Science.gov

Sample records for langley vortex research

  1. The development of methods for predicting and measuring distribution patterns of aerial sprays. [Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.

    1981-01-01

    A set of relationships used to scale small sized dispersion studies to full size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies both with and without an operational propeller were developed. The procedures that evolved are outlined in some detail. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.

  2. Status of aerial applications research in the Langley vortex research facility and the Langley full-scale wind tunnel

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.; Mclemore, H. C.; Bragg, M. B.

    1978-01-01

    Small scale models of agricultural airplanes were tested and numerical methods were utilized to study interactions between the airplane wake and the dispersed spray and granular materials. Methods were developed to measure and predict dispersal transport and wake characteristics and dispersal techniques to obtain interactions more favorable to wide, uniform deposition patterns and reduced drift. In the full scale wind tunnel, full scale agricultural airplanes and dispersal systems for both liquid and solid applications were evaluated to improve aircraft aerodynamics and dispersal systems efficiency. The program status in these two facilities is reported with emphasis on wake interactions and dispersal systems research.

  3. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  4. Demonstration of rapid-scan two-dimensional laser velocimetry in the Langley Vortex Research Facility for research in aerial applications

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.; Jordan, F. L., Jr.

    1977-01-01

    Tests were conducted to demonstrate a rapid scan two dimensional laser velocimeter (LV) measurement technique for aerial applications research. The LV system is capable of simultaneously measuring both vertical and axial flow velocity components in a near or far field vortex system. Velocity profiles were successfully measured in the wake vortex of a representative agricultural aircraft model, with the vortex system rapidly transporting in ground effect. Results indicate that the laser velocimetry technique can provide quantitative information of wake vortex characteristics in ground effect.

  5. Computer Science Research at Langley

    NASA Technical Reports Server (NTRS)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  6. Research and technology, 1991. Langley Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  7. Research and technology, 1989: Langley Research Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that were made during the past year are presented. The highlights illustrate both the broad range of the research and technology activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  8. Research and Technology 1990, Langley Research Center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The mission of NASA-Langley is to increase the knowledge and capability of the U.S. in a full range of aeronautics disciplines and in selected space disciplines. This mission will be executed by performing innovative research relevant to national needs and agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. government agencies, industry, and other NASA centers. Highlights are presented of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activitives at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.

  9. NASA Wake Vortex Research for Aircraft Spacing

    NASA Technical Reports Server (NTRS)

    Perry, R. Brad; Hinton, David A.; Stuever, Robert A.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft Vortex Spacing System (AVOSS). AVOSS will integrate the output of several inter-related areas to produce weather dependent, dynamic wake vortex spacing criteria. These areas include current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, real-time feedback of wake vortex behavior from sensors, and operationally acceptable aircraft/wake interaction criteria. In today's ATC system, the AVOSS could inform ATC controllers when a fixed reduced separation becomes safe to apply to large and heavy aircraft categories. With appropriate integration into the Center/TRACON Automation System (CTAS), AVOSS dynamic spacing could be tailored to actual generator/follower aircraft pairs rather than a few broad aircraft categories.

  10. NASA wake vortex research

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Greene, George C.; Stewart, Eric C.; Stuever, Robert A.; Jordan, Frank L., Jr.; Rivers, Robert A.; Vicroy, Dan D.

    1993-01-01

    NASA is conducting research that will enable safe improvements in the capacity of the nation's air transportation system. The wake-vortex hazard is a factor in establishing the minimum safe spacing between aircraft during landing and takeoff operations and, thus, impacts airport capacity. The ability to accurately model the wake hazard and determine safe separation distances for a wide range of aircraft and operational scenarios may provide the basis for significant increases in airport capacity. Current and planned NASA research is described which is focused on increasing airport capacity by safely reducing wake-hazard-imposed aircraft separations through advances in a number of technologies including vortex motion and decay prediction, vortex encounter modeling, wake-vortex hazard characterization, and in situ flow sensing.

  11. Parallel software tools at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Tennille, Geoffrey M.; Lakeotes, Christopher D.; Randall, Donald P.; Arthur, Jarvis J.; Hammond, Dana P.; Mall, Gerald H.

    1993-01-01

    This document gives a brief overview of parallel software tools available on the Intel iPSC/860 parallel computer at Langley Research Center. It is intended to provide a source of information that is somewhat more concise than vendor-supplied material on the purpose and use of various tools. Each of the chapters on tools is organized in a similar manner covering an overview of the functionality, access information, how to effectively use the tool, observations about the tool and how it compares to similar software, known problems or shortfalls with the software, and reference documentation. It is primarily intended for users of the iPSC/860 at Langley Research Center and is appropriate for both the experienced and novice user.

  12. Reuse research plans at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Voigt, Susan J.; Walker, Carrie

    1989-01-01

    The reuse activities at Langley have centered on the development of the Eli System by SPS. The development of a computer systems design environment at Langley was described as a target application for the future Eli system. This environment combines software development tools with an architecture design and analysis tool. Specifically, a Computer-Aided Software Engineering (CASE) system, under development at Charles Stark Draper Laboratory for Langley, is being used to generate Ada code for use in architecture functional simulations using the Architecture Design and Assessment System (ADAS). The Eli system will be included in this tool set and will be used to organize and promote reuse of the functional simulation code modules.

  13. Microprocessor user support at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tucker, J. H.

    1980-01-01

    The use of microprocessors pose significant problems including: (1) a long learning process for proficient use of microprocessors; (2) the requirement for extensive support in both hardware and software; and (3) the need for coordination and sharing of the creative effort to avoid unnecessary duplication. To address these problems, Langley Research Center has established a microprocessor users committee to provide an advisory interface for management and users, and is training microprocessor users. A newsletter is published to disseminate information among microprocessor users. Both cross software on the central computer complex and microprocessor development systems are used to support the design of microprocessor based systems. Each of these activities is reviewed with special emphasis given to the microprocessor support available from the central computer complex. The effectiveness of the approach being taken at Langley is assessed and specific hardware and software development efforts that are targeted toward enhancing the existing microprocessing support are discussed.

  14. Research and technology of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Descriptions of the research and technology activities at the Langley Research Center are given. Topics include laser development, aircraft design, aircraft engines, aerodynamics, remote sensing, space transportation systems, and composite materials.

  15. ARIES: NASA Langley's Airborne Research Facility

    NASA Technical Reports Server (NTRS)

    Wusk, Michael S.

    2002-01-01

    In 1994, the NASA Langley Research Center (LaRC) acquired a B-757-200 aircraft to replace the aging B-737 Transport Systems Research Vehicle (TSRV). The TSRV was a modified B-737-100, which served as a trailblazer in the development of glass cockpit technologies and other innovative aeronautical concepts. The mission for the B-757 is to continue the three-decade tradition of civil transport technology research begun by the TSRV. Since its arrival at Langley, this standard 757 aircraft has undergone extensive modifications to transform it into an aeronautical research "flying laboratory". With this transformation, the aircraft, which has been designated Airborne Research Integrated Experiments System (ARIES), has become a unique national asset which will continue to benefit the U.S. aviation industry and commercial airline customers for many generations to come. This paper will discuss the evolution of the modifications, detail the current capabilities of the research systems, and provide an overview of the research contributions already achieved.

  16. NASA Langley Research Center tethered balloon systems

    NASA Technical Reports Server (NTRS)

    Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

    1987-01-01

    The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

  17. Langley Research Center Strategic Plan for Education

    NASA Technical Reports Server (NTRS)

    Proctor, Sandra B.

    1994-01-01

    Research assignment centered on the preparation of final draft of the NASA Langley Strategic Plan for Education. Primary research activity consisted of data collection, through interviews with LaRC Office of Education and NASA Headquarters staff, university administrators and faculty, and school administrators / teachers; and documentary analysis. Pre-college and university programs were critically reviewed to assure effectiveness, support of NASA and Langley's mission and goals; National Education Goals; and educational reform strategies. In addition to these mandates, pre-college programs were reviewed to address present and future LaRC activities for teacher enhancement and preparation. University programs were reviewed with emphasis on student support and recruitment; faculty development and enhancement; and LaRC's role in promoting the utilization of educational technologies and distance learning. The LaRC Strategic Plan for Education will enable the Office of Education to provide a focused and well planned continuum of education programs for students, teachers and faculty. It will serve to direct and focus present activities and programs while simultaneously offering the flexibility to address new and emerging directions based on changing national, state, and agency trends.

  18. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  19. Computational mechanics and physics at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    South, Jerry C., Jr.

    1987-01-01

    An overview is given of computational mechanics and physics at NASA Langley Research Center. Computational analysis is a major component and tool in many of Langley's diverse research disciplines, as well as in the interdisciplinary research. Examples are given for algorithm development and advanced applications in aerodynamics, transition to turbulence and turbulence simulation, hypersonics, structures, and interdisciplinary optimization.

  20. Structural mechanics research at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.

    1976-01-01

    The contributions of NASA's Langley Research Center in areas of structural mechanics were traced from its NACA origins in 1917 to the present. The developments in structural mechanics technology since 1940 were emphasized. A brief review of some current research topics were discussed as well as anticipated near-term research projects.

  1. 17. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L79-7343) AERIAL VIEW OF THE FULL-SCALE WIND TUNNEL, 1979. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  2. 18. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L83-8341) VIEW OF FANS IN FULL-SCALE WIND TUNNEL, c. 1960s. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  3. 19. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L5925) LOENING SCL-1 SEAPLANE IN THE FULL-SCALE WIND TUNNEL, OCTOBER 1931. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  4. 15. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L4933) VIEW NORTHWEST OF THE FULL-SCALE WIND TUNNEL, c. 1932. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  5. 12. Photocopy of photograph (original in Langley Research Center Archives, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of photograph (original in Langley Research Center Archives, Hampton, VA LaRC) (L4496) AERIAL VIEW OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION; c. 1930. NOTE SEAPLANE TOWING CHANNEL STRUCTURE IN BACKGROUND. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  6. 21. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L-9850) ANNUAL AIRCRAFT ENGINEERING CONFERENCE IN FULL-SCALE WIND TUNNEL; GROUP PHOTOGRAPH OF PARTICIPANTS, mAY 23, 1934. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  7. 16. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L89-07075) AERIAL VIEW LOOKING NORTHWEST AT THE FULL-SCALE WIND TUNNEL, 1989. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  8. 22. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L27056) LOCKHEED YP-38 IN THE FULL-SCALE WIND TUNNEL; THIS WAS THE PROTOTYPE OF THE P-38 (LOCKHEED LIGHTNING); c. 1941. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  9. 20. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L15337) DRAG-CLEANUP STUDIES OF THE BREWSTER BUFFALO IN THE FULL SCALE WIND TUNNEL, 1938. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  10. 13. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (NACA 4655) VIEW LOOKING NORTH AT THE FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  11. 14. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L4776) VIEW SOUTH THROUGH ENTRANCE CONE OF FULL-SCALE WIND TUNNEL UNDER CONSTRUCTION, SEPTEMBER 12, 1930. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  12. 22. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L6415) STUFFED SEAGULL ON CARRIAGE OF TOWING TANK - 1932; EXPERIMENT TO DETERMINE AERODYNAMIC QUALITIES OF BIRDS. - NASA Langley Research Center, Seaplane Towing Channel, 108 Andrews Street, Hampton, Hampton, VA

  13. 18. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L86-10235) INTERIOR VIEW SHOWING TURNING VANES IN 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  14. 13. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) AERIAL VIEW OF 8-FOOT HIGH SPEED WIND TUNNEL IN FOREGROUND. NOTE COOLING TOWER AT LEFT CENTER. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  15. 23. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L73-5028) MODEL OF SUPERSONIC TRANSPORT IN FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  16. 16. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (LAL-12470) ELEVATION OF 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  17. 24. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L75-734) MODEL OF SUPERSONIC TRANSPORT IN FULL-SCALE WIND TUNNEL FROM ENTRANCE CONE. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  18. 21. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (NACA 16900) DETAIL VIEW OF CONTROL/MONITORING STATION IN 8-FOOT HIGH SPEED WIND TUNNEL, c. 1930s. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  19. 17. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L86-10,257) DETAIL VIEW OF EXTERIOR OF COOLING TOWER FOR 8- FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  20. 20. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) INTERIOR VIEW SHOWING TURNING VANES AND PERSONNEL IN THE 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  1. 22. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L64110) DIVING SUIT REQUIRED FOR WORKING IN 8- FOOT HIGH SPEED WIND TUNNEL; ROY H. WRIGHT, DESIGNER OF THE INNOVATIVE SLOTTED SECTION OF TUNNEL IS IN THE SUIT. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  2. 19. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L79758) INTERIOR VIEW SHOWING TURNING VANES AND PERSONNEL IN THE 8-FOOT HIGH SPEED WIND TUNNEL. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  3. 15. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L12000.1) ELEVATION OF 8-FOOT HIGH SPEED WIND TUNNEL, c. 1935. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  4. 25. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L81-7333) RUTAN'S VARI-EZE ADVANCED CONCEPTS AIRCRAFT IN THE FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  5. 26. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L64792) ALBACORE SUBMARINE DRAG TESTS IN THE FULL-SCALE WIND TUNNEL. - NASA Langley Research Center, Full-Scale Wind Tunnel, 224 Hunting Avenue, Hampton, Hampton, VA

  6. 14. Photocopy of photograph (original in the Langley Research Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original in the Langley Research Center Archives, Hampton, VA LaRC) (L-90-2684) AERIAL VIEW OF THE 8-FOOT HIGH SPEED TUNNEL (FOREGROUND) AND THE 8-FOOT TRANSONIC PRESSURE TUNNEL (REAR). - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  7. Implementing DSpace at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Lowe, Greta

    2007-01-01

    This presentation looks at the implementation of the DSpace institutional repository system at the NASA Langley Technical Library. NASA Langley Technical Library implemented DSpace software as a replacement for the Langley Technical Report Server (LTRS). DSpace was also used to develop the Langley Technical Library Digital Repository (LTLDR). LTLDR contains archival copies of core technical reports in the aeronautics area dating back to the NACA era and other specialized collections relevant to the NASA Langley community. Extensive metadata crosswalks were created to facilitate moving data from various systems and formats to DSpace. The Dublin Core metadata screens were also customized. The OpenURL standard and Ex Libris Metalib are being used in this environment to assist our customers with either discovering full-text content or with initiating a request for the item.

  8. Nasa Langley Research Center seventy-fifth anniversary publications, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The following are presented: The National Advisory Committee for Aeronautics Charter; Exploring NASA's Roots, the History of NASA Langley Research Center; NASA Langley's National Historic Landmarks; The Mustang Story: Recollections of the XP-51; Testing the First Supersonic Aircraft: Memoirs of NACA Pilot Bob Champine; NASA Langley's Contributions to Spaceflight; The Rendezvous that was Almost Missed: Lunar Orbit Rendezvous and the Apollo Program; NASA Langley's Contributions to the Apollo Program; Scout Launch Vehicle Program; NASA Langley's Contributions to the Space Shuttle; 69 Months in Space: A History of the First LDEF; NACA TR No. 460: The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel; NACA TR No. 755: Requirements for Satisfactory Flying Qualities of Airplanes; 'Happy Birthday Langley' NASA Magazine Summer 1992 Issue.

  9. Experimental Supersonic Combustion Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne

    1998-01-01

    Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.

  10. The new FIRE cloud lidar at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Alvarez, Jose M.; Mccormick, M. P.; Vaughn, M. A.; Kent, G.; Hunt, W. H.; Fuller, W. H.; Rouse, B. R.; Dubinsky, R.

    1990-01-01

    Using the Langley Aircraft Lidar for cirrus cloud observations at Langley Research Center in Hampton, Virginia is overkill both in terms of the actual lidar and the people required to run the system. A small lidar system to be used specifically for cloud probing was designed and constructed at Langley in 1987. This lidar is presently being used to collect the FIRE ETO (Extended Time Observation) data at Langley. A description of the new FIRE Cloud Lidar System is presented. The data collected by this lidar is discussed as well as some of the cloud statistics emerging from the data. A brief synopsis of system performance is also given.

  11. Production version of the extended NASA-Langley Vortex Lattice FORTRAN computer program. Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Herbert, H. E.

    1982-01-01

    The latest production version, MARK IV, of the NASA-Langley vortex lattice computer program is summarized. All viable subcritical aerodynamic features of previous versions were retained. This version extends the previously documented program capabilities to four planforms, 400 panels, and enables the user to obtain vortex-flow aerodynamics on cambered planforms, flowfield properties off the configuration in attached flow, and planform longitudinal load distributions.

  12. Research and technology report of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Highlights of major accomplishments and applications made during the past year at the Langley Research Center are reported. The activities and the contributions of this work toward maintaining United States leadership in aeronautics and space research are also discussed. Accomplishments in the fields of aeronautics and space technology, space science and applications and space transportation systems are discussed.

  13. The NASA Langley Isolator Dynamics Research Lab

    NASA Technical Reports Server (NTRS)

    Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Humphreys, William M.; Wilson, Lloyd G.

    2010-01-01

    The Isolator Dynamics Research Lab (IDRL) is under construction at the NASA Langley Research Center in Hampton, Virginia. A unique test apparatus is being fabricated to support both wall and in-stream measurements for investigating the internal flow of a dual-mode scramjet isolator model. The test section is 24 inches long with a 1-inch by 2-inch cross sectional area and is supplied with unheated, dry air through a Mach 2.5 converging-diverging nozzle. The test section is being fabricated with two sets (glass and metallic) of interchangeable sidewalls to support flow visualization and laser-based measurement techniques as well as static pressure, wall temperature, and high frequency pressure measurements. During 2010, a CFD code validation experiment will be conducted in the lab in support of NASA s Fundamental Aerodynamics Program. This paper describes the mechanical design of the Isolator Dynamics Research Lab test apparatus and presents a summary of the measurement techniques planned for investigating the internal flow field of a scramjet isolator model.

  14. Activities in Aeroelasticity at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Noll, Thomas E.

    1997-01-01

    This paper presents the results of recently-completed research and presents status reports of current research being performed within the Aeroelasticity Branch of the NASA Langley Research Center. Within the paper this research is classified as experimental, analytical, and theoretical aeroelastic research. The paper also describes the Langley Transonic Dynamics Tunnel, its features, capabilities, a new open-architecture data acquisition system, ongoing facility modifications, and the subsequent calibration of the facility.

  15. Telerobotic research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy E.

    1987-01-01

    An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.

  16. Revitalization of the NASA Langley Research Center's Infrastructure

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Mastaler, Michael D.; Craft, Stephen J.; Kegelman, Jerome T.; Hope, Drew J.; Mangum, Cathy H.

    2012-01-01

    The NASA Langley Research Center (Langley) was founded in 1917 as the nation's first civilian aeronautical research facility and NASA's first field center. For nearly 100 years, Langley has made significant contributions to the Aeronautics, Space Exploration, and Earth Science missions through research, technology, and engineering core competencies in aerosciences, materials, structures, the characterization of earth and planetary atmospheres and, more recently, in technologies associated with entry, descent, and landing. An unfortunate but inevitable outcome of this rich history is an aging infrastructure where the longest serving building is close to 80 years old and the average building age is 44 years old. In the current environment, the continued operation and maintenance of this aging and often inefficient infrastructure presents a real challenge to Center leadership in the trade space of sustaining infrastructure versus not investing in future capabilities. To address this issue, the Center has developed a forward looking revitalization strategy that ties future core competencies and technical capabilities to the Center Master Facility Plan to maintain a viable Center well into the future. This paper documents Langley's revitalization strategy which integrates the Center's missions, the Langley 2050 vision, the Center Master Facility Plan, and the New Town repair-by-replacement program through the leadership of the Vibrant Transformation to Advance Langley (ViTAL) Team.

  17. Survey of supersonic combustion ramjet research at Langley

    NASA Technical Reports Server (NTRS)

    Northam, G. B.; Anderson, G. Y.

    1986-01-01

    The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

  18. Spaceflight revolution: NASA Langley Research Center from Sputnik to Apollo

    NASA Technical Reports Server (NTRS)

    Hansen, James R.

    1995-01-01

    As part of the transition to the broad research scope of the National Aeronautics and Space Administration (NASA) starting in the late 1950's, the Langley Research Center underwent many changes in program content, organization and management, and areas of personnel expertise. This book describes and evaluates the evolution and activities of the Langley Research Center during the seventeen-year period from 1958 to 1975. The book was based on the analysis of hundreds of written records, both published and unpublished, as well as numerous personal interviews with many of the key individuals involved in the transition of Langley. Some of the projects and research areas covered include Project Echo, magnetoplasmadynamics research, Scout Rocket Program, lunar-orbit rendezvous research, manned space laboratory development, and Apollo and the Lunar Orbiter Project.

  19. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.

  20. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, Roberto J.

    2001-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI) Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  1. Composite Structures and Materials Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Dexter, H. Benson; Johnston, Norman J.; Ambur, Damodar R.; Cano, roberto J.

    2003-01-01

    A summary of recent composite structures and materials research at NASA Langley Research Center is presented. Fabrication research to develop low-cost automated robotic fabrication procedures for thermosetting and thermoplastic composite materials, and low-cost liquid molding processes for preformed textile materials is described. Robotic fabrication procedures discussed include ply-by-ply, cure-on-the-fly heated placement head and out-of-autoclave electron-beam cure methods for tow and tape thermosetting and thermoplastic materials. Liquid molding fabrication processes described include Resin Film Infusion (RFI), Resin Transfer Molding (RTM) and Vacuum-Assisted Resin Transfer Molding (VARTM). Results for a full-scale composite wing box are summarized to identify the performance of materials and structures fabricated with these low-cost fabrication methods.

  2. NASA aircraft trailing vortex research

    NASA Technical Reports Server (NTRS)

    Mcgowan, W. A.

    1971-01-01

    A brief description is given of NASA's comprehensive program to study the aircraft trailing vortex problem. Wind tunnel experiments are used to develop the detailed processes of wing tip vortex formation and explore different means to either prevent trailing vortices from forming or induce early break-up. Flight tests provide information on trailing vortex system behavior behind large transport aircraft, both near the ground, as in the vicinity of the airport, and at cruise/holding pattern altitudes. Results from some flight tests are used to show how pilots might avoid the dangerous areas when flying in the vicinity of large transport aircraft. Other flight tests will be made to verify and evaluate trailing vortex elimination schemes developed in the model tests. Laser Doppler velocimeters being developed for use in the research program and to locate and measure vortex winds in the airport area are discussed. Field tests have shown that the laser Doppler velocimeter measurements compare well with those from cup anemometers.

  3. ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER

    EPA Science Inventory

    This report summarizes work conducted at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) in Hampton, VA, under the U.S. Environmental Protection Agency’s (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. Support for...

  4. Scientific and technical information output of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Scientific and technical information that the Langley Research Center produced during the calendar year 1983 is compiled. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

  5. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  6. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory development activities. 2: Langley Research Center activities

    NASA Technical Reports Server (NTRS)

    Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.

    1983-01-01

    The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.

  7. Dr. John Stack and other NASA Langley Research Center Visitors

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Front Row, left to right: Mrs. Elsa Hoare and Major Philip L. Teed - staff members, Vickers-Armstrongs, Ltd., Weybridge, England: Dr. Barnes Wallis - Chief of Aeronautical Research, Vicers-Armstrong, Ltd., Weybridge, England. Back Row, left to right: Norman W. Boorer and Cecil W. Hayes - Staff members, Vickers-Armstrongs, Ltd., Weybridge, England; John R. Christie - Ministry of Supply, London, England; Philip A. Hufton - Chief Supt., Royal Aircraft Establishment, Bedford, England; Lindsey I. Turner, Jr. - Langley Research Center. Photographed November 13, 1958.

  8. Snapshot of Active Flow Control Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.

    2002-01-01

    NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.

  9. Assessment of Electromagnetic Fields at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  10. Overview of Langley activities in active controls research

    NASA Technical Reports Server (NTRS)

    Abel, I.; Newsom, J. R.

    1981-01-01

    The application of active controls technology to reduce aeroelastic response of aircraft structures offers a potential for significant payoffs in terms of aerodynamic efficiency and weight savings. The activities of the Langley Research Center (laRC) in advancing active controls technology. Activities are categorized into the development of appropriate analysis tools, control law synthesis methodology, and experimental investigations aimed at verifying both analysis and synthesis methodology.

  11. Microgravity science at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, William J., Jr.; Woodell, Glenn A.; Clark, Ivan O.; Crouch, Roger K.; Carlson, Frederick M.; Simchick, Richard T.

    1988-01-01

    Although space research is still in an embryonic state, a combination of Earth based and space flight experiments are being coupled to yield a better understanding of the complex interaction of heat and fluid flow on the dynamics of crystal growth. Continued efforts on the ground as well as additional flight opportunities are needed to continue the drive to fully understand the advantages, both scientifically and economically, of microgravity crystal growth.

  12. Earth Radiation Budget Research at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

    2014-01-01

    In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

  13. Electronic photography at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Holm, Jack M.

    1994-01-01

    The field of photography began a metamorphosis several years ago which promises to fundamentally change how images are captured, transmitted, and output. At this time the metamorphosis is still in the early stages, but already new processes, hardware, and software are allowing many individuals and organizations to explore the entry of imaging into the information revolution. Exploration at this time is prerequisite to leading expertise in the future, and a number of branches at LaRC have ventured into electronic and digital imaging. Their progress until recently has been limited by two factors: the lack of an integrated approach and the lack of an electronic photographic capability. The purpose of the research conducted was to address these two items. In some respects, the lack of electronic photographs has prevented application of an integrated imaging approach. Since everything could not be electronic, the tendency was to work with hard copy. Over the summer, the Photographics Section has set up an Electronic Photography Laboratory. This laboratory now has the capability to scan film images, process the images, and output the images in a variety of forms. Future plans also include electronic capture capability. The current forms of image processing available include sharpening, noise reduction, dust removal, tone correction, color balancing, image editing, cropping, electronic separations, and halftoning. Output choices include customer specified electronic file formats which can be output on magnetic or optical disks or over the network, 4400 line photographic quality prints and transparencies to 8.5 by 11 inches, and 8000 line film negatives and transparencies to 4 by 5 inches. The problem of integrated imaging involves a number of branches at LaRC including Visual Imaging, Research Printing and Publishing, Data Visualization and Animation, Advanced Computing, and various research groups. These units must work together to develop common approaches to image

  14. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight. The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe systems. Research in the area of advanced piezoelectrics includes optimizing the efficiency, force output, use temperature, and energy transfer between the structure and device for both ceramic and polymeric materials. For structural health monitoring, advanced non-destructive techniques including fiber optics are being developed for detection of delaminations, cracks and environmental deterioration in aircraft structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe system. Innovative fabrication techniques processing structural composites with sensor and actuator integration are being developed.

  15. Publications on acoustics research at the Langley Research Center, January 1987 - September 1992

    NASA Technical Reports Server (NTRS)

    Sutherland, Linda W. (Compiler)

    1992-01-01

    This report is a compilation of publications from acoustics research at the Langley Research Center. The reports listed are in chronological order and summarize the research output of the Acoustics Division for the period January 1987 - September 1992.

  16. Composite fuselage shell structures research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Shuart, Mark J.

    1992-01-01

    Fuselage structures for transport aircraft represent a significant percentage of both the weight and the cost of these aircraft primary structures. Composite materials offer the potential for reducing both the weight and the cost of transport fuselage structures, but only limited studies of the response and failure of composite fuselage structures have been conducted for transport aircraft. The behavior of these important primary structures must be understood, and the structural mechanics methodology for analyzing and designing these complex stiffened shell structures must be validated in the laboratory. The effects of local gradients and discontinuities on fuselage shell behavior and the effects of local damage on pressure containment must be thoroughly understood before composite fuselage structures can be used for commercial aircraft. This paper describes the research being conducted and planned at NASA LaRC to help understand the critical behavior or composite fuselage structures and to validate the structural mechanics methodology being developed for stiffened composite fuselage shell structure subjected to combined internal pressure and mechanical loads. Stiffened shell and curved stiffened panel designs are currently being developed and analyzed, and these designs will be fabricated and then tested at Langley to study critical fuselage shell behavior and to validate structural analysis and design methodology. The research includes studies of the effects of combined internal pressure and mechanical loads on nonlinear stiffened panel and shell behavior, the effects of cutouts and other gradient-producing discontinuities on composite shell response, and the effects of local damage on pressure containment and residual strength. Scaling laws are being developed that relate full-scale and subscale behavior of composite fuselage shells. Failure mechanisms are being identified and advanced designs will be developed based on what is learned from early results from

  17. The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1998-01-01

    Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

  18. The Role of Computers in Research and Development at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D. (Compiler)

    1994-01-01

    This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics.

  19. Ongoing Fixed Wing Research within the NASA Langley Aeroelasticity Branch

    NASA Technical Reports Server (NTRS)

    Bartels, Robert; Chwalowski, Pawel; Funk, Christie; Heeg, Jennifer; Hur, Jiyoung; Sanetrik, Mark; Scott, Robert; Silva, Walter; Stanford, Bret; Wiseman, Carol

    2015-01-01

    The NASA Langley Aeroelasticity Branch is involved in a number of research programs related to fixed wing aeroelasticity and aeroservoelasticity. These ongoing efforts are summarized here, and include aeroelastic tailoring of subsonic transport wing structures, experimental and numerical assessment of truss-braced wing flutter and limit cycle oscillations, and numerical modeling of high speed civil transport configurations. Efforts devoted to verification, validation, and uncertainty quantification of aeroelastic physics in a workshop setting are also discussed. The feasibility of certain future civil transport configurations will depend on the ability to understand and control complex aeroelastic phenomena, a goal that the Aeroelasticity Branch is well-positioned to contribute through these programs.

  20. Langley Research Center Metrology Program status for fiscal year 1987

    NASA Technical Reports Server (NTRS)

    Kern, Frederick A.

    1988-01-01

    The status of the Langley Research Center's metrology program for fiscal year 1987 is presented. The NASA Metrology Information System, which was operational for the entire year, provided the majority of performance data describing work analysis, turnaround time, out-of-tolerance instrument data, and other instrument service data. Calibration system development, equipment replacing and updating, status of last year's planned objectives, and Reference Standard certification requirements are described. The status of the LaRC voltage and resistance measurement assurance program and the agency-wide resistance program are reviewed. Progress on fiscal year 1987 objectives is discussed and fiscal year 1988 objectives are stated.

  1. Infrared Detector Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.

    2008-01-01

    Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.

  2. Publications on acoustics research at the Langley Research Center during 1980-1986

    NASA Technical Reports Server (NTRS)

    Sutherland, Linda W. (Compiler)

    1988-01-01

    This report is a compilation of publications from acoustics research at the Langley Research Center. The reports are listed in chronological order and summarize the written output of the Acoustics Division and its predecessor, The Acoustics and Noise Reduction Division, for the period 1980 through 1986. The information assembled has been extracted from the 1980 through 1986 issues for the Technical Memorandum entitled, Scientific and Technical Information Output of the Langley Research Center for the Calendar Year.

  3. A compendium of computational fluid dynamics at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Through numerous summary examples, the scope and general nature of the computational fluid dynamics (CFD) effort at Langley is identified. These summaries will help inform researchers in CFD and line management at Langley of the overall effort. In addition to the inhouse efforts, out of house CFD work supported by Langley through industrial contracts and university grants are included. Researchers were encouraged to include summaries of work in preliminary and tentative states of development as well as current research approaching definitive results.

  4. Langley Research Center - Soluble Imide (LaRC-SI)

    NASA Technical Reports Server (NTRS)

    Stang, David

    1995-01-01

    This report is about experimenting and developing uses for the new thermal plastic developed by Dr. Robert Bryant called the 'Langley Research Center - Soluble Imide' (LaRC-SI). The three developments are: the use of the LaRC-SI as a dielectric for thin film sensors, as an adhesive to place diamonds on surfaces to increase thermal conductivity, and as an intermediate layer to allow the placement of metal on aluminum nitride. The LaRC-SI was developed by Dr. Robert G. Bryant, a chemical engineer at NASA Langley Research Center. The unique properties of this material is that it is an amorphous thermoplastic. This means that it can be reformed at elevated temperature and pressures. It can be applied in the form of a spray, spin, dip coating, paint, or spread with a doctors blade. The LaRC-SI has excellent adhesive and dielectric properties. It can also be recycled. Potential applications for this material are resin for mechanical parts such as gears, bearings and valves, advanced composites like carbon fiber, high strength adhesives, thin film circuits, and as a dielectric film for placing electrical components on conductive materials.

  5. Accomplishments at NASA Langley Research Center in rotorcraft aerodynamics technology

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1988-01-01

    In recent years, the development of aerodynamic technology for rotorcraft has continued successfully at NASA LaRC. Though the NASA Langley Research Center is not the lead NASA center in this area, the activity was continued due to facilities and individual capabilities which are recognized as contributing to helicopter research needs of industry and government. Noteworthy accomplishments which contribute to advancing the state of rotorcraft technology in the areas of rotor design, airfoil research, rotor aerodynamics, and rotor/fuselage interaction aerodynamics are described. Rotor designs were defined for current helicopters and evaluated in wind tunnel testing. These designs have incorporated advanced airfoils defined analytically and also proven in wind tunnel tests. A laser velocimetry system has become a productive tool for experimental definition of rotor inflow/wake and is providing data for rotorcraft aerodynamic code validation.

  6. Technical Reports: Langley Aerospace Research Summer Scholars. Part 1

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  7. Fluid dynamics parallel computer development at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Townsend, James C.; Zang, Thomas A.; Dwoyer, Douglas L.

    1987-01-01

    To accomplish more detailed simulations of highly complex flows, such as the transition to turbulence, fluid dynamics research requires computers much more powerful than any available today. Only parallel processing on multiple-processor computers offers hope for achieving the required effective speeds. Looking ahead to the use of these machines, the fluid dynamicist faces three issues: algorithm development for near-term parallel computers, architecture development for future computer power increases, and assessment of possible advantages of special purpose designs. Two projects at NASA Langley address these issues. Software development and algorithm exploration is being done on the FLEX/32 Parallel Processing Research Computer. New architecture features are being explored in the special purpose hardware design of the Navier-Stokes Computer. These projects are complementary and are producing promising results.

  8. Research into vortex breakdown control

    NASA Astrophysics Data System (ADS)

    Mitchell, Anthony M.; Délery, Jean

    2001-05-01

    Vortex breakdown remains a significant and intriguing phenomenon that can have detrimental or beneficial effects, depending on the application. Thus there is a strong need to both better understand the phenomenon and to control it, either to prevent breakdown or to promote it. For the past 50 years, multiple flow control techniques have demonstrated the ability to manipulate the vortex breakdown location over slender delta wings at high angles of attack. An extensive historical review of these diverse control methods, mechanical and pneumatic, steady or periodic, is presented and discussed; however, none of these techniques has clearly demonstrated a superior efficiency or effectiveness in controlling either the vortical flow structure or the vortex breakdown location. Each technique, does, on the other hand, provide a unique approach to the control of the vortex breakdown depending on the desired outcome. There are still major obstacles to overcome before the control of vortex breakdown is implemented in flight. For example, oscillations of the vortex breakdown locations are difficult to quantify and to identify. The often poor effectiveness of control techniques can be in great part attributed to insufficient knowledge of breakdown and in an inability to accurately predict breakdown. When considering the large quantity of studies aimed at vortex breakdown control and their relative success, it is clear that decisive progress in this domain will require further basic investigations to clearly elucidate the physics of the phenomenon and to improve the predictive capability.

  9. Vibro-Acoustics Modal Testing at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Pritchard, Jocelyn I.; Buehrle, Ralph D.

    1999-01-01

    This paper summarizes on-going modal testing activities at the NASA Langley Research Center for two aircraft fuselage structures: a generic "aluminum testbed cylinder" (ATC) and a Beechcraft Starship fuselage (BSF). Subsequent acoustic tests will measure the interior noise field created by exterior mechanical and acoustic sources. These test results will provide validation databases for interior noise prediction codes on realistic aircraft fuselage structures. The ATC is a 12-ft-long, all-aluminum, scale model assembly. The BSF is a 40-ft-long, all-composite, complete aircraft fuselage. To date, two of seven test configurations of the ATC and all three test configurations of the BSF have been completed. The paper briefly describes the various test configurations, testing procedure, and typical results for frequencies up to 250 Hz.

