Science.gov

Sample records for langmuir probe system

  1. Advanced Langmuir Probe (LP)

    NASA Technical Reports Server (NTRS)

    Voronka, N. R.; Block, B. P.; Carignan, G. R.

    1991-01-01

    The dynamic response of the MK-2 version of the Langmuir probe amplifier was studied. The settling time of the step response is increased by: (1) stray node-to-ground capacitance at series connections between high value feedback resistors; and (2) input capacitance due to the input cable, FET switches, and input source follower. The stray node-to-ground capacitances can be reduced to tolerable levels by elevating the string of feedback resistors above the printing board. A new feedback network was considered, with promising results. The design uses resistances having much lower nominal values, thereby minimizing the effect of stray capacitances. Faster settling times can be achieved by using an operational amplifier having a higher gain-bandwidth product.

  2. Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links

    SciTech Connect

    Watkins, J. G.; Rajpal, R.; Mandaliya, H.; Watkins, M.; Boivin, R. L.

    2012-10-15

    This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.

  3. Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links.

    PubMed

    Watkins, J G; Rajpal, R; Mandaliya, H; Watkins, M; Boivin, R L

    2012-10-01

    This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.

  4. High-speed dual Langmuir probe.

    PubMed

    Lobbia, Robert B; Gallimore, Alec D

    2010-07-01

    In an effort to temporally resolve the electron density, electron temperature, and plasma potential for turbulent plasma discharges, a unique high-speed dual Langmuir probe (HDLP) has been developed. A traditional single Langmuir probe of cylindrical geometry (exposed to the plasma) is swept simultaneously with a nearby capacitance and noise compensating null probe (fully insulated from the plasma) to enable bias sweep rates on a microsecond timescale. Traditional thin-sheath Langmuir probe theory is applied for interpretation of the collected probe data. Data at a sweep rate of 100 kHz are presented; however the developed system is capable of running at 1 MHz-near the upper limit of the applied electrostatic Langmuir probe theory for the investigated plasma conditions. Large sets (100,000 sweeps at each of 352 spatial locations) of contiguous turbulent plasma properties are collected using simple electronics for probe bias driving and current measurement attaining 80 dB signal-to-noise measurements with dc to 1 MHz bandwidth. Near- and far-field plume measurements with the HDLP system are performed downstream from a modern Hall effect thruster where the time-averaged plasma properties exhibit the approximate ranges: electron density n(e) from (1x10(15))-(5x10(16)) m(-3), electron temperature T(e) from 1 to 3.5 eV, and plasma potential V(p) from 5 to 15 V. The thruster discharge of 200 V (constant anode potential) and 2 A (average discharge current) displays strong, 2.2 A peak-to-peak, current oscillations at 19 kHz, characteristic of the thruster "breathing mode" ionization instability. Large amplitude discharge current fluctuations are typical for most Hall thrusters, yet the HDLP system reveals the presence of the same 19 kHz fluctuations in n(e)(t), T(e)(t), and V(p)(t) throughout the entire plume with peak-to-peak divided by mean plasma properties that average 94%. The propagation delays between the discharge current fluctuations and the corresponding plasma

  5. The Fixed-bias Langmuir Probe on the Communication-navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, Jeffrey H.; Rowland, Douglas E.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasmadensity is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future xed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  6. The Fixed-Bias Langmuir Probe on the Communication-Navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Rowland, D.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  7. The fixed-bias Langmuir probe on the Communication/Navigation Outage Forecast System satellite: calibration and validation.

    PubMed

    Klenzing, J; Rowland, D

    2012-11-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H(+) and O(+). The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the C/NOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on C/NOFS.

