratory of the University of Minnesota to study the effect of changing precipitation patterns on landscape evolution at the short and long-time scales. High resolution digital elevation (DEM) both in space and time were measured for a range of rainfall patterns and uplift rates. Results from our study show a distinct signature of the precipitation increase on the probabilistic and geometrical structure of landscape features, evident in widening and deepening of channels and valleys, change in drainage patterns within sub-basins and change in the space-time structure of erosional and depositional events. A spatially explicit analysis of the locus of these erosional and depositional events suggests a regime shift, during the onset of the transient state, from supply-limited to transport-limited fluvial channels. We document a characteristic scale-dependent signature of erosion at steady state (which we term the "E50-area curve") and show that during reorganization, its evolving shape reflects process and scales of geomorphic change. Finally, we document changes in the longitudinal river profiles, in response to increased precipitation rate, with the formation of abrupt gradient (knickpoints) that migrate upstream as time proceeds.
Jiao, Yuan Mei; Liu, Cheng Jing; Liu, Xin; Liu, Zhi Lin; Ding, Yin Ping
2017-07-18
Analysis of hydrogen and oxygen stable isotopes is an effective method to track the water cycle in watershed. Impact of landscape pattern on the isotope effects of spring water is a new interdisciplinary topic between landscape ecology and isotope hydrology. Taking the Quanfuzhuang River basin located in the core area of UNESCO World Cultural Heritage of Honghe Hani Rice Terrace as the object, collecting the monthly samples of 78 points of spring water and 39 precipitation at altitude of 1500 m (terraces), 1700 m (terraces) and 1900 m (forest) from March 2015 to March 2016, we analyzed the hydrogen and oxygen stable isotopes of water samples under the different landscape types. The results indicated that the dominated landscape types were forests and rice terraces, being 66.6% and 22.1% of the whole landscape area respectively, and they had a spatial vertical pattern of forest located at the mountain top and rice terraces at the down-slope. The correlation analysis showed that the spring water not only came from the precipitation, but also from other water sources which had a more positive δ 18 O and δD values, the spring water in up-slope forests mainly came from precipitation, while that in down-slope rice terraces came from precipitation, ri-ver water, rice terrace water and under ground water. Therefore, the mixing effects of spring water δ 18 O and δD were more significant in rice terraces. The overall altitude effect of the hydrogen and oxygen stable isotopes in spring water was obvious. The linear decreasing rates of δ 18 O and δD values were -0.125‰·(100 m) -1 and -0.688‰·(100 m) -1 , respectively. The deuterium surplus value increased with the altitude because of the impacts of landscape pattern and the local cycle of water isotopes. In summary, the dominant landscape types had a significant impact on the hydrogen and oxygen isotopes of spring water, which could be used as response indicator to reveal the impacts of landscape pattern on hydrological process.
Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh
2009-01-01
This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.
Daniel J. Manier; Richard D. Laven
2001-01-01
Using repeat photography, we conducted a qualitative and quantitative analysis of changes in forest cover on the western slope of the Rocky Mountains in Colorado. For the quantitative analysis, both images in a pair were classified using remote sensing and geographic information system (GIS) technologies. Comparisons were made using three landscape metrics: total...
Comparative Spatial Dynamics of Japanese Encephalitis and Acute Encephalitis Syndrome in Nepal
Robertson, Colin; Pant, Dhan Kumar; Joshi, Durga Datt; Sharma, Minu; Dahal, Meena; Stephen, Craig
2013-01-01
Japanese Encephalitis (JE) is a vector-borne disease of major importance in Asia. Recent increases in cases have spawned the development of more stringent JE surveillance. Due to the difficulty of making a clinical diagnosis, increased tracking of common symptoms associated with JE—generally classified as the umbrella term, acute encephalitis syndrome (AES) has been developed in many countries. In Nepal, there is some debate as to what AES cases are, and how JE risk factors relate to AES risk. Three parts of this analysis included investigating the temporal pattern of cases, examining the age and vaccination status patterns among AES surveillance data, and then focusing on spatial patterns of risk factors. AES and JE cases from 2007–2011 reported at a district level (n = 75) were examined in relation to landscape risk factors. Landscape pattern indices were used to quantify landscape patterns associated with JE risk. The relative spatial distribution of landscape risk factors were compared using geographically weighted regression. Pattern indices describing the amount of irrigated land edge density and the degree of landscape mixing for irrigated areas were positively associated with JE and AES, while fragmented forest measured by the number of forest patches were negatively associated with AES and JE. For both JE and AES, the local GWR models outperformed global models, indicating spatial heterogeneity in risks. Temporally, the patterns of JE and AES risk were almost identical; suggesting the relative higher caseload of AES compared to JE could provide a valuable early-warning signal for JE surveillance and reduce diagnostic testing costs. Overall, the landscape variables associated with a high degree of landscape mixing and small scale irrigated agriculture were positively linked to JE and AES risk, highlighting the importance of integrating land management policies, disease prevention strategies and promoting healthy sustainable livelihoods in both rural and urban-fringe developing areas. PMID:23894277
Imaging energy landscapes with concentrated diffusing colloidal probes
NASA Astrophysics Data System (ADS)
Bahukudumbi, Pradipkumar; Bevan, Michael A.
2007-06-01
The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).
Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.
Yang, Jian; He, Hong S; Shifley, Stephen R
2008-07-01
Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.
Landscape pattern and car use: Linking household data with satellite imagery
NASA Astrophysics Data System (ADS)
Keller, R.; Vance, C.
2013-12-01
Landscape pattern has long been hypothesized to influence automobile dependency. Because choices about land development tend to have long-lasting impacts that span over decades, understanding the magnitude of this influence is critical to the design of policies to reduce emissions and other negative externalities associated with car use. Combining household survey data from Germany with satellite imagery and other geo-referenced data sources, we undertake an econometric analysis of the relation between landscape pattern and automobile dependency. Specifically, we employ a two-part model to investigate two dimensions of car use, the discrete decision to own a car and, conditional upon ownership, the continuous decision of how far to drive. Results indicate that landscape pattern, as captured by measures of both land cover (e.g. the extent of open space and landscape diversity) and land use (e.g. the density of regional businesses) are important predictors of car ownership and use. Other policy-relevant variables, such as fuel prices and public transit infrastructure, are also identified as correlates. Based on the magnitude of our estimates, we conclude that carefully considered land development and zoning measures - ones that encourage dense development, diverse land cover and mixed land use - can have beneficial impacts in reducing car dependency that extend far into the future. Key terms: Landscape pattern, Satellite imagery, Germany, Two-part model Figure 1. Distribution of Elasticities of Landscape and Social Effects on German Household Weekly Car Use Results from Two Part Model N = 13,089 (probit) N = 10,987 (OLS)Robust standard errors in parentheses***, **, and *, denotes significance at the 0.01, 0.05, and 0.1 levels
Optimization of landscape pattern [Chapter 8
John Hof; Curtis Flather
2007-01-01
A fundamental assumption in landscape ecology is that spatial patterns have significant influences on the flows of materials, energy, and information while processes create, modify, and maintain spatial patterns. Thus, it is of paramount importance in both theory and practice to address the questions of landscape pattern optimization ... For example, can landscape...
Huang, Ning; Wang, Hong Ying; Lin, Tao; Liu, Qi Ming; Huang, Yun Feng; Li, Jian Xiong
2016-10-01
Watershed landscape pattern regulation and optimization based on 'source-sink' theory for non-point source pollution control is a cost-effective measure and still in the exploratory stage. Taking whole watershed as the research object, on the basis of landscape ecology, related theories and existing research results, a regulation framework of watershed landscape pattern for non-point source pollution control was developed at two levels based on 'source-sink' theory in this study: 1) at watershed level: reasonable basic combination and spatial pattern of 'source-sink' landscape was analyzed, and then holistic regulation and optimization method of landscape pattern was constructed; 2) at landscape patch level: key 'source' landscape was taken as the focus of regulation and optimization. Firstly, four identification criteria of key 'source' landscape including landscape pollutant loading per unit area, landscape slope, long and narrow transfer 'source' landscape, pollutant loading per unit length of 'source' landscape along the riverbank were developed. Secondly, nine types of regulation and optimization methods for different key 'source' landscape in rural and urban areas were established, according to three regulation and optimization rules including 'sink' landscape inlay, banding 'sink' landscape supplement, pollutants capacity of original 'sink' landscape enhancement. Finally, the regulation framework was applied for the watershed of Maluan Bay in Xiamen City. Holistic regulation and optimization mode of watershed landscape pattern of Maluan Bay and key 'source' landscape regulation and optimization measures for the three zones were made, based on GIS technology, remote sensing images and DEM model.
Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun
2016-09-02
Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST.
Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun
2016-01-01
Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST. PMID:27598186
Preliminary GIS analysis of the agricultural landscape of Cuyo Cuyo, Department of Puno, Peru
NASA Technical Reports Server (NTRS)
Winterhalder, Bruce; Evans, Tom
1991-01-01
Computerized analysis of a geographic database (GIS) for Cuyo Cuyo, (Dept. Puno, Peru) is used to correlate the agricultural production zones of two adjacent communities to altitude, slope, aspect, and other geomorphological features of the high-altitude eastern escarpment landscape. The techniques exemplified will allow ecological anthropologists to analyze spatial patterns at regional scales with much greater control over the data.
Coupled analysis on landscape pattern and hydrological processes in Yanhe watershed of China.
Li, J; Zhou, Z X
2015-02-01
As a typical experimental Soil and Water Conservation District, Yanhe watershed has long been plagued by soil erosion due to severe human disturbances. Exerting remote sensing (RS) and geographic information system (GIS) technology, this paper firstly analyzed and simulated ecological hydrological process in Yanhe watershed based on SWAT model, constructed a comprehensive landscape indices which was closely related to soil erosion, and reflected the coupling relationship between regional landscape pattern change and soil erosion. The results are as follows: (1) Areas of different land use types remained relatively stable from 1990 to 2000 and then changed drastically from 2000 to 2010, which was characterized by lawn expansion and cultivated land shrinkage. (2) In terms of the spatial heterogeneity of hydrological response unit (HRUs), the correlation coefficient of seven selected landscape indices and runoff was very small, and cannot pass all significant testing. But correlation between the indices and sediment yield except for Total Core Area (TCA) and Interspersion and Juxtaposition Index (IJI) was remarkable. (3) According to 'the source-sink' theory of soil erosion, new landscape index-slope-HRU landscape index (SHLI) was built, and reflected the relationship between landscape pattern and soil erosion processes to a certain extent. (4) Coupling relationship between SHLI in 2010 and annual sediment was very prominent. In the sub-basin scale, SHLI has obvious regional differentiation from annual sediment. Copyright © 2014 Elsevier B.V. All rights reserved.
Applications of ERTS-1 data to landscape change in eastern Tennessee
NASA Technical Reports Server (NTRS)
Rehder, J. B. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The analysis of landscape change in eastern Tennessee from ERTS-1 data is being derived from three avenues of experimentation and analysis: (1) a multi-stage sampling procedure utilizing ground and aircraft imagery for ground truth and control; (2) a densitometric and computer analytical experiment for the analysis of gray tone signatures and comparisons for landscape change detection and monitoring; and (3) an ERTS image enhancement procedure for the detection and analysis of photomorphic regions. Significant results include: maps of strip mining changes and forest inventory, watershed identification and delimitation, and agricultural regions derived from spring plowing patterns appearing on the ERTS-1 imagery.
Gong, Jian; Yang, Jianxin; Tang, Wenwu
2015-11-09
Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution-severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems.
Gong, Jian; Yang, Jianxin; Tang, Wenwu
2015-01-01
Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution—severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems. PMID:26569270
Changing and Differentiated Urban Landscape in China: Spatiotemporal Patterns and Driving Forces.
Fang, Chuanglin; Li, Guangdong; Wang, Shaojian
2016-03-01
Urban landscape spatiotemporal change patterns and their driving mechanisms in China are poorly understood at the national level. Here we used remote sensing data, landscape metrics, and a spatial econometric model to characterize the spatiotemporal patterns of urban landscape change and investigate its driving forces in China between 1990 and 2005. The results showed that the urban landscape pattern has experienced drastic changes over the past 15 years. Total urban area has expanded approximately 1.61 times, with a 2.98% annual urban-growth rate. Compared to previous single-city studies, although urban areas are expanding rapidly, the overall fragmentation of the urban landscape is decreasing and is more irregular and complex at the national level. We also found a stair-stepping, urban-landscape changing pattern among eastern, central, and western counties. In addition, administrative level, urban size, and hierarchy have effects on the urban landscape pattern. We also found that a combination of landscape metrics can be used to supplement our understanding of the pattern of urbanization. The changes in these metrics are correlated with geographical indicators, socioeconomic factors, infrastructure variables, administrative level factors, policy factors, and historical factors. Our results indicate that the top priority should be strengthening the management of urban planning. A compact and congregate urban landscape may be a good choice of pattern for urban development in China.
PROTERAN: animated terrain evolution for visual analysis of patterns in protein folding trajectory.
Zhou, Ruhong; Parida, Laxmi; Kapila, Kush; Mudur, Sudhir
2007-01-01
The mechanism of protein folding remains largely a mystery in molecular biology, despite the enormous effort from many groups in the past decades. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates such as the fraction of native contacts, the radius of gyration and so on. In this paper, we present an integrated approach towards understanding the folding process via visual analysis of patterns of these reaction coordinates. The three disparate processes (1) protein folding simulation, (2) pattern elicitation and (3) visualization of patterns, work in tandem. Thus as the protein folds, the changing landscape in the pattern space can be viewed via the visualization tool, PROTERAN, a program we developed for this purpose. We first present an incremental (on-line) trie-based pattern discovery algorithm to elicit the patterns and then describe the terrain metaphor based visualization tool. Using two example small proteins, a beta-hairpin and a designed protein Trp-cage, we next demonstrate that this combined pattern discovery and visualization approach extracts crucial information about protein folding intermediates and mechanism.
NASA Astrophysics Data System (ADS)
Spivey, Alvin J.
Mapping land-cover land-use change (LCLUC) over regional and continental scales, and long time scales (years and decades), can be accomplished using thematically identified classification maps of a landscape---a LCLU class map. Observations of a landscape's LCLU class map pattern can indicate the most relevant process, like hydrologic or ecologic function, causing landscape scale environmental change. Quantified as Landscape Pattern Metrics (LPM), emergent landscape patterns act as Landscape Indicators (LI) when physically interpreted. The common mathematical approach to quantifying observed landscape scale pattern is to have LPM measure how connected a class exists within the landscape, through nonlinear local kernel operations of edges and gradients in class maps. Commonly applied kernel-based LPM that consistently reveal causal processes are Dominance, Contagion, and Fractal Dimension. These kernel-based LPM can be difficult to interpret. The emphasis on an image pixel's edge by gradient operations and dependence on an image pixel's existence according to classification accuracy limit the interpretation of LPM. For example, the Dominance and Contagion kernel-based LPM very similarly measure how connected a landscape is. Because of this, their reported edge measurements of connected pattern correlate strongly, making their results ambiguous. Additionally, each of these kernel-based LPM are unscalable when comparing class maps from separate imaging system sensor scenarios that change the image pixel's edge position (i.e. changes in landscape extent, changes in pixel size, changes in orientation, etc), and can only interpret landscape pattern as accurately as the LCLU map classification will allow. This dissertation discusses the reliability of common LPM in light of imaging system effects such as: algorithm classification likelihoods, LCLU classification accuracy due to random image sensor noise, and image scale. A description of an approach to generating well behaved LPM through a Fourier system analysis of the entire class map, or any subset of the class map (e.g. the watershed) is the focus of this work. The Fourier approach provides four improvements for LPM. First, the approach reduces any correlation between metrics by developing them within an independent (i.e. orthogonal) Fourier vector space; a Fourier vector space that includes relevant physically representative parameters ( i.e. between class Euclidean distance). Second, accounting for LCLU classification accuracy the LPM measurement precision and measurement accuracy are reported. Third, the mathematics of this approach makes it possible to compare image data captured at separate pixel resolutions or even from separate landscape scenes. Fourth, Fourier interpreted landscape pattern measurement can be a measure of the entire landscape shape, of individual landscape cover change, or as exchanges between class map subsets by operating on the entire class map, subset of class map, or separate subsets of class map[s] respectively. These LCLUC LPM are examined along the 1991-1992 and 2000-2001 records of National Land Cover Database Landsat data products. Those LPM results are used in a predictive fecal coliform model at the South Carolina watershed level in the context of past (validation study) change. Finally, the proposed LPM ability to be used as ecologically relevant environmental indicators is tested by correlating metrics with other, well known LI that consistently reveal causal processes in the literature.
Heritage landscape structure analysis in surrounding environment of the Grand Canal Yangzhou section
NASA Astrophysics Data System (ADS)
Xu, Huan
2018-03-01
The Yangzhou section of the Grand Canal is selected for a case study in this paper. The ZY-3 satellite images of 2016 are adopted as the data source. RS and GIS are used to analyze the landscape classification of the surrounding landscape of the Grand Canal, and the classification results are precisely evaluated. Next, the overall features of the landscape pattern are analyzed. The results showed that the overall accuracy is 82.5% and the Kappa coefficient is 78.17% in the Yangzhou section. The producer’s accuracy of the water landscape is the highest, followed by that of the other landscape, farmland landscape, garden and forest landscape, architectural landscape. The user’s accuracy of different landscape types can be ranked in a descending order, as the water landscape, farmland landscape, road landscape, architectural landscape, other landscape, garden and forest landscape. The farmland landscape and the architectural landscape are the top advantageous landscape types of the heritage site. The research findings can provide basic data for landscape protection, management and sustainable development of the Grand Canal Yangzhou section.
[Land use and land cover charnge (LUCC) and landscape service: Evaluation, mapping and modeling].
Song, Zhang-jian; Cao, Yu; Tan, Yong-zhong; Chen, Xiao-dong; Chen, Xian-peng
2015-05-01
Studies on ecosystem service from landscape scale aspect have received increasing attention from researchers all over the world. Compared with ecosystem scale, it should be more suitable to explore the influence of human activities on land use and land cover change (LUCC), and to interpret the mechanisms and processes of sustainable landscape dynamics on landscape scale. Based on comprehensive and systematic analysis of researches on landscape service, this paper firstly discussed basic concepts and classification of landscape service. Then, methods of evaluation, mapping and modeling of landscape service were analyzed and concluded. Finally, future trends for the research on landscape service were proposed. It was put forward that, exploring further connotation and classification system of landscape service, improving methods and quantitative indicators for evaluation, mapping and modelling of landscape service, carrying out long-term integrated researches on landscape pattern-process-service-scale relationships and enhancing the applications of theories and methods on landscape economics and landscape ecology are very important fields of the research on landscape service in future.
Characterizing forest fragments in boreal, temperate, and tropical ecosystems
Arjan J. H. Meddens; Andrew T. Hudak; Jeffrey S. Evans; William A. Gould; Grizelle Gonzalez
2008-01-01
An increased ability to analyze landscapes in a spatial manner through the use of remote sensing leads to improved capabilities for quantifying human-induced forest fragmentation. Developments of spatially explicit methods in landscape analyses are emerging. In this paper, the image delineation software program eCognition and the spatial pattern analysis program...
Landscape analysis of urban growth patterns in Seremban, Malaysia, using spatio-temporal data
NASA Astrophysics Data System (ADS)
Aburas, Maher M.; Abdullah, Sabrina H.; Ramli, Mohammad F.; As'shari, Zulfa H.
2016-06-01
Urban growth is one of the major issues that have played a significant role in destroying the ecosystem in recent years. Landscape analysis is an important technique widely used to evaluate urban growth patterns. In this study, four land-use maps from 1984, 1990, 2000, and 2010 have been used to analyze an urban landscape. The values of a built-up area were initially computed using a geographic information system environment based on the spatial gradient approach. Mathematical matrices were then used to determine the amount of change in urban patches in each direction. Results of the number of patches, landscape shape index, aggregation index, and total edges confirmed that the urban patches in Seremban, Malaysia, have become more dispersed from 2000 to 2010. The urban patches have also become more continuous, especially in the north-western part of Seremban as a result of the urban development in the Nilai District. These results indicate the necessity to create new policies in the city to protect the sustainability of the land use of Seremban.
Effect of Landscape Pattern on Insect Species Density within Urban Green Spaces in Beijing, China
Su, Zhimin; Li, Xiaoma; Zhou, Weiqi; Ouyang, Zhiyun
2015-01-01
Urban green space is an important refuge of biodiversity in urban areas. Therefore, it is crucial to understand the relationship between the landscape pattern of green spaces and biodiversity to mitigate the negative effects of urbanization. In this study, we collected insects from 45 green patches in Beijing during July 2012 using suction sampling. The green patches were dominated by managed lawns, mixed with scattered trees and shrubs. We examined the effects of landscape pattern on insect species density using hierarchical partitioning analysis and partial least squares regression. The results of the hierarchical partitioning analysis indicated that five explanatory variables, i.e., patch area (with 19.9% independent effects), connectivity (13.9%), distance to nearest patch (13.8%), diversity for patch types (11.0%), and patch shape (8.3%), significantly contributed to insect species density. With the partial least squares regression model, we found species density was negatively related to patch area, shape, connectivity, diversity for patch types and proportion of impervious surface at the significance level of p < 0.05 and positively related to proportion of vegetated land. Regression tree analysis further showed that the highest species density was found in green patches with an area <500 m2. Our results indicated that improvement in habitat quality, such as patch area and connectivity that are typically thought to be important for conservation, did not actually increase species density. However, increasing compactness (low-edge) of patch shape and landscape composition did have the expected effect. Therefore, it is recommended that the composition of the surrounding landscape should be considered simultaneously with planned improvements in local habitat quality. PMID:25793897
Effect of landscape pattern on insect species density within urban green spaces in Beijing, China.
Su, Zhimin; Li, Xiaoma; Zhou, Weiqi; Ouyang, Zhiyun
2015-01-01
Urban green space is an important refuge of biodiversity in urban areas. Therefore, it is crucial to understand the relationship between the landscape pattern of green spaces and biodiversity to mitigate the negative effects of urbanization. In this study, we collected insects from 45 green patches in Beijing during July 2012 using suction sampling. The green patches were dominated by managed lawns, mixed with scattered trees and shrubs. We examined the effects of landscape pattern on insect species density using hierarchical partitioning analysis and partial least squares regression. The results of the hierarchical partitioning analysis indicated that five explanatory variables, i.e., patch area (with 19.9% independent effects), connectivity (13.9%), distance to nearest patch (13.8%), diversity for patch types (11.0%), and patch shape (8.3%), significantly contributed to insect species density. With the partial least squares regression model, we found species density was negatively related to patch area, shape, connectivity, diversity for patch types and proportion of impervious surface at the significance level of p < 0.05 and positively related to proportion of vegetated land. Regression tree analysis further showed that the highest species density was found in green patches with an area <500 m2. Our results indicated that improvement in habitat quality, such as patch area and connectivity that are typically thought to be important for conservation, did not actually increase species density. However, increasing compactness (low-edge) of patch shape and landscape composition did have the expected effect. Therefore, it is recommended that the composition of the surrounding landscape should be considered simultaneously with planned improvements in local habitat quality.
NASA Astrophysics Data System (ADS)
Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao
2016-05-01
Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment.
Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao
2016-05-05
Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment.
Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao
2016-01-01
Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment. PMID:27147104
NASA Astrophysics Data System (ADS)
Xie, Yuchu; Gong, Jie; Sun, Peng; Gou, Xiaohua
2014-12-01
As one of the vital research highlights of global land use and cover change, oasis change and its interaction with landscape pattern have been regarded as an important content of regional environmental change research in arid areas. Jinta oasis, a typical agricultural oasis characterized by its dramatic exploitation and use of water and land resources in Hexi corridor, northwest arid region in China, was selected as a case to study the spatiotemporal oasis change and its effects on oasis landscape pattern. Based on integration of Keyhole satellite photographs, KATE-200 photographs, Landsat MSS, TM and ETM+ images, we evaluated and analyzed the status, trend and spatial pattern change of Jinta oasis and the characteristics of landscape pattern change by a set of mathematical models and combined this information with landscape metrics and community surveys. During the period of 1963a-2010a, Jinta oasis expanded gradually with an area increase of 219.15 km2, and the conversion between oasis and desert was frequent with a state of “imbalance-balance-extreme imbalance conditions”. Moreover, most of the changes took place in the ecotone between oasis and desert and the interior of oasis due to the reclamation of abandoned land, such as Yangjingziwan and Xiba townships. Furthermore, the area, size and spatial distribution of oasis were influenced by human activities and resulted in fundamental changes of oasis landscape pattern. The fractal characteristics, dispersion degree and fragmentation of Jinta oasis decreased and the oasis landscape tended to be simple and uniform. Oasis change trajectories and its landscape pattern were mainly influenced by water resource utilization, policies (especially land policies), demographic factors, technological advancements, as well as regional economic development. We found that time series analysis of multi-source remote sensing images and the application of an oasis change model provided a useful approach to monitor oasis change over a long-term period in arid area. It is recommended that the government and farmers should pay more attention to the fragility of the natural system and the government should enhance the leading role of environmental considerations in the development process of oasis change, particularly with respect to the utilization of the limited water and land resources in arid China.
NASA Astrophysics Data System (ADS)
Barrineau, C. P.; Dobreva, I. D.; Bishop, M. P.; Houser, C.
2014-12-01
Aeolian systems are ideal natural laboratories for examining self-organization in patterned landscapes, as certain wind regimes generate certain morphologies. Topographic information and scale dependent analysis offer the opportunity to study such systems and characterize process-form relationships. A statistically based methodology for differentiating aeolian features would enable the quantitative association of certain surface characteristics with certain morphodynamic regimes. We conducted a multi-resolution analysis of LiDAR elevation data to assess scale-dependent morphometric variations in an aeolian landscape in South Texas. For each pixel, mean elevation values are calculated along concentric circles moving outward at 100-meter intervals (i.e. 500 m, 600 m, 700 m from pixel). The calculated average elevation values plotted against distance from the pixel of interest as curves are used to differentiate multi-scalar variations in elevation across the landscape. In this case, it is hypothesized these curves may be used to quantitatively differentiate certain morphometries from others like a spectral signature may be used to classify paved surfaces from natural vegetation, for example. After generating multi-resolution curves for all the pixels in a selected area of interest (AOI), a Principal Components Analysis is used to highlight commonalities and singularities between generated curves from pixels across the AOI. Our findings suggest that the resulting components could be used for identification of discrete aeolian features like open sands, trailing ridges and active dune crests, and, in particular, zones of deflation. This new approach to landscape characterization not only works to mitigate bias introduced when researchers must select training pixels for morphometric investigations, but can also reveal patterning in aeolian landscapes that would not be as obvious without quantitative characterization.
Middleton, B.; Wu, X.B.
2008-01-01
Agricultural development on floodplains contributes to hydrologic alteration and forest fragmentation, which may alter landscape-level processes. These changes may be related to shifts in the seed bank composition of floodplain wetlands. We examined the patterns of seed bank composition across a floodplain watershed by looking at the number of seeds germinating per m2 by species in 60 farmed and intact forested wetlands along the Cache River watershed in Illinois. The seed bank composition was compared above and below a water diversion (position), which artificially subdivides the watershed. Position of these wetlands represented the most variability of Axis I in a Nonmetric Multidimensional Scaling (NMS) analysis of site environmental variables and their relationship to seed bank composition (coefficient of determination for Axis 1: r2 = 0.376; Pearson correlation of position to Axis 1: r = 0.223). The 3 primary axes were also represented by other site environmental variables, including farming status (farmed or unfarmed), distance from the mouth of the river, latitude, and longitude. Spatial analysis based on Mantel correlograms showed that both water-dispersed and wind/water-dispersed seed assemblages had strong spatial structure in the upper Cache (above the water diversion), bur the spatial structure of water-dispersed seed assemblage was diminished in the lower Cache (below the water diversion), which lost floodpulsing. Bearing analysis also Suggested that water-dispersal process had a stronger influence on the overall spatial pattern of seed assemblage in the upper Cache, while wind/water-dispersal process had a stronger influence in the lower Cache. An analysis of the landscapes along the river showed that the mid-lower Cache (below the water diversion) had undergone greater land cover changes associated with agriculture than did the upper Cache watershed. Thus, the combination of forest fragmentation and hydrologic changes in the surrounding landscape may have had an influence on the seed bank composition and spatial distribution of the seed banks of the Cache River watershed. Our study suggests that the spatial pattern of seed bank composition may be influenced by landscape-level factors and processes.
A method for the use of landscape metrics in freshwater research and management
Kearns, F.R.; Kelly, N.M.; Carter, J.L.; Resh, V.H.
2005-01-01
Freshwater research and management efforts could be greatly enhanced by a better understanding of the relationship between landscape-scale factors and water quality indicators. This is particularly true in urban areas, where land transformation impacts stream systems at a variety of scales. Despite advances in landscape quantification methods, several studies attempting to elucidate the relationship between land use/land cover (LULC) and water quality have resulted in mixed conclusions. However, these studies have largely relied on compositional landscape metrics. For urban and urbanizing watersheds in particular, the use of metrics that capture spatial pattern may further aid in distinguishing the effects of various urban growth patterns, as well as exploring the interplay between environmental and socioeconomic variables. However, to be truly useful for freshwater applications, pattern metrics must be optimized based on characteristic watershed properties and common water quality point sampling methods. Using a freely available LULC data set for the Santa Clara Basin, California, USA, we quantified landscape composition and configuration for subwatershed areas upstream of individual sampling sites, reducing the number of metrics based on: (1) sensitivity to changes in extent and (2) redundancy, as determined by a multivariate factor analysis. The first two factors, interpreted as (1) patch density and distribution and (2) patch shape and landscape subdivision, explained approximately 85% of the variation in the data set, and are highly reflective of the heterogeneous urban development pattern found in the study area. Although offering slightly less explanatory power, compositional metrics can provide important contextual information. ?? Springer 2005.
Geometry analysis for landscape fragmentation in coastal areas of China
NASA Astrophysics Data System (ADS)
Zhang, Tianhai; Yu, Ning; Mu, Hongdu; Tuo, Tao
2017-08-01
In recent years, the continuous expansion of urban-transport networks in China has aggravated the fragmentation of regional landscapes and led to the degradation of multiple ecological functions. In this study, Geographic Information System (GIS) techniques, patch size of fragmentation geometry were used to identify and monitor spatial distribution patterns of landscape fragmentation due to urban-transport networks in Fujian Province. This network has caused serious damage to regional ecological functions, and risks to the persistence of animal populations and biodiversity. This analysis revealed that the smallest patch class (0-15 km2) occurred with a much greater frequency than all other larger patch sizes. In the coastal cities of Xiamen, Zhangzhou and Quanzhou, the percentage of the number of patches less than 300 km2 was higher than in the western cities of Nanping, Sanming and Longyan, and the percentage of the area of patches less than 300 km2 was also higher. Based on a holistic identification of the structure of the network and its landscape division, we found that: Fujian Province has a spatial pattern of landscape fragmentation, with less fragmentation in western and northern regions, and most fragmentation in southern and eastern regions. Coastal regions and areas close to the main transport routes were more seriously fragmented and contained most of the small patches.
Liang, Jia Xin; Li, Xin Ju
2018-02-01
With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.
Impacts of urban landscape patterns on urban thermal variations in Guangzhou, China
NASA Astrophysics Data System (ADS)
Chen, Youjun; Yu, Shixiao
2017-02-01
One of the key impacts of rapid urbanization on the environment is the effect of surface urban thermal variations (SUTV). Understanding the effects of urban landscape features on SUTV is crucial for improving the ecology and sustainability of cities. In this study, an investigation was conducted to detect urban landscape patterns and assess their impact on surface temperature. Landsat images: Thematic Mapper was used to calculate land surface temperature (LST) in Guangzhou, the capital city of Guangdong Province in southern China. SUTV zones, including surface urban heat islands (SUHI) and surface urban heat sinks (SUHS), were then empirically identified. The composition and configuration of landscape patterns were measured by a series of spatial metrics at the class and landscape levels in the SUHI and SUHS zones. How both landscape composition and configuration influence urban thermal characteristics was then analysed. It was found that landscape composition has the strongest effect on SUTV, but that urban landscape configuration also influences SUTV. These findings are helpful for achieving a comprehensive understanding of how urban landscape patterns impact SUTV and can help in the design of effective urban landscape patterns to minimize the effects of SUHI.
Simulating pattern-process relationships to validate landscape genetic models
A. J. Shirk; S. A. Cushman; E. L. Landguth
2012-01-01
Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all...
Range and variation in landscape patch dynamics: Implications for ecosystem management
Robert E. Keane; Janice L. Garner; Casey Teske; Cathy Stewart; Paul Hessburg
2001-01-01
Northern Rocky Mountain landscape patterns are shaped primarily by fire and succession, and conversely, these vegetation patterns influence burning patterns and plant colonization processes. Historical range and variability (HRV) of landscape pattern can be quantified from three sources: (1) historical chronosequences, (2) spatial series, and (3) simulated...
Chapter 18: A Landscape-Level Analysis of Marbled Murrelet Habitat in Western Washington
Martin G. Raphael; John A. Young; Beth M. Galleher
1995-01-01
Relationships between landscape-level patterns of forest cover and occupancy by Marbled Murrelets in the state of Washington where state-wide forest-cover information was available were investigated. Using a geographic information system, a 203-hectare circular area surrounding each of 261 previously surveyed locations was delineated. Within each area, we calculated...
USDA-ARS?s Scientific Manuscript database
Spatial patterns of ecosystem productivity arise from the terrain-modulated wetting and drying of the landscape. Using a daily relative greenness (rG) index we explore the relations between spatial variability of plant productivity and landscape morphology, and how these relations change over time...
Marshall, Elizabeth P; Homans, Frances R
2006-07-01
Strategic land retirement in agricultural settings has been used as one way to achieve a combination of social objectives, which include ameliorating water quality problems and enhancing existing systems of wildlife habitat. This study uses a simulation model operating on a virtual landscape, along with the compromise programming method, to illustrate the implications of alternative weighting schemes for the long-term performance of the landscape toward various objectives. The analysis suggests that particular spatial patterns may be related to how various objectives are weighted. The analysis also illustrates the inevitable trade-offs among objectives, although it may be tempting to present retirement strategies as "win-win."
NASA Astrophysics Data System (ADS)
Burley, Paul; Mooers, Howard D.
2016-01-01
Archaeological investigations have emphasized relationships between solar and lunar phenomena and architectural features of prehistoric sites located on the Stonehenge ritual landscape. However, no over-riding landscape design has been identified to explain the purpose of placing hundreds of Neolithic through Iron Age burial sites upon the landscape. Our research and analysis shows the mid-4th millennium BC (mid-Neolithic) landscape represents an 'above, so below' cosmo-geographical relationship. Type, shape, size and orientation of specific elements (such as long barrows, henges, cursus and topography) created a hierotopy representing the Winter Hexagon asterism, Milky Way, ecliptic and other stellar features. The resulting pattern of ritual sites represents translocation of the astronomical Otherworld - the Spirit World - onto the plain. Results of the analysis create a new paradigm of purpose for the built landscape circa 3500 BC, and identifies the reason why Stonehenge is located where it is with respect to other contemorary monuments.
Consequences of Landscape Fragmentation on Lyme Disease Risk: A Cellular Automata Approach
Li, Sen; Hartemink, Nienke; Speybroeck, Niko; Vanwambeke, Sophie O.
2012-01-01
The abundance of infected Ixodid ticks is an important component of human risk of Lyme disease, and various empirical studies have shown that this is associated, at least in part, to landscape fragmentation. In this study, we aimed at exploring how varying woodland fragmentation patterns affect the risk of Lyme disease, through infected tick abundance. A cellular automata model was developed, incorporating a heterogeneous landscape with three interactive components: an age-structured tick population, a classical disease transmission function, and hosts. A set of simplifying assumptions were adopted with respect to the study objective and field data limitations. In the model, the landscape influences both tick survival and host movement. The validation of the model was performed with an empirical study. Scenarios of various landscape configurations (focusing on woodland fragmentation) were simulated and compared. Lyme disease risk indices (density and infection prevalence of nymphs) differed considerably between scenarios: (i) the risk could be higher in highly fragmented woodlands, which is supported by a number of recently published empirical studies, and (ii) grassland could reduce the risk in adjacent woodland, which suggests landscape fragmentation studies of zoonotic diseases should not focus on the patch-level woodland patterns only, but also on landscape-level adjacent land cover patterns. Further analysis of the simulation results indicated strong correlations between Lyme disease risk indices and the density, shape and aggregation level of woodland patches. These findings highlight the strong effect of the spatial patterns of local host population and movement on the spatial dynamics of Lyme disease risks, which can be shaped by woodland fragmentation. In conclusion, using a cellular automata approach is beneficial for modelling complex zoonotic transmission systems as it can be combined with either real world landscapes for exploring direct spatial effects or artificial representations for outlining possible empirical investigations. PMID:22761842
Mora, Matías Sebastián; Mapelli, Fernando J; López, Aldana; Gómez Fernández, María Jimena; Mirol, Patricia M; Kittlein, Marcelo J
2017-12-01
Studies of genetic differentiation in fragmented environments help us to identify those landscape features that most affect gene flow and dispersal patterns. Particularly, the assessment of the relative significance of intrinsic biological and environmental factors affecting the genetic structure of populations becomes crucial. In this work, we assess the current dispersal patterns and population structure of Ctenomys "chasiquensis", a vulnerable and endemic subterranean rodent distributed on a small area in Central Argentina, using 9 polymorphic microsatellite loci. We use landscape genetics approaches to assess the relationship between genetic connectivity among populations and environmental attributes. Our analyses show that populations of C. "chasiquensis" are moderately to highly structured at a regional level. This pattern is most likely the outcome of substantial gene flow on the more homogeneous sand dune habitat of the Northwest of its distributional range, in conjunction with an important degree of isolation of eastern and southwestern populations, where the optimal habitat is surrounded by a highly fragmented landscape. Landscape genetics analysis suggests that habitat quality and longitude were the environmental factors most strongly associated with genetic differentiation/uniqueness of populations. In conclusion, our results indicate an important genetic structure in this species, even at a small spatial scale, suggesting that contemporary habitat fragmentation increases population differentiation.
Kittle, Andrew M; Bukombe, John K; Sinclair, Anthony R E; Mduma, Simon A R; Fryxell, John M
2016-01-01
Where apex predators move on the landscape influences ecosystem structure and function and is therefore key to effective landscape-level management and species-specific conservation. However the factors underlying predator distribution patterns within functional ecosystems are poorly understood. Predator movement should be sensitive to the spatial patterns of inter-specific competitors, spatial variation in prey density, and landscape attributes that increase individual prey vulnerability. We investigated the relative role of these fundamental factors on seasonal resource utilization by a globally endangered apex carnivore, the African lion (Panthera leo) in Tanzania's Serengeti National Park. Lion space use was represented by novel landscape-level, modified utilization distributions (termed "localized density distributions") created from telemetry relocations of individual lions from multiple neighbouring prides. Spatial patterns of inter-specific competitors were similarly determined from telemetry re-locations of spotted hyenas (Crocuta crocuta), this system's primary competitor for lions; prey distribution was derived from 18 months of detailed census data; and remote sensing data was used to represent relevant habitat attributes. Lion space use was consistently influenced by landscape attributes that increase individual prey vulnerability to predation. Wet season activity, when available prey were scarce, was concentrated near embankments, which provide ambush opportunities, and dry season activity, when available prey were abundant, near remaining water sources where prey occurrence is predictable. Lion space use patterns were positively associated with areas of high prey biomass, but only in the prey abundant dry season. Finally, at the broad scale of this analysis, lion and hyena space use was positively correlated in the comparatively prey-rich dry season and unrelated in the wet season, suggesting lion movement was unconstrained by the spatial patterns of their main inter-specific competitors. The availability of potential prey and vulnerability of that prey to predation both motivate lion movement decisions, with their relative importance apparently mediated by overall prey abundance. With practical and theoretical implications, these results suggest that while top carnivores are consistently cognizant of how landscape features influence individual prey vulnerability, they also adopt a flexible approach to range use by adjusting spatial behaviour according to fluctuations in local prey abundance.
Su, Shiliang; Xiao, Rui; Li, Delong; Hu, Yi'na
2014-03-01
A comparison of different transportation route types and their combined effects on landscape diversity was conducted within Tiaoxi watershed (China) between 1994 and 2005. Buffer analysis and Mann-Kendall's test were used to quantify the relationships between distance from transportation routes (railway, highway, national, and provincial road) and a family of landscape diversity parameters (Simpson's diversity index, Simpson's evenness index, Shannon's diversity index, and Shannon's evenness index). One-way ANOVA was further applied to compare influences from different route types and their combined effects. Five other landscape metrics (patch density, edge density, area-weighted mean shape index, connectance index, and Euclidean nearest neighbor distance) were also calculated to analyze the associations between landscape diversity and landscape pattern characteristics. Results showed that transportation routes exerted significant impacts on landscape diversity. Impact from railway was comparable to that from highway and national road but was more significant than that from provincial road. The spatial influential range of railway and national road was wider than that of highway and provincial road. Combined effects of routes were nonlinear, and impacts from different route types were more complex than those from the same type. The four landscape diversity metrics were comparably effective at the buffer zone scale. In addition, landscape diversity can be alternatively used to indicate fragmentation, connectivity, and isolation at route buffer scale. This study demonstrates an applicable approach to quantitatively characterize the impacts from transportation routes on landscape patterns and has potential to facilitate route network planning.
Historical forest patterns of Oregon's central Coast Range
Ripple, W.J.; Hershey, K.T.; Anthony, R.G.
2000-01-01
To describe the composition and pattern of unmanaged forestland in Oregon's central Coast Range, we analyzed forest conditions from a random sample of 18 prelogging (1949 and earlier) landscapes. We also compared the amount and variability of old forest (conifer-dominated stands > 53 cm dbh) in the prelogging landscapes with that in the current landscapes. Sixty-three percent of the prelogging landscape comprised old forest, approximately 21% of which also had a significant (> 20% cover) hardwood component. The proportions of forest types across the 18 prelogging landscapes varied greatly for both early seral stages (cv = 81194) and hardwoods (cv = 127) and moderately for old forest (cv = 39). With increasing distance from streams, the amount of hardwoods and nonforest decreased, whereas the amount of seedling/sapling/pole and young conifers increased. The amount of old forest was significantly greater (p < 0.002) in prelogging forests than in current landscapes. Old-forest patterns also differed significantly (p < 0.015) between prelogging and current landscapes; patch density, coefficient of variation of patch size, edge density, and fragmentation were greater in current landscapes and mean patch size, largest patch size, and core habitat were greater in prelogging forests. Generally, old-forest landscape pattern variables showed a greater range in prelogging landscapes than in current landscapes. Management strategies designed to increase the amount of old forest and the range in landscape patterns would result in a landscape more closely resembling that found prior to intensive logging. (C) 2000 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Danesh-Yazdi, Mohammad; Tejedor, Alejandro; Foufoula-Georgiou, Efi
2017-10-01
Climatic or geologic controls, such as tectonics or glacial drainage, might impose constraints on landscape self-organization resulting in spatial patterns of rivers and valleys which do not obey the typical self-similar relationships found in most landscapes. The goal of this study is to quantify how such geologic constraints express themselves on channel network topology, spatial heterogeneity of drainage patterns, and emergence of preferred scales of landscape dissection. We use as an example a basin located in the Upper Midwestern United States where successive glaciations over the past thousand years have led to a pronounced spatially anisotropic channel network structure which defeats most scaling laws of fluvial landscapes. This is contrasted with another river basin in the North-Central U.S. which has been organized under the absence of major geologic influences and follows a typical self-similar channel network organization. We show how the geologic constraints have imposed a competition for space which is captured in the slope-local drainage density probabilistic structure, in the failure of self-similarity in basin-wide river network topology, and in the length-area scaling relationship being not typical of fluvial landscapes. Via a two-dimensional wavelet analysis and synthesis, we demonstrate the occurrence of a gap in the power spectrum which corresponds to the presence of preferred scales of organization, and characterize them through multi-scale detrending. The developed methodologies can be useful in advancing our geomorphologic understanding of how external controls might manifest themselves in creating a landscape dissection that is outside the norm and how this dissection can be studied objectively for understanding cause and effect.
NASA Astrophysics Data System (ADS)
Mugiraneza, T.; Haas, J.; Ban, Y.
2017-11-01
Mapping urbanization and ensuing environmental impacts using satellite data combined with landscape metrics has become a hot research topic. The objectives of the study are to analyze the spatio-temporal evolution of urbanization patterns of Kigali, Rwanda over the last three decades (from 1984 to 2015) using multitemporal Landsat data and to assess the associated environmental impact using landscape metrics. Landsat images, Normalized Difference Vegetation Index (NDVI), Grey Level Co-occurrence Matrix (GLCM) variance texture and digital elevation model (DEM) data were classified using a support vector machine (SVM). Eight landscape indices were derived from classified images for urbanization environment impact assessment. Seven land cover classes were derived with an overall accuracy exceeding 88 % with Kappa Coefficients around 0.8. As most prominent changes, cropland was reduced considerably in favour of built-up areas that increased from 2,349 ha to 11,579 ha between 1984 and 2015. During those 31 years, the increased number of patches in most land cover classes illustrated landscape fragmentation, especially for forest. The landscape configuration indices demonstrate that in general the land cover pattern remained stable for cropland but it was highly changed in built-up areas. Satellite-based analysis and quantification of urbanization and its effects using landscape metrics are found to be interesting for grassroots and provide a cost-effective method for urban information production. This information can be used for e.g. potential design and implementation of early warning systems that cater for urbanization effects.
NASA Astrophysics Data System (ADS)
Anton, L.; Munoz Martin, A.; De Vicente, G.; Finnegan, N. J.
2017-12-01
The process of river incision into bedrock dictates the landscape response to changes in climate and bedrock uplift in most unglaciated settings. Hence, understanding processes of river incision into bedrock and their topographic signatures are a basic goal of geomorphology. Formerly closed drainage basins provide an exceptional setting for the quantification of long term fluvial dissection and landscape change, making them valuable natural laboratories. Internally drained basins are peculiar because they trap all the sediment eroded within the watershed; as closed systems they do not respond to the base level of the global ocean and deposition is the dominant process. In that context, the opening of an outward drainage involves a sudden lowering of the base level, which is transmitted upstream along fluvial channels in the form of erosional waves, leading to high incision and denudation rates within the intrabasinal areas. Through digital topographic analysis and paleolandscape reconstruction based on relict deposits and landscapes on the Iberian Peninsula, we quantify the volume of sediments eroded from formerly internally drained basins since capture. Mapping of fluvial dissection patterns reveals how, and how far, regional waves of incision have propagated upstream. In our analysis, erosional patterns are consistent with the progressive establishment of an outward drainage system, providing a relative capture chronology for the different studied basins. Divide migration inferred from chi maps supports the interpretations based on fluvial dissection patterns and volumes, providing clues on how landscaped changed and how drainage integration occurred within the studied watersheds. [Funded by S2013/MAE-2739 and CGL2014-59516].
Evaluation of urban sprawl and urban landscape pattern in a rapidly developing region.
Lv, Zhi-Qiang; Dai, Fu-Qiang; Sun, Cheng
2012-10-01
Urban sprawl is a worldwide phenomenon happening particularly in rapidly developing regions. A study on the spatiotemporal characteristics of urban sprawl and urban pattern is useful for the sustainable management of land management and urban land planning. The present research explores the spatiotemporal dynamics of urban sprawl in the context of a rapid urbanization process in a booming economic region of southern China from 1979 to 2005. Three urban sprawl types are distinguished by analyzing overlaid urban area maps of two adjacent study years which originated from the interpretation of remote sensed images and vector land use maps. Landscape metrics are used to analyze the spatiotemporal pattern of urban sprawl for each study period. Study results show that urban areas have expanded dramatically, and the spatiotemporal landscape pattern configured by the three sprawl types changed obviously. The different sprawl type patterns in five study periods have transformed significantly, with their proportions altered both in terms of quantity and of location. The present research proves that urban sprawl quantification and pattern analysis can provide a clear perspective of the urbanization process during a long time period. Particularly, the present study on urban sprawl and sprawl patterns can be used by land use and urban planners.