  10. Matrix resin development at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.

    1985-01-01

    The polymer program at NASA Langley Research Center involves exploratory studies in polymer science. These include the synthesis of novel polymers and their characterization. Polymer synthesis programs involve the development of novel thermoplastics, pseudothermoplastics, and thermosets. Recent investigations have led to the development of more easily processable polyimides, solvent-resistant polysulfones and polyphenylquinoxalines, and tougher high and intermediate-temperature polymers. Characterization efforts have included high-pressure liquid chromatography methodology, the development of toughness tests for fiber-reinforced composites, a study of electrical properties of metal-ion-filled polyimides, and a study of the mutagenicity of aromatic diamines. Also the mechanism of cure/degradation of experimental polymers has been studied by rheology, mechanical behavior, separation techniques and spectroscopy. Some of these programs have involved the degradation crosslinking of alkyl-containing polyimides, the separation and identification of crosslinked phenylquinoxalines, the rheological behavior of hot-melt polyimides, and the elucidation of the cure of norbornene endcapped imides.

  11. Langley Research Center Standard for the Evaluation of Socket Welds

    NASA Technical Reports Server (NTRS)

    Berry, R. F., Jr.

    1985-01-01

    A specification utilized for the nondestructive evaluation of socket type pipe joints at Langley Research Center (LaRC) is discussed. The scope of hardware shall include, but is not limited to, all common pipe fittings: tees, elbows, couplings, caps, and so forth, socket type flanges, unions, and valves. In addition, the exterior weld of slip on flanges shall be inspected using this specification. At the discretion of the design engineer, standard practice engineer, Fracture Mechanics Engineering Section, Pressure Systems Committee, or other authority, four nondestructive evaluation techniques may be utilized exclusively, or in combination, to inspect socket type welds. These techniques are visual, radiographic, magnetic particle, and dye penetrant. Under special circumstances, other techniques (such as eddy current or ultrasonics) may be required and their application shall be guided by the appropriate sections of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (B&PVC).

  12. Overview of Active Flow Control at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Pack, L. G.; Joslin, R. D.

    1998-01-01

    The paper summarizes Active Flow Control projects currently underway at the NASA Langley Research Center. Technology development is being pursued within a multidisciplinary, cooperative approach, involving the classical disciplines of fluid mechanics, structural mechanics, material science, acoustics, and stability and control theory. Complementing the companion papers in this session, the present paper will focus on projects that have the goal of extending the state-of-the-art in the measurement, prediction, and control of unsteady, nonlinear aerodynamics. Toward this goal, innovative actuators, micro and macro sensors, and control strategies are considered for high payoff flow control applications. The target payoffs are outlined within each section below. Validation of the approaches range from bench-top experiments to wind-tunnel experiments to flight tests. Obtaining correlations for future actuator and sensor designs are implicit in the discussion. The products of the demonstration projects and design tool development from the fundamental NASA R&D level technology will then be transferred to the Applied Research components within NASA, DOD, and US Industry. Keywords: active flow control, separation control, MEMS, review

  13. Upgrades at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2012-01-01

    Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

  14. Computational fluid dynamics research and applications at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    South, Jerry C., Jr.

    1989-01-01

    Information on computational fluid dynamics (CFD) research and applications carried out at the NASA Langley Research Center is given in viewgraph form. The Langley CFD strategy, the five-year plan in CFD and flow physics, 3-block grid topology, the effect of a patching algorithm, F-18 surface flow, entropy and vorticity effects that improve accuracy of unsteady transonic small disturbance theory, and the effects of reduced frequency on first harmonic components of unsteady pressures due to airfoil pitching are among the topics covered.

  15. A historical overview of tiltrotor aeroelastic research at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1992-01-01

    The Bell/Boeing V-22 Osprey which is being developed for the U.S. Military is a tiltrotor aircraft combining the versatility of a helicopter with the range and speed of a turboprop airplane. The V-22 represents a tiltrotor lineage which goes back over forty years, during which time contributions to the technology base needed for its development were made by both government and industry. NASA Langley Research Center has made substantial contributions to tiltrotor technology in several areas, in particular in the area of aeroelasticity. The purpose of this talk is to present a summary of the tiltrotor aeroelastic research conducted at Langley which has contributed to that technology.

  16. Recent Cycle Time Reduction at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kegelman, Jerome T.

    2000-01-01

    The NASA Langley Research Center (LaRC) has been engaged in an effort to reduce wind tunnel test cycle time in support of Agency goals and to satisfy the wind tunnel testing needs of the commercial and military aerospace communities. LaRC has established the Wind Tunnel Enterprise (WTE), with goals of reducing wind tunnel test cycle time by an order of magnitude by 2002, and by two orders of magnitude by 2010. The WTE also plans to meet customer expectations for schedule integrity, as well as data accuracy and quality assurance. The WTE has made progress towards these goals over the last year with a focused effort on technological developments balanced by attention to process improvements. This paper presents a summary of several of the WTE activities over the last year that are related to test cycle time reductions at the Center. Reducing wind tunnel test cycle time, defined here as the time between the freezing of loft lines and delivery of test data, requires that the relationship between high productivity and data quality assurance be considered. The efforts have focused on all of the drivers for test cycle time reduction, including process centered improvements, facility upgrades, technological improvements to enhance facility readiness and productivity, as well as advanced measurement techniques. The application of internet tools and computer modeling of facilities to allow a virtual presence of the customer team is also presented.

  17. Langley Research Center Utility Risk from Future Climate Change

    NASA Technical Reports Server (NTRS)

    De Young, Russell J.; Ganoe, Rene

    2015-01-01

    The successful operation of NASA Langley Research Center (LaRC) depends on services provided by several public utility companies. These include Newport News Waterworks, Dominion Virginia Power, Virginia Natural Gas and Hampton Roads Sanitation District. LaRC's plan to respond to future climate change should take into account how these companies plan to avoid interruption of services while minimizing cost to the customers. This report summarizes our findings from publicly available documents on how each company plans to respond. This will form the basis for future planning for the Center. Our preliminary findings show that flooding and severe storms could interrupt service from the Waterworks and Sanitation District but the potential is low due to plans in place to address climate change on their system. Virginia Natural Gas supplies energy to produce steam but most current steam comes from the Hampton trash burning plant, thus interruption risk is low. Dominion Virginia Power does not address climate change impacts on their system in their public reports. The potential interruption risk is considered to be medium. The Hampton Roads Sanitation District is projecting a major upgrade of their system to mitigate clean water inflow and infiltration. This will reduce infiltration and avoid overloading the pump stations and treatment plants.

  18. Collaborative Mission Design at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  19. Sixty years of aeronautical research, 1917-1977. [Langley Research Center

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1978-01-01

    The history of Langley Research Center and its contributions to solving problems related to flight over the past six decades is recounted. Technical innovations described include those related to air craft construction materials, jet and rocket propulsion, flight testing and simulation, wind tunnel tests, noise reduction, supersonic flight, air traffic control, structural analysis, computational aerodynamics, and fuel efficiency.

  20. Electronic Photography at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Holm, Jack; Judge, Nancianne

    1995-01-01

    An electronic photography facility has been established in the Imaging & Photographic Technology Section, Visual Imaging Branch, at the NASA Langley Research Center (LaRC). The purpose of this facility is to provide the LaRC community with access to digital imaging technology. In particular, capabilities have been established for image scanning, direct image capture, optimized image processing for storage, image enhancement, and optimized device dependent image processing for output. Unique approaches include: evaluation and extraction of the entire film information content through scanning; standardization of image file tone reproduction characteristics for optimal bit utilization and viewing; education of digital imaging personnel on the effects of sampling and quantization to minimize image processing related information loss; investigation of the use of small kernel optimal filters for image restoration; characterization of a large array of output devices and development of image processing protocols for standardized output. Currently, the laboratory has a large collection of digital image files which contain essentially all the information present on the original films. These files are stored at 8-bits per color, but the initial image processing was done at higher bit depths and/or resolutions so that the full 8-bits are used in the stored files. The tone reproduction of these files has also been optimized so the available levels are distributed according to visual perceptibility. Look up tables are available which modify these files for standardized output on various devices, although color reproduction has been allowed to float to some extent to allow for full utilization of output device gamut.

  1. A historical perspective on hypersonic research at the NACA/NASA Langley Research Center (1944-1984)

    NASA Technical Reports Server (NTRS)

    Reubush, David E.

    1992-01-01

    A survey of some of the highlights on hypersonic research and technology development conducted at NASA Langley Research Center are presented. Attention is given to the range of disciplines that are being and have been explored at Langley. This review is also intended to supplement previous surveys written around one particular discipline while this survey covers a range of disciplines.

  2. A Historical Perspective on Dynamics Testing at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Kvaternik, Raymond G.

    2000-01-01

    The history of structural dynamics testing research over the past four decades at the Langley Research Center of the National Aeronautics and Space Administration is reviewed. Beginning in the early sixties, Langley investigated several scale model and full-scale spacecraft including the NIMBUS and various concepts for Apollo and Viking landers. Langley engineers pioneered the use of scaled models to study the dynamics of launch vehicles including Saturn I, Saturn V, and Titan III. In the seventies, work emphasized the Space Shuttle and advanced test and data analysis methods. In the eighties, the possibility of delivering large structures to orbit by the Space Shuttle shifted focus towards understanding the interaction of flexible space structures with attitude control systems. Although Langley has maintained a tradition of laboratory-based research, some flight experiments were supported. This review emphasizes work that, in some way, advanced the state of knowledge at the time.

  3. Teams and teamwork at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Dickinson, Terry L.

    1994-01-01

    The recent reorganization and shift to managing total quality at the NASA Langley Research Center (LaRC) has placed an increasing emphasis on teams and teamwork in accomplishing day-to-day work activities and long-term projects. The purpose of this research was to review the nature of teams and teamwork at LaRC. Models of team performance and teamwork guided the gathering of information. Current and former team members served as participants; their collective experience reflected membership in over 200 teams at LaRC. The participants responded to a survey of open-ended questions which assessed various aspects of teams and teamwork. The participants also met in a workshop to clarify and elaborate on their responses. The work accomplished by the teams ranged from high-level managerial decision making (e.g., developing plans for LaRC reorganization) to creating scientific proposals (e.g., describing spaceflight projects to be designed, sold, and built). Teams typically had nine members who remained together for six months. Member turnover was around 20 percent; this turnover was attributed to heavy loads of other work assignments and little formal recognition and reward for team membership. Team members usually shared a common and valued goal, but there was not a clear standard (except delivery of a document) for knowing when the goal was achieved. However, members viewed their teams as successful. A major factor in team success was the setting of explicit a priori rules for communication. Task interdependencies between members were not complex (e.g., sharing of meeting notes and ideas about issues), except between members of scientific teams (i.e., reliance on the expertise of others). Thus, coordination of activities usually involved scheduling and attendance of team meetings. The team leader was designated by the team's sponsor. This leader usually shared power and responsibilities with other members, such that team members established their own operating

  4. Experimental Test Results of the Energy Efficient Transport (EET) Flap-Edge Vortex Model in the Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L., Jr.

    2002-01-01

    This report presents the results of a test conducted in the Langley Low-Turbulence Pressure Tunnel to measure the flow field properties of a flap-edge vortex. The model was the EET (Energy Efficient Transport) Flap-Edge Vortex Model, which consists of a main element and a part-span, single-slotted trailing-edge flap. The model surface was instrumented with several chordwise and spanwise rows of pressure taps on each element. The off-body flow field velocities were to be measured in several planes perpendicular to the flap edge with a laser velocimetry system capable of measuring all three components in coincidence. However, due to seeding difficulties, the preliminary laser data did not have sufficient accuracy to be suitable for presentation; therefore, this report presents only the tabulated and plotted surface pressure data. In addition, the report contains a detail description of the model which can be used to generate accurate CFD grid structures.

  5. High performance composites research at NASA-Langley

    NASA Technical Reports Server (NTRS)

    Stclair, Terry L.; Johnston, Norman J.; Baucom, Robert M.

    1988-01-01

    Barriers to the more extensive use of advanced composites in heavily loaded structures on commercial transports are discussed from a materials viewpoint. NASA-Langley matrix development activities designed to overcome these barriers are presented. These include the synthesis of processible, tough, durable matrices, the development of resin property/composite property relationships which help guide the synthesis program, and the exploitation of new processing technology to effectively combine reinforcement filament with polymer matrices. Examples of five classes of polymers being investigated as matrix resins at NASA Langley are presented, including amorphous and semicrystalline thermoplastics, lightly crosslinked thermoplastics, semi-interpenetrating networks and toughened thermosets. Relationships between neat resin modulus, resin fracture energy, interlaminar fracture energy, composite compression strength, and post-impact compression strength are shown. Powder and slurry processing techniques are discussed.

  6. An historical perspective on hypersonic aerodynamic research at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.; Sawyer, Wallace C.

    1988-01-01

    The 40-year history of hypersonic technology is reviewed from a technical perspective. A broad overview is first given of the major accomplishments of hypersonic flight projects and systems studies that have been conducted over the last 40-odd years. Then, the history of major supersonic and hypersonic ground facilities at the NASA Langley and Ames Research Centers is traced, and some of the research conducted in them over the past 40 years is reviewed.

  7. Modeling and Analysis of Multidiscipline Research Teams at NASA Langley Research Center: A Systems Thinking Approach

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Barthelemy, Jean-Francois; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.

    1998-01-01

    Multidisciplinary analysis and design is inherently a team activity due to the variety of required expertise and knowledge. As a team activity, multidisciplinary research cannot escape the issues that affect all teams. The level of technical diversity required to perform multidisciplinary analysis and design makes the teaming aspects even more important. A study was conducted at the NASA Langley Research Center to develop a model of multidiscipline teams that can be used to help understand their dynamics and identify key factors that influence their effectiveness. The study sought to apply the elements of systems thinking to better understand the factors, both generic and Langley-specific, that influence the effectiveness of multidiscipline teams. The model of multidiscipline research teams developed during this study has been valuable in identifying means to enhance team effectiveness, recognize and avoid problem behaviors, and provide guidance for forming and coordinating multidiscipline teams.

  8. Research in Hypersonic Airbreathing Propulsion at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Drummond, J. Philip; McClinton, Charles R.; Hunt, James L.

    2001-01-01

    The NASA Langley Research Center has been conducting research for over four decades to develop technology for an airbreathing-propelled vehicle. Several other organizations within the United States have also been involved in this endeavor. Even though significant progress has been made over this period, a hypersonic airbreathing vehicle has not yet been realized due to low technology maturity. One of the major reasons for the slow progress in technology development has been the low level and cyclic nature of funding. The paper provides a brief historical overview of research in hypersonic airbreathing technology and then discusses current efforts at NASA Langley to develop various analytical, computational, and experimental design tools and their application in the development of future hypersonic airbreathing vehicles. The main focus of this paper is on the hypersonic airbreathing propulsion technology.

  9. Aeroelasticity at the NASA Langley Research Center Recent progress, new challenges

    NASA Technical Reports Server (NTRS)

    Hanson, P. W.

    1985-01-01

    Recent progress in aeroelasticity, particularly at the NASA Langley Research Center is reviewed to look at the questions answered and questions raised, and to attempt to define appropriate research emphasis needed in the near future and beyond. The paper is focused primarily on the NASA Langley Research Center (LaRC) Program because Langley is the lead NASA center for aerospace structures research, and essentially is the only one working in depth in the area of aeroelasticity. Historical trends in aeroelasticity are reviewed broadly in terms of technology and staffing particularly at the LaRC. Then, selected studies of the Loads and Aeroelasticity Division at LaRC and others over the past three years are presented with attention paid to unresolved questions. Finally, based on the results of these studies and on perceptions of design trends and aircraft operational requirements, future research needs in aeroelasticity are discussed.

  10. Assessment team report on flight-critical systems research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Siewiorek, Daniel P. (Compiler); Dunham, Janet R. (Compiler)

    1989-01-01

    The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.

  11. Innovation in Flight: Research of the NASA Langley Research Center on Revolutionary Advanced Concepts for Aeronautics

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.

    2005-01-01

    The goal of this publication is to provide an overview of the topic of revolutionary research in aeronautics at Langley, including many examples of research efforts that offer significant potential benefits, but have not yet been applied. The discussion also includes an overview of how innovation and creativity is stimulated within the Center, and a perspective on the future of innovation. The documentation of this topic, especially the scope and experiences of the example research activities covered, is intended to provide background information for future researchers.

  12. Model Deformation Measurements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1998-01-01

    Only recently have large amounts of model deformation data been acquired in NASA wind tunnels. This acquisition of model deformation data was made possible by the development of an automated video photogrammetric system to measure the changes in wing twist and bending under aerodynamic load. The measurement technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed third dimensional coordinate, namely the spanwise location. A major consideration in the development of the measurement system was that use of the technique must not appreciably reduce wind tunnel productivity. The measurement technique has been used successfully for a number of tests at four large production wind tunnels at NASA and a dedicated system is nearing completion for a fifth facility. These facilities are the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley, and the 12-FT Pressure Tunnel at NASA Ames. A dedicated system for the Langley 16-Foot Transonic Tunnel is scheduled to be used for the first time for a test in September. The advantages, limitations, and strategy of the technique as currently used in NASA wind tunnels are presented. Model deformation data are presented which illustrate the value of these measurements. Plans for further enhancements to the technique are presented.

  13. Historical Contributions to Vertical Flight at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Hodges, William T.; Gorton, Susan A.; Jackson, Karen E.

    2016-01-01

    The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.

  14. NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM

    EPA Science Inventory

    National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...

  15. Vortex lift research: Early contributions and some current challenges

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.

    1986-01-01

    The trend towards slender wing aircraft for supersonic cruise and the early chronology of research directed towards their vortex-lift characteristics are briefly reviewed. An overview of the development of vortex-lift theoretical methods is presented, and some current computational and experimental challenges related to the viscous flow aspects of this vortex flow are discussed.

  16. Low-Reynolds number aerodynamics research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Harvey, William D.

    1986-01-01

    The present status of various types of low-Reynolds number aerodynamics research being conducted at the Fluid Dynamics Branch of NASA Langley Research Center is reviewed. The facilities, testing techniques, airfoil design, and experimental verification are addressed, and ongoing studies of laminar separation bubbles, boundary layer stability and transition control, and low-Reynolds number juncture flow are discussed. The possibility of improving vehicle characteristics at low Reynolds numbers and the general trends of the most promising research in these areas are examined.

  17. Program of Research in Flight Dynamics, The George Washington University at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C. (Technical Monitor); Klein, Vladislav

    2005-01-01

    The program objectives are fully defined in the original proposal entitled Program of Research in Flight Dynamics in GW at NASA Langley Research Center, which was originated March 20, 1975, and in the renewals of the research program from January 1, 2003 to September 30, 2005. The program in its present form includes three major topics: 1. the improvement of existing methods and development of new methods for wind tunnel and flight data analysis, 2. the application of these methods to wind tunnel and flight test data obtained from advanced airplanes, 3. the correlation of flight results with wind tunnel measurements, and theoretical predictions.

  18. Helicopter noise research at the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Green, G. C.

    1978-01-01

    The noise generated from a 1/4-scale AH-1G helicopter configuration was investigated in the Langley V/STOL tunnel. Microphones were installed in positions scaled to those for which flight test data were available. Model and tunnel conditions were carefully set to properly scaled flight conditions. Data presented indicate a high degree of similarity between model and flight test results. It was found that the pressure time history waveforms are very much alike in shape and amplitude. Blade slap when it occurred seemed to be generated in about the same location in the rotor disk as on the flight vehicle. If model and tunnel conditions were properly matched, including inflow turbulence characteristics, the intensity of the blade-slap impulse seemed to correlate well with flight.

  19. Advanced Measurement Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.

    1998-01-01

    Instrumentation systems have always been essential components of world class wind tunnels and laboratories. Langley continues to be on the forefront of the development of advanced systems for aerospace applications. This paper will describe recent advances in selected measurement systems which have had significant impact on aerospace testing. To fully understand the aerodynamics and aerothermodynamics influencing aerospace vehicles, highly accurate and repeatable measurements need to be made of critical phenomena. However, to maintain leadership in a highly competitive world market, productivity enhancement and the development of new capabilities must also be addressed aggressively. The accomplishment of these sometimes conflicting requirements has been the challenge of advanced measurement developers. However, several new technologies have recently matured to the point where they have enabled the achievement of these goals. One of the critical areas where advanced measurement systems are required is flow field velocity measurements. These measurements are required to correctly characterize the flowfield under study, to quantify the aerodynamic performance of test articles and to assess the effect of aerodynamic vehicles on their environment. Advanced measurement systems are also making great strides in obtaining planar measurements of other important thermodynamic quantities, including species concentration, temperature, pressure and the speed of sound. Langley has been on the forefront of applying these technologies to practical wind tunnel environments. New capabilities in Projection Moire Interferometry and Acoustics Array Measurement systems have extended our capabilities into the model deformation, vibration and noise measurement arenas. An overview of the status of these techniques and recent applications in practical environments will be presented in this paper.

  20. Scientific and technical photography at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Davidhazy, Andrew

    1994-12-01

    As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are

  1. Scientific and technical photography at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Davidhazy, Andrew

    1994-01-01

    As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are

  2. Scientific and technical information output of the Langley Research Center for calendar year 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1980. Approximately 1400 citations are given. Formal reports, quick-release technical memorandums, contractor reports, journal articles, meeting/conference papers, computer programs, tech briefs, patents, and unpublished research are included.

  3. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  4. A review of head-worn display research at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J.; Bailey, Randall E.; Williams, Steven P.; Prinzel, Lawrence J.; Shelton, Kevin J.; Jones, Denise R.; Houston, Vincent

    2015-05-01

    NASA Langley has conducted research in the area of helmet-mounted/head-worn displays over the past 30 years. Initially, NASA Langley's research focused on military applications, but recently has conducted a line of research in the area of head-worn displays for commercial and business aircraft. This work has revolved around numerous simulation experiments as well as flight tests to develop technology and data for industry and regulatory guidance. The paper summarizes the results of NASA's helmet-mounted/head-worn display research. Of note, the work tracks progress in wearable collimated optics, head tracking, latency reduction, and weight. The research lends credence that a small, sunglasses-type form factor of the head-worn display would be acceptable to commercial pilots, and this goal is now becoming technologically feasible. The research further suggests that a head-worn display may serve as an "equivalent" Head-Up Display (HUD) with safety, operational, and cost benefits. "HUD equivalence" appears to be the economic avenue by which head-worn displays can become main-stream on the commercial and business aircraft flight deck. If this happens, NASA's research suggests that additional operational benefits using the unique capabilities of the head-worn display can open up new operational paradigms.

  5. A Review of Head-Worn Display Research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis (Trey) J., III; Bailey, Randall E.; Williams, Steven P.; Prinzel, Lawrence J., III; Shelton, Kevin J.; Jones, Denise R.; Houston, Vincent

    2015-01-01

    NASA Langley has conducted research in the area of helmet-mounted/head-worn displays over the past 30 years. Initially, NASA Langley's research focused on military applications, but recently it has conducted a line of research in the area of head-worn displays for commercial and business aircraft. This work has revolved around numerous simulation experiments as well as flight tests to develop technology and data for industry and regulatory guidance. The paper summarizes the results of NASA's helmet-mounted/head-worn display research. Of note, the work tracks progress in wearable collimated optics, head tracking, latency reduction, and weight. The research lends credence that a small, sunglasses-type form factor of the head-worn display would be acceptable to commercial pilots, and this goal is now becoming technologically feasible. The research further suggests that a head-worn display may serve as an "equivalent" Head-Up Display (HUD) with safety, operational, and cost benefits. "HUD equivalence" appears to be the economic avenue by which head-worn displays can become main-stream on the commercial and business aircraft flight deck. If this happens, NASA's research suggests that additional operational benefits using the unique capabilities of the head-worn display can open up new operational paradigms.

  6. A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.; Fasanella, E. L.

    2003-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

  7. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.

    1997-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

  8. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

    1998-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption

  9. Educator Resource Center for NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bridgford, Todd; Koltun, Nick R.

    2003-01-01

    The goal of the ERCN is to provide expertise and facilities to help educators access and utilize science, mathematics, and technology instructional products aligned with national standards and appropriate state frameworks and based on NASA s unique mission and results. The NASA Langley s Office of Education has established the service area for this ERC to be the five states of Kentucky, North Carolina, South Carolina, Virginia and West Virginia. This educational grant activity is associated with NASA s Mission to inspire the next generation of explorers.. .as only NASA can. The communication of NASA s knowledge is the prime role of this ERC. Functioning as a dissemination system of instructional materials and support for pre-college education programs we have met the NASA Education ERCN Program's goal. The following ERCN objectives have been accomplished: Demonstrate and facilitate the use of NASA educational products and technologies in print, video and web based formats. Examples include but are not limited to NASA approved Educator s Guides with Activities based on national standards for appropriate subjects and grade levels. We have demonstrated the use videotape series in analogue format and the new digital video instructional systems along with the use of NASA TV. The promotion of web page based resources such as the new NASA Portal web and the ability to download print resources is continuously facilitated in workshops. This objective has been completed by educator contacts that include on-site visits, phone requests, postal mail requests, e-mail requests, fax requests and workshops offered.

  10. A Selection of Composites Simulation Practices at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2007-01-01

    One of the major areas of study at NASA Langley Research Center is the development of technologies that support the use of advanced composite materials in aerospace applications. Amongst the supporting technologies are analysis tools used to simulate the behavior of these materials. This presentation will discuss a number of examples of analysis tools and simulation practices conducted at NASA Langley. The presentation will include examples of damage tolerance analyses for both interlaminar and intralaminar failure modes. Tools for modeling interlaminar failure modes include fracture mechanics and cohesive methods, whilst tools for modeling intralaminar failure involve the development of various progressive failure analyses. Other examples of analyses developed at NASA Langley include a thermo-mechanical model of an orthotropic material and the simulation of delamination growth in z-pin reinforced laminates.

  11. Review of fatigue and fracture research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Everett, Richard A., Jr.

    1988-01-01

    Most dynamic components in helicopters are designed with a safe-life constant-amplitude testing approach that has not changed in many years. In contrast, the fatigue methodology in other industries has advanced significantly in the last two decades. Recent research at the NASA Langley Research Center and the U.S. Army Aerostructures Directorate at Langley are reviewed relative to fatigue and fracture design methodology for metallic components. Most of the Langley research was directed towards the damage tolerance design approach, but some work was done that is applicable to the safe-life approach. In the areas of testing, damage tolerance concepts are concentrating on the small-crack effect in crack growth and measurement of crack opening stresses. Tests were conducted to determine the effects of a machining scratch on the fatigue life of a high strength steel. In the area of analysis, work was concentrated on developing a crack closure model that will predict fatigue life under spectrum loading for several different metal alloys including a high strength steel that is often used in the dynamic components of helicopters. Work is also continuing in developing a three-dimensional, finite-element stress analysis for cracked and uncracked isotropic and anisotropic structures. A numerical technique for solving simultaneous equations called the multigrid method is being pursued to enhance the solution schemes in both the finite-element analysis and the boundary element analysis. Finally, a fracture mechanics project involving an elastic-plastic finite element analysis of J-resistance curve is also being pursued.

  12. Scientific and technical information output of the Langley Research Center for Calendar Year 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1985 is presented. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

  13. Scientific and technical information output of the Langley Research Center for calendar year 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The scientific and technical information that the Langley Research Center produced during the calendar year 1984 is compiled. Approximately 1650 citations are included comprising formal reports, quick-release technical memorandums, contractor reports, journal articles and other publications, meeting presentations, technical talks, computer programs, tech briefs, and patents.

  14. Open Rotor Noise Prediction at NASA Langley - Capabilities, Research and Development

    NASA Technical Reports Server (NTRS)

    Farassat, Fereidoun

    2010-01-01

    The high fuel prices of recent years have caused the operating cost of the airlines to soar. In an effort to bring down the fuel consumption, the major aircraft engine manufacturers are now taking a fresh look at open rotors for the propulsion of future airliners. Open rotors, also known as propfans or unducted fans, can offer up to 30 per cent improvement in efficiency compared to high bypass engines of 1980 vintage currently in use in most civilian aircraft. NASA Langley researchers have contributed significantly to the development of aeroacoustic technology of open rotors. This report discusses the current noise prediction technology at Langley and reviews the input data requirements, strengths and limitations of each method as well as the associated problems in need of attention by the researchers. We present a brief history of research on the aeroacoustics of rotating blade machinery at Langley Research Center. We then discuss the available noise prediction codes for open rotors developed at NASA Langley and their capabilities. In particular, we present the two useful formulations used for the computation of noise from subsonic and supersonic surfaces. Here we discuss the open rotor noise prediction codes ASSPIN and one based on Ffowcs Williams-Hawkings equation with penetrable data surface (FW - Hpds). The scattering of sound from surfaces near the rotor are calculated using the fast scattering code (FSC) which is also discussed in this report. Plans for further improvements of these codes are given.

  15. Publications in acoustic and noise control from NASA Langley Research Center during 1940-1979. [bibliographies

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1980-01-01

    Reference lists of approximately 900 published Langley Research Center reports in various areas of acoustics and noise control for the period 1940-1979 are presented. Specific topic areas covered include: duct acoustics; propagation and operations; rotating blade noise; jet noise; sonic boom; flow surface interaction noise; structural response/interior noise; human response; and noise prediction.

  16. A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.

    1979-01-01

    The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.

  17. Scientific and technical information output of the Langley Research Center for calendar year 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1986. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Techncial Talks, Computer Programs, Tech Briefs, and Patents.

  18. UAV Research at NASA Langley: Towards Safe, Reliable, and Autonomous Operations

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.

    2016-01-01

    Unmanned Aerial Vehicles (UAV) are fundamental components in several aspects of research at NASA Langley, such as flight dynamics, mission-driven airframe design, airspace integration demonstrations, atmospheric science projects, and more. In particular, NASA Langley Research Center (Langley) is using UAVs to develop and demonstrate innovative capabilities that meet the autonomy and robotics challenges that are anticipated in science, space exploration, and aeronautics. These capabilities will enable new NASA missions such as asteroid rendezvous and retrieval (ARRM), Mars exploration, in-situ resource utilization (ISRU), pollution measurements in historically inaccessible areas, and the integration of UAVs into our everyday lives all missions of increasing complexity, distance, pace, and/or accessibility. Building on decades of NASA experience and success in the design, fabrication, and integration of robust and reliable automated systems for space and aeronautics, Langley Autonomy Incubator seeks to bridge the gap between automation and autonomy by enabling safe autonomous operations via onboard sensing and perception systems in both data-rich and data-deprived environments. The Autonomy Incubator is focused on the challenge of mobility and manipulation in dynamic and unstructured environments by integrating technologies such as computer vision, visual odometry, real-time mapping, path planning, object detection and avoidance, object classification, adaptive control, sensor fusion, machine learning, and natural human-machine teaming. These technologies are implemented in an architectural framework developed in-house for easy integration and interoperability of cutting-edge hardware and software.

  19. Research and Applications in Aeroelasticity and Structural Dynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abel, Irving

    1997-01-01

    An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.

  20. Reduced-Order Modeling: Cooperative Research and Development at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Beran, Philip S.; Cesnik, Carlos E. S.; Guendel, Randal E.; Kurdila, Andrew; Prazenica, Richard J.; Librescu, Liviu; Marzocca, Piergiovanni; Raveh, Daniella E.

    2001-01-01

    Cooperative research and development activities at the NASA Langley Research Center (LaRC) involving reduced-order modeling (ROM) techniques are presented. Emphasis is given to reduced-order methods and analyses based on Volterra series representations, although some recent results using Proper Orthogonal Deco in position (POD) are discussed as well. Results are reported for a variety of computational and experimental nonlinear systems to provide clear examples of the use of reduced-order models, particularly within the field of computational aeroelasticity. The need for and the relative performance (speed, accuracy, and robustness) of reduced-order modeling strategies is documented. The development of unsteady aerodynamic state-space models directly from computational fluid dynamics analyses is presented in addition to analytical and experimental identifications of Volterra kernels. Finally, future directions for this research activity are summarized.

  1. The ACEE program and basic composites research at Langley Research Center (1975 to 1986): Summary and bibliography

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.

    1987-01-01

    Composites research conducted at the Langley Research Center during the period from 1975 to 1986 is described, and an annotated bibliography of over 600 documents (with their abstracts) is presented. The research includes Langley basic technology and the composite primary structures element of the NASA Aircraft Energy Efficiency (ACEE) Program. The basic technology documents cited in the bibliography are grouped according to the research activity such as design and analysis, fatigue and fracture, and damage tolerance. The ACEE documents cover development of composite structures for transport aircraft.

  2. A review and evaluation of the Langley Research Center's scientific and technical information program. Results of phase 1: Knowledge and attitudes survey, LaRC research personnel

    NASA Technical Reports Server (NTRS)

    Pinelli, T. E.; Glassman, M.; Cross, E. M.

    1980-01-01

    The effectiveness of the Langley STI program was assessed using feedback obtained from Langley engineers and scientists. A survey research procedure was conducted in two stages. Personal interviews with 64 randomly selected Langley engineers and scientists were used to obtain information for questionnaire development. Data were then collected by means of the questionnaire which covered various aspects of the Langley STI program, utilized both open and closed ended questions and was pretested for finalization. The questions were organized around the six objectives for Phase 1. The completed questionnaires were analyzed. From the analysis of the data, recommendations were made for improving the Langley STI program.

  3. Research On Subjective Response To Simulated Sonic Booms At NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Sullivan, Brenda M.

    2006-05-01

    Over the past 15 years, NASA Langley Research Center has conducted many tests investigating subjective response to simulated sonic booms. Most tests have used the Sonic Boom Booth, an airtight concrete booth fitted with loudspeakers that play synthesized sonic booms pre-processed to compensate for the response of the booth/loudspeaker system. Tests using the Booth have included investigations of shaped booms, booms with simulated ground reflections, recorded booms, outdoor and indoor booms, booms with differing loudness for bow and tail shocks, and comparisons of aircraft flyover recordings with sonic booms. Another study used loudspeakers placed inside people's houses, so that they could experience the booms while in their own homes. This study investigated the reactions of people to different numbers of booms heard within a 24-hour period. The most recent Booth test used predicted boom shapes from candidate low-boom aircraft. At present, a test to compare the Booth with boom simulators constructed by Gulfstream Aerospace Corporation and Lockheed Martin Aeronautics Company is underway. The Lockheed simulator is an airtight booth similar to the Langley booth; the Gulfstream booth uses a traveling wave method to create the booms. Comparison of "realism" as well as loudness and other descriptors is to be studied.

  4. Research on Subjective Response to Simulated Sonic Booms at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sullivan, Brenda M.

    2005-01-01

    Over the past 15 years, NASA Langley Research Center has conducted many tests investigating subjective response to simulated sonic booms. Most tests have used the Sonic Boom Booth, an airtight concrete booth fitted with loudspeakers that play synthesized sonic booms pre-processed to compensate for the response of the booth/loudspeaker system. Tests using the Booth have included investigations of shaped booms, booms with simulated ground reflections, recorded booms, outdoor and indoor booms, booms with differing loudness for bow and tail shocks, and comparisons of aircraft flyover recordings with sonic booms. Another study used loudspeakers placed inside people s houses, so that they could experience the booms while in their own homes. This study investigated the reactions of people to different numbers of booms heard within a 24-hour period. The most recent Booth test used predicted boom shapes from candidate low-boom aircraft. At present, a test to compare the Booth with boom simulators constructed by Gulfstream Aerospace Corporation and Lockheed Martin Aeronautics Company is underway. The Lockheed simulator is an airtight booth similar to the Langley booth; the Gulfstream booth uses a traveling wave method to create the booms. Comparison of "realism" as well as loudness and other descriptors is to be studied.

  5. Computer-aided analysis at NASA Langley Research Center - Looking toward the 1990's

    NASA Technical Reports Server (NTRS)

    Petersen, Richard H.

    1985-01-01

    Aerospace research is inextricably intertwined with the programmable digital computer. Engineers and scientists at NASA Langley Research Center are requiring ever-increasing computing resources to carry out basic and applied research on problems and complex systems that would have been unthinkable Just ten years ago. The rapid changes in computer technology make planning for the future especially difficult, even five years in advance. In this paper, the evolution of computer resources and usage in research at Langley are briefly considered over the past thirty years, followed by a snapshot of the present. Finally, an extrapolation to the 1990's computer environment is made, with some thoughts on the tasks that engineers might face, and the background they will probably need.

  6. A Storm Surge and Inundation Model of the Back River Watershed at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Loftis, Jon Derek; Wang, Harry V.; DeYoung, Russell J.