  8. A new compact and low cost Langmuir Probe and associated onboard data handling system for CubeSat

    NASA Astrophysics Data System (ADS)

    Muralikrishna, Polinaya; Domingos, Sinval; Paredes, Andres; Abrahão Dos Santos, Walter

    2016-07-01

    A new compact and low cost Langmuir Probe and associated onboard data handling system are being developed at Instituto Nacional de Pesquisas Espaciais for launching on board one of the future 2U CubeSat missions. The system is a simplified and compacted version of the Langmuir Probe payloads launched on board several Brazilian SONDA III rockets and also developed for the Brazilian scientific satellites SACI-1 and SACI-2. The onboard data handling system will have the dual functions of preprocessing the data collected by the Langmuir Probe and acting as the interface between the experiment and the on board computer. The Langmuir Probe sensor in the form of two rectangular stainless steel strips of total surface area of approximately 80cm2 will be deployed soon after the injection of the CubeSat into orbit. A sweep voltage varying linearly from 0V to 3.0V in about 1.5 seconds and then remaining fixed at 3.0V for 1 second will be applied to the LP sensor to obtain both the electron density and electron temperature. A high sensitivity preamplifier will be used to convert the sensor current expected to be in the range of a few nano amperes to a few micro amperes into a varying potential. In order to cover the large dynamic range of the expected sensor current the preamplifier output will be further amplified by a logarithmic amplifier before being sampled and sent to the data handling system. The data handling system is projected to handle 8 analog channels and 4 digital words of 8 bits each. The incoming data will be stored in a RAM and later sent to the on board computer using a serial RS422 communication protocol. The interface unit will process the telecommands received from the on board computer. The interface is also projected to do FFT analysis of the LP sensor data and send the averaged FFT spectral amplitudes in place of the original unprocessed data. The system details are presented here.

  9. Multiple valued floating potentials of Langmuir probes

    NASA Technical Reports Server (NTRS)

    Nam, Cheol-Hee; Hershkowitz, N.; Cho, M. H.; Intrator, T.; Diebold, D.

    1988-01-01

    It is shown that Langmuir probes can have three different floating potentials in plasmas produced by a hot filament discharge in a multi-dipole device when the primary and secondary electron currents are comparable. The measured floating potential depends on the probe's initial condition - the most negative and the least negative potentials are found to be stable and the in-between value is found to be unstable. Results are compared to a simple theoretical model.

  10. Dynamical Response of Continuum Regime Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Rappaport, H. L.

    2009-11-01

    Probe dynamic response is sometimes used as a way to increase the amount of information obtained from Langmuir probes [1]. In this poster, the effects of frequency dependent probe capacitance and coupling of probe fields to damped Langmuir waves and damped ion acoustic waves are considered. In the continuum regime, with small Debye length to spherical probe radius ratio, the probe DC current vs. voltage characteristic displays a hard saturation at sufficiently large probe potential [2]. In this regime, the sheath thickness varies little with the applied voltage although the plasma response can still be measured. A goal of the present investigation is to show that the probe dynamical response is richer as a result of modulation of sheath thickness or shielding particularly in the larger Debye length to probe radius ratio regime. Inertia inhibits ion response at sufficiently high frequency and deviation from the DC characteristic is shown.[4pt] [1] D. N. Walker, R.F. Fernsler, D.D. Blackwell, and W.E. Amatucci, Phys. Plasmas 15, 123506 (2008).[0pt] [2] E. Baum and R.L. Chapkis, AIAA J. 8, 1073 (1970).

  11. Langmuir probe analysis in electronegative plasmas

    SciTech Connect

    Bredin, Jerome Chabert, Pascal; Aanesland, Ane

    2014-12-15

    This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity α{sub 0} = n{sub –}/n{sub e} (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (n{sub e}, n{sub +}, n{sub –}), temperatures (T{sub e}, T{sub +}, T{sub –}), and masses (m{sub e}, m{sub +}, m{sub –}). The analytical curves are fitted to the experimental data by adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 5–10%, including the ion temperatures when α{sub 0} > 100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity α{sub 0} and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes.

  12. A fixed bias, floating double probe technique with simple Langmuir probe characteristics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1971-01-01

    A new floating double-probe method is presented which has advantages over other floated-probe systems previously described in literature. The method utilized two electrodes, one of constant area and the other with a variable area. The two-electrode configuration is separated by a fixed bias voltage. The current-voltage characteristics of the new technique, which are generated by varying the area of the one electrode, are identical to those of a simple Langmuir probe, thus coupling all the advantages of a floated-probe system with the simple analysis scheme generally applied to the Langmuir probe for the determination of plasma density and temperature.