GeoPAT: A toolbox for pattern-based information retrieval from large geospatial databases
NASA Astrophysics Data System (ADS)
Jasiewicz, Jarosław; Netzel, Paweł; Stepinski, Tomasz
2015-07-01
Geospatial Pattern Analysis Toolbox (GeoPAT) is a collection of GRASS GIS modules for carrying out pattern-based geospatial analysis of images and other spatial datasets. The need for pattern-based analysis arises when images/rasters contain rich spatial information either because of their very high resolution or their very large spatial extent. Elementary units of pattern-based analysis are scenes - patches of surface consisting of a complex arrangement of individual pixels (patterns). GeoPAT modules implement popular GIS algorithms, such as query, overlay, and segmentation, to operate on the grid of scenes. To achieve these capabilities GeoPAT includes a library of scene signatures - compact numerical descriptors of patterns, and a library of distance functions - providing numerical means of assessing dissimilarity between scenes. Ancillary GeoPAT modules use these functions to construct a grid of scenes or to assign signatures to individual scenes having regular or irregular geometries. Thus GeoPAT combines knowledge retrieval from patterns with mapping tasks within a single integrated GIS environment. GeoPAT is designed to identify and analyze complex, highly generalized classes in spatial datasets. Examples include distinguishing between different styles of urban settlements using VHR images, delineating different landscape types in land cover maps, and mapping physiographic units from DEM. The concept of pattern-based spatial analysis is explained and the roles of all modules and functions are described. A case study example pertaining to delineation of landscape types in a subregion of NLCD is given. Performance evaluation is included to highlight GeoPAT's applicability to very large datasets. The GeoPAT toolbox is available for download from
Landscape analysis of methane flux across complex terrain
NASA Astrophysics Data System (ADS)
Kaiser, K. E.; McGlynn, B. L.; Dore, J. E.
2014-12-01
Greenhouse gas (GHG) fluxes into and out of the soil are influenced by environmental conditions resulting in landscape-mediated patterns of spatial heterogeneity. The temporal variability of inputs (e.g. precipitation) and internal redistribution (e.g. groundwater flow) and dynamics (e.g. microbial communities) make predicating these fluxes challenging. Complex terrain can provide a laboratory for improving understanding of the spatial patterns, temporal dynamics, and drivers of trace gas flux rates, requisite to constraining current GHG budgets and future scenarios. Our research builds on previous carbon cycle research at the USFS Tenderfoot Creek Experimental Forest, Little Belt Mountains, Montana that highlighted the relationships between landscape position and seasonal CO2 efflux, induced by the topographic redistribution of water. Spatial patterns and landscape scale mediation of CH4 fluxes in seasonally aerobic soils have not yet been elucidated. We measured soil methane concentrations and fluxes across a full range of landscape positions, leveraging topographic and seasonal gradients, to examine the relationships between environmental variables, hydrologic dynamics, and CH4 production and consumption. We determined that a threshold of ~30% VWC distinguished the direction of flux at individual time points, with the riparian area and uplands having distinct source/sink characteristics respectively. Riparian locations were either strong sources or fluctuated between sink and source behavior, resulting in near neutral seasonal flux. Upland sites however, exhibited significant relationships between sink strength and topographic/energy balance indices. Our results highlight spatial and temporal coherence to landscape scale heterogeneity of CH4 dynamics that can improve estimates of landscape scale CH4 balances and sensitivity to change.
NASA Astrophysics Data System (ADS)
Liu, Pei; Han, Ruimei; Wang, Shuangting
2014-11-01
According to the merits of remotely sensed data in depicting regional land cover and Land changes, multi- objective information processing is employed to remote sensing images to analyze and simulate land cover in mining areas. In this paper, multi-temporal remotely sensed data were selected to monitor the pattern, distri- bution and trend of LUCC and predict its impacts on ecological environment and human settlement in mining area. The monitor, analysis and simulation of LUCC in this coal mining areas are divided into five steps. The are information integration of optical and SAR data, LULC types extraction with SVM classifier, LULC trends simulation with CA Markov model, landscape temporal changes monitoring and analysis with confusion matrixes and landscape indices. The results demonstrate that the improved data fusion algorithm could make full use of information extracted from optical and SAR data; SVM classifier has an efficient and stable ability to obtain land cover maps, which could provide a good basis for both land cover change analysis and trend simulation; CA Markov model is able to predict LULC trends with good performance, and it is an effective way to integrate remotely sensed data with spatial-temporal model for analysis of land use / cover change and corresponding environmental impacts in mining area. Confusion matrixes are combined with landscape indices to evaluation and analysis show that, there was a sustained downward trend in agricultural land and bare land, but a continues growth trend tendency in water body, forest and other lands, and building area showing a wave like change, first increased and then decreased; mining landscape has undergone a from small to large and large to small process of fragmentation, agricultural land is the strongest influenced landscape type in this area, and human activities are the primary cause, so the problem should be pay more attentions by government and other organizations.
Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens
Volker C. Radeloff; David J. Mladenoff; Eric J. Gustafson; Robert M. Scheller; Patrick A. Zollner; Hong S. Heilman; H. Resit Akcakaya
2006-01-01
Forest management shapes landscape patterns, and these patterns often differ significantly from those typical for natural disturbance regimes. This may affect wildlife habitat and other aspects of ecosystem function. Our objective was to examine the effects of different forest management decisions on landscape pattern in a fire adapted ecosystem. We used a factorial...
The influence of landscape features on road development in a loess region, China.
Bi, Xiaoli; Wang, Hui; Zhou, Rui
2011-10-01
Many ecologists focus on the effects of roads on landscapes, yet few consider how landscapes affect road systems. In this study, therefore, we quantitatively evaluated how land cover, topography, and building density affected the length density, node density, spatial pattern, and location of roads in Dongzhi Yuan, a typical loess region in China. Landscape factors and roads were mapped using images from SPOT satellite (Système Probatoire d'Observation de la Terre), initiated by the French space agency and a digital elevation model (DEM). Detrended canonical correspondence analysis (DCCA), a useful ordination technique to explain species-environment relations in community ecology, was applied to evaluate the ways in which landscapes may influence roads. The results showed that both farmland area and building density were positively correlated with road variables, whereas gully density and the coefficient of variation (CV of DEM) showed negative correlations. The CV of DEM, farmland area, grassland area, and building density explained variation in node density, length density, and the spatial pattern of roads, whereas gully density and building density explained variation in variables representing road location. In addition, node density, rather than length density, was the primary road variable affected by landscape variables. The results showed that the DCCA was effective in explaining road-landscape relations. Understanding these relations can provide information for landscape managers and transportation planners.
Determination of fire-initiated landscape patterns: Restoring fire mosaics on the landscape
Michael Hartwell; Paul Alaback
1996-01-01
One of the key limitations in implementing ecosystem management is a lack of accurate information on how forest landscapes have developed over time, reflecting both pre-Euroamerican landscapes and those resulting from more recent disturbance regimes. Landscape patterns are of great importance to the maintenance of biodiversity in general, and particularly in relation...
Effects of fine- to broad-scale patterns of landscape heterogeneity on dispersal success were examined for organisms varying in life history traits. To systematically control spatial pattern, a landscape model was created by merging physiographically-based maps of simulated land...
NASA Astrophysics Data System (ADS)
Liu, Qi; Hao, Yonghong; Stebler, Elaine; Tanaka, Nobuaki; Zou, Chris B.
2017-12-01
Mapping the spatiotemporal patterns of soil moisture within heterogeneous landscapes is important for resource management and for the understanding of hydrological processes. A critical challenge in this mapping is comparing remotely sensed or in situ observations from areas with different vegetation cover but subject to the same precipitation regime. We address this challenge by wavelet analysis of multiyear observations of soil moisture profiles from adjacent areas with contrasting plant functional types (grassland, woodland, and encroached) and precipitation. The analysis reveals the differing soil moisture patterns and dynamics between plant functional types. The coherence at high-frequency periodicities between precipitation and soil moisture generally decreases with depth but this is much more pronounced under woodland compared to grassland. Wavelet analysis provides new insights on soil moisture dynamics across plant functional types and is useful for assessing differences and similarities in landscapes with heterogeneous vegetation cover.
Marc-Andre Parisien; Sean A. Parks; Carol Miller; Meg A. Krawchuck; Mark Heathcott; Max A. Moritz
2011-01-01
The spatial pattern of fire observed across boreal landscapes is the outcome of complex interactions among components of the fire environment. We investigated how the naturally occurring patterns of ignitions, fuels, and weather generate spatial pattern of burn probability (BP) in a large and highly fireprone boreal landscape of western Canada, Wood Buffalo National...
Ecosystem Health Assessment of Mining Cities Based on Landscape Pattern
NASA Astrophysics Data System (ADS)
Yu, W.; Liu, Y.; Lin, M.; Fang, F.; Xiao, R.
2017-09-01
Ecosystem health assessment (EHA) is one of the most important aspects in ecosystem management. Nowadays, ecological environment of mining cities is facing various problems. In this study, through ecosystem health theory and remote sensing images in 2005, 2009 and 2013, landscape pattern analysis and Vigor-Organization-Resilience (VOR) model were applied to set up an evaluation index system of ecosystem health of mining city to assess the healthy level of ecosystem in Panji District Huainan city. Results showed a temporal stable but high spatial heterogeneity landscape pattern during 2005-2013. According to the regional ecosystem health index, it experienced a rapid decline after a slight increase, and finally it maintained at an ordinary level. Among these areas, a significant distinction was presented in different towns. It indicates that the ecosystem health of Tianjijiedao town, the regional administrative centre, descended rapidly during the study period, and turned into the worst level in the study area. While the Hetuan Town, located in the northwestern suburb area of Panji District, stayed on a relatively better level than other towns. The impacts of coal mining collapse area, land reclamation on the landscape pattern and ecosystem health status of mining cities were also discussed. As a result of underground coal mining, land subsidence has become an inevitable problem in the study area. In addition, the coal mining subsidence area has brought about the destruction of the farmland, construction land and water bodies, which causing the change of the regional landscape pattern and making the evaluation of ecosystem health in mining area more difficult. Therefore, this study provided an ecosystem health approach for relevant departments to make scientific decisions.
Quantitative relations between soil heavy metal contamination and landscape pattern in Wuxi, China
NASA Astrophysics Data System (ADS)
Zhu, Ming; Pu, Lijie; Xu, Yan
2017-04-01
Land use practices changed landscape pattern and meanwhile, brought forth numerous environmental problems including heavy metal contamination in soil. In this study, we investigated the quantitative relations between soil heavy metal contamination and its surrounding landscape pattern based on topsoil samples and land use map of Wuxi in 2009. The results of vector fitting with Redundancy analysis in R package vegan showed that Percent Coverage of build-up area (PCB) within 2500 m, Perimeter-Area Fractal Dimension (PAFD) within 2500 m, Edge Density (ED) within 2500 m, Patch Density (PD) within 200 m, Percent Coverage of wetland (PCW) within 2000 m and Patch Cohesion (PC) within 200 m significantly affected the contents of heavy metal elements. The results of Stepwise regression suggested that increase of build-up area and fragmentation would increase Cu and Zn, while increase of wetland would decrease the contents of As and Cu. PAFD was negative with Cd, Hg, Pb and Zn.
Evolution, Energy Landscapes and the Paradoxes of Protein Folding
Wolynes, Peter G.
2014-01-01
Protein folding has been viewed as a difficult problem of molecular self-organization. The search problem involved in folding however has been simplified through the evolution of folding energy landscapes that are funneled. The funnel hypothesis can be quantified using energy landscape theory based on the minimal frustration principle. Strong quantitative predictions that follow from energy landscape theory have been widely confirmed both through laboratory folding experiments and from detailed simulations. Energy landscape ideas also have allowed successful protein structure prediction algorithms to be developed. The selection constraint of having funneled folding landscapes has left its imprint on the sequences of existing protein structural families. Quantitative analysis of co-evolution patterns allows us to infer the statistical characteristics of the folding landscape. These turn out to be consistent with what has been obtained from laboratory physicochemical folding experiments signalling a beautiful confluence of genomics and chemical physics. PMID:25530262
Jiang, Peng-Hui; Zhao, Rui-Feng; Zhao, Hai-Li; Lu, Li-Peng; Xie, Zuo-Lun
2013-06-01
Based on the 1975-2010 multi-temporal remotely sensed TM and ETM images and meteorological data, in combining with wavelet analysis, trend surface simulation, and interpolation method, this paper analyzed the meteorological elements' spatial distribution and change characteristics in the middle reaches of Heihe River, and elucidated the process of wetland landscape fragmentation in the study area by using the landscape indices patch density (PD), mean patch size (MPS), and patch shape fragment index (FS). The relationships between the wetland landscape fragmentation and climate change were also approached through correlation analysis and multiple stepwise regression analysis. In 1975-2010, the overall distribution patterns of precipitation and temperature in the study area were low precipitation in high temperature regions and high precipitation in low temperature regions, and the main characteristics of climate change were the conversion from dry to wet and from cold to warm. In the whole study period, the wetland landscape fragmentation was mainly manifested in the decrease of MPS, with a decrement of 48.95 hm2, and the increase of PD, with an increment of 0.006 ind x hm(-2).
Landform elevation suggests ecohydrologic footprints in subsurface geomorphology
NASA Astrophysics Data System (ADS)
Watts, A. C.; Watts, D.; Kaplan, D. A.; Mclaughlin, D. L.; Heffernan, J. B.; Martin, J. B.; Murray, A.; Osborne, T.; Cohen, M. J.; Kobziar, L. N.
2012-12-01
Many landscapes exhibit patterns in their arrangement of biota, or in their surface geomorphology as a result of biotic activity. Examples occur around the globe and include northern peatlands, Sahelian savannas, and shallow marine reefs. Such self-organized patterning is strongly suggestive of coupled, reciprocal feedbacks (i.e. locally positive, and distally negative) among biota and their environment. Much research on patterned landscapes has concerned emergent biogeomorphologic surfaces such as those found in peatlands, or the influence of biota on soil formation or transport. Our research concerns ecohydrologic feedbacks hypothesized to produce patterned occurrence of depressions in a subtropical limestone karst landscape. Our findings show strong evidence of self-organized patterning, in the form of overdispersed dissolution basins. Distributions of randomized bedrock elevation measurements on the landscape are bimodal, with means clustered about either higher- or lower-elevation modes. Measurements on the thin mantle of soil overlying this landscape, however, display reduced bimodality and mode separation. These observations indicate abiotic processes in diametric opposition to the biogenic forces which may be responsible for generating landscape pattern. Correlograms show higher spatial autocorrelation among soil measurements compared to bedrock measurements, and measurements of soil-layer thickness show high negative correlation with bedrock elevation. Our results are consistent with predictions of direct ecohydrologic feedbacks that would produce patterned "footprints" directly on bedrock, and of abiotic processes operating to obfuscate this pattern. The study suggests new steps to identify biogeochemical mechanisms for landscape patterning: an "ecological drill" by which plant communities modify geology.
NASA Astrophysics Data System (ADS)
Larsen, L.; Watts, D.; Khurana, A.; Anderson, J. L.; Xu, C.; Merritts, D. J.
2015-12-01
The classic signal of self-organization in nature is pattern formation. However, the interactions and feedbacks that organize depositional landscapes do not always result in regular or fractal patterns. How might we detect their existence and effects in these "irregular" landscapes? Emergent landscapes such as newly forming deltaic marshes or some restoration sites provide opportunities to study the autogenic processes that organize landscapes and their physical signatures. Here we describe a quest to understand autogenic vs. allogenic controls on landscape evolution in Big Spring Run, PA, a landscape undergoing restoration from bare-soil conditions to a target wet meadow landscape. The contemporary motivation for asking questions about autogenic vs. allogenic controls is to evaluate how important initial conditions or environmental controls may be for the attainment of management objectives. However, these questions can also inform interpretation of the sedimentary record by enabling researchers to separate signals that may have arisen through self-organization processes from those resulting from environmental perturbations. Over three years at Big Spring Run, we mapped the dynamic evolution of floodplain vegetation communities and distributions of abiotic variables and topography. We used principal component analysis and transition probability analysis to detect associative interactions between vegetation and geomorphic variables and convergent cross-mapping on lidar data to detect causal interactions between biomass and topography. Exploratory statistics revealed that plant communities with distinct morphologies exerted control on landscape evolution through stress divergence (i.e., channel initiation) and promoting the accumulation of fine sediment in channels. Together, these communities participated in a negative feedback that maintains low energy and multiple channels. Because of the spatially explicit nature of this feedback, causal interactions could not be uncovered from convergent cross-mapping with this limited dataset, serving as a reminder that spatially explicit approaches for revealing causality are needed to reconstruct self-organizing mechanisms from data.
Wang, Shuixian; Wang, Shengli
2013-12-01
Human modification of land use and land cover change (LUCC) drives the change of landscape patterns and limits the availability of products and services for human and livestock. LUCC can undermine environmental health. Thus, this study aimed to develop an understanding of LUCC in the Yanqi Basin, Xinjiang, China, an arid area experiencing dramatic water and land resource use. A time series of satellite images (1964, 1973, 1989, 1999, and 2009) were used to calculate the index of landscape patterns to study the processes involved in changes to land uses and landscape patterns and the influence of this changes on landscape patterns. The results show that land uses in the Yanqi Basin have changed dramatically since 1964 with grassland being mainly converted to cropland. Landscape fragmentation and diversity have decreased in the study area, although landscape fragmentation increased from 1964 to 1999 and then decreased by 2009. The index of landscape diversity decreased from 1.64 in 1964 to 0.71 in 2009. The heterogeneity and complexity of the landscape increased during this period. In contrast, the index of dominance decreased from 0.85 in 1964 to 0.83 in 2009. Land use change drives landscape patterns of the development of the watershed toward diversity and a fragmented structure. Population growth, economic development, and industrial policies were the dominant driving forces behind LUCC in the Yanqi Basin. Sustainable use of land resources is a significant factor in maintaining economic development and environmental protection in this arid inland river basin.
Doyle, T.W.; Krauss, K.W.; Wells, C.J.
2009-01-01
The Everglades ecosystem contains the largest contiguous tract of mangrove forest outside the tropics that were also coincidentally intersected by a major Category 5 hurricane. Airborne videography was flown to capture the landscape pattern and process of forest damage in relation to storm trajectory and circulation. Two aerial video transects, representing different topographic positions, were used to quantify forest damage from video frame analysis in relation to prevailing wind force, treefall direction, and forest height. A hurricane simulation model was applied to reconstruct wind fields corresponding to the ground location of each video frame and to correlate observed treefall and destruction patterns with wind speed and direction. Mangrove forests within the storm's eyepath and in the right-side (forewind) quadrants suffered whole or partial blowdowns, while left-side (backwind) sites south of the eyewall zone incurred moderate canopy reduction and defoliation. Sites along the coastal transect sustained substantially more storm damage than sites along the inland transect which may be attributed to differences in stand exposure and/or stature. Observed treefall directions were shown to be non-random and associated with hurricane trajectory and simulated forewind azimuths. Wide-area sampling using airborne videography provided an efficient adjunct to limited ground observations and improved our spatial understanding of how hurricanes imprint landscape-scale patterns of disturbance. ?? 2009 The Society of Wetland Scientists.
Li, Shoucheng; Liu, Wenquan; Cheng, Xu; Ellis, Erle C
2005-10-01
To realize the landscape programming of agro-ecosystem management, landscape-stratification can provide us the best understanding of landscape ecosystem at very detailed scales. For this purpose, the village landscapes in densely populated Jintang and Jianyang Counties of Sichuan Basin hilly region were mapped from high resolution (1 m) IKONOS satellite imagery by using a standardized 4 level ecological landscape classification and mapping system in a regionally-representative sample of five 500 x 500 m2 landscape quadrats (sample plots). Based on these maps, the spatial patterns were analyzed by landscape indicators, which demonstrated a large variety of landscape types or ecotopes across the village landscape of this region, with diversity indexes ranging from 1.08 to 2.26 at different levels of the landscape classification system. The richness indices ranged from 42.2% to 58.6 %, except that for the landcover at 85 %. About 12.5 % of the ecotopes were distributed in the same way in each landscape sample, and the remaining 87.5% were distributed differently. The landscape fragmentation indices varied from 2.93 to 4.27 across sample plots, and from 2.86 to 5.63 across classification levels. The population density and the road and hamlet areas had strong linear correlations with some landscape indicators, and especially, the correlation coefficients of hamlet areas with fractal indexes and fragmental dimensions were 0.957* and 0.991**, respectively. The differences in most landscape pattern indices across sample plots and landscape classes were statistically significant, indicating that cross-scale mapping and classification of village landscapes could provide more detailed information on landscape patterns than those from a single level of classification.
Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei
2013-09-01
The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.
NASA Astrophysics Data System (ADS)
Heffernan, J. B.; Ross, M. S.; Sah, J. P.; Isherwood, E.; Cohen, M. J.
2015-12-01
Spatial patterning occurs in a variety of ecosystems, and is important for the functional properties of landscapes; for testing spatial models of ecological processes; and as an indicator of landscape condition and resilience. Theory suggests that regular patterns arise from coupled local- and landscape-scale feedbacks that can also create multiple stable landscape states. In the Florida Everglades, hydrologic modification has degraded much of the historically-extensive ridge-slough landscape, a patterned peatland mosaic with distinct, flow-parallel patches. However, in the Everglades and in general, the hypothesis that patterned landscapes have homogeneous alternative states has little direct empirical support. Here we use microtopographic and vegetative heterogeneity, and their relation to hydrologic conditions, to infer the existence of multiple landscape equilibria and identify the hydrologic thresholds for critical transitions between these states. Dual relationships between elevation variance and water depth, and bi-modal distributions of both elevation variance and plant community distinctness, are consistent with generic predictions of multiple states, and covariation between these measures suggests that microtopography is the leading indicator of landscape degradation. Furthermore, a simple ecohydrologic multiple-state model correctly predicts the hydrologic thresholds for persistence of distinct ridges and sloughs. Predicted ridge-slough elevation differences and their relation to water depth are much greater than observed in the contemporary Everglades, but correspond closely with historical observations of pre-drainage conditions. These multiple lines of evidence represent the broadest and most direct support for the link between regular spatial pattern and landscape-scale alternative states in any ecosystem, and suggest that other patterned landscapes could undergo sudden collapse in response to changing environmental conditions. Hydrologic thresholds and leading indicators of critical transitions should guide management of the Everglades ridge-slough landscape, whose preservation is a central goal of one of the world's largest ecosystem restoration efforts.
Dupont, L; Torres-Leguizamon, M; René-Corail, P; Mathieu, J
2017-06-01
Landscape features are known to alter the spatial genetic variation of aboveground organisms. Here, we tested the hypothesis that the genetic structure of belowground organisms also responds to landscape structure. Microsatellite markers were used to carry out a landscape genetic study of two endogeic earthworm species, Allolobophora chlorotica (N = 440, eight microsatellites) and Aporrectodea icterica (N = 519, seven microsatellites), in an agricultural landscape in the North of France, where landscape features were characterized with high accuracy. We found that habitat fragmentation impacted genetic variation of earthworm populations at the local scale. A significant relationship was observed between genetic diversity (H e , A r ) and several landscape features in A. icterica populations and A. chlorotica. Moreover, a strong genetic differentiation between sites was observed in both species, with a low degree of genetic admixture and high F st values. The landscape connectivity analysis at the regional scale, including isolation by distance, least-cost path and cost-weighted distance approaches, showed that genetic distances were linked to landscape connectivity in A. chlorotica. This indicates that the fragmentation of natural habitats has shaped their dispersal patterns and local effective population sizes. Landscape connectivity analysis confirmed that a priori favourable habitats such as grasslands may constitute dispersal corridors for these species. © 2017 John Wiley & Sons Ltd.
Land use-based landscape planning and restoration in mine closure areas.
Zhang, Jianjun; Fu, Meichen; Hassani, Ferri P; Zeng, Hui; Geng, Yuhuan; Bai, Zhongke
2011-05-01
Landscape planning and restoration in mine closure areas is not only an inevitable choice to sustain mining areas but also an important path to maximize landscape resources and to improve ecological function in mine closure areas. The analysis of the present mine development shows that many mines are unavoidably facing closures in China. This paper analyzes the periodic impact of mining activities on landscapes and then proposes planning concepts and principles. According to the landscape characteristics in mine closure areas, this paper classifies available landscape resources in mine closure areas into the landscape for restoration, for limited restoration and for protection, and then summarizes directions for their uses. This paper establishes the framework of spatial control planning and design of landscape elements from "macro control, medium allocation and micro optimization" for the purpose of managing and using this kind of special landscape resources. Finally, this paper applies the theories and methods to a case study in Wu'an from two aspects: the construction of a sustainable land-use pattern on a large scale and the optimized allocation of typical mine landscape resources on a small scale.
Ji, Xiang; Liu, Li-Ming; Li, Hong-Qing
2014-11-01
Taking Jinjing Town in Dongting Lake area as a case, this paper analyzed the evolution of rural landscape patterns by means of life cycle theory, simulated the evolution cycle curve, and calculated its evolution period, then combining CA-Markov model, a complete prediction model was built based on the rule of rural landscape change. The results showed that rural settlement and paddy landscapes of Jinjing Town would change most in 2020, with the rural settlement landscape increased to 1194.01 hm2 and paddy landscape greatly reduced to 3090.24 hm2. The quantitative and spatial prediction accuracies of the model were up to 99.3% and 96.4%, respectively, being more explicit than single CA-Markov model. The prediction model of rural landscape patterns change proposed in this paper would be helpful for rural landscape planning in future.
Yang, Qiquan; Huang, Xin; Li, Jiayi
2017-08-24
The urban heat island (UHI) effect exerts a great influence on the Earth's environment and human health and has been the subject of considerable attention. Landscape patterns are among the most important factors relevant to surface UHIs (SUHIs); however, the relationship between SUHIs and landscape patterns is poorly understood over large areas. In this study, the surface UHI intensity (SUHII) is defined as the temperature difference between urban and suburban areas, and the landscape patterns are quantified by the urban-suburban differences in several typical landscape metrics (ΔLMs). Temperature and land-cover classification datasets based on satellite observations were applied to analyze the relationship between SUHII and ΔLMs in 332 cities/city agglomerations distributed in different climatic zones of China. The results indicate that SUHII and its correlations with ΔLMs are profoundly influenced by seasonal, diurnal, and climatic factors. The impacts of different land-cover types on SUHIs are different, and the landscape patterns of the built-up and vegetation (including forest, grassland, and cultivated land) classes have the most significant effects on SUHIs. The results of this study will help us to gain a deeper understanding of the relationship between the SUHI effect and landscape patterns.
Susan J. Crocker; Dacia M. Meneguzzo; Greg C. Liknes
2010-01-01
Landscape metrics, including host abundance and population density, were calculated using forest inventory and land cover data to assess the relationship between landscape pattern and the presence or absence of the emerald ash borer (EAB) (Agrilus planipennis Fairmaire). The Random Forests classification algorithm in the R statistical environment was...
Isolation-by-distance in landscapes: considerations for landscape genetics
van Strien, M J; Holderegger, R; Van Heck, H J
2015-01-01
In landscape genetics, isolation-by-distance (IBD) is regarded as a baseline pattern that is obtained without additional effects of landscape elements on gene flow. However, the configuration of suitable habitat patches determines deme topology, which in turn should affect rates of gene flow. IBD patterns can be characterized either by monotonically increasing pairwise genetic differentiation (for example, FST) with increasing interdeme geographic distance (case-I pattern) or by monotonically increasing pairwise genetic differentiation up to a certain geographical distance beyond which no correlation is detectable anymore (case-IV pattern). We investigated if landscape configuration influenced the rate at which a case-IV pattern changed to a case-I pattern. We also determined at what interdeme distance the highest correlation was measured between genetic differentiation and geographic distance and whether this distance corresponded to the maximum migration distance. We set up a population genetic simulation study and assessed the development of IBD patterns for several habitat configurations and maximum migration distances. We show that the rate and likelihood of the transition of case-IV to case-I FST–distance relationships was strongly influenced by habitat configuration and maximum migration distance. We also found that the maximum correlation between genetic differentiation and geographic distance was not related to the maximum migration distance and was measured across all deme pairs in a case-I pattern and, for a case-IV pattern, at the distance where the FST–distance curve flattens out. We argue that in landscape genetics, separate analyses should be performed to either assess IBD or the landscape effects on gene flow. PMID:25052412
Multivariate analysis of scale-dependent associations between bats and landscape structure
Gorresen, P.M.; Willig, M.R.; Strauss, R.E.
2005-01-01
The assessment of biotic responses to habitat disturbance and fragmentation generally has been limited to analyses at a single spatial scale. Furthermore, methods to compare responses between scales have lacked the ability to discriminate among patterns related to the identity, strength, or direction of associations of biotic variables with landscape attributes. We present an examination of the relationship of population- and community-level characteristics of phyllostomid bats with habitat features that were measured at multiple spatial scales in Atlantic rain forest of eastern Paraguay. We used a matrix of partial correlations between each biotic response variable (i.e., species abundance, species richness, and evenness) and a suite of landscape characteristics to represent the multifaceted associations of bats with spatial structure. Correlation matrices can correspond based on either the strength (i.e., magnitude) or direction (i.e., sign) of association. Therefore, a simulation model independently evaluated correspondence in the magnitude and sign of correlations among scales, and results were combined via a meta-analysis to provide an overall test of significance. Our approach detected both species-specific differences in response to landscape structure and scale dependence in those responses. This matrix-simulation approach has broad applicability to ecological situations in which multiple intercorrelated factors contribute to patterns in space or time. ?? 2005 by the Ecological Society of America.
Hieronimo, Proches; Gulinck, Hubert; Kimaro, Didas N; Mulungu, Loth S; Kihupi, Nganga I; Msanya, Balthazar M; Leirs, Herwig; Deckers, Jozef A
2014-07-01
Since 1980 plague has been a human threat in the Western Usambara Mountains in Tanzania. However, the spatial-temporal pattern of plague occurrence remains poorly understood. The main objective of this study was to gain understanding of human activity patterns in relation to spatial distribution of fleas in Lushoto District. Data were collected in three landscapes differing in plague incidence. Field survey coupled with Geographic Information System (GIS) and physical sample collections were used to collect data in wet (April to June 2012) and dry (August to October 2012) seasons. Data analysis was done using GIS, one-way ANOVA and nonparametric statistical tools. The degree of spatial co-occurrence of potential disease vectors (fleas) and humans in Lushoto focus differs significantly (p ≤ 0.05) among the selected landscapes, and in both seasons. This trend gives a coarse indication of the possible association of the plague outbreaks and the human frequencies of contacting environments with fleas. The study suggests that plague surveillance and control programmes at landscape scale should consider the existence of plague vector contagion risk gradient from high to low incidence landscapes due to human presence and intensity of activities.
Landscape-scale processes influence riparian plant composition along a regulated river
Palmquist, Emily C.; Ralston, Barbara; Merritt, David M.; Shafroth, Patrick B.
2018-01-01
Hierarchical frameworks are useful constructs when exploring landscape- and local-scale factors affecting patterns of vegetation in riparian areas. In drylands, which have steep environmental gradients and high habitat heterogeneity, landscape-scale variables, such as climate, can change rapidly along a river's course, affecting the relative influence of environmental variables at different scales. To assess how landscape-scale factors change the structure of riparian vegetation, we measured riparian vegetation composition along the Colorado River through Grand Canyon, determined which factors best explain observed changes, identified how richness and functional diversity vary, and described the implications of our results for river management. Cluster analysis identified three divergent floristic groups that are distributed longitudinally along the river. These groups were distributed along gradients of elevation, temperature and seasonal precipitation, but were not associated with annual precipitation or local-scale factors. Species richness and functional diversity decreased as a function of distance downstream showing that changing landscape-scale factors result in changes to ecosystem characteristics. Species composition and distribution remain closely linked to seasonal precipitation and temperature. These patterns in floristic composition in a semiarid system inform management and provide insights into potential future changes as a result of shifts in climate and changes in flow management.
The landscape context of forest and grassland in the United States
Kurt H. Riitters
2011-01-01
As development introduces competing land uses into forest and grassland landscapes, the public expresses concern for landscape patterns through headline issues such as urban sprawl and fragmentation. Resource managers need a deeper understanding of the causes and consequences of landscape patterns to know if, where, and how to take any needed actions. The spatial...
Patrick A. Zollner; L. Jay Roberts; Eric J. Gustafson; Hong S. He; Volker Radeloff
2008-01-01
Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans...
[Landscape pattern change and its driving forces in Xixi National Wetland Park since 1993].
Cheng, Qian; Wu, Xiuju
2006-09-01
Under the support of GIS technology and the TM images of Xixi National Wetland Park, this paper studied the past ten years' landscape pattern change and its driving forces of Xixi Wetland. The results showed that the landscape diversity index increased from 1.7854 in 1993 to 1.8438 in 2001 and 2.2096 in 2003, and the landscape fragmentation index increased from 0.0036 in 1993 to 0.0042 in 2001, and 0.0047 in 2003, suggesting that the landscape fragmentation was increased with time. Human activity was the main driving force, while the exploitation of real estate was the main internal factor of the landscape pattern change of Xixi wetland. In addition, social and economic development level had a strong effect on the overall diversity of the landscape.
Study on Ecological Risk Assessment of Guangxi Coastal Zone Based on 3s Technology
NASA Astrophysics Data System (ADS)
Zhong, Z.; Luo, H.; Ling, Z. Y.; Huang, Y.; Ning, W. Y.; Tang, Y. B.; Shao, G. Z.
2018-05-01
This paper takes Guangxi coastal zone as the study area, following the standards of land use type, divides the coastal zone of ecological landscape into seven kinds of natural wetland landscape types such as woodland, farmland, grassland, water, urban land and wetlands. Using TM data of 2000-2015 such 15 years, with the CART decision tree algorithm, for analysis the characteristic of types of landscape's remote sensing image and build decision tree rules of landscape classification to extract information classification. Analyzing of the evolution process of the landscape pattern in Guangxi coastal zone in nearly 15 years, we may understand the distribution characteristics and change rules. Combined with the natural disaster data, we use of landscape index and the related risk interference degree and construct ecological risk evaluation model in Guangxi coastal zone for ecological risk assessment results of Guangxi coastal zone.
Hydrologic controls on aperiodic spatial organization of the ridge-slough patterned landscape
NASA Astrophysics Data System (ADS)
Casey, Stephen T.; Cohen, Matthew J.; Acharya, Subodh; Kaplan, David A.; Jawitz, James W.
2016-11-01
A century of hydrologic modification has altered the physical and biological drivers of landscape processes in the Everglades (Florida, USA). Restoring the ridge-slough patterned landscape, a dominant feature of the historical system, is a priority but requires an understanding of pattern genesis and degradation mechanisms. Physical experiments to evaluate alternative pattern formation mechanisms are limited by the long timescales of peat accumulation and loss, necessitating model-based comparisons, where support for a particular mechanism is based on model replication of extant patterning and trajectories of degradation. However, multiple mechanisms yield a central feature of ridge-slough patterning (patch elongation in the direction of historical flow), limiting the utility of that characteristic for discriminating among alternatives. Using data from vegetation maps, we investigated the statistical features of ridge-slough spatial patterning (ridge density, patch perimeter, elongation, patch size distributions, and spatial periodicity) to establish more rigorous criteria for evaluating model performance and to inform controls on pattern variation across the contemporary system. Mean water depth explained significant variation in ridge density, total perimeter, and length : width ratios, illustrating an important pattern response to existing hydrologic gradients. Two independent analyses (2-D periodograms and patch size distributions) provide strong evidence against regular patterning, with the landscape exhibiting neither a characteristic wavelength nor a characteristic patch size, both of which are expected under conditions that produce regular patterns. Rather, landscape properties suggest robust scale-free patterning, indicating genesis from the coupled effects of local facilitation and a global negative feedback operating uniformly at the landscape scale. Critically, this challenges widespread invocation of scale-dependent negative feedbacks for explaining ridge-slough pattern origins. These results help discern among genesis mechanisms and provide an improved statistical description of the landscape that can be used to compare among model outputs, as well as to assess the success of future restoration projects.
Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy
Michele Salis; Alan A. Ager; Fermin J. Alcasena; Bachisio Arca; Mark A. Finney; Grazia Pellizzaro; Donatella Spano
2015-01-01
In this paper, we applied landscape scale wildfire simulation modeling to explore the spatiotemporal patterns of wildfire likelihood and intensity in the island of Sardinia (Italy). We also performed wildfire exposure analysis for selected highly valued resources on the island to identify areas characterized by high risk. We observed substantial variation in burn...
Landscape metrics as functional traits in plants: perspectives from a glacier foreland
Dainese, Matteo; Krüsi, Bertil O.; McCollin, Duncan
2017-01-01
Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species’ patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data. PMID:28785514
Landscape metrics as functional traits in plants: perspectives from a glacier foreland.
Sitzia, Tommaso; Dainese, Matteo; Krüsi, Bertil O; McCollin, Duncan
2017-01-01
Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species' patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data.
Measuring forest landscape patterns in the Cascade Range of Oregon, USA
NASA Technical Reports Server (NTRS)
Ripple, William J.; Bradshaw, G. A.; Spies, Thomas A.
1995-01-01
This paper describes the use of a set of spatial statistics to quantify the landscape pattern caused by the patchwork of clearcuts made over a 15-year period in the western Cascades of Oregon. Fifteen areas were selected at random to represent a diversity of landscape fragmentation patterns. Managed forest stands (patches) were digitized and analyzed to produce both tabular and mapped information describing patch size, shape, abundance and spacing, and matrix characteristics of a given area. In addition, a GIS fragmentation index was developed which was found to be sensitive to patch abundance and to the spatial distribution of patches. Use of the GIS-derived index provides an automated method of determining the level of forest fragmentation and can be used to facilitate spatial analysis of the landscape for later coordination with field and remotely sensed data. A comparison of the spatial statistics calculated for the two years indicates an increase in forest fragmentation as characterized by an increase in mean patch abundance and a decrease in interpatch distance, amount of interior natural forest habitat, and the GIS fragmentation index. Such statistics capable of quantifying patch shape and spatial distribution may prove important in the evaluation of the changing character of interior and edge habitats for wildlife.
SCALE PROBLEMS IN REPORTING LANDSCAPE PATTERN AT THE REGIONAL SCALE
Remotely sensed data for Southeastern United States (Standard Federal Region 4) are used to examine the scale problems involved in reporting landscape pattern for a large, heterogeneous region. Frequency distributions of landscape indices illustrate problems associated with the g...
Frustration Sculpts the Early Stages of Protein Folding.
Di Silvio, Eva; Brunori, Maurizio; Gianni, Stefano
2015-09-07
The funneled energy landscape theory implies that protein structures are minimally frustrated. Yet, because of the divergent demands between folding and function, regions of frustrated patterns are present at the active site of proteins. To understand the effects of such local frustration in dictating the energy landscape of proteins, here we compare the folding mechanisms of the two alternative spliced forms of a PDZ domain (PDZ2 and PDZ2as) that share a nearly identical sequence and structure, while displaying different frustration patterns. The analysis, based on the kinetic characterization of a large number of site-directed mutants, reveals that although the late stages for folding are very robust and biased by native topology, the early stages are more malleable and dominated by local frustration. The results are briefly discussed in the context of the energy-landscape theory. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spatial patterns and processes for shifting cultivation landscape in Garo Hills, India.
Ashish Kumar; Bruce G. Marcot; P.S. Roy
2006-01-01
We analyzed a few spatial patterns and processes of a shifting cultivation landscape in the Garo Hills of Meghalaya state in North East India, where about 85% of land belongs to native community. The landscape comprised 2459 km2 of land with forest cover and shifting cultivation patches over 69% and 7% area of landscape, respectively. The mean...
Montgomery, Robert A.; Vucetich, John A.; Roloff, Gary J.; Bump, Joseph K.; Peterson, Rolf O.
2014-01-01
The landscape ecology of predation is well studied and known to be influenced by habitat heterogeneity. Little attention has been given to how the influence of habitat heterogeneity on the landscape ecology of predation might be modulated by life history dynamics of prey in mammalian systems. We demonstrate how life history dynamics of moose (Alces alces) contribute to landscape patterns in predation by wolves (Canis lupus) in Isle Royale National Park, Lake Superior, USA. We use pattern analysis and kernel density estimates of moose kill sites to demonstrate that moose in senescent condition and moose in prime condition tend to be wolf-killed in different regions of Isle Royale in winter. Predation on senescent moose was clustered in one kill zone in the northeast portion of the island, whereas predation on prime moose was clustered in 13 separate kill zones distributed throughout the full extent of the island. Moreover, the probability of kill occurrence for senescent moose, in comparison to prime moose, increased in high elevation habitat with patches of dense coniferous trees. These differences can be attributed, at least in part, to senescent moose being more vulnerable to predation and making different risk-sensitive habitat decisions than prime moose. Landscape patterns emerging from prey life history dynamics and habitat heterogeneity have been observed in the predation ecology of fish and insects, but this is the first mammalian system for which such observations have been made. PMID:24622241
Chen, Ziyue; Xu, Bing; Devereux, Bernard
2016-01-01
Landscape aesthetics is closely linked to people's daily life, and a large body of studies has been conducted to understand the public's landscape preferences. These studies commonly focused on comprehensive landscape configuration, yet limited emphasis was placed on the patterns of individual landscape features. This research explored people's preferences towards the composition and patterns of some specific urban features. Questionnaire-based survey was conducted in two cities: Cambridge, UK and Nanjing, China and more than 180 responses were collected, respectively. Respondents from both sites showed similar preferences towards freely growing trees, individual houses, gable roofs and mixed design of green spaces. On the other hand, respondents from Cambridge and Nanjing have different preferences towards the height of trees, the size of green spaces, and the height diversity of buildings. This survey also proved that the factors of age, education, status and length of living have larger influences on landscape preferences than the factors of gender, and major. Furthermore, strong correlations were found between people's aesthetic preferences towards comparative landscape patterns, building types, tree shapes and roof structures. The existence of generally shared landscape preferences makes it feasible to conduct international and standardized projects for acquiring comparable and transferable criteria. The methodology and findings of this research provides landscape planners and decision makers with useful reference to compare, evaluate and improve urban landscape configurations to meet people's needs.
Landscape moderation of biodiversity patterns and processes - eight hypotheses
USDA-ARS?s Scientific Manuscript database
Understanding how landscape characteristics affect local biodiversity patterns and ecological processes is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest the following seven hypotheses, which we hope w...
Impacts of Landscape Context on Patterns of Wind Downfall Damage in a Fragmented Amazonian Landscape
NASA Astrophysics Data System (ADS)
Schwartz, N.; Uriarte, M.; DeFries, R. S.; Gutierrez-Velez, V. H.; Fernandes, K.; Pinedo-Vasquez, M.
2015-12-01
Wind is a major disturbance in the Amazon and has both short-term impacts and lasting legacies in tropical forests. Observed patterns of damage across landscapes result from differences in wind exposure and stand characteristics, such as tree stature, species traits, successional age, and fragmentation. Wind disturbance has important consequences for biomass dynamics in Amazonian forests, and understanding the spatial distribution and size of impacts is necessary to quantify the effects on carbon dynamics. In November 2013, a mesoscale convective system was observed over the study area in Ucayali, Peru, a highly human modified and fragmented forest landscape. We mapped downfall damage associated with the storm in order to ask: how does the severity of damage vary within forest patches, and across forest patches of different sizes and successional ages? We applied spectral mixture analysis to Landsat images from 2013 and 2014 to calculate the change in non-photosynthetic vegetation fraction after the storm, and combined it with C-band SAR data from the Sentinel-1 satellite to predict downfall damage measured in 30 field plots using random forest regression. We then applied this model to map damage in forests across the study area. Using a land cover classification developed in a previous study, we mapped secondary and mature forest, and compared the severity of damage in the two. We found that damage was on average higher in secondary forests, but patterns varied spatially. This study demonstrates the utility of using multiple sources of satellite data for mapping wind disturbance, and adds to our understanding of the sources of variation in wind-related damage. Ultimately, an improved ability to map wind impacts and a better understanding of their spatial patterns can contribute to better quantification of carbon dynamics in Amazonian landscapes.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks. PMID:24753575
Network analysis reveals multiscale controls on streamwater chemistry.
McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W
2014-05-13
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
Rebeccam S.H. Kennedy; Thomas A. Spies
2007-01-01
Understanding the relative importance of landscape history, topography, vegetation, and climate to dead wood patterns is important for assessing pattern-process relationships related to dead wood and associated biodiversity. We sampled dead wood at four topographic positions in two landscapes (1400 to 2100 km2) that experienced different wildfire...
Landscape Fragmentation as a Risk Factor for Buruli Ulcer Disease in Ghana
Wu, Jianyong; Smithwick, Erica A. H.
2016-01-01
Land cover and its change have been linked to Buruli ulcer (BU), a rapidly emerging tropical disease. However, it is unknown whether landscape structure affects the disease prevalence. To examine the association between landscape pattern and BU presence, we obtained land cover information for 20 villages in southwestern Ghana from high resolution satellite images, and analyzed the landscape pattern surrounding each village. Eight landscape metrics indicated that landscape patterns between BU case and reference villages were different (P < 0.05) at the broad spatial extent examined (4 km). The logistic regression models showed that landscape fragmentation and diversity indices were positively associated with BU presence in a village. Specifically, for each increase in patch density and edge density by 100 units, the likelihood of BU presence in a village increased 2.51 (95% confidence interval [CI] = 1.36–4.61) and 4.18 (95% CI = 1.63–10.76) times, respectively. The results suggest that increased landscape fragmentation may pose a risk to the emergence of BU. PMID:27185767
Conformational flexibility and packing plausibility of repaglinide polymorphs
NASA Astrophysics Data System (ADS)
Rani, Dimpy; Goyal, Parnika; Chadha, Renu
2018-04-01
The present manuscript highlights the structural insight into the repaglinide polymorphs. The experimental screening for the possible crystal forms were carried out using various solvents, which generated three forms. The crystal structure of Form II and III was determined using PXRD pattern whereas structural analysis of Form I has already been reported. Form I, II and II was found to exist in P212121, PNA21 and P21/c space groups respectively. Conformational analysis was performed to account the conformational flexibility of RPG. The obtained conformers were further utilized to obtain the information about the crystal packing pattern of RPG polymorphs by polymorph prediction module. The lattice energy landscape, depicting the relationship between lattice energy and density of the polymorphs has been obtained for various possible polymorphs. The experimentally isolated polymorphs were successfully fitted into lattice energy landscape.
NASA Astrophysics Data System (ADS)
Kaplan, D. A.; Casey, S. T.; Cohen, M. J.; Acharya, S.; Jawitz, J. W.