    2013-01-01

    This report on a Virginia Institute for Marine Science project demonstrates that the sub-grid modeling technology (now as part of Chesapeake Bay Inundation Prediction System, CIPS) can incorporate high-resolution Lidar measurements provided by NASA Langley Research Center into the sub-grid model framework to resolve detailed topographic features for use as a hydrological transport model for run-off simulations within NASA Langley and Langley Air Force Base. The rainfall over land accumulates in the ditches/channels resolved via the model sub-grid was tested to simulate the run-off induced by heavy precipitation. Possessing both the capabilities for storm surge and run-off simulations, the CIPS model was then applied to simulate real storm events starting with Hurricane Isabel in 2003. It will be shown that the model can generate highly accurate on-land inundation maps as demonstrated by excellent comparison of the Langley tidal gauge time series data (CAPABLE.larc.nasa.gov) and spatial patterns of real storm wrack line measurements with the model results simulated during Hurricanes Isabel (2003), Irene (2011), and a 2009 Nor'easter. With confidence built upon the model's performance, sea level rise scenarios from the ICCP (International Climate Change Partnership) were also included in the model scenario runs to simulate future inundation cases.

  7. Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.

    1987-01-01

    The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral equations and finite difference methods for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite difference solution of the transonic small perturbation equation, the integral equation program is given primary emphasis here because it is less well known.

  8. Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Yates, E. Carson, Jr.; Whitlow, Woodrow, Jr.

    1987-01-01

    The current scope, recent progress, and plans for research and development of computational methods for unsteady aerodynamics at the NASA Langley Research Center are reviewed. Both integral-equations and finite-difference method for inviscid and viscous flows are discussed. Although the great bulk of the effort has focused on finite-difference solution of the transonic small-perturbation equation, the integral-equation program is given primary emphasis here because it is less well known.

  9. Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.

    2003-01-01

    Interest in low-observable aircraft and in lowering an aircraft's exhaust system weight sparked decades of research for fixed geometry exhaust nozzles. The desire for such integrated exhaust nozzles was the catalyst for new fluidic control techniques; including throat area control, expansion control, and thrust-vector angle control. This paper summarizes a variety of fluidic thrust vectoring concepts that have been tested both experimentally and computationally at NASA Langley Research Center. The nozzle concepts are divided into three categories according to the method used for fluidic thrust vectoring: the shock vector control method, the throat shifting method, and the counterflow method. This paper explains the thrust vectoring mechanism for each fluidic method, provides examples of configurations tested for each method, and discusses the advantages and disadvantages of each method.

  10. Vortex research facility improvements and preliminary density stratification effects on vortex wakes

    NASA Technical Reports Server (NTRS)

    Satran, D. R.; Holbrook, G. T.; Greene, G. C.; Neuhart, D.

    1985-01-01

    Recent modernization of NASA's Vortex Research Facility is described. The facility has a 300-ft test section, scheduled for a 300-ft extension, with constant test speeds of the model up to 100 ft/sec. The data acquisition hardware and software improvements included the installation of a 24-channel PCM system onboard the research vehicle, and a large dedicated 16-bit minicomputer. Flow visualization of the vortex wake in the test section is by particle seeding, and a thin sheet of argon laser light perpendicular to the line of flight; detailed flow field measurements are made with a laser velocimeter optics system. The improved experimental capabilities of the facility were used in a study of atmospheric stratification effects on wake vortex decay, showing that the effects of temperature gradient must be taken into account to avoid misleading conclusions in wake vortex research.

  11. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  12. Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990's

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.

    2000-01-01

    Established in 1917 as the nation#s first civil aeronautics research laboratory under the National Advisory Commit-tee for Aeronautics (NACA), Langley was a small laboratory that solved the problems of flight for military and civil aviation. Throughout history, Langley has maintained a working partnership with the Department of Defense, U.S. industry, universities, and other government agencies to support the defense of the nation with research. During World War II, Langley directed virtually all of its workforce and facilities to research for military aircraft. Following the war, a balanced program of military and civil projects was undertaken. In some instances Langley research from one aircraft program helped solve a problem in another. At the conclusion of some programs, Langley obtained the research models for additional tests to learn more about previously unknown phenomena. The data also proved useful in later developmental programs. Many of the military aircraft in the U.S. inventory as of late 1999 were over 20 years old. Langley activities that contributed to the development of some of these aircraft began over 50 years prior. This publication documents the role, from early concept stages to problem solving for fleet aircraft, that Langley played in the military aircraft fleet of the United States for the 1990's.

  13. Langley Research Highlights 1999: Advanced Aerospace Technology Clouds That Help Create the Ozone Hole Capturing Comet Dust

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report contains highlights of some of the major accomplishments and applications made by NASA Langley Research Center and its university partners and industry colleagues during 1999. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. The Center's historic national role since 1917 continues in Aerospace Technology research with an additional major role in Earth Science research. Langley also partners closely with other NASA Centers and the Jet Propulsion Laboratory in Space Science and the Human Exploration and Development of Space. A color version is available at http://larcpubs.larc.nasa.gov/randt/1999/. For further information, contact Dennis Bushnell, Senior Scientist, Mail Stop 110, NASA Langley Research Center, Hampton, Virginia 23681-2199, (757)-864-8987, e-mail address: d.m.bushnell@larc.nasa.gov.

  14. Structural Health Monitoring Sensor Development at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Wu, M. C.; Allison, S. G.; DeHaven, S. L.; Ghoshal, A.

    2002-01-01

    NASA is applying considerable effort on the development of sensor technology for structural health monitoring (SHM). This research is targeted toward increasing the safety and reliability of aerospace vehicles, while reducing operating and maintenance costs. Research programs are focused on applications to both aircraft and space vehicles. Sensor technologies under development span a wide range including fiber-optic sensing, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, fiber-optic sensors are one of the leading candidates and are the major focus of this presentation. In addition, recent advances in active and passive acoustic sensing will also be discussed.

  15. Recent Developments at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2011-01-01

    Several upgrade projects have been completed or are just getting started at the NASA Langley Research Center National Transonic Facility. These projects include a new high capacity semi-span balance, model dynamics damping system, semi-span model check load stand, data acquisition system upgrade, facility automation system upgrade and a facility reliability assessment. This presentation will give a brief synopsis of each of these efforts.

  16. Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bartels, R. E.

    2008-01-01

    NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.

  17. Topics in landing gear dynamics research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.; Tanner, J. A.

    1986-01-01

    Four topics in landing gear dynamics are discussed. Three of these topics are subjects of recent research: tilt steering phenomenon, water spray ingestion on flooded runways, and actively controlled landing gear. The fourth topic is a description of a major facility recently enhanced in capability.

  18. The 1992 Langley Aerospace Research Summer Scholars (LARSS) program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The overwhelming majority of the LARSS participants rated their overall summer research experience as good or excellent. Even though the 1992 LARSS Program has met its goals, all areas of the program need to be considered for continuous improvement. Of the various recommendations provided by the participants, the following will be implemented in the 1993 LARSS Program: (1) LARSS participants will be housed in two or three apartment complexes; (2) mentors will be encouraged to contact their student before the beginning of the LARSS Program; (3) LARSS participants will be notified of a tentative payroll schedule before the Program begins; (4) LARSS participants will be strongly encouraged to give an oral presentation on their research project in their respective Divisions; and (5) a Career Conference, in conjunction with a forum where the participants can share their individual research projects will be held. The participant recommendations made in the 1992 LARSS Student Exit Survey will ensure a more successful and improved LARSS Program in 1993.

  19. Overview of the Langley subsonic research effort on SCR configuration

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Thomas, J. D.; Huffman, J. K.; Weston, R. P.; Schoonover, W. E., Jr.; Gentry, C. L., Jr.

    1980-01-01

    Recent advances achieved in the subsonic aerodynamics of low aspect ratio, highly swept wing designs are summarized. The most significant of these advances was the development of leading edge deflection concepts which effectively reduce leading edge flow separation. The improved flow attachment results in substantial improvements in low speed performance, significant delay of longitudinal pitch up, increased trailing edge flap effectiveness, and increased lateral control capability. Various additional theoretical and/or experimental studies are considered which, in conjunction with the leading edge deflection studies, form the basis for future subsonic research effort.

  20. NASA Langley Research Center's distributed mass storage system

    NASA Technical Reports Server (NTRS)

    Pao, Juliet Z.; Humes, D. Creig

    1993-01-01

    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at NASA LaRC is building such a system and expects to put it into production use by the end of 1993. This paper presents the design of the DMSS, some experiences in its development and use, and a performance analysis of its capabilities. The special features of this system are: (1) workstation class file servers running UniTree software; (2) third party I/O; (3) HIPPI network; (4) HIPPI/IPI3 disk array systems; (5) Storage Technology Corporation (STK) ACS 4400 automatic cartridge system; (6) CRAY Research Incorporated (CRI) CRAY Y-MP and CRAY-2 clients; (7) file server redundancy provision; and (8) a transition mechanism from the existent mass storage system to the DMSS.

  1. General aviation crash safety program at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.

    1976-01-01

    The purpose of the crash safety program is to support development of the technology to define and demonstrate new structural concepts for improved crash safety and occupant survivability in general aviation aircraft. The program involves three basic areas of research: full-scale crash simulation testing, nonlinear structural analyses necessary to predict failure modes and collapse mechanisms of the vehicle, and evaluation of energy absorption concepts for specific component design. Both analytical and experimental methods are being used to develop expertise in these areas. Analyses include both simplified procedures for estimating energy absorption capabilities and more complex computer programs for analysis of general airframe response. Full-scale tests of typical structures as well as tests on structural components are being used to verify the analyses and to demonstrate improved design concepts.

  2. Propulsion Airframe Integration Test Techniques for Hypersonic Airbreathing Configurations at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.

    2003-01-01

    The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.

  3. NASA Langley Research and Technology-Transfer Program in Formal Methods

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Caldwell, James L.; Carreno, Victor A.; Holloway, C. Michael; Miner, Paul S.; DiVito, Ben L.

    1995-01-01

    This paper presents an overview of NASA Langley research program in formal methods. The major goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate the transfer of this technology to U.S. industry through use of carefully designed demonstration projects. Several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of five NASA civil servants and contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.

  4. A brief overview of NASA Langley's research program in formal methods

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An overview of NASA Langley's research program in formal methods is presented. The major goal of this work is to bring formal methods technology to a sufficiently mature level for use by the United States aerospace industry. Towards this goal, work is underway to design and formally verify a fault-tolerant computing platform suitable for advanced flight control applications. Also, several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of six NASA civil servants and contractors from Boeing Military Aircraft Company, Computational Logic Inc., Odyssey Research Associates, SRI International, University of California at Davis, and Vigyan Inc.

  5. Winds of Change: Expanding the Frontiers of Flight. Langley Research Center's 75 Years of Accomplishment, 1917-1992

    NASA Technical Reports Server (NTRS)

    Schultz, James

    1992-01-01

    This commemorative volume highlights in pictures and text seventy five years of accomplishments of the Langley Research Center. The introductory matter features wind tunnels and their contribution to the development of aeronautics. A chronological survey details four different periods in Langley's history. The first period, 1917-1939, is subtitled 'Perfecting the Plane' which details Langley's contribution to early aeronautics with examples from specific aircraft. The second period, 1940-1957, focuses on the development of military aircraft during and after World War II. The third period, 1958-1969, tells the story of Langley's involvement with NASA and the satellite and Apollo era. The fourth period, entitled 'Charting New Courses: 1970-1992 and Beyond', treats various new topics from aerospace planes to Mars landing, as well as older topics such as the Space Shuttle and research spinoffs.

  6. Publications in acoustics and noise control from the NASA Langley Research Center during 1940 - 1974

    NASA Technical Reports Server (NTRS)

    Smith, G. C. (Compiler); Laneave, J. N. (Compiler)

    1975-01-01

    This document contains reference lists of published Langley Research Center papers in various areas of acoustics and noise control for the period 1940-1974. The research work was performed either in-house by the center staff or by other personnel supported entirely or in part by grants or contracts. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics, (2) Propagation and operations, (3) Rotating blade noise, (4) Jet noise, (5) Sonic boom, (6) Flow-surface interaction noise, (7) Human response, and (8) Structural response.

  7. NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation

    NASA Technical Reports Server (NTRS)

    Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.

    2004-01-01

    This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

  8. Increasing Access to Atmospheric Science Research at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Bethea, K. L.; LaPan, J. C.

    2013-12-01

    The Science Directorate (SD) at NASA's Langley Research Center conducts cutting edge research in fundamental atmospheric science topics including radiation and climate, air quality, active remote sensing, and upper atmospheric composition. These topics matter to the public, as they improve our understanding of our home planet. Thus, we have had ongoing efforts to improve public access to the results of our research. These efforts have accelerated with the release of the February OSTP memo. Our efforts can be grouped in two main categories: 1. Visual presentation techniques to improve science understanding: For fundamental concepts such as the Earth's energy budget, we have worked to display information in a more "digestible" way for lay audiences with more pictures and fewer words. These audiences are iPad-lovers and TV-watchers with shorter attention spans than audiences of the past. They are also educators and students who need a basic understanding of a concept delivered briefly to fit into busy classroom schedules. We seek to reach them with a quick, visual message packed with important information. This presentation will share several examples of visual techniques, such as infographics (e.g., a history of lidar at Langley and a timeline of atmospheric research, ozone garden diagrams (http://science-edu.larc.nasa.gov/ozonegarden/ozone-cycle.php); history of lidar at LaRC; DISCOVER-AQ maps. It will also share examples of animations and interactive graphics (DISCOVER-AQ); and customized presentations (e.g., to explain the energy budget or to give a general overview of research). One of the challenges we face is a required culture shift between the way scientists traditionally share knowledge with each other and the way these public audiences ingest knowledge. A cross-disciplinary communications team in SD is crucial to bridge that gap. 2. Lay research summaries to make research more accessible: Peer-reviewed publications are a primary product of the SD, with more

  9. Automated Fabrication of High Performance Composites: An Overview of Research at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.; Towell, T. W.; Marchello, J. M.; Grenoble, R. W.

    1997-01-01

    Automated heated placement of consolidated fiber reinforced polymer ribbon/tape is a rapid, cost effective technique for net shape fabrication of high performance composites. Several research efforts in the United States are developing the heated head robotic hardware and associated software needed to bring this technology into widespread use for building aircraft parts. These efforts emphasize the use of pre-consolidated thermoplastic ribbon or tape which is thermally welded on-the-fly . The approach provides in-situ consolidation and obviates the need for autoclave processing and massive debulking, thereby reducing costs. Addressed in this paper are some key issues being pursued at NASA Langley related to this technology. These include: (a) preparation of high quality intermediate materials forms such as thermoplastic powders, powder-coated towpreg and consolidated ribbon/tape and (b) achievement of precise control of the following: robot head positioning on the tool; material placement; heat delivery to the lay-down zone; and cut/add, start/stop capability. Heated head development has dealt with the use of hot gases alone and in combination with focused infrared radiation as heat sources.

  10. A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.

  11. Study of methods of improving the performance of the Langley Research Center Transonic Dynamics Tunnel (TDT)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study has been made of possible ways to improve the performance of the Langley Research Center's Transonic Dynamics Tunnel (TDT). The major effort was directed toward obtaining increased dynamic pressure in the Mach number range from 0.8 to 1.2, but methods to increase Mach number capability were also considered. Methods studied for increasing dynamic pressure capability were higher total pressure, auxiliary suction, reducing circuit losses, reduced test medium temperature, smaller test section and higher molecular weight test medium. Increased Mach number methods investigated were nozzle block inserts, variable geometry nozzle, changes in test section wall configuration, and auxiliary suction.

  12. Characteristics of the transmission loss apparatus at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Grosveld, F. W.

    1983-01-01

    A description of the Transmission Loss Apparatus at NASA Langley Research Center, which is specifically designed to accommodate general aviation type aircraft structures, is presented. The measurement methodology, referred to as the Plate Reference Method, is discussed and compared with the classical method as described in the Standard of the American Society for Testing and Materials. This measurement procedure enables reliable and accurate noise transmission loss measurements down to the 50 Hz one-third octave band. The transmission loss characteristics of add-on acoustical treatments, applied to the basic structure, can be established by inclusion of appropriate absorption corrections for the treatment.

  13. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (Car) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  14. Langley Research Center's Unitary Plan Wind Tunnel: Testing Capabilities and Recent Modernization Activities

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    2001-01-01

    Description, capabilities, initiatives, and utilization of the NASA Langley Research Center's Unitary Plan Wind Tunnel are presented. A brief overview of the facility's operational capabilities and testing techniques is provided. A recent Construction of Facilities (CoF) project to improve facility productivity and efficiency through facility automation has been completed and is discussed. Several new and maturing thrusts are underway that include systematic efforts to provide credible assessment for data quality, modifications to the new automation control system for increased compatibility with the Modern Design Of Experiments (MDOE) testing methodology, and process improvements for better test coordination, planning, and execution.

  15. Hypersonic airbreathing missile concepts under study at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Johnston, P. J.; Cubbage, J. M.; Dillon, J. L.; Richie, C. B.; Marcum, D. C., Jr.; Carlson, C. H.

    1982-01-01

    The design and performance of several tactical and strategic hypersonic airbreathing missile concepts under study at the NASA Langley Research Center are discussed from an evolutionary perspective. A mid- and chin inlet missile design, constrained to the Navy's vertical box launcher, was investigated; a performance comparison is presented that is favorable to the mid-inlet approach. Parasol wing, confined flow field, and spatula-like cruise missile configurations were examined with strategic applications in mind. The preliminary results are encouraging with respect to aerodynamic and volumetric efficiency and choice of engine integration schemes.

  16. Development of Background-Oriented Schlieren for NASA Langley Research Center Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Borg, Stephen; Jones, Stephen; Overmeyer, Austin; Walker, Eric; Goad, William; Clem, Michelle; Schairer, Edward T.; Mizukaki, Toshiharu

    2015-01-01

    This paper provides an overview of recent wind tunnel tests performed at the NASA Langley Research Center where the Background-Oriented Schlieren (BOS) technique was used to provide information pertaining to flow-field density disturbances. The facilities in which the BOS technique was applied included the National Transonic Facility (NTF), Transonic Dynamics Tunnel (TDT), 31-Inch Mach 10 Air Tunnel, 15-Inch Mach 6 High-Temperature Air Tunnel, Rotor Test Cell at the 14 by 22 Subsonic Tunnel, and a 13-Inch Low-Speed Tunnel.

  17. An Overview of Innovative Strategies for Fracture Mechanics at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Glaessgen, Edward H.; Ratcliffe, James G.

    2010-01-01

    Engineering fracture mechanics has played a vital role in the development and certification of virtually every aerospace vehicle that has been developed since the mid-20th century. NASA Langley Research Center s Durability, Damage Tolerance and Reliability Branch has contributed to the development and implementation of many fracture mechanics methods aimed at predicting and characterizing damage in both metallic and composite materials. This paper presents a selection of computational, analytical and experimental strategies that have been developed by the branch for assessing damage growth under monotonic and cyclic loading and for characterizing the damage tolerance of aerospace structures

  18. Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

    2008-01-01

    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

  19. Wind tunnel productivity status and improvement activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Putnam, Lawrence E.

    1996-01-01

    Over the last three years, a major effort has been underway to re-engineering the way wind tunnel testing is accomplished at the NASA Langley Research Center. This effort began with the reorganization of the LaRC and the consolidation of the management of the wind tunnels in the Aerodynamics Division under one operations branch. This paper provides an overview of the re-engineering activities and gives the status of the improvements in the wind tunnel productivity and customer satisfaction that have resulted from the new ways of working.

  20. Application of technology developed for flight simulation at NASA. Langley Research Center

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1991-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations including mathematical model computation and data input/output to the simulators must be deterministic and be completed in as short a time as possible. Personnel at NASA's Langley Research Center are currently developing the use of supercomputers for simulation mathematical model computation for real-time simulation. This, coupled with the use of an open systems software architecture, will advance the state-of-the-art in real-time flight simulation.

  1. Development of Stitched, Braided and Woven Composite Structures in the ACT Program and at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.; Dexter, H. Benson

    1997-01-01

    Summary results are presented from the research conducted on woven, braided, knitted and stitched (textile) composites at the Langley Research Center and under the NASA Advanced Composites Technology (ACT) Program in the period from 1985 to 1997. The report also includes an annotated bibliography of 270 U.S. publications on textile composites (with their abstracts). Two major research areas are discussed: (1) the general research in textile composites performed throughout the period under the direction of the Langley Research Center and (2) the development of textile composite aircraft structures by industry under the NASA ACT Program. The annotated bibliography is organized in three subsections: (1) general textiles R&D under the auspices of Langley, (2) ACT Program development of textile structural components, and (3) textiles research by individuals and organizations not associated with the ACT Program. An author index is provided for the reports and documents.

  2. Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.

    2003-01-01

    This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a

  3. NASA Langley Highlights, 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Langley's mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government Agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of some of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States' leadership in aeronautics and space research.

  4. The World Wide Web and Technology Transfer at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Bianco, David J.

    1994-01-01

    NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of the WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology Opportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. During its first year on the Web, LaRC also developed several WWW-based information repositories. The Langley Technical Report Server (LTRS), a technical paper delivery system with integrated searching and retrieval, has proved to be quite popular. The NASA Technical Report Server (NTRS), an outgrowth of LTRS, provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software with the possible phase-out of NASA's COSMIC program. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people. With the completion of the LaRC reorganization, the Technology Applications Group, charged with interfacing with non-aerospace companies, opened for business with a popular home page.

  5. A summary of current research in rotor unsteady aerodynamics with emphasis on work at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ward, J. F.; Young, W. H., Jr.

    1973-01-01

    The basic unsteady aerodynamic environment of the rotary wing is summarized. Some of the observed trends in the state of the art are discussed. Some of the research needs that will require attention are reported. A review of a number of research investigations as a part of a joint NASA/Army rotorcraft project is presented. The research is directed toward achieving a better understanding of rotor unsteady airfoils. The investigations include: (1) rotor maneuver loads; (2) level flight and maneuver wake prediction; (3) tip-vortex flow; (4) blade-vortex interactions; (5) dynamic stall; (6) transient Mach number air loads; and (7) development of variable geometry rotors.

  6. Evaluation of an Indoor Sonic Boom Subjective Test Facility at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra; Rathsam, Jonathan; Klos, Jacob

    2011-01-01

    A sonic boom simulator at NASA Langley Research Center has been constructed for research on human response to low-amplitude sonic booms heard indoors. Research in this facility will ultimately lead to development of a psychoacoustic model for single indoor booms. The first subjective test was designed to explore indoor human response to variations in sonic boom rise time and amplitude. Another goal was to identify loudness level variability across listener locations within the facility. Finally, the test also served to evaluate the facility as a laboratory research tool for studying indoor human response to sonic booms. Subjects listened to test sounds and were asked to rate their annoyance relative to a reference boom. Measurements of test signals were conducted for objective analysis and correlation with subjective responses. Results confirm the functionality of the facility and effectiveness of the test methods and indicate that loudness level does not fully describe indoor annoyance to the selected sonic boom signals.

  7. Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part I

    NASA Astrophysics Data System (ADS)

    Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-06-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

  8. The 48-inch lidar aerosol measurements taken at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Woods, David C.; Osborn, M. T.; Winker, D. M.; Decoursey, R. J.; Youngbluth, Otto, Jr.

    1994-01-01

    This report presents lidar data taken between July 1991 and December 1992 using a ground-based 48-inch lidar instrument at the Langley Research Center in Hampton, Virginia. Seventy lidar profiles (approximately one per week) were obtained during this period, which began less than 1 month after the eruption of the Mount Pinatubo volcano in the Philippines. Plots of backscattering ratio as a function of altitude are presented for each data set along with tables containing numerical values of the backscattering ratio and backscattering coefficient versus altitude. The enhanced aerosol backscattering seen in the profiles highlights the influence of the Mount Pinatubo eruption on the stratospheric aerosol loading over Hampton. The long-term record of the profiles gives a picture of the evolution of the aerosol cloud, which reached maximum loading approximately 8 months after the eruption and then started to decrease gradually. NASA RP-1209 discusses 48-inch lidar aerosol measurements taken at the Langley Research Center from May 1974 to December 1987.

  9. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part II

    NASA Technical Reports Server (NTRS)

    Crasner, Aaron I.; Scola,Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

  10. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part I

    NASA Technical Reports Server (NTRS)

    Boyer, Charles M.; Jackson, Trevor P.; Beyon, Jeffrey Y.; Petway, Larry B.

    2013-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Mechanical placement collaboration reduced potential electromagnetic interference (EMI). Through application of newly selected electrical components and thermal analysis data, a total electronic chassis redesign was accomplished. Use of an innovative forced convection tunnel heat sink was employed to meet and exceed project requirements for cooling, mass reduction, and volume reduction. Functionality was a key concern to make efficient use of airflow, and accessibility was also imperative to allow for servicing of chassis internals. The collaborative process provided for accelerated design maturation with substantiated function.

  11. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  12. Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part II

    NASA Astrophysics Data System (ADS)

    Crasner, Aaron I.; Scola, Salvatore; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-06-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. Thermal modeling software was used to run steady state thermal analyses, which were used to both validate the designs and recommend further changes. Analyses were run on each redesign, as well as the original system. Thermal Desktop was used to run trade studies to account for uncertainty and assumptions about fan performance and boundary conditions. The studies suggested that, even if the assumptions were significantly wrong, the redesigned systems would remain within operating temperature limits.

  13. Doppler lidar system design via interdisciplinary design concept at NASA Langley Research Center: Part III

    NASA Astrophysics Data System (ADS)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey Y.; Petway, Larry B.

    2014-06-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  14. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  15. Coherent Anti-Stokes Raman Spectroscopy (CARS) Measurements in Supersonic Combustors at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; OByrne, Sean B.; Tedder, Sarah A.; Cutler, Andrew D.

    2005-01-01

    This paper describes the recent use of coherent anti-Stokes Raman spectroscopy (CARS) to study supersonic combustion at NASA Langley Research Center. CARS is a nonlinear optical measurement technique used to measure temperature and species mole fractions remotely in harsh environments. A CARS system has been applied to two different combustor geometries at NASA Langley. Both experiments used the same vitiated wind-tunnel facility to create an air flow that simulates flight at Mach numbers of 6 and 7 for the combustor inlet and both experiments used hydrogen fuel. In the first experiment, the hydrogen was injected supersonically at a 30-degree angle with respect to the incoming flow. In the second experiment, the hydrogen was injected sonically at normal incidence. While these injection schemes produced significantly different flow features, the CARS method provided mean temperature, N2, O2 and H2 maps at multiple downstream locations for both. The primary aim of these measurements was to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  16. Selected topics in experimental aeroelasticity at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.

    1985-01-01

    The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wing-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

  17. Selected topics in experimental aeroelasticity at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.

    1985-01-01

    The results of selected studies that have been conducted by the NASA Langley Research Center in the last three years are presented. The topics presented focus primarily on the ever-important transonic flight regime and include the following: body-freedom flutter of a forward-swept-wing configuration with and without relaxed static stability; instabilities associated with a new tilt-rotor vehicle; effects of winglets, supercritical airfoils, and spanwise curvature on wing flutter; wind-tunnel investigation of a flutter-like oscillation on a high-aspect-ratio flight research wing; results of wind-tunnel demonstration of the NASA decoupler pylon concept for passive suppression of wing/store flutter; and, new flutter testing methods which include testing at cryogenic temperatures for full scale Reynolds number simulation, subcritical response techniques for predicting onset of flutter, and a two-degree-of-freedom mount system for testing side-wall-mounted models.

  18. Recommended Strain Gage Application Procedures for Various Langley Research Center Balances and Test Articles

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1997-01-01

    The NASA Langley Research Center uses more than 10000 strain gages per year in supporting its various research programs. The character of the testing at LaRC is such that the types of strain gage installations, the materials they are applied to, and the test environments encountered, require many varied approaches for installing strain gages. These installations must be accomplished in the most technically discerning and appropriate manner. This technical memorandum is offered as an assisting guide in helping the strain gage user to determine the appropriate approach for a given strain gage application requirement. Specifically, this document offers detailed recommendations for strain gaging the following: LaRC-Designed balances, LARC custom transducers, certain composite materials and alloys, high-temperature test articles, and selected non-typical or unique materials or test conditions.

  19. Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

    2007-01-01

    Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

  20. Research on Bluff Body Vortex Wakes

    DTIC Science & Technology

    1994-01-01

    PUBLICAT1IONS FROM ONR SPONSORED WORK - FY93/FY94 ANATOL ROSHKO 94-P Koumoutsakos , P., Leona, :, A., and Pepin, F. 1994 "Boundary conditions for viscous...active circulation control of the unsteady separated flow past a semi-infinite plate". J. Fluid Mech. 260. 127-154. 93-P Leon~ard. A. and Koumoutsakos . P...94-PS Koumoutsakos , P. and Leonard. A. "High rcsolution simulations of the flow around an impulsively started cylinder using vortex methods". Accepted

  1. Overview of an Indoor Sonic Boom Simulator at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2012-01-01

    A facility has been constructed at NASA Langley Research Center to simulate the soundscape inside residential houses that are exposed to environmental noise from aircraft. This controllable indoor listening environment, the Interior Effects Room, enables systematic study of parameters that affect psychoacoustic response. The single-room facility, built using typical residential construction methods and materials, is surrounded on adjacent sides by two arrays of loudspeakers in close proximity to the exterior walls. The arrays, containing 52 subwoofers and 52 mid-range speakers, have a usable bandwidth of 3 Hz to 5 kHz and sufficient output to allow study of sonic boom noise. In addition to these exterior arrays, satellite speakers placed inside the room are used to augment the transmitted sound with rattle and other audible contact ]induced noise that can result from low frequency excitation of a residential house. The layout of the facility, operational characteristics, acoustic characteristics and equalization approaches are summarized.

  2. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  3. A Historical Perspective on Dynamics Testing at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.

    2000-01-01

    The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.

  4. Offshore wind measurements using Doppler aerosol wind lidar (DAWN) at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-06-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  5. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

  6. Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

    2003-01-01

    Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

  7. The Langley Research Center CSI phase-0 evolutionary model testbed-design and experimental results

    NASA Technical Reports Server (NTRS)

    Belvin, W. K.; Horta, Lucas G.; Elliott, K. B.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology is described. The design philosophy, capabilities, and early experimental results are presented to introduce some of the ongoing CSI research at NASA-Langley. The testbed, referred to as the Phase 0 version of the CSI Evolutionary model (CEM), is the first stage of model complexity designed to show the benefits of CSI technology and to identify weaknesses in current capabilities. Early closed loop test results have shown non-model based controllers can provide an order of magnitude increase in damping in the first few flexible vibration modes. Model based controllers for higher performance will need to be robust to model uncertainty as verified by System ID tests. Data are presented that show finite element model predictions of frequency differ from those obtained from tests. Plans are also presented for evolution of the CEM to study integrated controller and structure design as well as multiple payload dynamics.

  8. Photogrammetric Tracking of Aerodynamic Surfaces and Aerospace Models at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Shortis, Mark R.; Robson, Stuart; Jones, Thomas W.; Goad, William K.; Lunsford, Charles B.

    2016-06-01

    Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be non-contact, accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple, synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with customisable accuracies. This paper describes data acquisition systems designed and implemented at NASA Langley Research Center to capture surface shapes and 6DoF data. System calibration and data processing techniques are discussed. Examples of experiments and data outputs are described.

  9. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  10. Development and status of data quality assurance program at NASA Langley research center: Toward national standards

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    1996-01-01

    As part of a continuing effort to re-engineer the wind tunnel testing process, a comprehensive data quality assurance program is being established at NASA Langley Research Center (LaRC). The ultimate goal of the program is routing provision of tunnel-to-tunnel reproducibility with total uncertainty levels acceptable for test and evaluation of civilian transports. The operational elements for reaching such levels of reproducibility are: (1) statistical control, which provides long term measurement uncertainty predictability and a base for continuous improvement, (2) measurement uncertainty prediction, which provides test designs that can meet data quality expectations with the system's predictable variation, and (3) national standards, which provide a means for resolving tunnel-to-tunnel differences. The paper presents the LaRC design for the program and discusses the process of implementation.

  11. Research capabilities of the NASA Langley 8-foot high temperature tunnel

    NASA Technical Reports Server (NTRS)

    Puster, Richard L.

    1991-01-01

    The NASA Langley Research Center's 8-Foot High Temperature Tunnel (8' HTT) has been modified to facilitate the testing of hypersonic airbreathing propulsion systems in addition to aerothermal load definition and structural concept verification at Mach 4, 5, and 7. The 8' HTT simulates flight from 60 to 125 kft with run times of 1 to 2 min. The 8-ft diameter and 12-ft-long free jet length enables the testing of large engines or multiple subscale engines. Methane and air combustion products provide the true temperature environment; an oxygen system enriches the combustion products to the same volume fraction of oxygen as air to enable the testing of airbreathing engines. A hydrogen system provides model fuel for cooling and combustion. High use tunnel components have been upgraded or replaced.

  12. Advanced technology needs for a global change science program: Perspective of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Swissler, Thomas J.

    1991-01-01

    The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

  13. Langley's views on NEMS

    NASA Technical Reports Server (NTRS)

    George, J. W.

    1984-01-01

    The views of the Langley Research Center regarding the NASA Equipment Management System (EMS) are discussed. One of Langley's greatest concerns is with the reconciliation between NEMS and the General Ledger. Langley's accounting system tracks cost data to the penny level. NEMS deals in whole dollar amounts. Therefore, Langley has no way of reconciling the two. The only approach that is acceptable to Langley, unless requirements for reconciliation are changed, is for the NEMS files and the reports involved in the process be at the penny level. All other NEMS reports can remain whole dollars. Also to reconcile, Langley needs data to show the difference between the previous cost and the new cost for the month. On an input record, the adjustment amount is added to the cost and recorded as total amount. The adjusted cost is not captured. In order to establish a control between the prior months and the current month, a new field needs to be added to capture the adjusted cost (debits And credits). Langley has not reconciled the Equipment account with the General Ledger since February 1984. Problems with NEMS regular production runs cause concern. Production at Langley is run on the second and/or third shift. If a run(s) terminates and/or abends in a particular module, Langley must wait until the next day to resolve NEMS problems after consultation with Headquarters personnel. For a successful installation, Langley must have a good data base to convert to NEMS and users and the data processing staff must work together.

  14. #NASATweetup @NASA_Langley

    NASA Video Gallery

    NASA Langley Research Center's first tweet-up involved a diverse group of more than 40 that included an astronaut's daughter, a physics student from Wisconsin, one of NASA's newest space camp crew ...

  15. Journey in Aeronautical Research: A Career at NASA Langley Research Center. No. 12; Monographs in Aerospace History

    NASA Technical Reports Server (NTRS)

    Phillips, W. Hewitt

    1998-01-01

    An autobiography, of a noted aeronautical engineer, W. Hewitt Phillips, whose career spanned 58 years (1940-1998) at NASA Langley is presented. This work covers his early years to the Sputnik launch. His interests have been in research in aeronautics and in the related problems of spaceflight. After an introduction, his early life through the college years is reviewed, and his early interest in model airplanes is described. The first assignment for the National Advisory Committee for Aeronautics (NACA), which would later become NASA, was with the Flight Research Division. His early work involved "Flying Qualities", i.e., the stability and control characteristics of an airplane. The next chapter describes his early analytical studies. His work during World War II in the design of military airplanes, and the other effects of the war on research activities, is covered in the next two chapters. This research was involved in such innovations and refinements as the swept wing, the flettner tabs, servo tabs, spring tabs and whirlerons. The rest of the work covers the research which Mr. Hewitt was involved in, after the war until the Sputnik launch. These areas include unsteady lift, measurements of turbulence in the atmosphere, gust alleviation, and lateral response to random turbulence. He was also involved in several investigations of airplane accidents. The last two chapters cover the administration of the Langley Research Center, and the dawn of the Space Age. A complete bibliography of reports written by Mr. Hewitt, is included.

  16. Fluidics research, including vortex and jet pipe valves

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research at the Systems and Control Laboratory is reported. Topics discussed include: response characteristics of laminar fluidic amplifiers, power amplification with a vortex valve, pulse-supply-mode fluidics, speed control system employing a jet pipe valve, and the fluidics reference center.

  17. Coherent Doppler Wind Lidar Development at NASA Langley Research Center for NASA Space-Based 3-D Winds Mission

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.

    2012-01-01

    We review the 20-plus years of pulsed transmit laser development at NASA Langley Research Center (LaRC) to enable a coherent Doppler wind lidar to measure global winds from earth orbit. We briefly also discuss the many other ingredients needed to prepare for this space mission.