  13. Langmuir Probe Measurements in Plasma Shadows

    SciTech Connect

    Waldmann, O.; Koch, B.; Fussmann, G.

    2006-01-15

    When immersing a target into a plasma streaming along magnetic field lines, a distinct shadow region extending over large distances is observed by the naked eye downstream of the target.In this work we present an experimental study of the effect applying Langmuir probes. In contrast to expectations, there are only marginal changes in the profiles of temperature and density behind masks that cut away about 50% of the plasma cross-section. On the other hand, the mean density is drastically reduced by an order of magnitude. First attempts to simulate the observations by solving the classical 2D diffusion equation were not successful.

  14. Floating Potential Probe Langmuir Probe Data Reduction Results

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Minow, Joseph I.

    2002-01-01

    During its first five months of operations, the Langmuir Probe on the Floating Potential Probe (FPP) obtained data on ionospheric electron densities and temperatures in the ISS orbit. In this paper, the algorithms for data reduction are presented, and comparisons are made of FPP data with ground-based ionosonde and Incoherent Scattering Radar (ISR) results. Implications for ISS operations are detailed, and the need for a permanent FPP on ISS is examined.

  15. Fast reciprocating Langmuir probe for the DIII-D divertor

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Hunter, J.; Tafoya, B.; Ulrickson, M.; Watson, R. D.; Moyer, R. A.; Cuthbertson, J. W.; Gunner, G.; Lehmer, R.; Luong, P.; Hill, D. N.; Mascaro, M.; Robinson, J. I.; Snider, R.; Stambaugh, R.

    1997-01-01

    A new reciprocating Langmuir probe was used to measure density and temperature profiles, ion flow, and potential fluctuation levels from the lower divertor floor up to the X point on the DIII-D Tokamak. This probe is designed to make fast (2 kHz swept, 20 kHz Mach, 500 kHz Vfloat) measurements with 2 mm spatial resolution in the region where the largest gradients on the plasma open flux tubes are found and therefore provide the best benchmarks for scrap-off layer and divertor numerical models. Profiles are constructed using the 300 ms time history of the probe measurements during the 25 cm reciprocating stroke. Both single and double null plasmas can be measured and compared with a 20 Hz divertor Thomson scattering system. The probe head is constructed of four different kinds of graphite to optimize the electrical and thermal characteristics. Electrically insulated pyrolytic graphite rings act as a heat shield to absorb the plasma heat flux on the probe shaft and are mounted on a carbon/carbon composite core for mechanical strength. The Langmuir probe sampling tips are made of a linear carbon fiber composite. The mechanical, electrical, data acquisition, and power supply systems will be described. Initial measurements will also be presented.

  16. Behavior of a Single Langmuir Probe in a Magnetic Field.

    ERIC Educational Resources Information Center

    Pytlinski, J. T.; And Others

    1978-01-01

    Describes an experiment to demonstrate the influence of a magnetic field on the behavior of a single Langmuir probe. The experiment introduces the student to magnetically supported plasma and particle behavior in a magnetic field. (GA)

  17. Hardware and software systems for the determination of charged particle parameters in low pressure plasmas using impedance-tuned Langmuir probes

    NASA Astrophysics Data System (ADS)