2016-12-01
A century of hydrologic modification has altered the physical and biological drivers of landscape processes in the Everglades (Florida, USA). Restoring the ridge-slough patterned landscape, a dominant feature of the historical system, is a priority, but requires an understanding of pattern genesis and degradation mechanisms. Physical experiments to evaluate alternative pattern formation mechanisms are limited by the long time scales of peat accumulation and loss, necessitating model-based comparisons, where support for a particular mechanism is based on model replication of extant patterning and trajectories of degradation. However, multiple mechanisms yield patch elongation in the direction of historical flow (a central feature of ridge-slough patterning), limiting the utility of that characteristic for discriminating among alternatives. Using data from vegetation maps, we investigated the statistical features of ridge-slough spatial patterning (ridge density, patch perimeter, elongation, patch-size distributions, and spatial periodicity) to establish more rigorous criteria for evaluating model performance and to inform controls on pattern variation across the contemporary system. Two independent analyses (2-D periodograms and patch size distributions) provide strong evidence against regular patterning, with the landscape exhibiting neither a characteristic wavelength nor a characteristic patch size, both of which are expected under conditions that produce regular patterns. Rather, landscape properties suggest robust scale-free patterning, indicating genesis from the coupled effects of local facilitation and a global negative feedback operating uniformly at the landscape-scale. This finding challenges widespread invocation of scale-dependent negative feedbacks for explaining ridge-slough pattern origins. These results help discern among genesis mechanisms and provide an improved statistical description of the landscape that can be used to compare among model outputs, as well as to assess the success of future restoration projects.
NASA Astrophysics Data System (ADS)
Pusuluri, Sai Teja
Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features. These results show how the static landscape features can be controlled by adjusting the correlations between patterns. Finally, I explore the dynamical features of landscapes generated using neural network models such as the stability of minima and the transition rates between minima. The results from this project show that the stability depends on the correlations between patterns. It is also found that the transition rates between minima strongly depend on the type of bias applied and the correlation between patterns. The results from this part of the dissertation can be useful in engineering an energy landscape without even having the complete information about the associated minima of the landscape.
NASA Astrophysics Data System (ADS)
Xu, C.; Zhao, S.; Zhao, B.
2017-12-01
Spatial heterogeneity is scale-dependent, that is, the quantification and representation of spatial pattern vary with the resolution and extent. Overwhelming practices focused on scale effect of landscape metrics, and predicable scaling relationships found among some of them are thought to be the most effective and precise way to quantify multi-scale characteristics. However, previous studies tended to consider a narrow range of scales, and few focused on the critical threshold of scaling function. Here we examine the scalograms of 38 widely-used landscape-level metrics in a more integral spectrum of grain size among 96 landscapes with various extent (i.e. from 25km2 up towards to 221 km2), which sampled randomly from NLCD product. Our goal is to explore the existence of scaling domain and whether the response of metrics to changing resolution would be influenced by spatial extent. Results clearly show the existence of scaling domain for 13 of them (Type II), while the behaviors of other 13 (Type I) exhibit simple scaling functions and the rest (Type III) demonstrate various forms like no obvious change or fluctuation across the integral spectrum of grain size. In addition, an invariant power law scaling relationship was found between critical resolution and spatial extent for metrics falling into Type II, as the critical resolution is proportional to Eρ (ρ is a constant, and E is the extent). All the scaling exponents (ρ) are positive, suggesting that the critical resolutions for these characteristics of landscape structure can be relaxed as the spatial extent expands. This agrees well with empirical perception that coarser grain size might be allowed for spatial data with larger extent. Furthermore, the parameters of scaling functions for metrics falling into Type I and Type II vary with spatial extent, and power law or logarithmic relationships could be identified between them for some metrics. Our finding support the existence of self-organized criticality for a hierarchically-structured landscape. Although the underlying mechanism driving the scaling relationship remains unclear, it could provide guidance toward general principles in spatial pattern analysis and on selecting the proper resolution to avoid the misrepresentation of spatial pattern and profound biases in further ecological progress research.
The Urban Heat Island Impact in Consideration of Spatial Pattern of Urban Landscape and Structure
NASA Astrophysics Data System (ADS)
Kim, J.; Lee, D. K.; Jeong, W.; Sung, S.; Park, J.
2015-12-01
Preceding study has established a clear relationship between land surface temperature and area of land covers. However, only few studies have specifically examined the effects of spatial patterns of land covers and urban structure. To examine how much the local climate is affected by the spatial pattern in highly urbanized city, we investigated the correlation between land surface temperature and spatial patterns of land covers. In the analysis of correlation, we categorized urban structure to four different land uses: Apartment residential area, low rise residential area, industrial area and central business district. Through this study, we aims to examine the types of residential structure and land cover pattern for reducing urban heat island and sustainable development. Based on land surface temperature, we investigated the phenomenon of urban heat island through using the data of remote sensing. This study focused on Daegu in Korea. This city, one of the hottest city in Korea has basin form. We used high-resolution land cover data and land surface temperature by using Landsat8 satellite image to examine 100 randomly selected sample sites of 884.15km2 (1)In each land use, we quantified several landscape-levels and class-level landscape metrics for the sample study sites. (2)In addition, we measured the land surface temperature in 3 year hot summer seasons (July to September). Then, we investigated the pattern of land surface temperature for each land use through Ecognition package. (3)We deducted the Pearson correlation coefficients between land surface temperature and each landscape metrics. (4)We analyzed the variance among the four land uses. (5)Using linear regression, we determined land surface temperature model for each land use. (6)Through this analysis, we aims to examine the best pattern of land cover and artificial structure for reducing urban heat island effect in highly urbanized city. The results of linear regression showed that proportional land cover of grass, tree, water and impervious surfaces well explained the temperature in apartment residential areas. In contrast, the changes in the pattern of water, grass, tree and impervious surfaces were the best to determine the temperature in low rise residential area, central business district and industrial area.
Dynamically incorporating late-successional forest in sustainable landscapes
Ann E. Camp; Paul F. Hessburg; Richard L. Everett
1996-01-01
Ecosystems and landscapes change over time as a function of vegetation characteristics and disturbance regimes, including fire. Interactions between disturbance events and forest development (succession) create patterns of vegetation across landscapes. These patterns result from, and change with respect to, species compositions and structures that arise from...
[Landscape pattern and its vulnerability of Nansihu Lake basin during 1980-2015.
Xui, Yan; Sun, Xiao Yin; Zhang, Da Zhi; Shan, Rui Feng; Liu, Fei
2018-02-01
Landscape pattern and its vulnerability have direct impacts on ecological environment in the basin. In order to protect the ecological security in Nansihu Lake basin, we analyzed the changes of landscape pattern based on seven sets of land use data (1980-2015), with landscape adaptability index (LAI) and landscape sensitivity index (LSI) being used to build the landscape vulnerability index (LVI). The spatial distribution and changes of LVI were analyzed. Results showed that the percentage of arable land areas decreased by 4.6% and construction land areas increased by 39.7% from 1980 to 2015. Other land use types showed fluctuating changes. The areas of forest land, grassland, and unused land decreased while water area increased. The arable land was the dominant land use type from 1980 to 2015 in this area. The degree of fragmentation of arable land and water area in the basin increased, whereas other land use types decreased. The fragmentation of whole basin decreased, but connectivity among landscape types enhanced. The irregularity and complexity of landscape pattern decreased, but diversity and evenness of landscape pattern displayed an increasing trend. With respect to LVI in different periods, the eastern part of the basin was higher than the western part, while the northern part was higher than the southern part. The spatial distribution of LVI was related to topography, layout of landscape types and change of land use. The LVI of Nansihu Lake basin showed a decline trend during 1980-2015. In the eastern part of the basin, higher level of LVI gradually dispersed and was replaced by lower level. In the northwest, the recovery of LVI was obvious. In the south and southwest parts, LVI was consistently low.
Row, Jeff R; Oyler-McCance, Sara J.; Fike, Jennifer; O'Donnell, Michael; Doherty, Kevin E.; Aldridge, Cameron L.; Bowen, Zachary H.; Fedy, Brad C.
2015-01-01
Given the significance of animal dispersal to population dynamics and geographic variability, understanding how dispersal is impacted by landscape patterns has major ecological and conservation importance. Speaking to the importance of dispersal, the use of linear mixed models to compare genetic differentiation with pairwise resistance derived from landscape resistance surfaces has presented new opportunities to disentangle the menagerie of factors behind effective dispersal across a given landscape. Here, we combine these approaches with novel resistance surface parameterization to determine how the distribution of high- and low-quality seasonal habitat and individual landscape components shape patterns of gene flow for the greater sage-grouse (Centrocercus urophasianus) across Wyoming. We found that pairwise resistance derived from the distribution of low-quality nesting and winter, but not summer, seasonal habitat had the strongest correlation with genetic differentiation. Although the patterns were not as strong as with habitat distribution, multivariate models with sagebrush cover and landscape ruggedness or forest cover and ruggedness similarly had a much stronger fit with genetic differentiation than an undifferentiated landscape. In most cases, landscape resistance surfaces transformed with 17.33-km-diameter moving windows were preferred, suggesting small-scale differences in habitat were unimportant at this large spatial extent. Despite the emergence of these overall patterns, there were differences in the selection of top models depending on the model selection criteria, suggesting research into the most appropriate criteria for landscape genetics is required. Overall, our results highlight the importance of differences in seasonal habitat preferences to patterns of gene flow and suggest the combination of habitat suitability modeling and linear mixed models with our resistance parameterization is a powerful approach to discerning the effects of landscape on gene flow.
Geospatial Analysis of Atmospheric Haze Effect by Source and Sink Landscape
NASA Astrophysics Data System (ADS)
Yu, T.; Xu, K.; Yuan, Z.
2017-09-01
Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD) of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN) and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents atmospheric haze pollution; For Wuhan City, the method of adjusting the built-up area slightly and planning the non-built-up areas reasonably can be taken to reduce atmospheric haze pollution.
Zhou, Di; Shi, Ping; Wu, Xiaoqing; Ma, Jinwei; Yu, Junbao
2014-01-01
Applied with remote sensing, GIS, and mathematical statistics, the spatial-temporal evolution characteristics of urbanization expansion of Yantai city from 1974 to 2009 was studied. Based on landscape pattern metrics and ecological risk index, the landscape ecological risk from the landscape pattern dynamics was evaluated. The results showed that the area of urban land increased by 189.77 km(2) with average expansion area of 5.42 km(2) y(-1) from 1974 to 2009. The urbanization intensity index during 2004-2009 was 3.92 times of that during 1974-1990. The land use types of urban land and farmland changed greatly. The changes of landscape pattern metrics for land use patterns indicated that the intensity of human activities had strengthened gradually in study period. The landscape ecological risk pattern of Yantai city shaped half-round rings along the coastline. The ecological risk index decreased with increase of the distance to the coastline. The ratio of high ecological risk to subhigh ecological risk zones in 2009 was 2.23 times of that in 1990. The significant linear relationship of urbanization intensity index and regional ecological risk indicated that the anthropological economic activities were decisive factors for sustainable development of costal ecological environment.
NASA Astrophysics Data System (ADS)
Zhou, D.; Yu, J.; Li, Y.; Zhan, C.
2017-12-01
Applied with remote sensing, GIS, and mathematical statistics, the spatial-temporal evolution characteristics of urbanization expansion of Yantai city from1974 to 2009 was studied. Based on landscape pattern metrics and ecological risk index, the landscape ecological risk from the landscape pattern dynamics was evaluated. The results showed that the area of urban land increased by 189.77 km2 with average expansion area of 5.42 km2 y-1 from1974 to 2009.The urbanization intensity index during 2004-2009 was 3.92 times of that during 1974-1990. The land use types of urban land and farmland changed greatly. The changes of landscape pattern metrics for land use patterns indicated that the intensity of human activities had strengthened gradually in study period. The landscape ecological risk pattern of Yantai city shaped half-round rings along the coastline. The ecological risk index decreased with increase of the distance to the coastline. The ratio of high ecological risk to sub-high ecological risk zones in 2009 was 2.23 times of that in 1990.The significant linear relationship of urbanization intensity index and regional ecological risk indicated that the anthropological economic activities were decisive factors for sustainable development of costal ecological environment.
Zhou, Di; Shi, Ping; Wu, Xiaoqing; Ma, Jinwei
2014-01-01
Applied with remote sensing, GIS, and mathematical statistics, the spatial-temporal evolution characteristics of urbanization expansion of Yantai city from 1974 to 2009 was studied. Based on landscape pattern metrics and ecological risk index, the landscape ecological risk from the landscape pattern dynamics was evaluated. The results showed that the area of urban land increased by 189.77 km2 with average expansion area of 5.42 km2 y−1 from 1974 to 2009. The urbanization intensity index during 2004–2009 was 3.92 times of that during 1974–1990. The land use types of urban land and farmland changed greatly. The changes of landscape pattern metrics for land use patterns indicated that the intensity of human activities had strengthened gradually in study period. The landscape ecological risk pattern of Yantai city shaped half-round rings along the coastline. The ecological risk index decreased with increase of the distance to the coastline. The ratio of high ecological risk to subhigh ecological risk zones in 2009 was 2.23 times of that in 1990. The significant linear relationship of urbanization intensity index and regional ecological risk indicated that the anthropological economic activities were decisive factors for sustainable development of costal ecological environment. PMID:24983003
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-05-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-01-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
Kim, Jun-Hyun; Lee, Chanam; Olvara, Norma E; Ellis, Christopher D
2014-11-01
Childhood obesity and its comorbidities have become major public health challenges in the US. While previous studies have investigated the roles of land uses and transportation infrastructure on obesity, limited research has examined the influence of landscape spatial patterns. The purpose of this study was to examine the association between landscape spatial patterns and obesity in Hispanic children. Participants included 61 fourth- and fifth-grade Hispanic children from inner-city neighborhoods in Houston, TX. BMI z-scores were computed based on objectively-measured height and weight from each child. Parental and child surveys provided sociodemographic and physical activity data. Landscape indices were used to measure the quality of landscape spatial patterns surrounding each child's home by utilizing Geographic Information Systems and remote sensing analyses using aerial photo images. After controlling for sociodemographic factors, in the half-mile airline buffer, more tree patches and well-connected landscape patterns were negatively correlated with their BMI z-scores. Furthermore, larger sizes of urban forests and tree patches were negatively associated with children's BMI z-scores in the half-mile network buffer assessment. This study suggests that urban greenery requires further attention in studies aimed at identifying environmental features that reduce childhood obesity.
De Jager, N. R.; Pastor, J.
2009-01-01
Ungulate herbivores create patterns of forage availability, plant species composition, and soil fertility as they range across large landscapes and consume large quantities of plant material. Over time, herbivore populations fluctuate, producing great potential for spatio-temporal landscape dynamics. In this study, we extend the spatial and temporal extent of a long-term investigation of the relationship of landscape patterns to moose foraging behavior at Isle Royale National Park, MI. We examined how patterns of browse availability and consumption, plant basal area, and soil fertility changed during a recent decline in the moose population. We used geostatistics to examine changes in the nature of spatial patterns in two valleys over 18 years and across short-range and long-range distance scales. Landscape patterns of available and consumed browse changed from either repeated patches or randomly distributed patches in 1988-1992 to random point distributions by 2007 after a recent record high peak followed by a rapid decline in the moose population. Patterns of available and consumed browse became decoupled during the moose population low, which is in contrast to coupled patterns during the earlier high moose population. Distributions of plant basal area and soil nitrogen availability also switched from repeated patches to randomly distributed patches in one valley and to random point distributions in the other valley. Rapid declines in moose population density may release vegetation and soil fertility from browsing pressure and in turn create random landscape patterns. ?? Springer Science+Business Media B.V. 2009.
NASA Astrophysics Data System (ADS)
Perdana, B. P.; Setiawan, Y.; Prasetyo, L. B.
2018-02-01
Recently, a highway development is required as a liaison between regions to support the economic development of the regions. Even the availability of highways give positive impacts, it also has negative impacts, especially related to the changes of vegetated lands. This study aims to determine the change of vegetation coverage in Jagorawi corridor Jakarta-Bogor during 37 years, and to analyze landscape patterns in the corridor based on distance factor from Jakarta to Bogor. In this study, we used a long-series of Landsat images taken by Landsat 2 MSS (1978), Landsat 5 TM (1988, 1995, and 2005) and Landsat 8 OLI/TIRS (2015). Analysis of landscape metrics was conducted through patch analysis approach to determine the change of landscape patterns in the Jagorawi corridor Jakarta-Bogor. Several parameters of landscape metrics used are Number of Patches (NumP), Mean Patch Size (MPS), Mean Shape Index (MSI), and Edge Density (ED). These parameters can be used to provide information of structural elements of landscape, composition and spatial distribution in the corridor. The results indicated that vegetation coverage in the Jagorawi corridor Jakarta-Bogor decreased about 48% for 35 years. Moreover, NumP value increased and decreasing of MPS value as a means of higher fragmentation level occurs with patch size become smaller. Meanwhile, The increase in ED parameters indicates that vegetated land is damaged annually. MSI parameter shows a decrease in every year which means land degradation on vegetated land. This indicates that the declining value of MSI will have an impact on land degradation.
Scale-dependent erosional patterns in steady-state and transient-state landscapes.
Tejedor, Alejandro; Singh, Arvind; Zaliapin, Ilya; Densmore, Alexander L; Foufoula-Georgiou, Efi
2017-09-01
Landscape topography is the expression of the dynamic equilibrium between external forcings (for example, climate and tectonics) and the underlying lithology. The magnitude and spatial arrangement of erosional and depositional fluxes dictate the evolution of landforms during both statistical steady state (SS) and transient state (TS) of major landscape reorganization. For SS landscapes, the common expectation is that any point of the landscape has an equal chance to erode below or above the landscape median erosion rate. We show that this is not the case. Afforded by a unique experimental landscape that provided a detailed space-time recording of erosional fluxes and by defining the so-called E50-area curve, we reveal for the first time that there exists a hierarchical pattern of erosion. Specifically, hillslopes and fluvial channels erode more rapidly than the landscape median erosion rate, whereas intervening parts of the landscape in terms of upstream contributing areas (colluvial regime) erode more slowly. We explain this apparent paradox by documenting the dynamic nature of SS landscapes-landscape locations may transition from being a hillslope to being a valley and then to being a fluvial channel due to ridge migration, channel piracy, and small-scale landscape dynamics through time. Under TS conditions caused by increased precipitation, we show that the E50-area curve drastically changes shape during landscape reorganization. Scale-dependent erosional patterns, as observed in this study, suggest benchmarks in evaluating numerical models and interpreting the variability of sampled erosional rates in field landscapes.
Lin, Mei Xia; Lin, Tao; Qiu, Quan Yi; Sun, Cai Ge; Deng, Fu Liang; Zhang, Guo Qin
2017-04-18
The expansion of built-up area will cause stress effect on the regional natural ecological security pattern during urbanization process. Taking rapid expanding regions of four inland and coastal cities as study areas, including Tongzhou in Beijing, Zhengding in Hebei, Tanggu in Tianjin and Xiamen in Fujian, we constructed regional landscape stress indexes according to the principle of landscape ecology and comparatively analyzed the landscape pattern characteristics of rapid expanding regions and the differences of stress effect of artificial landscapes on four natural landscapes ecological security pattern in the process of rapid urbanization. Results showed that landscape erosion indexes of Tongzhou, Zhengding, Tanggu and Xiamen in 2015 were 1.039, 0.996, 1.239 and 0.945, respectively, which indicated that the natural landscapes were eroded significantly. Natural landscape types of those four regions presented different threatened levels. Among all natural landscape types, unused land and waters were worst threatened in Tongzhou, Zhengding and Tanggu, while in Xiamen cultivated land and waters showed the highest threat levels. The waters threat indexes of those four areas were all more than 0.743. Landscape isolation indexes of waters and unused land of the inland cities were greater than those of coastal cities, which meant water distribution of inland cities in the space was less gathered than that of coastal cities. Besides, compared with the other natural landscape, unused land and waters suffered the largest stress from artificial landscapes.
Landscape Pattern Dynamic Change Research of Harbin Songbei Based on GIS Technology
NASA Astrophysics Data System (ADS)
Chenyang, Ding; Kun, Wang; Kang, Li Kang
2018-05-01
With the rapid development of social economy in the Songhua River basin, there are big dynamic change of the landscape of the new area beside the river bank, which is represented by Harbin Songbei. This paper selects 13 representative indexes from landscape and patch level, analyzes the cause and process of the change of landscape pattern in Songbei during 2005-2015, and probes into the characteristics of the change based on the principle of landscape ecology, using remote sensing and GIS technology and Fragstats3.3 software data statistics.
[Spatial scale effect of land use landscape pattern in Yongdeng County, Gansu Province, China.
Liu, Yuan Yuan; Liu, Xue Lu
2016-04-22
Based on "patch-corridor-matrix" pattern, spatial scale effect of landscape pattern was studied in Yongdeng County of Lanzhou City, Gansu Province, China. The results showed that the grassland was the matrix of landscape structure in the studied area, road and river played the corridor role, and the other landscape elements (cultivated land, forest land, garden land, residential land, industrial and mineral land, public management and service land, and the other land) acted as patches. The patch level index and the landscape level index all showed obvious dependence on spatial extent. The scale effect of patch index of different landscape elements existed differently in different extent intervals, so did the scale effect of the landscape level index. Within the extent of 1-20 km, the scale effect showed the most obvious difference between the element types and the index types, while it became smaller in 21-90 km, and disappeared beyond 90 km. 90 km×90 km might be the effective extent to study the dependence of spatial extent of landscape structure.
Characteristics of vegetation phenology over the Alaskan landscape using AVHRR time-series data
Markon, Carl J.; Fleming, Michael D.; Binnian, Emily F.
1995-01-01
Advanced Very High Resolution Radiometer (AVHRR) satellite data were acquired and composited into twice-a-month periods from 1 May 1991 to 15 October 1991 in order to map vegetation characteristics of the Alaskan landscape. Unique spatial and temporal qualities of the AVHRR data provide information that leads to a better understanding of regional biophysical characteristics of vegetation communities and patterns. These data provided synoptic views of the landscape and depicted phenological diversity, temporal vegetation phenology (green-up, peak of green, and senescence), photosynthetic activity, and regional landscape patterns. Products generated from the data included a phenological class map, phenological composite maps (onset, peak, and duration), and photosynthetic activity maps (mean and maximum greenness). The time-series data provide opportunities to study phenological processes at small landscape scales over time periods of weeks, months, and years. Regional patterns identified on some of the maps are unique to specific areas; others correspond to biophysical or ecoregional boundaries. The data provide new insights to landscape processes, ecology, and landscape physiognomy that allow scientists to look at landscapes in ways that were previously difficult to achieve.
NASA Astrophysics Data System (ADS)
Cao, Wenzhuo; Lei, Qinghua
2018-01-01
Natural fractures are ubiquitous in the Earth's crust and often deeply buried in the subsurface. Due to the difficulty in accessing to their three-dimensional structures, the study of fracture network geometry is usually achieved by sampling two-dimensional (2D) exposures at the Earth's surface through outcrop mapping or aerial photograph techniques. However, the measurement results can be considerably affected by the coverage of forests and other plant species over the exposed fracture patterns. We quantitatively study such effects using numerical simulation. We consider the scenario of nominally isotropic natural fracture systems and represent them using 2D discrete fracture network models governed by fractal and length scaling parameters. The groundcover is modelled as random patches superimposing onto the 2D fracture patterns. The effects of localisation and total coverage of landscape patches are further investigated. The fractal dimension and length exponent of the covered fracture networks are measured and compared with those of the original non-covered patterns. The results show that the measured length exponent increases with the reduced localisation and increased coverage of landscape patches, which is more evident for networks dominated by very large fractures (i.e. small underlying length exponent). However, the landscape coverage seems to have a minor impact on the fractal dimension measurement. The research findings of this paper have important implications for field survey and statistical analysis of geological systems.
Schetter, Timothy A; Walters, Timothy L; Root, Karen V
2013-09-01
Impacts of human land use pose an increasing threat to global biodiversity. Resource managers must respond rapidly to this threat by assessing existing natural areas and prioritizing conservation actions across multiple spatial scales. Plant species richness is a useful measure of biodiversity but typically can only be evaluated on small portions of a given landscape. Modeling relationships between spatial heterogeneity and species richness may allow conservation planners to make predictions of species richness patterns within unsampled areas. We utilized a combination of field data, remotely sensed data, and landscape pattern metrics to develop models of native and exotic plant species richness at two spatial extents (60- and 120-m windows) and at four ecological levels for northwestern Ohio's Oak Openings region. Multiple regression models explained 37-77 % of the variation in plant species richness. These models consistently explained more variation in exotic richness than in native richness. Exotic richness was better explained at the 120-m extent while native richness was better explained at the 60-m extent. Land cover composition of the surrounding landscape was an important component of all models. We found that percentage of human-modified land cover (negatively correlated with native richness and positively correlated with exotic richness) was a particularly useful predictor of plant species richness and that human-caused disturbances exert a strong influence on species richness patterns within a mixed-disturbance oak savanna landscape. Our results emphasize the importance of using a multi-scale approach to examine the complex relationships between spatial heterogeneity and plant species richness.
The Gradient Paradigm: A conceptual and analytical framework for landscape ecology [Chapter 5
Samuel A. Cushman; Kevin Gutzweiler; Jeffrey S. Evans; Kevin McGarigal
2010-01-01
Landscape ecology deals fundamentally with how, when, and why patterns of environmental factors influence the distribution of organisms and ecological processes, and reciprocally, how the actions of organisms and ecological processes influence ecological patterns (Urban et al. 1991; Turner 1989). The landscape ecologist's goal is to determine where and when...
[A landscape ecological approach for urban non-point source pollution control].
Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing
2005-05-01
Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.
The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale
NASA Astrophysics Data System (ADS)
Chen, L.
2016-12-01
Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.
Scale-dependent erosional patterns in steady-state and transient-state landscapes
Tejedor, Alejandro; Singh, Arvind; Zaliapin, Ilya; Densmore, Alexander L.; Foufoula-Georgiou, Efi
2017-01-01
Landscape topography is the expression of the dynamic equilibrium between external forcings (for example, climate and tectonics) and the underlying lithology. The magnitude and spatial arrangement of erosional and depositional fluxes dictate the evolution of landforms during both statistical steady state (SS) and transient state (TS) of major landscape reorganization. For SS landscapes, the common expectation is that any point of the landscape has an equal chance to erode below or above the landscape median erosion rate. We show that this is not the case. Afforded by a unique experimental landscape that provided a detailed space-time recording of erosional fluxes and by defining the so-called E50-area curve, we reveal for the first time that there exists a hierarchical pattern of erosion. Specifically, hillslopes and fluvial channels erode more rapidly than the landscape median erosion rate, whereas intervening parts of the landscape in terms of upstream contributing areas (colluvial regime) erode more slowly. We explain this apparent paradox by documenting the dynamic nature of SS landscapes—landscape locations may transition from being a hillslope to being a valley and then to being a fluvial channel due to ridge migration, channel piracy, and small-scale landscape dynamics through time. Under TS conditions caused by increased precipitation, we show that the E50-area curve drastically changes shape during landscape reorganization. Scale-dependent erosional patterns, as observed in this study, suggest benchmarks in evaluating numerical models and interpreting the variability of sampled erosional rates in field landscapes. PMID:28959728
Ecosystem service bundles for analyzing tradeoffs in diverse landscapes
Raudsepp-Hearne, C.; Peterson, G. D.; Bennett, E. M.
2010-01-01
A key challenge of ecosystem management is determining how to manage multiple ecosystem services across landscapes. Enhancing important provisioning ecosystem services, such as food and timber, often leads to tradeoffs between regulating and cultural ecosystem services, such as nutrient cycling, flood protection, and tourism. We developed a framework for analyzing the provision of multiple ecosystem services across landscapes and present an empirical demonstration of ecosystem service bundles, sets of services that appear together repeatedly. Ecosystem service bundles were identified by analyzing the spatial patterns of 12 ecosystem services in a mixed-use landscape consisting of 137 municipalities in Quebec, Canada. We identified six types of ecosystem service bundles and were able to link these bundles to areas on the landscape characterized by distinct social–ecological dynamics. Our results show landscape-scale tradeoffs between provisioning and almost all regulating and cultural ecosystem services, and they show that a greater diversity of ecosystem services is positively correlated with the provision of regulating ecosystem services. Ecosystem service-bundle analysis can identify areas on a landscape where ecosystem management has produced exceptionally desirable or undesirable sets of ecosystem services. PMID:20194739
Ruiz-Mirazo, Jabier; Martínez-Fernández, Jesús; Vega-García, Cristina
2012-05-15
The pastoral use of fire to regenerate rangelands is a major cause of wildfires in many Mediterranean countries. Despite producing important environmental impacts, this phenomenon has hardly ever been studied separately from other wildfire ignition causes. As extensive livestock breeding relies on the available pasture resources, we hypothesised that a higher rate of pastoral wildfire ignitions could be associated with land cover patterns, as these reflect the spatial arrangement of human activities in managed landscapes. To investigate these patterns, we studied landscape structure and the pastoral wildfires recorded between 1988 and 2000 in 24 Nature Park landscapes in Andalusia (Spain). The CORINE Land Cover map was reclassified according to five levels of grazing use and landscape metrics were calculated. Neural networks were developed to model the relationship between landscape metrics and pastoral wildfires, obtaining a set of significant variables which are discussed in the frame of land and livestock management in the region. We conclude that pastoral wildfire ignitions are more likely in landscapes where the pattern of being dominated by a matrix composed of several large patches of low to moderate grazing use, and having abundant small and elongated patches of higher grazing use, is more extreme. This pattern could be reflecting the persistence of numerous small livestock farms within an increasingly abandoned agrarian landscape. To prevent pastoral wildfires, land management could attempt to enlarge and merge those small patches of higher grazing use, reducing the amount of interface and their intermixture with the surrounding poorer pasture resources. Copyright © 2011 Elsevier Ltd. All rights reserved.
Evolution of Canada’s Boreal Forest Spatial Patterns as Seen from Space
Pickell, Paul D.; Coops, Nicholas C.; Gergel, Sarah E.; Andison, David W.; Marshall, Peter L.
2016-01-01
Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies. PMID:27383055
Evolution of Canada's Boreal Forest Spatial Patterns as Seen from Space.
Pickell, Paul D; Coops, Nicholas C; Gergel, Sarah E; Andison, David W; Marshall, Peter L
2016-01-01
Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies.
Landscape moderation of biodiversity patterns and processes - eight hypotheses.
Tscharntke, Teja; Tylianakis, Jason M; Rand, Tatyana A; Didham, Raphael K; Fahrig, Lenore; Batáry, Péter; Bengtsson, Janne; Clough, Yann; Crist, Thomas O; Dormann, Carsten F; Ewers, Robert M; Fründ, Jochen; Holt, Robert D; Holzschuh, Andrea; Klein, Alexandra M; Kleijn, David; Kremen, Claire; Landis, Doug A; Laurance, William; Lindenmayer, David; Scherber, Christoph; Sodhi, Navjot; Steffan-Dewenter, Ingolf; Thies, Carsten; van der Putten, Wim H; Westphal, Catrin
2012-08-01
Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services. We organize the eight hypotheses under four overarching themes. Section A: 'landscape moderation of biodiversity patterns' includes (1) the landscape species pool hypothesis-the size of the landscape-wide species pool moderates local (alpha) biodiversity, and (2) the dominance of beta diversity hypothesis-landscape-moderated dissimilarity of local communities determines landscape-wide biodiversity and overrides negative local effects of habitat fragmentation on biodiversity. Section B: 'landscape moderation of population dynamics' includes (3) the cross-habitat spillover hypothesis-landscape-moderated spillover of energy, resources and organisms across habitats, including between managed and natural ecosystems, influences landscape-wide community structure and associated processes and (4) the landscape-moderated concentration and dilution hypothesis-spatial and temporal changes in landscape composition can cause transient concentration or dilution of populations with functional consequences. Section C: 'landscape moderation of functional trait selection' includes (5) the landscape-moderated functional trait selection hypothesis-landscape moderation of species trait selection shapes the functional role and trajectory of community assembly, and (6) the landscape-moderated insurance hypothesis-landscape complexity provides spatial and temporal insurance, i.e. high resilience and stability of ecological processes in changing environments. Section D: 'landscape constraints on conservation management' includes (7) the intermediate landscape-complexity hypothesis-landscape-moderated effectiveness of local conservation management is highest in structurally simple, rather than in cleared (i.e. extremely simplified) or in complex landscapes, and (8) the landscape-moderated biodiversity versus ecosystem service management hypothesis-landscape-moderated biodiversity conservation to optimize functional diversity and related ecosystem services will not protect endangered species. Shifting our research focus from local to landscape-moderated effects on biodiversity will be critical to developing solutions for future biodiversity and ecosystem service management. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Insights to urban dynamics through landscape spatial pattern analysis
NASA Astrophysics Data System (ADS)
TV, Ramachandra; Aithal, Bharath H.; Sanna, Durgappa D.
2012-08-01
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources.
Xie, Tian; Wang, Meie; Chen, Weiping; Uwizeyimana, Herman
2018-06-01
Earthworms play an important role in soil processes and functions. However, few studies have focused on their community patterns in perturbed systems, especially in an urban environment with a high turnover rate of land cover. In this study, we collected and identified the earthworms in the residential areas in metropolitan Beijing. We further investigated the effects of urban soil properties, urbanization and landscape patterns on the earthworm communities. The results showed that both the abundance and biomass of earthworms in residential areas in metropolitan was relatively low. The abundance of earthworms was negatively correlated with soil organic carbon (SOC) in this study. Soil moisture and pH could be considered as the most important edaphic variables that affected earthworm communities. The construction age of residential areas significantly influenced the earthworm abundance. Moreover, the earthworm community composition responded differently to urban landscape features at different scales. The percentage of impervious and green space surface, the amount of landscape cover types, patch density and landscape fragment significantly affected the earthworm assemblages. Our result discovered that the edaphic properties, urbanization as well as landscape patterns might be the potential factors that influenced the earthworm community patterns. Copyright © 2018 Elsevier B.V. All rights reserved.
Berg, Kevan J; Icyeh, Lahuy; Lin, Yih-Ren; Janz, Arnold; Newmaster, Steven G
2016-12-01
Human actions drive landscape heterogeneity, yet most ecosystem classifications omit the role of human influence. This study explores land use history to inform a classification of forestland of the Tayal Mrqwang indigenous people of Taiwan. Our objectives were to determine the extent to which human action drives landscape heterogeneity. We used interviews, field sampling, and multivariate analysis to relate vegetation patterns to environmental gradients and human modification across 76 sites. We identified eleven forest classes. In total, around 70 % of plots were at lower elevations and had a history of shifting cultivation, terrace farming, and settlement that resulted in alder, laurel, oak, pine, and bamboo stands. Higher elevation mixed conifer forests were least disturbed. Arboriculture and selective harvesting were drivers of other conspicuous forest patterns. The findings show that past land uses play a key role in shaping forests, which is important to consider when setting targets to guide forest management.
Favre-Bac, L; Mony, C; Ernoult, A; Burel, F; Arnaud, J-F
2016-01-01
In intensive agricultural landscapes, plant species previously relying on semi-natural habitats may persist as metapopulations within landscape linear elements. Maintenance of populations' connectivity through pollen and seed dispersal is a key factor in species persistence in the face of substantial habitat loss. The goals of this study were to investigate the potential corridor role of ditches and to identify the landscape components that significantly impact patterns of gene flow among remnant populations. Using microsatellite loci, we explored the spatial genetic structure of two hydrochorous wetland plants exhibiting contrasting local abundance and different habitat requirements: the rare and regionally protected Oenanthe aquatica and the more commonly distributed Lycopus europaeus, in an 83 km2 agricultural lowland located in northern France. Both species exhibited a significant spatial genetic structure, along with substantial levels of genetic differentiation, especially for L. europaeus, which also expressed high levels of inbreeding. Isolation-by-distance analysis revealed enhanced gene flow along ditches, indicating their key role in effective seed and pollen dispersal. Our data also suggested that the configuration of the ditch network and the landscape elements significantly affected population genetic structure, with (i) species-specific scale effects on the genetic neighborhood and (ii) detrimental impact of human ditch management on genetic diversity, especially for O. aquatica. Altogether, these findings highlighted the key role of ditches in the maintenance of plant biodiversity in intensive agricultural landscapes with few remnant wetland habitats. PMID:26486611
Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy.
Salis, Michele; Ager, Alan A; Alcasena, Fermin J; Arca, Bachisio; Finney, Mark A; Pellizzaro, Grazia; Spano, Donatella
2015-01-01
In this paper, we applied landscape scale wildfire simulation modeling to explore the spatiotemporal patterns of wildfire likelihood and intensity in the island of Sardinia (Italy). We also performed wildfire exposure analysis for selected highly valued resources on the island to identify areas characterized by high risk. We observed substantial variation in burn probability, fire size, and flame length among time periods within the fire season, which starts in early June and ends in late September. Peak burn probability and flame length were observed in late July. We found that patterns of wildfire likelihood and intensity were mainly related to spatiotemporal variation in ignition locations, fuel moisture, and wind vectors. Our modeling approach allowed consideration of historical patterns of winds, ignition locations, and live and dead fuel moisture on fire exposure factors. The methodology proposed can be useful for analyzing potential wildfire risk and effects at landscape scale, evaluating historical changes and future trends in wildfire exposure, as well as for addressing and informing fuel management and risk mitigation issues.
Lee, Soo-Rang; Jo, Yeong-Seok; Park, Chan-Ho; Friedman, Jonathan M.; Olson, Matthew S.
2018-01-01
Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.
NASA Astrophysics Data System (ADS)
Gasparini, N. M.; Whipple, K. X.; Willenbring, J.; Crosby, B. T.; Brocard, G. Y.
2013-12-01
Numerical landscape evolution models (LEMs) offer us the unique opportunity to watch a landscape evolve under any set of environmental forcings that we can quantify. The possibilities for using LEMs are infinite, but complications arise when trying to model a real landscape. Specifically, numerical models cannot recreate every aspect of a real landscape because exact initial conditions are unknown, there will always be gaps in the known tectonic and climatic history, and the geomorphic transport laws that govern redistribution of mass due to surface processes will always be a simplified representation of the actual process. Yet, even with these constraints, numerical models remain the only tool that offers us the potential to explore a limitless range of evolutionary scenarios, allowing us to, at the very least, identify possible drivers responsible for the morphology of the current landscape, and just as importantly, rule out others. Here we highlight two examples in which we use a numerical model to explore the signature of different forcings on landscape morphology and erosion patterns. In the first landscape, the Northern Bolivian Andes, the relative imprint of rock uplift and precipitation patterns on landscape morphology is widely contested. We use the CHILD LEM to systematically vary climate and tectonics and quantify their fingerprints on channel profiles across a steep mountain front. We find that rock uplift and precipitation patterns in this landscape and others can be teased out by examining channel profiles of variably sized catchments that drain different parts of the topography. In the second landscape, the South Fork Eel River (SFER), northern California, USA, the tectonic history is relatively well known; a wave of rock uplift swept through the watershed from headwaters to outlet, perturbing the landscape and sending a wave of bedrock incision upstream. Nine millennial-scale erosion rates from along the mainstem of the river illustrate a pattern of downstream increasing erosion rate. Similarly, the proportion of the landscape that has adjusted to the tectonic perturbation increases from upstream to downstream. We use the CHILD LEM to explore whether the relationship between erosion rates and proportion of adjusted landscape is unique to the tectonic history of the SFER and if this relationship can be used as a fingerprint to identify the nature of tectonic perturbations in other locations. In both study sites, we do not try to recreate the exact morphology of the real landscape. Rather, we identify patterns in erosion rates and the morphology of the numerical landscape that can be used to interpret the tectonic history, climatic history, or both in these and other real landscapes.
Dynamics and pattern of a managed coniferous forest landscape in Oregon.
T.A. Spies; W.J. Ripple; G.A. Bradshaw
1994-01-01
We examined the process of fragmentation in a managed forest landscape by comparing rates and patterns of disturbance (primarily clear-cutting) and regrowth between 1972 and 1988 using Landsat imagery. A 2589-km2 managed forest landscape in western Oregon was classified into two forest types, closed-canopy conifer forest (CF) (typically, > 60% conifer cover) and...
Relative influence of the components of timber harvest strategies on landscape pattern
Eric J. Gustafson
2007-01-01
Forest managers seek to produce healthy landscape patterns by implementing harvest strategies that are composed of multiple management components such as cutblock size, rotation length, even-aged or uneven-aged residual stand structure, conversion to plantations, and the spatial dispersion of harvest units. With use of the HARVEST model and neutral landscapes, a...
Landscape pattern and context of forest and grassland in Alaska, Hawaii, and Puerto Rico
Kurt H. Riitters
2012-01-01
As development introduces competing land uses into forest and grassland landscapes, the public concerns for landscape patterns are expressed through headline issues such as urban sprawl and forest fragmentation. The task for resource managers is to maintain an appropriate balance of biodiversity, water quality, recreation experience, and other amenities in forest and...
Scale problems in reporting landscape pattern at the regional scale
R.V. O' Neill; C.T. Hunsaker; S.P. Timmins; B.L. Jackson; K.B. Jones; Kurt H. Riitters; James D. Wickham
1996-01-01
Remotely sensed data for Southeastern United States (Standard Federal Region 4) are used to examine the scale problems involved in reporting landscape pattern for a large, heterogeneous region. Frequency distribu-tions of landscape indices illustrate problems associated with the grain or resolution of the data. Grain should be 2 to 5 times smaller than the...
Rachel A. Loehman; Robert E. Keane; Lisa M. Holsinger; Zhiwei Wu
2017-01-01
Context: Interactions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs. Objectives We used the mechanistic...
Experimental evidence of reorganizing landscape under changing climatic forcing
NASA Astrophysics Data System (ADS)
Singh, A.; Tejedor, A.; Zaliapin, I. V.; Reinhardt, L.; Foufoula-Georgiou, E.
2015-12-01
Quantification of the dynamics of landscape reorganization under changing climatic forcing is important to understand geomorphic transport laws under transient conditions, assess response of landscapes to external perturbations for future predictive modeling, and for interpreting past climate from stratigraphic record. For such an analysis, however, real landscape observations are limited. To this end, a series of controlled laboratory experiments on evolving landscape were conducted at the St. Anthony Falls laboratory at the University of Minnesota. High resolution elevation data at a temporal resolution of 5 mins and spatial resolution of 0.5 mm were collected as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5 times precipitation rate). Our results reveal rapid topographic re-organization under a five-fold increase in precipitation with the fluvial regime encroaching into the previously debris dominated regime, widening and aggradation of channels and valleys, and accelerated erosion happening at hillslope scales. To better understand the initiation of the observed reorganization, we perform a connectivity and clustering analysis of the erosional and depositional events, showing strikingly different spatial patterns on landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is renormalized to match the total volume of eroded and deposited sediment in TS. Our results suggest a regime shift in the behavior of transport processes on the landscape at the intermediate scales i.e., from supply-limited to transport-limited.
Spatial pattern enhances ecosystem functioning in an African savanna.
Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M
2010-05-25
The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.
Honey bee success predicted by landscape composition in Ohio, USA.
Sponsler, D B; Johnson, R M
2015-01-01
Foraging honey bees (Apis mellifera L.) can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.
Thresholds for soil cover and weathering in mountainous landscapes
NASA Astrophysics Data System (ADS)
Dixon, Jean; Benjaram, Sarah
2017-04-01
The patterns of soil formation, weathering, and erosion shape terrestrial landscapes, forming the foundation on which ecosystems and human civilizations are built. Several fundamental questions remain regarding how soils evolve, especially in mountainous landscapes where tectonics and climate exert complex forcings on erosion and weathering. In these systems, quantifying weathering is made difficult by the fact that soil cover is discontinuous and heterogeneous. Therefore, studies that attempt to measure soil weathering in such systems face a difficult bias in measurements towards more weathered portions of the landscape. Here, we explore current understanding of erosion-weathering feedbacks, and present new data from mountain systems in Western Montana. Using field mapping, analysis of LiDAR and remotely sensed land-cover data, and soil chemical analyses, we measure soil cover and surface weathering intensity across multiple spatial scales, from the individual soil profile to a landscape perspective. Our data suggest that local emergence of bedrock cover at the surface marks a landscape transition from supply to kinetic weathering regimes in these systems, and highlights the importance of characterizing complex critical zone architecture in mountain landscapes. This work provides new insight into how landscape morphology and erosion may drive important thresholds for soil cover and weathering.
Wu, Guo-sheng; Lin, Hui-hua; Zhu, He-jian; Sha, Jin-ming; Dai, Wen-yuan
2011-07-01
Based on the 1988, 2000, and 2007 remote sensing images of a typical red soil eroded region (Changting County, Fujian Province) and the digital elevation model (DEM), the eroded landscape types were worked out, and the changes of the eroded landscape pattern in the region from 1988 to 2007 were analyzed with the spatial mathematics model. In 1988-2007, different eroded landscape types in the region had the characteristics of inter-transfer, mainly manifested in the transfer from seriously eroded to lightly eroded types but still existed small amount of the transference from lightly eroded to seriously eroded types. Little change was observed in the controid of the eroded landscape. In the County, Hetian Town was all along the eroded center. During the study period, the landscape pattern index showed a tendency of low heterogeneity, low fragmentation, and high regularization at landscape level, but an overall improvement and expansion of lightly eroded and easy-to-tackle patches as well as the partial improvement and fragmentation of seriously eroded and difficult-to-tackle patches at patch level.
Cornell, K.L.; Donovan, T.M.
2010-01-01
Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales. ?? Springer Science+Business Media B.V. 2009.
[Spatial scale effect of urban land use landscape pattern in Shanghai City].
Xu, Li-Hua; Yue, Wen Ze; Cao, Yu
2007-12-01
Based on geographic information system (GIS) and remote sensing (RS) techniques, the landscape classes of urban land use in Shanghai City were extracted from SPOT images with 5 m spatial resolution in 2002, and then, the classified data were applied to quantitatively explore the change patterns of several basic landscape metrics at different scales. The results indicated that landscape metrics were sensitive to grain- and extent variance. Urban landscape pattern was spatially dependent. In other words, different landscape metrics showed different responses to scale. The resolution of 40 m was an intrinsic observing scale for urban landscape in Shanghai City since landscape metrics showed random characteristics while the grain was less than 40 m. The extent of 24 km was a symbol scale in a series of extents, which was consistent with the boundary between urban built-up area and suburban area in Shanghai City. As a result, the extent of 12 km away from urban center would be an intrinsic handle scale for urban landscape in Shanghai City. However, due to the complexity of urban structure and asymmetry of urban spatial expansion, the intrinsic handle scale was not regular extent, and the square with size of 24 km was just an approximate intrinsic extent for Shanghai City.
Characterizing and Comparing Landscape Diversity Using GIS and a Contagion Index
Bernard R. Parresol; Joseph McCollum
1997-01-01
The purpose of this study was to examine the pattern land changes in forestcover types over the last two decades on three landscape level physiographic provinces of the state of Alabama, USA: (i) The Great Appalachian Valley Province, (ii) The Blue Ridge Talladega Mountain Province, and (iii) The Piedmont Province. Studies of spatial patterns of landscapes are useful...
J. P. Perkins; J. A. Thrailkill; W. J. Ripple; K. T. Hershey
1997-01-01
We investigated landscape characteristics around 41 Northern Spotted Owl (Strix occidentalis caurina) nest sites to assess habitat proportions and patterns on this highly fragmented landscape in the central Coast Ranges of Oregon. We compared the proportion of seven forest cover-types between nest sites and random sites at plot sizes of 112 ha, 456...
Fenderson, Lindsey E; Kovach, Adrienne I; Litvaitis, John A; O'Brien, Kathleen M; Boland, Kelly M; Jakubas, Walter J
2014-01-01
Landscape features of anthropogenic or natural origin can influence organisms' dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2–36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both barriers and facilitators of dispersal for an early successional habitat specialist in a fragmented landscape. PMID:24963381
Fenderson, Lindsey E; Kovach, Adrienne I; Litvaitis, John A; O'Brien, Kathleen M; Boland, Kelly M; Jakubas, Walter J
2014-05-01
Landscape features of anthropogenic or natural origin can influence organisms' dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2-36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both barriers and facilitators of dispersal for an early successional habitat specialist in a fragmented landscape.
NASA Astrophysics Data System (ADS)
Zhang, H.; Fan, J.