  18. NASA Langley and NLR Research of Distributed Air/Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Hoekstra, Jacco M.; Wing, David J.; Lohr, Gary W.

    2002-01-01

    Distributed Air/Ground Traffic Management (DAG-TM) is a concept of future air traffic operations that proposes to distribute information, decision-making authority, and responsibility among flight crews, the air traffic service provider, and aeronautical operational control organizations. This paper provides an overview and status of DAG-TM research at NASA Langley Research Center and the National Aerospace Laboratory of The Netherlands. Specific objectives of the research are to evaluate the technical and operational feasibility of the autonomous airborne component of DAG-TM, which is founded on the operational paradigm of free flight. The paper includes an overview of research approaches, the airborne technologies under development, and a summary of experimental investigations and findings to date. Although research is not yet complete, these findings indicate that free flight is feasible and will significantly enhance system capacity and safety. While free flight cannot alone resolve the complex issues faced by those modernizing the global airspace, it should be considered an essential part of a comprehensive air traffic management modernization activity.

  19. Contributions to Active Buffeting Alleviation Programs by the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    1999-01-01

    Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.

  20. NASA Langley Research Center's Contributions to International Active Buffeting Alleviation Programs

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    2000-01-01

    Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.

  1. Program of Research in Flight Dynamics in The George Washington University at NASA Langley Research Center, Hampton, Virginia

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav

    2002-01-01

    The program objectives were defined in the original proposal entitled 'Program of Research in Flight Dynamics in the JIAFS at NASA Langley Research Center' which was originated March 20, 1975, and yearly renewals of the research program dated December 1, 1998 to December 31, 2002. The program included three major topics: 1) Improvement of existing methods and development of new methods for flight and wind tunnel data analysis based on system identification methodology; 2) Application of these methods to flight and wind tunnel data obtained from advanced aircraft; 3) Modeling and control of aircraft. The principal investigator of the program was Dr. Vladislav Klein, Professor Emeritus at The George Washington University, DC. Seven Graduate Research Scholar Assistants (GRSA) participated in the program. The results of the research conducted during four years of the total co-operative period were published in 2 NASA Technical Reports, 3 thesis and 3 papers. The list of these publications is included.

  2. Mixed Layer Heights Derived from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Scarino, Amy J.; Burton, Sharon P.; Ferrare, Rich A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.; Rogers, Raymond R.; Cook, Anthony L.; Harper, David B.; Fast, Jerome; Dasilva, Arlindo; Benedetti, Angela

    2012-01-01

    The NASA airborne High Spectral Resolution Lidar (HSRL) has been deployed on board the NASA Langley Research Center's B200 aircraft to several locations in North America from 2006 to 2012 to aid in characterizing aerosol properties for over fourteen field missions. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) during 349 science flights, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as properties and variability of the Mixing Layer (ML) height. We describe the use of the HSRL data collected during these missions for computing ML heights and show how the HSRL data can be used to determine the fraction of aerosol optical thickness within and above the ML, which is important for air quality assessments. We describe the spatial and temporal variations in ML heights found in the diverse locations associated with these experiments. We also describe how the ML heights derived from HSRL have been used to help assess simulations of Planetary Boundary Layer (PBL) derived using various models, including the Weather Research and Forecasting Chemistry (WRF-Chem), NASA GEOS-5 model, and the ECMWF/MACC models.

  3. Climate Change and Vector Borne Diseases on NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; DeYoung, Russell J.; Shepanek, Marc A.; Kamel, Ahmed

    2014-01-01

    Increasing global temperature, weather patterns with above average storm intensities, and higher sea levels have been identified as phenomena associated with global climate change. As a causal system, climate change could contribute to vector borne diseases in humans. Vectors of concern originate from the vicinity of Langley Research Center include mosquitos and ticks that transmit disease that originate regionally, nationwide, or from outside the US. Recognizing changing conditions, vector borne diseases propagate under climate change conditions, and understanding the conditions in which they may exist or propagate, presents opportunities for monitoring their progress and mitigating their potential impacts through communication, continued monitoring, and adaptation. Personnel comprise a direct and fundamental support to NASA mission success, continuous and improved understanding of climatic conditions, and the resulting consequence of disease from these conditions, helps to reduce risk in terrestrial space technologies, ground operations, and space research. This research addresses conditions which are attributed to climatic conditions which promote environmental conditions conducive to the increase of disease vectors. This investigation includes evaluation of local mosquito population count and rainfall data for statistical correlation and identification of planning recommendations unique to LaRC, other NASA Centers to assess adaptation approaches, Center-level planning strategies.

  4. NASA Langley's Formal Methods Research in Support of the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Cesar A.

    2008-01-01

    This talk will provide a brief introduction to the formal methods developed at NASA Langley and the National Institute for Aerospace (NIA) for air traffic management applications. NASA Langley's formal methods research supports the Interagency Joint Planning and Development Office (JPDO) effort to define and develop the 2025 Next Generation Air Transportation System (NGATS). The JPDO was created by the passage of the Vision 100 Century of Aviation Reauthorization Act in Dec 2003. The NGATS vision calls for a major transformation of the nation s air transportation system that will enable growth to 3 times the traffic of the current system. The transformation will require an unprecedented level of safety-critical automation used in complex procedural operations based on 4-dimensional (4D) trajectories that enable dynamic reconfiguration of airspace scalable to geographic and temporal demand. The goal of our formal methods research is to provide verification methods that can be used to insure the safety of the NGATS system. Our work has focused on the safety assessment of concepts of operation and fundamental algorithms for conflict detection and resolution (CD&R) and self- spacing in the terminal area. Formal analysis of a concept of operations is a novel area of application of formal methods. Here one must establish that a system concept involving aircraft, pilots, and ground resources is safe. The formal analysis of algorithms is a more traditional endeavor. However, the formal analysis of ATM algorithms involves reasoning about the interaction of algorithmic logic and aircraft trajectories defined over an airspace. These trajectories are described using 2D and 3D vectors and are often constrained by trigonometric relations. Thus, in many cases it has been necessary to unload the full power of an advanced theorem prover. The verification challenge is to establish that the safety-critical algorithms produce valid solutions that are guaranteed to maintain separation

  5. Procedures and requirements for testing in the Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Wassum, Donald L.; Hyman, Curtis E., Jr.

    1988-01-01

    Information is presented to assist those interested in conducting wind-tunnel testing within the Langley Unitary Plan Wind Tunnel. Procedures, requirements, forms and examples necessary for tunnel entry are included.

  6. NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

    2004-01-01

    The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

  7. Investigation and Development of Control Laws for the NASA Langley Research Center Cockpit Motion Facility

    NASA Technical Reports Server (NTRS)

    Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.

    2014-01-01

    The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.

  8. Langley aerospace test highlights, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The role of the NASA Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests that were performed during calendar year 1989 in the NASA Langley Research Center test facilities are highlighted. Both the broad range of the research and technology activities at the NASA Langley Research Center are illustrated along with the contributions of this work toward maintaining United States leadership in aeronautics and space research. Other highlights of Langley research and technology for 1989 are described in Research and Technology 1989 - Langley Research Center.

  9. Employee Communication at the NASA Langley Research Center. M.S. Thesis - Coll. of William and Mary

    NASA Technical Reports Server (NTRS)

    Bendura, R. J.

    1972-01-01

    The means of employee communication at the NASA Langley Research Center are reported, and their effectiveness evaluated. The history, purpose, and structure of the organization as well as the employee educational background and salary status are discussed. Some of the approaches used by Langley Research Center management in communicating with their men are addressed and compared with recommendations of experts in employee communication. The results of personal interviews involving both employee and management assessment of management-employee communication are presented and evaluated. Employees need a great deal more recommunication from management providing rationale behind the cancellation of existing projects or the disapproval of proposed research projects. Also NASA management needs to establish a policy and guidelines for the rapid and simultaneous dissemination of all non-restricted information to employees during organizational activities having potential adverse effects on large numbers of personnel. Finally some improvements should be made in employee orientation procedures.

  10. Big Data Analytics and Machine Intelligence Capability Development at NASA Langley Research Center: Strategy, Roadmap, and Progress

    NASA Technical Reports Server (NTRS)

    Ambur, Manjula Y.; Yagle, Jeremy J.; Reith, William; McLarney, Edward

    2016-01-01

    In 2014, a team of researchers, engineers and information technology specialists at NASA Langley Research Center developed a Big Data Analytics and Machine Intelligence Strategy and Roadmap as part of Langley's Comprehensive Digital Transformation Initiative, with the goal of identifying the goals, objectives, initiatives, and recommendations need to develop near-, mid- and long-term capabilities for data analytics and machine intelligence in aerospace domains. Since that time, significant progress has been made in developing pilots and projects in several research, engineering, and scientific domains by following the original strategy of collaboration between mission support organizations, mission organizations, and external partners from universities and industry. This report summarizes the work to date in Data Intensive Scientific Discovery, Deep Content Analytics, and Deep Q&A projects, as well as the progress made in collaboration, outreach, and education. Recommendations for continuing this success into future phases of the initiative are also made.

  11. Langley aerospace test highlights, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center.

  12. Climate Change Predictions and Adaption Strategies for Coastal NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    De Young, R.

    2012-12-01

    Climate change could significantly impact the personal and operations of federal coastal laboratories. The Goddard Institute for Space Studies has made downscaled climate projections for Hampton Roads, Virginia a coastal region which includes NASA Langley Research Center (LaRC). These projections are being used to formulate adaptation and mitigation strategies to reduce climate change impacts at the center. Sea level rise and hurricanes will have significant impacts on LaRC and strategies such as surge modeling and tide gauge measurements and now underway. A proposed windbreak will reduce the impact of hurricane winds on center infrastructure. Disease vectors such as mosquitoes and ticks are being monitored and studied for their response to climate change. LaRC has significant forest and ecosystems which will be impacted by climate change and these impacts are being quantified. Mitigation strategies are being proposed such as the design of a 3 MW solar photovoltaic array to protect the center from brownouts and loss of power to critical missions. These and other programs will be discussed to reduce climate change impacts and allow LaRC to accomplish its mission into the next century.

  13. Acoustic Calibration of the Exterior Effects Room at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Klos, Jacob; Chapin, William L.; Surucu, Fahri; Aumann, Aric R.

    2010-01-01

    The Exterior Effects Room (EER) at the NASA Langley Research Center is a 39-seat auditorium built for psychoacoustic studies of aircraft community noise. The original reproduction system employed monaural playback and hence lacked sound localization capability. In an effort to more closely recreate field test conditions, a significant upgrade was undertaken to allow simulation of a three-dimensional audio and visual environment. The 3D audio system consists of 27 mid and high frequency satellite speakers and 4 subwoofers, driven by a real-time audio server running an implementation of Vector Base Amplitude Panning. The audio server is part of a larger simulation system, which controls the audio and visual presentation of recorded and synthesized aircraft flyovers. The focus of this work is on the calibration of the 3D audio system, including gains used in the amplitude panning algorithm, speaker equalization, and absolute gain control. Because the speakers are installed in an irregularly shaped room, the speaker equalization includes time delay and gain compensation due to different mounting distances from the focal point, filtering for color compensation due to different installations (half space, corner, baffled/unbaffled), and cross-over filtering.

  14. Validation of Force Limited Vibration Testing at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rice, Chad; Buehrle, Ralph D.

    2003-01-01

    Vibration tests were performed to develop and validate the forced limited vibration testing capability at the NASA Langley Research Center. The force limited vibration test technique has been utilized at the Jet Propulsion Laboratory and other NASA centers to provide more realistic vibration test environments for aerospace flight hardware. In standard random vibration tests, the payload is mounted to a rigid fixture and the interface acceleration is controlled to a specified level based on a conservative estimate of the expected flight environment. In force limited vibration tests, both the acceleration and force are controlled at the mounting interface to compensate for differences between the flexible flight mounting and rigid test fixture. This minimizes the over test at the payload natural frequencies and results in more realistic forces being transmitted at the mounting interface. Force and acceleration response data was provided by NASA Goddard Space Flight Center for a test article that was flown in 1998 on a Black Brant sounding rocket. The measured flight interface acceleration data was used as the reference acceleration spectrum. Using this acceleration spectrum, three analytical methods were used to estimate the force limits. Standard random and force limited vibration tests were performed and the results are compared with the flight data.

  15. Design of an Indoor Sonic Boom Simulator at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Sullivan, Brenda M.; Shepherd, Kevin P.

    2008-01-01

    Construction of a simulator to recreate the soundscape inside residential buildings exposed to sonic booms is scheduled to start during the summer of 2008 at NASA Langley Research Center. The new facility should be complete by the end of the year. The design of the simulator allows independent control of several factors that create the indoor soundscape. Variables that will be isolated include such factors as boom duration, overpressure, rise time, spectral shape, level of rattle, level of squeak, source of rattle and squeak, level of vibration and source of vibration. Test subjects inside the simulator will be asked to judge the simulated soundscape, which will represent realistic indoor boom exposure. Ultimately, this simulator will be used to develop a functional relationship between human response and the sound characteristics creating the indoor soundscape. A conceptual design has been developed by NASA personnel, and is currently being vetted through small-scale risk reduction tests that are being performed in-house. The purpose of this document is to introduce the conceptual design, identify how the indoor response will be simulated, briefly outline some of the risk reduction tests that have been completed to vet the design, and discuss the impact of these tests on the simulator design.

  16. NASA Langley Highlights, 1998

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Langley's mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government Agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of some of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. A color electronic version of this report is available at URL http://larcpubs.larc.nasa.gov/randt/1998/.

  17. Langley aerospace test highlights, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The role of NASA-Langley is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests are highlighted which were performed during 1990 in the NASA-Langley test facilities, a number of which are unique in the world. Both the broad range of the research and technology activities at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research are illustrated. Other highlights of Langley research and technology for 1990 are described in Research and Technology 1990 Langley Research Center.

  18. Recent research results in stereo 3-D pictorial displays at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.

    1990-01-01

    Recent results from a NASA-Langley program which addressed stereo 3D pictorial displays from a comprehensive standpoint are reviewed. The program dealt with human factors issues and display technology aspects, as well as flight display applications. The human factors findings include addressing a fundamental issue challenging the application of stereoscopic displays in head-down flight applications, with the determination that stereoacuity is unaffected by the short-term use of stereo 3D displays. While stereoacuity has been a traditional measurement of depth perception abilities, it is a measure of relative depth, rather than actual depth (absolute depth). Therefore, depth perception effects based on size and distance judgments and long-term stereo exposure remain issues to be investigated. The applications of stereo 3D to pictorial flight displays within the program have repeatedly demonstrated increases in pilot situational awareness and task performance improvements. Moreover, these improvements have been obtained within the constraints of the limited viewing volume available with conventional stereo displays. A number of stereo 3D pictorial display applications are described, including recovery from flight-path offset, helicopter hover, and emulated helmet-mounted display.

  19. Earth resources programs at the Langley Research Center. Part 1: Advanced Applications Flight Experiments (AAFE) and microwave remote sensing program

    NASA Technical Reports Server (NTRS)

    Parker, R. N.

    1972-01-01

    The earth resources activity is comprised of two basic programs as follows: advanced applications flight experiments, and microwave remote sensing. The two programs are in various stages of implementation, extending from experimental investigations within both the AAFE program and the microwave remote sensing program, to multidisciplinary studies and planning. The purpose of this paper is simply to identify the main thrust of the Langley Research Center activity in earth resources.

  20. Subsonic Transonic Applied Refinements By Using Key Strategies - STARBUKS In the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2014-01-01

    Several upgrade projects have been completed at the NASA Langley Research Center National Transonic Facility over the last 1.5 years in an effort defined as STARBUKS - Subsonic Transonic Applied Refinements By Using Key Strategies. This multi-year effort was undertaken to improve NTF's overall capabilities by addressing Accuracy and Validation, Productivity, and Reliability areas at the NTF. This presentation will give a brief synopsis of each of these efforts.

  1. Curation of Federally Owned Archeological Collections at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eastman, John Arnold (Compiler)

    1995-01-01

    As a Federal agency, NASA has a moral and legal obligation to the public to manage the archeological heritage resources under its control. Archeological sites are unique, nonrenewable resources that must be preserved so that future generations may experience and interpret the material remains of the past. These sites are protected by a wide array of federal regulations. These regulations are intended to ensure that our nation's cultural heritage is preserved for the study and enjoyment of future generations. Once a site has been excavated, all that remains of it are the artifacts and associated records which, taken together, allow researchers to reconstruct the past. With the contextual information provided by associated records such as field notes, maps and photographs, archeological collections can provide important information about life in the past. An integral component of the federal archeology program is the curation of these databases so that qualified scholars will have access to them in years to come. Standards for the maintenance of archeological collections have been codified by various professional organizations and by the federal government. These guidelines focus on providing secure, climate-controlled archival storage conditions for the collections and an adequate study area in which researchers can examine the artifacts and documents. In the 1970's and early 1980's, a group of NASA employees formed the LRC Historical and Archeological Society (LRCHAS) in order to pursue studies of the colonial plantations that ha been displaced by Langley Research Center (LaRC). They collected data on family histories and land ownership as well as conducting archeological surveys and excavations at two important 17th-20th century plantation sites in LaRC, Cloverdale and Chesterville. The excavations produced a wealth of information in the form of artifacts, photographs, maps and other documents. Unfortunately, interest on the part of the LRCHAS membership waned

  2. Crafting Flight: Aircraft Pioneers and the Contributions of the Men and Women of NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Schultz, James

    2003-01-01

    While this is a self-contained history of NASA Langley Research Center's contributions to flight, many other organizations around the country played a vital role in the work described in this book.When you pass through the front gates of NASA Langley Research Center you are entering an extraordinary place. You could easily miss that fact, however. A few years cross-state bicycle tour passed through the Center. As interesting as looping around Center was, the riders observed that nothing about the vaguely industrial site fit the conventional stereotypes of what high tech looks like. NASA Langley does not fit many stereotypes. It takes a close examination to discover the many ways it has contributed to development of flight. As part of the national celebrations commemorating the 100th anniversary of the Wright brothers first flight, James Schultz, an experienced journalist with a gift for translating the language of engineers and scientists into prose that nonspecialists can comprehend, has revised and expanded Winds of Change , his wonderful guide to the Center. This revised book, Crafting Flight , invites you inside. You will read about one of the Nation s oldest research and development facilities, a place of imagination and ingenuity.

  3. Subsonic longitudinal and lateral-directional static aerodynamic characteristics of a general research fighter configuration employing a jet sheet vortex generator

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Fox, C. H., Jr.; Ziegler, H.

    1978-01-01

    A configuration concept for developing vortex lift, which replaces the physical wing strake with a jet sheet generated fluid strake, was investigated on a general research fighter model. The vertical and horizontal location of the jet sheet with respect to the wing leading edge was studied over a momentum coefficient range from 0 to 0.24 in the Langley 7- by 10-foot high speed tunnel over a Mach number range from 0.3 to 0.8. The angle of attack range studied was from -2 to 30 deg at sideslip angles of 0, -5, and 5 deg. Test data are presented without analysis.

  4. Report on Recent Upgrades to the Curved Duct Test Rig at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

    2011-01-01

    The Curved Duct Test Rig (CDTR) is an experimental facility that is designed to assess the acoustic and aerodynamic performance of aircraft engine nacelle liners in close to full scale. The test section is between 25% and 100% of the scale of aft bypass ducts of aircraft engines ranging in size from business jet to large commercial passenger jet. The CDTR has been relocated and now shares space with the Grazing Flow Impedance Tube in the Liner Technology Facility at NASA Langley Research Center. As a result of the relocation, research air is supplied to the CDTR from a 50,000 cfm centrifugal fan. This new air supply enables testing of acoustic liner samples at up to Mach 0.500. This paper documents experiments and analysis on a baseline liner sample, which the authors had analyzed and reported on prior to the move to the new facility. In the present paper, the experimental results are compared to those obtained previously in order to ensure continuity of the experimental capability. Experiments that take advantage of the facility s expanded capabilities are also reported. Data analysis features that enhance understanding of the physical properties of liner performance are introduced. The liner attenuation is shown to depend on the mode that is incident on the liner test section. The relevant parameter is the mode cut-on ratio, which determines the angle at which the sound wave is incident on the liner surface. The scattering of energy from the incident mode into higher order, less attenuated modes is demonstrated. The configuration of the acoustic treatment, in this case lined on one surface and hard wall on the opposite surface, is shown to affect the mode energy redistribution.

  5. Biomimetics for NASA Langley Research Center: Year 2000 Report of Findings From a Six-Month Survey

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.; Anders, John B., Jr.; Cox, David E.; Jegley, Dawn C.; Fox, Robert L.; Katzberg, Stephen J.

    2002-01-01

    This report represents an attempt to see if some of the techniques biological systems use to maximize their efficiency can be applied to the problems NASA faces in aeronautics and space exploration. It includes an internal survey of resources available at NASA Langley Research Center for biomimetics research efforts, an external survey of state of the art in biomimetics covering the Materials, Structures, Aerodynamics, Guidance and Controls areas. The Biomimetics Planning team also included ideas for potential research areas, as well as recommendations on how to implement this new program. This six-month survey was conducted in the second half of 1999.

  6. Investigation of Wake-Vortex Aircraft Encounters

    NASA Technical Reports Server (NTRS)

    Smith, Sonya T.

    1999-01-01

    The National Aeronautics and Space Administration is addressing airport capacity enhancements during instrument meteorological conditions though the Terminal Area Productivity (TAP) program. The major goal of the TAP program is to develop the technology that will allow air traffic levels during instrument meteorological condition to approach those achieved during visual operations. The Reduced Spacing Operations (RSO) subelement of TAP at the NASA Langley Research Center (LaRC) will develop the Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to integrate current and predicted weather conditions, wake vortex transport and decay knowledge, wake vortex sensor data, and operational definitions of acceptable strengths for vortex encounters to produce dynamic wake vortex separation criteria. The proposed research is in support of the wake vortex hazard definition component of the LaRC AVOSS development research. The research program described in the next section provided an analysis of the static test data and uses this data to evaluate the accuracy vortex/wake-encounter models. The accuracy of these models has not before been evaluated using experimental data. The research results also presented the first analysis of the forces and moments imparted on an airplane during a wake vortex encounter using actual flight test data.

  7. Langley aerospace test highlights, 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during the calender year 1987 in Langley test facilites are illustrated. Both the broad range of the research and technology activities at Langley and the contributions of this work toward maintaining the U.S. leadership in aeronautic and space research are illustrated.

  8. Program of Research in Flight Dynamics in the JIAFS, George Washington University at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav

    2002-01-01

    The program objectives are fully defined in the original proposal entitled 'Program of Research in Flight Dynamics in GW at NASA Langley Research Center,' which was originated March 20, 1975, and in the renewals of the research program from December 1, 2000 to November 30, 2001. The program in its present form includes three major topics: 1) the improvement of existing methods and development of new methods for wind tunnel and flight test data analysis, 2) the application of these methods to wind tunnel and flight test data obtained from advanced airplanes, 3) the correlation of flight results with wind tunnel measurements, and theoretical predictions. The Principal Investigator of the program is Dr. Vladislav Klein. Three Graduate Research Scholar Assistants (K. G. Mas, M. M. Eissa and N. M. Szyba) also participated in the program. Specific developments in the program during the period Dec. 1, 2001 through Nov. 30, 2002 included: 1) Data analysis of highly swept delta wing aircraft from wind and water tunnel data, and 2) Aerodynamic characteristics of the radio control aircraft from flight test.

  9. Langley Medal awarded

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Robert Thomas Jones, senior scientist at the Ames Research Center, Mountain View, Calif., was awarded the distinguished Langley Medal by the Smithsonian Institution for his ‘extensive contributions in theoretical aerodynamics, particularly with regard to development of the swept wing, supersonic area rule and, more recently, the oblique wing.’ Jones is an internationally acclaimed expert on aerodynamics, optics, and biomechanics as well as an applied mathematician, astronomer, inventor, author, and violin maker.The Langley award has been given to just 16 recipients since it was established 73 years ago. Past recipients include Wilbur and Orville Wright, Charles Lindbergh, and Richard Byrd. Named for Samuel Pierpont Langley, aeronautical pioneer and third secretary of the Smithsonian, the medal honors ‘especially meritorious investigations in the field of aerospace science.’

  10. Authentic K-12 Science Projects at the NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Moore, S. W.; Sepulveda, R.

    2006-05-01

    The North Central Regional Educational Library (NCREL) has the following to say about authentic learning: "Students are presented with problem-solving activities that incorporate authentic, real-life questions and issues in a format that encourages collaborative effort, dialogue with informed expert sources, and generalization to broader ideas and application" An education team within the Science Directorate at NASA Langley Research Center has been developing education projects with these attributes of authentic learning since 1996. Currently, three projects are underway. The Students' Cloud Observations On-Line (S'COOL) Project, begun in December 1996, involves K-12 students in making ground truth observations of clouds at the time that a NASA earth-observing satellite passes overhead. The students report data through an on-line form, and can later visualize their data along with the corresponding satellite retrieved cloud properties. Students are invited to take an active part in the validation effort for cloud retrievals, analyzing the data and reporting any findings of interest to the Clouds and the Earth's Radiant Energy System (CERES) science team. The team made a connection with the GLOBE program in 2002, helping to define a protocol for student observation of contrails as part of the existing cloud protocol. These protocols involve students in observing parameters of interest for on-going scientific activities; while the GLOBE program provides a forum for dialog between students, educators, and scientists. In 2004, the team launched the Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs (MY NASA DATA) project. The goal of this project is to remove the barriers that prevent the K-12 and citizen science communities from making use of the large volume of Earth System Science data that NASA has collected and archived. This allows students to select a problem of real-life importance, and to explore it using high

  11. NASA Langley Research Center Systems Analysis & Concepts Directorate Participation in the Exploration Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Keyes, Jennifer; Troutman, Patrick A.; Saucillo, Rudolph; Cirillo, William M.; Cavanaugh, Steve; Stromgren, Chel

    2006-01-01

    The NASA Langley Research Center (LaRC) Systems Analysis & Concepts Directorate (SACD) began studying human exploration missions beyond low Earth orbit (LEO) in the year 1999. This included participation in NASA s Decadal Planning Team (DPT), the NASA Exploration Team (NExT), Space Architect studies and Revolutionary Aerospace Systems Concepts (RASC) architecture studies that were used in formulating the new Vision for Space Exploration. In May of 2005, NASA initiated the Exploration Systems Architecture Study (ESAS). The primary outputs of the ESAS activity were concepts and functional requirements for the Crewed Exploration Vehicle (CEV), its supporting launch vehicle infrastructure and identification of supporting technology requirements and investments. An exploration systems analysis capability has evolved to support these functions in the past and continues to evolve to support anticipated future needs. SACD had significant roles in supporting the ESAS study team. SACD personnel performed the liaison function between the ESAS team and the Shuttle/Station Configuration Options Team (S/SCOT), an agency-wide team charged with using the Space Shuttle to complete the International Space Station (ISS) by the end of Fiscal Year (FY) 2010. The most significant of the identified issues involved the ability of the Space Shuttle system to achieve the desired number of flights in the proposed time frame. SACD with support from the Kennedy Space Center performed analysis showing that, without significant investments in improving the shuttle processing flow, that there was almost no possibility of completing the 28-flight sequence by the end of 2010. SACD performed numerous Lunar Surface Access Module (LSAM) trades to define top level element requirements and establish architecture propellant needs. Configuration trades were conducted to determine the impact of varying degrees of segmentation of the living capabilities of the combined descent stage, ascent stage, and other

  12. A review and evaluation of the Langley Research Center's Scientific and Technical Information Program. Results of phase 4: Knowledge and attitudes survey, academic and industrial personnel

    NASA Technical Reports Server (NTRS)

    Pinelli, T. E.; Glassman, M.; Glassman, N. A.

    1981-01-01

    Feedback from engineers and scientists in the academic and industrial community provided an assessment of the usage and perceived quality of NASA Langley generated STI and the familiarity and usage of selected NASA publications and services and identified ways to increase the accessibility of Langley STI. The questionnaire utilized both open and closed ended questions and was pretested for finalization. The questions were organized around the seven objectives for Phase IV. From a contact list of nearly 1,200 active industrial and academic researchers, approximately 600 addresses were verified. The 497 persons who agreed to participate were mailed questionnaires. The 381 completed questionnaires received by the cutoff date were analyzed. Based on the survey findings, recommendations were made for increasing the familiarity with and use of NASA and Langley STI and selected NASA publications and services. In addition, recommendations were made for increasing the accessibility of Langley STI.

  13. Crash Test of Three Cessna 172 Aircraft at NASA Langley Research Center's Landing and Impact Research Facility

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2015-01-01

    During the summer of 2015, three Cessna 172 aircraft were crash tested at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). The three tests simulated three different crash scenarios. The first simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway, the second simulated a controlled flight into terrain with a nose down pitch on the aircraft, and the third simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system captured 64 channels of airframe acceleration, along with acceleration and load in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices, representing the pilot and co-pilot. Each test contained different airframe loading conditions and results show large differences in airframe performance. This paper presents test methods used to conduct the crash tests and will summarize the airframe results from the test series.

  14. Documentation for Three Wake Vortex Model Data Sets from Simulation of Flight 587 Wake Vortex Encounter Accident Case

    NASA Technical Reports Server (NTRS)

    Switzer, George F.

    2008-01-01

    This document contains a general description for data sets of a wake vortex system in a turbulent environment. The turbulence and thermal stratification of the environment are representative of the conditions on November 12, 2001 near John F. Kennedy International Airport. The simulation assumes no ambient winds. The full three dimensional simulation of the wake vortex system from a Boeing 747 predicts vortex circulation levels at 80% of their initial value at the time of the proposed vortex encounter. The linked vortex oval orientation showed no twisting, and the oval elevations at the widest point were about 20 meters higher than where the vortex pair joined. Fred Proctor of NASA?s Langley Research Center presented the results from this work at the NTSB public hearing that started 29 October 2002. This document contains a description of each data set including: variables, coordinate system, data format, and sample plots. Also included are instructions on how to read the data.

  15. Noise Whitening in Airborne Wind Profiling With a Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.

    2012-01-01

    Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.

  16. Flow Control Research at NASA Langley in Support of High-Lift Augmentation

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.

    2002-01-01

    The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.

  17. Computations for the 16-foot transonic tunnel, NASA, Langley Research Center, revision 1

    NASA Technical Reports Server (NTRS)

    Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; Grayston, Alan M.; Sherman, C. D.

    1987-01-01

    The equations used by the 16 foot transonic tunnel in the data reduction programs are presented in eight modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: tunnel parameters; jet exhaust measurements; skin friction drag; balance loads and model attitudes calculations; internal drag (or exit-flow distributions); pressure coefficients and integrated forces; thrust removal options; and turboprop options. This document is a companion document to NASA TM-83186, A User's Guide to the Langley 16 Foot Transonic Tunnel, August 1981.

  18. Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop

    NASA Technical Reports Server (NTRS)

    Creduer, Leonard (Editor); Perry, R. Brad (Editor)

    1997-01-01

    A Government and Industry workshop on wake vortex dynamic spacing systems was conducted on May 13-15, 1997, at the NASA Langley Research Center. The purpose of the workshop was to disclose the status of ongoing NASA wake vortex R&D to the international community and to seek feedback on the direction of future work to assure an optimized research approach. Workshop sessions examined wake vortex characterization and physics, wake sensor technologies, aircraft/wake encounters, terminal area weather characterization and prediction, and wake vortex systems integration and implementation. A final workshop session surveyed the Government and Industry perspectives on the NASA research underway and related international wake vortex activities. This document contains the proceedings of the workshop including the presenters' slides, the discussion following each presentation, the wrap-up panel discussion, and the attendees' evaluation feedback.

  19. Evaluation of helicopter noise due to b blade-vortex interaction for five tip configurations. [conducted in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.

    1979-01-01

    The effect of tip shape modification on blade vortex interaction induced helicopter blade slap noise was investigated. Simulated flight and descent velocities which have been shown to produce blade slap were tested. Aerodynamic performance parameters of the rotor system were monitored to ensure properly matched flight conditions among the tip shapes. The tunnel was operated in the open throat configuration with treatment to improve the acoustic characteristics of the test chamber. Four promising tips were used along with a standard square tip as a baseline configuration. A detailed acoustic evaluation on the same rotor system of the relative applicability of the various tip configurations for blade slap noise reduction is provided.

  20. Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Powell, C. A.

    1981-01-01

    A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

  1. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  2. Langley mobile ozone lidar: ozone and aerosol atmospheric profiling for air quality research.

    PubMed

    De Young, Russell; Carrion, William; Ganoe, Rene; Pliutau, Denis; Gronoff, Guillaume; Berkoff, Timothy; Kuang, Shi

    2017-01-20

    The Langley mobile ozone lidar (LMOL) is a mobile ground-based ozone lidar system that consists of a pulsed UV laser producing two UV wavelengths of 286 and 291 nm with energy of approximately 0.2  mJ/pulse and repetition rate of 1 kHz. The 527 nm pump laser is also transmitted for aerosol measurements. The receiver consists of a 40 cm parabolic telescope, which is used for both backscattered analog and photon counting. The lidar is very compact and highly mobile. This demonstrates the utility of very small lidar systems eventually leading to space-based ozone lidars. The lidar has been validated by numerous ozonesonde launches and has provided ozone curtain profiles from ground to approximately 4 km in support of air quality field missions.

  3. NASA/AHS rotorcraft noise reduction program - NASA Langley Acoustics Division contributions

    NASA Technical Reports Server (NTRS)

    Martin, Ruth M.

    1989-01-01

    An account is given of the contributions made by NASA-Langley's rotorcraft noise research programs over the last five years. Attention has been given to the broadband and blade-vortex interaction noise sources; both analytical and empirical noise-prediction codes have been developed and validated for several rotor noise sources, and the 'Rotonet' comprehensive system-noise prediction capability has been instituted. Among the technologies explored for helicopter noise reduction have been higher harmonic control and active vibration-suppression.

  4. Application of Wind Tunnel Free-Flight Technique for Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Jordan, Frank L., Jr.; Stuever, Robert A.; Buttrill, Catherine W.

    1997-01-01

    A wind tunnel investigation was conducted in the Langley 30- by 60-Foot Tunnel to assess the free-flight test technique as a tool in research on wake vortex encounters. A typical 17.5-percent scale business-class jet airplane model was flown behind a stationary wing mounted in the forward portion of the wind tunnel test section. The span ratio (model span-generating wingspan) was 0.75. The wing angle of attack could be adjusted to produce a vortex of desired strength. The test airplane model was successfully flown in the vortex and through the vortex for a range of vortex strengths. Data obtained included the model airplane body axis accelerations, angular rates, attitudes, and control positions as a function of vortex strength and relative position. Pilot comments and video records were also recorded during the vortex encounters.

  5. Vortex Flows at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2003-01-01

    A review of research conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data are for flat plates, cavities, bodies, missiles, wings, and aircraft with Mach numbers of 1.5 to 4.6. Data are presented to show the types of vortex structures that occur at supersonic speeds and the impact of these flow structures on vehicle performance and control. The data show the presence of both small- and large-scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices. Data are shown that highlight the effect of leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber on the aerodynamics of and flow over delta wings. Finally, a discussion of a design approach for wings that use vortex flows for improved aerodynamic performance at supersonic speeds is presented.

  6. Vortex Flow Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. F. (Editor); Osborn, R. F. (Editor); Foughner, J. T., Jr. (Editor)

    1986-01-01

    Vortex modeling techniques and experimental studies of research configurations utilizing vortex flows are discussed. Also discussed are vortex flap investigations using generic and airplane research models and vortex flap theoretical analysis and design studies.

  7. HL-20 at Langley

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA Langley Research Center lifting body, called the HL-20, is shown here in front of the hangar. The HL-20 was one of two concepts considered by NASA as a type of Personnel Launch System (PLS). In essence, it would serve as a space taxi to and from the space station. The full scale engineering model is 29.5 feet long, and 23.5 feet across the wingspan.

  8. Langley Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.

    1987-01-01

    The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  9. Current Performance Characteristics of NASA Langley Research Center's Cockpit Motion Base and Standardized Test Procedure for Future Performance Characterization

    NASA Technical Reports Server (NTRS)

    Cowen, Brandon; Stringer, Mary T.; Hutchinson, Brian K.; Davidson, Paul C.; Gupton, Lawrence E.