    Ye, Yuancai; Marcus, R. Kenneth

    1997-12-01

    A computer-controlled, impedance-tuned Langmuir probe data acquisition system and processing software package have been designed for the diagnostic study of low pressure plasmas. The combination of impedance-tuning and a wide range of applied potentials (± 100 V) provides a versatile system, applicable to a variety of analytical plasmas without significant modification. The automated probe system can be used to produce complete and undistorted current-voltage (i-V) curves with extremely low noise over the wide potential range. Based on these hardware and software systems, it is possible to determine all of the important charged particle parameters in a plasma; electron number density ( ne), ion number density ( ni), electron temperature ( Te), electron energy distribution function (EEDF), and average electron energy (<ɛ>). The complete data acquisition system and evaluation software are described in detail. A LabView (National Instruments Corporation, Austin, TX) application program has been developed for the Apple Macintosh line of microcomputers to control all of the operational aspects of the Langmuir probe experiments. The description here is mainly focused on the design aspects of the acquisition system with the targets of extremely low noise and reduction of the influence of measurement noise in the calculation procedures. This is particularly important in the case of electron energy distribution functions where multiple derivatives are calculated from the obtained i-V curves. A separate C-language data processing program has been developed and is included here to allow the reader to evaluate data obtained with the described hardware, or any i-V data imported in tab separated variable format. Both of the software systems are included on a Macintosh formatted disk for their use in other laboratories desiring these capabilities.

  18. Contamination effects on fixed-bias Langmuir probes

    SciTech Connect

    Steigies, C. T.; Barjatya, A.

    2012-11-15

    Langmuir probes are standard instruments for plasma density measurements on many sounding rockets. These probes can be operated in swept-bias as well as in fixed-bias modes. In swept-bias Langmuir probes, contamination effects are frequently visible as a hysteresis between consecutive up and down voltage ramps. This hysteresis, if not corrected, leads to poorly determined plasma densities and temperatures. With a properly chosen sweep function, the contamination parameters can be determined from the measurements and correct plasma parameters can then be determined. In this paper, we study the contamination effects on fixed-bias Langmuir probes, where no hysteresis type effect is seen in the data. Even though the contamination is not evident from the measurements, it does affect the plasma density fluctuation spectrum as measured by the fixed-bias Langmuir probe. We model the contamination as a simple resistor-capacitor circuit between the probe surface and the plasma. We find that measurements of small scale plasma fluctuations (meter to sub-meter scale) along a rocket trajectory are not affected, but the measured amplitude of large scale plasma density variation (tens of meters or larger) is attenuated. From the model calculations, we determine amplitude and cross-over frequency of the contamination effect on fixed-bias probes for different contamination parameters. The model results also show that a fixed bias probe operating in the ion-saturation region is affected less by contamination as compared to a fixed bias probe operating in the electron saturation region.

  19. Continuous heatable Langmuir probe for flowing afterglow measurements

    NASA Astrophysics Data System (ADS)

    Laubé, Sylvain; Mostefaoui, Toufik; Rowe, Bertrand

    2000-02-01

    A heatable Langmuir probe consisting of a continuous dc-heating-current loop of tungsten wire is presented. This technique is efficient to keep the probe surface clean for flowing afterglow measurements. In our experimental conditions, the perturbations on the electron density determination can be considered as very small. The measurement of the well-known rate for the dissociative recombination of O2+ shows that the gas surrounding the probe is not heated for estimated probe temperature up to 700 K.

  20. Digital smoothing of the Langmuir probe I-V characteristic

    SciTech Connect

    Magnus, F.; Gudmundsson, J. T.

    2008-07-15

    Electrostatic probes or Langmuir probes are the most common diagnostic tools in plasma discharges. The second derivative of the Langmuir probe I-V characteristic is proportional to the electron energy distribution function. Determining the second derivative accurately requires some method of noise suppression. We compare the Savitzky-Golay filter, the Gaussian filter, and polynomial fitting to the Blackman filter for digitally smoothing simulated and measured I-V characteristics. We find that the Blackman filter achieves the most smoothing with minimal distortion for noisy data.

  1. Revisiting plasma hysteresis with an electronically compensated Langmuir probe

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Singh, S. K.; Awasthi, L. M.; Mattoo, S. K.