2015-12-01
The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 gC·m-2yr-1 in 2000, to 226.30 gC·m-2yr-1 in 2010, with a 3.70% increase; Soil and water conservation capacity has showed an obvious increment. (5) The grassland restoration program implementation evidently improved the structure and stability of the land use/ land cover. The climatic variations (temperature and precipitation) promoted vegetation growth.
Geographic variation in cowbird distribution, abundance, and parasitism
Morrison, M.L.; Hahn, D.C.; George, T. Luke; Dobkin, David S.
2002-01-01
We evaluated geographical patterns in the abundance and distribution of Brown-headed Cowbirds (Molothrus ater), and in the frequency of cowbird parasitism, across North America in relation to habitat fragmentation. We found no distinctive parasitism patterns at the national or even regional scales, but the species is most abundant in the Great Plains, the heart of their original range, and least common in the southeastern U.S. This situation is dynamic, because both the Brown-headed and two other cowbird species are actively expanding their ranges in the southern U.S. We focused almost entirely in this paper on the Brown-headed Cowbird, because it is the only endemic North American cowbird, its distribution is much wider, and it has been much more intensively studied. We determined that landscape is the most meaningful unit of scale for comparing cowbird parasitism patterns as, for example, in comparisons of northeastern and central hardwood forests within agricultural matrices, and suburbanized areas versus western coniferous forests. We concluded that cowbird parasitism patterns were broadly similar within all landscapes. Even comparisons between prominently dissimilar landscapes, such as hardwoods in agriculture and suburbia versus coniferous forest, display a striking similarity in the responses of cowbirds. Our review clearly indicated that proximity of feeding areas is the key factor influencing presence and parasitism patterns within the landscape. We considered intensity of landscape fragmentation from forest-dominated landscapes altered in a forest management context to fragmentation characterized by mixed suburbanization or agricultural development. Our review consistently identified an inverse relationship between extent of forest cover across the landscape and cowbird presence. Invariably, the variation seen in parasitism frequencies within a region was at least partially explained as a response to changes in forest cover. The most salient geographic aspect of cowbirds' response to landscape fragmentation is the time since fragmentation occurred. Eastern landscapes generally experienced 200 years ago the development and fragmentation that western landscapes experienced less than 75 years ago. Consequently, there is a broad east-west contrast in which more numerous human settlements and smaller unbroken forest stands are found in the East, a difference that permits cowbirds to be more pervasive and ubiquitous. The locality of suitable feeding areas is a hallmark trait of the cowbirds' strategy in exploiting specific forest fragments. Host abundance influences parasitism patterns only secondarily at the landscape scale. These two limiting factors come into play differently in different landscapes. For example, cowbird abundance in unbroken forested landscapes are limited primarily by the availability of foraging areas rather than by host density, whereas cowbirds are limited primarily by host availability in landscapes that are extensively fragmented with feeding areas.
Identification of scenically preferred forest landscapes
Roberta C. Patey; Richard M. Evans
1979-01-01
This study identified manipulated forest landscapes with a low understory shrub density as being esthetic-ally preferred over non-manipulated, dense understory landscapes. This landscape pattern was identified both qualitatively, by preference ratings of respondents, and quantitatively, by measuring the physical components of each landscape. Forest sites were selected...
Inverted edge effects on carbon stocks in human-dominated landscapes
NASA Astrophysics Data System (ADS)
Romitelli, I.; Keller, M.; Vieira, S. A.; Metzger, J. P.; Reverberi Tambosi, L.
2017-12-01
Although the importance of tropical forests to regulate greenhouse gases is well documented, little is known about what factors affect the ability of these forests to store carbon in human-dominated landscapes. Among those factors, the landscape structure, particularly the amount of forest cover, the type of matrix and edge effects, can have important roles. We tested how carbon stock is influenced by a combination of factors of landscape composition (pasture and forest cover), landscape configuration (edge effect) and relief factors (slope, elevation and aspect). To test those relationships, we performed a robust carbon stock estimation with inventory and LiDAR data in human-dominated landscapes from the Brazilian Atlantic forest region. The study area showed carbon stock mean 45.49 ± 9.34 Mg ha-1. The interaction between forest cover, edge effect and slope was the best combination explanatory of carbon stock. We observed an inverted edge effect pattern where carbon stock is higher close to the edges of the studied secondary forests. This inverted edge effect observed contradicts the usual pattern reported in the literature for mature forests. We suppose this pattern is related with a positive effect that edge conditions can have stimulating forest regeneration, but the underlying processes to explain the observed pattern should still be tested. Those results suggest that Carbon stocks in human-dominated and fragmented landscapes can be highly affected by the landscape structure, and particularly that edges conditions can favor carbon sequestration in regenerating tropical forests.
NASA Astrophysics Data System (ADS)
Linnik, Vitaly; Sokolov, Alexander; Saveliev, Anatoly; Mironenko, Iya
2017-04-01
As a result of the Chernobyl accident in 1986 landscapes of the Bryansk Region (Russia) were contaminated by Cs-137. In 1993 air-gamma survey with 100 m resolution was done in contaminated areas of the region, which revealed significant spatial heterogeneity of Cs-137 contamination. The initial "spotting" of contamination Cs-137, which in the spring of 1986 represented multi-scale complex patterns of contamination, was substantially transformed by 1993 as a result of erosion processes of various intensity. The purpose of this research was to obtain estimates of the transformation of initial Cs-137 patterns as influenced by different landscape factors. The study is based on the concept of sediment and hydrological connectivity. We apply GIS-based models considering lateral soil migration to analyze sediment cascade system. The study area is a test plot that has grey loamy soils (landscapes of the Opolje) with a size 10x16 km in the central part of the Bryansk Region, with more than 80% of the area under cultivation. Elevation levels are in the range of 140-210 m. Because of plowing, intense erosion processes have taken place. The slope angles in the lower parts of slopes reach 2-3 degrees. Maximum slopes in gullies reach 11,5 degrees. Cs-137 levels of contamination vary from 3,6 kBq/m2 to 35 3,6 kBq/m2. Over the past few decades the Cs-137 technique has been applied to determine net soil redistribution rates. It is applicable for medium long term (30 to 40 years) soil redistribution estimates. In this technique, the anthropogenic radionuclide Cs-137 is used as a sediment tracer from upland erosion studies to catchment sediment budgets, as well as to depositional areas in colluvial positions, valleys, river terraces, floodplains. The soil movement is primarily driven by water flow due to the gravity. The effect of gravity can be easily approximated using DEM derivatives. Cs-137 patterns have been investigated to estimate landscape connectivity and soil redistribution rates in different slope positions. In addition to the Cs-137 contamination, DEM parameters, such as slope angle, aspect, and different landscape indexes (wetness index etc.) have been estimated. Potential Cs-137 connectivity of hillslopes - floodplain or hillslopes -valley is characterized by lateral contributing area. To assess the relationship of Cs-137 with various landscape factors we used different statistical models. Analysis of the lateral redistribution of Cs-137 in the landscape is based on the assumption of primordial density in nonuniformity of Cs-137 deposition in different landscape positions. Relationship of Cs-137 connectivity for various landscape positions is presented. Fundamental differences of Cs-137 connectivity for slopes of southern and northern exposure are demonstrated.
[Effects of land use change on landscape pattern vulnerability in Yinchuan Basin, Northwest China].
Ren, Zhi-yuan; Zhang, Han
2016-01-01
Landscape pattern vulnerability reflects the instability and sensitivity of ecological system to external disturbances and helps to understand the status and trend of ecological environment. This paper used landscape sensitivity index and landscape adaptability index to construct the landscape pattern vulnerability index of Yinchuan Basin, and got the distribution of the landscape pattern vulnerability in 2001 and 2013. Our study explored the effect of the land use degree composite index, the integrated land use dynamic degree, the importance index of land use change and various types of land transfer on landscape pattern vulnerability. Results showed that the land use degree composite index was mainly caused by the increase of the arable land, forest and the construction land. The higher proportion of the arable land or forest, the lower the vulnerability was, and the construction land had the opposite effect. With the increase of integrated land use dynamic degree, the construction land significantly increased the vulnerability, followed by grassland, and the forest significantly decreased the vulnerability, followed by the arable land. As the importance index of land use change increasing, the arable land could significantly decrease the vulnerability, followed by the forest, the grassland had a weaker trend with no obvious pattern, and the construction land significantly increased the vulnerability. When the arable land, forest and the grassland were the maintypes of land use transfer, the increasing proportion of the construction land increased the vulnerability. When the construction land was the main type of land use transfer, the grassland and forest improved the vulnerability and the arable land had the opposite effect. Changes in the number of land use types influenced the spatial structure of land use to a certain extent, which could offer a reference on using and developing the land resources scientifically. The ternary diagram could reflect the impact of various types of and use change on the landscape vulnerability, which diagram enriched the content of the research on the land use and change.
Xiao, Rui; Jiang, Diwei; Christakos, George; Fei, Xufeng; Wu, Jiaping
2016-01-01
Soil sealing (loss of soil resources due to extensive land covering for the purpose of house building, road construction etc.) and subsequent soil landscape pattern changes constitute typical environmental problems in many places worldwide. Previous studies concentrated on soil sealing in urbanized regions, whereas rural areas have not been given sufficient attention. Accordingly, this paper studies soil landscape pattern dynamics (i.e., landscape pattern changes in response to rural anthropogenic activities) in the Tiaoxi watershed (Zhejiang province, eastern China), in which surface sealing is by far the predominant component of human forcing with respect to environmental change. A novel approach of quantifying the impacts of rural anthropogenic activities on soil resources is presented. Specifically, quantitative relationships were derived between five soil landscape pattern metrics (patch density, edge density, shape index, Shannon’s diversity index and aggregation index) and three rural anthropogenic activity indicators (anthropogenic activity intensity, distance to towns, and distance to roads) at two landscape block scales (3 and 5 km) between 1985 and 2010. The results showed that the Tiaoxi watershed experienced extensive rural settlement expansion and high rates of soil sealing. Soil landscapes became more fragmented, more irregular, more isolated, and less diverse. Relationships between soil landscape pattern changes and rural anthropogenic activities differed with the scale (spatial and temporal) and variable considered. In particular, the anthropogenic activity intensity was found to be the most important indicator explaining social development intensity, whereas the other two proximity indicators had a significant impact at certain temporal interval. In combination with scale effects, spatial dependency (correlation) was shown to play a key role that should be carefully taken into consideration in any relevant environmental study. Overall, the findings of this work suggest that soil sealing can be a critical human forcing issue with considerable consequences deserving serious attention by the experts, the public and the government alike. PMID:27832167
Xiao, Rui; Jiang, Diwei; Christakos, George; Fei, Xufeng; Wu, Jiaping
2016-01-01
Soil sealing (loss of soil resources due to extensive land covering for the purpose of house building, road construction etc.) and subsequent soil landscape pattern changes constitute typical environmental problems in many places worldwide. Previous studies concentrated on soil sealing in urbanized regions, whereas rural areas have not been given sufficient attention. Accordingly, this paper studies soil landscape pattern dynamics (i.e., landscape pattern changes in response to rural anthropogenic activities) in the Tiaoxi watershed (Zhejiang province, eastern China), in which surface sealing is by far the predominant component of human forcing with respect to environmental change. A novel approach of quantifying the impacts of rural anthropogenic activities on soil resources is presented. Specifically, quantitative relationships were derived between five soil landscape pattern metrics (patch density, edge density, shape index, Shannon's diversity index and aggregation index) and three rural anthropogenic activity indicators (anthropogenic activity intensity, distance to towns, and distance to roads) at two landscape block scales (3 and 5 km) between 1985 and 2010. The results showed that the Tiaoxi watershed experienced extensive rural settlement expansion and high rates of soil sealing. Soil landscapes became more fragmented, more irregular, more isolated, and less diverse. Relationships between soil landscape pattern changes and rural anthropogenic activities differed with the scale (spatial and temporal) and variable considered. In particular, the anthropogenic activity intensity was found to be the most important indicator explaining social development intensity, whereas the other two proximity indicators had a significant impact at certain temporal interval. In combination with scale effects, spatial dependency (correlation) was shown to play a key role that should be carefully taken into consideration in any relevant environmental study. Overall, the findings of this work suggest that soil sealing can be a critical human forcing issue with considerable consequences deserving serious attention by the experts, the public and the government alike.
Grace, J.B.; Guntenspergen, G.R.
1999-01-01
Here we propose that an important cause of variation in species density may be prior environmental conditions that continue to influence current patterns. In this paper we investigated the degree to which species density varies with location within the landscape, independent of contemporaneous environmental conditions. The area studied was a coastal marsh landscape subject to periodic storm events. To evaluate the impact of historical effects, it was assumed that the landscape position of a plot relative to the river's mouth ('distance from sea') and to the edge of a stream channel ('distance from shore') would correlate with the impact of prior storm events, an assumption supported by previous studies. To evaluate the importance of spatial location on species density, data were collected from five sites located at increasing distances from the river's mouth along the Middle Pearl River in Louisiana. At each site, plots were established systematically along transects perpendicular to the shoreline. For each of the 175 Plots, we measured elevation, soil salinity, percent of plot recently disturbed, percent of sunlight captured by the plant canopy (as a measure of plant abundance), and plant species density. Structural equation analysis ascertained the degree to which landscape position variables explained variation in species density that could not be explained by current environmental indicators. Without considering landscape variables, 54% of the variation in species density could be explained by the effects of salinity, flooding, and plant abundance. When landscape variables were included, distance from shore was unimportant but distance from sea explained an additional 12% of the variance in species density (R2 of final model = 66%). Based on these results it appears that at least some of the otherwise unexplained variation in species density can be attributed to landscape position, and presumably previous storm events. We suggest that future studies may gain additional insight into the factors controlling current patterns of species density by examining the effects of position within the landscape.
Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.
Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.
2011-01-01
The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.
Uprety, Yadav; Poudel, Ram C; Gurung, Janita; Chettri, Nakul; Chaudhary, Ram P
2016-05-03
Non-timber Forest Products (NTFPs), an important provisioning ecosystem services, are recognized for their contribution in rural livelihoods and forest conservation. Effective management through sustainable harvesting and market driven commercialization are two contrasting aspects that are bringing challenges in development of NTFPs sector. Identifying potential species having market value, conducting value chain analyses, and sustainable management of NTFPs need analysis of their use patterns by communities and trends at a regional scale. We analyzed use patterns, trends, and challenges in traditional use and management of NTFPs in the southern slope of Kangchenjunga Landscape, Eastern Himalaya and discussed potential implications for conservation and livelihoods. A total of 739 species of NTFPs used by the local people of Kangchenjunga Landscape were reported in the reviewed literature. Of these, the highest number of NTFPs was documented from India (377 species), followed by Nepal (363) and Bhutan (245). Though the reported species were used for 24 different purposes, medicinal and edible plants were the most frequently used NTFP categories in the landscape. Medicinal plants were used in 27 major ailment categories, with the highest number of species being used for gastro-intestinal disorders. Though the Kangchenjunga Landscape harbors many potential NTFPs, trade of NTFPs was found to be nominal indicating lack of commercialization due to limited market information. We found that the unsustainable harvesting and lack of marketing were the major constraints for sustainable management of NTFPs sector in the landscape despite of promising policy provisions. We suggest sustainable harvesting practices, value addition at local level, and marketing for promotion of NTFPs in the Kangchenjunga Landscape for income generation and livelihood improvement that subsequently contributes to conservation.
NASA Astrophysics Data System (ADS)
Murtha, T., Jr.; Duffy, C.; Cook, B. D.; Schroder, W.; Webster, D.; French, K. D.; Alcover, O.; Golden, C.; Balzotti, C.; Shaffer, D.
2016-12-01
Relying on a niche inheritance perspective, this paper discusses the long-term spatial and temporal dynamics of land-use management, agricultural decision making and patterns of resource availability in the tropical lowlands of Central America. We introduce and describe ongoing research that addresses a series of long standing questions about coupled natural and human history dynamics in the Central Maya lowlands, emphasizing the role of landscape and region to address these questions. First, we summarize the results of a CNH pilot study focused on the evolution of the regional landscape of Tikal, Guatemala. Particular attention is centered on how we integrated landscape survey, traditional archaeology and soil studies to understand the spatial and temporal dynamics of agricultural land use and intensification over a two thousand period. Additionally, we discuss how these results were integrated into remote sensing, hydrological and erosion models to better understand how past changes in available water and productive land compare to what we know about settlement patterns in the Tikal Region over that same time period. We not only describe how the Maya transformed this landscape, but also how the region influenced changing patterns of settlement and land use. We finish this section with a discussion of some of the unique challenges integrating archaeological information to study CNH dynamics during this pilot study. Second, we introduce a new project designed to `scale up' the pilot study for a macro-regional analysis of the lowland Maya landscape. The new project leverages a uniquely sampled LIDAR data set designed to refine measurements of above ground carbon storage. Our new project quantitatively examines these data for evidence for past human activity. Preliminary results offer a promising path for tightly integrating archaeology, natural science, remote sensing and modeling for studying CNH dynamics in the deep and recent past.
Simulating forest management and its effect on landscape pattern
Eric J. Gustafson
2017-01-01
Landscapes are characterized by their structure (the spatial arrangement of landscape elements), their ecological function (how ecological processes operate within that structure), and the dynamics of change (disturbance and recovery). Thus, understanding the dynamic nature of landscapes and predicting their future dynamics are of particular emphasis. Landscape change...
Landscape genetics and limiting factors
Samuel A. Cushman; Andrew J. Shirk; Erin L. Landguth
2013-01-01
Population connectivity is mediated by the movement of organisms or propagules through landscapes. However, little is known about how variation in the pattern of landscape mosaics affects the detectability of landscape genetic relationships. The goal of this paper is to explore the impacts of limiting factors on landscape genetic processes using simulation...
Simulation of Landscape Pattern of Old Growth Forests of Korean Pine by Block Kringing
Wang Zhengquan; Wang Qingcheng; Zhang Yandong
1997-01-01
The study area was located in Liangshui Natural Reserve. Xaozing'an Mountains, Northeastern China. Korean pine forests are the typical forest ecosystems and landscapes in this region. It is a high degress of spatial and temporal heterogeneity at different scales, which effected on landscape pattern and processes. In this paper we used the data of 144 plots and...
Erin L. Landguth; Bradley C. Fedy; Sara J. Oyler-McCance; Andrew L. Garey; Sarah L. Emel; Matthew Mumma; Helene H. Wagner; Marie-Josee Fortin; Samuel A. Cushman
2012-01-01
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population...
Critical thresholds in species` responses to landscape structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
With, K.A.; Crist, T.O.
1995-12-01
Critical thresholds are transition ranges across which small changes in spatial pattern produce abrupt shifts in ecological responses. Habitat fragmentation provides a familiar example of a critical threshold. As the landscape becomes dissected into smaller parcels of habitat. landscape connectivity-the functional linkage among habitat patches - may suddenly become disrupted, which may have important consequences for the distribution and persistence of populations. Landscape connectivity depends not only on the abundance and spatial patterning of habitat. but also on the habitat specificity and dispersal abilities of species. Habitat specialists with limited dispersal capabilities presumably have a much lower threshold to habitatmore » fragmentation than highly vagile species, which may perceive the landscape as functionally connected across a greater range of fragmentation severity. To determine where threshold effects in species, responses to landscape structure are likely to occur, a simulation model modified from percolation theory was developed. Our simulations predicted the distributional patterns of populations in different landscape mosaics, which we tested empirically using two grasshopper species (Orthoptera: Acrididae) that occur in the shortgrass prairie of north-central Colorado. The distribution of these two species in this grassland mosaic matched the predictions from our simulations. By providing quantitative predictions of threshold effects, this modelling approach may prove useful in the formulation of conservation strategies and assessment of land-use changes on species` distributional patterns and persistence.« less
Analysis of Trends in Fish Assemblages in Narragansett Bay, RI/MA
Estuarine fish are highly valued resources that are affected by several factors, including climate, landscape, pollution, and fishing pressure. Here, we examine patterns of variability in estuarine fish assemblages in Narragansett Bay, an estuary located in Rhode Island and Mass...
EFFECTS OF CHANGING SCALE ON LANDSCAPE PATTERN ANALYSIS: SCALING RELATIONS. (R827676)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
MULTISCALE ANALYSIS OF LANDSCAPE HETEROGENEITY: SCALE VARIANCE AND PATTERN METRICS. (R827676)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
EVALUATING THE IMPACT OF POLICY OPTIONS ON AGRICULTURAL LANDSCAPES: AN ALTERNATIVE-FUTURES APPROACH
Alternative-futures analysis was used to analyze different scenarios of future growth patterns and attendant resource allocations on the agricultural system of Oregon's Willamette River Basin. A stakeholder group formulated three policy alternatives: a continuation of current tr...
EFFECTS OF CHANGING SPATIAL EXTENT ON LANDSCAPE PATTERN ANALYSIS. (R827676)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
EFFECTS OF CHANGING GRAIN SIZE ON LANDSCAPE PATTERN ANALYSIS. (R827676)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2011-12-01
Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land use patterns and landscaping practices that would: (1) help to reduce non-point sources of nutrient pollution in urban watersheds; and (2) be likely to gain public support. This research will inform sustainable development policy while furthering interdisciplinary research in the fields of planning and water resource management.
Testing the Prey-Trap Hypothesis at Two Wildlife Conservancies in Kenya.
Dupuis-Desormeaux, Marc; Davidson, Zeke; Mwololo, Mary; Kisio, Edwin; Taylor, Sam; MacDonald, Suzanne E
2015-01-01
Protecting an endangered and highly poached species can conflict with providing an open and ecologically connected landscape for coexisting species. In Kenya, about half of the black rhino (Diceros bicornis) live in electrically fenced private conservancies. Purpose-built fence-gaps permit some landscape connectivity for elephant while restricting rhino from escaping. We monitored the usage patterns at these gaps by motion-triggered cameras and found high traffic volumes and predictable patterns of prey movement. The prey-trap hypothesis (PTH) proposes that predators exploit this predictable prey movement. We tested the PTH at two semi-porous reserves using two different methods: a spatial analysis and a temporal analysis. Using spatial analysis, we mapped the location of predation events with GPS and looked for concentration of kill sites near the gaps as well as conducting clustering and hot spot analysis to determine areas of statistically significant predation clustering. Using temporal analysis, we examined the time lapse between the passage of prey and predator and searched for evidence of active prey seeking and/or predator avoidance. We found no support for the PTH and conclude that the design of the fence-gaps is well suited to promoting connectivity in these types of conservancies.
Doing ecohydrology backward: Inferring wetland flow and hydroperiod from landscape patterns
NASA Astrophysics Data System (ADS)
Acharya, Subodh; Kaplan, David A.; Jawitz, James W.; Cohen, Matthew J.
2017-07-01
Human alterations to hydrology have globally impacted wetland ecosystems. Preventing or reversing these impacts is a principal focus of restoration efforts. However, restoration effectiveness is often hampered by limited information on historical landscape properties and hydrologic regime. To help address this gap, we developed a novel statistical approach for inferring flows and inundation frequency (i.e., hydroperiod, HP) in wetlands where changes in spatial vegetation and geomorphic patterns have occurred due to hydrologic alteration. We developed an analytical expression for HP as a transformation of the landscape-scale stage-discharge relationship. We applied this model to the Everglades "ridge-slough" (RS) landscape, a patterned, lotic peatland in southern Florida that has been drastically degraded by compartmentalization, drainage, and flow diversions. The new method reliably estimated flow and HP for a range of RS landscape patterns. Crucially, ridge-patch anisotropy and elevation above sloughs were strong drivers of flow-HP relationships. Increasing ridge heights markedly increased flow required to achieve sufficient HP to support peat accretion. Indeed, ridge heights inferred from historical accounts would require boundary flows 3-4 times greater than today, which agrees with restoration flow estimates from more complex, spatially distributed models. While observed loss of patch anisotropy allows HP targets to be met with lower flows, such landscapes likely fail to support other ecological functions. This work helps inform restoration flows required to restore stable ridge-slough patterning and positive peat accretion in this degraded ecosystem, and, more broadly, provides tools for exploring interactions between landscape and hydrology in lotic wetlands and floodplains.
Social network models predict movement and connectivity in ecological landscapes
Fletcher, R.J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, W.M.
2011-01-01
Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.
Landscape characteristics affect animal control by urban residents
Ecological patterns exist within urban landscapes. Among urban patterns of biodiversity, species occurrences may coincide with interactions between humans and wildlife. However, research focused on consequences of human reaction to interactions with wildlife is limited. We evalua...
Scott V. Ollinger; Marie-Louise Smith
2005-01-01
Understanding spatial patterns of net primary production (NPP) is central to the study of terrestrial ecosystems, but efforts are frequently hampered by a lack of spatial information regarding factors such as nitrogen availability and site history. Here, we examined the degree to which canopy nitrogen can serve as an indicator of patterns of NPP at the Bartlett...
J. E. Lundquist; R. A. Sommerfeld
2002-01-01
Various disturbances such as disease and management practices cause canopy gaps that change patterns of forest stand structure. This study examined the usefulness of digital image analysis using aerial photos, Fourier Tranforms, and cluster analysis to investigate how different spatial statistics are affected by spatial scale. The specific aims were to: 1) evaluate how...
Robinson, Stacie J.; Samuel, Michael D.; Lopez, Davin L.; Shelton, Paul
2012-01-01
One of the pervasive challenges in landscape genetics is detecting gene flow patterns within continuous populations of highly mobile wildlife. Understanding population genetic structure within a continuous population can give insights into social structure, movement across the landscape and contact between populations, which influence ecological interactions, reproductive dynamics or pathogen transmission. We investigated the genetic structure of a large population of deer spanning the area of Wisconsin and Illinois, USA, affected by chronic wasting disease. We combined multiscale investigation, landscape genetic techniques and spatial statistical modelling to address the complex questions of landscape factors influencing population structure. We sampled over 2000 deer and used spatial autocorrelation and a spatial principal components analysis to describe the population genetic structure. We evaluated landscape effects on this pattern using a spatial autoregressive model within a model selection framework to test alternative hypotheses about gene flow. We found high levels of genetic connectivity, with gradients of variation across the large continuous population of white-tailed deer. At the fine scale, spatial clustering of related animals was correlated with the amount and arrangement of forested habitat. At the broader scale, impediments to dispersal were important to shaping genetic connectivity within the population. We found significant barrier effects of individual state and interstate highways and rivers. Our results offer an important understanding of deer biology and movement that will help inform the management of this species in an area where overabundance and disease spread are primary concerns.
Wendel, Jochen; Buttenfield, Barbara P.; Stanislawski, Larry V.
2016-01-01
Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Tejedor, Alejandro; Zaliapin, Ilya; Reinhardt, Liam; Foufoula-Georgiou, Efi
2015-04-01
The aim of this study is to better understand the dynamic re-organization of an evolving landscape under a scenario of changing climatic forcing for improving our knowledge of geomorphic transport laws under transient conditions and developing predictive models of landscape response to external perturbations. Real landscape observations for long-term analysis are limited and to this end a high resolution controlled laboratory experiment was conducted at the St. Anthony Falls laboratory at the University of Minnesota. Elevation data were collected at temporal resolution of 5 mins and spatial resolution of 0.5 mm as the landscape approached steady state (constant uplift and precipitation rate) and in the transient state (under the same uplift and 5x precipitation). The results reveal rapid topographic re-organization under a five-fold precipitation increase with the fluvial regime expanding into the previously debris dominated regime, accelerated erosion happening at hillslope scales, and rivers shifting from an erosion-limited to a transport-limited regime. From a connectivity and clustering analysis of the erosional and depositional events, we demonstrate the strikingly different spatial patterns of landscape evolution under steady-state (SS) and transient-state (TS), even when the time under SS is "stretched" compared to that under TS such as to match the total volume and PDF of erosional and depositional amounts. We quantify the spatial coupling of hillslopes and channels and demonstrate that hillslopes lead and channels follow in re-organizing the whole landscape under such an amplified precipitation regime.
Landscape characteristics influence pond occupancy by frogs after accounting for detectability
Mazerolle, M.J.; Desrochers, A.; Rochefort, L.
2005-01-01
Many investigators have hypothesized that landscape attributes such as the amount and proximity of habitat are important for amphibian spatial patterns. This has produced a number of studies focusing on the effects of landscape characteristics on amphibian patterns of occurrence in patches or ponds, most of which conclude that the landscape is important. We identified two concerns associated with these studies: one deals with their applicability to other landscape types, as most have been conducted in agricultural landscapes; the other highlights the need to account for the probability of detection. We tested the hypothesis that landscape characteristics influence spatial patterns of amphibian occurrence at ponds after accounting for the probability of detection in little-studied peatland landscapes undergoing peat mining. We also illustrated the costs of not accounting for the probability of detection by comparing our results to conventional logistic regression analyses. Results indicate that frog occurrence increased with the percent cover of ponds within 100, 250, and 1000 m, as well as the amount of forest cover within 1000 m. However, forest cover at 250 m had a negative influence on frog presence at ponds. Not accounting for the probability of detection resulted in underestimating the influence of most variables on frog occurrence, whereas a few were overestimated. Regardless, we show that conventional logistic regression can lead to different conclusions than analyses accounting for detectability. Our study is consistent with the hypothesis that landscape characteristics are important in determining the spatial patterns of frog occurrence at ponds. We strongly recommend estimating the probability of detection in field surveys, as this will increase the quality and conservation potential of models derived from such data. ?? 2005 by the Ecological Society of America.
K.D. Brosofske; J. Chen; Thomas R. Crow; S.C. Saunders
1999-01-01
Increasing awareness of the importance of scale and landscape structure to landscape processes and concern about loss of biodiversity has resulted in efforts to understand patterns of biodiversity across multiple scales. We examined plant species distributions and their relationships to landscape structure at varying spatial scales across a pine barrens landscape in...
[Scale effect of Li-Xiang Railway construction impact on landscape pattern and its ecological risk].
Wang, De-zhi; Qiu, Peng-hua; Fang, Yuan-min
2015-08-01
As a large corridor project, plateau railway has multiple points and passes various sensitive environments along the railway. The determination of the scope of impact on ecological environment from railway construction is often controversial in ecological impact assessment work. Taking the Tangbu-Jiantang section of Li-Xiang Railway as study object, and using present land use map (1:10000) in 2012 and DEM as data sources, corridor cutting degree index ( CCI) and cumulative effect index of corridor (CCEI) were established by topology, buffer zone and landscape metrics methods. Besides, the ecological risk index used for railway construction was improved. By quantitative analysis of characteristics of the spatio-temporal change of landscape pattern and its evolution style at different spatial scales before and after railway construction, the most appropriate evaluation scale of the railway was obtained. Then the characteristics of the spatio-temporal variation of ecological risk within this scale before and after railway construction were analyzed. The results indicated that the cutting model and degree of railway corridor to various landscape types could be effectively reflected by CCI, and the exposure and harm relations between risk sources and risk receptors of railway can be measured by CCEI. After the railway construction, the railway corridor would cause a great deal of middle cutting effect on the landscape along the railroad, which would influence wood land and grassland landscape most greatly, while would cause less effect of edge cutting and internal cutting. Landscape indices within the 600 m buffer zone demonstrated the most obvious scale effect, therefore, the 600 m zone of the railway was set as the most suitable range of ecological impact assessment. Before railway construction, the low ecological risk level covered the biggest part of the 600 m assessment zone. However, after the railway construction, the ecological risk increased significantly, and the most part of the study area was at the moderate ecological risk level. The ecological risk presented ring-shaped and multi-kernel patterns, and was lower in the southern part than in the northern part of the study area.
Larsen, Laurel G.; Nicholas Aumen,; Bernhardt, Christopher E.; Vic Engel,; Givnish, Thomas J.; S Hagerthey, P McCormick; Harvey, Judson; Lynn Leonard,; McCormick, P.; McVoy, Christopher; Noe, Gregory; Nungesser, Martha K.; Rutchey, K.; Sklar, Fred; Troxler, Tiffany G.; Volin, John C.; Willard, Debra A.
2011-01-01
More than half of the original Everglades extent formed a patterned peat mosaic of elevated ridges, lower and more open sloughs, and tree islands aligned parallel to the dominant flow direction. This ecologically important landscape structure remained in a dynamic equilibrium for millennia prior to rapid degradation over the past century in response to human manipulation of the hydrologic system. Restoration of the patterned landscape structure is one of the primary objectives of the Everglades restoration effort. Recent research has revealed that three main drivers regulated feedbacks that initiated and maintained landscape structure: the spatial and temporal distribution of surface water depths, surface and subsurface flow, and phosphorus supply. Causes of recent degradation include but are not limited to perturbations to these historically important controls; shifts in mineral and sulfate supply may have also contributed to degradation. Restoring predrainage hydrologic conditions will likely preserve remaining landscape pattern structure, provided a sufficient supply of surface water with low nutrient and low total dissolved solids content exists to maintain a rainfall-driven water chemistry. However, because of hysteresis in landscape evolution trajectories, restoration of areas with a fully degraded landscape could require additional human intervention.
Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho
Tzeidle N. Wasserman; Samuel A. Cushman; Michael K. Schwartz; David O. Wallin
2010-01-01
Individual-based analyses relating landscape structure to genetic distances across complex landscapes enable rigorous evaluation of multiple alternative hypotheses linking landscape structure to gene flow. We utilize two extensions to increase the rigor of the individual-based causal modeling approach to inferring relationships between landscape patterns and gene flow...
Li, Yangfan; Li, Yi; Wu, Wei
2016-01-01
The concept of thresholds shows important implications for environmental and resource management. Here we derived potential landscape thresholds which indicated abrupt changes in water quality or the dividing points between exceeding and failing to meet national surface water quality standards for a rapidly urbanizing city on the Eastern Coast in China. The analysis of landscape thresholds was based on regression models linking each of the seven water quality variables to each of the six landscape metrics for this coupled land-water system. We found substantial and accelerating urban sprawl at the suburban areas between 2000 and 2008, and detected significant nonlinear relations between water quality and landscape pattern. This research demonstrated that a simple modeling technique could provide insights on environmental thresholds to support more-informed decision making in land use, water environmental and resilience management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessing the drivers shaping global patterns of urban vegetation landscape structure.
Dobbs, C; Nitschke, C; Kendal, D
2017-08-15
Vegetation is one of the main resources involve in ecosystem functioning and providing ecosystem services in urban areas. Little is known on the landscape structure patterns of vegetation existing in urban areas at the global scale and the drivers of these patterns. We studied the landscape structure of one hundred cities around the globe, and their relation to demography (population), socioeconomic factors (GDP, Gini Index), climate factors (temperature and rain) and topographic characteristics (altitude, variation in altitude). The data revealed that the best descriptors of landscape structure were amount, fragmentation and spatial distribution of vegetation. Populated cities tend to have less, more fragmented, less connected vegetation with a centre of the city with low vegetation cover. Results also provided insights on the influence of socioeconomics at a global scale, as landscape structure was more fragmented in areas that are economically unequal and coming from emergent economies. This study shows the effects of the social system and climate on urban landscape patterns that gives useful insights for the distribution in the provision of ecosystem services in urban areas and therefore the maintenance of human well-being. This information can support local and global policy and planning which is committing our cities to provide accessible and inclusive green space for all urban inhabitants. Copyright © 2017 Elsevier B.V. All rights reserved.
Kemfort, Jordan R; Towne, William F
2013-10-15
Honeybees learn the spatial relationship between the sun's pattern of movement and the landscape immediately surrounding their nest, which allows bees to locate the sun under overcast skies by reference to the landscape alone. Surprisingly, when bees have been transplanted from their natal landscape to a rotated twin landscape - such as from one treeline to a similar but differently oriented treeline - they fail to learn the relationship between the sun and the second landscape. This raises the question of whether bees can ever learn the relationship between the sun's pattern of movement and a landscape other than their natal one. Here we confirm, with new and necessary controls, that bees can indeed learn the relationship between the sun's pattern of movement and a second (that is, non-natal) landscape, if the second landscape is panoramically different from the bees' natal site. We transplanted bees from their natal site to a panoramically different second site and, 3 days later, tested the bees' knowledge of the relationship between the sun and the second landscape. The test involved observing the bees' communicative dances under overcast skies at a third site that was a rotated twin of the second. These bees oriented their dances using a memory of the sun's course in relation to the second landscape, indicating that they had learned this relationship. Meanwhile, control bees transplanted directly from the natal site to the third site, skipping the second, danced differently, confirming the importance of the experimental bees' experience at the second site.
Landscape pattern metrics and regional assessment
O'Neill, R. V.; Riitters, K.H.; Wickham, J.D.; Jones, K.B.
1999-01-01
The combination of remote imagery data, geographic information systems software, and landscape ecology theory provides a unique basis for monitoring and assessing large-scale ecological systems. The unique feature of the work has been the need to develop and interpret quantitative measures of spatial pattern-the landscape indices. This article reviews what is known about the statistical properties of these pattern metrics and suggests some additional metrics based on island biogeography, percolation theory, hierarchy theory, and economic geography. Assessment applications of this approach have required interpreting the pattern metrics in terms of specific environmental endpoints, such as wildlife and water quality, and research into how to represent synergystic effects of many overlapping sources of stress.
Deborah Ulinski Potter
1999-01-01
Previous publications discussed the results of my dissertation research on relationships between seasonality in precipitation and vegetation patterns at landscape scale. Summer precipitation at a study site in the Zuni Mountains, NM, was predicted from lightning strike and relative humidity data using multiple regression. Summer precipitation patterns were mapped using...
Analysing the impact of urban areas patterns on the mean annual flow of 43 urbanized catchments
NASA Astrophysics Data System (ADS)
Salavati, B.; Oudin, L.; Furusho, C.; Ribstein, P.
2015-06-01
It is often argued that urban areas play a significant role in catchment hydrology, but previous studies reported disparate results of urbanization impacts on stream flow. This might stem either from the difficulty to quantify the historical flow changes attributed to urbanization only (and not climate variability) or from the inability to decipher what type of urban planning is more critical for flows. In this study, we applied a hydrological model on 43 urban catchments in the United States to quantify the flow changes attributable to urbanization. Then, we tried to relate these flow changes to the changes of urban/impervious areas of the catchments. We argue that these spatial changes of urban areas can be more precisely characterized by landscape metrics, which enable analysing the patterns of historical urban growth. Landscape metrics combine the richness (the number) and evenness (the spatial distribution) of patch types represented on the landscape. Urbanization patterns within the framework of patch analysis have been widely studied but, to our knowledge, previous research works had not linked them to catchments hydrological behaviours. Our results showed that the catchments with larger impervious areas and larger mean patch areas are likely to have larger increase of runoff yield.
Temporally variable environments maintain more beta-diversity in Mediterranean landscapes
NASA Astrophysics Data System (ADS)
Martin, Beatriz; Ferrer, Miguel
2015-10-01
We examined the relationships between different environmental factors and the alpha and beta-diversity of terrestrial vertebrates (birds, mammals, amphibians and reptiles) in a Mediterranean region at the landscape level. We investigated whether the mechanisms underlying alpha and beta-diversity patterns are influenced by energy availability, habitat heterogeneity and temporal variability and if the drivers of the diversity patterns differed between both components of diversity. We defined alpha-diversity as synonym of species richness whereas beta-diversity was measured as distinctiveness. We evaluated a total of 13 different predictors using generalized linear mixed model (GLMM) analysis. Habitat spatial heterogeneity increased alpha-diversity, but contrastingly, it did not significantly affect beta-diversity among sites. Disturbed landscapes may show higher habitat spatial variation and higher alpha-diversity due to the contribution of highly generalist species that are wide-distributed and do not differ in composition (beta-diversity) among different sites within the region. Contrastingly, higher beta-diversity levels were negatively related to more stable sites in terms of temporal environmental variation. This negative relationship between environmental stability and beta-diversity levels is explained in terms of species adaptation to the local environmental conditions. Our study highlights the importance of temporal environmental variability in maintaining beta-diversity patterns under highly variable environmental conditions.
Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds
Flather, C.H.; Sauer, J.R.
1996-01-01
The hypothesis that Neotropical migrant birds may be undergoing widespread declines due to land use activities on the breeding grounds has been examined primarily by synthesizing results from local studies. Growing concern for the cumulative influence of land use activities on ecological systems has heightened the need for large-scale studies to complement what has been observed at local scales. We investigated possible landscape effects on Neotropical migrant bird populations for the eastern United States by linking two large-scale inventories designed to monitor breeding-bird abundances and land use patterns. The null hypothesis of no relation between landscape structure and Neotropical migrant abundance was tested by correlating measures of landscape structure with bird abundance, while controlling for the geographic distance among samples. Neotropical migrants as a group were more 'sensitive' to landscape structure than either temperate migrants or permanent residents. Neotropical migrants tended to be more abundant in landscapes with a greater proportion of forest and wetland habitats, fewer edge habitats, large forest patches, and with forest habitats well dispersed throughout the scene. Permanent residents showed few correlations with landscape structure and temperate migrants were associated with habitat diversity and edge attributes rather than with the amount, size, and dispersion of forest habitats. The association between Neotropical migrant abundance and forest fragmentation differed among physiographic strata, suggesting that land-scape context affects observed relations between bird abundance and landscape structure. Finally, associations between landscape structure and temporal trends in Neotropical migrant abundance were negatively correlated with forest habitats. These results suggest that extrapolation of patterns observed in some landscapes is not likely to hold regionally, and that conservation policies must consider the variation in landscape structure associations observed among different types of bird species and in physiographic strata with varying land use histories.
Continental-scale quantification of landscape values using social media data.
van Zanten, Boris T; Van Berkel, Derek B; Meentemeyer, Ross K; Smith, Jordan W; Tieskens, Koen F; Verburg, Peter H
2016-11-15
Individuals, communities, and societies ascribe a diverse array of values to landscapes. These values are shaped by the aesthetic, cultural, and recreational benefits and services provided by those landscapes. However, across the globe, processes such as urbanization, agricultural intensification, and abandonment are threatening landscape integrity, altering the personally meaningful connections people have toward specific places. Existing methods used to study landscape values, such as social surveys, are poorly suited to capture dynamic landscape-scale processes across large geographic extents. Social media data, by comparison, can be used to indirectly measure and identify valuable features of landscapes at a regional, continental, and perhaps even worldwide scale. We evaluate the usefulness of different social media platforms-Panoramio, Flickr, and Instagram-and quantify landscape values at a continental scale. We find Panoramio, Flickr, and Instagram data can be used to quantify landscape values, with features of Instagram being especially suitable due to its relatively large population of users and its functional ability of allowing users to attach personally meaningful comments and hashtags to their uploaded images. Although Panoramio, Flickr, and Instagram have different user profiles, our analysis revealed similar patterns of landscape values across Europe across the three platforms. We also found variables describing accessibility, population density, income, mountainous terrain, or proximity to water explained a significant portion of observed variation across data from the different platforms. Social media data can be used to extend our understanding of how and where individuals ascribe value to landscapes across diverse social, political, and ecological boundaries.
Continental-scale quantification of landscape values using social media data
van Zanten, Boris T.; Van Berkel, Derek B.; Meentemeyer, Ross K.; Smith, Jordan W.; Tieskens, Koen F.
2016-01-01
Individuals, communities, and societies ascribe a diverse array of values to landscapes. These values are shaped by the aesthetic, cultural, and recreational benefits and services provided by those landscapes. However, across the globe, processes such as urbanization, agricultural intensification, and abandonment are threatening landscape integrity, altering the personally meaningful connections people have toward specific places. Existing methods used to study landscape values, such as social surveys, are poorly suited to capture dynamic landscape-scale processes across large geographic extents. Social media data, by comparison, can be used to indirectly measure and identify valuable features of landscapes at a regional, continental, and perhaps even worldwide scale. We evaluate the usefulness of different social media platforms—Panoramio, Flickr, and Instagram—and quantify landscape values at a continental scale. We find Panoramio, Flickr, and Instagram data can be used to quantify landscape values, with features of Instagram being especially suitable due to its relatively large population of users and its functional ability of allowing users to attach personally meaningful comments and hashtags to their uploaded images. Although Panoramio, Flickr, and Instagram have different user profiles, our analysis revealed similar patterns of landscape values across Europe across the three platforms. We also found variables describing accessibility, population density, income, mountainous terrain, or proximity to water explained a significant portion of observed variation across data from the different platforms. Social media data can be used to extend our understanding of how and where individuals ascribe value to landscapes across diverse social, political, and ecological boundaries. PMID:27799537
Grains of connectivity: analysis at multiple spatial scales in landscape genetics.
Galpern, Paul; Manseau, Micheline; Wilson, Paul
2012-08-01
Landscape genetic analyses are typically conducted at one spatial scale. Considering multiple scales may be essential for identifying landscape features influencing gene flow. We examined landscape connectivity for woodland caribou (Rangifer tarandus caribou) at multiple spatial scales using a new approach based on landscape graphs that creates a Voronoi tessellation of the landscape. To illustrate the potential of the method, we generated five resistance surfaces to explain how landscape pattern may influence gene flow across the range of this population. We tested each resistance surface using a raster at the spatial grain of available landscape data (200 m grid squares). We then used our method to produce up to 127 additional grains for each resistance surface. We applied a causal modelling framework with partial Mantel tests, where evidence of landscape resistance is tested against an alternative hypothesis of isolation-by-distance, and found statistically significant support for landscape resistance to gene flow in 89 of the 507 spatial grains examined. We found evidence that major roads as well as the cumulative effects of natural and anthropogenic disturbance may be contributing to the genetic structure. Using only the original grid surface yielded no evidence for landscape resistance to gene flow. Our results show that using multiple spatial grains can reveal landscape influences on genetic structure that may be overlooked with a single grain, and suggest that coarsening the grain of landcover data may be appropriate for highly mobile species. We discuss how grains of connectivity and related analyses have potential landscape genetic applications in a broad range of systems. © 2012 Blackwell Publishing Ltd.
Bernard R. Parresol
2011-01-01
Studies of spatial patterns of landscapes are useful to quantify human impact, predict wildlife effects, or describe variability of landscape features. A common approach to identify and quantify landscape structure is with a landscape scale model known as a contagion index. A contagion index quantifies two distinct components of landscape diversity: composition and...
Nistelberger, Heidi; Byrne, Margaret; Coates, David; Roberts, J. Dale
2014-01-01
The Yilgarn Banded Iron Formations of Western Australia are topographical features that behave as terrestrial islands within the otherwise flat, semi-arid landscape. The formations are characterised by a high number of endemic species, some of which are distributed across multiple formations without inhabiting the intervening landscape. These species provide an ideal context for phylogeographic analysis, to investigate patterns of genetic variation at both spatial and temporal scales. We examined genetic variation in the spirostreptid millipede, Atelomastix bamfordi, found on five of these Banded Iron Formations at two mitochondrial loci and 11 microsatellite loci. Strong phylogeographic structuring indicated the five populations became isolated during the Pleistocene, a period of intensifying aridity in this landscape, when it appears populations have been restricted to pockets of moist habitat provided by the formations. The pattern of reciprocal monophyly identified within the mtDNA and strong differentiation within the nuclear microsatellite data highlight the evolutionary significance of these divergent populations and we suggest the degree of differentiation warrants designation of each as a conservation unit. PMID:24663390
Multiresolution analysis of characteristic length scales with high-resolution topographic data
NASA Astrophysics Data System (ADS)
Sangireddy, Harish; Stark, Colin P.; Passalacqua, Paola
2017-07-01
Characteristic length scales (CLS) define landscape structure and delimit geomorphic processes. Here we use multiresolution analysis (MRA) to estimate such scales from high-resolution topographic data. MRA employs progressive terrain defocusing, via convolution of the terrain data with Gaussian kernels of increasing standard deviation, and calculation at each smoothing resolution of (i) the probability distributions of curvature and topographic index (defined as the ratio of slope to area in log scale) and (ii) characteristic spatial patterns of divergent and convergent topography identified by analyzing the curvature of the terrain. The MRA is first explored using synthetic 1-D and 2-D signals whose CLS are known. It is then validated against a set of MARSSIM (a landscape evolution model) steady state landscapes whose CLS were tuned by varying hillslope diffusivity and simulated noise amplitude. The known CLS match the scales at which the distributions of topographic index and curvature show scaling breaks, indicating that the MRA can identify CLS in landscapes based on the scaling behavior of topographic attributes. Finally, the MRA is deployed to measure the CLS of five natural landscapes using meter resolution digital terrain model data. CLS are inferred from the scaling breaks of the topographic index and curvature distributions and equated with (i) small-scale roughness features and (ii) the hillslope length scale.