    2014-01-01

    This report documents the updated performance characteristics of NASA Langley Research Center's (LaRC) Cockpit Motion Base (CMB) after recent revisions that were made to its inner-loop, feedback control law. The modifications to the control law will be briefly described. The performance of the Cockpit Motion Facility (CMF) will be presented. A short graphical comparison to the previous control law can be found in the appendix of this report. The revised controller will be shown to yield reduced parasitic accelerations with respect to the previous controller. Metrics based on the AGARD Advisory Report No. 144 are used to assess the overall system performance due to its recent control algorithm modification. This report also documents the standardized simulator test procedure which can be used in the future to evaluate potential updates to the control law.

  10. Airborne Wind Profiling Algorithms for the Pulsed 2-Micron Coherent Doppler Lidar at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.; Ray, Taylor J.

    2013-01-01

    Two versions of airborne wind profiling algorithms for the pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. Each algorithm utilizes different number of line-of-sight (LOS) lidar returns while compensating the adverse effects of different coordinate systems between the aircraft and the Earth. One of the two algorithms APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) estimates wind products using two LOSs. The other algorithm utilizes five LOSs. The airborne lidar data were acquired during the NASA's Genesis and Rapid Intensification Processes (GRIP) campaign in 2010. The wind profile products from the two algorithms are compared with the dropsonde data to validate their results.

  11. The Data Acquisition and Control Systems of the Jet Noise Laboratory at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jansen, B. J., Jr.

    1998-01-01

    The features of the data acquisition and control systems of the NASA Langley Research Center's Jet Noise Laboratory are presented. The Jet Noise Laboratory is a facility that simulates realistic mixed flow turbofan jet engine nozzle exhaust systems in simulated flight. The system is capable of acquiring data for a complete take-off assessment of noise and nozzle performance. This paper describes the development of an integrated system to control and measure the behavior of model jet nozzles featuring dual independent high pressure combusting air streams with wind tunnel flow. The acquisition and control system is capable of simultaneous measurement of forces, moments, static and dynamic model pressures and temperatures, and jet noise. The design concepts for the coordination of the control computers and multiple data acquisition computers and instruments are discussed. The control system design and implementation are explained, describing the features, equipment, and the experiences of using a primarily Personal Computer based system. Areas for future development are examined.

  12. An overview of selected NASP aeroelastic studies at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Spain, Charles V.; Soistmann, David L.; Parker, Ellen C.; Gibbons, Michael D.; Gilbert, Michael G.

    1990-01-01

    Following an initial discussion of the NASP flight environment, the results of recent aeroelastic testing of NASP-type highly swept delta-wing models in Langley's Transonic Dynamics Tunnel (TDT) are summarized. Subsonic and transonic flutter characteristics of a variety of these models are described, and several analytical codes used to predict flutter of these models are evaluated. These codes generally provide good, but conservative predictions of subsonic and transonic flutter. Also, test results are presented on a nonlinear transonic phenomena known as aileron buzz which occurred in the wind tunnel on highly swept delta wings with full-span ailerons. An analytical procedure which assesses the effects of hypersonic heating on aeroelastic instabilities (aerothermoelasticity) is also described. This procedure accurately predicted flutter of a heated aluminum wing on which experimental data exists. Results are presented on the application of this method to calculate the flutter characteristics of a fine-element model of a generic NASP configuration. Finally, it is demonstrated analytically that active controls can be employed to improve the aeroelastic stability and ride quality of a generic NASP vehicle flying at hypersonic speeds.

  13. A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

  14. A Review and Evaluation of the Langley Research Center's Scientific and Technical Information Program. Results of Phase VI-The Technical Report: A Survey and Analysis.

    ERIC Educational Resources Information Center

    McCullough, Robert A.; And Others

    This report presents the results of a review and evaluation of the Langley Research Center's scientific and technical information program, which examined technical reports from various institutions and organizations to determine the organization of reports, the language used to convey information, and the methods used to present information.…

  15. A synopsis of Langley Research Center's lidar effort for the 1986 FIRE IFO

    NASA Technical Reports Server (NTRS)

    Alvarez, Jose M.; Mccormick, M. P.; Moore, J. D.; Hunt, W. H.; Rouse, B. R.; Poole, L. R.; Poole, B. D.

    1990-01-01

    The lidar data obtained by the Langley Aircraft Lidar in October 1986 in Wisconsin is being reduced in a transparent, simple fashion and will be published in its reduced form in a NASA Reference Publication (RP). This reduced data will also be submitted to the FIRE data archives. Some of this reduced data will be presented at the FIRE FSET Workshop to acquaint the science team with the data format to be used in the archive and the upcoming catalog contained in the RP. A new method was utilized in Wisconsin for obtain the depolarization ratio of aerosols. This method involves using a half-wave plate to calibrate the lidar under field conditions. The theory behind this technique will be presented at this workshop as well as some of the lidar calibration results. The lidar calibration will be utilized in interpreting some of the dual polarization lidar data obtained during the IFO in Wisconsin. Some of these data are also discussed. A continuous wave laser lab-type lidar simulator was constructed during the previous year. One of the primary reasons for the construction of the simulator was to attempt dual-polarization lidar-like calibrations under laboratory, rather than field conditions. The data collected by this system was used to experimentally check and thus, inspire confidence in the algorithms being used to interpret the lidar data obtained in the field. A computer program which simulates noisy lidar data was used as a part of this effort in order to obtain some feel for the noise in the inversion parameters as a function of noise in the actual measurements. The lidar simulation will be described in addition to presenting some of the lab-generated calibration data.

  16. Langley aerospace test highlights - 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. This report highlights some of the significant tests which were performed during calendar year 1986 in Langley test facilities, a number of which are unique in the world. The report illustrates both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  17. Langley aerospace test highlights, 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1988 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  18. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  19. Wake Vortex Advisory System (WakeVAS) Concept of Operations

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Lohr, Gary; Hamilton, David; Powers, Robert; McKissick, Burnell; Adams, Catherine; Norris, Edward

    2003-01-01

    NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.

  20. NASA Research on the Hydrodynamics of the Gaseous Vortex Reactor

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert G.

    1960-01-01

    The experimental and analytical results to date of a study of a two-component gaseous vortex system are presented in this paper. Analytical expressions for tangential velocity and static-pressure profiles in a turbulent vortex show good agreement with experimental data. Airflow rates from 0.075 to 0.14 pound per second and corresponding tangential velocities from 160 to 440 feet per second are correlated by turbulent Reynolds numbers from 1.95 to 2.4. An analysis of an air-bromine gas mixture in a turbulent vortex indicates that a boundary value of bromine-to-air radial velocity ratio (u(2)/u(1)) of 0.999 gives essentially no bromine buildup, while a value of 0.833 results in considerable separation. For a constant value of (u(2)/u(1))(0) the bromine buildup increases as (1) the tangential velocity increases, (2) the air-to-bromine weight-flow ratio decreases, (3) the airflow rate decreases, (4) the temperature decreases, and (5) the turbulence decreases. Analytical temperature, pressure, and tangential-velocity profiles are also presented. Preliminary experimental results indicate that the flow of an air-bromine mixture through a vortex field results in a bromine density increase to a maximum value; followed by a decrease; the air density exhibits a uniform decrease from the outer vortex radius to the exhaust-nozzle radius.

  1. Wake Vortex Field Measurement Program at Memphis, Tennessee: Data Guide

    NASA Technical Reports Server (NTRS)

    Campbell, S. D.; Dasey, T. J.; Freehart, R. E.; Heinrichs, R. M.; Mathews, M. P.; Perras, G. H.; Rowe, G. S.

    1997-01-01

    Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.

  2. Dynamic Deformation Measurements of an Aeroelastic Semispan Model. [conducted in the Transonic Dynamics Tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.

    2001-01-01

    The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.

  3. Experimental research on electrical propulsion. Note 2: Experimental research on a plasma jet with vortex type stabilization for propulsion

    NASA Technical Reports Server (NTRS)

    Robotti, A. C.; Oggero, M.

    1985-01-01

    Results of experimental electric propulsion research are presented. A plasma generator, with an arc stabilized by an air vortex is examined. The heat transfer efficiency between arc and fluid environment at a varying current and flow rate is discussed.

  4. Experiences at Langley Research Center in the application of optimization techniques to helicopter airframes for vibration reduction

    NASA Technical Reports Server (NTRS)

    Sreekanta Murthy, T.; Kvaternik, Raymond G.

    1991-01-01

    A NASA/industry rotorcraft structural dynamics program known as Design Analysis Methods for VIBrationS (DAMVIBS) was initiated at Langley Research Center in 1984 with the objective of establishing the technology base needed by the industry for developing an advanced finite-element-based vibrations design analysis capability for airframe structures. As a part of the in-house activities contributing to that program, a study was undertaken to investigate the use of formal, nonlinear programming-based, numerical optimization techniques for airframe vibrations design work. Considerable progress has been made in connection with that study since its inception in 1985. This paper presents a unified summary of the experiences and results of that study. The formulation and solution of airframe optimization problems are discussed. Particular attention is given to describing the implementation of a new computational procedure based on MSC/NASTRAN and CONstrained function MINimization (CONMIN) in a computer program system called DYNOPT for the optimization of airframes subject to strength, frequency, dynamic response, and fatigue constraints. The results from the application of the DYNOPT program to the Bell AH-1G helicopter are presented and discussed.

  5. Technical Capability Upgrades to the NASA Langley Research Center 8 ft. by 15 ft. Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Duncan, Dwight L.

    2016-01-01

    The 8 ft. by 15 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen distribution manifold for supplying the shroud and other cold surfaces to liquid nitrogen temperatures; a new power supply and distribution system for accurately controlling a quartz IR lamp suite; a suite of contamination monitoring sensors for outgassing measurements and species identification; a new test article support system; signal and power feed-throughs; elimination of unnecessary penetrations; and a new data acquisition and control commanding system including safety interlocks. This paper will provide a general overview of the LaRC 8 ft. by 15 ft. TVAC chamber, an overview of the new technical capabilities, and will illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.

  6. Technical Capability Upgrades to the NASA Langley Research Center 6 ft. by 6 ft. Thermal Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Mau, Johnny C.; Duncan, Dwight L.

    2014-01-01

    The 6 ft. by 6 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen thermal conditioning unit for controlling shroud temperatures from -150degC to +150degC; two horizontal auxiliary cold plates for independent temperature control from -150degC to +200degC; a suite of contamination monitoring sensors for outgassing measurements and species identification; signal and power feed-throughs; new pressure gauges; and a new data acquisition and control commanding system including safety interlocks. This presentation will provide a general overview of the LaRC 6 ft. by 6 ft. TVAC chamber, an overview of the new technical capabilities, and illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.

  7. Forty-eight-inch lidar aerosol measurements taken at the Langley Research Center, May 1974 to December 1987

    NASA Technical Reports Server (NTRS)

    Fuller, W. H., Jr.; Osborn, M. T.; Hunt, W. H.

    1988-01-01

    A ground based lidar system located at NASA Langley Research Center in Hampton, Va., was used to obtain high resolution vertical profiles of the stratospheric and upper tropospheric aerosol since 1974. More than 200 measurements obtained at a wavelength of 0.6943 microns during 1974 to 1987 are summarized. Plots of peak backscatter mixing ratio and integrated backscatter vs time are presented for the entire measurement sequence. The plots highlight the influence of several major volcanic eruptions on the long term stratospheric aerosol layer. In particular, the eruptions of El Chichon in late Mar. to early Apr. 1982, produced a massive aerosol layer. Aerosol enhancement from El Chichon reached Hampton, Va. by May 1982, with a scattering ratio of approx. 50 detected on Jul. 1, 1982. In addition, scattering ratio profiles for June 1982 to December 1987, along with tables containing numerical values of the backscatter ratio and backscattering function versus altitude, are included to further describe the upper tropospheric and stratospheric aerosol layer. A 14 year summary is presented, in a ready to use format, of lidar observations at a fixed midlatitude location to be used for further study.

  8. NASA-Langley Research Center's participation in a round-robin comparison between some current crack-propagation prediction methods

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.; Lewis, P. E.

    1979-01-01

    A round-robin study was conducted which evaluated and compared different methods currently in practice for predicting crack growth in surface-cracked specimens. This report describes the prediction methods used by the Fracture Mechanics Engineering Section, at NASA-Langley Research Center, and presents a comparison between predicted crack growth and crack growth observed in laboratory experiments. For tests at higher stress levels, the correlation between predicted and experimentally determined crack growth was generally quite good. For tests at lower stress levels, the predicted number of cycles to reach a given crack length was consistently higher than the experimentally determined number of cycles. This consistent overestimation of the number of cycles could have resulted from a lack of definition of crack-growth data at low values of the stress intensity range. Generally, the predicted critical flaw sizes were smaller than the experimentally determined critical flaw sizes. This underestimation probably resulted from using plane-strain fracture toughness values to predict failure rather than the more appropriate values based on maximum load.

  9. Measurement of Separated Flow Structures Using a Multiple-Camera DPIV System. [conducted in the Langley Subsonic Basic Research Tunnel

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Bartram, Scott M.

    2001-01-01

    A novel multiple-camera system for the recording of digital particle image velocimetry (DPIV) images acquired in a two-dimensional separating/reattaching flow is described. The measurements were performed in the NASA Langley Subsonic Basic Research Tunnel as part of an overall series of experiments involving the simultaneous acquisition of dynamic surface pressures and off-body velocities. The DPIV system utilized two frequency-doubled Nd:YAG lasers to generate two coplanar, orthogonally polarized light sheets directed upstream along the horizontal centerline of the test model. A recording system containing two pairs of matched high resolution, 8-bit cameras was used to separate and capture images of illuminated tracer particles embedded in the flow field. Background image subtraction was used to reduce undesirable flare light emanating from the surface of the model, and custom pixel alignment algorithms were employed to provide accurate registration among the various cameras. Spatial cross correlation analysis with median filter validation was used to determine the instantaneous velocity structure in the separating/reattaching flow region illuminated by the laser light sheets. In operation the DPIV system exhibited a good ability to resolve large-scale separated flow structures with acceptable accuracy over the extended field of view of the cameras. The recording system design provided enhanced performance versus traditional DPIV systems by allowing a variety of standard and non-standard cameras to be easily incorporated into the system.

  10. Langley aeronautics and space test highlights, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  11. Micro Vortex Generators

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An in house video made to show how NASA Langley scientists have found ways to improve airplane performance. Micro Vortex Generators placed on airplane wings can reduce drag, increase lift, and reduce fuel consumption. Nice animation and real footage of planes with this technology.

  12. Earth resources programs at the Langley Research Center. Part 2: Coastal zone oceanography program

    NASA Technical Reports Server (NTRS)

    Bressette, W. E.

    1972-01-01

    The approaches used to develop the coastal zone oceanic research program are outlined, and activities in the areas of satellite application, estuaries, continental shelf and environmental modeling are briefly described.

  13. Computational structural mechanics: A new activity at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Knight, N. F., Jr.; Stroud, W. J.

    1985-01-01

    Complex structures considered for the late 1980's and early 1990's include composite primary aircraft structures and the space station. These structures are much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. A major research activity in computational structural mechanics (CSM) was initiated. The objective of the CSM activity is develop advanced structural analysis technology that will exploit modern and emerging computers such as computers with vector and/or parallel processing capabilities. The three main research activities underway in CSM include: (1) structural analysis methods development; (2) a software testbed for evaluating the methods; and (3) numerical techniques for parallel processing computers. The motivation and objectives of the CSM activity are presented and CSM activity is described. The current CSM research thrusts, and near and long term CSM research thrusts are outlined.

  14. Wake Vortex Free Flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A 10% scale B-737-100 model was tested in the vicinity of a vortex wake generated by a wing mounted on a support in the forward section of the NASA-Langley 30 x 60 ft. Wind Tunnel. The wing span, angle of attack, and generating wing location were varied to provide vortex strengths consistent with a large variety of combinations of leader-follower aircraft pairs during vortex encounters. The test, conducted as part of the AST Terminal Area Productivity Program, will provide data for validation of aerodynamic models which will be used for developing safe separate standards to apply to aircraft in terminal areas while increasing airport capacity.

  15. User guide for the digital control system of the NASA/Langley Research Center's 13-inch Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1987-01-01

    The technical background to the development of the digital control system of the NASA/Langley Research Center's 13 inch Magnetic Supension and Balance Systen (MSBS) is reviewed. The implementation of traditional MSBS control algorithms in digital form is examined. Extensive details of the 13-inch MSBS digital controller and related hardware are given, together with the introductory instructions for systems operators. Full listings of software are included in the Appendices.

  16. Recent developments in polyimide adhesives at NASA-Langley Research Center

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.

    1981-01-01

    Adhesive development is directed towards elevated temperature applications (200-300 C). Because of thermal stability considerations, the most attractive adhesives for this temperature range are linear and addition polyimides. The linear polymide adhesive research encompassed basic structure-property relationships, solvent studies and formulations to meet various requirements. The most recent research in linear polyimide systems was in the development of thermoplastic systems in an effort to eliminate the undesirable evolution of water classically associated with the cure going through an amide-acid intermediate step in the cure process. Addition polyimide adhesive research was undertaken in order to avoid water evolution during cure. Basic structure-property relationships for these materials led to an adhesive which was used extensively for high temperature adhesive needs. Since addition systems are of a highly crosslinked nature, they are not as resistant to impact as their linear counterparts. In order to overcome this problem, research was done in the area of elastomer-toughening these polymers.

  17. Publications in acoustics and noise control from the NASA Langley Research Center during 1940-1976

    NASA Technical Reports Server (NTRS)

    Fryer, B. A. (Compiler)

    1977-01-01

    Reference lists are presented of published research papers in various areas of acoustics and noise control for the period 1940-1976. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics; (2) propagation and operations; (3) rotating blade noise; (4) jet noise; (5) sonic boom; (6) flow-surface interaction noise; (7) human response; (8) structural response; (9) prediction; and (10) miscellaneous.

  18. Operational evaluation of a proppeller test stand in the quiet flow facility at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1982-01-01

    Operational proof tests of a propeller test stand (PTS) in a quiet flow facility (QFF) are presented. The PTS is an experimental test bed for acoustic propeller research in the quiet flow environment of the QFF. These proof tests validate thrust and torque predictions, examine the repeatability of measurements on the PTS, and determine the effect of applying artificial roughness to the propeller blades. Since a thrusting propeller causes an open jet to contract, the potential flow core was surveyed to examine the magnitude of the contraction. These measurements are compared with predicted values. The predictions are used to determine operational limitations for testing a given propeller design in the QFF.

  19. Design and analysis of low boom concepts at Langley Research Center

    NASA Astrophysics Data System (ADS)

    Darden, Christine M.; Mack, Robert J.; Needleman, Kathy E.; Baize, Daniel G.; Coen, Peter G.; Barger, Raymond L.; Melson, N. Duane; Adams, Mary S.; Shields, Elwood W.; McGraw, Marvin E.

    1992-04-01

    The objective of the sonic boom research in the current High Speed Research Program is to ultimately make possible overland supersonic flight by a high speed civil transport. To accomplish this objective, it is felt that results in four areas must demonstrate that such a vehicle would be acceptable by the general public, by the airframers, and by the airlines. It should be demonstrated: (1) that some waveform shape has the possibility of being acceptable to the general public; (2) that the atmosphere would not totally destroy such a waveform during propagation; (3) that a viable airplane could be built which produces such a waveform; and (4) that any performance penalty suffered by a low boom aircraft would be counteracted by the economic benefit of overland supersonic flight. The work being done at LaRC is in support of the third element listed above--the area of configuration design. The initial part of the paper will give a review of the theory being used for configuration designs and discuss two theory validation models which were built and tested within the past two years. Discussion of the wind tunnel and theoretical results (linear theory and higher order methods) and their implications for future designs will be included.

  20. Recent progress in NASA Langley Research Center textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.

  1. Curriculum in aerospace science and technology in cooperation with NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Garner-Gilchrist, Cathine

    1988-01-01

    A curriculum was written to show teachers how to best use the many resources that are available at the Teacher Resource Center (TRC). This curriculum packet was written using teaching units that teachers in both the elementary and middle schools can use to help students better understand some of the research that has been conducted at NASA and will be conducted in the future. The units are written with certain standards. Each unit contains: (1) specific objectives, using the Virginia standards of learning; (2) the materials that are available from the TRC; (3) many activities that teachers can use in a variety of ways; and (4) specific strategies for measuring the objectives to determine if the students mastered the knowledge, concepts or skills that were taught. The curriculum packet contains specific units on several topics. They are: (1) Careers in Aerospece Science and Technology; (2) The History of Flight; (3) The History of Satellites; (4) The History of the Manned Space Projects and the Future of the Future of the Space Program; (5) The Solar System; and (6) The History of Rockets.

  2. Current state and future direction of computer systems at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rogers, James L. (Editor); Tucker, Jerry H. (Editor)

    1992-01-01

    Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.

  3. Use of World Wide Web and NCSA Mcsaic at Langley

    NASA Technical Reports Server (NTRS)

    Nelson, Michael

    1994-01-01

    A brief history of the use of the World Wide Web at Langley Research Center is presented along with architecture of the Langley Web. Benefits derived from the Web and some Langley projects that have employed the World Wide Web are discussed.

  4. NASA Aircraft Vortex Spacing System Development Status

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.; Grigsby, Donner

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS in real-time operation at a major airport. The demonstration is only of concept feasibility, and additional effort is required to deploy an operational system for actual aircraft spacing reduction. This paper describes the AVOSS system architecture, a wake vortex facility established at the Dallas-Fort Worth International Airport (DFW), initial operational experience with the AVOSS system, and emerging considerations for subsystem requirements. Results of the initial system operation suggest a significant potential for reduced spacing.

  5. Contributions of the NASA Langley Research Center to the DARPA/AFRL/NASA/ Northrop Grumman Smart Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Burner, Alpheus W.; Fleming, Gary A.; Martin, Christopher A.

    2003-01-01

    An overview of the contributions of the NASA Langley Research Center (LaRC) to the DARPA/AFRL/NASA/ Northrop Grumman Corporation (NGC) Smart Wing program is presented. The overall objective of the Smart Wing program was to develop smart** technologies and demonstrate near-flight-scale actuation systems to improve the aerodynamic performance of military aircraft. NASA LaRC s roles were to provide technical guidance, wind-tunnel testing time and support, and Computational Fluid Dynamics (CFD) analyses. The program was divided into two phases, with each phase having two wind-tunnel entries in the Langley Transonic Dynamics Tunnel (TDT). This paper focuses on the fourth and final wind-tunnel test: Phase 2, Test 2. During this test, a model based on the NGC Unmanned Combat Air Vehicle (UCAV) concept was tested at Mach numbers up to 0.8 and dynamic pressures up to 150 psf to determine the aerodynamic performance benefits that could be achieved using hingeless, smoothly-contoured control surfaces actuated with smart materials technologies. The UCAV-based model was a 30% geometric scale, full-span, sting-mounted model with the smart control surfaces on the starboard wing and conventional, hinged control surfaces on the port wing. Two LaRC-developed instrumentation systems were used during the test to externally measure the shapes of the smart control surface and quantify the effects of aerodynamic loading on the deflections: Videogrammetric Model Deformation (VMD) and Projection Moire Interferometry (PMI). VMD is an optical technique that uses single-camera photogrammetric tracking of discrete targets to determine deflections at specific points. PMI provides spatially continuous measurements of model deformation by computationally analyzing images of a grid projected onto the model surface. Both the VMD and PMI measurements served well to validate the use of on-board (internal) rotary potentiometers to measure the smart control surface deflection angles. Prior to the final

  6. Aeroacoustic Measurements of a Wing/Slat Model. [Research conducted at the Quiet Flow Facility of the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Mendoza, Jeff M.; Brooks, Thomas F.; Humphreys, William M.

    2002-01-01

    Aeroacoustic evaluations of high-lift devices have been carried out in the Quiet Flow Facility of the NASA Langley Research Center. The present paper deals with detailed flow and acoustic measurements that have been made to understand, and to possibly predict and reduce, the noise from a wing leading edge slat configuration. The acoustic database is obtained by a moveable Small Aperture Directional Array (SADA) of microphones designed to electronically steer to different portions of models under study. The slat is shown to be a uniform distributed noise source. The data was processed such that spectra and directivity were determined with respect to a one-foot span of slat. The spectra are normalized in various fashions to demonstrate slat noise character. In order to equate portions of the spectra to different slat noise components, trailing edge noise predictions using measured slat boundary layer parameters as inputs are compared to the measured slat noise spectra.

  7. #NASATweetup @NASA_Langley Audio Slideshow

    NASA Video Gallery

    NASA Langley Research Center's first tweet-up involved a diverse group of more than 40 that included an astronaut's daughter, a physics student from Wisconsin, one of NASA's newest space camp crew ...

  8. Formative and summative evaluation efforts for the Teacher Enhancement Institute conducted at the NASA Langley Research Center, summer 1994

    NASA Technical Reports Server (NTRS)

    Carlson, Randal D.

    1994-01-01

    The Teacher Enhancement Institute (TEI) at NASA Langley Research Center was developed in response to Executive Order 12821 which mandates national laboratories to 'assist in the mathematics and science education of our Nation's students, teachers, parents, and the public by establishing programs at their agency to provide for training elementary and secondary school teachers to improve their knowledge of mathematics and science. Such programs, to the maximum extent possible, shall involve partnerships with universities, state and local elementary and secondary school authorities, corporations and community based organizations'. The faculty worked closely with one another and the invited speakers to insure that the sessions supported the objectives. Speakers were informed of the objectives and given guidance concerning form and function for the session. Faculty members monitored sessions to assist speakers and to provide a quality control function. Faculty provided feedback to speakers concerning general objective accomplishment. Participant comments were also provided when applicable. Post TEI surveys asked for specific comments about each TEI session. During the second of the two, two week institutes, daily critiques were provided to the participants for their reflection. This seemed to provide much improved feedback to speakers and faculty because the sessions were fresh in each participant's mind. Between sessions one and two, some changes were made to the program as a result of the formative evaluation process. Those changes, though, were minor in nature and comprised what may be called 'fine tuning' a well conceived and implemented program. After the objectives were written, an assessment instrument was developed to test the accomplishment of the objectives. This instrument was actually two surveys, one given before the TEI and one given after the TEI. In using such a series, it was expected that changes in the participants induced by attendance at TEI may be

  9. Does Cloud Computing in the Atmospheric Sciences Make Sense? A case study of hybrid cloud computing at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.; Spangenberg, D.; Ayers, J. K.; Palikonda, R.; Vakhnin, A.; Dubois, R.; Murphy, P. R.

    2014-12-01

    The processing, storage and dissemination of satellite cloud and radiation products produced at NASA Langley Research Center are key activities for the Climate Science Branch. A constellation of systems operates in sync to accomplish these goals. Because of the complexity involved with operating such intricate systems, there are both high failure rates and high costs for hardware and system maintenance. Cloud computing has the potential to ameliorate cost and complexity issues. Over time, the cloud computing model has evolved and hybrid systems comprising off-site as well as on-site resources are now common. Towards our mission of providing the highest quality research products to the widest audience, we have explored the use of the Amazon Web Services (AWS) Cloud and Storage and present a case study of our results and efforts. This project builds upon NASA Langley Cloud and Radiation Group's experience with operating large and complex computing infrastructures in a reliable and cost effective manner to explore novel ways to leverage cloud computing resources in the atmospheric science environment. Our case study presents the project requirements and then examines the fit of AWS with the LaRC computing model. We also discuss the evaluation metrics, feasibility, and outcomes and close the case study with the lessons we learned that would apply to others interested in exploring the implementation of the AWS system in their own atmospheric science computing environments.

  10. Research and design of underwater flow-induced vibration energy harvester based on Karman vortex street

    NASA Astrophysics Data System (ADS)

    Yao, Gang; Wang, Hai; Yang, Chunlai; Wen, Li

    2017-03-01

    With the increasing development of wireless sensor network (WSN), power supply for WSN nodes had attracted increasing attention, and the energy harvesting system based on Karman vortex street has been widely used in underwater WSN. But the research of the influences of affecting factors towards the energy harvesting system is yet to be completed. So, in this paper, an underwater flow-induced vibration energy harvesting system based on Karman vortex street was proposed and tested. The influence of bluff body geometry and flow velocity towards the performance of the energy harvesting has been researched. The results showed that the output voltage increased as the diameter of bluff body and the water velocity increase. The power generation efficiency was the best when the shape of bluff body was circular.

  11. Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation

    NASA Technical Reports Server (NTRS)

    Lin, John C.

    2002-01-01

    An in-depth review of boundary-layer flow-separation control by a passive method using low-profile vortex generators is presented. The generators are defined as those with a device height between 10% and 50% of the boundary layer thickness. Key results are presented for several research efforts, all of which were performed within the past decade and a half where the majority of these works emphasize experimentation with some recent efforts on numerical simulations. Topics of discussion consist of both basic fluid dynamics and applied aerodynamics research. The fluid dynamics research includes comparative studies on separation control effectiveness as well as device-induced vortex characterization and correlation. The comparative studies cover the controlling of low-speed separated flows in adverse pressure gradient and supersonic shock-induced separation. The aerodynamics research includes several applications for aircraft performance enhancement and covers a wide range of speeds. Significant performance improvements are achieved through increased lift and/or reduced drag for various airfoils-low-Reynolds number, high-lift, and transonic-as well as highly swept wings. Performance enhancements for non-airfoil applications include aircraft interior noise reduction, inlet flow distortion alleviation inside compact ducts, and a more efficient overwing fairing. The low-profile vortex generators are best for being applied to applications where flow-separation locations are relatively fixed and the generators can be placed reasonably close upstream of the separation. Using the approach of minimal near-wall proturbances through substantially reduced device height, these devices can produce streamwise vortices just strong enough to overcome the separation without unnecessarily persisting within the boundary layer once the flow-control objective is achieved. Practical advantages of low-profile vortex generators, such as their inherent simplicity and low device drag, are

  12. Collaborative Study for Analysis of High Resolution Infrared Atmospheric Spectra Between NASA Langley Research Center and the University of Denver

    NASA Technical Reports Server (NTRS)

    Goldman, A.

    2002-01-01

    The Langley-D.U. collaboration on the analysis of high resolultion infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: 1) Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights; 2) Identification and preliminary quantification of several isotopic species, including oxygen and Sulfur isotopes; 3) Search for new species on the available spectra, including the use of selective coadding of ground-based spectra for high signal to noise; 4) Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods; 5) Study of trends and correlations of atmosphere trace constituents; and 6) Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.

  13. Collaborative Study of Analysis of High Resolution Infrared Atmospheric Spectra Between NASA Langley Research Center and the University of Denver

    NASA Technical Reports Server (NTRS)

    Goldman, Aaron

    1999-01-01

    The Langley-D.U. collaboration on the analysis of high resolution infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights. Studies toward identification and quantification of isotopic species, mostly oxygen and Sulfur isotopes. Search for new species on the available spectra. Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods. Study of trends of atmosphere trace constituents. Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.

  14. Langley aeronautics and space test highlights, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  15. Modification of NASA Langley 8 Foot High Temperature Tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  16. Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  17. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  18. Pressure distribution data from tests of 2.29-meter (7.5-ft.) span EET high-lift research model in Langley 4- by 7-meter tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1982-01-01

    A 2.29 m (7.5 ft.) span high-lift research model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Langley 4- by 7-Meter Tunnel to determine the low speed performance characteristics of a representative high aspect ratio suprcritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

  19. Overview of military technology at NASA Langley

    NASA Technical Reports Server (NTRS)

    Sawyer, Wallace C.; Jackson, Charlie M., Jr.

    1989-01-01

    The Langley Research Center began addressing major research topics pertinent to the design of military aircraft under the egis of The National Advisory Council on Aeronautics in 1917, until 1958, when it passed under the control of the newly-instituted NASA research facilities system. A historical account is presented of NASA-Langley's involvement in the experimental investigation of twin-engined jet aircraft nozzle interfairings, thrust reversers, high-efficiency supersonic cruise configurations, high-alpha aerodynamics, air-to-air combat handling qualities, wing/stores flutter suppression, and store carriage and separation characteristics.

  20. Third NASA Langley Formal Methods Workshop

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael (Compiler)

    1995-01-01

    This publication constitutes the proceedings of NASA Langley Research Center's third workshop on the application of formal methods to the design and verification of life-critical systems. This workshop brought together formal methods researchers, industry engineers, and academicians to discuss the potential of NASA-sponsored formal methods and to investigate new opportunities for applying these methods to industry problems. contained herein are copies of the material presented at the workshop, summaries of many of the presentations, a complete list of attendees, and a detailed summary of the Langley formal methods program. Much of this material is available electronically through the World-Wide Web via the following URL.

  1. Software engineering from a Langley perspective

    NASA Technical Reports Server (NTRS)

    Voigt, Susan

    1994-01-01

    A brief introduction to software engineering is presented. The talk is divided into four sections beginning with the question 'What is software engineering', followed by a brief history of the progression of software engineering at the Langley Research Center in the context of an expanding computing environment. Several basic concepts and terms are introduced, including software development life cycles and maturity levels. Finally, comments are offered on what software engineering means for the Langley Research Center and where to find more information on the subject.

  2. Aerodynamics Research Revolutionizes Truck Design

    NASA Technical Reports Server (NTRS)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  3. Flow field studies using holographic interferometry at Langley

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.; Helms, V. T.; Gooderum, P. B.

    1982-09-01

    Some of the uses of holographic interferometry at Langley Research Center both for flow visualization and for density field determinations are described and tests in cryogenic flows at the Langley 0.3-Meter Transonic Cryogenic Tunnel are discussed. Experimental and theoretical fringe shift data are compared.

  4. The Langley Fitness Center

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA Langley recognizes the importance of healthy employees by committing itself to offering a complete fitness program. The scope of the program focuses on promoting overall health and wellness in an effort to reduce the risks of illness and disease and to increase productivity. This is accomplished through a comprehensive Health and Fitness Program offered to all NASA employees. Various aspects of the program are discussed.

  5. A static air flow visualization method to obtain a time history of the lift-induced vortex and circulation

    NASA Technical Reports Server (NTRS)

    Patterson, J. C., Jr.; Jordan, F. L., Jr.

    1975-01-01

    A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures.

  6. F/A-18 and F-16 forebody vortex control, static and rotary-balance results

    NASA Technical Reports Server (NTRS)

    Kramer, Brian; Smith, Brooke

    1994-01-01

    The results from research on forebody vortex control on both the F/A-18 and the F-16 aircraft will be shown. Several methods of forebody vortex control, including mechanical and pneumatic schemes, will be discussed. The wind tunnel data includes both static and rotary balance data for forebody vortex control. Time lags between activation or deactivation of the pneumatic control and when the aircraft experiences the resultant forces are also discussed. The static (non-rotating) forces and pressures are then compared to similar configurations tested in the NASA Langley and DTRC Wind Tunnel, the NASA Ames 80'x120' Wind Tunnel, and in flight on the High Angle of Attack Research Vehicle (HARV).

  7. Langley experience with ADABAS/NATURAL

    NASA Technical Reports Server (NTRS)

    Swanson, A.

    1984-01-01

    The use of the data base management system ADABAS and the companion software NATURAL and COM-PLETE at the Langley Research Center is evaluated. A brief overview of data base management system technology is provided as well as system upgrading, user requirements, and use of the system for administrative support.

  8. NASA Langley/CNU Distance Learning Programs.

    ERIC Educational Resources Information Center

    Caton, Randall; Pinelli, Thomas E.

    NASA Langley Research Center and Christopher Newport University (CNU) provide, free to the public, distance learning programs that focus on math, science, and/or technology over a spectrum of education levels from K-adult. The effort started in 1997, and currently there are a suite of five distance-learning programs. This paper presents the major…

  9. Water tunnel results of leading-edge vortex flap tests on a delta wing vehicle

    NASA Technical Reports Server (NTRS)

    Delfrate, J. H.

    1986-01-01

    A water tunnel flow visualization test on leading edge vortex flaps was conducted at the flow visualization facility of the NASA Ames Research Center's Dryden Flight Research Facility. The purpose of the test was to visually examine the vortex structures caused by various leading edge vortex flaps on the delta wing of an F-106 model. The vortex flaps tested were designed analytically and empirically at the NASA Langley Research Center. The three flap designs were designated as full-span gothic flap, full-span untapered flap, and part-span flap. The test was conducted at a Reynolds number of 76,000/m (25,000/ft). This low Reynolds number was used because of the 0.076-m/s (0.25-ft/s) test section flow speed necessary for high quality flow visualization. However, this low Reynolds number may have influenced the results. Of the three vortex flaps tested, the part-span flap produced what appeared to be the strongest vortex structure over the flap area. The full-span gothic flap provided the next best performance.