    2012-09-01

    The measurement of electron temperature in plasma by Langmuir probes, using ramped bias voltage, is seriously affected by the capacitive current of capacitance of the cable between the probe tip and data acquisition system. In earlier works a dummy cable was used to balance the capacitive currents. Under these conditions, the measured capacitive current was kept less than a few mA. Such probes are suitable for measurements in plasma where measured ion saturation current is of the order of hundreds of mA. This paper reports that controlled balancing of capacitive current can be minimized to less than 20 μA, allowing plasma measurements to be done with ion saturation current of the order of hundreds of μA. The electron temperature measurement made by using probe compensation technique becomes independent of sweep frequency. A correction of ≤45% is observed in measured electron temperature values when compared with uncompensated probe. This also enhances accuracy in the measurement of fluctuation in electron temperature as δTpk-pk changes by ˜30%. The developed technique with swept rate ≤100 kHz is found accurate enough to measure both the electron temperature and its fluctuating counterpart. This shows its usefulness in measuring accurately the temperature fluctuations because of electron temperature gradient in large volume plasma device plasma with frequency ordering ≤50 kHz.

  2. Revisiting plasma hysteresis with an electronically compensated Langmuir probe.

    PubMed

    Srivastava, P K; Singh, S K; Awasthi, L M; Mattoo, S K

    2012-09-01

    The measurement of electron temperature in plasma by Langmuir probes, using ramped bias voltage, is seriously affected by the capacitive current of capacitance of the cable between the probe tip and data acquisition system. In earlier works a dummy cable was used to balance the capacitive currents. Under these conditions, the measured capacitive current was kept less than a few mA. Such probes are suitable for measurements in plasma where measured ion saturation current is of the order of hundreds of mA. This paper reports that controlled balancing of capacitive current can be minimized to less than 20 μA, allowing plasma measurements to be done with ion saturation current of the order of hundreds of μA. The electron temperature measurement made by using probe compensation technique becomes independent of sweep frequency. A correction of ≤45% is observed in measured electron temperature values when compared with uncompensated probe. This also enhances accuracy in the measurement of fluctuation in electron temperature as δT(pk-pk) changes by ~30%. The developed technique with swept rate ≤100 kHz is found accurate enough to measure both the electron temperature and its fluctuating counterpart. This shows its usefulness in measuring accurately the temperature fluctuations because of electron temperature gradient in large volume plasma device plasma with frequency ordering ≤50 kHz.

  3. Miniaturization of a Combination Langmuir/Mach Probe

    NASA Astrophysics Data System (ADS)

    Melnik, P. A.; Dehart, T.; Lotz, D.

    2009-11-01

    A combination Langmuir/Mach probe has been developed to measure electron temperature and density as well as ion flow speed in TCSU. The probe is fully translatable allowing it to diagnose all radial locations of the FRC at either the mid-plane, end section, or in the exhaust jets. The 1/4'' probe stalk consists of interlocking boron nitride cylinders which encompass a 1/8'' diameter stainless steel tube that houses the probe wires. In addition to the stainless steel jacket the probe wires are twisted to minimize electromagnetic noise pickup. The tip of this combo probe is composed of a boron nitride housing and eight .020'' diameter tungsten collection leads. In TCSU, the RMF used to form and sustain the FRC makes Langmuir probe measurements difficult. To this end we have developed a drive circuit that will generate the bias voltages necessary for Langmuir probe operation. This bipolar power supply can produce steady voltages up to 200 volts at loads over 1 amp and can be swept at any frequency up to 1.5 MHz. The probe current and bias voltage will be recorded with an amplifier and transmitted via fiber optic to a receiver allowing the signals to be digitized.

  4. Langmuir-probe measurements in flowing-afterglow plasmas

    SciTech Connect

    Johnsen, R.; Shun'ko, E.V.; Gougousi, T. ); Golde, M.F. )

    1994-11-01

    The validity of the orbital-motion theory for cylindrical Langmuir probes immersed in flowing-afterglow plasmas is investigated experimentally. It is found that the probe currents scale linearly with probe area only for electron-collecting but not for ion-collecting probes. In general, no agreement is found between the ion and electron densities derived from the probe currents. Measurements in recombining plasmas support the conclusion that only the [ital electron] densities derived from probe measurements can be trusted to be of acceptable accuracy. This paper also includes a brief derivation of the orbital-motion theory, a discussion of perturbations of the plasma by the probe current, and the interpretation of plasma velocities obtained from probe measurements.