Wallace, C.S.A.; Marsh, S.E.
2005-01-01
Our study used geostatistics to extract measures that characterize the spatial structure of vegetated landscapes from satellite imagery for mapping endangered Sonoran pronghorn habitat. Fine spatial resolution IKONOS data provided information at the scale of individual trees or shrubs that permitted analysis of vegetation structure and pattern. We derived images of landscape structure by calculating local estimates of the nugget, sill, and range variogram parameters within 25 ?? 25-m image windows. These variogram parameters, which describe the spatial autocorrelation of the 1-m image pixels, are shown in previous studies to discriminate between different species-specific vegetation associations. We constructed two independent models of pronghorn landscape preference by coupling the derived measures with Sonoran pronghorn sighting data: a distribution-based model and a cluster-based model. The distribution-based model used the descriptive statistics for variogram measures at pronghorn sightings, whereas the cluster-based model used the distribution of pronghorn sightings within clusters of an unsupervised classification of derived images. Both models define similar landscapes, and validation results confirm they effectively predict the locations of an independent set of pronghorn sightings. Such information, although not a substitute for field-based knowledge of the landscape and associated ecological processes, can provide valuable reconnaissance information to guide natural resource management efforts. ?? 2005 Taylor & Francis Group Ltd.
Atuo, Fidelis Akunke; O'Connell, Timothy John
2017-07-01
The likelihood of encountering a predator influences prey behavior and spatial distribution such that non-consumptive effects can outweigh the influence of direct predation. Prey species are thought to filter information on perceived predator encounter rates in physical landscapes into a landscape of fear defined by spatially explicit heterogeneity in predation risk. The presence of multiple predators using different hunting strategies further complicates navigation through a landscape of fear and potentially exposes prey to greater risk of predation. The juxtaposition of land cover types likely influences overlap in occurrence of different predators, suggesting that attributes of a landscape of fear result from complexity in the physical landscape. Woody encroachment in grasslands furnishes an example of increasing complexity with the potential to influence predator distributions. We examined the role of vegetation structure on the distribution of two avian predators, Red-tailed Hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyaneus ), and the vulnerability of a frequent prey species of those predators, Northern Bobwhite ( Colinus virginianus ). We mapped occurrences of the raptors and kill locations of Northern Bobwhite to examine spatial vulnerability patterns in relation to landscape complexity. We use an offset model to examine spatially explicit habitat use patterns of these predators in the Southern Great Plains of the United States, and monitored vulnerability patterns of their prey species based on kill locations collected during radio telemetry monitoring. Both predator density and predation-specific mortality of Northern Bobwhite increased with vegetation complexity generated by fine-scale interspersion of grassland and woodland. Predation pressure was lower in more homogeneous landscapes where overlap of the two predators was less frequent. Predator overlap created areas of high risk for Northern Bobwhite amounting to 32% of the land area where landscape complexity was high and 7% where complexity was lower. Our study emphasizes the need to evaluate the role of landscape structure on predation dynamics and reveals another threat from woody encroachment in grasslands.
Complementary habitat use by wild bees in agro-natural landscapes.
Mandelik, Yael; Winfree, Rachael; Neeson, Thomas; Kremen, Claire
2012-07-01
Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat perspective in managing these landscapes.
Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William
2014-08-01
Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.
Mapping young forest in Wisconsin
Mark Nelson; Kirk Stueve; Charles Perry; Dale Gormanson; Chengquan Huang; Sean. Healey
2012-01-01
Population declines of early successional forest-associated wildlife species have been linked to declines in habitat abundance. Forest Inventory and Analysis (FIA) data can be used to estimate composition and change in 'young' forest, but such information typically lacks spatial specificity for determining landscape patterns that also affect habitat...
Estimating Landscape Pattern Metrics from a Sample of Land Cover
Although landscape pattern metrics can be computed directly from wall-to-wall land-cover maps, statistical sampling offers a practical alternative when complete coverage land-cover information is unavailable. Partitioning a region into spatial units (“blocks”) to create a samplin...
A Physics-Inspired Mechanistic Model of Migratory Movement Patterns in Birds.
Revell, Christopher; Somveille, Marius
2017-08-29
In this paper, we introduce a mechanistic model of migratory movement patterns in birds, inspired by ideas and methods from physics. Previous studies have shed light on the factors influencing bird migration but have mainly relied on statistical correlative analysis of tracking data. Our novel method offers a bottom up explanation of population-level migratory movement patterns. It differs from previous mechanistic models of animal migration and enables predictions of pathways and destinations from a given starting location. We define an environmental potential landscape from environmental data and simulate bird movement within this landscape based on simple decision rules drawn from statistical mechanics. We explore the capacity of the model by qualitatively comparing simulation results to the non-breeding migration patterns of a seabird species, the Black-browed Albatross (Thalassarche melanophris). This minimal, two-parameter model was able to capture remarkably well the previously documented migration patterns of the Black-browed Albatross, with the best combination of parameter values conserved across multiple geographically separate populations. Our physics-inspired mechanistic model could be applied to other bird and highly-mobile species, improving our understanding of the relative importance of various factors driving migration and making predictions that could be useful for conservation.
Peter M. Brown; Merrill R. Kaufmann; Wayne D. Shepperd
1999-01-01
Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine - Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire...
Park, Sohyun; Hepcan, Çiğdem C; Hepcan, Şerif; Cook, Edward A
2014-10-01
Although ecological connectivity conservation in urban areas has recently been recognized as an important issue, less is known about its relationship to urban form and landscape pattern. This study investigates how urban morphology influences regional ecosystem pattern and landscape connectivity. Two metropolitan landscapes, Phoenix, AZ, USA, and Izmir, Turkey, were compared, both of which are fast-growing regions in their national context. A wide range of variables were considered for identifying natural and urban properties. The natural characteristics include typology of urban ecosystems, urban to natural cover ratio, dominant habitat type, urban biodiversity, landscape context, and connectivity conservation efforts. Urban parameters examine urban form, urban extent, urban cover proportion, growth rate, populations, urban gradient, major drivers of urbanization, urban density, and mode/approach of urban development. Twelve landscape metrics were measured and compared across the natural patches. Results show that there is little difference in landscape connectivity in the rural zones of Phoenix and Izmir, although Phoenix has slightly higher connectivity values. The connectivity variance in urbanized areas, however, is significantly dependent on the region. For example, Phoenix urban zones have substantially lower connectivity than either urban or suburban zones in Izmir. Findings demonstrate that small and compact urban settlements with more dense populations are more likely to conserve landscape connectivity compared to multiple-concentric but amalgamated urban form spreading all over the landscape (aka urban sprawl).
Ecohydrologic role of solar radiation on landscape evolution
NASA Astrophysics Data System (ADS)
Yetemen, Omer; Istanbulluoglu, Erkan; Flores-Cervantes, J. Homero; Vivoni, Enrique R.; Bras, Rafael L.
2015-02-01
Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspect has a marked influence on vegetation patterns and landscape morphology. Model predictions are corroborated using limited field observations in central NM and other locations with similar conditions. We design a set of comparative LEM simulations to investigate the role of spatially explicit solar radiation on landscape ecohydro-geomorphic development under different uplift scenarios. Aspect-control and network-control are identified as the two main drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of these short-term ecohdrologic patterns emerged in modeled landscapes. As north facing slopes (NFS) get steeper by continuing uplift they support erosion-resistant denser vegetation cover which leads to further slope steepening until erosion and uplift attains a dynamic equilibrium. Conversely, on south facing slopes (SFS), as slopes grow with uplift, increased solar radiation exposure with slope supports sparser biomass and shallower slopes. At the landscape scale, these differential erosion processes lead to asymmetric development of catchment forms, consistent with regional observations. Understanding of ecohydrogeomorphic evolution will improve to assess the impacts of past and future climates on landscape response and morphology.
Landscape ecological security assessment based on projection pursuit in Pearl River Delta.
Gao, Yang; Wu, Zhifeng; Lou, Quansheng; Huang, Huamei; Cheng, Jiong; Chen, Zhangli
2012-04-01
Regional landscape ecological security is an important issue for ecological security, and has a great influence on national security and social sustainable development. The Pearl River Delta (PRD) in southern China has experienced rapid economic development and intensive human activities in recent years. This study, based on landscape analysis, provides a method to discover the alteration of character among different landscape types and to understand the landscape ecological security status. Based on remotely sensed products of the Landsat 5 TM images in 1990 and the Landsat 7 ETM+ images in 2005, landscape classification maps of nine cities in the PRD were compiled by implementing Remote Sensing and Geographic Information System technology. Several indices, including aggregation, crush index, landscape shape index, Shannon's diversity index, landscape fragile index, and landscape security adjacent index, were applied to analyze spatial-temporal characteristics of landscape patterns in the PRD. A landscape ecological security index based on these outcomes was calculated by projection pursuit using genetic algorithm. The landscape ecological security of nine cities in the PRD was thus evaluated. The main results of this research are listed as follows: (1) from 1990 to 2005, the aggregation index, crush index, landscape shape index, and Shannon's diversity index of nine cities changed little in the PRD, while the landscape fragile index and landscape security adjacent index changed obviously. The landscape fragile index of nine cities showed a decreasing trend; however, the landscape security adjacent index has been increasing; (2) from 1990 to 2005, landscape ecology of the cities of Zhuhai and Huizhou maintained a good security situation. However, there was a relatively low value of ecological security in the cities of Dongguan and Foshan. Except for Foshan and Guangzhou, whose landscape ecological security situation were slightly improved, the cities had reduced values in landscape ecological security, with the most decreased number 0.52 in Zhaoqing. Results of this study offer important information for regional eco-construction and natural resource exploitation.
NASA Astrophysics Data System (ADS)
Zhang, Nannnan; Wang, Rongbao; Zhang, Feng
2018-04-01
Serious land desertification and sandified threaten the urban ecological security and the sustainable economic and social development. In recent years, a large number of mobile sand dunes in Horqin sandy land flow into the northwest of Liaoning Province under the monsoon, make local agriculture suffer serious harm. According to the characteristics of desertification land in northwestern Liaoning, based on the First National Geographical Survey data, the Second National Land Survey data and the 1984-2014 Landsat satellite long time sequence data and other multi-source data, we constructed a remote sensing monitoring index system of desertification land in Northwest Liaoning. Through the analysis of space-time-spectral characteristics of desertification land, a method for multi-spectral remote sensing image recognition of desertification land under time-space constraints is proposed. This method was used to identify and extract the distribution and classification of desertification land of Chaoyang City (a typical citie of desertification in northwestern Liaoning) in 2008 and 2014, and monitored the changes and transfers of desertification land from 2008 to 2014. Sandification information was added to the analysis of traditional landscape changes, improved the analysis model of desertification land landscape index, and the characteristics and laws of landscape dynamics and landscape pattern change of desertification land from 2008 to 2014 were analyzed and revealed.
Spatiotemporal dynamics of landscape pattern and hydrologic process in watershed systems
NASA Astrophysics Data System (ADS)
Randhir, Timothy O.; Tsvetkova, Olga
2011-06-01
SummaryLand use change is influenced by spatial and temporal factors that interact with watershed resources. Modeling these changes is critical to evaluate emerging land use patterns and to predict variation in water quantity and quality. The objective of this study is to model the nature and emergence of spatial patterns in land use and water resource impacts using a spatially explicit and dynamic landscape simulation. Temporal changes are predicted using a probabilistic Markovian process and spatial interaction through cellular automation. The MCMC (Monte Carlo Markov Chain) analysis with cellular automation is linked to hydrologic equations to simulate landscape patterns and processes. The spatiotemporal watershed dynamics (SWD) model is applied to a subwatershed in the Blackstone River watershed of Massachusetts to predict potential land use changes and expected runoff and sediment loading. Changes in watershed land use and water resources are evaluated over 100 years at a yearly time step. Results show high potential for rapid urbanization that could result in lowering of groundwater recharge and increased storm water peaks. The watershed faces potential decreases in agricultural and forest area that affect open space and pervious cover of the watershed system. Water quality deteriorated due to increased runoff which can also impact stream morphology. While overland erosion decreased, instream erosion increased from increased runoff from urban areas. Use of urban best management practices (BMPs) in sensitive locations, preventive strategies, and long-term conservation planning will be useful in sustaining the watershed system.
Xu, Hui Qiu; Huang, Yin Hua; Wu, Zhi Feng; Cheng, Jiong; Li, Cheng
2016-10-01
Based on 641 agricultural top soil samples (0-20 cm) and land use map in 2005 of Guangzhou, we used single-factor pollution indices and Pearson/Spearman correlation and partial redundancy analyses and quantified the soil contamination with As and Cd and their relationships with landscape heterogeneity at three grid scales of 2 km×2 km, 5 km×5 km, and 10 km×10 km as well as the determinant landscape heterogeneity factors at a certain grid scale. 5.3% and 7.2% of soil samples were contaminated with As and Cd, respectively. At the three scales, the agricultural soil As and Cd contamination were generally significantly correlated with parent materials' composition, river/road density and landscape patterns of several land use types, indicating the parent materials, sewage irrigation and human activities (e.g., industrial and traffic activities, and the additions of pesticides and fertilizers) were possibly the main input pathways of trace metals. Three subsets of landscape heterogeneity variables (i.e., parent materials, distance-density variables, and landscape patterns) could explain 12.7%-42.9% of the variation of soil contamination with As and Cd, of which the explanatory power increased with the grid scale and the determinant factors varied with scales. Parent materials had higher contribution to the variations of soil contamination at the 2 and 10 km grid scales, while the contributions of landscape patterns and distance-density variables generally increased with the grid scale. Adjusting the distribution of cropland and optimizing the landscape pattern of land use types are important ways to reduce soil contamination at local scales, which urban planners and decision makers should pay more attention to.
Yang, Meng; Li, Xiu-zhen; Yang, Zhao-ping; Hu, Yuan-man; Wen, Qing-chun
2007-11-01
Based on GIS, the spatial distribution of soil loss and sediment yield in Heishui and Zhenjiangguan sub-watersheds at the upper reaches of Minjiang River was simulated by using sediment delivery-distribution (SEDD) model, and the effects of land use/cover types on soil erosion and sediment yield were discussed, based on the simulated results and related land use maps. A landscape index named location-weighted landscape contrast index (LCI) was calculated to evaluate the effects of landscape components' spatial distribution, weight, and structure of land use/cover on soil erosion. The results showed the soil erosion modulus varied with land use pattern, and decreased in the order of bare rock > urban/village > rangeland > farmland > shrub > forest. There were no significant differences in sediment yield modules among different land use/covers. In the two sub-watersheds, the spatial distribution of land use/covers on slope tended to decrease the final sediment load at watershed outlet, hut as related to relative elevation, relative distance, and flow length, the spatial distribution tended to increase sediment yield. The two sub-watersheds had different advantages as related to landscape components' spatial distribution, but, when the land use/cover weight was considered, the advantages of Zhenjiangguan sub-watershed increased. If the land use/cover structure was considered in addition, the landscape pattern of Zhenjiangguan subwatershed was better. Therefore, only the three elements, i.e., landscape components' spatial distribution, land use/cover weight, and land use/cover structure, were considered comprehensively, can we get an overall evaluation on the effects of landscape pattern on soil erosion. The calculation of LCI related to slope suggested that this index couldn' t accurately reflect the effects of land use/cover weight and structure on soil erosion, and thus, needed to be modified.
Integration of geological remote-sensing techniques in subsurface analysis
Taranik, James V.; Trautwein, Charles M.
1976-01-01
Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.
AN INDICATOR OF FOREST DYNAMICS USING A SHIFTING LANDSCAPE MOSAIC
The composition of a landscape is a fundamental indicator in land-cover pattern assessments. The objective of this paper was to evaluate a landscape composition indicator called ‘landscape mosaic’ as a framework for interpreting land-cover dynamics over a 9-year period in a 360,...
Wu, Tao; Zhao, Dong-zhi; Zhang, Feng-shou; Wei, Bao-quan
2011-07-01
Based on the comprehensive consideration of the high resolution characteristics of remote sensing data and the current situation of land cover and land use in Dayang River Estuary wetland, a classification system with different resolutions of wetland landscape in the Estuary was established. The landscape pattern indices and landscape transition matrix were calculated by using the high resolution remote sensing data, and the dynamic changes of the landscape pattern from 1984 to 2008 were analyzed. In the study period, the wetland landscape components changed drastically. Wetland landscape transferred from natural wetland into artificial wetland, and wetland core regional area decreased. Natural wetland's largest patch area index descended, and the fragmentation degree ascended; while artificial wetland area expanded, its patch number decreased, polymerization degree increased, and the maximum patch area index had an obvious increasing trend. Increasing human activities, embankment construction, and reclamation for aquaculture were the main causes for the decrease of wetland area and the degradation of the ecological functions of Dayang River Estuary. To constitute long-term scientific and reasonable development plan, establish wetland nature reserves, protect riverway, draft strict inspective regimes for aquaculture reclamation, and energetically develop resource-based tourism industry would be the main strategies for the protection of the estuarine wetland.
Giotto, Nina; Gerard, Jean-François; Ziv, Alon; Bouskila, Amos; Bar-David, Shirli
2015-01-01
The way in which animals move and use the landscape is influenced by the spatial distribution of resources, and is of importance when considering species conservation. We aimed at exploring how landscape-related factors affect a large herbivore's space-use patterns by using a combined approach, integrating movement (displacement and recursions) and habitat selection analyses. We studied the endangered Asiatic wild ass (Equus hemionus) in the Negev Desert, Israel, using GPS monitoring and direct observation. We found that the main landscape-related factors affecting the species' space-use patterns, on a daily and seasonal basis, were vegetation cover, water sources and topography. Two main habitat types were selected: high-elevation sites during the day (specific microclimate: windy on warm summer days) and streambed surroundings during the night (coupled with high vegetation when the animals were active in summer). Distribution of recursion times (duration between visits) revealed a 24-hour periodicity, a pattern that could be widespread among large herbivores. Characterizing frequently revisited sites suggested that recursion movements were mainly driven by a few landscape features (water sources, vegetation patches, high-elevation points), but also by social factors, such as territoriality, which should be further explored. This study provided complementary insights into the space-use patterns of E. hemionus. Understanding of the species' space-use patterns, at both large and fine spatial scale, is required for developing appropriate conservation protocols. Our approach could be further applied for studying the space-use patterns of other species in heterogeneous landscapes.
Giotto, Nina; Gerard, Jean-François; Ziv, Alon; Bouskila, Amos; Bar-David, Shirli
2015-01-01
The way in which animals move and use the landscape is influenced by the spatial distribution of resources, and is of importance when considering species conservation. We aimed at exploring how landscape-related factors affect a large herbivore’s space-use patterns by using a combined approach, integrating movement (displacement and recursions) and habitat selection analyses. We studied the endangered Asiatic wild ass (Equus hemionus) in the Negev Desert, Israel, using GPS monitoring and direct observation. We found that the main landscape-related factors affecting the species’ space-use patterns, on a daily and seasonal basis, were vegetation cover, water sources and topography. Two main habitat types were selected: high-elevation sites during the day (specific microclimate: windy on warm summer days) and streambed surroundings during the night (coupled with high vegetation when the animals were active in summer). Distribution of recursion times (duration between visits) revealed a 24-hour periodicity, a pattern that could be widespread among large herbivores. Characterizing frequently revisited sites suggested that recursion movements were mainly driven by a few landscape features (water sources, vegetation patches, high-elevation points), but also by social factors, such as territoriality, which should be further explored. This study provided complementary insights into the space-use patterns of E. hemionus. Understanding of the species’ space-use patterns, at both large and fine spatial scale, is required for developing appropriate conservation protocols. Our approach could be further applied for studying the space-use patterns of other species in heterogeneous landscapes. PMID:26630393
Changes in Landscape Pattern of Wetland around Hangzhou Bay
NASA Astrophysics Data System (ADS)
Lin, Wenpeng; Li, Yuan; Xu, Dan; Zeng, Ying
2018-04-01
Hangzhou Bay is an important estuarial coastal wetland, which offers a large number of land and ecological resources. It plays a significant role in the sustainable development of resources, environment and economy. In this paper, based on the remote sensing images in 1996, 2005 and 2013, we extracted the coastal wetland data and analyzed the wetland landscape pattern of the Hangzhou Bay in the past 20 years. The results show that: (1) the area of coastal wetland is heading downwards in the recent decades. Paddy field and the coastal wetland diminish greatly. (2) the single dynamic degree of wetland of the Hangzhou Bay displays that paddy fields and coastal wetlands are shrinking, but lakes, reservoirs and ponds are constantly expanding. (3) the wetland landscape pattern index shows that total patch area of the coastal wetland and paddy fields have gradually diminished. The Shannon diversity index, the Shannon evenness index as well as the landscape separation index of the coastal wetlands in the Hangzhou Bay increase steadily. The landscape pattern in the study area has shown a trend of high fragmentation, dominance decreases, but some dominant landscape still exist in this region. (4) Urbanization and natural factors lead to the reduction of wetland area. Besides the pressure of population is a major threat to the wetland. The study will provide scientific basis for long-term planning for this region.
NASA Astrophysics Data System (ADS)
Troch, Peter A.; Pangle, Luke; Niu, Guo-Yue; Dontsova, Katerina; Barron-Gafford, Greg; van Haren, Joost; Pavao-Zuckerman, Mitch
2014-05-01
The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. This presentation will discuss detection of early landscape evolution in terms of hydrological, geochemical and microbial processes through controlled experimentation, data analysis, and numerical modeling during the commissioning phase of the first hillslope at LEO.
NASA Astrophysics Data System (ADS)
Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hannah, David; Parkin, Geoff
2017-04-01
The Boreal represents a system of substantial resilience to climate change, with minimal ecological change over the past 6000 years. However, unprecedented climatic warming, coupled with catchment disturbances could exceed thresholds of hydrological function in the Western Boreal Plains. Knowledge of ecohydrological and climatic feedbacks that shape the resilience of boreal forests has advanced significantly in recent years, but this knowledge is yet to be applied and understood at landscape scales. Hydrological modelling at the landscape scale is challenging in the WBP due to diverse, non-topographically driven hydrology across the mosaic of terrestrial and aquatic ecosystems. This study functionally divides the geologic and ecological components of the landscape into Hydrologic Response Areas (HRAs) and wetland, forestland, interface and pond Hydrologic Units (HUs) to accurately characterise water storage and infer transmission at multiple spatial and temporal scales. Wavelet analysis is applied to pond and groundwater levels to describe the patterns of water storage in response to climate signals; to isolate dominant controls on hydrological responses and to assess the relative importance of physical controls between wet and dry climates. This identifies which components of the landscape exhibit greater magnitude and frequency of variability to wetting and drying trends, further to testing the hierarchical framework for hydrological storage controls of: climate, bedrock geology, surficial geology, soil, vegetation, and topography. Classifying HRA and HU hydrological function is essential to understand and predict water storage and redistribution through drought cycles and wet periods. This work recognises which landscape components are most sensitive under climate change and disturbance and also creates scope for hydrological resiliency research in Boreal systems by recognising critical landscape components and their role in landscape collapse or catastrophic shift in ecosystem function under future climatic scenarios.
Sensitivity to Landscape Features: A Spatial Analysis of Field Geoscientists on the Move
ERIC Educational Resources Information Center
Baker, Kathleen M.; Petcovic, L. Heather
2016-01-01
Intelligent behavior in everyday contexts may depend on both ability and an individual's disposition toward using that ability. Research into patterns of thinking has identified three logically distinct components necessary for dispositional behavior: ability, inclination, and sensitivity. Surprisingly, sensitivity appears to be the most common…
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Cross-scale analysis of fire regimes
Donald A. Falk; Carol Miller; Donald McKenzie; Anne E. Black
2007-01-01
Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire...
Landscape Context and Regional Patterns in Arkansas' Forests
Victor A. Rudis
2001-01-01
Abstract - Recent results from Forest Inventory and Analysis (FIA) surveys provided an opportunity to explore the spatial and temporal context for Arkansasâ forests, including associated range, recreation, water, and wildlife habitat resources. Noted were damage agents and multipurpose resource indicators: evidence of human-associated activities (...
Dynamics of coupled human-landscape systems
NASA Astrophysics Data System (ADS)
Werner, B. T.; McNamara, D. E.
2007-11-01
A preliminary dynamical analysis of landscapes and humans as hierarchical complex systems suggests that strong coupling between the two that spreads to become regionally or globally pervasive should be focused at multi-year to decadal time scales. At these scales, landscape dynamics is dominated by water, sediment and biological routing mediated by fluvial, oceanic, atmospheric processes and human dynamics is dominated by simplifying, profit-maximizing market forces and political action based on projection of economic effect. Also at these scales, landscapes impact humans through patterns of natural disasters and trends such as sea level rise; humans impact landscapes by the effect of economic activity and changes meant to mitigate natural disasters and longer term trends. Based on this analysis, human-landscape coupled systems can be modeled using heterogeneous agents employing prediction models to determine actions to represent the nonlinear behavior of economic and political systems and rule-based routing algorithms to represent landscape processes. A cellular model for the development of New Orleans illustrates this approach, with routing algorithms for river and hurricane-storm surge determining flood extent, five markets (home, labor, hotel, tourism and port services) connecting seven types of economic agents (home buyers/laborers, home developers, hotel owners/ employers, hotel developers, tourists, port services developer and port services owners/employers), building of levees or a river spillway by political agents and damage to homes, hotels or port services within cells determined by the passage or depth of flood waters. The model reproduces historical aspects of New Orleans economic development and levee construction and the filtering of frequent small-scale floods at the expense of large disasters.
Steyer, Gregory D.; Sasser, Charles; Evers, Elaine; Swenson, Erick; Suir, Glenn; Sapkota, Sijan
2008-01-01
Coastal Louisiana is a dynamic and ever changing landscape. From 1956 to 2004, over 297,000 ha of Louisiana's coastal wetlands were lost because of the effects of natural and human-induced activities. Studies show that, in 2005, Hurricanes Katrina and Rita transformed over 56,200 ha of wetlands to open water in various parts of coastal Louisiana. Besides the catastrophic hurricanes, factors such as subsidence, sea-level rise, freshwater and sediment deprivation, saltwater intrusion, the dredging of oil and gas canals, navigation canals, shoreline erosion, and herbivory are all contributors to wetland loss in Louisiana. Various scientific literatures have well described the direct impacts associated with an immediate physical conversion of habitat in coastal Louisiana; however, the indirect impacts that are subtle and operate over longer time horizons (such as salinity intrusion) have been difficult to discern. In this report, long-term influences on salinity patterns and landscape configuration are evaluated for pre- and postconstruction periods of the Houma Navigation Canal (HNC), which is located in the coastal region of southeastern Louisiana. Analysis of daily and hourly salinity data from long-term data collection stations within the areas surrounding the HNC indicated that there were no obvious patterns in increasing salinity levels following the completion of the canal, except for the immediate increase in salinity spikes that occurred toward the completion of its construction in 1961. Increases in salinity spikes were also observed during a severe drought in 1999-2000. Data from Bayou Grand Caillou at Dulac, however, show a longer term trend of increasing salinity levels, which is similar to the pattern observed at the Houma Water Treatment Plant. A potential explanation for these patterns is based on the dredging history of the HNC, where dates of maintenance dredging correspond fairly closely to the salinity peaks in Bayou Grand Caillou and the canal. It appears that the dredging events opened up a deeper route from the canal to Crozier and into Grand Bayou Caillou, but it also may be a result of the general breakup of the marsh in the adjacent area, which resulted in greater exchange of bay water and subsequently higher salinity levels. Although the available salinity data were insufficient to conduct statistical correlations, there was close agreement between salinity changes and specific dredging events of the HNC. A procedure for analyzing marsh landscapes, which utilizes the FRAGSTATS landscape statistical application and a two-part marsh classification system, was developed as a means of determining the connectivity and configuration of marsh and water patches within the study area. Individual landscape metrics were used to determine the percentage and rate of land change and the shifts in density, shape, and cohesiveness of water within the marsh. Wetland loss rates for coastal Louisiana and Terrebonne basin were compared to the long- and short-term loss rates of the Houma Navigation Canal study area that were quantified by using the FRAGSTATS landscape analysis method. These results suggest that the canal study area was losing land at a significantly faster rate than both the marshes of coastal Louisiana (over all periods) and the other highly degraded neighboring marshes within Terrebonne basin. Overall, 37 percent (17,625 ha) of the project area marsh was lost between 1958 and 1998. As a means of quantifying the distance and degree of influence that the HNC had on marsh degradation, a 3-km interval buffer array and comparable years of vegetation data were used to describe the changes in primary metric values across the three project dates (1958, 1968/69, and 1998). The patterns across landscape metrics varied, and it was difficult to discern direct relationships based on proximity to the canal. Even though the canal may have an influence on marsh degradation, these analyses show that the degree and d
Rasic, Gordana; Keyghobadi, Nusha
2012-01-01
The spatial scale at which samples are collected and analysed influences the inferences that can be drawn from landscape genetic studies. We examined genetic structure and its landscape correlates in the pitcher plant midge, Metriocnemus knabi, an inhabitant of the purple pitcher plant, Sarracenia purpurea, across several spatial scales that are naturally delimited by the midge's habitat (leaf, plant, cluster of plants, bog and system of bogs). We analysed 11 microsatellite loci in 710 M. knabi larvae from two systems of bogs in Algonquin Provincial Park (Canada) and tested the hypotheses that variables related to habitat structure are associated with genetic differentiation in this midge. Up to 54% of variation in individual-based genetic distances at several scales was explained by broadscale landscape variables of bog size, pitcher plant density within bogs and connectivity of pitcher plant clusters. Our results indicate that oviposition behaviour of females at fine scales, as inferred from the spatial locations of full-sib larvae, and spatially limited gene flow at broad scales represent the important processes underlying observed genetic patterns in M. knabi. Broadscale landscape features (bog size and plant density) appear to influence oviposition behaviour of midges, which in turn influences the patterns of genetic differentiation observed at both fine and broad scales. Thus, we inferred linkages among genetic patterns, landscape patterns and ecological processes across spatial scales in M. knabi. Our results reinforce the value of exploring such links simultaneously across multiple spatial scales and landscapes when investigating genetic diversity within a species. © 2011 Blackwell Publishing Ltd.
J.F. Lehmkuhl; P.F. Hessburg; R.L. Everett; M.H. Huff; R.D. Ottmar
1994-01-01
We analyzed historical and current vegetation composition and structure in 49 sample watersheds, primarily on National Forests, within six river basins in eastern Oregon and Washington. Vegetation patterns were mapped from aerial photographs taken from 1932 to 1959, and from 1985 to 1992. We described vegetation attributes, landscape patterns, the range of historical...
NASA Technical Reports Server (NTRS)
Miller, L. D.; Tom, C.; Nualchawee, K.
1977-01-01
A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.
Marull, Joan; Tello, Enric; Bagaria, Guillem; Font, Xavier; Cattaneo, Claudio; Pino, Joan
2018-04-01
The debate about the relative merits of the 'land-sparing' and 'land-sharing' approaches to biodiversity conservation is usually addressed at local scale. Here, however, we undertake a regional-scale approach to this issue by exploring the association between the Human Appropriation of Net Primary Production (HANPP) and biodiversity components (plants, amphibians, reptiles, birds and mammals) across a gradient of human-transformed landscapes in Catalonia, Spain. We propose an Intermediate Disturbance Complexity (IDC) model to assess how human disturbance of the photosynthetic capacity affects the landscape patterns and processes that host biodiversity. This model enables us to explore the association between social metabolism (HANPP), landscape structure (composition and spatial configuration) and biodiversity (species richness) by using Negative Binomial Regression (NBR), Exploratory Factor Analysis (EFA) and Structural Equation Modelling (SEM). The empirical association between IDC and landscape complexity and HANPP in Catalonia confirms the expected values of the intermediate disturbance hypothesis. There is some increase in biodiversity when high IDC values correspond to landscape mosaics. NBR and EFA show positive associations between species richness and increasing values of IDC and forest cover for all biodiversity groups except birds. SEM shows that total biodiversity is positively determined by forest cover and, to a lesser extent, by HANPP, and that both factors are negatively associated with each other. The results suggest that 'natural' landscapes (i.e. those dominated by forests) and agroforestry mosaics (i.e. heterogeneous landscapes characterized by a set of land uses possessing contrasting disturbances) provide a synergetic contribution to biodiversity conservation. This 'virtuous triangle' consisting of forest cover, HANPP and biodiversity illustrates the complex human-nature relationships that exist across landscape gradients of human transformation. This energy-landscape integrated analysis provides a robust assessment of the ecological impact of land-use policies at regional scale. Copyright © 2017 Elsevier B.V. All rights reserved.
Tropical deforestation alters hummingbird movement patterns
Hadley, Adam S.; Betts, Matthew G.
2009-01-01
Reduced pollination success, as a function of habitat loss and fragmentation, appears to be a global phenomenon. Disruption of pollinator movement is one hypothesis put forward to explain this pattern in pollen limitation. However, the small size of pollinators makes them very difficult to track; thus, knowledge of their movements is largely speculative. Using tiny radio transmitters (0.25 g), we translocated a generalist tropical ‘trap-lining’ hummingbird, the green hermit (Phaethornis guy), across agricultural and forested landscapes to test the hypothesis that movement is influenced by patterns of deforestation. Although, we found no difference in homing times between landscape types, return paths were on average 459±144 m (±s.e.) more direct in forested than agricultural landscapes. In addition, movement paths in agricultural landscapes contained 36±4 per cent more forest than the most direct route. Our findings suggest that this species can circumvent agricultural matrix to move among forest patches. Nevertheless, it is clear that movement of even a highly mobile species is strongly influenced by landscape disturbance. Maintaining landscape connectivity with forest corridors may be important for enhancing movement, and thus in facilitating pollen transfer. PMID:19158031
Landscape Features Shape Genetic Structure in Threatened Northern Spotted Owls
Funk, W. Chris; Forsman, Eric D.; Mullins, Thomas D.; Haig, Susan M.
2008-01-01
Several recent studies have shown that landscape features can strongly affect spatial patterns of gene flow and genetic variation. Understanding landscape effects on genetic variation is important in conservation for defining management units and understanding movement patterns. The landscape may have little effect on gene flow, however, in highly mobile species such as birds. We tested for genetic breaks associated with landscape features in the northern spotted owl (Strix occidentalis caurina), a threatened subspecies associated with old forests in the U.S. Pacific Northwest and extreme southwestern Canada. We found little evidence for distinct genetic breaks in northern spotted owls using a large microsatellite dataset (352 individuals from across the subspecies' range genotyped at 10 loci). Nonetheless, dry low-elevation valleys and the Cascade and Olympic Mountains restrict gene flow, while the Oregon Coast Range facilitates it. The wide Columbia River is not a barrier to gene flow. In addition, inter-individual genetic distance and latitude were negatively related, likely reflecting northward colonization following Pleistocene glacial recession. Our study shows that landscape features may play an important role in shaping patterns of genetic variation in highly vagile taxa such as birds.
Jordan, Rebecca; Dillon, Shannon K; Prober, Suzanne M; Hoffmann, Ary A
2016-12-01
In order to contribute to evolutionary resilience and adaptive potential in highly modified landscapes, revegetated areas should ideally reflect levels of genetic diversity within and across natural stands. Landscape genomic analyses enable such diversity patterns to be characterized at genome and chromosomal levels. Landscape-wide patterns of genomic diversity were assessed in Eucalyptus microcarpa, a dominant tree species widely used in revegetation in Southeastern Australia. Trees from small and large patches within large remnants, small isolated remnants and revegetation sites were assessed across the now highly fragmented distribution of this species using the DArTseq genomic approach. Genomic diversity was similar within all three types of remnant patches analysed, although often significantly but only slightly lower in revegetation sites compared with natural remnants. Differences in diversity between stand types varied across chromosomes. Genomic differentiation was higher between small, isolated remnants, and among revegetated sites compared with natural stands. We conclude that small remnants and revegetated sites of our E. microcarpa samples largely but not completely capture patterns in genomic diversity across the landscape. Genomic approaches provide a powerful tool for assessing restoration efforts across the landscape. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Native American impacts on fire regimes of the California coastal ranges
Keeley, Jon E.
2002-01-01
Aim: Native American burning impacts on California shrubland dominated landscapes are evaluated relative to the natural lightning fire potential for affecting landscape patterns. Location: Focus was on the coastal ranges of central and southern California. Methods: Potential patterns of Indian burning were evaluated based upon historical documents, ethnographic accounts, archaeological records and consideration of contemporary land management tactics. Patterns of vegetation distribution in this region were evaluated relative to environmental factors and the resilience of the dominant shrub vegetation to different fire frequencies. Results: Lightning fire frequency in this region is one of the lowest in North America and the density of pre-Columbian populations was one of the highest. Shrublands dominate the landscape throughout most of the region. These woody communities have weak resilience to high fire frequency and are readily displaced by annual grasses and forbs under high fire frequency. Intact shrublands provided limited resources for native Americans and thus there was ample motivation for using fire to degrade this vegetation to an open mosaic of shrubland/grassland, not unlike the agropastoral modification of ecologically related shrublands by Holocene peoples in the Mediterranean Basin. Alien-dominated grasslands currently cover approximately one-quarter of the landscape and less than 1% of these grasslands have a significant native grass presence. Ecological studies in the Californian coastal ranges have failed to uncover any clear soil or climate factors explaining grassland and shrubland distribution patterns. Main conclusions: Coastal ranges of California were regions of high Indian density and low frequency of lightning fires. The natural vegetation dominants on this landscape are shrubland vegetation that often form dense impenetrable stands with limited resources for Native Americans. Natural fire frequencies are not high enough to maintain these landscapes in habitable mixtures of shrublands and grasslands but such landscape mosaics are readily produced with additional human subsidy of ignitions. It is hypothesized that a substantial fraction of the landscape was type converted from shrubland to grassland and much of the landscape that underwent such type conversion has either been maintained by Euro-American land management practices or resisted recolonization of native shrublands. It appears that these patterns are disturbance dependent and result from anthropogenic alteration of landscapes initiated by Native Americans and sustained and expanded upon by Euro-American settlers.
NASA Astrophysics Data System (ADS)
Istanbulluoglu, Erkan; Yetemen, Omer
2016-04-01
In this study CHILD landscape evolution model (LEM) is used to study the role of solar radiation on the co-evolution of landscape morphology, vegetation patterns, and erosion rates in a central New Mexico catchment. In the study site north facing slopes (NFS) are characterized by steep diffusion-dominated planar hillslopes covered by co-exiting juniper pine and grass vegetation. South facing slopes (SFS) are characterized by shallow slopes and covered by sparse shrub vegetation. Measured short-term and Holocene-averaged erosion rates show higher soil loss on SFS than NFS. In this study CHILD LEM is first confirmed with ecohydrologic field data and used to systematically examine the co-evolution of topography, vegetation pattern, and erosion rates. Aspect- and network-control are identified as the two main topographic drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of solar radiation driven ecohdrologic patterns emerged in modeled landscape: NFS supported denser vegetation cover and became steeper and planar, while on SFS vegetation grew sparser and slopes declined with more fluvial activity. At the landscape scale, these differential erosion processes led to asymmetric development of catchment forms, consistent with regional observations. While the general patterns of vegetation and topography were reproduced by the model using a stationary representation of the current climate, the observed differential Holocene erosion rates were captured by the model only when cyclic climate is used. This suggests sensitivity of Holocene erosion rates to long-term climate fluctuations.
[Landscape planning approaches for biodiversity conservation in agriculture].
Liu, Yun-hui; Li, Liang-tao; Yu, Zhen-rong
2008-11-01
Biodiversity conservation in agriculture not only relates to the sustainable development of agriculture, but also is an essential part of species conservation. In recent years, the landscape planning approach for biodiversity was highlighted instead of species-focused approach. In this paper, the landscape factors affecting the biodiversity in agriculture were reviewed, and the possible landscape approaches at three different scales for more efficient conservation of biodiversity in agro-landscape were suggested, including: (1) the increase of the proportion of natural or semi-natural habitats in agriculture, diversification of land use or crop pattern, and protection or construction of corridor at landscape level; (2) the establishment of non-cropping elements such as field margin at between-field level; and (3) the application of reasonable crop density, crop distribution pattern and rotation, and intercrop etc. at within-field level. It was suggested that the relevant policies for natural conservation, land use planning, and ecological compensation should be made to apply the landscape approaches for biodiversity conservation at larger scale.
Combining a dispersal model with network theory to assess habitat connectivity.
Lookingbill, Todd R; Gardner, Robert H; Ferrari, Joseph R; Keller, Cherry E
2010-03-01
Assessing the potential for threatened species to persist and spread within fragmented landscapes requires the identification of core areas that can sustain resident populations and dispersal corridors that can link these core areas with isolated patches of remnant habitat. We developed a set of GIS tools, simulation methods, and network analysis procedures to assess potential landscape connectivity for the Delmarva fox squirrel (DFS; Sciurus niger cinereus), an endangered species inhabiting forested areas on the Delmarva Peninsula, USA. Information on the DFS's life history and dispersal characteristics, together with data on the composition and configuration of land cover on the peninsula, were used as input data for an individual-based model to simulate dispersal patterns of millions of squirrels. Simulation results were then assessed using methods from graph theory, which quantifies habitat attributes associated with local and global connectivity. Several bottlenecks to dispersal were identified that were not apparent from simple distance-based metrics, highlighting specific locations for landscape conservation, restoration, and/or squirrel translocations. Our approach links simulation models, network analysis, and available field data in an efficient and general manner, making these methods useful and appropriate for assessing the movement dynamics of threatened species within landscapes being altered by human and natural disturbances.
Exotic species patterns and function in urban landscapes
Wayne C. Zipperer
2003-01-01
Mack et al. (2000) state "Biotic invaders are species that establish a new range in which they proliferate, spread, and persist to the detriment of the environment." This statement is true for many natural landscapes. In urban landscapes, however, exotic species are critical components of the landscape and enhance its livability. Exotic species provide...
Landscape ecology in North America: past, present, and future
Monica G. Turner
2005-01-01
Landscape ecology offers a spatially explicit perspective on the relationships between ecological patterns and processes that can be applied across a range of scales. Concepts derived from landscape ecology now permeate ecological research across most levels of ecological organization and many scales. Landscape ecology developed rapidly after ideas that originated in...
Quantifying the lag time to detect barriers in landscape genetics
E. L. Landguth; S. A Cushman; M. K. Schwartz; K. S. McKelvey; M. Murphy; G. Luikart
2010-01-01
Understanding how spatial genetic patterns respond to landscape change is crucial for advancing the emerging field of landscape genetics. We quantified the number of generations for new landscape barrier signatures to become detectable and for old signatures to disappear after barrier removal. We used spatially explicit, individualbased simulations to examine the...
[Dynamic changes of landscape pattern during desertification in Duolun County of Inner Mongolia].
Aruhan; Yang, Chi
2007-11-01
By using landscape analyzing software Fragstats 3.3 and the interpretation results of remote-sensing images of 1960, 1975, 1987, 1995, 2000 and 2005, this paper analyzed the dynamic changes of landscape pattern during the desertification in Duolun County of Inner Mongolia in 1960-2005. The results showed that in 1960-1995, the desertification area appeared a tendency of increasing first and decreasing then, with a total increase of 212.7 km2. The numbers of desertification landscape patches decreased after an initial increase, landscape diversity and evenness increased, and the shapes of light-, moderate-, and heavy desertification patches tended to be simplex. From 1995 to 2005, the numbers of desertification patches increased greatly, landscape diversity and evenness decreased, and the shapes of light-, moderate-, and heavy desertification patches tended to be complex. Since 1960, the shapes of severe desertification patches had been inclined to complication. In the study period, the whole desertification landscape showed a trend of integrity-broken-integrity-broken, and the broken degree of the patch types of desertification landscape was gradually from light down to severe.
USDA-ARS?s Scientific Manuscript database
Long-term (> 13 years) patterns in dominance and community composition were examined following the experimental removal of one of three foundation species at an arid - semiarid biome transition zone. Objectives were to identify key processes influencing these patterns, and to predict future landscap...
Diversity in Riparian Landscapes
Thomas R. Crow; Matthew E. Baker; Burton V. Barnes
2000-01-01
Therefore, in this chapter we focus on ecosystem diversity, defined as the number, kind, and pattern of landscape and waterscape ecosystems in a specified area and the ecological processes that are associated with these patterns (Lapin and Barnes 1995). One can then characterize eeosysterns as to their composition, structure, and function -- the attributes Of...
Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A
2015-12-01
Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals. © 2015 John Wiley & Sons Ltd.
Paul F. Hessburg; Bradley G. Smith; Scott D. Kreiter; Craig A. Miller; R. Brion Salter; Cecilia H. McNicoll; Wendel J. Hann
1999-01-01
Management activities of the 20th century, especially fire exclusion, timber harvest, and domestic livestock grazing, have significantly modified vegetation spatial patterns of forests and ranges in the interior Columbia basin. Compositional patterns as well as patterns of living and dead structure have changed. Dramatic change in vital ecosystem processes such as fire...
NASA Astrophysics Data System (ADS)
Fan, Fenglei; Fan, Wei
2014-01-01
A new viewpoint for understanding the urban expansion using impervious surface information, which is obtained using remote sensing imagery is presented. The purpose of this study is to understand and describe the urban expansion pattern with the view of impervious surfaces instead of the conventional view of land use/land cover. Six years' worth of impervious surface data (1990-2009) of Guangzhou are extracted via linear spectral unmixing analysis methods and spatial and temporal characteristics are discussed in detail. The area, density, and gravity centers changes of the impervious surfaces are analyzed to explain internal/external urban expansion. Meanwhile, five landscape indexes, such as patch density, edge density, mean patch size, area-weighted, and fragmentation index, are utilized to describe landscape changes of Guangzhou in past 20 years, which are influenced deeply by the impervious surface expansion. In order to detail landscape changes, two transects corresponding to the two urban expansion directions are designed and five landscape metrics in these two transects are reported. Conclusions can be drawn and shown as following: (1) temporally, the area of impervious surfaces increases from 12,998 to 59,911 ha from 1990 to 2009. The amount of impervious surface varies in different periods. The annual growth rates of impervious surface area during 1990-1995, 1995-1998, and 1998-2000 are 10.16%, 11.61%, and 10.78%, respectively; (2) annual growth rates decrease from 10.78% (1998-2000) to 5.67% (2000-2003). Nevertheless, from 2003-2009, the annual growth rate has a slight increase compared to a former period. The rate is 5.91% (3) spatially, gravity centers of medium and high percentage impervious surfaces migrate slightly; and (4) according to the gradient analysis in the two transects, it can be observed that the high percentage of impervious surface increases gradually in new city districts (from west to east and from south to north).