  10. Experimental Investigations of the NASA Common Research Model in the NASA Langley National Transonic Facility and NASA Ames 11-Ft Transonic Wind Tunnel (Invited)

    NASA Technical Reports Server (NTRS)

    Rivers, S. M.; Dittberner, Ashley

    2011-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility and the NASA Ames 11-ft wind tunnel. Data have been obtained at chord Reynolds numbers of 5 million for five different configurations at both wind tunnels. Force and moment, surface pressure and surface flow visualization data were obtained in both facilities but only the force and moment data are presented herein. Nacelle/pylon, tail effects and tunnel to tunnel variations have been assessed. The data from both wind tunnels show that an addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5 and that the tail effects also follow the expected trends. Also, all of the data shown fall within the 2-sigma limits for repeatability. The tunnel to tunnel differences are negligible for lift and pitching moment, while the drag shows a difference of less than ten counts for all of the configurations. These differences in drag may be due to the variation in the sting mounting systems at the two tunnels.

  11. Effect of rotor wake on aerodynamic characteristics of a 1/6 scale model of the rotor systems research aircraft. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.

    1977-01-01

    Tests were conducted in the Langley V/STOL tunnel to determine the effect of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft. A 1/6-scale model with a 4-blade articulated rotor was used to determine the effect of the rotor wake for the compound configuration. Data were obtained over a range of angles of attack, angles of sideslip, auxiliary engine thrusts, rotor collective pitch angles, and rotor tip-path plane angles for several main-rotor advance ratios. Separate results are presented for the forces and moments on the airframe, the wing, and the tail. An analysis of the test data indicates significant changes in the aerodynamic characteristics. The rotor wake increases the longitudinal static stability, the effective dihedral, and the lateral static stability of the airframe. The rotor induces a downwash on the wing. This downwash decreases the wing lift and increases the drag. The asymmetrical rotor wake induces a differential lift across the wing and a subsequent rolling moment. These rotor induced effects on the wing become smaller with increasing forward speed.

  12. Computational and Experimental Characterization of the Mach 6 Facility Nozzle Flow for the Enhanced Injection and Mixing Project at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Cabell, Karen F.; Passe, Bradley J.; Baurle, Robert A.

    2017-01-01

    Computational fluid dynamics analyses and experimental data are presented for the Mach 6 facility nozzle used in the Arc-Heated Scramjet Test Facility for the Enhanced Injection and Mixing Project (EIMP). This project, conducted at the NASA Langley Research Center, aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics relevant to flight Mach numbers greater than 8. The EIMP experiments use a two-dimensional Mach 6 facility nozzle to provide the high-speed air simulating the combustor entrance flow of a scramjet engine. Of interest are the physical extent and the thermodynamic properties of the core flow at the nozzle exit plane. The detailed characterization of this flow is obtained from three-dimensional, viscous, Reynolds-averaged simulations. Thermodynamic nonequilibrium effects are also investigated. The simulations are compared with the available experimental data, which includes wall static pressures as well as in-stream static pressure, pitot pressure and total temperature obtained via in-stream probes positioned just downstream of the nozzle exit plane.

  13. Design of an Aircraft Vortex Spacing System for Airport Capacity Improvement

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Charnock, James K.; Bagwell, Donald R.

    2000-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations element at the NASA Langley Research Center is developing an Aircraft VOrtex Spacing System (AVOSS). AVOSS will integrate the output of several systems to produce weather dependent, dynamic wake vortex spacing criteria. These systems provide current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, and real-time feedback of wake vortex behavior from sensors. The goal of the NASA program is to provide the research and development to demonstrate an engineering model AVOSS, in real-time operation, at a major airport. A wake vortex system test facility was established at the Dallas-Fort Worth International Airport (DFW) in 1997 and tested in 1998. Results from operation of the initial AVOSS system, plus advances in wake vortex prediction and near-term weather forecast models, "nowcast", have been integrated into a second-generation system. This AVOSS version is undergoing final checkout in preparation for a system demonstration in 2000. This paper describes the revised AVOSS system architecture, subsystem enhancements, and initial results with AVOSS version 2 from a deployment at DFW in the fall of 1999.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 65: Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this article, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as: (a) the order in which report components are read; (b) components used to determine if a report would be read; (c) those components that could be deleted; (d) the placement of such components as the symbols list; (e) the desirability of a table of contents; (f) the format of reference citations; (g) column layout and right margin treatment; and (h) writing style in terms of person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 58; Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this paper, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as (1) the order in which report components are read, (2) components used to determine if a report would be read, (3) those components that could be deleted, (4) the placement of such components as the symbols list, (e) the de-sirability of a table of contents, (5) the format of reference citations, (6) column layout and right margin treatment, and (7) and person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

  16. Coherent Pulsed Lidar Sensing of Wake Vortex Position and Strength, Winds and Turbulence in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Brockman, Philip; Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, Dung Phu Chi; Britt, Charles L., Jr.; Petros, Mulugeta

    1999-01-01

    NASA Langley Research Center (LaRC) has field tested a 2.0 gm, 100 Hertz, pulsed coherent lidar to detect and characterize wake vortices and to measure atmospheric winds and turbulence. The quantification of aircraft wake-vortex hazards is being addressed by the Wake Vortex Lidar (WVL) Project as part of Aircraft Vortex Spacing System (AVOSS), which is under the Reduced Spacing Operations Element of the Terminal Area Productivity (TAP) Program. These hazards currently set the minimum, fixed separation distance between two aircraft and affect the number of takeoff and landing operations on a single runway under Instrument Meteorological Conditions (IMC). The AVOSS concept seeks to safely reduce aircraft separation distances, when weather conditions permit, to increase the operational capacity of major airports. The current NASA wake-vortex research efforts focus on developing and validating wake vortex encounter models, wake decay and advection models, and wake sensing technologies. These technologies will be incorporated into an automated AVOSS that can properly select safe separation distances for different weather conditions, based on the aircraft pair and predicted/measured vortex behavior. The sensor subsystem efforts focus on developing and validating wake sensing technologies. The lidar system has been field-tested to provide real-time wake vortex trajectory and strength data to AVOSS for wake prediction verification. Wake vortices, atmospheric winds, and turbulence products have been generated from processing the lidar data collected during deployments to Norfolk (ORF), John F. Kennedy (JFK), and Dallas/Fort Worth (DFW) International Airports.

  17. A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS)

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; Tatnall, Chris R.

    1997-01-01

    A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.

  18. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  19. Experimental study of vortex diffusers

    SciTech Connect

    Shakerin, S.; Miller, P.L.

    1995-11-01

    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  20. Vortex flap flight test operations, a safe approach

    NASA Technical Reports Server (NTRS)

    Dicarlo, Daniel J.; Elliott, James R.

    1993-01-01

    A flight test experiment was conducted at the Langley Research Center to evaluate a wing leading-edge vortex flap concept designed for use on an aircraft with highly swept wings. The flap concept was designed as a modification to the wing leading edge of an F-106B airplane. The flight testing required operations at conditions that would exceed the structural load envelope of the basic airplane in order to acquire desired research data for the modified configuration. Accordingly, the operational envelope of the modified aircraft was incrementally expanded and real-time monitoring of airframe strains at critical wing locations was mandated to insure safety of flight. The flight tests were conducted in two phases: Phase I to establish baseline data with the unmodified wing, and Phase II to determine the effects of the vortex flap on performance, handling qualities, and flow field characteristics. This paper focuses on a description of the approach and procedures used to provide the strain-gage monitoring to insure structural integrity. Highlights of the wing modification and the overall operation are also included. Within a -year period, 110 research flights were successfully completed, providing researchers with sufficient data to assess the potential benefits ascribed to the vortex flap concept without encountering severe structural problems or mishaps.

  1. Effects of Passive Porosity on Interacting Vortex Flows At Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2000-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity on vortex flow interaction about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used and included pressure-sensitive paint (PSP), schlieren, and laser vapor screen (LVS) These techniques were combined with force and moment and conventional electronically-scanned pressure (ESP) measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model.

  2. Basic research in wake vortex alleviation using a variable twist wing

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Holbrook, G. T.

    1981-01-01

    The variable twist wing concept was used to investigate the relative effects of lift and turbulence distribution on the rolled up vortex wake. Several methods of reducing the vortex strength behind an aircraft were identified. These involve the redistribution of lift spanwise on the wing and drag distribution along the wing. Initial attempts to use the variable twist wing velocity data to validate the WAKE computer code have shown a strong correlation, although the vorticity levels were not exactly matched.

  3. Fourth NASA Langley Formal Methods Workshop

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael (Compiler); Hayhurst, Kelly J. (Compiler)

    1997-01-01

    This publication consists of papers presented at NASA Langley Research Center's fourth workshop on the application of formal methods to the design and verification of life-critical systems. Topic considered include: Proving properties of accident; modeling and validating SAFER in VDM-SL; requirement analysis of real-time control systems using PVS; a tabular language for system design; automated deductive verification of parallel systems. Also included is a fundamental hardware design in PVS.

  4. Pre-Test CFD for the Design and Execution of the Enhanced Injection and Mixing Project at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Axdahl, Erik L.; Cabell, Karen F.

    2014-01-01

    With the increasing costs of physics experiments and simultaneous increase in availability and maturity of computational tools it is not surprising that computational fluid dynamics (CFD) is playing an increasingly important role, not only in post-test investigations, but also in the early stages of experimental planning. This paper describes a CFD-based effort executed in close collaboration between computational fluid dynamicists and experimentalists to develop a virtual experiment during the early planning stages of the Enhanced Injection and Mixing project at NASA Langley Research Center. This projects aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than 8. The purpose of the virtual experiment was to provide flow field data to aid in the design of the experimental apparatus and the in-stream rake probes, to verify the nonintrusive measurements based on NO-PLIF, and to perform pre-test analysis of quantities obtainable from the experiment and CFD. The approach also allowed for the joint team to develop common data processing and analysis tools, and to test research ideas. The virtual experiment consisted of a series of Reynolds-averaged simulations (RAS). These simulations included the facility nozzle, the experimental apparatus with a baseline strut injector, and the test cabin. Pure helium and helium-air mixtures were used to determine the efficacy of different inert gases to model hydrogen injection. The results of the simulations were analyzed by computing mixing efficiency, total pressure recovery, and stream thrust potential. As the experimental effort progresses, the simulation results will be compared with the experimental data to calibrate the modeling constants present in the CFD and validate simulation fidelity. CFD will also be used to

  5. Sensitivity of F-106B Leading-Edge-Vortex Images to Flight and Vapor-Screen Parameters

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Johnson, Thomas D., Jr.

    1988-01-01

    A flight test was undertaken at NASA Langley Research Center with vapor-screen and image-enhancement techniques to obtain qualitative and quantitative information about near-field vortex flows above the wings of fighter aircraft. In particular, the effects of Reynolds and Mach numbers on the vortex system over an angle-of-attack range were sought. The relevance of these flows stems from their present and future use at many points in the flight envelope, especially during transonic maneuvers. The aircraft used in this flight program was the F-106B because it was available and had sufficient wing sweep (60 deg) to generate a significant leading-edge vortex system. The sensitivity of the visual results to vapor screen hardware and to onset flow changes is discussed.

  6. Heat transfer tests of a 0.006-scale thin skin space shuttle model (50-0, 41-T) in the Langley Research Center nitrogen tunnel at Mach 19 (IH19)

    NASA Technical Reports Server (NTRS)

    Walstad, D. G.

    1975-01-01

    Data are presented from heat transfer tests on an 0.0006-scale space shuttle vehicle in the Langley Research Center Nitrogen Tunnel. The purpose of this test was to obtain ascent heating data at a high hypersonic Mach number. Configurations tested were integrated orbiter and external tank, orbiter alone, and external tank alone. All configurations were tested with and without boundary layer transition. Testing was conducted at a Mach number of 19, a Reynolds number of 0.5 million per foot, and angles of attack of 0, + or - 5, and + or - 10 degrees. Heat transfer data was obtained from 77 orbiter and 90 external tank iron-constantan thermocouples.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

  8. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  9. Langley's Space Shuttle Technology: A bibliography

    NASA Technical Reports Server (NTRS)

    Champine, G. R.

    1981-01-01

    This bibliography documents most of the major publications, research reports, journal articles, presentations, and contractor reports, which have been published since the inception of the Space Shuttle Technology Task Group at the NASA Langley Reseach Center on July 11, 1969. This research work was performed in house by the Center staff or under contract, monitored by the Center staff. The report is arranged according to method of publication: (1) NASA Formal Reports; (2) Contractor Reports; and (3) Articles and Conferences. Disciplines covered are in the areas of aerothermodynamics, structures, dynamics and aeroelasticity, environmental, and materials. The publications are listed without abstracts for quick reference and planning.

  10. The Langley Annular Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Habel, Louis W; Henderson, James H; Miller, Mason F

    1952-01-01

    Report describes the development of the Langley annular transonic tunnel, a facility in which test Mach numbers from 0.6 to slightly over 1.0 are achieved by rotating the test model in an annular passage between two concentric cylinders. Data obtained for two-dimensional airfoil models in the Langley annular transonic tunnel at subsonic and sonic speeds are shown to be in reasonable agreement with experimental data from other sources and with theory when comparisons are made for nonlifting conditions or for equal normal-force coefficients rather than for equal angles of attack. The trends of pressure distributions obtained from measurements in the Langley annular transonic tunnel are consistent with distributions calculated for Prandtl-Meyer flow.

  11. Vulcanized vortex

    SciTech Connect

    Cho, Inyong; Lee, Youngone

    2009-01-15

    We investigate vortex configurations with the 'vulcanization' term inspired by the renormalization of {phi}{sub *}{sup 4} theory in the canonical {theta}-deformed noncommutativity. We focus on the classical limit of the theory described by a single parameter which is the ratio of the vulcanization and the noncommutativity parameters. We perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  12. Langley test highlights, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Significant aircraft tests which were performed are highlighted. The broad range of the research and technology activities. The conributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  13. The singing vortex.

    PubMed

    Arndt, R; Pennings, P; Bosschers, J; van Terwisga, T

    2015-10-06

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures.

  14. The singing vortex

    PubMed Central

    Arndt, R.; Pennings, P.; Bosschers, J.; van Terwisga, T.

    2015-01-01

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147

  15. The Langley Wind Tunnel Enterprise

    NASA Technical Reports Server (NTRS)

    Paulson, John W., Jr.; Kumar, Ajay; Kegelman, Jerome T.

    1998-01-01

    After 4 years of existence, the Langley WTE is alive and growing. Significant improvements in the operation of wind tunnels have been demonstrated and substantial further improvements are expected when we are able to truly address and integrate all the processes affecting the wind tunnel testing cycle.

  16. Final Environmental Impact Statement for Langley

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Langley Research Center is described, together with the nature of its activities, from which it can be seen that the Center is basically not a major pollution source. Geographical, geological, and climatic charateristics of the site are also described. inasmuch as they influence both the choice of disposal methods and the environmental effects of the pollutants. The known or probable pollution sources at the Center are described. Where the intensities of these sources might exceed the recommended guide-lines, the corrective actions that have been taken or are being taken are described. The entire inventory of pollution sources and control methods is summarized in an appendix.

  17. Vannevar Bush Visits Langley, October 21, 1938

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Dr. H.J.E. Reid, Langley Director; Vannevar Bush, NACA Chairman; and George Lewis at Langley, 1938. Vannevar Bush, Henry Reid, George W. Lewis: Vannevar Bush (center) visited Langley on October 21, 1938, just months before becoming the NACA chairman. Henry Reid stands to Bush's right; George Lewis is to his left.

  18. Structures and Materials Competency Vision and Purpose at NASA Langley

    NASA Technical Reports Server (NTRS)

    Shuart, Mark J.

    2004-01-01

    Vision: The revolutionary materials and structures technologies developed at NASA Langley Research Center meet the needs of the Aerospace Community and benefit the quality of life on Earth Purpose: Develop and deliver useable research and technology results to meet Agency program objectives and to enable the Agency to develop future aerospace materials and structures

  19. Langley test highlights, 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A 20 ft vertical spin tunnel, a 30 by 60 ft tunnel, a 7 by 10 ft high speed tunnel, a 4 by 7 meter tunnel, an 8 ft transonic pressure tunnel, a transonic dynamics tunnel, a 16 ft transonic tunnel, a national transonic facility, a 0.3 meter transonic cryogenic tunnel, a unitary plan wind tunnel, a hypersonic facilities complex, an 8 ft high temperature tunnel, an aircraft noise reduction lab, an avionics integration research lab, a DC9 full workload simulator, a transport simulator, a general aviation simulator, an advanced concepts simulator, a mission oriented terminal area simulation (MOTAS), a differential maneuvering simulator, a visual/motion simulator, a vehicle antenna test facility, an impact dynamics research facility, and a flight research facility are all reviewed.

  20. Arctic Vortex

    Atmospheric Science Data Center

    2013-06-26

    article title:  A Vortex Street in the Arctic     View Larger Image ... 650 kilometers northeast of Iceland in the north Atlantic Ocean. Jan Mayen's Beerenberg volcano rises about 2.2 kilometers above the ...

  1. Langley Storage facility which houses remains of Apollo 204 craft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A warehouse holding Apollo 204 hardware and investigative data is seen at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and 81 cartons of data and other related materials occupy 3,300 cubic feet. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34 at Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage with the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.

  2. Langley Storage facility which houses remains of Apollo 204 craft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Apollo 204 command module is seen in storage at Langley Research Center in Virginia. The command module, damaged in the 1967 Apollo fire, its heat shield, booster protective cover and 81 cartons of related hardware and investigative data occupy 3,300 cubic feet of warehouse storage space. Astronauts Virgil I. Grissom, Roger B. Chaffee and Edward H. White II perished in the Apollo 204 spacecraft fire on Jan. 27, 1967 on Launch Complex 34 at Cape Canaveral. The hardware has been stored at Langley since 1967. PLEASE NOTE UPDATE: In early May of 1990, NASA announced plans to move the hardware and related data to permanent storage with the Challenger debris in an abandoned missile silo at Cape Canaveral Air Force Station (CCAFS), Florida. However, at month's end, NASA announced it had decided to keep the capsule at Langley for an indefinite period of time.

  3. Heat transfer tests of an 0.006-scale thin-skin space shuttle thermocouple model (41-OTS) in the Langley Research Center unitary plan wind tunnel at M equals 3.7 (IH16)

    NASA Technical Reports Server (NTRS)

    Walstad, D. G.

    1975-01-01

    The results are presented of supersonic heat transfer tests performed on the .006 scale space shuttle vehicle model (41-OTS) in the Langley Research Center Unitary Plan Wind Tunnel. These tests were conducted to parametrically investigate ascent heating of the integrated vehicle and its components. The tests were conducted at a nominal Mach number of 3.7 and Reynolds numbers per foot of 2 and 5 million. The model configurations investigated were the integrated vehicle and each component alone (i.e. orbiter, tank and SRB). All the configurations were run with and without transition strips and through an angle of attack range of 0 deg to minus 5 deg with the exception of the SRB which was tested through an angle of attack range of minus 5 deg to 90 deg. The heat transfer data were obtained from 223 iron constantan thermocouples attached to stainless steel thin-skin areas of the model.

  4. Aeroheating (pressure) characteristics on a 0.10-scale version of the vehicle 3 space shuttle configuration (26-OTS) in the Langley Research Center 4-foot wind tunnel (IH4)

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.

    1976-01-01

    Results of wind tunnel tests, conducted at the Langley Research Center Unitary Plan Wind Tunnel, are presented. The model tested was an 0.010-scale version of the Vehicle 3 Space Shuttle Configuration. Pressure measurements were made on the launch configuration, Orbiter alone, external tank alone, and solid rocket booster alone, to provide heat transfer pressure data. The tests were conducted for a Mach number range from 2.36 to 4.6 and Reynolds number range from 1.2 to 5 million per foot. The model was tested at angles of attack from -10 to 20 deg for a sideslip angle range from -5 to +5 deg, and at sideslip angles from -5 to 48 deg for 0 deg angle of attack. Tabulated data are given and photographs of the test configuration are shown.

  5. Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2004-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76o/40o double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 20 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M =0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  6. Pressure-Sensitive Paint Investigation of Double-Delta Wing Vortex Flow Manipulation

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Gonzalez, Hugo A.

    2005-01-01

    A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the effect of wing fillets on the global vortex-induced surface static pressure field about a sharp leading-edge 76 deg/40 deg double delta wing, or strake-wing, model at subsonic and transonic speeds. Global calibrations of the PSP were obtained at M = 0.50, 0.70, 0.85, 0.95, and 1.20, a Reynolds number per unit length of 2.0 million, and angles of attack from 10 degrees to 30 degrees using an in-situ method featuring the simultaneous acquisition of electronically-scanned pressures (ESP) at discrete locations on the model. The mean error in the PSP measurements relative to the ESP data was approximately 2 percent or less at M = 0.50 to 0.85 but increased to several percent at M = 0.95 and 1.20. The PSP pressure distributions and pseudo-colored planform view pressure maps clearly revealed the vortex-induced pressure signatures at all Mach numbers and angles of attack. Small fillets having a parabolic or diamond planform situated at the strake-wing intersection were designed to manipulate the vortical flows by, respectively, removing the leading-edge discontinuity or introducing additional discontinuities. The fillets caused global changes in the vortex-dominated surface pressure field that were effectively captured in the PSP measurements. The vortex surface pressure signatures were compared to available off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The fillet effects on the PSP pressure distributions and the observed leading-edge vortex flow characteristics were consistent with the trends in the measured lift, drag, and pitching moment coefficients.

  7. NASA Langley Scientific and Technical Information Output: 1998

    NASA Technical Reports Server (NTRS)

    Machie, Harriet B. (Compiler); Stewart, Susan H. (Compiler)

    1999-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1998. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

  8. NASA Langley Scientific and Technical Information Output-2002

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler)

    2003-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2002. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

  9. NASA Langley Scientific and Technical Information Output: 1999

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler); Machie, Harriet (Compiler)

    2000-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1999. Included are citations for Special Publications, Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, Tech Briefs, and Patents.

  10. NASA Langley Scientific and Technical Information Output?2003

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler)

    2004-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2003. Included are citations for Special Publications, Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

  11. NASA Langley Scientific and Technical Information Output-2001

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler)

    2002-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the 2001 calendar year. Included are citations for Technical Publications, Conference Publications, Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

  12. NASA Langley Scientific and Technical Information Output: 1996

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler); Phillips, Marilou S. (Compiler)

    1997-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1996. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

  13. NASA Langley scientific and technical information output: 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Phillips, Marilou S. (Compiler); Stewart, Susan H. (Compiler)

    1995-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1994. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Computer Programs, Tech Briefs, and Patents.

  14. NASA Langley Scientific and Technical Information Output: 1994. Volume 1

    NASA Technical Reports Server (NTRS)

    Phillips, Marilou S. (Compiler); Stewart, Susan H. (Compiler)

    1995-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1994. Included are citations for Formal Reports, High-Numbered Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Computer Programs, Tech Briefs, and Patents.

  15. NASA Langley Scientific and Technical Information Output: 1997

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler); Machie, Harriet B. (Compiler)

    1998-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1997. Included are citations for Formal Reports, Conference Publications, High-Numbered Technical Memorandums, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, and Patents.

  16. NASA Langley Scientific and Technical Information Output, 1995. Volume 1

    NASA Technical Reports Server (NTRS)

    Stewart, Susan H. (Compiler); Phillips, Marilou S. (Compiler)

    1996-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1995. Included are citations for formal reports, high-numbered conference publications, high-numbered technical memorandums, contractor reports, journal articles and other publications, meeting presentations, technical talks, computer programs, tech briefs, and patents.

  17. The Nov.5, 1928 Visit of Amelia Earhart to Langley

    NASA Technical Reports Server (NTRS)

    1928-01-01

    Group photo on steps of Langley Research Building in 1928. Front row, left to right: E.A. Meyers, Elton Miller, Amelia Earhart, Henry Reid, and Lt. Col. Jacob W.S. Wuest. Back row, Left to right: Carlton Kemper, Raymond Sharp, Thomas Carroll, (unknown person behind Amelia Earhart), and Fred Weick.

  18. Enhanced Capabilities of the NASA Langley Thermal Acoustic Fatigue Apparatus

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Turner, Travis L.

    2004-01-01

    This paper presents newly enhanced acoustic capabilities of the Thermal Acoustic Fatigue Apparatus at the NASA Langley Research Center. The facility is a progressive wave tube used for sonic fatigue testing of aerospace structures. Acoustic measurements for each of the six facility configurations are shown and comparisons with projected performance are made.

  19. NASA Langley Scientific and Technical Information Output 2000

    NASA Technical Reports Server (NTRS)

    Machie, Harriet B. (Compiler); Stewart, Susan H. (Compiler)

    2001-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 2000. Included are citations for Special Publications, Technical Publications, Conference Publications, Technical Memorandum, Contractor Reports, Journal Articles and Book Publications, Meeting Presentations, Technical Talks, Tech Briefs, and Patents.

  20. Overview of initial research into the effects of strong vortex flow on hybrid rocket combustion and performance

    NASA Technical Reports Server (NTRS)

    Gloyer, P.; Knuth, William H.; Goodman, J.

    1993-01-01

    An examination of the effect of vortex flow on hybrid rocket combustion and performance is underway. Emphasis is on response of the fuel regression rate when subjected to vortex flow. Initial results show that there is a definite effect of the vortex on fuel regression rate. Future work will focus on quantitatively measuring this regression rate. This work is part of an overall program to develop an ultra low cost fuel system for hybrid rocket engines.

  1. Polymer research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Johnston, N. J.

    1982-01-01

    Polymer synthesis programs involve the development of Novel thermoplastics, pseudothermoplastics, and thermosets. These systems are prepared to elucidate structure-property relationships involving thermal capabilities, toughness, processability and environmental stability. Easily processable polyimides, solvent-resistant polysulfones and polyphenylquinoxalines, and tougher high and intermediate temperature polymers were developed. Characterization efforts included high pressure liquid chromatography methodology, the development of toughness tests for fiber reinforced composites, a study of electrical properties of metal ion filled polyimides, and a study of the mutagenicity of aromatic diamines. Also the mechanism of cure/degradation of experimental polymers was studied by rheology, mechanical behavior, separation techniques and spectroscopy. The degradative crosslinking of alkyl-containing polyimides, the separation and identification of crosslinked phenylquinoxalines, the rheological behavior of hot-melt polyimides, and the elucidation of the cure of norbornene endcapped imides were also studied.

  2. Prediction and Control of Vortex Dominated and Vortex-wake Flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1996-01-01

    This report describes the activities and accomplishments under this research grant, including a list of publications and dissertations, produced in the field of prediction and control of vortex dominated and vortex wake flows.

  3. Wake Vortex Minimization

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A status report is presented on research directed at reducing the vortex disturbances of aircraft wakes. The objective of such a reduction is to minimize the hazard to smaller aircraft that might encounter these wakes. Inviscid modeling was used to study trailing vortices and viscous effects were investigated. Laser velocimeters were utilized in the measurement of aircraft wakes. Flight and wind tunnel tests were performed on scale and full model scale aircraft of various design. Parameters investigated included the effect of wing span, wing flaps, spoilers, splines and engine thrust on vortex attenuation. Results indicate that vortives may be alleviated through aerodynamic means.

  4. Vortex methods

    SciTech Connect

    Chorin, A.J. |

    1993-06-01

    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  5. Exploratory investigation of factors affecting the wing tip vortex

    NASA Technical Reports Server (NTRS)

    Scheiman, J.; Megrail, J. L.; Shivers, J. P.

    1972-01-01

    An investigation was conducted in the Langley full-scale tunnel to study some factors affecting the tip vortex of a wing. It was found that there was a pronounced effect of Reynolds number on the tip-vortex core size. An attempt was made to determine what aerodynamic parameters, such as lift, drag, or induced drag, influence the size of the vortex core, but no particular function of the parameters was found to be superior to all others. Various spoilers placed on the upper and lower surfaces of the wing to increase the boundary-layer thickness resulted in a reduction in the vorticity as determined from the tuft grid. Various solid objects placed in the vortex core downstream of the wing tip seemed to decrease the vorticity within the vortex core.

  6. Flow field over the wing of a delta-wing fighter model with vortex control devices at Mach 0.6 to 1.2

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Reubush, David E.; Haddad, Raymond C.

    1992-01-01

    As part of a cooperative research program between NASA, McDonnell Douglas Corporation, and Wright Research and Development Center, a flow field investigation was conducted on a 7.52 percent scale windtunnel model of an advanced fighter aircraft design. The investigation was conducted in the Langley 16 ft Transonic Tunnel at Mach numbers of 0.6, 0.9, and 1.2. Angle of attack was varied from -4 degrees to 30 degrees and the model was tested at angles of sideslip of 0, 5, and -5 degrees. Data for the over the wing flow field were obtained at four axial survey stations by the use of six 5 hole conical probes mounted on a survey mechanism. The wing leading edge primary vortex exerted the greatest influence in terms of total pressure loss on the over the wing flow field in the area surveyed. A number of vortex control devices were also investigated. They included two different apex flaps, wing leading edge vortex flaps, and small large wing fences. The vortex flap and both apex flaps were beneficial in controlling the wing leading edge primary vortex.

  7. The NASA Langley Mars Tumbleweed Rover Prototype

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Chattin, Richard L.; Copeland, Benjamin M.; Krizann, Shawn A.

    2005-01-01

    Mars Tumbleweed is a concept for an autonomous rover that would achieve mobility through use of the natural winds on Mars. The wind-blown nature of this vehicle make it an ideal platform for conducting random surveys of the surface, scouting for signs of past or present life as well as examining the potential habitability of sites for future human exploration. NASA Langley Research Center (LaRC) has been studying the dynamics, aerodynamics, and mission concepts of Tumbleweed rovers and has recently developed a prototype Mars Tumbleweed Rover for demonstrating mission concepts and science measurement techniques. This paper will provide an overview of the prototype design, instrumentation to be accommodated, preliminary test results, and plans for future development and testing of the vehicle.

  8. Langley's CSI evolutionary model: Phase 2

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Elliott, Kenny B.; Belvin, W. Keith; Teter, John E.

    1995-01-01

    Phase 2 testbed is part of a sequence of laboratory models, developed at NASA Langley Research Center, to enhance our understanding on how to model, control, and design structures for space applications. A key problem with structures that must perform in space is the appearance of unwanted vibrations during operations. Instruments, design independently by different scientists, must share the same vehicle causing them to interact with each other. Once in space, these problems are difficult to correct and therefore, prediction via analysis design, and experiments is very important. Phase 2 laboratory model and its predecessors are designed to fill a gap between theory and practice and to aid in understanding important aspects in modeling, sensor and actuator technology, ground testing techniques, and control design issues. This document provides detailed information on the truss structure and its main components, control computer architecture, and structural models generated along with corresponding experimental results.

  9. Franklin D. Roosevelt at Langley 1940

    NASA Technical Reports Server (NTRS)

    1940-01-01

    President Franklin D. Roosevelt visited Langley Field on 29 July 1940. View of President Franklin D. Roosevelt in a car inside a NACA hangar, two unidentified men stand behind the car, and the wing of a plane is visible in the background. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen (page 147).

  10. A strategy for electronic dissemination of NASA Langley technical publications

    NASA Technical Reports Server (NTRS)

    Roper, Donna G.; Mccaskill, Mary K.; Holland, Scott D.; Walsh, Joanne L.; Nelson, Michael L.; Adkins, Susan L.; Ambur, Manjula Y.; Campbell, Bryan A.

    1994-01-01

    To demonstrate NASA Langley Research Center's relevance and to transfer technology to external customers in a timely and efficient manner, Langley has formed a working group to study and recommend a course of action for the electronic dissemination of technical reports (EDTR). The working group identified electronic report requirements (e.g., accessibility, file format, search requirements) of customers in U.S. industry through numerous site visits and personal contacts. Internal surveys were also used to determine commonalities in document preparation methods. From these surveys, a set of requirements for an electronic dissemination system was developed. Two candidate systems were identified and evaluated against the set of requirements: the Full-Text Electronic Documents System (FEDS), which is a full-text retrieval system based on the commercial document management package Interleaf, and the Langley Technical Report Server (LTRS), which is a Langley-developed system based on the publicly available World Wide Web (WWW) software system. Factors that led to the selection of LTRS as the vehicle for electronic dissemination included searching and viewing capability, current system operability, and client software availability for multiple platforms at no cost to industry. This report includes the survey results, evaluations, a description of the LTRS architecture, recommended policy statement, and suggestions for future implementations.

  11. In-situ measurements of chlorine activation, nitric acid redistribution and ozone depletion in the Antarctic lower vortex aboard the German research aircraft HALO during TACTS/ESMVal

    NASA Astrophysics Data System (ADS)

    Jurkat, Tina; Voigt, Christiane; Kaufmann, Stefan; Schlage, Romy; Gottschaldt, Klaus-Dirk; Ziereis, Helmut; Hoor, Peter; Bozem, Heiko; Müller, Stefan; Zahn, Andreas; Schlager, Hans; Oelhaf, Hermann; Sinnhuber, Björn-Martin; Dörnbrack, Andreas

    2016-04-01

    In-situ measurements of stratospheric chlorine compounds are rare and exhibit the potential to gain insight into small scale mixing processes where stratospheric air masses of different origin and history interact. In addition, the relationship with chemically stable trace gases helps to identify regions that have been modified by chemical processing on polar stratospheric clouds. To this end, in-situ measurements of ClONO2, HCl, HNO3, NOy, N2O and O3 have been performed in the Antarctic Polar Vortex in September 2012 aboard the German research aircraft HALO (High Altitude and Long Rang research aircraft) during the TACTS/ESMVal (Transport and Composition in the UTLS/Earth System Model Validation) mission. With take-off and landing in Capetown, HALO sampled vortex air with latitudes down to 65°S, at altitudes between 8 and 14.3 km and potential temperatures between 340 and 390 K. Before intering the vortex at 350 K potential temperature, HALO additionally sampled mid-latitude stratospheric air. The trace gas distributions at the edge of the Antarctic polar vortex show distinct signatures of processed upper stratospheric vortex air and chemically different lower stratospheric / upper tropospheric air. Diabatic descend of the vortex transports processed air into the lower stratosphere. Here small scale filaments of only a few kilometers extension form at the lower vortex boundary due to shear stress, ultimately leading to transport and irreversible mixing. Comparison of trace gas relationships with those at the beginning of the polar winter reveals substantial chlorine activation, ozone depletion de- and renitrification with high resolution. Furthermore, the measurements are compared to the chemistry climate models EMAC and supported by ECMWF analysis. Finally, we compare the Antarctic measurements with new measurements of ClONO2, HCl and HNO3 aboard HALO obtained during the Arctic mission POLSTRACC (POLar STratosphere in a Changing Climate) based in Kiruna (Sveden

  12. Progress Towards the Investigation of Technical Issues Relevant to the Design of an Aircraft Wake Vortex Advisory System (WakeVAS)

    NASA Technical Reports Server (NTRS)

    Rutishauser, David K.

    2003-01-01

    Wake vortex separations applied to aircraft during instrument operations have been shown to potentially introduce inefficiencies in air traffic operations during certain weather conditions conducive to short duration wake hazards between pairs of landing aircraft. NASA Langley Research Center (LaRC) demonstrated an integration of technologies that provided real-time observations and predictions of aircraft wake behavior, from which reduced wake spacing from the current criteria was derived. In order to take this proof of concept to an operational prototype system, NASA has been working in cooperation with the FAA and other government and industry members to design operational concepts for a Wake Vortex Advisory System (WakeVAS). In addition to concept development, open research issues are being addressed and activities to quantify system requirements and specifications are currently underway. This paper describes the technological issues relevant to WakeVAS development and current NASA efforts to address these issues.

  13. Brownian vortexes

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Lin, Jiayi; Darby, Ellis; Grosberg, Alexander Y.; Grier, David G.

    2009-07-01

    Mechanical equilibrium at zero temperature does not necessarily imply thermodynamic equilibrium at finite temperature for a particle confined by a static but nonconservative force field. Instead, the diffusing particle can enter into a steady state characterized by toroidal circulation in the probability flux, which we call a Brownian vortex. The circulatory bias in the particle’s thermally driven trajectory is not simply a deterministic response to the solenoidal component of the force but rather reflects interplay between advection and diffusion in which thermal fluctuations extract work from the nonconservative force field. As an example of this previously unrecognized class of stochastic heat engines, we consider a colloidal sphere diffusing in a conventional optical tweezer. We demonstrate both theoretically and experimentally that nonconservative optical forces bias the particle’s fluctuations into toroidal vortexes whose circulation can reverse direction with temperature or laser power.