  5. Langmuir-Probe Measurements in Flowing-Afterglow Plasmas

    NASA Technical Reports Server (NTRS)

    Johnsen, R.; Shunko, E. V.; Gougousi, T.; Golde, M. F.

    1994-01-01

    The validity of the orbital-motion theory for cylindrical Langmuir probes immersed in flowing- afterglow plasmas is investigated experimentally. It is found that the probe currents scale linearly with probe area only for electron-collecting but not for ion-collecting probes. In general, no agreement is found between the ion and electron densities derived from the probe currents. Measurements in recombining plasmas support the conclusion that only the electron densities derived from probe measurements can be trusted to be of acceptable accuracy. This paper also includes a brief derivation of the orbital-motion theory, a discussion of perturbations of the plasma by the probe current, and the interpretation of plasma velocities obtained from probe measurements.

  6. Langmuir-probe measurements in flowing-afterglow plasmas

    NASA Astrophysics Data System (ADS)

    Johnsen, R.; Shun'ko, E. V.; Gougousi, T.; Golde, M. F.

    1994-11-01

    The validity of the orbital-motion theory for cylindrical Langmuir probes immersed in flowing-afterglow plasmas is investigated experimentally. It is found that the probe currents scale linearly with probe area only for electron-collecting but not for ion-collecting probes. In general, no agreement is found between the ion and electron densities derived from the probe currents. Measurements in recombining plasmas support the conclusion that only the electron densities derived from probe measurements can be trusted to be of acceptable accuracy. This paper also includes a brief derivation of the orbital-motion theory, a discussion of perturbations of the plasma by the probe current, and the interpretation of plasma velocities obtained from probe measurements.

  7. Langmuir Probe Diagnostics of the VASIMR Engine

    DTIC Science & Technology

    2005-12-01

    where is measured in eV and n (density) is eKT 3cm− . This calculation will be used when determining probe size. b. Collective Behavior In a...usually refer to energy corresponding to KT when discussing plasma temperature5. 191 1.6 10KT eV x J−= = or by rearranging 19 23 1.6 10 11600...These high-energy ions would not contribute to the ion density. In 1959, Bernstein and Rabinowitz (BR) solved this problem for mono-energetic ions

  8. Langmuir Probe Spacecraft Potential End Item Specification Document

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian; Curtis, Leslie (Technical Monitor)

    2001-01-01

    This document describes the Langmuir Probe Spacecraft Potential (LPSP) investigation of the plasma environment in the vicinity of the ProSEDS Delta II spacecraft. This investigation will employ a group of three (3) Langmuir Probe Assemblies, LPAs, mounted on the Delta II second stage to measure the electron density and temperature (n(sub e) and T(sub e)), the ion density (n(sub i)), and the spacecraft potential (V(sub s)) relative to the surrounding ionospheric plasma. This document is also intended to define the technical requirements and flight-vehicle installation interfaces for the design, development, assembly, testing, qualification, and operation of the LPSP subsystem for the Propulsive Small Expendable Deployer System (ProSEDS) and its associated Ground Support Equipment (GSE). This document also defines the interfaces between the LPSP instrument and the ProSEDS Delta II spacecraft, as well as the design, fabrication, operation, and other requirements established to meet the mission objectives. The LPSP is the primary measurement instrument designed to characterize the background plasma environment and is a supporting instrument for measuring spacecraft potential of the Delta II vehicle used for the ProSEDS mission. Specifically, the LPSP will use the three LPAs equally spaced around the Delta II body to make measurements of the ambient ionospheric plasma during passive operations to aid in validating existing models of electrodynamic-tether propulsion. These same probes will also be used to measure Delta II spacecraft potential when active operations occur. When the electron emitting plasma contractor is on, dense neutral plasma is emitted. Effective operation of the plasma contactor (PC) will mean a low potential difference between the Delta II second stage and the surrounding plasma and represents one of the voltage parameters needed to fully characterize the electrodynamic-tether closed circuit. Given that the LP already needs to be well away from any

  9. Solar extreme ultraviolet sensor and advanced langmuir probe

    NASA Technical Reports Server (NTRS)

    Voronka, N. R.; Block, B. P.; Carignan, G. R.