Villegas Vallejos, Marcelo Alejandro; Padial, André Andrian; Vitule, Jean Ricardo Simões
2016-01-01
The increasing number of quantitative assessments of homogenization using citizen science data is particularly important in the Neotropics, given its high biodiversity and ecological peculiarity, and whose communities may react differently to landscape changes. We looked for evidence of taxonomic homogenization in terrestrial birds by investigating patterns of beta diversity along a gradient of human-altered landscapes (HAL), trying to identify species associated with this process. We analyzed bird data from 87 sites sampled in a citizen science program in the south Brazilian Atlantic Forest. Regional-scale taxonomic homogenization was assessed by comparing beta diversity among sites in different HALs (natural, rural or urban landscapes) accounting for variation derived from geographical distance and zoogeographical affinities by georeferencing sites and determining their position in a phytogeographical domain. Beta diversity was calculated by multivariate dispersion and by testing compositional changes due to turnover and nestedness among HALs and phytogeographical domains. Finally, we assessed which species were typical for each group using indicator species analysis. Bird homogenization was indicated by decreases in beta diversity following landscape changes. Beta diversity of rural sites was roughly half that of natural habitats, while urban sites held less than 10% of the natural areas’ beta diversity. Species composition analysis revealed that the turnover component was important in differentiating sites depending on HAL and phytogeography; the nestedness component was important among HALs, where directional species loss is maintained even considering effects of sampling effort. A similar result was obtained among phytogeographical domains, indicating nested-pattern dissimilarity among compositions of overlapping communities. As expected, a few native generalists and non-native urban specialists were characteristic of rural and urban sites. We generated strong evidence that taxonomic homogenization occurs in the south Brazilian Atlantic Forest as a result of a directional and nested species loss, with the resultant assemblages composed of few disturbance-tolerant birds. PMID:26840957
Code of Federal Regulations, 2014 CFR
2014-07-01
... fires; or (ii) Landscape patterns; and (4) Vegetation attributes have been significantly altered from... semi-primitive motorized classes of dispersed recreation; (6) Reference landscapes; (7) Natural-appearing landscapes with high scenic quality; (8) Traditional cultural properties and sacred sites; and (9...
Code of Federal Regulations, 2013 CFR
2013-07-01
... fires; or (ii) Landscape patterns; and (4) Vegetation attributes have been significantly altered from... semi-primitive motorized classes of dispersed recreation; (6) Reference landscapes; (7) Natural-appearing landscapes with high scenic quality; (8) Traditional cultural properties and sacred sites; and (9...
Janet Silbernagel; Jiquan Chen; Margaret R. Gale; Kurt S. Pregitzer; John Probst
1997-01-01
Compares historic and present landscape structure among four landtype association groups in Upper Michigan. Provides an example of a landtype association framework for assessing landscape composition and pattern.
Epigenetic Inheritance across the Landscape.
Whipple, Amy V; Holeski, Liza M
2016-01-01
The study of epigenomic variation at the landscape-level in plants may add important insight to studies of adaptive variation. A major goal of landscape genomic studies is to identify genomic regions contributing to adaptive variation across the landscape. Heritable variation in epigenetic marks, resulting in transgenerational plasticity, can influence fitness-related traits. Epigenetic marks are influenced by the genome, the environment, and their interaction, and can be inherited independently of the genome. Thus, epigenomic variation likely influences the heritability of many adaptive traits, but the extent of this influence remains largely unknown. Here, we summarize the relevance of epigenetic inheritance to ecological and evolutionary processes, and review the literature on landscape-level patterns of epigenetic variation. Landscape-level patterns of epigenomic variation in plants generally show greater levels of isolation by distance and isolation by environment then is found for the genome, but the causes of these patterns are not yet clear. Linkage between the environment and epigenomic variation has been clearly shown within a single generation, but demonstrating transgenerational inheritance requires more complex breeding and/or experimental designs. Transgenerational epigenetic variation may alter the interpretation of landscape genomic studies that rely upon phenotypic analyses, but should have less influence on landscape genomic approaches that rely upon outlier analyses or genome-environment associations. We suggest that multi-generation common garden experiments conducted across multiple environments will allow researchers to understand which parts of the epigenome are inherited, as well as to parse out the relative contribution of heritable epigenetic variation to the phenotype.
Epigenetic Inheritance across the Landscape
Whipple, Amy V.; Holeski, Liza M.
2016-01-01
The study of epigenomic variation at the landscape-level in plants may add important insight to studies of adaptive variation. A major goal of landscape genomic studies is to identify genomic regions contributing to adaptive variation across the landscape. Heritable variation in epigenetic marks, resulting in transgenerational plasticity, can influence fitness-related traits. Epigenetic marks are influenced by the genome, the environment, and their interaction, and can be inherited independently of the genome. Thus, epigenomic variation likely influences the heritability of many adaptive traits, but the extent of this influence remains largely unknown. Here, we summarize the relevance of epigenetic inheritance to ecological and evolutionary processes, and review the literature on landscape-level patterns of epigenetic variation. Landscape-level patterns of epigenomic variation in plants generally show greater levels of isolation by distance and isolation by environment then is found for the genome, but the causes of these patterns are not yet clear. Linkage between the environment and epigenomic variation has been clearly shown within a single generation, but demonstrating transgenerational inheritance requires more complex breeding and/or experimental designs. Transgenerational epigenetic variation may alter the interpretation of landscape genomic studies that rely upon phenotypic analyses, but should have less influence on landscape genomic approaches that rely upon outlier analyses or genome–environment associations. We suggest that multi-generation common garden experiments conducted across multiple environments will allow researchers to understand which parts of the epigenome are inherited, as well as to parse out the relative contribution of heritable epigenetic variation to the phenotype. PMID:27826318
Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China
Li, Haifeng; Chen, Wenbo; He, Wei
2015-01-01
Green space plays an important role in sustainable urban development and ecology by virtue of multiple environmental, recreational, and economic benefits. Constructing an effective and harmonious urban ecological network and maintaining a sustainable living environment in response to rapid urbanization are the key issues required to be resolved by landscape planners. In this paper, Nanchang City, China was selected as a study area. Based on a series of landscape metrics, the landscape pattern analysis of the current (in 2005) and planned (in 2020) green space system were, respectively, conducted by using FRAGSTATS 3.3 software. Considering the actual situation of the Nanchang urban area, a “one river and two banks, north and south twin cities” ecological network was constructed by using network analysis. Moreover, the ecological network was assessed by using corridor structure analysis, and the improvement of an ecological network on the urban landscape was quantitatively assessed through a comparison between the ecological network and green space system planning. The results indicated that: (1) compared to the green space system in 2005, the planned green space system in 2020 of the Nanchang urban area will decline in both districts (Changnan and Changbei districts). Meanwhile, an increase in patch density and a decrease in mean patch size of green space patches at the landscape level implies the fragmentation of the urban green space landscape. In other words, the planned green space system does not necessarily improve the present green space system; (2) the ecological network of two districts has high corridor density, while Changnan’s ecological network has higher connectivity, but Changbei’s ecological network is more viable from an economic point of view, since it has relatively higher cost efficiency; (3) decrease in patch density, Euclidean nearest neighbor distance, and an increase in mean patch size and connectivity implied that the ecological network could improve landscape connectivity greatly, as compared with the planned green space system. That is to say, the planned ecological network would reduce landscape fragmentation, and increase the shape complexity of green space patches and landscape connectivity. As a result, the quality of the urban ecological environment would be improved. PMID:26501298
Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China.
Li, Haifeng; Chen, Wenbo; He, Wei
2015-10-15
Green space plays an important role in sustainable urban development and ecology by virtue of multiple environmental, recreational, and economic benefits. Constructing an effective and harmonious urban ecological network and maintaining a sustainable living environment in response to rapid urbanization are the key issues required to be resolved by landscape planners. In this paper, Nanchang City, China was selected as a study area. Based on a series of landscape metrics, the landscape pattern analysis of the current (in 2005) and planned (in 2020) green space system were, respectively, conducted by using FRAGSTATS 3.3 software. Considering the actual situation of the Nanchang urban area, a "one river and two banks, north and south twin cities" ecological network was constructed by using network analysis. Moreover, the ecological network was assessed by using corridor structure analysis, and the improvement of an ecological network on the urban landscape was quantitatively assessed through a comparison between the ecological network and green space system planning. The results indicated that: (1) compared to the green space system in 2005, the planned green space system in 2020 of the Nanchang urban area will decline in both districts (Changnan and Changbei districts). Meanwhile, an increase in patch density and a decrease in mean patch size of green space patches at the landscape level implies the fragmentation of the urban green space landscape. In other words, the planned green space system does not necessarily improve the present green space system; (2) the ecological network of two districts has high corridor density, while Changnan's ecological network has higher connectivity, but Changbei's ecological network is more viable from an economic point of view, since it has relatively higher cost efficiency; (3) decrease in patch density, Euclidean nearest neighbor distance, and an increase in mean patch size and connectivity implied that the ecological network could improve landscape connectivity greatly, as compared with the planned green space system. That is to say, the planned ecological network would reduce landscape fragmentation, and increase the shape complexity of green space patches and landscape connectivity. As a result, the quality of the urban ecological environment would be improved.
Sivan, Arun; Shriram, A N; Sunish, I P; Vidhya, P T
2015-09-01
Mosquito foraging behavior is a determinant of host-vector contact and has an impact on the risk of arboviral epidemics. Therefore, blood-feeding patterns is a useful tool for assessing the role in pathogen transmission by vector mosquitoes. Competent vectors of dengue and chikungunya viz. Aedes aegypti and Aedes albopictus are widely prevalent in the Andaman and Nicobar archipelago. Considering the vector potential, medical importance of both these mosquito species and lack of information on host-feeding patterns, blood meal analysis of both these vector mosquitoes was undertaken. Biogents Sentinel traps were used for sampling blooded mosquitoes, for identifying the source of blood meal by agar gel-precipitin test. We identified vertebrate source of 147 and 104 blood meals in Ae. aegypti and Ae. albopictus from heterogeneous landscapes in South Andaman district. Results revealed that Ae. aegypti (88 %) and Ae. albopictus (49 %) fed on human and a small proportion on mammals and fowls, indicative of predominance of anthropophilism. Ae. aegypti predominantly fed on human blood (94.2 %-densely built urban, 89.8 %-low vegetation coverage, and 78.3 %-medium vegetation coverage). Anthropophilism in Ae. albopictus was maximal in densely built urban (90.5 %) and progressively decreased from low vegetation-vegetation/forested continuum (66.7, 36.4, and 8.7 %), indicating plasticity in feeding across these landscapes. Epidemiological significance of the findings is discussed.
NASA Astrophysics Data System (ADS)
Vergari, Francesca; Troiani, Francesco; Della Seta, Marta; Faulkner, Hazel; Schwanghart, Wolfgang; Ciccacci, Sirio; Del Monte, Maurizio; Fredi, Paola
2016-04-01
Spatial patterns and magnitudes of short-term erosional processes are often the result of longer-term landscape-wide morphodynamics. Their combined analysis, however, is challenged by different spatial scales, data availability and resolution. Integrating both analyses has thus rarely been done though urgently needed to better understand and manage present day erosional dynamics and land degradation. In this study we aim at overcoming these shortcomings by exploring a multi-scale approach, based on a nested experimental design that integrates the traditional monitoring of erosion processes at local and short time scale, with the longer-term (over the last 103-105 yr) and basin-to-morphostructure scale analysis of landscape morphodynamics. We investigated the geomorphological behaviour of a Mediterranean active badland site located in the Upper Orcia Valley (Southern Tuscany, Italy). This choice is justified by the availability of decadal erosion monitoring datasets at a range of scales, and the rapidity of development of erosion processes. Based on the analysis of drainage network and its longitudinal and planform pattern, we tested the hypothesis that this rejuvenating, actively erosional landscape presents hotspots of denudation processes on hillslope and in channel network that are largely associated with (a) knickpoints on stream longitudinal profiles, (b) sites of strong connectivity, and (c) sites of strong divide competition with adjacent, aggressive and non-aggressive systems. To illustrate and explore this nested approach, we extracted the channel network and analysed stream longitudinal profiles using the MATLAB-based TopoToolbox program, starting from the 27x27 m Aster GDEM. The stream network morphometric analyses involved computing and mapping χ-values, a transformation that normalizes the longitudinal distance by upslope area and which serves as a proxy of the dynamic state of river basins based on the current geometry of the river network. Finally, we projected on the longitudinal profiles of the Orcia River and some of its main tributaries a full range of geomorphic features which are relevant for the interpretation of the landscape morphoevolution, connectivity and erosion/deposition dynamics: i) competitive divides; ii) sites with different degree of connectivity within the drainage system; iii) sites experiencing different erosion rates; iv) sites with in-channel depositional features and landslide deposits; v) remnants of relict geomorphic surfaces. The plano-altimetric distribution of such features, compared with the drainage network evolutionary stage, allowed to better understand the morphodynamics of badland areas and to define future scenarios in the perspective of a better management of hazardous processes.
Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor
2010-09-01
The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.
Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.
2003-01-01
Tree age and fire history were studied in an unlogged ponderosa pine/Douglas‐fir ( Pinus ponderosa/Pseudotsuga menziesii ) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post‐fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand‐replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.
de Souza, Mirian S; Pepinelli, Mateus; de Almeida, Eduardo C; Ochoa-Quintero, Jose M; Roque, Fabio O
2016-01-01
Given the general expectation that forest loss can alter biodiversity patterns, we hypothesize that blow fly species abundances differ in a gradient of native vegetation cover. This study was conducted in 17 fragments across different landscapes in central Brazil. Different land cover type proportions were used to represent landscape structure. In total, 2334 specimens of nine species of Calliphoridae were collected. We used principal component analysis (PCA) to reduce dimensionality and multicollinearity of the landscape data. The first component explained 70%, and it represented a gradient of forest-pasture land uses. Alien species showed a wide distribution in different fragments with no clear relationship between the abundance values and the scores of PCA axes, whereas native species occurred only in areas with a predominance of forest cover. Our study revealed that certain native species may be sensitive to forest loss at the landscape scale, and they represent a bioindicator in forensic entomology. © 2015 American Academy of Forensic Sciences.
Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains
NASA Astrophysics Data System (ADS)
Gallen, Sean F.
2018-07-01
Determining factors that modify Earth's topography is essential for understanding continental mass and nutrient fluxes, and the evolution and diversity of species. Contrary to the paradigm of slow, steady topographic decay after orogenesis ceases, nearly all ancient mountain belts exhibit evidence of unsteady landscape evolution at large spatial scales. External forcing from uplift from dynamic mantle processes or climate change is commonly invoked to explain the unexpected dynamics of dead orogens, yet direct evidence supporting such inferences is generally lacking. Here I use quantitative analysis of fluvial topography in the southern Appalachian Mountains to show that the exhumation of rocks of variable erosional resistance exerts a fundamental, autogenic control on the evolution of post-orogenic landscapes that continually reshapes river networks. I characterize the spatial pattern of erodibility associated with individual rock-types, and use inverse modeling of river profiles to document a ∼150 m base level fall event at 9 ± 3 Ma in the Upper Tennessee drainage basin. This analysis, combined with existing geological and biological data, demonstrates that base level fall was triggered by capture of the Upper Tennessee River basin by the Lower Tennessee River basin in the Late Miocene. I demonstrate that rock-type triggered changes in river network topology gave rise to the modern Tennessee River system and enhanced erosion rates, changed sediment flux and dispersal patterns, and altered bio-evolutionary pathways in the southeastern U.S.A., a biodiversity hotspot. These findings suggest that variability observed in the stratigraphic, geomorphic, and biologic archives of tectonically quiescent regions does not require external drivers, such as geodynamic or climate forcing, as is typically the interpretation. Rather, my findings lead to a new model of inherently unsteady evolution of ancient mountain landscapes due to the geologic legacy of plate tectonics.
Liu, Xuelu; Ren, Jizhou; Zhang, Zihe
2002-08-01
Oasis landscape ecosystem is composed of 10 landscape elements, i.e., residence land, cultivated land, grassland, forestland, water area, water system, road, rocky desert, sandy desert, and gravel desert. Among the elements, cultivated land formed by human being production covers the most of the area, is most connected, and hence, is the matrix of the oasis landscape ecosystem. Residence land, grassland, forestland, water area, rocky desert, sandy desert, and gravel desert are patches. Residence land and forestland generate from human being production, while rocky desert, gravel desert and sandy desert are the remnant with the human being disturbance. Water region and grassland are the environmental resources remnant after natural disturbance. Water system and road are corridors. Cultivated land dominated in plant production should be utilized with more productive layers through developing animal production other than expanding used-area to maintain the landscape heterogeneity and diversity of the oasis landscape ecosystem. For remnant and environmental resource patches, it should be profitable in preserving and stabilizing landscape heterogeneity and diversity, exploiting the functions of water and soil conservation, tourism, windbreak and sand fixation. For landscape elements remnant only, it should be fruitful in avoiding degeneration of the landscape pattern to explore their preceding plant production with moderate plant production.
Landscape Patterns of Burn Severity in the Soberanes Fire of 2016
NASA Technical Reports Server (NTRS)
Potter, Christopher
2016-01-01
The Soberanes Fire started on July 22, 2016 in Monterey County on the California Central Coast from an illegal campfire. This fire burned for 10 weeks at a record cost of more than $208 million for protection and control. A progressive analysis of the normalized burn ratio from the Landsat satellite showed that the final high burn severity (HBS) area for the Soberanes Fire comprised 22 percent of the total area burned, whereas final moderate burn severity (MBS) area comprised about 10 percent of the total area burned of approximately 53,470 ha (132,130 acres). The resulting landscape pattern of burn severity classes from the 2016 Soberanes Fire revealed that the majority of HBS area was located in the elevation zone between 500 and 1000 m, in the slope zone between 15 percent and 30 percent, or on south-facing aspects.
Projecting land-use and land cover change in a subtropical urban watershed
John J. Lagrosa IV; Wayne C. Zipperer; Michael G. Andreu
2018-01-01
Urban landscapes are heterogeneous mosaics that develop via significant land-use and land cover (LULC) change. Current LULC models project future landscape patterns, but generally avoid urban landscapes due to heterogeneity. To project LULC change for an urban landscape, we parameterize an established LULC model (Dyna-CLUE) under baseline conditions (continued current...
Donald A. Falk
2013-01-01
Contemporary climate change is driving transitions in many Madrean ecosystems, but the time scale of these changes is accelerated greatly by severe landscape disturbances such as wildfires and insect outbreaks. Landscape-scale disturbance events such as wildfires interact with prior disturbance patterns and landscape structure to catalyze abrupt transitions to novel...
Dzialak, Matthew R.; Olson, Chad V.; Harju, Seth M.; Webb, Stephen L.; Mudd, James P.; Winstead, Jeffrey B.; Hayden-Wing, L.D.
2011-01-01
Background Balancing animal conservation and human use of the landscape is an ongoing scientific and practical challenge throughout the world. We investigated reproductive success in female greater sage-grouse (Centrocercus urophasianus) relative to seasonal patterns of resource selection, with the larger goal of developing a spatially-explicit framework for managing human activity and sage-grouse conservation at the landscape level. Methodology/Principal Findings We integrated field-observation, Global Positioning Systems telemetry, and statistical modeling to quantify the spatial pattern of occurrence and risk during nesting and brood-rearing. We linked occurrence and risk models to provide spatially-explicit indices of habitat-performance relationships. As part of the analysis, we offer novel biological information on resource selection during egg-laying, incubation, and night. The spatial pattern of occurrence during all reproductive phases was driven largely by selection or avoidance of terrain features and vegetation, with little variation explained by anthropogenic features. Specifically, sage-grouse consistently avoided rough terrain, selected for moderate shrub cover at the patch level (within 90 m2), and selected for mesic habitat in mid and late brood-rearing phases. In contrast, risk of nest and brood failure was structured by proximity to anthropogenic features including natural gas wells and human-created mesic areas, as well as vegetation features such as shrub cover. Conclusions/Significance Risk in this and perhaps other human-modified landscapes is a top-down (i.e., human-mediated) process that would most effectively be minimized by developing a better understanding of specific mechanisms (e.g., predator subsidization) driving observed patterns, and using habitat-performance indices such as those developed herein for spatially-explicit guidance of conservation intervention. Working under the hypothesis that industrial activity structures risk by enhancing predator abundance or effectiveness, we offer specific recommendations for maintaining high-performance habitat and reducing low-performance habitat, particularly relative to the nesting phase, by managing key high-risk anthropogenic features such as industrial infrastructure and water developments. PMID:22022587
Using within-day hive weight changes to measure environmental effects on honey bee colonies
USDA-ARS?s Scientific Manuscript database
Patterns in within-day hive weight data from two independent datasets in Arizona and California were modeled using piecewise regression, and analyzed with respect to honey bee colony behavior and landscape effects. The regression analysis yielded information on the start and finish of a colony’s dai...
Stevensville West Central Study
J. G. Jones; J. D. Chew; N. K. Christianson; D. J. Silvieus; C. A. Stewart
2000-01-01
This paper reports on an application of two modeling systems in the assessment and planning effort for a 58,038-acre area on the Bitterroot National Forest: SIMulating Vegetative Patterns and Processes at Landscape ScaLEs (SIMPPLLE), and Multi-resource Analysis and Geographic Information System (MAGIS). SIMPPLLE was a useful model for tracking and analyzing an...
Pattern analysis of eastern spruce budworm Choristoneura fumiferana dispersal
Dean P. Anderson; Brian R. Sturtevant
2011-01-01
Dispersal has been proposed as an important mechanism in the broad-scale synchronisation of insect outbreaks by linking spatially disjunct populations. Evidence suggests that dispersal is influenced by landscape structure, phenology, temperature, and air currents; however, the details remain unclear due to the difficulty of quantifying dispersal. In this study, we used...
NASA Astrophysics Data System (ADS)
Obaid, Ahmed K.; Allen, Mark B.
2017-10-01
The Kirkuk Embayment is located in the southwest of the Zagros fold-and-thrust belt of Iraq. Like fold-and-thrust belts worldwide, the Zagros is conventionally understood to have grown sequentially towards the foreland. Here we use landscape maturity analysis to understand anticline growth in the embayment. Digital Elevation Model (DEM)-based geomorphic indices Hypsometric Integral (HI), Surface Roughness (SR) and their combination Surface Index (SI) have been applied to quantify landscape maturity. The results inform new ideas for the sequence of anticline growth. Maturity indices are highest for the QaraChauq Anticline in the center of the Embayment, then Makhool/Himreen to the south and lastly, the Kirkuk Anticline to the north. The pattern suggests the growth sequence is not classical 'piggy back' thrusting. This result fits the exhumation record, which is loosely constrained by the stratigraphic exposure level. Favored hypotheses for fold growth order are either i) the folds have grown at different times and out of sequence (QaraChauq first, then Makhool/Himreen, and Kirkuk last), or, ii) the growth occurred with different rates of exhumation but at broadly the same time. There are few constraints from available data on syn-tectonic sedimentation patterns. Fold growth across much of the Embayment might have begun within a limited timeframe in the late Miocene-Pliocene, during the deposition of the Mukdadiyah Formation. Another hypothesis is that folds grew in sequence towards the foreland with different rates of exhumation, but we consider this less likely. We also construct a new cross-section for the Embayment, which indicates limited Cenozoic strain: 5% shortening. Analysis of topography and drainage patterns shows two previously-undescribed anticlines with hydrocarbon trap potential, between the Makhool and QaraChauq anticlines.
NASA Astrophysics Data System (ADS)
Cohen, M. J.; Martin, J. B.; Mclaughlin, D. L.; Osborne, T.; Murray, A.; Watts, A. C.; Watts, D.; Heffernan, J. B.
2012-12-01
Development of karst landscapes is controlled by focused delivery of water undersaturated with respect to the soluble rock minerals. As that water comes to equilibrium with the rock, secondary porosity is incrementally reinforced creating a positive feedback that acts to augment the drainage network and subsequent water delivery. In most self-organizing systems, spatial positive feedbacks create features (in landscapes: patches; in karst aquifers: conduits) whose size-frequency relationship follows a power function, indicating a higher probability of large features than would occur with a random or Gaussian genesis process. Power functions describe several aspects of secondary porosity in the Upper Floridan Aquifer in north Florida. In contrast, a different pattern arises in the karst landscape in southwest Florida (Big Cypress National Preserve; BICY), where low-relief and a shallow aquiclude govern regional hydrology. There, the landscape pattern is highly regular (Fig. 1), with circular cypress-dominated wetlands occupying depressions that are hydrologically isolated and distributed evenly in a matrix of pine uplands. Regular landscape patterning results from spatially coupled feedbacks, one positive operating locally that expands patches coupled to another negative that operates at distance, eventually inhibiting patch expansion. The positive feedback in BICY is thought to derive from the presence of surface depressions, which sustain prolonged inundation in this low-relief setting, and facilitate wetland development that greatly augments dissolution potential of infiltrating water in response to ecosystem metabolic processes. In short, wetlands "drill" into the carbonate leading to both vertical and lateral basin expansion. Wetland expansion occurs at the expense of surrounding upland area, which is the local catchment that subsidizes water availability. A distal inhibitory feedback on basin expansion thus occurs as the water necessary to sustain prolonged inundation becomes limiting. The implied strong reciprocal coupling between surface production of organic matter and patterns of induced subsurface carbonate dissolution are a novel example of co-evolving biogeomorphic processes in the earth system. Fig. 1 - Regular patterned landscape in Big Cypress National Preserve showing cypress dominated wetlands (round features) embedded in a mosaic of pine and grass uplands. Exposed carbonate rings are evident at the margins of many of the wetland basins.
Landscape ecology: what is the state of science?
Monica G. Turner
2005-01-01
Landscape ecology focuses on the reciprocal interactions between spatial pattern and ecological processes, and it is well integrated with ecology. The field has grown rapidly over the past 15 years. The persistent influence of land-use history and natural disturbance on contemporary ecosystems has become apparent Development of pattern metrics has largely stabilized,...
NASA Technical Reports Server (NTRS)
Wallin, David O.; Cohen, Warren B.; Bradshaw, G. A.; Spies, T. A.; Hansen, A.; Huff, M. H.; Lehmkuhl, J. F.; Raphael, M. G.; Ripple, W. J.
1998-01-01
While there is widespread recognition of the importance of preserving biological diversity there is considerable uncertainty about how to map current patterns of diversity and monitor changes through time. Ground-based approaches are impractical for examining regional patterns of biological diversity, for monitoring change, and they may actually overlook important higher-order phenomena. Thus, there is a critical need for innovative techniques to examine land-use effects on biological diversity at the landscape and regional scales. In this project, we have used satellite-based remote sensing to examine land-use effects on forest ecosystems in the Pacific NorthWest region (PNW) of the U.S.A. Rates and patterns of forest change throughout the region were quantified for the period from 1972 to 1993. This information was then used to map changes in the abundance and distribution of potential habitat for selected vertebrate species. The results of this project will be useful for identifying "keystone" stands that are important in maintaining habitat connectivity at the regional scale and for evaluating the impact of future land-use on vertebrate diversity throughout the region. The approaches developed here will also be useful in other forested regions throughout the world.
Scale effects on spatially varying relationships between urban landscape patterns and water quality.
Sun, Yanwei; Guo, Qinghai; Liu, Jian; Wang, Run
2014-08-01
Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.
Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales
NASA Astrophysics Data System (ADS)
Mitchell, Matthew G. E.; Bennett, Elena M.; Gonzalez, Andrew
2015-09-01
Human actions, such as converting natural land cover to agricultural or urban land, result in the loss and fragmentation of natural habitat, with important consequences for the provision of ecosystem services. Such habitat loss is especially important for services that are supplied by fragments of natural land cover and that depend on flows of organisms, matter, or people across the landscape to produce benefits, such as pollination, pest regulation, recreation and cultural services. However, our quantitative knowledge about precisely how different patterns of landscape fragmentation might affect the provision of these types of services is limited. We used a simple, spatially explicit model to evaluate the potential impact of natural land cover loss and fragmentation on the provision of hypothetical ecosystem services. Based on current literature, we assumed that fragments of natural land cover provide ecosystem services to the area surrounding them in a distance-dependent manner such that ecosystem service flow depended on proximity to fragments. We modeled seven different patterns of natural land cover loss across landscapes that varied in the overall level of landscape fragmentation. Our model predicts that natural land cover loss will have strong and unimodal effects on ecosystem service provision, with clear thresholds indicating rapid loss of service provision beyond critical levels of natural land cover loss. It also predicts the presence of a tradeoff between maximizing ecosystem service provision and conserving natural land cover, and a mismatch between ecosystem service provision at landscape versus finer spatial scales. Importantly, the pattern of landscape fragmentation mitigated or intensified these tradeoffs and mismatches. Our model suggests that managing patterns of natural land cover loss and fragmentation could help influence the provision of multiple ecosystem services and manage tradeoffs and synergies between services across different human-dominated landscapes.
NASA Astrophysics Data System (ADS)
Dowhaniuk, Nicholas; Hartter, Joel; Congalton, Russell G.; Palace, Michael W.; Ryan, Sadie J.
2016-04-01
Protected areas in Sub-Saharan Africa are sanctuaries for rich biodiversity and are important economic engines for African nations, but they are becoming increasingly threatened by discoveries of mineral deposits within and nearby their boundaries. In 2006, viable oil reserves were discovered in Murchison Falls Conservation Area (MFCA) in northern Uganda. Exploratory and appraisal activities concluded in 2014, and production is expected to begin in 2016. The oil development is associated with a substantial increase in human population outside MFCA, with people seeking jobs, land, and economic opportunity. Concomitant with this change is increased truck traffic, a sprawling and denser road network, and infrastructure within the park, which could have large impacts on both the flora and fauna. We examined the broader protected area landscape and the potential feedbacks from resource development on the ecosystem and local livelihoods. Our analysis combines a land cover analysis using Object Based Image Analysis of Landsat data (2002 and 2014), migration patterns and population change (1959-2014), and qualitative interview data. Our results suggest that most of the larger-scale impacts on the landscape and people are occurring in the western and northern sections, both inside and outside of the park. Additionally, oil development is not the only factor in the region influencing population growth and landscape change. Post conflict regrowth in the north, sugarcane production in the south, and migration to this region from conflict-ridden neighboring countries are also playing a vital role in human migration shaping the MFCA Landscape. Understanding the social and environmental changes and impacts in the MFCA and its surrounding areas will add to limited literature on the impacts of resource extraction on local, subsistence communities and landscape level change, which will be important as access and pressure for oil and minerals within protected areas continues to rise.
Liu, Xinchun; Zhang, Yuandong; Ren, Guangyao; Pan, Xiaoling; He, Qing
2004-07-01
The spatial pattern of ecological landscape during land utilization in Fukang is heavily influenced by natural difference and the scale of water and land resource development. Analyses on the spatial pattern based on different zones and indexes showed that from 1987 to 1998, the change of the spatial pattern of ecological landscape during land utilization in Fukang was mainly the increase of plantation area in pluvial fan and the decrease in alluvial plain. The case was on the contrary about badlands. The acreage of woodland decreased in lower mountains, uplands and alluvial plain, but no variety in alluvial plain. The acreage of grassland increased in lower mountains and uplands, while decreased in other fields. The acreage of town increased in each sample field, while that of water area remained uncharged. The landscape diversity and evenness was descending, the dominance was ascending in lower mountains and in pluvial fan, while it was reverse in alluvial plain. Accessorial fragmentation showed the increasing influence of human beings. The change of the spatial pattern of ecological landscape in Fukang focused on the acreage alteration of plantation and badlands in pluvial fan and alluvial plain. The key factor was the dynamic variation of water-salt in water and soil resource utilization. Terrain and land utilization were the key factors affecting water table, and the continuous changes of the water table worked on the spatial distribution of soil water-salt.
Frick, Winifred F; Hayes, John P; Heady, Paul A
2009-01-01
Nested patterns of community composition exist when species at depauperate sites are subsets of those occurring at sites with more species. Nested subset analysis provides a framework for analyzing species occurrences to determine non-random patterns in community composition and potentially identify mechanisms that may shape faunal assemblages. We examined nested subset structure of desert bat assemblages on 20 islands in the southern Gulf of California and at 27 sites along the Baja California peninsula coast, the presumable source pool for the insular faunas. Nested structure was analyzed using a conservative null model that accounts for expected variation in species richness and species incidence across sites (fixed row and column totals). Associations of nestedness and island traits, such as size and isolation, as well as species traits related to mobility, were assessed to determine the potential role of differential extinction and immigration abilities as mechanisms of nestedness. Bat faunas were significantly nested in both the insular and terrestrial landscape and island size was significantly correlated with nested structure, such that species on smaller islands tended to be subsets of species on larger islands, suggesting that differential extinction vulnerabilities may be important in shaping insular bat faunas. The role of species mobility and immigration abilities is less clearly associated with nestedness in this system. Nestedness in the terrestrial landscape is likely due to stochastic processes related to random placement of individuals and this may also influence nested patterns on islands, but additional data on abundances will be necessary to distinguish among these potential mechanisms.
Mueller, Thomas; Olson, K.A.; Dressler, G.; Leimgruber, Peter; Fuller, Todd K.; Nicholson, Craig; Novaro, A.J.; Bolgeri, M.J.; Wattles, David W.; DeStefano, Stephen; Calabrese, J.M.; Fagan, William F.
2011-01-01
Aim To demonstrate how the interrelations of individual movements form large-scale population-level movement patterns and how these patterns are associated with the underlying landscape dynamics by comparing ungulate movements across species.Locations Arctic tundra in Alaska and Canada, temperate forests in Massachusetts, Patagonian Steppes in Argentina, Eastern Steppes in Mongolia.Methods We used relocation data from four ungulate species (barren-ground caribou, Mongolian gazelle, guanaco and moose) to examine individual movements and the interrelation of movements among individuals. We applied and developed a suite of spatial metrics that measure variation in movement among individuals as population dispersion, movement coordination and realized mobility. Taken together, these metrics allowed us to quantify and distinguish among different large-scale population-level movement patterns such as migration, range residency and nomadism. We then related the population-level movement patterns to the underlying landscape vegetation dynamics via long-term remote sensing measurements of the temporal variability, spatial variability and unpredictability of vegetation productivity.Results Moose, which remained in sedentary home ranges, and guanacos, which were partially migratory, exhibited relatively short annual movements associated with landscapes having very little broad-scale variability in vegetation. Caribou and gazelle performed extreme long-distance movements that were associated with broad-scale variability in vegetation productivity during the peak of the growing season. Caribou exhibited regular seasonal migration in which individuals were clustered for most of the year and exhibited coordinated movements. In contrast, gazelle were nomadic, as individuals were independently distributed and moved in an uncoordinated manner that relates to the comparatively unpredictable (yet broad-scale) vegetation dynamics of their landscape.Main conclusions We show how broad-scale landscape unpredictability may lead to nomadism, an understudied type of long-distance movement. In contrast to classical migration where landscapes may vary at broad scales but in a predictable manner, long-distance movements of nomadic individuals are uncoordinated and independent from other such individuals. Landscapes with little broad-scale variability in vegetation productivity feature smaller-scale movements and allow for range residency. Nomadism requires distinct integrative conservation strategies that facilitate long-distance movements across the entire landscape and are not limited to certain migration corridors.
Mueller, T.; Olson, K.A.; Dressler, G.; Leimgruber, P.; Fuller, T.K.; Nicolson, C.; Novaro, A.J.; Bolgeri, M.J.; Wattles, David W.; DeStefano, S.; Calabrese, J.M.; Fagan, W.F.
2011-01-01
Aim To demonstrate how the interrelations of individual movements form large-scale population-level movement patterns and how these patterns are associated with the underlying landscape dynamics by comparing ungulate movements across species. Locations Arctic tundra in Alaska and Canada, temperate forests in Massachusetts, Patagonian Steppes in Argentina, Eastern Steppes in Mongolia. Methods We used relocation data from four ungulate species (barren-ground caribou, Mongolian gazelle, guanaco and moose) to examine individual movements and the interrelation of movements among individuals. We applied and developed a suite of spatial metrics that measure variation in movement among individuals as population dispersion, movement coordination and realized mobility. Taken together, these metrics allowed us to quantify and distinguish among different large-scale population-level movement patterns such as migration, range residency and nomadism. We then related the population-level movement patterns to the underlying landscape vegetation dynamics via long-term remote sensing measurements of the temporal variability, spatial variability and unpredictability of vegetation productivity. Results Moose, which remained in sedentary home ranges, and guanacos, which were partially migratory, exhibited relatively short annual movements associated with landscapes having very little broad-scale variability in vegetation. Caribou and gazelle performed extreme long-distance movements that were associated with broad-scale variability in vegetation productivity during the peak of the growing season. Caribou exhibited regular seasonal migration in which individuals were clustered for most of the year and exhibited coordinated movements. In contrast, gazelle were nomadic, as individuals were independently distributed and moved in an uncoordinated manner that relates to the comparatively unpredictable (yet broad-scale) vegetation dynamics of their landscape. Main conclusions We show how broad-scale landscape unpredictability may lead to nomadism, an understudied type of long-distance movement. In contrast to classical migration where landscapes may vary at broad scales but in a predictable manner, long-distance movements of nomadic individuals are uncoordinated and independent from other such individuals. Landscapes with little broad-scale variability in vegetation productivity feature smaller-scale movements and allow for range residency. Nomadism requires distinct integrative conservation strategies that facilitate long-distance movements across the entire landscape and are not limited to certain migration corridors. ?? 2011 Blackwell Publishing Ltd.
Topological data analysis of financial time series: Landscapes of crashes
NASA Astrophysics Data System (ADS)
Gidea, Marian; Katz, Yuri
2018-02-01
We explore the evolution of daily returns of four major US stock market indices during the technology crash of 2000, and the financial crisis of 2007-2009. Our methodology is based on topological data analysis (TDA). We use persistence homology to detect and quantify topological patterns that appear in multidimensional time series. Using a sliding window, we extract time-dependent point cloud data sets, to which we associate a topological space. We detect transient loops that appear in this space, and we measure their persistence. This is encoded in real-valued functions referred to as a 'persistence landscapes'. We quantify the temporal changes in persistence landscapes via their Lp-norms. We test this procedure on multidimensional time series generated by various non-linear and non-equilibrium models. We find that, in the vicinity of financial meltdowns, the Lp-norms exhibit strong growth prior to the primary peak, which ascends during a crash. Remarkably, the average spectral density at low frequencies of the time series of Lp-norms of the persistence landscapes demonstrates a strong rising trend for 250 trading days prior to either dotcom crash on 03/10/2000, or to the Lehman bankruptcy on 09/15/2008. Our study suggests that TDA provides a new type of econometric analysis, which complements the standard statistical measures. The method can be used to detect early warning signals of imminent market crashes. We believe that this approach can be used beyond the analysis of financial time series presented here.
Rooting strategies in a subtropical savanna: a landscape-scale three-dimensional assessment.
Zhou, Yong; Boutton, Thomas W; Wu, X Ben; Wright, Cynthia L; Dion, Anais L
2018-04-01
In resource-limited savannas, the distribution and abundance of fine roots play an important role in acquiring essential resources and structuring vegetation patterns and dynamics. However, little is known regarding the three-dimensional distribution of fine roots in savanna ecosystems at the landscape scale. We quantified spatial patterns of fine root density to a depth of 1.2 m in a subtropical savanna landscape using spatially specific sampling. Kriged maps revealed that fine root density was highest at the centers of woody patches, decreased towards the canopy edges, and reached lowest values within the grassland matrix throughout the entire soil profile. Lacunarity analyses indicated that spatial heterogeneities of fine root density decreased continuously to a depth of 50 cm and then increased in deeper portions of the soil profile across this landscape. This vertical pattern might be related to inherent differences in root distribution between trees/shrubs and herbaceous species, and the presence/absence of an argillic horizon across this landscape. The greater density of fine roots beneath woody patches in both upper and lower portions of the soil profile suggests an ability to acquire disproportionately more resources than herbaceous species, which may facilitate the development and persistence of woody patches across this landscape.
Modelling non-Euclidean movement and landscape connectivity in highly structured ecological networks
Sutherland, Christopher; Fuller, Angela K.; Royle, J. Andrew
2015-01-01
The ecological distance SCR model uses spatially indexed capture-recapture data to estimate how activity patterns are influenced by landscape structure. As well as reducing bias in estimates of abundance, this approach provides biologically realistic representations of home range geometry, and direct information about species-landscape interactions. The incorporation of both structural (landscape) and functional (movement) components of connectivity provides a direct measure of species-specific landscape connectivity.
Landscape management using historical fire regimes: Blue River, Oregon.
J.H. Cissel; F.J. Swanson; P.J. Weisberg
1999-01-01
Landscapes administered for timber production by the U.S. Forest Service in the Pacific Northwest in the 1950s-1980s were managed with dispersed patch clearcutting, and then briefly in the late 1980s with aggregated patch clearcutting. In the late 1990s, use of historical landscape patterns and disturbance regimes as a guide for landscape management has emerged as an...
Eric J. Gustafson; Thomas R. Crow
1994-01-01
Timber harvesting affects both composition and structure of the landscape and has important consequences for organisms using forest habitats. A timber harvest allocation model was constructed that allows the input of specific rules to allocate forest stands for clearcutting to generate landscape patterns reflecting the "look and feel" of managed landscapes....
Jaisuk, Chaowalee; Senanan, Wansuk
2018-01-01
Spatial genetic variation of river-dwelling freshwater fishes is typically affected by the historical and contemporary river landscape as well as life-history traits. Tropical river and stream landscapes have endured extended geological change, shaping the existing pattern of genetic diversity, but were not directly affected by glaciation. Thus, spatial genetic variation of tropical fish populations should look very different from the pattern observed in temperate fish populations. These data are becoming important for designing appropriate management and conservation plans, as these aquatic systems are undergoing intense development and exploitation. This study evaluated the effects of landscape features on population genetic diversity of Garra cambodgiensis, a stream cyprinid , in eight tributary streams in the upper Nan River drainage basin ( n = 30-100 individuals/location), Nan Province, Thailand. These populations are under intense fishing pressure from local communities. Based on 11 microsatellite loci, we detected moderate genetic diversity within eight population samples (average number of alleles per locus = 10.99 ± 3.00; allelic richness = 10.12 ± 2.44). Allelic richness within samples and stream order of the sampling location were negatively correlated ( P < 0.05). We did not detect recent bottleneck events in these populations, but we did detect genetic divergence among populations (Global F ST = 0.022, P < 0.01). The Bayesian clustering algorithms (TESS and STRUCTURE) suggested that four to five genetic clusters roughly coincide with sub-basins: (1) headwater streams/main stem of the Nan River, (2) a middle tributary, (3) a southeastern tributary and (4) a southwestern tributary. We observed positive correlation between geographic distance and linearized F ST ( P < 0.05), and the genetic differentiation pattern can be moderately explained by the contemporary stream network (STREAMTREE analysis, R 2 = 0.75). The MEMGENE analysis suggested genetic division between northern (genetic clusters 1 and 2) and southern (clusters 3 and 4) sub-basins. We observed a high degree of genetic admixture in each location, highlighting the importance of natural flooding patterns and possible genetic impacts of supplementary stocking. Insights obtained from this research advance our knowledge of the complexity of a tropical stream system, and guide current conservation and restoration efforts for this species in Thailand.
The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments.
Da Lio, Cristina; D'Alpaos, Andrea; Marani, Marco
2013-12-13
The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with biological activity, especially with the presence of halophytic vegetation. Here, we review recent contributions to tidal biogeomorphology and identify the presence of multiple competing stable states arising from a two-way feedback between biomass productivity and topographic elevation. Hence, through the analysis of previous and new results on spatially extended biogeomorphological systems, we show that multiple stable states constitute a unifying framework explaining emerging patterns in tidal environments from the local to the system scale. Furthermore, in contrast with traditional views we propose that biota in tidal environments is not just passively adapting to morphological features prescribed by sediment transport, but rather it is 'The Secret Gardener', fundamentally constructing the tidal landscape. The proposed framework allows to identify the observable signature of the biogeomorphic feedbacks underlying tidal landscapes and to explore the response and resilience of tidal biogeomorphic patterns to variations in the forcings, such as the rate of relative sea-level rise.
A novel simulation methodology merging source-sink dynamics and landscape connectivity
Source-sink dynamics are an emergent property of complex species-landscape interactions. This study explores the patterns of source and sink behavior that become established across a large landscape, using a simulation model for the northern spotted owl (Strix occidentalis cauri...
NASA Astrophysics Data System (ADS)
Callegaro, Chiara; Ursino, Nadia
2016-04-01
Self-organizing vegetation patterns are natural water harvesting systems in arid and semi-arid regions of the world and should be imitated when designing man-managed water-harvesting systems for rain-fed crop. Disconnected vegetated and bare zones, functioning as a source-sink system of resources, sustain vegetation growth and reduce water and soil losses. Mechanisms such as soil crusting over bare areas and soil loosening in vegetated areas feed back to the local net facilitation effect and contribute to maintain the patterned landscape structure. Dis-connectivity of run-off production and run-on infiltration sites reduces runoff production at the landscape scale, and increases water retention in the vegetated patches. What is the effect of species adaptation to different resource niches on the landscape structure? A minimal model for two coexisting species and soil moisture balance was formulated, to improve our understanding of the effects of species differentiation on the dynamics of plants and water at single-pattern and landscape scale within a tiger bush type ecosystem. A basic assumption of our model was that soil moisture availability is a proxy for the environmental niche of plant species. Connectivity and dis-connectivity of specific niches of adaptation of two differing plant species was an input parameter of our model, in order to test the effect of coexistence on the ecosystem structure. The ecosystem structure is the model outcome, including: patterns persistence of coexisting species; patterns persistence of one species with exclusion of the other; patterns decline with just one species surviving in a non organized structure; bare landscape with loss of both species. Results suggest that pattern-forming-species communities arise as a result of complementary niche adaptation (niche dis-connecivity), whereas niche superposition (niche connectivity) may lead to impoverishment of environmental resources and loss of vegetation cover and diversity.
Xiao, Shengchun; Xiao, Honglang; Peng, Xiaomei; Song, Xiang
2015-01-01
Changes in the landscape structure of terminal lakes and wetlands along inland rivers in arid areas are determined by the water balance in the river basins under the impacts of climate change and human activities. Studying the evolution of these landscapes and the mechanisms driving these changes is critical to the sustainable development of river basins. The terminal lakes and wetlands along the lower reaches of the Heihe River, an inland river in arid northwestern China, can be grouped into three types: runoff-recharged, groundwater-recharged, and precipitation-recharged. These water-recharge characteristics determine the degree to which the landscape structure of a terminal lake or wetland is impacted by climate change and human activities. An analysis of seven remote-sensing and hydroclimatic data sets for the Heihe River basin during the last 50 years indicates that hydrological changes in the basin caused by regional human activities were the primary drivers of the observed changes in the spatial and temporal landscape-structure patterns of the terminal lakes and wetlands of the Heihe River. In this warm, dry climatic context, the lakes and wetlands gradually evolved toward and maintained a landscape dominated by saline-alkaline lands and grasslands.
Huang, Shu-Li; Lee, Ying-Chieh; Budd, William W; Yang, Min-Chia
2012-04-01
The farm pond system for irrigation is the most prominent feature in the Taoyuan area, Taiwan, giving the region a unique landscape and hydrological character. Although this area had more than 3,290 ponds in the 1970s, fewer than 1,800 now remain. This study analyzes changes in irrigation farm ponds and the canal network landscape in the Taoyuan area. The spatial and temporal changes to ponds and the canal network on the Taoyuan plain were examined graphically for each spatial unit (2,765 m × 2,525 m) using aerial photographs for 1979 and 2005. Landscape metrics were calculated to analyze landscape change associated with increased urbanization. Landscape indices of connectivity and circuitry were utilized to describe changes in the configuration of ponds and canal networks. The total length of canals and total number of ponds in the study area decreased significantly during 1979-2005. The average values of connectivity indices (γ- and α-index) also decreased during 1979-2005, reflecting degradation of canal networks due to urban sprawl. A multivariate technique was applied to portion the study area into three zones according to changes to land cover, ponds, and canal networks. The effects of urban sprawl on the spatial pattern of ponds and canal networks are discussed.