  14. CFD Modelling of a Quadrupole Vortex Inside a Cylindrical Channel for Research into Advanced Hybrid Rocket Designs

    NASA Astrophysics Data System (ADS)

    Godfrey, B.; Majdalani, J.

    2014-11-01

    This study relies on computational fluid dynamics (CFD) tools to analyse a possible method for creating a stable quadrupole vortex within a simulated, circular-port, cylindrical rocket chamber. A model of the vortex generator is created in a SolidWorks CAD program and then the grid is generated using the Pointwise mesh generation software. The non-reactive flowfield is simulated using an open source computational program, Stanford University Unstructured (SU2). Subsequent analysis and visualization are performed using ParaView. The vortex generation approach that we employ consists of four tangentially injected monopole vortex generators that are arranged symmetrically with respect to the center of the chamber in such a way to produce a quadrupole vortex with a common downwash. The present investigation focuses on characterizing the flow dynamics so that future investigations can be undertaken with increasing levels of complexity. Our CFD simulations help to elucidate the onset of vortex filaments within the monopole tubes, and the evolution of quadrupole vortices downstream of the injection faceplate. Our results indicate that the quadrupole vortices produced using the present injection pattern can become quickly unstable to the extent of dissipating soon after being introduced into simulated rocket chamber. We conclude that a change in the geometrical configuration will be necessary to produce more stable quadrupoles.

  15. User input and program assessment - An evaluation of the NASA Langley Scientific and Technical Information Program

    NASA Technical Reports Server (NTRS)

    Pinelli, T. E.; Cross, E. M.; Hinnebusch, P. A.; Glassman, M.

    1981-01-01

    An evaluation of the scientific and technical information (STI) program of the Langley Research Center has been conducted, including surveys of both internal and external patrons. Questions included the perceived prestige of the Center's publications, the adequacy of Langley technical reports, and the use of selected NASA STI products and services. The internal and external profiles proved to be very similar, and the results indicated that the Langley STI program is meeting the information needs of both populations. A number of areas for increasing user satisfaction were identified.

  16. Passive Wake Vortex Control

    SciTech Connect

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging.'' This active concept

  17. Tensile, Compression, Open-Hole Compression and Double Cantilever Beam Fracture Toughness Testing of Multiple NASA Langley Research Center Composite Materials

    NASA Technical Reports Server (NTRS)

    Adams, Donald F.

    1999-01-01

    The attached data summarizes the work performed by the Composite Materials Research Group at the University of Wyoming funded by the NASA LaRC Research Grant NAG-1-1294. The work consisted primarily of tension, compression, open-hole compression and double cantilever beam fracture toughness testing performed an a variety of NASA LaRC composite materials. Tests were performed at various environmental conditions and pre-conditioning requirements. The primary purpose of this work was to support the LaRC material development efforts. The data summaries are arranged in chronological order from oldest to newest.

  18. Franklin D. Roosevelt at Langley 1940

    NASA Technical Reports Server (NTRS)

    1940-01-01

    President Franklin D. Roosevelt visited Langley Field on July 29, 1940. View of President Roosevelt in a car inside a NACA hangar, two unidentified men stand behind the car, and the wing of a plane is visible in the background.

  19. Langley method of calibrating UV filter radiometers

    NASA Astrophysics Data System (ADS)

    Slusser, James; Gibson, James; Bigelow, David; Kolinski, Donald; Disterhoft, Patrick; Lantz, Kathleen; Beaubien, Arthur

    2000-02-01

    The Langley method of calibrating UV multifilter shadow band radiometers (UV-MFRSR) is explored in this paper. This method has several advantages over the traditional standard lamp calibrations: the Sun is a free, universally available, and very constant source, and nearly continual automated field calibrations can be made. Although 20 or so Langley events are required for an accurate calibration, the radiometer remains in the field during calibration. Difficulties arise as a result of changing ozone optical depth during the Langley event and the breakdown of the Beer-Lambert law over the finite filter band pass since optical depth changes rapidly with wavelength. The Langley calibration of the radiometers depends critically upon the spectral characterization of each channel and on the wavelength and absolute calibration of the extraterrestrial spectrum used. Results of Langley calibrations for two UV-MFRSRs at Mauna Loa, Hawaii were compared to calibrations using two National Institute of Standards and Technology (NIST) traceable lamps. The objectives of this study were to compare Langley calibration factors with those from standard lamps and to compare field-of-view effects. The two radiometers were run simultaneously: one on a Sun tracker and the other in the conventional shadow-band configuration. Both radiometers were calibrated with two secondary 1000 W lamp, and later, the spectral response functions of the channels were measured. The ratio of Langley to lamp calibration factors for the seven channels from 300 nm to 368 nm using the shadow-band configuration ranged from 0.988 to 1.070. The estimated uncertainty in accuracy of the Langley calibrations ranged from ±3.8% at 300 nm to ±2.1% at 368 nm. For all channels calibrated with Central Ultraviolet Calibration Facility (CUCF) lamps the estimated uncertainty was ±2.5% for all channels.

  20. Progress in multidisciplinary design optimization at NASA Langley

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.

    1993-01-01

    Multidisciplinary Design Optimization refers to some combination of disciplinary analyses, sensitivity analysis, and optimization techniques used to design complex engineering systems. The ultimate objective of this research at NASA Langley Research Center is to help the US industry reduce the costs associated with development, manufacturing, and maintenance of aerospace vehicles while improving system performance. This report reviews progress towards this objective and highlights topics for future research. Aerospace design problems selected from the author's research illustrate strengths and weaknesses in existing multidisciplinary optimization techniques. The techniques discussed include multiobjective optimization, global sensitivity equations and sequential linear programming.

  1. World wide web implementation of the Langley technical report server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Gottlich, Gretchen L.; Bianco, David J.

    1994-01-01

    On January 14, 1993, NASA Langley Research Center (LaRC) made approximately 130 formal, 'unclassified, unlimited' technical reports available via the anonymous FTP Langley Technical Report Server (LTRS). LaRC was the first organization to provide a significant number of aerospace technical reports for open electronic dissemination. LTRS has been successful in its first 18 months of operation, with over 11,000 reports distributed and has helped lay the foundation for electronic document distribution for NASA. The availability of World Wide Web (WWW) technology has revolutionized the Internet-based information community. This paper describes the transition of LTRS from a centralized FTP site to a distributed data model using the WWW, and suggests how the general model for LTRS can be applied to other similar systems.

  2. Modeling of Wake-vortex Aircraft Encounters. Appendix B

    NASA Technical Reports Server (NTRS)

    Smith, Sonya T.

    1999-01-01

    There are more people passing through the world's airports today than at any other time in history. With this increase in civil transport, airports are becoming capacity limited. In order to increase capacity and thus meet the demands of the flying public, the number of runways and number of flights per runway must be increased. In response to the demand, the National Aeronautics and Space Administration (NASA), in conjunction with the Federal Aviation Administration (FAA), airport operators, and the airline industry are taking steps to increase airport capacity without jeopardizing safety. Increasing the production per runway increases the likelihood that an aircraft will encounter the trailing wake-vortex of another aircraft. The hazard of a wake-vortex encounter is that heavy load aircraft can produce high intensity wake turbulence, through the development of its wing-tip vortices. A smaller aircraft following in the wake of the heavy load aircraft will experience redistribution of its aerodynamic load. This creates a safety hazard for the smaller aircraft. Understanding this load redistribution is of great importance, particularly during landing and take-off. In this research wake-vortex effects on an encountering 10% scale model of the B737-100 aircraft are modeled using both strip theory and vortex-lattice modeling methods. The models are then compared to wind tunnel data that was taken in the 30ft x 60ft wind tunnel at NASA Langley Research Center (LaRC). Comparisons are made to determine if the models will have acceptable accuracy when parts of the geometry are removed, such as the horizontal stabilizer and the vertical tail. A sensitivity analysis was also performed to observe how accurately the models could match the experimental data if there was a 10% error in the circulation strength. It was determined that both models show accurate results when the wing, horizontal stabilizer, and vertical tail were a part of the geometry. When the horizontal

  3. Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.

    2014-01-01

    Sensor technologies can make a significant impact on the detection of aircraft-generated vortices in an air space of interest, typically in the approach or departure corridor. Current state-of-the art sensor technologies do not provide three-dimensional measurements needed for an operational system or even for wake vortex modeling to advance the understanding of vortex behavior. Most wake vortex sensor systems used today have been developed only for research applications and lack the reliability needed for continuous operation. The main challenges for the development of an operational sensor system are reliability, all-weather operation, and spatial coverage. Such a sensor has been sought for a period of last forty years. Acoustic sensors were first proposed and tested by National Oceanic and Atmospheric Administration (NOAA) early in 1970s for tracking wake vortices but these acoustic sensors suffered from high levels of ambient noise. Over a period of the last fifteen years, there has been renewed interest in studying noise generated by aircraft wake vortices, both numerically and experimentally. The German Aerospace Center (DLR) was the first to propose the application of a phased microphone array for the investigation of the noise sources of wake vortices. The concept was first demonstrated at Berlins Airport Schoenefeld in 2000. A second test was conducted in Tarbes, France, in 2002, where phased microphone arrays were applied to study the wake vortex noise of an Airbus 340. Similarly, microphone phased arrays and other opto-acoustic microphones were evaluated in a field test at the Denver International Airport in 2003. For the Tarbes and Denver tests, the wake trajectories of phased microphone arrays and lidar were compared as these were installed side by side. Due to a built-in pressure equalization vent these microphones were not suitable for capturing acoustic noise below 20 Hz. Our group at NASA Langley Research Center developed and installed an

  4. Large-Eddy Simulations and Lidar Measurements of Vortex-Pair Breakup in Aircraft Wakes

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.; Poole, L. R.; DeCoursey, R. J.; Hansen, G. M.; Hostetler, C. A.; Kent, G. S.

    1998-01-01

    Results of large-eddy simulations of an aircraft wake are compared with results from ground-based lidar measurements made at NASA Langley Research Center during the Subsonic Assessment Near-Field Interaction Flight Experiment field tests. Brief reviews of the design of the field test for obtaining the evolution of wake dispersion behind a Boeing 737 and of the model developed for simulating such wakes are given. Both the measurements and the simulations concentrate on the period from a few seconds to a few minutes after the wake is generated, during which the essentially two-dimensional vortex pair is broken up into a variety of three-dimensional eddies. The model and experiment show similar distinctive breakup eddies induced by the mutual interactions of the vortices, after perturbation by the atmospheric motions.

  5. Instability of spiral convective vortex

    NASA Astrophysics Data System (ADS)

    Evgrafova, Anna; Andrey, Sukhanovsky; Elena, Popova

    2014-05-01

    Formation of large-scale vortices in atmosphere is one of the interesting problems of geophysical fluid dynamics. Tropical cyclones are examples of atmospheric spiral vortices for which convection plays an important role in their formation and evolution. Our study is focused on intensive cyclonic vortex produced by heating in the central part of the rotating layer. The previous studies made by Bogatyrev et al, showed that structure of such vortex is very similar to the structure of tropical cyclones. Qualitative observations described in (Bogatyrev, 2009) showed that the evolution of large-scale vortex in extreme regimes can be very complicated. Our main goal is the study of evolution of convective cyclonic vortex at high values of Grasshof number by PIV system. Experimental setup is a rotating cylindrical tank of fluid (radius 150 mm, depth 30 mm, free upper surface). Velocity fields for different values of heat flux were obtained and temporal and spatial structure of intensive convective vortex were studied in details. With the use of PIV data vorticity fields were reconstructed in different horizontal cross-sections. Physical interpretation of mechanisms that lead to the crucial change in the vortex structure with the growth of heat rate is described. Financial support from program of UD RAS, the International Research Group Program supported by Perm region Government is gratefully acknowledged.

  6. ASRS Reports on Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  7. Flight Test Analysis of the Forces and Moments Imparted on a B737-100 Aircraft During Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher L.; Smith, Sonya T.; Vicroy, Dan D.

    2000-01-01

    Several of our major airports are operating at or near their capacity limit, increasing congestion and delays for travelers. As a result, the National Aeronautics and Space Administration (NASA) has been working in conjunction with the Federal Aviation Administration (FAA), airline operators, and the airline industry to increase airport capacity and safety. As more and more airplanes are placed into the terminal area the probability of encountering wake turbulence is increased. The NASA Langley Research Center conducted a series of flight tests from 1995 through 1997 to develop a wake encounter and wake-measurement data set with the accompanying atmospheric state information. The purpose of this research is to use the data from those flights to compute the wake-induced forced and moments exerted on the aircraft The calculated forces and moments will then be compiled into a database that can be used by wake vortex researchers to compare with experimental and computational results.

  8. Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.

  9. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    NASA Technical Reports Server (NTRS)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  10. Compendium of NASA Langley reports on hypersonic aerodynamics

    NASA Technical Reports Server (NTRS)

    Sabo, Frances E.; Cary, Aubrey M.; Lawson, Shirley W.

    1987-01-01

    Reference is made to papers published by the Langley Research Center in various areas of hypersonic aerodynamics for the period 1950 to 1986. The research work was performed either in-house by the Center staff or by other personnel supported entirely or in part by grants or contracts. Abstracts have been included with the references when available. The references are listed chronologically and are grouped under the following general headings: (1) Aerodynamic Measurements - Single Shapes; (2) Aerodynamic Measurements - Configurations; (3) Aero-Heating; (4) Configuration Studies; (5) Propulsion Integration Experiment; (6) Propulsion Integration - Study; (7) Analysis Methods; (8) Test Techniques; and (9) Airframe Active Cooling Systems.

  11. Exploratory wind-tunnel investigation of a wingtip-mounted vortex turbine for vortex energy recovery

    NASA Technical Reports Server (NTRS)

    Patterson, J. C., Jr.; Flechner, S. G.

    1985-01-01

    The Langley 8-foot transonic pressure tunnel was used for tests to determine the possibility of recovering, with a turbine-type device, part of the energy loss associated with the lift-induced vortex system. Tests were conducted on a semispan model with an unswept, untapered wing, with and without a wingtip-mounted vortex turbine. Three sets of turbine blades were tested to determine the effect of airfoil section shape and planform. The tests were conducted at a Mach number of 0.70 over an angle-of-attack range from 0 deg. to 4 deg. at a Reynolds number of 3.82 x 10 to the 6th power based on the wing reference chord of 13 in.

  12. NASA Langley Open House 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Acoustic Research Lab, Aircraft Noise Research Facility, building 1208: Displays included video and flyover demos. There were also demos of passenger response to aircraft noise and acoustic phenomena, including children's activities.

  13. Vortex Flow Correlation

    DTIC Science & Technology

    1981-01-01

    ATTACK AND M = 0.70 (FROM REF. 195) ... ........... . 77 ix -. ( LIST OF ILLUSTRATIONS (Continued) FIGURE PAGE 32 SURFACE PRESSURES AND SKIN -FRICTION...exemplifies the increased research activity related to this long-dormant concept. Northrop water tunnel studies have suggested that conventional 3 vortex...ATTACHMENT -0.6- LINE LINE -0.4( S-0.2 -OTURBULENT a +0.2 0 0.2 0.4 0.6 0.8 1.0 (A) SKIN -FRICTION LINE PATTERN ON UPPER 2ylb 0.6 SURFACEOFSLENDERWINGATLOW

  14. Space Launch System Liftoff and Transition Aerodynamic Characterization in the NASA Langley 14- by 22-Foot Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.; Erickson, Gary E.; Paulson, John W.; Tomek, William G.; Bennett, David W.; Blevins, John A.

    2015-01-01

    A 1.75% scale force and moment model of the Space Launch System was tested in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel to quantify the aerodynamic forces that will be experienced by the launch vehicle during its liftoff and transition to ascent flight. The test consisted of two parts: the first was dedicated to measuring forces and moments for the entire range of angles of attack (0deg to 90deg) and roll angles (0 deg. to 360 deg.). The second was designed to measure the aerodynamic effects of the liftoff tower on the launch vehicle for ground winds from all azimuthal directions (0 deg. to 360 deg.), and vehicle liftoff height ratios from 0 to 0.94. This wind tunnel model also included a set of 154 surface static pressure ports. Details on the experimental setup, and results from both parts of testing are presented, along with a description of how the wind tunnel data was analyzed and post-processed in order to develop an aerodynamic database. Finally, lessons learned from experiencing significant dynamics in the mid-range angles of attack due to steady asymmetric vortex shedding are presented.

  15. Experiences From NASA/Langley's DMSS Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    There is a trend in institutions with high performance computing and data management requirements to explore mass storage systems with peripherals directly attached to a high speed network. The Distributed Mass Storage System (DMSS) Project at the NASA Langley Research Center (LaRC) has placed such a system into production use. This paper will present the experiences, both good and bad, we have had with this system since putting it into production usage. The system is comprised of: 1) National Storage Laboratory (NSL)/UniTree 2.1, 2) IBM 9570 HIPPI attached disk arrays (both RAID 3 and RAID 5), 3) IBM RS6000 server, 4) HIPPI/IPI3 third party transfers between the disk array systems and the supercomputer clients, a CRAY Y-MP and a CRAY 2, 5) a "warm spare" file server, 6) transition software to convert from CRAY's Data Migration Facility (DMF) based system to DMSS, 7) an NSC PS32 HIPPI switch, and 8) a STK 4490 robotic library accessed from the IBM RS6000 block mux interface. This paper will cover: the performance of the DMSS in the following areas: file transfer rates, migration and recall, and file manipulation (listing, deleting, etc.); the appropriateness of a workstation class of file server for NSL/UniTree with LaRC's present storage requirements in mind the role of the third party transfers between the supercomputers and the DMSS disk array systems in DMSS; a detailed comparison (both in performance and functionality) between the DMF and DMSS systems LaRC's enhancements to the NSL/UniTree system administration environment the mechanism for DMSS to provide file server redundancy the statistics on the availability of DMSS the design and experiences with the locally developed transparent transition software which allowed us to make over 1.5 million DMF files available to NSL/UniTree with minimal system outage

  16. Langley Symposium on Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Stack, Sharon H. (Compiler)

    1986-01-01

    The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.

  17. User's Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Cheatwood, F. McNeil

    1996-01-01

    This user's manual provides detailed instructions for the installation and the application of version 4.1 of the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA). Also provides simulation of flow field in thermochemical nonequilibrium around vehicles traveling at hypersonic velocities through the atmosphere. Earlier versions of LAURA were predominantly research codes, and they had minimal (or no) documentation. This manual describes UNIX-based utilities for customizing the code for special applications that also minimize system resource requirements. The algorithm is reviewed, and the various program options are related to specific equations and variables in the theoretical development.

  18. Langley proposed advanced hypervelocity aerophysics facility - A status report

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D.; Scallion, William I.

    1989-01-01

    A ground-based facility capable of performing flight tests on relatively large highly instrumented models and scaled vehicle components at velocities and densities representative of a hypervelocity flight in earth and planetary atmospheres is reviewed. This facility proposed by the Langley Research Center is based on a launcher, a test chamber, and a model impact/deceleration chamber. It would initially utilize existing light-gas gun launcher technology scaled to 4 times present launcher size. It is planned to enhance its velocity and model size capability either by an electromagnetic launcher or a ram accelerator.

  19. Magnetic Vortex Based Transistor Operations

    PubMed Central

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  20. Magnetic vortex based transistor operations.

    PubMed

    Kumar, D; Barman, S; Barman, A

    2014-02-17

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

  1. Comparison of two vortex models of wind turbines using a free vortex wake scheme

    NASA Astrophysics Data System (ADS)

    Xu, B. F.; Yuan, Y.; Wang, T. G.; Zhao, Z. Z.

    2016-09-01

    Developing suitably generalized models for rotor blade vortices that accurately predict their evolution continues to be a challenge for wind turbine analysts. During the past few decades, several vortex models have been developed according to the theoretical analysis and the experimental research. A comparison of two different vortex models is made for predicting wind turbine aerodynamic performance using a free vortex wake (FVW) model. The two models are the Lamb-Oseen vortex model for laminar vortices and the β-Vatistas model for turbulent vortices. A new formula that approximates parameter β, which represents the degree of turbulence in the β-Vatistas model, is proposed. The formula of parameter β is validated by comparison of simulated and measured aerodynamic performances of wind turbines of different blade tip vortex Reynolds numbers. Then, the induced velocity streamlines and the distribution of the axial velocity in the rotational plane are simulated. Also, the differences due to the vortex models are discussed.

  2. PREFACE: Special section on vortex rings Special section on vortex rings

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  3. Prediction and control of vortex-dominated and vortex-wake flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  4. The 1987 Ground Vortex Workshop

    NASA Technical Reports Server (NTRS)

    Margason, Richard J. (Editor)

    1988-01-01

    The purpose of this workshop was to discuss the current understanding of the ground vortex phenomena and their effects on aircraft, and to establish directions for further research on advanced, high-performance aircraft designs, particularly those concepts utilizing powered-lift systems; e.g., V/STOL. ASTOVL, and STOL aircraft.

  5. Sadovskii vortex in strain

    NASA Astrophysics Data System (ADS)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2014-11-01

    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  6. Mated aerodynamic characteristics investigation for the 0.04 scale model TE 1065 (Boeing 747-100) of the 747 CAM and the 0.0405 scale model (43-0) of the space shuttle orbiter in the NASA Langley V/STOL transition research wind tunnel (CA8), volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Aerodynamic force data are presented in tables and graphs for the NASA Langley V/STOL Transition Research Wind Tunnel tests on a 0.04 scale model of the 747 with a 0.0405 scale Orbiter space shuttle. The investigation included the effects of flap setting, stabilizer angle, elevator angle, ground proximity, and Orbiter tailcone fairing. Data were obtained in the pitch plane only. The test was run at M = 0.15, with a dynamic pressure of 35 psf. Six static pressures were measured on each side of the 747 CAM nose to determine the effects of the Orbiter on the 747 airspeed and altitude indicators.

  7. Influence of Structural Parameters on the Performance of Vortex Valve Variable-Thrust Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Wei, Xianggeng; Li, Jiang; He, Guoqiang

    2017-04-01

    The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.

  8. Engineer in charge: A history of the Langley Aeronautical Laboratory, 1917-1958

    NASA Technical Reports Server (NTRS)

    Hansen, James R.

    1986-01-01

    A history is presented by using the most technologically significant research programs associated with the Langley Aeronautical Laboratory from 1917 to 1958 and those programs that, after preliminary research, seemed best to illustrate how the laboratory was organized, how it works, and how it cooperated with industry and the military.

  9. An investigation of the vortex method

    SciTech Connect

    Pryor, Jr., Duaine Wright

    1994-05-01

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. This is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.

  10. Vortex cavitation: A progress report

    SciTech Connect

    Arndt, R.E.A.; Maines, B.H.

    1994-12-31

    Cavitation in vortical flows is a significant problem. An important aspect is the need for a better understanding of the physics of cavitation in the vortices tailing from lifting surfaces such as propellers and hydrofoils. This is a review of experimental and numerical research that has been recently carried out with a series of hydrofoils. This is a review of experimental and numerical research that has been recently carried out with a series of hydrofoils. This research was aimed at investigating the interrelated effects of vortex structure, including the details of the vortex roll-up process close to the tip, dissolved gas content, and water quality as it related to the amount of tension that can be sustained in the vortex before cavitation occurs. The experimental phase includes lift and drag measurements, oil flow visualization of the boundary layer flow on the lifting surfaces, and observation of both cavitation inception and desinence in strong and weak water. An improved photographic technique has been developed to study the complex bubble dynamics inherent in the inception process. Preliminary results indicate that the bubble growth process is strongly dependent on the size and number of nuclei in the free stream. Numerical simulations indicate that the minimum pressure in the vortex is very close to the tip of the lifting surface, in agreement with the observation that the inception process also occurs very close to the tip under most conditions.

  11. NASA Langley/CNU Distance Learning Programs

    NASA Technical Reports Server (NTRS)

    Caton, Randall; Pinelli, Thomas E.

    2002-01-01

    NASA Langley Research Center and Christopher Newport University (CNU) provide, free to the public, distance learning programs that focus on math, science, and/or technology over a spectrum of education levels from K-adult. The effort started in 1997, and we currently have a suite of five distance-learning programs. We have around 450,000 registered educators and 12.5 million registered students in 60 countries. Partners and affiliates include the American Institute of Aeronautics and Astronautics (AIAA), the Aerospace Education Coordinating Committee (AECC), the Alliance for Community Media, the National Educational Telecommunications Association, Public Broadcasting System (PBS) affiliates, the NASA Learning Technologies Channel, the National Council of Teachers of Mathematics (NCTM), the Council of the Great City Schools, Hampton City Public Schools, Sea World Adventure Parks, Busch Gardens, ePALS.com, and Riverdeep. Our mission is based on the "Horizon of Learning," a vision for inspiring learning across a continuum of educational experiences. The programs form a continuum of educational experiences for elementary youth through adult learners. The strategic plan for the programs will evolve to reflect evolving national educational needs, changes within NASA, and emerging system initiatives. Plans for each program component include goals, objectives, learning outcomes, and rely on sound business models. It is well documented that if technology is used properly it can be a powerful partner in education. Our programs employ both advances in information technology and in effective pedagogy to produce a broad range of materials to complement and enhance other educational efforts. Collectively, the goals of the five programs are to increase educational excellence; enhance and enrich the teaching of mathematics, science, and technology; increase scientific and technological literacy; and communicate the results of NASA discovery, exploration, innovation and research

  12. NASA Langley Open House 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Impact Dynamics Research Facility, building 1297: Displays included full-scale test article of fuselage section; crash test dummies, videos of recent crash tests, Mars Sample Return Earth Entry Vehicle. Children Activities included performing a crash test on a model of the gantry.

  13. NASA Langley Open House 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Flight Research Hanger, building 1244: Aircraft on display included the B-757, T-34C, OV-10A, B-200, UH-1H, T-38A, SR-22, C-206H, Columbia 300, and the AGATE 1B. Aviatrix Elinor Smith was also at the hanger to sign autographs. In 1927 she was the youngest person to receive her pilot's license which was signed by Orville Wright. She knew many of the pioneer flyers such as Jimmy Doolittle, Charles Lindbergh, and Amelia Earhart.

  14. Supersonic shock wave/vortex interaction

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Cattafesta, L.

    1993-01-01

    Although shock wave/vortex interaction is a basic and important fluid dynamics problem, very little research has been conducted on this topic. Therefore, a detailed experimental study of the interaction between a supersonic streamwise turbulent vortex and a shock wave was carried out at the Penn State Gas Dynamics Laboratory. A vortex is produced by replaceable swirl vanes located upstream of the throat of various converging-diverging nozzles. The supersonic vortex is then injected into either a coflowing supersonic stream or ambient air. The structure of the isolated vortex is investigated in a supersonic wind tunnel using miniature, fast-response, five-hole and total temperature probes and in a free jet using laser Doppler velocimetry. The cases tested have unit Reynolds numbers in excess of 25 million per meter, axial Mach numbers ranging from 2.5 to 4.0, and peak tangential Mach numbers from 0 (i.e., a pure jet) to about 0.7. The results show that the typical supersonic wake-like vortex consists of a non-isentropic, rotational core, where the reduced circulation distribution is self similar, and an outer isentropic, irrotational region. The vortex core is also a region of significant turbulent fluctuations. Radial profiles of turbulent kinetic energy and axial-tangential Reynolds stress are presented. The interactions between the vortex and both oblique and normal shock waves are investigated using nonintrusive optical diagnostics (i.e. schlieren, planar laser scattering, and laser Doppler velocimetry). Of the various types, two Mach 2.5 overexpanded-nozzle Mach disc interactions are examined in detail. Below a certain vortex strength, a 'weak' interaction exists in which the normal shock is perturbed locally into an unsteady 'bubble' shock near the vortex axis, but vortex breakdown (i.e., a stagnation point) does not occur. For stronger vortices, a random unsteady 'strong' interaction results that causes vortex breakdown. The vortex core reforms downstream of

  15. Numerical modeling studies of wake vortex transport and evolution within the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.

    1994-01-01

    The proposed research involves four tasks. The first of these is to simulate accurately the turbulent processes in the atmospheric boundary layer. TASS was originally developed to study meso-gamma scale phenomena, such as tornadic storms, microbursts and windshear effects in terminal areas. Simulation of wake vortex evolution, however, will rely on appropriate representation of the physical processes in the surface layer and mixed layer. This involves two parts. First, a specified heat flux boundary condition must be implemented at the surface. Using this boundary condition, simulation results will be compared to experimental data and to other model results for validation. At this point, any necessary changes to the model will be implemented. Next, a surface energy budget parameterization will be added to the model. This will enable calculation of the surface fluxes by accounting for the radiative heat transfer to and from the ground and heat loss to the soil rather than simple specification of the fluxes. The second task involves running TASS with prescribed wake vortices in the initial condition. The vortex models will be supplied by NASA Langley Research Center. Sensitivity tests will be performed on different meteorological environments in the atmospheric boundary layer, which include stable, neutral, and unstable stratifications, calm and severe wind conditions, and dry and wet conditions. Vortex strength may be varied as well. Relevant non-dimensional parameters will include the following: Richardson number or Froude number, Bowen ratio, and height to length scale ratios. The model output will be analyzed and visualized to better understand the transport, decay, and growth rates of the wake vortices. The third task involves running simulations using observed data. MIT Lincoln Labs is currently planning field experiments at the Memphis airport to measure both meteorological conditions and wake vortex characteristics. Once this data becomes available, it can be

  16. Investigation of elliptical vortex beams propagating in atmospheric turbulence by numerical simulations

    NASA Astrophysics Data System (ADS)

    Taozheng

    2015-08-01

    In recent years, due to the high stability and privacy of vortex beam, the optical vortex became the hot spot in research of atmospheric optical transmission .We numerically investigate the propagation of vector elliptical vortex beams in turbulent atmosphere. Numerical simulations are realized with random phase screen. To simulate the vortex beam transport processes in the atmospheric turbulence. Using numerical simulation method to study in the atmospheric turbulence vortex beam transmission characteristics (light intensity, phase, polarization, etc.) Our simulation results show that, vortex beam in the atmospheric transmission distortion is small, make elliptic vortex beam for space communications is a promising strategy.

  17. Dynamics of Isolated Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Pennings, Pepijn; Bosschers, Johan; van Terwisga, Tom

    2014-11-01

    Performance of ship propellers and comfort levels in the surroundings are limited by various forms of cavitation. Amongst these forms tip vortex cavitation is one of the first appearing forms and is expected to be mainly responsible for the emission of broadband pressure fluctuations typically occurring between the 4th to the 7th blade passing frequency (approx. 40--70 Hz). These radiated pressure pulses are likely to excite parts of the hull structure resulting in a design compromise between efficiency and comfort. Insight is needed in the mechanism of acoustic emission from the oscillations by a tip vortex cavity. In the current experimental study the tip vortex cavity from a blade with an elliptic planform and sections based on NACA 662 - 415 with meanline a = 0 . 8 is observed using high speed shadowgraphy in combination with blade force and acoustic measurements. An analytic model describing three main cavity deformation modes is verified and used to explain the origin of a cavity eigenfrequency or ``vortex singing'' phenomenon observed by Maines and Arndt (1997) on the tip vortex cavity originating from the same blade. As no hydrodynamic sound originating from the tip vortex cavity was observed it is posed that a tip flow instability is essential for ``vortex singing.'' This research was funded by the Lloyd's Register Foundation as part of the International Institute for Cavitation Research.

  18. Three-Dimensional Vortex-Body Interaction in a Viscous Fluid

    DTIC Science & Technology

    2007-11-02

    vortex (figure 13) exhibit bubble- or spiral -type forms that appear similar to flow visualization images of vortex breakdowns observed in other... Vortex - Jet," J. Fluid Mech., Vol. 369, 1998, 301-331. ,7. Lundgren , T.S. and Ashurst, W.T., "Area-Varying Waves on Curved Vortex Tubes with Application...Ii Three-Dimensional Vortex -Body Interaction In a Viscous Fluid FINAL PROGRESS REPORT JEFFREY S. MARSHALL July 30, 1999 U.S. ARMY RESEARCH OFFICE

  19. Application of the Langley plot for calibration of sun sensors for the Halogen Occultation Experiment (HALOE)

    NASA Technical Reports Server (NTRS)

    Moore, Alvah S., Jr.; Mauldin, L. ED, III; Stump, Charles W.; Reagan, John A.; Fabert, Milton G.

    1989-01-01

    The calibration of the Halogen Occultation Experiment (HALOE) sun sensor is described. This system consists of two energy-balancing silicon detectors which provide coarse azimuth and elevation control signals and a silicon photodiode array which provides top and bottom solar edge data for fine elevation control. All three detectors were calibrated on a mountaintop near Tucson, Ariz., using the Langley plot technique. The conventional Langley plot technique was modified to allow calibration of the two coarse detectors, which operate wideband. A brief description of the test setup is given. The HALOE instrument is a gas correlation radiometer that is now being developed for the Upper Atmospheric Research Satellite.

  20. Sadovskii vortex in strain

    NASA Astrophysics Data System (ADS)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2015-11-01

    Sadovskii vortices are patches of fluid with uniform vorticity surrounded by a vortex sheet. They were first constructed as models for wakes behind bluff objects. We investigate the Sadovskii vortex in a straining field and examine limiting cases to validate our computational method. One limit is the patch vortex in strain (Moore & Saffman, Aircraft wake turbulence and its detection 1971), where there is no vortex sheet. We solve this as a free-boundary problem, and show that a simple method using the Biot-Savart law quickly gives solutions for stable shapes. When used for the more elongated (stronger straining field) situations, the method also leads to new vortex shapes. In the hollow vortex case, where there is no vortex patch and the circulation is entirely due to the vortex sheet (Llewellyn Smith and Crowdy, J. Fluid Mech. 691 2012), we use the Birkhoff-Rott equation to calculate the velocity of the fluid on the vortex boundary. The combination of these two methods can then be used to calculate the shape and velocity field of the Sadovksii vortex in strain.

  1. The Development of a Plan for the Assessment, Improvement and Deployment of a Radar Acoustic Sounding System (RASS) for Wake Vortex Detection

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; McLaughlin, Dennis K.; Gabrielson, Thomas B.; Boluriaan, Said

    2004-01-01

    This report describes the activities completed under a grant from the NASA Langley Research Center to develop a plan for the assessment, improvement, and deployment of a Radar Acoustic Sounding System (RASS) for the detection of wake vortices. A brief review is provided of existing alternative instruments for wake vortex detection. This is followed by a review of previous implementations and assessment of a RASS. As a result of this review, it is concluded that the basic features of a RASS have several advantages over other commonly used wake vortex detection and measurement systems. Most important of these features are the good fidelity of the measurements and the potential for all weather operation. To realize the full potential of this remote sensing instrument, a plan for the development of a RASS designed specifically for wake vortex detection and measurement has been prepared. To keep costs to a minimum, this program would start with the development an inexpensive laboratory-scale version of a RASS system. The new instrument would be developed in several stages, each allowing for a critical assessment of the instrument s potential and limitations. The instrument, in its initial stages of development, would be tested in a controlled laboratory environment. A jet vortex simulator, a prototype version of which has already been fabricated, would be interrogated by the RASS system. The details of the laboratory vortex would be measured using a Particle Image Velocimetry (PIV) system. In the early development stages, the scattered radar signal would be digitized and the signal post-processed to determine how extensively and accurately the RASS could measure properties of the wake vortex. If the initial tests prove to be successful, a real-time, digital signal processing system would be developed as a component of the RASS system. At each stage of the instrument development and testing, the implications of the scaling required for a full-scale instrument would be

  2. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    DTIC Science & Technology

    2015-10-16

    from the surface, in a 3D version of the "vortex rebound" in 2D vortex dynamics. Many of the discoveries of phenomena in this work are seen for the... 3D vortex-wall interactions. The key to the significant reorganization of vortex structure, is the rapid circulation decay at regions along the vortex...development of vortex configurations interacting with a surface. In further studies, the dynamics of secondary vorticity and the development of 3D

  3. Topology of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Rockwell, D.

    2016-10-01

    A trailing vortex incident upon a wing can generate different modes of vortex-wing interaction. These modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing, are classified on the basis of the present experiments together with computations at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is relatively insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic interaction modes is clarified using streamline topology with associated critical points that show compatibility between complex streamline patterns in the vicinity of the tip of the wing. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-reattachment bubble bounded by downwash at the wing tip.