    1992-01-01

    For more than two decades, the staff of the Space Physics Research Laboratory (SPRL) has collaborated with the Goddard Space Flight Center (GSFC) in the design and implementation of Langmuir probes (LP). This program of probe development under the direction of Larry Brace of GSFC has evolved methodically with innovations to: improve measurement precision, increase the speed of measurement, and reduce the weight, size, power consumption and data rate of the instrument. Under contract NAG5-419 these improvements were implemented and are what characterize the Advanced Langmuir Probe (ALP). Using data from the Langmuir Probe on the Pioneer Venus Orbiter, Brace and Walter Hoegy of GSFC demonstrated a novel method of monitoring the solar extreme ultraviolet (EUV) flux. This led to the idea of developing a sensor similar to a Langmuir probe specifically designed to measure solar EUV (SEUV) that uses a similar electronics package. Under this contract, a combined instrument package of the ALP and SEUV sensor was to be designed, constructed, and laboratory tested. Finally the instrument was to be flight tested as part of sounding rocket experiment to acquire the necessary data to validate this method for possible use in future earth and planetary aeronomy missions. The primary purpose of this contract was to develop the electronics hardware and software for this instrument, since the actual sensors were suppied by GSFC. Due to budget constraints, only a flight model was constructed. These electronics were tested and calibrated in the laboratory, and then the instrument was integrated into the rocket payload at Wallops Flight Facility where it underwent environmental testing. After instrument recalibration at SPRL, the payload was reintegrated and launched from the Poker Flat Research Range near Fairbanks Alaska. The payload was successfully recovered and after refurbishment underwent further testing and developing to improve its performance for future use.

  10. Experimental Assessment of Double Langmuir Probe Analysis Techniques in a Hall Thruster Plume

    DTIC Science & Technology

    2012-07-25

    magnitude higher than the extended far-field plume. Langmuir probes, an electrostatic diagnostic developed by Irving Langmuir in 1924 [5], are widely used...of Double Langmuir Probe Analysis Techniques in a Hall 5b. GRANT NUMBER Thruster Plume 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Brown, D.L...recent theoretical study of double Langmuir probes led to development of improved analytical techniques that account for probe electrode sheath

  11. Operation of a Langmuir Probe in a Photoelectron Plasma

    SciTech Connect

    Dove, Adrienne; Robertson, Scott; Horanyi, Mihaly; Poppe, Andrew; Wang Xu

    2011-11-29

    Dust transport on the lunar surface is likely facilitated by the variable electric fields that are generated by changing plasma conditions. We have developed an experimental apparatus to study lunar photoelectric phenomena and gain a better understanding of the conditions controlling dust transport. As an initial step, Langmuir probe measurements are used to characterize the photoelectron plasma produced above a Zr surface, and these techniques will be extended to CeO{sub 2} and lunar simulant surfaces.

  12. Analysis of cylindrical Langmuir probe using experiment and different theories

    SciTech Connect

    Hassouba, M. A.; Galaly, A. R.; Rashed, U. M.

    2013-03-15

    Cylindrical probe data have been analyzed using different theories in order to determine some plasma parameters (electron temperature and electron and ion densities). Langmuir probe data are obtained in a cylindrical DC glow discharge in the positive column plasma at argon gas pressures varied from 0.5 to 6 Torr and at constant discharge current equal to 10 mA. The electron density has calculated from the electron current at the space potential and from Orbital Motion Limited (OML) collisionless theory. Ion density has obtained from the OML analysis of the ion saturation currents. In addition, the electron temperature has measured by three different methods using probe and electrons currents. The electron temperature T{sub e}, plasma density n{sub e}, and space potential V{sub s}, have been obtained from the measured single cylindrical probe I-V characteristic curves. The radial distribution of the electron temperature and plasma density along the glow discharge are measured and discussed. Using the collisionless theories by Langmuir cylindrical probe and up to several Torr argon gas pressures the differences between the values of electron temperature and electron and ion densities stay within reasonable error limits.