Carrara, Francesco; Rinaldo, Andrea; Giometto, Andrea; Altermatt, Florian
2014-01-01
Habitat fragmentation and land use changes are causing major biodiversity losses. Connectivity of the landscape or environmental conditions alone can shape biodiversity patterns. In nature, however, local habitat characteristics are often intrinsically linked to a specific connectivity. Such a link is evident in riverine ecosystems, where hierarchical dendritic structures command related scaling on habitat capacity. We experimentally disentangled the effect of local habitat capacity (i.e., the patch size) and dendritic connectivity on biodiversity in aquatic microcosm metacommunities by suitably arranging patch sizes within river-like networks. Overall, more connected communities that occupy a central position in the network exhibited higher species richness, irrespective of patch size arrangement. High regional evenness in community composition was found only in landscapes preserving geomorphological scaling properties of patch sizes. In these landscapes, some of the rarer species sustained regionally more abundant populations better tracking their own niche requirements compared to landscapes with homogeneous patch size or landscapes with spatially uncorrelated patch size. Our analysis suggests that altering the natural link between dendritic connectivity and patch size strongly affects community composition and population persistence at multiple scales. The experimental results are demonstrating a principle that can be tested in theoretical metacommunity models and eventually be projected to real riverine ecosystems.
Pattern detection in stream networks: Quantifying spatialvariability in fish distribution
Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.
2004-01-01
Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.
NASA Astrophysics Data System (ADS)
Carone, M. T.; Imbrenda, V.; Lanfredi, M.; Macchiato, M.; Simoniello, T.
2009-04-01
The role of forested areas for the maintaining of an acceptable landscape balance is crucial. As an example, they contribute to higher biodiversity levels directly and to cleaner fluvial waters indirectly, thus, the degradation of such ecosystems has strong repercussions on many ecological processes. In order to preserve their natural stability, monitoring forest temporal dynamics is very important for a correct management, particularly, in fragile Mediterranean environments that are highly vulnerable to both natural and human-induced perturbations. For analysing the evolution of forested patterns, especially in areas with a strong human presence, landscape metrics are a basilar tool since they allow for evaluating the structure of landscape patterns at different spatio-temporal scales and the relationship between natural environment and human environment. Starting from this premise, we selected a set of Landscape Metrics to evaluate the temporal dynamics of forested covers in two different environments (coastal and mountainous) located in Basilicata Region, Southern Italy. The first one (area A) is located along the Ionian coast and is largely characterized by evergreen forests; in such an area, even if many sites are protected by the European Community (SCI), forests are subjected to a strong incidence of human activities mainly linked to agriculture and tourism as well as to frequent fire events and coastal erosion processes that favour salt-water intrusion. The second one (area B) is a high heterogeneous mountainous area, which also comprehends alluvial planes. The particular configuration of the territory allows for the presence of a very rich faunal and vegetation biodiversity; thus, it is partially under the protection of a National Park, but there are also many critical anthropical activities (e.g. oil drilling, agriculture, etc.). The landscape ecology analyses were performed on multi temporal land cover maps, obtained from hybrid classifications of a time series of Landsat-TM subscenes: for area A, we used five images covering the period 1987-2006; and for area B, three images covering the period 1993-1998. The analysis of landscape structure and dynamics were performed by elaborating metrics based on patch number, size, shape and arrangements of different land cover types. At landscape level, area A provided quite low levels of Evenness (SHEI<0,70) and Diversity (SHDI~1.0) for the analyzed period. Metrics at patch and class levels, particularly for patch dimensions (MPS), complexity (FRACT) and Interdispersion (IJI) showed a little expansion of the urban sites and no important changes for the large agricultural areas. On the contrary, for natural areas a process of fragmentation has been revealed for coniferous forests in the period 1987-1998 when they show an alternation with a less structured and herbaceous vegetation. For area B, the landscape level shows, in the studied period, stable high values of Evenness (SHEI>0.80) and medium values of Diversity (SHDI~1.8). Metrics for patch and class levels reveal, instead, an increment in size and complexity for anthropical vegetation and a decrement for natural forested areas (mainly beeches) accompanied by a high variability of the transitional areas located along the edges of forested sites. On the whole, the combined interpretation of metrics at different levels of landscape structure and at different time steps revealed an increasing trend of forest isolation and fragmentation, which can enhance their sensitivity. The obtained results for both areas suggest that the institution of protected areas is not a complete solution for the maintaining of forest ecosystems balance without a correct management of the surrounding areas. In order to increase the connectivity among forested patches and, more in general, to improve the ecosystem functionality, the ecological analysis of satellite time series represents an operative tool for an efficient intervention planning, such as the location of the most suitable sites for ecological restoration activities.
Landscape-scale patterns of fire and drought on the high plains, USA
Paulette Ford; Charles Jackson; Matthew Reeves; Benjamin Bird; Dave Turner
2015-01-01
We examine 31 years (1982-2012) of temperature, precipitation and natural wildfire occurrence data for Federal and Tribal lands to determine landscape-scale patterns of drought and fire on the southern and central High Plains of the western United States. The High Plains states of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas and...
Quantifying Landscape Spatial Pattern: What Is the State of the Art?
Eric J. Gustafson
1998-01-01
Landscape ecology is based on the premise that there are strong links between ecological pattern and ecological function and process. Ecological systems are spatially heterogeneous, exhibiting consid-erable complexity and variability in time and space. This variability is typically represented by categorical maps or by a collection of samples taken at specific spatial...
Trends in fire patterns in a southern African savanna under alternative land use practices
A. T. Hudak; D. H. K. Fairbanks; B. H. Brockett
2004-01-01
Climate, topography, vegetation and land use interact to influence fire regimes.Variable fire regimes may promote landscape heterogeneity, diversification in vegetation pattern and biotic diversity. The objective was to compare effects of alternative land use practices on landscape heterogeneity. Patch characteristics of fire scars were measured from 21 annual burn...
Valerie Rapp
2002-01-01
Pacific Northwest forests and all their species evolved with fires, floods, windstorms, landslides, and other disturbances. The dynamics of disturbance were basic to how forests changed and renewed. Disturbance regimes, as scientists call the long-term patterns of these eventsâwhat kind of event, how often, how large, and how severeâcreated the landscape patterns seen...
Ecohydrology of an outbreak: Mountain pine beetle impacts trees in drier landscape positions first
Kendra E. Kaiser; Ryan E. Emanuel
2013-01-01
Vegetation pattern and landscape structure intersect to exert strong control over ecohydrological dynamics at the watershed scale. The hydrologic implications of vegetation disturbance (e.g. fire, disease) depend on the spatial pattern and form of environmental change. Here, we investigate this intersection at Tenderfoot Creek Experimental Forest (TCEF), Montana, with...
USDA-ARS?s Scientific Manuscript database
In the Rio Grande Plains of southern Texas, subtropical savanna vegetation is characterized by a two-phase pattern consisting of discrete woody patches embedded within a C4 grassland matrix. Prior trench transect studies have suggested that, on upland portions of the landscape, large woody patches (...
S. Gärtner; K.M. Reynolds; P.F. Hessburg; S.S. Hummel; M. Twery
2008-01-01
We evaluated changes (hereafter, departures) in spatial patterns of various patch types of forested landscapes in two subwatersheds ("east" and "west") in eastern Washington, USA, from the patterns of two sets of reference conditions; one representing the broad variability of pre-management era (~1900) conditions, and another representing the broad...
Valerie Rapp
2003-01-01
Pacific Northwest forests and all their species evolved with fires, floods, windstorms, landslides, and other disturbances. The dynamics of disturbance were basic to how forests changed and renewed. Disturbance regimes, as scientists call the long-term patterns of these eventsâwhat kind of event, how often, how large, and how severeâcreated the landscape patterns seen...
Herrera, José M; Alagador, Diogo; Salgueiro, Pedro; Mira, António
2018-01-01
Managing landscape connectivity is a widely recognized overarching strategy for conserving biodiversity in human-impacted landscapes. However, planning the conservation and management of landscape connectivity of multiple and ecologically distinct species is still challenging. Here we provide a spatially-explicit framework which identifies and prioritizes connectivity conservation and restoration actions for species with distinct habitat affinities. Specifically, our study system comprised three groups of common bird species, forest-specialists, farmland-specialists, and generalists, populating a highly heterogeneous agricultural countryside in the southwestern Iberian Peninsula. We first performed a comprehensive analysis of the environmental variables underlying the distributional patterns of each bird species to reveal generalities in their guild-specific responses to landscape structure. Then, we identified sites which could be considered pivotal in maintaining current levels of landscape connectivity for the three bird guilds simultaneously, as well as the number and location of sites that need to be restored to maximize connectivity levels. Interestingly, we found that a small number of sites defined the shortest connectivity paths for the three bird guilds simultaneously, and were therefore considered key for conservation. Moreover, an even smaller number of sites were identified as critical to expand the landscape connectivity at maximum for the regional bird assemblage as a whole. Our spatially-explicit framework can provide valuable decision-making support to conservation practitioners aiming to identify key connectivity and restoration sites, a particularly urgent task in rapidly changing landscapes such as agroecosystems.
Salgueiro, Pedro; Mira, António
2018-01-01
Managing landscape connectivity is a widely recognized overarching strategy for conserving biodiversity in human-impacted landscapes. However, planning the conservation and management of landscape connectivity of multiple and ecologically distinct species is still challenging. Here we provide a spatially-explicit framework which identifies and prioritizes connectivity conservation and restoration actions for species with distinct habitat affinities. Specifically, our study system comprised three groups of common bird species, forest-specialists, farmland-specialists, and generalists, populating a highly heterogeneous agricultural countryside in the southwestern Iberian Peninsula. We first performed a comprehensive analysis of the environmental variables underlying the distributional patterns of each bird species to reveal generalities in their guild-specific responses to landscape structure. Then, we identified sites which could be considered pivotal in maintaining current levels of landscape connectivity for the three bird guilds simultaneously, as well as the number and location of sites that need to be restored to maximize connectivity levels. Interestingly, we found that a small number of sites defined the shortest connectivity paths for the three bird guilds simultaneously, and were therefore considered key for conservation. Moreover, an even smaller number of sites were identified as critical to expand the landscape connectivity at maximum for the regional bird assemblage as a whole. Our spatially-explicit framework can provide valuable decision-making support to conservation practitioners aiming to identify key connectivity and restoration sites, a particularly urgent task in rapidly changing landscapes such as agroecosystems. PMID:29641610
[Impacts of urban cooling effect based on landscape scale: a review].
Yu, Zhao-wu; Guo, Qing-hai; Sun, Ran-hao
2015-02-01
The urban cooling island (UCI) effect is put forward in comparison with the urban heat island effect, and emphasizes on landscape planning for optimization of function and way of urban thermal environment. In this paper, we summarized current research of the UCI effects of waters, green space, and urban park from the perspective of patch area, landscape index, threshold value, landscape pattern and correlation analyses. Great controversy was found on which of the two factors patch area and shape index has a more significant impact, the quantification of UCI threshold is particularly lacking, and attention was paid too much on the UCI effect of landscape composition but little on that of landscape configuration. More attention should be paid on shape, width and location for water landscape, and on the type of green space, green area, configuration and management for green space landscape. The altitude of urban park and human activities could also influence UCI effect. In the future, the threshold determination should dominate the research of UCI effect, the reasons of controversy should be further explored, the study of time sequence should be strengthened, the UCI effects from landscape pattern and landscape configuration should be identified, and more attention should be paid to spatial scale and resolution for the precision and accuracy of the UCI results. Also, synthesizing the multidisciplinary research should be taken into consideration.
Jia, Ke-Li; Chang, Qing-Rui
2007-09-01
By using the 1986, 1993 and 2003 Landsat TM images and with the help of GIS, the dynamic changes of land desertification landscape pattern in agriculture and pasturage interlaced zone of northern Shaanxi in 1986-2003 were analyzed. The results showed that in the past 17 years, the desertification area in the zone decreased by 206,655.2 hm2, with the patches in landscape structure reduced and fragmentation abated. Fortunately, the desertification degree decreased obviously, and moderate and light desertification took the leading position. From 1986 to 2003, the spatial centroid of desertification landscape patches expanded southwestward and northeastward, giving serious threat to the ecological safety of the southeast and northeast loess gully and hilly areas.
NATIONAL LANDSCAPE METRICS BROWSER (V1.0)
This metric browser website describes and displays wall-to-wall landscape metrics that have been calculated for the entire conterminous U.S. The intent is to provide the user with an overview of the nature and utility of this landscape metric data set. The land cover and pattern ...
Earth Surface Patterns in 200 Years (Invited)
NASA Astrophysics Data System (ADS)
Werner, B.
2009-12-01
What kinds of patterns will characterize Earth's surface in 200 years? This question is addressed using a complex systems dynamical framework for distinct levels of description in a hierarchy, in which time scale and spatial extent increase and number of variables decrease with level, and in which levels are connected nonlinearly to each other via self-organization and slaving and linearly to the external environment. Self-organized patterns linking the present to 200 years in the future must be described dynamically on a level with a time scale of centuries. Human-landscape coupling will play a prominent role in the formation of these patterns as population peaks and interactions become nonlinear over these time scales. Three related examples illustrate this approach. First, the response of human-occupied coastlines to rising sea level. Coastlines in wealthy regions develop a spatially varying boom and bust pattern, with response amplified by structures meant to delay the effects of sea level rise. Coastlines in economically disadvantaged regions experience a subdued response, with populations developing a culture of displacement that minimizes human-landscape interactions in a context of scarce resources. Second, the evolution of nation-state borders with degrading ecosystems, declining resource availability and increasing transportation costs. The maintenance of strong borders as selective filtration systems (goods, capital and people) is based on a cost-benefit analysis in which the economic benefits accruing from long distance, globalized resource exploitation are weighed against policing and infrastructure costs. As costs rise above benefits, borders fragment, with a transition to local barriers and conflicts, and mobile peoples moving to resources. Third, trends in urbanization and development of megacities under economic and environmental stress. The pattern of rapid growth of megacities through inward migration, with displaced people occupying high-risk urban landscapes such as flood plains or steep slopes and existing on the margins of the formal economic system, switches to outmigration as precarious slum dwellers respond to human-induced natural disasters, crumbling infrastructure and economic decline. Inefficient foraging along outward migration pathways from the urban center drives positive feedbacks that propel a radiating pattern and eventually lead to dispersal. These anticipated patterns represent a fragmentation of economic and power concentrations and networks, and localization of the presently globalized coupled human-landscape system. Long-time-scale models illustrating the fragmentation process and prospects for model testing will be discussed. Supported by the Geomorphology and Land Use Dynamics Program of the US National Science Foundation.
NASA Astrophysics Data System (ADS)
Henry, Mary Catherine
The use of active and passive remote sensing systems for relating forest spatial patterns to fire history was tested over one of the Arizona Sky Islands. Using Landsat Thematic Mapper (TM), Shuttle Imaging Radar (SIR-C), and data fusion I examined the relationship between landscape metrics and a range of fire history characteristics. Each data type (TM, SIR-C, and fused) was processed in the following manner: each band, channel, or derived feature was simplified to a thematic layer and landscape statistics were calculated for plots with known fire history. These landscape metrics were then correlated with fire history characteristics, including number of fire-free years in a given time period, mean fire-free interval, and time since fire. Results from all three case studies showed significant relationships between fire history and forest spatial patterns. Data fusion performed as well or better than Landsat TM alone, and better than SIR-C alone. These comparisons were based on number and strength of significant correlations each method achieved. The landscape metric that was most consistent and obtained the greatest number of significant correlations was Shannon's Diversity Index. Results also agreed with field-based research that has linked higher fire frequency to increased landscape diversity and patchiness. An additional finding was that the fused data seem to detect fire-related spatial patterns over a range of scales.
Rivaes, Rui; Pinheiro, António N; Egger, Gregory; Ferreira, Teresa
2017-01-01
Fluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data, confirming the results of the general model. The patch shape model explained nearly 13% of the patch shape variability, in which the disturbances came to have less influence on driving this feature. However, grndh continues to be the primary driver of riparian vegetation between the two disturbance factors, despite the proportional increase of the mrphd effect to approximately a third of the grndh effect.
Rivaes, Rui; Pinheiro, António N.; Egger, Gregory; Ferreira, Teresa
2017-01-01
Fluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data, confirming the results of the general model. The patch shape model explained nearly 13% of the patch shape variability, in which the disturbances came to have less influence on driving this feature. However, grndh continues to be the primary driver of riparian vegetation between the two disturbance factors, despite the proportional increase of the mrphd effect to approximately a third of the grndh effect. PMID:28979278
Kirk M. Stueve; Dawna L. Cerney; Regina M. Rochefort; Laurie L. Kurth
2009-01-01
We performed classification analysis of 1970 satellite imagery and 2003 aerial photography to delineate establishment. Local site conditions were calculated from a LIDAR-based DEM, ancillary climate data, and 1970 tree locations in a GIS. We used logistic regression on a spatially weighted landscape matrix to rank variables.
Poly-Pattern Compressive Segmentation of ASTER Data for GIS
NASA Technical Reports Server (NTRS)
Myers, Wayne; Warner, Eric; Tutwiler, Richard
2007-01-01
Pattern-based segmentation of multi-band image data, such as ASTER, produces one-byte and two-byte approximate compressions. This is a dual segmentation consisting of nested coarser and finer level pattern mappings called poly-patterns. The coarser A-level version is structured for direct incorporation into geographic information systems in the manner of a raster map. GIs renderings of this A-level approximation are called pattern pictures which have the appearance of color enhanced images. The two-byte version consisting of thousands of B-level segments provides a capability for approximate restoration of the multi-band data in selected areas or entire scenes. Poly-patterns are especially useful for purposes of change detection and landscape analysis at multiple scales. The primary author has implemented the segmentation methodology in a public domain software suite.
An indicator of forest dynamics using a shifting landscape mosaic
Kurt H. Riitters; James D. Wickham; Timothy G. Wade
2009-01-01
The composition of a landscape is a fundamental indicator in land-cover pattern assessments. The objective of this paper was to evaluate a landscape composition indicator called âlandscape mosaicâ as a framework for interpreting land-cover dynamics over a 9-year period in a 360,000 km2 study area in the southern United States. The indicator...
Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui; Wu, Haiyan
2014-10-15
Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Optimization of Landscape Services under Uncoordinated Management by Multiple Landowners
Porto, Miguel; Correia, Otília; Beja, Pedro
2014-01-01
Landscapes are often patchworks of private properties, where composition and configuration patterns result from cumulative effects of the actions of multiple landowners. Securing the delivery of services in such multi-ownership landscapes is challenging, because it is difficult to assure tight compliance to spatially explicit management rules at the level of individual properties, which may hinder the conservation of critical landscape features. To deal with these constraints, a multi-objective simulation-optimization procedure was developed to select non-spatial management regimes that best meet landscape-level objectives, while accounting for uncoordinated and uncertain response of individual landowners to management rules. Optimization approximates the non-dominated Pareto frontier, combining a multi-objective genetic algorithm and a simulator that forecasts trends in landscape pattern as a function of management rules implemented annually by individual landowners. The procedure was demonstrated with a case study for the optimum scheduling of fuel treatments in cork oak forest landscapes, involving six objectives related to reducing management costs (1), reducing fire risk (3), and protecting biodiversity associated with mid- and late-successional understories (2). There was a trade-off between cost, fire risk and biodiversity objectives, that could be minimized by selecting management regimes involving ca. 60% of landowners clearing the understory at short intervals (around 5 years), and the remaining managing at long intervals (ca. 75 years) or not managing. The optimal management regimes produces a mosaic landscape dominated by stands with herbaceous and low shrub understories, but also with a satisfactory representation of old understories, that was favorable in terms of both fire risk and biodiversity. The simulation-optimization procedure presented can be extended to incorporate a wide range of landscape dynamic processes, management rules and quantifiable objectives. It may thus be adapted to other socio-ecological systems, particularly where specific patterns of landscape heterogeneity are to be maintained despite imperfect management by multiple landowners. PMID:24465833
Wenzel, Marius A; Douglas, Alex; James, Marianne C; Redpath, Steve M; Piertney, Stuart B
2016-01-01
Landscape genomics promises to provide novel insights into how neutral and adaptive processes shape genome-wide variation within and among populations. However, there has been little emphasis on examining whether individual-based phenotype-genotype relationships derived from approaches such as genome-wide association (GWAS) manifest themselves as a population-level signature of selection in a landscape context. The two may prove irreconcilable as individual-level patterns become diluted by high levels of gene flow and complex phenotypic or environmental heterogeneity. We illustrate this issue with a case study that examines the role of the highly prevalent gastrointestinal nematode Trichostrongylus tenuis in shaping genomic signatures of selection in red grouse (Lagopus lagopus scotica). Individual-level GWAS involving 384 SNPs has previously identified five SNPs that explain variation in T. tenuis burden. Here, we examine whether these same SNPs display population-level relationships between T. tenuis burden and genetic structure across a small-scale landscape of 21 sites with heterogeneous parasite pressure. Moreover, we identify adaptive SNPs showing signatures of directional selection using F(ST) outlier analysis and relate population- and individual-level patterns of multilocus neutral and adaptive genetic structure to T. tenuis burden. The five candidate SNPs for parasite-driven selection were neither associated with T. tenuis burden on a population level, nor under directional selection. Similarly, there was no evidence of parasite-driven selection in SNPs identified as candidates for directional selection. We discuss these results in the context of red grouse ecology and highlight the broader consequences for the utility of landscape genomics approaches for identifying signatures of selection. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dong, X.; Heffernan, J. B.; Murray, A. B.; Cohen, M. J.; Martin, J. B.
2016-12-01
The evolution of the critical zone both shapes and reflects hydrologic, geochemical, and ecological processes. These interactions are poorly understood in karst landscapes with highly soluble bedrock. In this study, we used the regular-dispersed wetland basins of Big Cypress National Preserve in Florida as a focal case to model the hydrologic, geochemical, and biological mechanisms that affect soil development in karst landscapes. We addressed two questions: (1) What is the minimum timescale for wetland basin development, and (2) do changes in soil depth feed back on dissolution processes and if so by what mechanism? We developed an atmosphere-water-soil model with coupled water-solute transport, incorporating major ion equilibria and kinetic non-equilibrium chemistry, and biogenic acid production via roots distributed through the soil horizon. Under current Florida climate, weathering to a depth of 2 m (a typical depth of wetland basins) would take 4000 6000 yrs, suggesting that landscape pattern could have origins as recent as the most recent stabilization of sea level. Our model further illustrates that interactions between ecological and hydrologic processes influence the rate and depth-dependence of weathering. Absent inundation, dissolution rate decreased exponentially with distance from the bedrock to groundwater table. Inundation generally increased bedrock dissolution, but surface water chemistry and residence time produced complex and non-linear effects on dissolution rate. Biogenic acidity accelerated the dissolution rate by 50 and 1,000 times in inundated and exposed soils. Phase portrait analysis indicated that exponential decreases in bedrock dissolution rate with soil depth could produce stable basin depths. Negative feedback between hydro-period and total basin volume could stabilize the basin radius, but the lesser strength of this mechanism may explain the coalescence of wetland basins observed in some parts of the Big Cypress Landscape.
A structural equation model analysis of postfire plant diversity in California shrublands
Grace, J.B.; Keeley, J.E.
2006-01-01
This study investigates patterns of plant diversity following wildfires in fire-prone shrublands of California, seeks to understand those patterns in terms of both local and landscape factors, and considers the implications for fire management. Ninety study sites were established following extensive wildfires in 1993, and 1000-m2 plots were used to sample a variety of parameters. Data on community responses were collected for five years following fire. Structural equation modeling (SEM) was used to relate plant species richness to plant abundance, fire severity, abiotic conditions, within-plot heterogeneity, stand age, and position in the landscape. Temporal dynamics of average richness response was also modeled. Richness was highest in the first year following fire, indicating postfire enhancement of diversity. A general decline in richness over time was detected, with year-to-year variation attributable to annual variations in precipitation. Peak richness in the landscape was found where (1) plant abundance was moderately high, (2) within-plot heterogeneity was high, (3) soils were moderately low in nitrogen, high in sand content, and with high rock cover, (4) fire severity was low, and (5) stands were young prior to fire. Many of these characteristics were correlated with position in the landscape and associated conditions. We infer from the SEM results that postfire richness in this system is strongly influenced by local conditions and that these conditions are, in turn, predictably related to landscape-level conditions. For example, we observed that older stands of shrubs were characterized by more severe fires, which were associated with a low recovery of plant cover and low richness. These results may have implications for the use of prescribed fire in this system if these findings extrapolate to prescribed burns as we would expect. ?? 2006 by the Ecological Society of America.
Generation and Scaling of the African Landscape.
NASA Astrophysics Data System (ADS)
O'Malley, C.; White, N.; Roberts, G. G.
2017-12-01
An inventory of > 1500 longitudinal river profiles across Africa contains correlatable signals that can be inverted to determine a Neogene regional uplift history. This history can be tested using a range of geologic and geophysical observations. However, this approach makes simplifying assumptions about landscape erodibility through time and space (i.e. lithologic contrasts, precipitation rates, drainage stability). Here, we investigate the validity of these assumptions by carrying out a series of naturalistic landscape simulations using the Badlands and Landlab models. First, forward simulations were run with constant erodibility, using an uplift rate history determined by inverse modeling. The resultant drainage network and pattern of offshore sedimentary deposition reproduce the large-scale characteristics of the African landscape surprisingly well. This result implies that regional tectonic forcing plays a significant role in configuring drainage patterns. Secondly, the effects of varying precipitation through time and space are investigated. Since solutions to the stream power law are integrative, precipitation changes on timescales of less than 5—10 Ma have negligible influence on the resultant landscape. Finally, power spectral analyses of major African rivers that traverse significantly different climatic zones, lithologic boundaries, and biotic distributions reveal consistent scaling laws. At wavelengths of ≳ 102 km, spectra have slopes of -2, indicative of red (i.e. Brownian) noise. At wavelengths of ≲ 102 km, there is a cross-over transition to slopes of -1, consistent with pink noise. Onset of this transition suggests that spatially correlated noise generated by instabilities in water flow and by lithologic changes becomes prevalent at shorter wavelengths. Our analysis suggests that advective models of fluvial erosion are driven by a combination of external forcing and stochastic noise.
77 FR 775 - Nez Perce-Clearwater National Forests; Idaho; Clear Creek Integrated Restoration Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... species distributions habitat complexity (diversity) and landscape pattern across the forested portions of..., improve long term resistance and resilience at the landscape level; restore natural fire regimes and... landscape that is more highly fragmented than what would be expected through natural disturbance. Ladder...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-14
... general management plan (GMP) of maintaining a naturally regenerating and sustainable forested landscape... 18th-century landscape pattern of field, forest, orchard and clearings that was present during the..., Morristown NHP will protect and foster the landscape to include a broader cultural and ecological context...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
..., vegetative species distributions, habitat complexity (diversity) and landscape patterns across the forested... resistance and resilience at the landscape level; reduce fuels; improve watershed conditions; improve elk... practices and fire suppression have created a landscape that is more highly fragmented than would be...
Landscape genetics: combining landscape ecology and population genetics
Stephanie Manel; Michael K. Schwartz; Gordon Luikart; Pierre Taberlet
2003-01-01
Understanding the processes and patterns of gene flow and local adaptation requires a detailed knowledge of how landscape characteristics structure populations. This understanding is crucial, not only for improving ecological knowledge, but also for managing properly the genetic diversity of threatened and endangered populations. For nearly 80 years, population...
Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States
Liu, Zhihua; Wimberly, Michael C.
2015-01-01
An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2013-08-01
Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.
[Ecological risk assessment of Taihu Lake basin based on landscape pattern].
Xie, Xiao Ping; Chen, Zhi Cong; Wang, Fang; Bai, Mao Wei; Xu, Wen Yang
2017-10-01
Taihu Lake basin was selected as the study site. Based on the landscape data of 2000, 2005, 2010 and 2015, the Markov and CLUE-S models were used to simulate the landscape types with different scenarios in 2030, and landscape ecological risk index was constructed. The shift of gravity center and spatial statistics were used to reveal landscape ecological risk of Taihu Lake basin with temporal and spatial characteristics. The results showed that the ecological risk mainly was at medium and low levels in Taihu Lake basin, and the higher ecological risk areas were mainly distributed at the Taihu Lake area during 2000 to 2015, and the low ecological risk was transferred from the southwest and south of Taihu Lake to the developed areas in the northern part of Taihu Lake area. Spatial analysis showed that landscape ecological risk had negative correlation with natural factors, which was weakened gradually, while the correlation with socioeconomic factors trended to become stronger, with human disturbance affecting the landscape ecological risk significantly. The impact of socioeconomic factors on landscape ecological risks differed in different urbanization stages. In the developing area, with the economic development, the landscape was increasingly fragmented and the ecological risk was correspondingly increased. While in the developed area, with the further development of the economy, the aggregation index was increased, and fragmentation and separation indexes were decreased, ecological construction was restored, and the landscape ecological risk began to decline. CLUE-S model simulation showed that the ecological risk of Taihu Lake basin would be reduced in future, mainly on the low and relatively low levels. Taihu Lake area, both in history and the future, is a high ecological risk zone, and its management and protection should be strengthened.
Singer, Steve; Wang, Guangxing; Howard, Heidi; Anderson, Alan
2012-08-01
Environment functions in various aspects including soil and water conservation, biodiversity and habitats, and landscape aesthetics. Comprehensive assessment of environmental condition is thus a great challenge. The issues include how to assess individual environmental components such as landscape aesthetics and integrate them into an indicator that can comprehensively quantify environmental condition. In this study, a geographic information systems based spatial multi-criteria decision analysis was used to integrate environmental variables and create the indicator. This approach was applied to Fort Riley Military installation in which land condition and its dynamics due to military training activities were assessed. The indicator was derived by integrating soil erosion, water quality, landscape fragmentation, landscape aesthetics, and noise based on the weights from the experts by assessing and ranking the environmental variables in terms of their importance. The results showed that landscape level indicator well quantified the overall environmental condition and its dynamics, while the indicator at level of patch that is defined as a homogeneous area that is different from its surroundings detailed the spatiotemporal variability of environmental condition. The environmental condition was mostly determined by soil erosion, then landscape fragmentation, water quality, landscape aesthetics, and noise. Overall, environmental condition at both landscape and patch levels greatly varied depending on the degree of ground and canopy disturbance and their spatial patterns due to military training activities and being related to slope. It was also determined the environment itself could be recovered quickly once military training was halt or reduced. Thus, this study provided an effective tool for the army land managers to monitor environmental dynamics and plan military training activities. Its limitation lies at that the obtained values of the indicator vary and are subjective to the experts' knowledge and experience. Thus, further advancing this approach is needed by developing a scientific method to derive the weights of environmental variables.
Energy landscapes for a machine-learning prediction of patient discharge
NASA Astrophysics Data System (ADS)
Das, Ritankar; Wales, David J.
2016-06-01
The energy landscapes framework is applied to a configuration space generated by training the parameters of a neural network. In this study the input data consists of time series for a collection of vital signs monitored for hospital patients, and the outcomes are patient discharge or continued hospitalisation. Using machine learning as a predictive diagnostic tool to identify patterns in large quantities of electronic health record data in real time is a very attractive approach for supporting clinical decisions, which have the potential to improve patient outcomes and reduce waiting times for discharge. Here we report some preliminary analysis to show how machine learning might be applied. In particular, we visualize the fitting landscape in terms of locally optimal neural networks and the connections between them in parameter space. We anticipate that these results, and analogues of thermodynamic properties for molecular systems, may help in the future design of improved predictive tools.
William T. Langford; Sarah E. Gergel; Thomas G. Dietterich; Warren Cohen
2006-01-01
Although habitat fragmentation is one of the greatest threats to biodiversity worldwide, virtually no attention has been paid to the quantification of error in fragmentation statistics. Landscape pattern indices (LPIs), such as mean patch size and number of patches, are routinely used to quantify fragmentation and are often calculated using remote sensing imagery that...
Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Mike D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot
2006-01-01
The purpose of this study was to compare the sensitivity of nlodelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer &...
Geoffrey J. Cary; Robert E. Keane; Robert H. Gardner; Sandra Lavorel; Michael D. Flannigan; Ian D. Davies; Chao Li; James M. Lenihan; T. Scott Rupp; Florent Mouillot
2006-01-01
The purpose of this study was to compare the sensitivity of modelled area burned to environmental factors across a range of independently-developed landscape-fire-succession models. The sensitivity of area burned to variation in four factors, namely terrain (flat, undulating and mountainous), fuel pattern (finely and coarsely clumped), climate (observed, warmer &...
A. M. Pidgeon; V. C. Radeloff; C. H. Flather; C. A. Lepczyk; M. K. Clayton; T. J. Hawbaker; R. B. Hammer
2007-01-01
In the United States, housing density has substantially increased in and adjacent to forests. Our goal in this study was to identify how housing density and human populations are associated with avian diversity. We compared these associations to those between landscape pattern and avian diversity, and we examined how these associations vary across the conterminous...
Douglas J. Shinneman; Meredith W. Cornett; Brian J. Palik
2010-01-01
Restoring altered forest landscapes toward their ranges of natural variability (RNV) may enhance ecosystem sustainability and resiliency, but such efforts can be hampered by complex land ownership and management patterns. We evaluated restoration potential for southern-boreal forests in the ~2.1 million ha Border Lakes Region of northern Minnesota (U.S.A.) and...
Botch, Paul S; Houseman, Richard M
2016-04-01
In Missouri, the relative abundances of subterranean termite species differ between undeveloped forest and urban landscapes. Reticulitermes hageni Banks occurs in greater relative proportions in forested landscapes, while Reticulitermes flavipes (Kollar) occurs in greater relative proportions in urban landscapes. Thus, subterranean termite communities appear to change at some point as landscapes are converted from undeveloped to urban. It is not known if communities change quickly in direct response to urban development, or if changes occur over time in altered urban landscapes. The purpose of this study is to examine how landscape factors are associated with subterranean termite communities and patterns of colonization as subdivisions are constructed and age. Subterranean termites were collected from 25 areas in Columbia, MO, that were classified along a gradient of urbanization to include 1) undeveloped landscapes; 2) recently disturbed transitional landscapes; 3) 10-yr-old subdivisions; and 4) 20-yr-old subdivisions. Subterranean termite communities were assessed by identifying species using polymerase chain reaction-based restriction fragment length polymorphisms. The interactions between landscape features and subterranean termites were examined using GIS software. Relative proportions of Reticulitermes spp. in communities of forest landscapes and urban areas are similar to previous reports for the state of Missouri. Termite communities appear to be locally eliminated after soils are disturbed or removed during subdivision development, although remnant colonies can persist in areas that are not disturbed. Reticulitermes flavipes appears to colonize subdivisions quickly regardless of historical or contemporary landscape; however, R. hageni colonization generally becomes more common as subdivisions age and gradually become more forested.
Multiscale assessment of landscape structure in heterogeneous forested area
NASA Astrophysics Data System (ADS)
Simoniello, T.; Pignatti, S.; Carone, M. T.; Fusilli, L.; Lanfredi, M.; Coppola, R.; Santini, F.
2010-05-01
The characterization of landscape structure in space or time is fundamental to infer ecological processes (Ingegnoli, 2002). Landscape pattern arrangements strongly influence forest ecological functioning and biodiversity, as an example landscape fragmentation can induce habitat degradation reducing forest species populations or limiting their recolonization. Such arrangements are spatially correlated and scale-dependent, therefore they have distinctive operational-scales at which they can be best characterized (Wu, 2004). In addition, the detail of the land cover classification can have substantial influences on resulting pattern quantification (Greenberg et al.2001). In order to evaluate the influence of the observational scales and labelling details, we investigated a forested area (Pollino National Park; southern Italy) by analyzing the patch arrangement derived from three remote sensing sensors having different spectral and spatial resolutions. In particular, we elaborated data from the hyperspectral MIVIS (102 bands; ~7m) and Hyperion (220 bands; 30m), and the multispectral Landsat-TM (7 bands; 30m). Moreover, to assess the landscape evolution we investigated the hierarchical structure of the study area (landscape, class, patch) by elaborating two Landsat-TM acquired in 1987 and 1998. Preprocessed data were classified by adopting a supervised procedure based on the Minimum Distance classifier. The obtained labelling correspond to Corine level 5 for the high resolution MIVIS data, to Corine level 4 for Hyperion and to an intermediate level 4-3 for TM data. The analysis was performed by taking into account patch density, diversity and evenness at landscape level; mean patch size and interdispersion at class level; patch structure and perimeter regularity at patch level. The three sensors described a landscape with a quite high level of richness and distribution. The high spectral and spatial resolution of MIVIS data provided the highest diversity level (SHDI = 2.05), even if the results obtained for TM were not so different (1.93), Hyperion showed the lowest value (1.79). The obtained evenness index was similar for all the landscapes (~ 0.72). At class level, the interdispersion increases as the spatial and spectral resolution power decrease. Due to the low labelling detail, TM classes represent an aggregation of MIVIS and Hyperion classes; therefore they result larger and more diffused over the territory favouring higher interspersion values in the computation. The investigation of the patch structure highlighted the highest MIVIS capability in describing the patch articulation; Hyperion and TM showed quite similar situation. The historical analysis based on TM imagery showed a fragmentation process for some forested patches (mainly beeches): an increase of structure complexity (higher FRACT) is coupled with a higher patch number and an extension reduction. On the whole, the obtained results showed that the multispectral Landsat-TM images represent a good data source for supporting studies on landscape structure of forested areas and that for analyzing the articulation of particular species the high spectral resolution needs to be coupled with a high spatial resolution, i.e. Hyperion sampling is not adequate for such a purpose.
[Dynamic evolution of landscape spatial pattern in Taihu Lake basin, China].
Wang, Fang; Xie, Xiao Ping; Chen, Zhi Cong
2017-11-01
Based on the land-use satellite image datasets of 2000, 2010 and 2015, the landscape index, dynamic change model, landscape transfer matrix and CLUE-S model were integrated to analyze the dynamic evolution of the landscape spatial pattern of Taihu Lake basin. The results showed that the landscape type of the basin was dominated by cultivated land and construction land, and the degree of landscape fragmentation was strengthened from 2000 to 2015, and the distribution showed a uniform trend. From the point of transfer dynamic change, the cultivated land and construction land changed significantly, which was reduced by 6761 km 2 (2.1%) and increased by 6615.33 km 2 (8.4%), respectively. From the landscape transfer, it could be seen that the main change direction of the cultivated land reduction was the construction land, and the cultivated land with 7866.30 km 2 was converted into construction land, accounting for 91.6% of the cultivated land change, and the contribution to the construction land was 96.5%. The trend of dynamic changes of cultivated and construction land in the counties and cities was the same as that of the whole Taihu Lake basin. For Shanghai Central Urban, as well as Pudong District, Lin'an City, Baoshan District, Minhang District, Jiading District and Changzhou City, the area of the cultivated land and construction land changed more prominently. However, compared with the CLUE-S model for the landscape pattern change in 2030, the change of cultivated and construction lands would be the largest in the natural development scenario. Under the ecological protection scenario, the area of grassland would increase and the dynamic degree would reach 54.5%. Under the situation of cultivated land protection, the conversion of cultivated land to construction land would be decreased.
NASA Astrophysics Data System (ADS)
Millward, Andrew Allan
Throughout most of China, and particularly in the coastal areas of its south, ecological resources and traditional culture are viewed by many to be negatively impacted by accelerating urbanization. As a result, achieving an appropriate balance between development and environmental protection has become a significant problem facing policy-makers in these urbanizing areas. The establishment of a Special Economic Zone in the Chinese Province of Hainan has made its coastal areas attractive locations for business and commerce. Development activities that support a burgeoning tourism industry, but which are damaging the environment, are now prominent components of the landscape in the Sanya Region of Hainan. In this study, patterns of urban growth in the Sanya Region of Hainan Province are investigated. Specifically, using several forms of satellite imagery, statistical tools and ancillary data, urban morphology and changes to the extent and spatial arrangement of urban features are researched and documented. A twelve-year chronology of data was collected which consists of four dates of satellite imagery (1987, 1991, 1997, 1999) acquired by three different satellite sensors (SPOT 2 HRV, Landsat 5 TM, Landsat 7 ETM+). A method of assessing inter-temporal variance in unchanged features is developed as a surrogate for traditional evaluations of change detection that require spatially accurate and time-specific data. Results reveal that selective PCA using visible bands with the exclusion of an ocean mask yield the most interpretable components representative of landscape urbanization in the Sanya Region. The geostatistical approach of variography is employed to measure spatial dependence and to test for the presence of directional change in urban morphology across a time series of satellite images. Interpreted time-series geostatistics identify and quantify landscape structure, and changes to structure, and provide a valuable quantitative description of landscape change that was previously unavailable for the Sanya Region. Data acquired from the IKONOS-2 satellite are analyzed using the normalized difference vegetation index (NDVI) to identify urban greenspace in three subscenes extracted from the Sanya landscape. Results suggest that urban greenspace can be successfully characterized with enhanced detail using landscape pattern indices (LPIs) and a correlogram approach. Inclusion of a spatial approach to greenspace characterization and planning is argued to be an important and easily implemented method for enhanced evaluation of urban quality of life. The government of Hainan has stated that it wishes to employ additional and more refined means of guiding future development practices. This study is a landscape analysis involving change detection of land cover as well as the spatial analysis of urban morphological features. It develops methodologies that may be used to investigate and document past and current urban conditions; some of these could be used by the Hainan Government to further their future urban planning goals of economic growth and ecological sustainability.
Rocks and Rain: orographic precipitation and the form of mountain ranges
NASA Astrophysics Data System (ADS)
Roe, G. H.; Anders, A. M.; Durran, D. R.; Montgomery, D. R.; Hallet, B.
2005-12-01
In mountainous landscapes patterns of erosion reflect patterns of precipitation that are, in turn, controlled by the orography. Ultimately therefore, the feedbacks between orography and the climate it creates are responsible for the sculpting of mountain ranges. Key questions concerning these interactions are: 1) how robust are patterns of precipitation on geologic time scales? and 2) how do those patterns affect landscape form? Since climate is by definition the statistics of weather, there is tremendous information to be gleaned from how patterns of precipitation vary between different weather events. However up to now sparse measurements and computational limitations have hampered our knowledge of such variations. For the Olympics in Washington State, a characteristic midlatitude mountain range, we report results from a high-resolution, state-of-the-art numerical weather prediction model and a dense network of precipitation gauges. Down to scales around 10 km, the patterns of precipitation are remarkably robust both storm-by-storm and year-to-year, lending confidence that they are indeed persistent on the relevant time scales. Secondly, the consequences of the coupled interactions are presented using a landscape evolution model coupled with a simple model of orographic precipitation that is able to substantially reproduce the observed precipitation patterns.
Dynamic Disturbance Processes Create Dynamic Lek Site Selection in a Prairie Grouse.
Hovick, Torre J; Allred, Brady W; Elmore, R Dwayne; Fuhlendorf, Samuel D; Hamilton, Robert G; Breland, Amber
2015-01-01
It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993-2012) of Greater Prairie-Chicken (Tympanuchus cupido) lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy's Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65%) moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken's distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas) and management plans not view lek locations as static points, but rather as sites that shift around the landscape in response to shifting vegetation structure. Acknowledging shifting lek locations in these landscapes will help ensure conservation efforts are successful by targeting the appropriate areas for protection and management.
Jacob John Muller
2014-01-01
The ability of forest resource managers to understand and anticipate landscape-scale change in composition and structure relies upon an adequate characterization of the current forest composition and structure of various patches (or stands), along with the capacity of forest landscape models (FLMs) to predict patterns of growth, succession, and disturbance at multiple...
Merckx, Thomas; Van Dyck, Hans; Karlsson, Bengt; Leimar, Olof
2003-01-01
As landscapes change, mobility patterns of species may alter. Different mechanistic scenarios may, however, lead to particular patterns. Here, we tested conflicting predictions from two hypotheses on butterfly movements in relation to habitat fragmentation. According to the resource distribution hypothesis, butterflies in more fragmented landscapes would have higher levels of mobility as resources are more scattered. However, these butterflies could have lower levels of mobility as they experience 'hard' habitat boundaries more frequently (i.e. higher crossing costs) compared with butterflies in landscapes with continuous habitat; i.e. the behaviour-at-boundaries hypothesis. We studied movements, habitat boundary crossing and habitat preference of laboratory-reared individuals of Pararge aegeria that originated from woodland and agricultural landscapes, by using an experimental landscape as a common environment (outdoor cages) to test the predictions, taking into account sexual differences and weather. Woodland butterflies covered longer distances, were more prone to cross open-shade boundaries, travelled more frequently between woodland parts of the cages and were more at flight than agricultural butterflies. Our results support the behaviour-at-boundaries hypothesis, with 'softer' boundaries for woodland landscapes. Because the butterflies were reared in a common environment, the observed behavioural differences rely on heritable variation between populations from woodland and agricultural landscapes. PMID:12964984
Use of the TM tasseled cap transform for interpretation of spectral contrasts in an urban scene
NASA Technical Reports Server (NTRS)
Goward, S. N.; Wharton, S. W.
1984-01-01
Investigations are being conducted with the objective to develop automated numerical image analysis procedures. In this context, an examination is performed of physically-based multispectral data transforms as a means to incorporate a priori knowledge of land radiance properties in the analysis process. A physically-based transform of TM observations was developed. This transform extends the Landsat MSS Tasseled Cap transform reported by Kauth and Thomas (1976) to TM data observations. The present study has the aim to examine the utility of the TM Tasseled Cap transform as applied to TM data from an urban landscape. The analysis conducted is based on 512 x 512 subset of the Washington, DC November 2, 1982 TM scene, centered on Springfield, VA. It appears that the TM tasseled cap transformation provides a good means to explain land physical attributes of the Washington scene. This result provides a suggestion regarding a direction by which a priori knowledge of landscape spectral patterns may be incorporated into numerical image analysis.
Disturbance History,Spatial Variability, and Patterns of Biodiversity
NASA Astrophysics Data System (ADS)
Bendix, J.; Wiley, J. J.; Commons, M.
2012-12-01
The intermediate disturbance hypothesis predicts that species diversity will be maximized in environments experiencing intermediate intensity disturbance, after an intermediate timespan. Because many landscapes comprise mosaics with complex disturbance histories, the theory implies that each patch in those mosaics should have a distinct level of diversity reflecting combined impact of the magnitude of disturbance and the time since it occurred. We modeled the changing patterns of species richness across a landscape experiencing varied scenarios of simulated disturbance. Model outputs show that individual landscape patches have highly variable species richness through time, with the details reflecting the timing, intensity and sequence of their disturbance history. When the results are mapped across the landscape, the resulting temporal and spatial complexity illustrates both the contingent nature of diversity and the danger of generalizing about the impacts of disturbance.
Botto, C; Escalona, E; Vivas-Martinez, S; Behm, V; Delgado, L; Coronel, P
2005-03-01
Onchocerciasis is a chronic filarial infection transmitted by Simulium flies that has a focal geographical distribution in Latin America. The southern Venezuelan focus has a gradient of endemicity that includes the largest number of hyperendemic communities in the continent, many of them in remote forest and mountainous areas, where it is an important public health problem among the Yanomami indigenous population. The recent introduction of Geographical Information Systems (GIS) tools and a landscape epidemiology approach for study of vector borne diseases is helping to understand relationships between environment and transmission dynamics of onchocerciasis. Striking differences in the transmission dynamics of onchocerciasis between different river courses were detected. A significant relationship between onchocerciasis and temperature was also demonstrated. The geologic substrate, kind of landscape and vegetation seemed also to influence the transmission of onchocerciasis. In the Venezuelan Amazon, different kinds of landscapes associated with distinctive vector species, show different intensities of transmission of onchocerciasis. In this sense, landscape analysis aided by GIS, may prove to be a useful tool for better identification of the spatial distribution of onchocerciasis risk in the Orinoco basin.