  4. Vortex cutting in superconductors

    NASA Astrophysics Data System (ADS)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  5. Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Corliss, James M.; Cole, Stanley, R.

    1998-01-01

    The heavy gas test medium has recently been changed in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center. A NASA Construction of Facilities project has converted the TDT heavy gas from dichlorodifluoromethane (R12) to 1,1,1,2 tetrafluoroethane (R134a). The facility s heavy gas processing system was extensively modified to implement the conversion to R134a. Additional system modifications have improved operator interfaces, hardware reliability, and quality of the research data. The facility modifications included improvements to the heavy gas compressor and piping, the cryogenic heavy gas reclamation system, and the heavy gas control room. A series of wind tunnel characterization and calibration tests are underway. Results of the flow characterization tests show the TDT operating envelope in R134a to be very similar to the previous operating envelope in R12.

  6. Rotor blade vortex interaction noise

    NASA Astrophysics Data System (ADS)

    Yu, Yung H.

    2000-02-01

    Blade-vortex interaction noise-generated by helicopter main rotor blades is one of the most severe noise problems and is very important both in military applications and community acceptance of rotorcraft. Research over the decades has substantially improved physical understanding of noise-generating mechanisms, and various design concepts have been investigated to control noise radiation using advanced blade planform shapes and active blade control techniques. The important parameters to control rotor blade-vortex interaction noise and vibration have been identified: blade tip vortex structures and its trajectory, blade aeroelastic deformation, and airloads. Several blade tip design concepts have been investigated for diffusing tip vortices and also for reducing noise. However, these tip shapes have not been able to substantially reduce blade-vortex interaction noise without degradation of rotor performance. Meanwhile, blade root control techniques, such as higher-harmonic pitch control (HHC) and individual blade control (IBC) concepts, have been extensively investigated for noise and vibration reduction. The HHC technique has proved the substantial blade-vortex interaction noise reduction, up to 6 dB, while vibration and low-frequency noise have been increased. Tests with IBC techniques have shown the simultaneous reduction of rotor noise and vibratory loads with 2/rev pitch control inputs. Recently, active blade control concepts with smart structures have been investigated with the emphasis on active blade twist and trailing edge flap. Smart structures technologies are very promising, but further advancements are needed to meet all the requirements of rotorcraft applications in frequency, force, and displacement.

  7. The effect of wing dihedral and section suction distribution on vortex bursting

    NASA Technical Reports Server (NTRS)

    Washburn, K. E.; Gloss, B. B.

    1975-01-01

    Eleven semi-span wing models were tested in the 1/8-scale model of the Langley V/STOL tunnel to qualitatively study vortex bursting. Flow visualization was achieved by using helium filled soap bubbles introduced upstream of the model. The angle of attack range was from 0 deg to 45 deg. The results show that the vortex is unstable, that is, the bursting point location is not fixed at a given angle of attack but moves within certain bounds. Upstream of the trailing edge, the bursting point location has a range of two inches; downstream, the range is about six inches. Anhedral and dihedral appear to have an insignificant effect on the vortex and its bursting point location. Altering the section suction distribution by improving the triangularity generally increases the angle of attack at which vortex bursting occurs at the trailing edge.

  8. Entry, Descent, and Landing Aerothermodynamics: NASA Langley Experimental Capabilities and Contributions

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Berger, Karen T.; Berry, Scott A.; Bruckmann, Gregory J.; Buck, Gregory M.; DiFulvio, Michael; Horvath, Thomas J.; Liechty, Derek S.; Merski, N. Ronald; Murphy, Kelly J.; Rufer, Shann J.; Schoenenberger, Mark

    2014-01-01

    A review is presented of recent research, development, testing and evaluation activities related to entry, descent and landing that have been conducted at the NASA Langley Research Center. An overview of the test facilities, model development and fabrication capabilities, and instrumentation and measurement techniques employed in this work is provided. Contributions to hypersonic/supersonic flight and planetary exploration programs are detailed, as are fundamental research and development activities.

  9. Control of vortex dynamics

    NASA Astrophysics Data System (ADS)

    Chang, Hsiao-Lung

    Discrete vortex methods are used to provide computationally efficient simulations of vortex dynamics in fluid flows. An adaptive LQG controller is applied to reduce the oscillations in the wake caused by the vortex dynamics. The controller design is based on a discrete-time input/output model rather than the nonlinear differential equations of the discrete vortex model. The control philosophy is to identify time-varying parameters in the input/output model adaptively and use the identified parameters to update the control law. For numerically stable identification, an adaptive algorithm based on inverse QR decomposition is introduced. The derivation shows that this algorithm is a square-root implementation of recursive least squares estimation. For a preliminary test of the control strategy, the adaptive LQG controller is applied to a vortex street model simulated by discrete vortices. The identification shows that the stability of the identified zeros depends on whether the sensor is upstream or downstream of the actuator. Flow past a flat plate is another important application of the discrete vortex method. A control problem is studied and simulated in which suction at the back face of the plate is used to trap vortices behind the plate. Qualitatively, the results obtained with the discrete-vortex method used here agree with earlier results for a substantially different vortex method involving a small number of differential equations.

  10. Vortex diode jet

    DOEpatents

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  11. Scientist Examines Tornado Vortex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this Quick Time movie, a scientist examines what appears to be a tornado vortex (blue) coming out of a thunderstorm. The scientist uses 3D glasses to be able to see in 3 dimensions the different flows going out into the vortex. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  12. Improved vortex reactor system

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  13. Normal Shock Vortex Interaction

    DTIC Science & Technology

    2003-03-01

    Figure 9: Breakdown map for normal-shock vortex-interaction. References [1] O. Thomer, W. Schroder and M. Meinke , Numerical Simulation of Normal...and Oblique-Shock Vortex Interaction, ZAMM Band 80, Sub. 1, pp. 181-184, 2000. [2] O. Thomer, E. Krause, W. Schroder and M. Meinke , Computational

  14. A user's guide to the Langley 16- by 24-inch water tunnel

    NASA Technical Reports Server (NTRS)

    Pendergraft, Odis C., Jr.; Neuhart, Dan H.; Kariya, Timmy T.

    1992-01-01

    The Langley 16 x 24 inch Water Tunnel is described in detail, along with all the supporting equipment used in its operation as a flow visualization test facility. These include the laser and incandescent lighting systems; and the photographic, video, and laser fluorescence anemometer systems used to make permanent records of the test results. This facility is a closed return water tunnel capable of test section velocities from 0 to 0.75 feet per second with flow through the 16 x 24 inch test section in a downward (vertical) direction. The velocity normally used for testing is 0.25 feet per second where the most uniform flow occurs, and is slow enough to easily observe flow phenomena such as vortex flow with the unaided eye. An overview is given of the operational characteristics, procedures, and capabilities of the water tunnel to potential users of the facility so that they may determine if the facility meets their needs for a planned study.

  15. Vortex cutting in superconductors

    NASA Astrophysics Data System (ADS)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  16. Aerodynamics of vortex generators

    NASA Technical Reports Server (NTRS)

    Breidenthal, Robert E., Jr.; Russell, David A.

    1988-01-01

    An experimental and theoretical study was undertaken of the separation delay and dramatic boundary-layer thinning that can occur in vortex-generator installations. Wind tunnel measurements of the dynamic-pressure profile downstream of a vortex generator were found to compare under certain conditions with that downstream of a suction slit, while water-tunnel visualization studies of vortex-generator height and geometry suggested optimum configurations, and only a minor effect of base porosity. A series of progressively more complex inviscid flow models was developed to be applied to a 3-D integral boundary-layer code. This code predicted layer thinning downstream of the suction site of the vortex models, and other observed features. Thin-layer Navier-Stokes equations are now being used with the ultimate goal of clarifying the physical processes involved in vortex generator performance and developing calculational procedures capable of predicting it.

  17. Model-Based Systems Engineering Pilot Program at NASA Langley

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

    2012-01-01

    NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

  18. Langley Wind Tunnel Data Quality Assurance-Check Standard Results

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Grubb, John P.; Krieger, William B.; Cler, Daniel L.

    2000-01-01

    A framework for statistical evaluation, control and improvement of wind funnel measurement processes is presented The methodology is adapted from elements of the Measurement Assurance Plans developed by the National Bureau of Standards (now the National Institute of Standards and Technology) for standards and calibration laboratories. The present methodology is based on the notions of statistical quality control (SQC) together with check standard testing and a small number of customer repeat-run sets. The results of check standard and customer repeat-run -sets are analyzed using the statistical control chart-methods of Walter A. Shewhart long familiar to the SQC community. Control chart results are presented for. various measurement processes in five facilities at Langley Research Center. The processes include test section calibration, force and moment measurements with a balance, and instrument calibration.

  19. Aerodynamic characteristics of a hypersonic research airplane concept having a 70 deg swept double-delta wing at Mach numbers from 0.80 to 1.20, with summary of data from 0.20 to 6.0. [Langley 8-ft transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Hallissy, J. B.; Dillon, J. L.

    1979-01-01

    The static longitudinal, lateral, and directional stability characteristics of a hypersonic research airplane concept having a 70 deg swept double-delta wing were investigated. Force tests were conducted in the Langley 8 foot transonic pressure tunnel for a Reynolds number (based on fuselage length) range of 6.30 x 10 to the 6th power to 7.03 x 10 to the 6th power, at angles of attack from about -4 deg to 23 deg, and at angles of sideslip of 0 deg and 5 deg. The configuration variables included the wing planform, tip fins, the center vertical tail, and scramjet engine modules. Variations of the more important aerodynamic parameters with Mach number for Mach numbers from 0.20 to 6.0 are summarized. A state-of-the-art example of theoretically predicting performance parameters and static longitudinal and directional stability over the Mach number range is included.

  20. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  1. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  2. Results of investigations of an 0.010-scale 140A/B configuration (model 72-OTS) of the Rockwell International space shuttle orbiter in the NASA/Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Petrozzi, M. T.; Milam, M. D.

    1975-01-01

    Experimental aerodynamic investigations were conducted in the NASA/Langley unitary plan wind tunnel on a sting mounted 0.010-scale outer mold line model of the 140A/B configuration of the Rockwell International Space Shuttle Vehicle. The primary test objectives were to obtain: (1) six component force and moment data for the mated vehicle at subsonic and transonic conditions, (2) effects of configuration build-up, (3) effects of protuberances, ET/orbiter fairings and attach structures, and (4) elevon deflection effects on wing bending moment. Six component aerodynamic force and moment data and base and balance cavity pressures were recorded over Mach numbers of 1.6, 2.0, 2.5, 2.86, 3.9, and 4.63 at a nominal Reynolds number of 20 to the 6th power per foot. Selected configurations were tested at angles of attack and sideslip from -10 deg to +10 deg. For all configurations involving the orbiter, wing bending, and torsion coefficients were measured on the right wing.

  3. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1985-01-01

    A vortex breakdown was simulated by the vortex filament method, and detailed figures are presented based on the results. Deformations of the vortex filaments showed clear and large swelling at a particular axial station which implied the presence of a recirculation bubble at that station. The tendency for two breakdowns to occur experimentally was confirmed by the simulation, and the jet flow inside the bubble was well simulated. The particle paths spiralled with expansion, and the streamlines took spiral forms at the breakdown with expansion.

  4. Vortex Lift Augmentation by Suction

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1983-01-01

    Lift performance is improved on a 60 degrees swept Gothic wing. Vortex lift at moderate to high angles of attack on highly swept wings used to improve takeoff performance and maneuverability. New design proposed in which suction of propulsion system augments vortex. Turbofan placed at down stream end of leading-edge vortex system induces vortex to flow into inlet which delays onset of vortex breakdown.

  5. Magnetic vortex oscillators

    NASA Astrophysics Data System (ADS)

    Hrkac, Gino; Keatley, Paul S.; Bryan, Matthew T.; Butler, Keith

    2015-11-01

    The magnetic vortex has sparked the interest of the academic and industrial communities over the last few decades. From their discovery in the 1970s for bubble memory devices to their modern application as radio frequency oscillators, magnetic vortices have been adopted to modern telecommunication and sensor applications. Basic properties of vortex structures in the static and dynamic regime, from a theoretical and experimental point of view, are presented as well as their application in spin torque driven nano-pillar and magnetic tunnel junction devices. Single vortex excitations and phase locking phenomena of coupled oscillators are discussed with an outlook of vortex oscillators in magnetic hybrid structures with imprinted domain confinement and dynamic encryption devices.

  6. Vortex flow hysteresis

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  7. HART-II: Prediction of Blade-Vortex Interaction Loading

    NASA Technical Reports Server (NTRS)

    Lim, Joon W.; Tung, Chee; Yu, Yung H.; Burley, Casey L.; Brooks, Thomas; Boyd, Doug; vanderWall, Berend; Schneider, Oliver; Richard, Hugues; Raffel, Markus

    2003-01-01

    During the HART-I data analysis, the need for comprehensive wake data was found including vortex creation and aging, and its re-development after blade-vortex interaction. In October 2001, US Army AFDD, NASA Langley, German DLR, French ONERA and Dutch DNW performed the HART-II test as an international joint effort. The main objective was to focus on rotor wake measurement using a PIV technique along with the comprehensive data of blade deflections, airloads, and acoustics. Three prediction teams made preliminary correlation efforts with HART-II data: a joint US team of US Army AFDD and NASA Langley, German DLR, and French ONERA. The predicted results showed significant improvements over the HART-I predicted results, computed about several years ago, which indicated that there has been better understanding of complicated wake modeling in the comprehensive rotorcraft analysis. All three teams demonstrated satisfactory prediction capabilities, in general, though there were slight deviations of prediction accuracies for various disciplines.

  8. Improved vortex reactor system

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  9. Buoyant Norbury's vortex rings

    NASA Astrophysics Data System (ADS)

    Blyth, Mark; Rodriguez-Rodriguez, Javier; Salman, Hayder

    2014-11-01

    Norbury's vortices are a one-parameter family of axisymmetric vortex rings that are exact solutions to the Euler equations. Due to their relative simplicity, they are extensively used to model the behavior of real vortex rings found in experiments and in Nature. In this work, we extend the original formulation of the problem to include buoyancy effects for the case where the fluid that lies within the vortex has a different density to that of the ambient. In this modified formulation, buoyancy effects enter the problem through the baroclinic term of the vorticity equation. This permits an efficient numerical solution of the governing equation of motion in terms of a vortex contour method that tracks the evolution of the boundary of the vortex. Finally, we compare our numerical results with the theoretical analysis of the short-time evolution of a buoyant vortex. Funded by the Spanish Ministry of Economy and Competitiveness through grant DPI2011-28356-C03-02 and by the London Mathematical Society.

  10. Atmospheric-wake vortex interactions

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.; Hirsh, J. E.; Teske, M. E.; Hecht, A. M.

    1978-01-01

    The interactions of a vortex wake with a turbulent stratified atmosphere are investigated with the computer code WAKE. It is shown that atmospheric shear, turbulence, and stratification can provide the dominant mechanisms by which vortex wakes decay. Computations included the interaction of a vortex wake with a viscous ground plane. The observed phenomenon of vortex bounce is explained in terms of secondary vorticity produced on the ground. This vorticity is swept off the ground and advected about the vortex pair, thereby altering the classic hyperbolic trajectory. The phenomenon of the solitary vortex is explained as an interaction of a vortex with crosswind shear. Here, the vortex having the sign opposite that of the sign of the vorticity in the shear is dispersed by a convective instability. This instability results in the rapid production of turbulence which in turn disperses the smoke marking the vortex.

  11. Wind-tunnel free-flight investigation of a 0.15-scale model of the F-106B airplane with vortex flaps

    NASA Technical Reports Server (NTRS)

    Yip, Long P.

    1987-01-01

    An investigation to determine the effects of vortex flaps on the flight dynamic characteristics of the F-106B in the area of low-speed, high-angle-of-attack flight was undertaken on a 0.15-scale model of the airplane in the Langley 30- by 60-Foot Tunnel. Static force tests, dynamic forced-oscillation tests, as well as free-flight tests were conducted to obtain a data base on the flight characteristics of the F-106B airplane with vortex flaps. Vortex flap configurations tested included a full-span gothic flap, a full-span constant-chord flap, and a part-span gothic flap.

  12. Development of a nonlinear vortex method. [steady and unsteady aerodynamic loads of highly sweptback wings

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.

    1981-01-01

    Progress is reported in the development of reliable nonlinear vortex methods for predicting the steady and unsteady aerodynamic loads of highly sweptback wings at large angles of attack. Abstracts of the papers, talks, and theses produced through this research are included. The modified nonlinear discrete vortex method and the nonlinear hybrid vortex method are highlighted.

  13. Controlling vortex motion and vortex kinetic friction

    NASA Astrophysics Data System (ADS)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  14. Practical Application of NASA-Langley Advanced Satellite Products to In-Flight Icing Nowcasts

    NASA Technical Reports Server (NTRS)

    Bernstein, Ben C.; Wolff, Cory A.; Minnis, Patrick

    2006-01-01

    Experimental satellite-based icing products developed by the NASA Langley Research Center provide new tools to identify the locations of icing and its intensity. Since 1997, research forecasters at the National Center for Atmospheric Research (NCAR) have been helping to guide the NASA Glenn Research Center's Twin Otter aircraft into and out of clouds and precipitation for the purpose of characterizing in-flight icing conditions, including supercooled large drops, the accretions that result from such encounters and their effect on aircraft performance. Since the winter of 2003-04, the NASA Langley satellite products have been evaluated as part of this process, and are being considered as an input to NCAR s automated Current Icing Potential (CIP) products. This has already been accomplished for a relatively straightforward icing event, but many icing events have much more complex characteristics, providing additional challenges to all icing diagnosis tools. In this paper, four icing events with a variety of characteristics will be examined, with a focus on the NASA Langley satellite retrievals that were available in real time and their implications for icing nowcasting and potential applications in CIP.

  15. Electronic document distribution: Design of the anonymous FTP Langley Technical Report Server

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Gottlich, Gretchen L.

    1994-01-01

    An experimental electronic dissemination project, the Langley Technical Report Server (LTRS), has been undertaken to determine the feasibility of delivering Langley technical reports directly to the desktops of researchers worldwide. During the first six months, over 4700 accesses occurred and over 2400 technical reports were distributed. This usage indicates the high level of interest that researchers have in performing literature searches and retrieving technical reports at their desktops. The initial system was developed with existing resources and technology. The reports are stored as files on an inexpensive UNIX workstation and are accessible over the Internet. This project will serve as a foundation for ongoing projects at other NASA centers that will allow for greater access to NASA technical reports.

  16. NASA-Langley Web-Based Operational Real-time Cloud Retrieval Products from Geostationary Satellites

    NASA Technical Reports Server (NTRS)

    Palikonda, Rabindra; Minnis, Patrick; Spangenberg, Douglas A.; Khaiyer, Mandana M.; Nordeen, Michele L.; Ayers, Jeffrey K.; Nguyen, Louis; Yi, Yuhong; Chan, P. K.; Trepte, Qing Z.; Chang, Fu-Lung; Smith, William L, Jr.

    2006-01-01

    At NASA Langley Research Center (LaRC), radiances from multiple satellites are analyzed in near real-time to produce cloud products over many regions on the globe. These data are valuable for many applications such as diagnosing aircraft icing conditions and model validation and assimilation. This paper presents an overview of the multiple products available, summarizes the content of the online database, and details web-based satellite browsers and tools to access satellite imagery and products.

  17. Reverberation Time Measurements in the NASA Langley Exterior Effects Room (EER)

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    2006-01-01

    One-third octave band background noise and reverberation time measurements were conducted in the Exterior Effect Room (EER) at the NASA Langley Research Center. The related overall acoustic absorption of the room was calculated. The acoustic field in the room was characterized. Reverberation time measurements were performed using the integrated impulse response method. The results were compared with independent measurements using the interrupted noise reverberation time method and different instrumentation. Reasonable agreement was obtained between the reverberation times of the two methods.

  18. Coupled particle dispersion by three-dimensional vortex structures

    SciTech Connect

    Troutt, T.R.; Chung, J.N.; Crowe, C.T.

    1996-12-31

    The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.

  19. Holographic Flow Visualization at NASA Langley

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Goad, W. K.

    2005-01-01

    Holographic flow visualization systems at two NASA Langley facilities, a hypersonic blow-down tunnel using CF4 gas and an expansion tube with very short test time, are described. A pulsed ruby laser is used at a CF4 tunnel for single pulse holography, double pulse with several minutes between exposures, and dual plate holographic interferometry. Shadow-graph, schlieren, and interferograms are reconstructed from the holograms in a separate reconstruction lab. At the expansion tube the short run time of 200 microseconds requires precise triggering of its double pulsed ruby laser. With pulse separation, one pulse can occur before and one after flow is established to obtain fringe free background interferograms (perfect infinite fringe) or both pulses can occur during flow in order to study flow instabilities. Holograms are reconstructed at the expansion tube with an in-place setup which makes use of a high power CW Argon laser and common optics for both recording and reconstructing the holograms. The holographic systems at the CF4 tunnel and expansion tube are operated routinely for flow visualization by tunnel technicians. Typical flow visualization photographs from both facilities are presented.

  20. Holographic flow visualization at NASA Langley

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Goad, W. K.

    1979-01-01

    Holographic flow visualization systems at two NASA Langley facilities, a hypersonic blow-down tunnel using CF4 gas and an expansion tube with very short test time, are described. A pulsed ruby laser is used at a CF4 tunnel for single pulse holography, double pulse with several minutes between exposures, and dual plate holographic interferometry. Shadowgraph, schlieren, and interferograms are reconstructed from the holograms in a separate reconstruction lab. At the expansion tube the short run time of 200 microseconds requires precise triggering of its double pulsed ruby laser. With double pulse capability of 20 to 1200 microseconds pulse separation, one pulse can occur before and one later after flow is established to obtain fringe free background interferograms (perfect infinite fringe) or both pulses can occur during flow in order to study flow instabilities. Holograms are reconstructed at the expansion tube with an in-place setup which makes use of a high power CW Argon laser and common optics for both recording and reconstructing the holograms. The holographic systems at the CF4 tunnel and expansion tube are operated routinely for flow visualization by tunnel technicians. Typical flow visualization photographs from both facilities are presented.

  1. Airflow Research

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is an overview of research being done in laminar flow at Ames Dryden Flight Research Center and Langley Research Center. Airflow research at Ames Dryden has resulted in a special wing covering that will artificially induce laminar flow on the wing surface; this specially adapted wing is shown being tested in different flying conditions. This video also features research done at Langley in producing a chemical covering for wings that will make visible natural laminar flow and turbulent airflow patterns as they occur. Langley researchers explain possible use of this technology in supersonic flight.

  2. Investigation of Vortex Flaps and Other Flow Control Devices on Generic High-Speed Civil Transport Planforms

    NASA Technical Reports Server (NTRS)

    Kjerstad, Kevin J.; Campbell, Bryan A.; Gile, Brenda E.; Kemmerly, Guy T.

    1999-01-01

    A parametric cranked delta planform study has been conducted in the Langley 14- by 22-Foot Subsonic Tunnel with the following objectives: (1) to evaluate the vortex flap design methodology for cranked delta wings, (2) to determine the influence of leading-edge sweep and the outboard wing on vortex flap effectiveness, (3) to evaluate novel flow control concepts, and (4) to validate unstructured grid Euler computer code predictions with modeled vortex and trailing-edge flaps. Two families of cranked delta planforms were investigated. One family had constant aspect ratio, while the other had a constant nondimensional semispan location of the leading-edge break. The inboard leading-edge sweep of the planforms was varied between 68 deg., 71 deg., and 74 deg., while outboard leading-edge sweep was varied between 48 deg. and 61 deg. Vortex flaps for the different planforms were designed by an analytical vortex flap design method. The results indicate that the effectiveness of the vortex flaps was only slightly influenced by the variations in the parametric planforms. The unstructured grid Euler computer code was successfully used to model the configurations with vortex flaps. The vortex trap concept was successfully demonstrated.

  3. Updated Results for the Wake Vortex Inverse Model

    NASA Technical Reports Server (NTRS)

    Robins, Robert E.; Lai, David Y.; Delisi, Donald P.; Mellman, George R.

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an Inverse Model for inverting aircraft wake vortex data. The objective of the inverse modeling is to obtain estimates of the vortex circulation decay and crosswind vertical profiles, using time history measurements of the lateral and vertical position of aircraft vortices. The Inverse Model performs iterative forward model runs using estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Iterations are performed until a user-defined criterion is satisfied. Outputs from an Inverse Model run are the best estimates of the time history of the vortex circulation derived from the observed data, the vertical crosswind profile, and several vortex parameters. The forward model, named SHRAPA, used in this inverse modeling is a modified version of the Shear-APA model, and it is described in Section 2 of this document. Details of the Inverse Model are presented in Section 3. The Inverse Model was applied to lidar-observed vortex data at three airports: FAA acquired data from San Francisco International Airport (SFO) and Denver International Airport (DEN), and NASA acquired data from Memphis International Airport (MEM). The results are compared with observed data. This Inverse Model validation is documented in Section 4. A summary is given in Section 5. A user's guide for the inverse wake vortex model is presented in a separate NorthWest Research Associates technical report (Lai and Delisi, 2007a).

  4. LDEF polymeric materials: A summary of Langley characterization

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Whitley, Karen S.; Kalil, Carol R.; Siochi, Emilie J.; Shen, James Y.; Chang, A. C.

    1995-01-01

    The NASA Long Duration Exposure Facility (LDEF) enabled the exposure of a wide variety of materials to the low earth orbit (LEO) environment. This paper provides a summary of research conducted at the Langley Research Center into the response of selected LDEF polymers to this environment. Materials examined include graphite fiber reinforced epoxy, polysulfone, and additional polyimide matrix composites, films of FEP Teflon, Kapton, several experimental high performance polyimides, and films of more traditional polymers such as poly(vinyl toluene) and polystyrene. Exposure duration was either 10 months or 5.8 years. Flight and control specimens were characterized by a number of analytical techniques including ultraviolet-visible and infrared spectroscopy, thermal analysis, scanning electron and scanning tunneling microscopy, x-ray photoelectron spectroscopy, and, in some instances, selected solution property measurements. Characterized effects were found to be primarily surface phenomena. These effects included atomic oxygen-induced erosion of unprotected surfaces and ultraviolet-induced discoloration and changes in selected molecular level parameters. No gross changes in molecular structure or glass transition temperature were noted. The intent of this characterization is to increase our fundamental knowledge of space environmental effects as an aid in developing new and improved polymers for space application. A secondary objective is to develop benchmarks to enhance our methodology for the ground-based simulation of environmental effects so that polymer performance in space can be more reliably predicted.

  5. Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Scallion, William I.

    2005-01-01

    As part of the research effort at NASA in support of the stage separation and ascent aerothermodynamics research program, proximity testing of a generic bimese wing-body configuration was conducted in NASA Langley's Aerothermodynamics Laboratory in the 20-Inch Mach 6 Air Tunnel. The objective of this work is the development of experimental tools and testing methodologies to apply to hypersonic stage separation problems for future multi-stage launch vehicle systems. Aerodynamic force and moment proximity data were generated at a nominal Mach number of 6 over a small range of angles of attack. The generic bimese configuration was tested in a belly-to-belly and back-to-belly orientation at 86 relative proximity locations. Over 800 aerodynamic proximity data points were taken to serve as a database for code validation. Longitudinal aerodynamic data generated in this test program show very good agreement with viscous computational predictions. Thus a framework has been established to study separation problems in the hypersonic regime using coordinated experimental and computational tools.

  6. Overview of NASA Langley's Piezoelectric Ceramic Packaging Technology and Applications

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.

    2007-01-01

    Over the past decade, NASA Langley Research Center (LaRC) has developed several actuator packaging concepts designed to enhance the performance of commercial electroactive ceramics. NASA LaRC focused on properly designed actuator and sensor packaging for the following reasons, increased durability, protect the working material from the environment, allow for proper mechanical and electrical contact, afford "ready to use" mechanisms that are scalable, and develop fabrication methodology applicable to any active material of the same physical class. It is more cost effective to enhance or tailor the performance of existing systems, through innovative packaging, than to develop, test and manufacture new materials. This approach led to the development of several solid state actuators that include THUNDER, the Macrofiber Composite or (MFC) and the Radial Field Diaphragm or (RFD). All these actuators are fabricated using standard materials and processes derived from earlier concepts. NASA s fabrication and packaging technology as yielded, piezoelectric actuators and sensors that are easy to implement, reliable, consistent in properties, and of lower cost to manufacture in quantity, than their predecessors (as evidenced by their continued commercial availability.) These piezoelectric actuators have helped foster new research and development in areas involving computational modeling, actuator specific refinements, and engineering system redesign which led to new applications for piezo-based devices that replace traditional systems currently in use.

  7. Vortex Generator Model Developed for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2002-01-01

    A computational model was developed at the NASA Glenn Research Center to investigate possible uses of vortex generators (VG's) for improving the performance of turbomachinery. A vortex generator is a small, winglike device that generates vortices at its tip. The vortices mix high-speed core flow with low-speed boundary layer flow and, thus, can be used to delay flow separation. VG's also turn the flow near the walls and, thus, can be used to control flow incidence into a turbomachinery blade row or to control secondary flows.

  8. Vortex noise from nonrotating cylinders and airfoils

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amiet, R. K.; Fink, M. R.

    1976-01-01

    An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.

  9. Langley Mobile Ozone Lidar (LMOL) results from the Denver, CO DISCOVER-AQ campaign

    NASA Astrophysics Data System (ADS)

    De Young, Russell; Carrion, William; Pliutau, Denis; Ganoe, Rene

    2015-10-01

    The Langley Mobile Ozone Lidar (LMOL) is a compact mobile differential absorption lidar (DIAL) system that was developed at NASA Langley Research Center, Hampton, VA, USA to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric air quality campaigns. This lidar is part of the Tropospheric Ozone Lidar Network (TOLNet) currently made up of six other ozone lidars across the U.S and Canada. This lidar has been deployed to Denver, CO July 15-August 15, 2014 for the DISCOVER-AQ air quality campaign. Ozone and aerosol profiles were taken showing the influence of emissions from the Denver region. Results of ozone concentration, aerosol scattering ratio, boundary layer height and clouds will be presented with emphasis on regional air quality.

  10. The Design of a High-Q, MACH-5 Nozzle for the Langley 8-Foot HTT

    NASA Technical Reports Server (NTRS)

    Gaffey, Richard L., Jr.; Stewart, Brian K.; Harvin, Stephen F.

    2006-01-01

    A new nozzle has ben designed for the NASA Langley Research Center 8-Foot High Temperature Tunnel. The new nozzle was designed with a Mach-5 exit flow at a Mach-5 flight-enthalpy test condition and has a smaller throat area than the existing Mach-5 nozzle which significantly increases the range of dynamic pressures that can be achieved in the facility. The nozzle was designed using the NASA Langley IMOCND computer program which solves the potential equation using the classical method of characteristics. Several axisymmetric nozzle contours were generated and evaluated using viscous computational fluid dynamics. A number of items were considered in the evaluation, including flow uniformity, thermal and structural design, manufacturing schedule and cost. Once the final contour was selected, studies were done to determine the effects of manufacturing irregularities (steps and cavities at joints). These studies were done to develop manufacturing specifications and assembly tolerances.

  11. Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.

    2004-01-01

    NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.

  12. Magnetic vortex racetrack memory

    NASA Astrophysics Data System (ADS)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  13. Aircraft vortex marking program

    NASA Technical Reports Server (NTRS)

    Pompa, M. F.

    1979-01-01

    A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.

  14. Electric vortex in MHD flow

    SciTech Connect

    Garcia, M.

    1995-05-01

    An electric vortex is the circulation of electron space charge about a magnetic field line that is transported by ion momentum. In cold, or low {beta} flow the vortex diameter is the minimum length scale of charge neutrality. The distinctive feature of the vortex is its radial electric field which manifests the interplay of electrostatics, magnetism, and motion.

  15. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  16. The 1992 NASA Langley Measurement Technology Conference: Measurement Technology for Aerospace Applications in High-Temperature Environments

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Editor); Antcliff, Richard R. (Editor)

    1992-01-01

    An intensive 2-day conference to discuss the current status of measurement technology in the areas of temperature/heat flux, stress/strain, pressure, and flowfield diagnostics for high temperature aerospace applications was held at Langley Research Center, Hampton, Virginia, on April 22 and 23, 1993. Complete texts of the papers presented at the Conference are included in these proceedings.

  17. U-shaped Vortex Structures in Large Scale Cloud Cavitation

    NASA Astrophysics Data System (ADS)

    Cao, Yantao; Peng, Xiaoxing; Xu, Lianghao; Hong, Fangwen

    2015-12-01

    The control of cloud cavitation, especially large scale cloud cavitation(LSCC), is always a hot issue in the field of cavitation research. However, there has been little knowledge on the evolution of cloud cavitation since it is associated with turbulence and vortex flow. In this article, the structure of cloud cavitation shed by sheet cavitation around different hydrofoils and a wedge were observed in detail with high speed camera (HSC). It was found that the U-shaped vortex structures always existed in the development process of LSCC. The results indicated that LSCC evolution was related to this kind of vortex structures, and it may be a universal character for LSCC. Then vortex strength of U-shaped vortex structures in a cycle was analyzed with numerical results.

  18. Simulations of Active Vortex Generators

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.; Koumoutsakos, P.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    We are interested in the study, via numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. we consider generators that consist of a surface cavity elongated in the streamwise direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise vorticity is generated and ejected due to the oscillatory motion of the lid. The present simulations complement relevant experimental investigations of active vortex generators that have been conducted at NASA Ames Research Center and Stanford University used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds We are simulating the flows generated by these devices and we are conducting a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin (1994). The viscous effects are taken into account by modifying the strength Of the particles, whereas fast multipole schemes employing hundreds of thousands of particles allow for high resolution simulations. We shall present simulation results of an oscillating plate at various Reynolds numbers and Strouhal frequencies.

  19. Simulations of Active Vortex Generators

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.; Koumoutsakos, P.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    We are interested in the study, via numerical simulations, of active vortex generators. Vortex generators may be used to modify the inner part of the boundary layer or to control separation thus enhancing the performance and maneuverability of aerodynamic configurations. We consider generators that consist of a surface cavity elongated in the streamwise direction and partially covered with a moving lid that at rest lies flush with the boundary. Streamwise voracity is generated and ejected due to the oscillatory motion of the lid. The present simulations c Implement relevant experimental investigations of active vortex generators that have been conducted at NASA Ames Research Center and Stanford University. Jacobson and Reynolds used a piezoelectric device in water, allowing for small amplitude high frequency oscillations. They placed the lid asymmetrically on the cavity and observed a strong outward velocity at the small gap of the cavity. Saddoughi used a larger mechanically driven device in air to investigate this flow and observed a jet emerging from the wide gap of the configuration, contrary to the findings of Jacobson and Reynolds. More recently, Lachowiez and Wlezien are investigating the flow generated by an electro-mechanically driven lid to be used for assertion control in aerodynamic applications. We are simulating the flows generated by these devices and we are conducting a parametric study that would help us elucidate the physical mechanisms present in the flow. Conventional computational schemes encounter difficulties when simulating flows around complex configurations undergoing arbitrary motions. Here we present a formulation that achieves this task on a purely Lagrangian frame by extending the formulation presented by Koumoutsakos, Leonard and Pepin. The viscous effects are taken into account by modifying the strength of the particles, whereas fast multipole schemes employing hundreds of thousands ol'particle's allow for high resolution simulations

  20. Vortex wake alleviation studies with a variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.; Greene, G. C.

    1985-01-01

    Vortex wake alleviation studies were conducted in a wind tunnel and a water towing tank using a multisegmented wing model which provided controlled and measured variations in span load. Fourteen model configurations are tested at a Reynolds number of one million and a lift coefficient of 0.6 in the Langley 4- by 7-Meter Tunnel and the Hydronautics Ship Model Basin water tank at Hydronautics, Inc., Laurel, Md. Detailed measurements of span load and wake velocities at one semispan downstream correlate well with each other, with inviscid predictions of span load and wake roll up, and with peak trailing-wing rolling moments measured in the far wake. Average trailing-wing rolling moments are found to be an unreliable indicator of vortex wake intensity because vortex meander does not scale between test facilities and free-air conditions. A tapered-span-load configuration, which exhibits little or no drag penalty, is shown to offer significant downstream wake alleviation to a small trailing wing. The greater downstream wake alleviation achieved with the addition of spoilers to a flapped-wing configuration is shown to result directly from the high incremental drag and turbulence associated with the spoilers and not from the span load alteration they cause.