Pattern-based, multi-scale segmentation and regionalization of EOSD land cover
NASA Astrophysics Data System (ADS)
Niesterowicz, Jacek; Stepinski, Tomasz F.
2017-10-01
The Earth Observation for Sustainable Development of Forests (EOSD) map is a 25 m resolution thematic map of Canadian forests. Because of its large spatial extent and relatively high resolution the EOSD is difficult to analyze using standard GIS methods. In this paper we propose multi-scale segmentation and regionalization of EOSD as new methods for analyzing EOSD on large spatial scales. Segments, which we refer to as forest land units (FLUs), are delineated as tracts of forest characterized by cohesive patterns of EOSD categories; we delineated from 727 to 91,885 FLUs within the spatial extent of EOSD depending on the selected scale of a pattern. Pattern of EOSD's categories within each FLU is described by 1037 landscape metrics. A shapefile containing boundaries of all FLUs together with an attribute table listing landscape metrics make up an SQL-searchable spatial database providing detailed information on composition and pattern of land cover types in Canadian forest. Shapefile format and extensive attribute table pertaining to the entire legend of EOSD are designed to facilitate broad range of investigations in which assessment of composition and pattern of forest over large areas is needed. We calculated four such databases using different spatial scales of pattern. We illustrate the use of FLU database for producing forest regionalization maps of two Canadian provinces, Quebec and Ontario. Such maps capture the broad scale variability of forest at the spatial scale of the entire province. We also demonstrate how FLU database can be used to map variability of landscape metrics, and thus the character of landscape, over the entire Canada.
Are we meeting the challenges of landscape-scale riverine research? A review
E. Ashley Steel; Robert M. Hughes; Aimee H. Fullerton; Stefan Schmutz; John A. Young; Michio Fukushima; Susanne Muhar; Michaela Poppe; Blake E. Feist; Clemens Trautwein
2010-01-01
Identifying and quantifying relationships among landscape patterns, anthropogenic disturbances, and aquatic ecosystems is a new and rapidly developing approach to riverine ecology. In this review, we begin by describing the policy and management drivers for landscape-scale riverine research and we synthesize the technological advances that have enabled dramatic...
Re-evaluating causal modeling with mantel tests in landscape genetics
Samuel A. Cushman; Tzeidle N. Wasserman; Erin L. Landguth; Andrew J. Shirk
2013-01-01
The predominant analytical approach to associate landscape patterns with gene flow processes is based on the association of cost distances with genetic distances between individuals. Mantel and partial Mantel tests have been the dominant statistical tools used to correlate cost distances and genetic distances in landscape genetics. However, the inherent high...
Flood disturbance in a forested mountain landscape: interactions of land use and floods.
F.J. Swanson; S.L. Johnson; S.V. Gregory; S.A. Acker
1998-01-01
Recent flooding in the Pacific Northwest vividly illustrates the complexity of watershed and ecosystem responses to floods, especially in steep forest landscapes. Flooding involves a sequence of interactions that begins with climatic drivers. These drivers, generally rain and snowmelt, interact with landscape conditions, such as vegetation pattern and topography, to...
Landscape pattern metrics and regional assessment
Robert V. O' Neill; Kurt H. Riitters; J.D. Wickham; Bruce K. Jones
1999-01-01
The combination of remote imagery data, geographic information systems software, and landscape ecology theory provides a unique basis for monitoring and assessing large-scale ecological systems. The unique feature of the work has been the need to develop interpret quantitative measures of spatial patter-the landscape indices. This article reviews what is known about...
Landscape ecology and forest management
Thomas R. Crow
1999-01-01
Almost all forest management activities affect landscape pattern to some extent. Among the most obvious impacts are those associated with forest harvesting and road building. These activities profoundly affect the size, shape, and configuration of patches in the landscape matrix. Even-age management such as clearcutting has been applied in blocks of uniform size, shape...
Identification of landscape features influencing gene flow: How useful are habitat selection models?
Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart
2016-01-01
Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...
Rose A. Graves; Scott M. Pearson; Monica G. Turner
2016-01-01
Rural landscapes face changing climate, shifting development pressure, and loss of agricultural land. Perennial bioenergy crops grown on existing agricultural land may provide an opportunity to conserve rural landscapes while addressing increased demand for biofuels. However, increased bioenergy production and changing land use raise concerns for tradeoffs...
The objective of this research was to model and map the spatial patterns of excess nitrogen (N) sources across the landscape within the Neuse River Basin (NRB) of North
Carolina. The process included an initial land cover characterization effort to map landscape "patches" at ...
Landscape dynamics of mountain pine beetles
John E. Lundquist; Robin M. Reich
2014-01-01
The magnitude and urgency of current mountain pine beetle outbreaks in the western United States and Canada have resulted in numerous studies of the dynamics and impacts of these insects in forested ecosystems. This paper reviews some of the aspects of the spatial dynamics and landscape ecology of this bark beetle. Landscape heterogeneity influences dispersal patterns...
Empirical methods for modeling landscape change, ecosystem services, and biodiversity
David Lewis; Ralph Alig
2009-01-01
The purpose of this paper is to synthesize recent economics research aimed at integrating discrete-choice econometric models of land-use change with spatially-explicit landscape simulations and quantitative ecology. This research explicitly models changes in the spatial pattern of landscapes in two steps: 1) econometric estimation of parcel-scale transition...
Gene flow in complex landscapes: Testing multiple hypotheses with causal modeling
Samuel A. Cushman; Kevin S. McKelvey; Jim Hayden; Michael K. Schwartz
2006-01-01
Predicting population-level effects of landscape change depends on identifying factors that influence population connectivity in complex landscapes. However, most putative movement corridors and barriers have not been based on empirical data. In this study, we identify factors that influence connectivity by comparing patterns of genetic similarity among 146 black bears...
Landscape connectivity influences the establishment of Phytophthora ramorum
Emiko T. Condeso; Ross K. Meentemeyer
2008-01-01
As the emergence of invasive pathogens and their impacts on ecological communities increases, so has the interest in understanding how landscape pattern (in other words the configuration and composition of suitable habitat) affects their establishment and spread. Plant pathogen invasions are inherently spatial, but few studies have demonstrated the role of landscape...
Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh; D. Todd Jones-Farland
2013-01-01
Efforts to conserve regional biodiversity in the face of global climate change, habitat loss and fragmentation will depend on approaches that consider population processes at multiple scales. By combining habitat and demographic modeling, landscape-based population viability models effectively relate small-scale habitat and landscape patterns to regional population...
NASA Astrophysics Data System (ADS)
Wu, Haipeng; Zeng, Guangming; Liang, Jie; Chen, Jin; Xu, Jijun; Dai, Juan; Sang, Lianhai; Li, Xiaodong; Ye, Shujing
2017-04-01
The effects of hydrologic cycle change (caused by human activity and global climate change) on ecosystems attract the increasing attention around the world. As a result of impounding of the Three Gorges Dam (TGD), climate change and sand mining, the dry season of Poyang Lake and Dongting Lake (China's two largest freshwater lakes) came early after the TGD impoundment. It was the primary cause of the increasing need for sluice/dam construction to store water in the Lakes and attracted increasing attention. In this paper, we compared the landscape pattern between three hydrologic years with early dry season (EY) and three normal hydrologic years (NY) of each lake by remote sensing technology, to reveal the effect of early dry season on landscape pattern. The results showed that early dry season caused expanding of Phalaris to mudflat zone in Poyang Lake, while caused expanding of Carex to Phalaris zone and expanding of Phalaris to mudflat zone in Dongting Lake. In landscape level, there was no significant difference in landscape grain size, landscape grain shape, habitat connectivity and landscape diversity between EY and NY in the two lakes. While in habitat class level, there were significant changes in area of mudflat and Phalaris and grain size of mudflat in Poyang Lake, and in area of Carex, grain size of Phalaris and grain shape of Carex and Phalaris in Dongting Lake. These changes will impact migrating birds of East Asian and migratory fishes of Yangtze River.
Using population genetic analyses to understand seed dispersal patterns
NASA Astrophysics Data System (ADS)
Hamrick, J. L.; Trapnell, Dorset W.
2011-11-01
Neutral genetic markers have been employed in several ways to understand seed dispersal patterns in natural and human modified landscapes. Genetic differentiation among spatially separated populations, using biparentally and maternally inherited genetic markers, allows determination of the relative historical effectiveness of pollen and seed dispersal. Genetic relatedness among individuals, estimated as a function of spatial separation between pairs of individuals, has also been used to indirectly infer seed dispersal distances. Patterns of genetic relatedness among plants in recently colonized populations provide insights into the role of seed dispersal in population colonization and expansion. High genetic relatedness within expanding populations indicates original colonization by a few individuals and population expansion by the recruitment of the original colonists' progeny; low relatedness should occur if population growth results primarily from continuous seed immigration from multiple sources. Parentage analysis procedures can identify maternal parents of dispersed fruits, seeds, or seedlings providing detailed descriptions of contemporary seed dispersal patterns. With standard parent-pair analyses of seeds or seedlings, problems can arise in distinguishing the maternal parent. However, the use of maternal DNA from dispersed fruits or seed coats allows direct identification of maternal individuals and, as a consequence, the distance and patterns of seed dispersal and deposition. Application of combinations of these approaches provides additional insights into the role seed dispersal plays in the genetic connectivity between populations in natural and disturbed landscapes.
Kurt H. Riitters
2011-01-01
Land cover patterns inventoried from a national land cover map provide information about the landscape context and fragmentation of the Nationâs forests, grasslands, and shrublands. This inventory is required to quantify, map, and evaluate the capacities of landscapes to provide ecological goods and services sustainably. This report documents the procedures to...
Research on the decision-making model of land-use spatial optimization
NASA Astrophysics Data System (ADS)
He, Jianhua; Yu, Yan; Liu, Yanfang; Liang, Fei; Cai, Yuqiu
2009-10-01
Using the optimization result of landscape pattern and land use structure optimization as constraints of CA simulation results, a decision-making model of land use spatial optimization is established coupled the landscape pattern model with cellular automata to realize the land use quantitative and spatial optimization simultaneously. And Huangpi district is taken as a case study to verify the rationality of the model.
Laurie S. Huckaby; Merrill R. Kaufmann; Jason M. Stoker; Paula J. Fornwalt
2001-01-01
Lack of Euro-American disturbance, except fire suppression, has preserved the patterns of forest structure that resulted from the presettlement disturbance regime in a ponderosa pine/Douglas-fir landscape at Cheesman Lake in the Colorado Front Range. A mixed-severity fire regime and variable timing of tree recruitment created a heterogeneous forest age structure with...
Hunt, Len M; Arlinghaus, Robert; Lester, Nigel; Kushneriuk, Rob
2011-10-01
We used a coupled social-ecological model to study the landscape-scale patterns emerging from a mobile population of anglers exploiting a spatially structured walleye (Sander vitreus) fishery. We systematically examined how variations in angler behaviors (i.e., relative importance of walleye catch rate in guiding fishing site choices), harvesting efficiency (as implied by varying degrees of inverse density-dependent catchability of walleye), and angler population size affected the depletion of walleye stocks across 157 lakes located near Thunder Bay (Ontario, Canada). Walleye production biology was calibrated using lake-specific morphometric and edaphic features, and angler fishing site choices were modeled using an empirically grounded multi-attribute utility function. We found support for the hypothesis of sequential collapses of walleye stocks across the landscape in inverse proportionality of travel cost from the urban residence of anglers. This pattern was less pronounced when the regional angler population was low, density-dependent catchability was absent or low, and angler choices of lakes in the landscape were strongly determined by catch rather than non-catch-related attributes. Thus, our study revealed a systematic pattern of high catch importance reducing overfishing potential at low and aggravating overfishing potential at high angler population sizes. The analyses also suggested that density-dependent catchability might have more serious consequences for regional overfishing states than variations in angler behavior. We found little support for the hypotheses of systematic overexploitation of the most productive walleye stocks and homogenized catch-related qualities among lakes sharing similar access costs to anglers. Therefore, one should not expect anglers to systematically exploit the most productive fisheries or to equalize catch rates among lakes through their mobility and other behaviors. This study underscores that understanding landscape overfishing dynamics involves a careful appreciation of angler population size and how it interacts with the attributes that drive angler behaviors and depensatory mechanisms such as inverse density-dependent catchability. Only when all of these ingredients are considered and understood can one derive reasonably predictable patterns of overfishing in the landscape. These patterns range from self-regulating systems with low levels of regional fishing pressure to sequential collapse of walleye fisheries from the origin of angling effort.
Geomorphic controls on elevational gradients of species richness.
Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea
2016-02-16
Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity.
NASA Astrophysics Data System (ADS)
Lasaponara, Rosa; Masini, Nicola
2014-02-01
The aim of this paper is to investigate the cultural landscape of the archaeological area of Tiwanaku (Bolivia) using multiscale, multispectral and multitemporal satellite data. Geospatial analysis techniques were applied to the satellite data sets in order to enhance and map traces of past human activities and perform a spatial characterization of environmental and cultural patterns. In particular, in the Tiwanaku area, the approach based on local indicators of spatial autocorrelation (LISA) applied to ASTER data allowed us to identify traces of a possible ancient hydrographic network with a clear spatial relation with the well-known moat surrounding the core of the monumental area. The same approach applied to QuickBird data, allowed us to identify numerous traces of archaeological interest, in Mollo Kontu mound, less investigated than the monumental area. Some of these traces were in perfect accordance with the results of independent studies, other were completely unknown. As a whole, the detected features, composing a geometric pattern with roughly North-South orientation, closely match those of the other residential contexts at Tiwanaku. These new insights, captured from ASTER and QuickBird data processing, suggested new questions on the ancient landscape and provided important information for planning future field surveys and archaeogeophyical investigations.
Geomorphic controls on elevational gradients of species richness
Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea
2016-01-01
Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity. PMID:26831107
Burgio, Giovanni; Sommaggio, Daniele; Marini, Mario; Puppi, Giovanna; Chiarucci, Alessandro; Landi, Sara; Fabbri, Roberto; Pesarini, Fausto; Genghini, Marco; Ferrari, Roberto; Muzzi, Enrico; van Lenteren, Joop C; Masetti, Antonio
2015-10-01
Landscape structure as well as local vegetation influence biodiversity in agroecosystems. A study was performed to evaluate the effect of floristic diversity, vegetation patterns, and landscape structural connectivity on butterflies (Lepidoptera: Papilionoidea and Hesperiidae), carabids (Coleoptera: Carabidae), syrphids (Diptera: Syrphidae), and sawflies (Hymenoptera: Symphyta). Vegetation analysis and insect samplings were carried out in nine sites within an intensively farmed landscape in northern Italy. Plant species richness and the percentage of tree, shrub, and herb cover were determined by means of the phytosociological method of Braun-Blanquet. Landscape structural connectivity was measured as the total length of hedgerow network (LHN) in a radius of 500 m around the center of each sampling transect. Butterflies species richness and abundance were positively associated both to herb cover and to plant species richness, but responded negatively to tree and shrub cover. Shrub cover was strictly correlated to both species richness and activity density of carabids. The species richness of syrphids was positively influenced by herb cover and plant richness, whereas their abundance was dependent on ligneous vegetation and LHN. Rarefaction analysis revealed that sawfly sampling was not robust and no relationship could be drawn with either vegetation parameters or structural connectivity. The specific responses of each insect group to the environmental factors should be considered in order to refine and optimize landscape management interventions targeting specific conservation endpoints. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mo, Wenbo; Wang, Yong; Zhang, Yingxue; Zhuang, Dafang
2017-01-01
Road networks affect the spatial structure of urban landscapes, and with continuous expansion, it will also exert more widespread influences on the regional ecological environment. With the support of geographic information system (GIS) technology, based on the application of various spatial analysis methods, this study analyzed the spatiotemporal changes of road networks and landscape ecological risk in the research area of Beijing to explore the impacts of road network expansion on ecological risk in the urban landscape. The results showed the following: 1) In the dynamic processes of change in the overall landscape pattern, the changing differences in landscape indices of various landscape types were obvious and were primarily related to land-use type. 2) For the changes in a time series, the expansion of the road kernel area was consistent with the extension of the sub-low-risk area in the urban center, but some differences were observed during different stages of development. 3) For the spatial position, the expanding changes in the road kernel area were consistent with the grade changes of the urban central ecological risk, primarily because both had a certain spatial correlation with the expressways. 4) The influence of road network expansion on the ecological risk in the study area had obvious spatial differences, which may be closely associated with the distribution of ecosystem types. Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.
Funk, W.C.; Blouin, M.S.; Corn, P.S.; Maxell, B.A.; Pilliod, D.S.; Amish, S.; Allendorf, F.W.
2005-01-01
Landscape features such as mountains, rivers, and ecological gradients may strongly affect patterns of dispersal and gene flow among populations and thereby shape population dynamics and evolutionary trajectories. The landscape may have a particularly strong effect on patterns of dispersal and gene flow in amphibians because amphibians are thought to have poor dispersal abilities. We examined genetic variation at six microsatellite loci in Columbia spotted frogs (Rana luteiventris) from 28 breeding ponds in western Montana and Idaho, USA, in order to investigate the effects of landscape structure on patterns of gene flow. We were particularly interested in addressing three questions: (i) do ridges act as barriers to gene flow? (ii) is gene flow restricted between low and high elevation ponds? (iii) does a pond equal a 'randomly mating population' (a deme)? We found that mountain ridges and elevational differences were associated with increased genetic differentiation among sites, suggesting that gene flow is restricted by ridges and elevation in this species. We also found that populations of Columbia spotted frogs generally include more than a single pond except for very isolated ponds. There was also evidence for surprisingly high levels of gene flow among low elevation sites separated by large distances. Moreover, genetic variation within populations was strongly negatively correlated with elevation, suggesting effective population sizes are much smaller at high elevation than at low elevation. Our results show that landscape features have a profound effect on patterns of genetic variation in Columbia spotted frogs.
Scale-dependent mechanisms of habitat selection for a migratory passerine: an experimental approach
Donovan, Therese M.; Cornell, Kerri L.
2010-01-01
Habitat selection theory predicts that individuals choose breeding habitats that maximize fitness returns on the basis of indirect environmental cues at multiple spatial scales. We performed a 3-year field experiment to evaluate five alternative hypotheses regarding whether individuals choose breeding territories in heterogeneous landscapes on the basis of (1) shrub cover within a site, (2) forest land-cover pattern surrounding a site, (3) conspecific song cues during prebreeding settlement periods, (4) a combination of these factors, and (5) interactions among these factors. We tested hypotheses with playbacks of conspecific song across a gradient of landscape pattern and shrub density and evaluated changes in territory occupancy patterns in a forest-nesting passerine, the Black-throated Blue Warbler (Dendroica caerulescens). Our results support the hypothesis that vegetation structure plays a primary role during presettlement periods in determining occupancy patterns in this species. Further, both occupancy rates and territory turnover were affected by an interaction between local shrub density and amount of forest in the surrounding landscape, but not by interactions between habitat cues and social cues. Although previous studies of this species in unfragmented landscapes found that social postbreeding song cues played a key role in determining territory settlement, our prebreeding playbacks were not associated with territory occupancy or turnover. Our results suggest that in heterogeneous landscapes during spring settlement, vegetation structure may be a more reliable signal of reproductive performance than the physical location of other individuals.
Neville, H.M.; Dunham, J.B.; Peacock, M.M.
2006-01-01
Spatial and temporal landscape patterns have long been recognized to influence biological processes, but these processes often operate at scales that are difficult to study by conventional means. Inferences from genetic markers can overcome some of these limitations. We used a landscape genetics approach to test hypotheses concerning landscape processes influencing the demography of Lahontan cutthroat trout in a complex stream network in the Great Basin desert of the western US. Predictions were tested with population- and individual-based analyses of microsatellite DNA variation, reflecting patterns of dispersal, population stability, and local effective population sizes. Complementary genetic inferences suggested samples from migratory corridors housed a mixture of fish from tributaries, as predicted based on assumed migratory life histories in those habitats. Also as predicted, populations presumed to have greater proportions of migratory fish or from physically connected, large, or high quality habitats had higher genetic variability and reduced genetic differentiation from other populations. Populations thought to contain largely non-migratory individuals generally showed the opposite pattern, suggesting behavioral isolation. Estimated effective sizes were small, and we identified significant and severe genetic bottlenecks in several populations that were isolated, recently founded, or that inhabit streams that desiccate frequently. Overall, this work suggested that Lahontan cutthroat trout populations in stream networks are affected by a combination of landscape and metapopulation processes. Results also demonstrated that genetic patterns can reveal unexpected processes, even within a system that is well studied from a conventional ecological perspective. ?? Springer 2006.
Jordan, Nicholas R.; Forester, James D.
2018-01-01
Invasion potential should be part of the evaluation of candidate species for any species introduction. However, estimating invasion risks remains a challenging problem, particularly in complex landscapes. Certain plant traits are generally considered to increase invasive potential and there is an understanding that landscapes influence invasions dynamics, but little research has been done to explore how those drivers of invasions interact. We evaluate the relative roles of, and potential interactions between, plant invasiveness traits and landscape characteristics on invasions with a case study using a model parameterized for the potentially invasive biomass crop, Miscanthus × giganteus. Using that model we simulate invasions on 1000 real landscapes to evaluate how landscape characteristics, including both composition and spatial structure, affect invasion outcomes. We conducted replicate simulations with differing strengths of plant invasiveness traits (dispersal ability, establishment ability, population growth rate, and the ability to utilize dispersal corridors) to evaluate how the importance of landscape characteristics for predicting invasion patterns changes depending on the invader details. Analysis of simulations showed that the presence of highly suitable habitat (e.g., grasslands) is generally the strongest determinant of invasion dynamics but that there are also more subtle interactions between landscapes and invader traits. These effects can also vary between different aspects of invasion dynamics (short vs. long time scales and population size vs. spatial extent). These results illustrate that invasions are complex emergent processes with multiple drivers and effective management needs to reflect the ecology of the species of interest and the particular goals or risks for which efforts need to be optimized. PMID:29771923
Ma, Ming-guo; Wang, Xue-mei; Cheng, Guo-dong
2003-03-01
The study on the oasis corridor landsape is a new hotspot in the ecological environment research in the arid regions. In oasis, main corridor landscape types include river, ditch, shelterbelt and road. This paper introduces the basic ecological effects of the corridor landscape on the transporting mass and energy and obstructing desert landscape expansion and incursion. Using Geographic Information System (GIS), we have researched the corridor distribution and its spatial relationship with other landscape types in the Jinta Oasis. Based on the dynamically monitoring on the landscape pattern change of the Jinta Oasis during the latter 10 years by using Remote Sensing (RS) and GIS, the driving functions of the corridors on this change have been analyzed in detail. The analysis results showed that all kinds of corridors' characteristics can be quantified by the indexes such as length and width, ratio of perimeter and area, density and non-heterogeneity. The total corridor length of Jinta Oasis is 1838.5 km and its density is 2.1 km/km2. The corridor density of the irrigation land, forest and resident area is maximal, which shows that affection degree of the oasis corridors on them is the most. The improvement of the corridors quality is one of the important driving factors on the irrigation land and so on. The organic combination of the RS and GIS technologies and landscape research methods would be an effective means for the corridor landscape research on arid region oasis.
Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.
Modugno, Sirio; Balzter, Heiko; Cole, Beth; Borrelli, Pasquale
2016-05-01
Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland-Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service in landscape valuations to account for the significant landscape function of reducing the risk of catastrophic large fires. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wildlife adaptations and management in eastside interior forests with mixed severity fire regimes.
John F. Lehmkuhl
2004-01-01
Little is known about the effects of mixed severity fire on wildlife, but a population viability analysis framework that considers habitat quantity and quality, species life history, and species population structure can be used to analyze management options. Landscape-scale habitat patterns under a mixed severity fire regime are a mosaic of compositional and structural...
A simple method for estimating potential relative radiation (PRR) for landscape-vegetation analysis.
Kenneth B. Jr. Pierce; Todd Lookingbill; Dean Urban
2005-01-01
Radiation is one of the primary influences on vegetation composition and spatial pattern. Topographic orientation is often used as a proxy for relative radiation load due to its effects on evaporative demand and local temperature. Common methods for incorporating this information (i.e., site measures of slope and aspect) fail to include daily or annual changes in solar...
Franz Mora; Louis R. Iverson; Louis R. Iverson
1997-01-01
Rapid deforestation in Mexico, when coupled with poor access to current and consistent ecological information across the country underscores the need for an ecological classification system that can be readily updated as new data become available. In this study, regional vegetation resources in Mexico were evaluated using remotely sensed information. Multitemporal...
Haire, S.; Bock, C.E.; Cade, B.S.; Bennett, B.C.
2000-01-01
We examine the relationships between abundance of grassland nesting songbirds observed in the Boulder Open Space, CO, USA and parameters that described landscape and habitat characteristics, in order to provide information for Boulder Open Space planners and managers. Data sets included bird abundance and plant species composition, collected during three breeding seasons (1994–1996), and landscape composition and configuration measures from a satellite image-derived land-cover map. We used regression quantiles to estimate the limitations imposed on bird abundance by urban encroachment and decreasing areas of grassland cover-types on the landscape, and habitat characteristics within 200 m diameter sample plots. After accounting for the effect of landscape grassland composition on four species (Western Meadowlark (Sturnella neglecta), Vesper Sparrow (Pooecetes gramineus), Horned Lark (Eremophila alpestris), and Grasshopper Sparrow (Ammodramus savannarum)), change in abundance with proportion of urban area in the landscape was consistent with the pattern expected for limiting factors that were the active constraint at some times and places. Area of preferred grassland cover-types on the landscape was important for all species, and this remained the case when habitat variables were included in combined landscape–habitat models, with one exception (Western Meadowlark). Analysis of habitat variables enabled identification of important features at the local scale (e.g. shale plant communities in Lark Sparrow (Chondestes grammacus) habitat) that were indistinguishable using landscape data alone. Consideration of changes in the landscape due to urbanization and loss of grassland habitat are crucial for open space planning, and habitat features associated with localized and clumped bird species distributions provide important additional information. Widening the management focus to include areas that are not part of the open space system will facilitate a more complete understanding of potential limiting factor processes.
Analysis of predator movement in prairie landscapes with contrasting grassland composition
Phillips, M.L.; Clark, W.R.; Nusser, S.M.; Sovada, M.A.; Greenwood, R.J.
2004-01-01
Mammalian predation influences waterfowl breeding success in the U.S. northern Great Plains, yet little is known about the influence of the landscape on the ability of predators to find waterfowl nests. We used radiotelemetry to record nightly movements of red foxes (Vulpes vulpes) and striped skunks (Mephitis mephitis) in two 41.4-km2 study areas in North Dakota. Study areas contained either 15-20% grassland (low grassland composition) or 45-55% grassland (high grassland composition). Grasslands included planted cover, pastureland, and hayland. We predicted that the type and composition of cover types in the landscape would influence both predator movement across the landscape (as measured by the fractal dimension and displacement ratio) as well as localized movement (as measured by the rate of movement and turning angle between locations) within patches of different cover types. Red fox movements were straighter (lower fractal dimensions and higher displacements) across landscapes with a low grassland composition, indicating directed movement between the more isolated patches of planted cover. Striped skunk movements did not differ between landscape types, illustrating their movement along wetland edges, which had similar compositions in both landscape types. The high variability in turning angles by red fox in planted cover and pastureland in both landscape types is consistent with restricted-area foraging. The high rate of movement by red foxes in planted cover and by striped skunks in wetland edges suggests that spatial memory may influence movement patterns. Understanding the behavior of predators in fragmented prairie landscape is essential for managing breeding habitat for grassland birds and for predicting the spatial and temporal dynamics of predators and their prey.
Planning Construction Research of Modern Urban Landscape
NASA Astrophysics Data System (ADS)
Xiao, Z. Q.; Chen, W.
With the development and expansion of the city's traditional urban landscape planning methods have been difficult to adapt to the requirements of modern urban development, in the new urban construction, planning what kind of urban landscape is a new research topic. The article discusses the principles of modern urban landscape planning and development, promote the adoption of new concepts and theories, building more regional characteristics, more humane, more perfect, more emphasis on urban landscape pattern natural ecological protection and construction can sustainable development of urban living environment, and promote the development and construction of the city.
Landscape Pattern Determines Neighborhood Size and Structure within a Lizard Population
Ryberg, Wade A.; Hill, Michael T.; Painter, Charles W.; Fitzgerald, Lee A.
2013-01-01
Although defining population structure according to discrete habitat patches is convenient for metapopulation theories, taking this approach may overlook structure within populations continuously distributed across landscapes. For example, landscape features within habitat patches direct the movement of organisms and define the density distribution of individuals, which can generate spatial structure and localized dynamics within populations as well as among them. Here, we use the neighborhood concept, which describes population structure relative to the scale of individual movements, to illustrate how localized dynamics within a population of lizards (Sceloporus arenicolus) arise in response to variation in landscape pattern within a continuous habitat patch. Our results emphasize links between individual movements at small scales and the emergence of spatial structure within populations which resembles metapopulation dynamics at larger scales. We conclude that population dynamics viewed in a landscape context must consider the explicit distribution and movement of individuals within continuous habitat as well as among habitat patches. PMID:23441217
Yang, Qing-Sheng; Qiao, Ji-Gang; Ai, Bin
2013-09-01
Taking the Dongguan City with rapid urbanization as a case, and selecting landscape ecological security level as evaluation criterion, the urbanization cellular number of 1 km x 1 km ecological security cells was obtained, and imbedded into the transition rules of cellular automata (CA) as the restraint term to control urban development, establish ecological security urban CA, and simulate ecological security urban development pattern. The results showed the integrated landscape ecological security index of the City decreased from 0.497 in 1998 to 0.395 in 2005, indicating that the ecological security at landscape scale was decreased. The CA-simulated integrated ecological security index of the City in 2005 was increased from the measured 0.395 to 0.479, showing that the simulated urban landscape ecological pressure from human became lesser, ecological security became better, and integrated landscape ecological security became higher. CA could be used as an effective tool in researching urban ecological security.
NASA Astrophysics Data System (ADS)
Hájek, Michal; Dudová, Lydie; Hájková, Petra; Roleček, Jan; Moutelíková, Jitka; Jamrichová, Eva; Horsák, Michal
2016-02-01
The south-western part of the White Carpathians (Czech Republic, Slovakia) is known for its exceptional grassland diversity and occurrence of many species with disjunct distribution patterns, including isolated populations of continental forest-steppe species. The north-eastern part of the mountain range lacks many of these species and has clearly lower maxima of grassland species richness. While climatic and edaphic conditions of both regions largely overlap, their specific environmental history has been hypothesized to explain the exceptional richness in the south-western part. We explored an entire-Holocene record (9650 BC onwards), the first one from the north-eastern part, to find out whether differences in history may explain regional patterns of species rarity and richness. We analysed pollen, macrofossils and molluscs and dated the sequence with 13 radiocarbon dates. We further reconstructed past human activities using available archaeological evidence. Based on this analysis, the Early-Holocene landscape was reconstructed as semi-open with broad-leaved trees (elm and lime) appearing already around 9500 BC. Lime reached a relative abundance of as much as 60% around 8700 BC. All analysed proxies support the existence of dense lime-dominated woodland during the forest optimum starting after climate moistening around 6800 BC, some 2200 years before the first signs of slight forest opening in the Late Neolithic. During the Bronze and Iron Ages, human pressure increased, which led to a decrease in lime and an increase in oak, hornbeam, grasses and grassland snails; nevertheless, forests still dominated the landscape and beech spread when human impact temporarily decreased. Colonisation after AD 1350 created the modern grassland-rich landscape. All available evidence confirmed an early post-Glacial expansion of broad-leaved trees, supporting the hypothesis on their glacial refugia in the Carpathians, as well as presence of closed-canopy forest well before the Neolithic. This environmental history was unfavourable for the survival of Early-Holocene forest-steppe species in the north-eastern White Carpathians and may explain the impoverished grassland flora compared to the south-western part. We conclude that contrasting Holocene histories may explain those patterns in species richness and distributions, which cannot be explained by recent environmental conditions alone.
Combinatorial pattern discovery approach for the folding trajectory analysis of a beta-hairpin.
Parida, Laxmi; Zhou, Ruhong
2005-06-01
The study of protein folding mechanisms continues to be one of the most challenging problems in computational biology. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates, such as the fraction of native contacts, the radius of gyration, RMSD from the native structure, and so on. In this paper, we present a combinatorial pattern discovery approach toward understanding the global state changes during the folding process. This is a first step toward an unsupervised (and perhaps eventually automated) approach toward identification of global states. The approach is based on computing biclusters (or patterned clusters)-each cluster is a combination of various reaction coordinates, and its signature pattern facilitates the computation of the Z-score for the cluster. For this discovery process, we present an algorithm of time complexity c in RO((N + nm) log n), where N is the size of the output patterns and (n x m) is the size of the input with n time frames and m reaction coordinates. To date, this is the best time complexity for this problem. We next apply this to a beta-hairpin folding trajectory and demonstrate that this approach extracts crucial information about protein folding intermediate states and mechanism. We make three observations about the approach: (1) The method recovers states previously obtained by visually analyzing free energy surfaces. (2) It also succeeds in extracting meaningful patterns and structures that had been overlooked in previous works, which provides a better understanding of the folding mechanism of the beta-hairpin. These new patterns also interconnect various states in existing free energy surfaces versus different reaction coordinates. (3) The approach does not require calculating the free energy values, yet it offers an analysis comparable to, and sometimes better than, the methods that use free energy landscapes, thus validating the choice of reaction coordinates. (An abstract version of this work was presented at the 2005 Asia Pacific Bioinformatics Conference [1].).
Comparing fire spread algorithms using equivalence testing and neutral landscape models
Brian R. Miranda; Brian R. Sturtevant; Jian Yang; Eric J. Gustafson
2009-01-01
We demonstrate a method to evaluate the degree to which a meta-model approximates spatial disturbance processes represented by a more detailed model across a range of landscape conditions, using neutral landscapes and equivalence testing. We illustrate this approach by comparing burn patterns produced by a relatively simple fire spread algorithm with those generated by...
Current status, future opportunities, and remaining challenges in landscape genetics [Chapter 14
Niko Balkenhol; Samuel A. Cushman; Lisette P. Waits; Andrew Storfer
2016-01-01
Landscape genetics has advanced the field of evolutionary ecology by providing a direct focus on relationships between landscape patterns and population processes, such as gene flow, selection, and genetic drift. This chapter discusses the current and emerging challenges and opportunities, which focus and facilitate future progress in the field. It presents ten...
Yanqiong Ye; Jia' en Zhang; Lili Chen; Ying Ouyang; Prem Parajuli
2015-01-01
This study analyzed the landscape pattern changes, the dynamics of the ecosystem service values (ESVs) and the spatial distribution of ESVs from 1995 to 2005 in Guangzhou, which is the capital of Guangdong Province and a regional central city in South China. Remote sensing data and geographic information system techniques, in conjunction with spatial metrics, were used...
Griffith, J.A.; Martinko, E.A.; Whistler, J.L.; Price, K.P.
2002-01-01
We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.
Political Systems Affect Mobile and Sessile Species Diversity – A Legacy from the Post-WWII Period
Cousins, Sara A. O.; Kaligarič, Mitja; Bakan, Branko; Lindborg, Regina
2014-01-01
Political ideologies, policies and economy affect land use which in turn may affect biodiversity patterns and future conservation targets. However, few studies have investigated biodiversity in landscapes with similar physical properties but governed by different political systems. Here we investigate land use and biodiversity patterns, and number and composition of birds and plants, in the borderland of Austria, Slovenia and Hungary. It is a physically uniform landscape but managed differently during the last 70 years as a consequence of the political “map” of Europe after World War I and II. We used a historical map from 1910 and satellite data to delineate land use within three 10-kilometre transects starting from the point where the three countries meet. There was a clear difference between countries detectable in current biodiversity patterns, which relates to land use history. Mobile species richness was associated with current land use whereas diversity of sessile species was more associated with past land use. Heterogeneous landscapes were positively and forest cover was negatively correlated to bird species richness. Our results provide insights into why landscape history is important to understand present and future biodiversity patterns, which is crucial for designing policies and conservation strategies across the world. PMID:25084154
Griffith, Jerry A; Martinko, Edward A; Whistler, Jerry L; Price, Kevin P
2002-01-01
We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.
Huang, Zhilin; Han, Liyang; Zeng, Lixiong; Xiao, Wenfa; Tian, Yaowu
2016-02-01
In this study, we have considered the relationship between the spatial configuration of land use and water quality in the Three Gorges Reservoir Area. Using land use types, landscape metrics, and long-term water quality data, as well as statistical and spatial analysis, we determined that most water quality parameters were negatively correlated with non-wood forest and urban areas but were strongly positively correlated with the proportion of forest area. Landscape indices such as patch density, contagion, and the Shannon diversity index were able to predict some water quality indicators, but the mean shape index was not significantly related to the proportions of farmland and water in the study area. Regression relationships were stronger in spring and fall than in summer, and relationships with nitrogen were stronger than those of the other water quality parameters (R(2) > 0.80) in all three seasons. Redundancy analysis showed that declining stream water quality was closely associated with configurations of urban, agricultural, and forest areas and with landscape fragmentation (PD) caused by urbanization and agricultural activities. Thus, a rational land use plan of adjusting the land use type, controlling landscape fragmentation, and increasing the proportion of forest area would help to achieve a healthier river ecosystem in the Three Gorges Reservoir Area (TGRA).
Coskun Hepcan, Cigdem
2013-01-01
This study was aimed at analyzing and interpreting changes in landscape pattern and connectivity in the Urla district, Turkey using core landscape metrics based on a 42-year data derived from 1963 CORONA and 2005 ASTER satellite images and ten 1/25,000 topographical maps (1963-2005). The district represents a distinctive example of re-emerged suburbanization in the Izmir metropolitan area. In order to explore landscape characteristics of the study area, nine landscape composition and configuration metrics were chosen as follows: class area, percentage of landscape, number of patches, patch density, largest patch index, landscape shape index, mean patch size, perimeter area fractal dimension, and connectance index. The landscape configurations in the Urla district changed significantly by 2005 in that the process of (sub-)urbanization in the study area evolved from a rural, monocentric urban typology to a more suburban, polycentric morphology. Agricultural, maquis-phrygana, and forest areas decreased, while the built-up, olive plantation and phrygana areas increased. There was nearly a fivefold increase in the built-up areas during the study period, and the connectivity of the natural landscape declined. To prevent further fragmentation, it is important to keep the existing natural land cover types and agricultural areas intact. More importantly, a sustainable development scenario is required that contains a green infrastructure, or an ecological network planning for conservation and rehabilitation of the vital natural resources in the study area.
Remm, Jaanus; Hanski, Ilpo K; Tuominen, Sakari; Selonen, Vesa
2017-10-01
Animals use and select habitat at multiple hierarchical levels and at different spatial scales within each level. Still, there is little knowledge on the scale effects at different spatial levels of species occupancy patterns. The objective of this study was to examine nonlinear effects and optimal-scale landscape characteristics that affect occupancy of the Siberian flying squirrel, Pteromys volans , in South- and Mid-Finland. We used presence-absence data ( n = 10,032 plots of 9 ha) and novel approach to separate the effects on site-, landscape-, and regional-level occupancy patterns. Our main results were: landscape variables predicted the placement of population patches at least twice as well as they predicted the occupancy of particular sites; the clear optimal value of preferred habitat cover for species landscape-level abundance is a surprisingly low value (10% within a 4 km buffer); landscape metrics exert different effects on species occupancy and abundance in high versus low population density regions of our study area. We conclude that knowledge of regional variation in landscape utilization will be essential for successful conservation of the species. The results also support the view that large-scale landscape variables have high predictive power in explaining species abundance. Our study demonstrates the complex response of species occurrence at different levels of population configuration on landscape structure. The study also highlights the need for data in large spatial scale to increase the precision of biodiversity mapping and prediction of future trends.
Can landscape memory affect vegetation recovery in drylands?
NASA Astrophysics Data System (ADS)
Baartman, Jantiene; Garcia Mayor, Angeles; Temme, Arnaud; Rietkerk, Max
2016-04-01
Dryland ecosystems are water-limited and therefore vegetation typically forms banded or patchy patterns with high vegetation cover, interspersed with bare soil areas. In these systems, a runoff-runon system is often observed with bare areas acting as sources and vegetation patches acting as sinks of water, sediment and other transported substances. These fragile ecosystems are easily disturbed by overgrazing, removing above-ground vegetation. To avoid desertification, vegetation recovery after a disturbance is crucial. This poster discusses the potential of 'landscape memory' to affect the vegetation recovery potential. Landscape memory, originating in geomorphology, is the concept that a landscape is the result of its past history, which it 'remembers' through imprints left in the landscape. For example, a past heavy rainstorm may leave an erosion gully. These imprints affect the landscape's contemporary functioning, for example through faster removal of water from the landscape. In dryland ecosystems vegetation is known to affect the soil properties of the soil they grow in, e.g. increasing porosity, infiltration, organic matter content and soil structure. After a disturbance of the banded ecosystem, e.g. by overgrazing, this pattern of soil properties - favourable for regrowth, stays in the landscape. However, removal of the above-ground vegetation also leads to longer runoff pathways and increased rill and gully erosion, which may hamper vegetation regrowth. I hypothesize that vegetation recovery after a disturbance, depends on the balance between these two contrasting types of landscape memory (i.e. favourable soil properties and erosion rills/gullies).
Geospatial tools for landscape character assessment in Cyprus
NASA Astrophysics Data System (ADS)
Symons, N. P.; Vogiatzakis, I. N.; Griffiths, G. H.; Warnock, S.; Vassou, V.; Zomeni, M.; Trigkas, V.
2013-08-01
The development of Landscape Typologies in Europe relies upon advances in geospatial tools and increasing availability of digital datasets. Landscape Character Assessment (LCA) is a technique used to classify, describe and understand the combined physical, ecological and cultural characteristics of a landscape. LCA uses a range of data sources to identify and describe areas of common character and can operate at a range of scales i.e.national and regional and local. The paper describes the steps taken to develop an island wide landscape typology for Cyprus, based on the use of GIS and remote sensing tools. The methodology involved integrating physiographical, ecological and cultural information about the Cypriot landscape. Datasets on the cultural attributes (e.g. settlement and field patterns) were not available, so they were created de novo based on information from topographical maps (for settlement dispersion and density) and medium resolution satellite imagery from Google Earth, from which a number of distinctive field patterns could be distinguished. The mapping work is carried out on two levels using a hierarchical approach. The first level at a 1:100, 000 scale has been completed resulting in a map with 17 distinct landscape types. The second level is under way with the view of producing a more detailed landscape typology at 1:50, 000 scale which will incorporate the cultural aspects of the island. This is the first time that such a typology has been produced for Cyprus and it is expected to provide an invaluable tool for landscape planning and management.
Moraes, Mayra Cristina Prado de; Mello, Kaline de; Toppa, Rogério Hartung
2017-03-01
The conversion of natural ecosystems to agricultural land and urban areas plays a threat to the protected areas and the natural ecosystems conservation. The aim of this paper is to provide an analysis of the agricultural expansion and its impact on the landscape spatial and temporal patterns in a buffer zone of a protected area located in the transition zone between the Atlantic Forest and Cerrado, in the State of São Paulo, Brazil. The land use and land cover were mapped between 1971 and 2008 and landscape metrics were calculated to provide a spatiotemporal analysis of the forest structure and the expansion of the croplands. The results showed that the landscape patterns were affected by the economic cycles. The predominant crop surrounding the protected area is sugar cane, which increased by 39% during this period, followed by citrus. This landscape change is connected to the Brazilian oil crisis in 1973. The rapid expansion of sugar cane was largely driven by Brazil's biofuel program, the "Proálcool" (pro-alcohol), a project in 1975 that mixed ethanol with gas for automotive fuel. The forest loss occurred mainly between 1971 and 1988, decreasing the forest cover from 17% in 1971 to 12.7% in 2008. Most of the forest patches are smaller than 50 ha and has low connectivity. Throughout the years, the fragments in the buffer zone have become smaller and with an elongated shape, and the park has become isolated. This forest fragmentation process and the predominance of monoculture lands in the buffer zone threaten the protected areas, and can represent a barrier for these areas to provide the effective biodiversity conservation. The measures proposed are necessary to ensure the capability of this ecosystem to sustain its original biodiversity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Land, Water and Society in the Maya Lowlands
NASA Astrophysics Data System (ADS)
Murtha, T.; French, K.; Duffy, C.; Webster, D.
2013-12-01
This paper reports the results of our project investigating the long-term spatial and temporal dynamics of land use management, agricultural decision-making and patterns of resource availability in the tropical lowlands of Central America. Overall, our project combines diachronic environmental simulation with historic settlement pattern survey to address a series of long-standing questions about the coupled natural and human (CNH) landscape history in the Central Maya lowlands (at the UNESCO world heritage site of Tikal in the Maya Biosphere Reserve). The paper describes the preliminary results of our project, including changing patterns of land, water, settlement and political history using climate, soil and hydrologic modeling and time series spatial analysis of population and settlement patterns. The critical period of the study, 1000 BC until the present, begins with dispersed settlements accompanied by widespread deforestation and soil erosion. Population size and density grows rapidly for 800 years, while deforestation and erosion rates decline; however, there is striking evidence of political evolution during this period, including the construction of monumental architecture, hieroglyphic monuments detailing wars and alliances, and the construction of a defensive earthwork feature, signaling political territories and possibly delineating natural resource boundaries. Population decline and steady reforestation followed until more recent migration into the region, which has impacted the biosphere ecology. Building on our previous research regionally and comparative research completed in Belize and Mexico, we are modeling sample periods the 3,000-year landscape history of the region, comparing land and water availability to population distributions and what we know about political history. Simulations are generated using historic climate and land use data, primarily relying on the Erosion Productivity Impact Calculator (EPIC) and the Penn State Integrated Hydrologic Modeling System (PIHMgis). This study primarily contributes to understanding long-term environmental change, agrarian decision-making, settlement patterns and critical issues facing agrarian communities globally. Specifically, our research provides an enhanced understanding of one of the most compelling landscape narratives of coupled human and natural history, i.e., the rise and fall of the Maya in the lowland tropical forest of Central America. Importantly, we offer a new approach to studying these broad issues, by integrating coupled climate, soil and hydrologic modeling, with more traditional landscape and anthropological research methods. Data model illustrating relationship between deforestation maize production and population history. 100 year sample periods are highlighted.
Angeler, David G; Viedma, Olga; Moreno, José M
2009-11-01
Time lag analysis (TLA) is a distance-based approach used to study temporal dynamics of ecological communities by measuring community dissimilarity over increasing time lags. Despite its increased use in recent years, its performance in comparison with other more direct methods (i.e., canonical ordination) has not been evaluated. This study fills this gap using extensive simulations and real data sets from experimental temporary ponds (true zooplankton communities) and landscape studies (landscape categories as pseudo-communities) that differ in community structure and anthropogenic stress history. Modeling time with a principal coordinate of neighborhood matrices (PCNM) approach, the canonical ordination technique (redundancy analysis; RDA) consistently outperformed the other statistical tests (i.e., TLAs, Mantel test, and RDA based on linear time trends) using all real data. In addition, the RDA-PCNM revealed different patterns of temporal change, and the strength of each individual time pattern, in terms of adjusted variance explained, could be evaluated, It also identified species contributions to these patterns of temporal change. This additional information is not provided by distance-based methods. The simulation study revealed better Type I error properties of the canonical ordination techniques compared with the distance-based approaches when no deterministic component of change was imposed on the communities. The simulation also revealed that strong emphasis on uniform deterministic change and low variability at other temporal scales is needed to result in decreased statistical power of the RDA-PCNM approach relative to the other methods. Based on the statistical performance of and information content provided by RDA-PCNM models, this technique serves ecologists as a powerful tool for modeling temporal change of ecological (pseudo-) communities.