  13. A dual-cable noise reduction method for Langmuir probes

    NASA Astrophysics Data System (ADS)

    Yang, T. F.; Zu, Q. X.; Liu, Ping

    1995-07-01

    To obtain fast time response plasma properties, electron density and electron temperature, with a Langmuir probe, the applied probe voltage has to be swept at high frequency. Due to the RC characteristics of coaxial cables, an induced noise of a square-wave form will appear when a sawtooth voltage is applied to the probe. Such a noise is very annoying and difficult to remove, particularly when the probe signal is weak. This paper discusses a noise reduction method using a dual-cable circuit. One of the cables is active and the other is a dummy. Both of them are of equal length and are laid parallel to each other. The active cable carries the applied probe voltage and the probe current signal. The dummy one is not connected to the probe. After being carefully tuned, the induced noises from both cables are nearly identical and therefore can be effectively eliminated with the use of a differential amplifier. A clean I-V characteristic curve can thus be obtained. This greatly improves the accuracy and the time resolution of the values of ne and Te.

  14. Utilization of Double Langmuir Probes on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Kafle, Nischal; Caughman, John B.; Caneses, Juan F. M.; Goulding, Richard H.; Martin, Elijah. H.; Donovan, David. C.

    2016-10-01

    Langmuir probes (LP) are a robust, simply constructed, and inexpensive diagnostic tool. They are routinely used to measure the electron temperature and density in plasmas. However, the uncompensated single-tip LP has demonstrated limitations in time fluctuating plasma potential. The measurement quality can be improved by implementing compensation or by using a double-tipped probe. Double Langmuir probes (DLPs) are referenced against each other instead of the device vessel and therefore are less susceptible to fluctuations in RF plasmas. DLPs are being used to measure plasma parameters at multiple locations in the Proto-MPEX experiment at Oak Ridge National Laboratory. Proto-MPEX is a linear plasma device that combines a helicon plasma source with additional microwave and radio frequency heating to deliver a high plasma heat flux at a target. An electron temperature of 3-6 eV and density of 3e19 - >5e19 m-3 has been measured near the target in Proto-MPEX for different magnetic field configurations, with peak magnetic fields >1 T. Plasma density and temperature tend to be higher closer to the plasma source and are strongly dependent on operating pressure. This presentation will give an overview of DLP and will provide results from multiple locations and for different operating conditions. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  15. Analysis of uncompensated Langmuir probe characteristics in radio-frequency discharges revisited

    SciTech Connect

    Oksuz, L.; Soberon, F.; Ellingboe, A.R.

    2006-01-01

    Measurements of the electron temperature, plasma density, and floating and plasma potentials with Langmuir probes in radio-frequency discharges often represent a challenge due to rf oscillations of the plasma potential. These oscillations distort the probe characteristic, resulting in wrong estimates of the plasma parameters. Both active and passive rf compensation methods have previously been used to eliminate rf fluctuation effects on the electron current drawn by an electrostatic probe. These effects on an uncompensated probe have been theoretically and experimentally studied by Garscadden and Emeleus [Proc. Phys. Soc. London 79, 535 (1962)], Boschi and Magistrelli [Nuovo Cimento 29, 487 (1963)], and Crawford [J. Appl. Phys. 34, 1897 (1963)]. They have shown theoretically that, assuming a Maxwellian distribution and sinusoidal plasma-potential oscillation, the electron temperature can be deduced directly from an uncompensated Langmuir probe trace, by taking the natural logarithm of the electron current. It is the purpose of this paper to bring back the attention onto this result, which shows that under certain discharge conditions it is not necessary to build any rf compensation in a Langmuir probe system. Here we present and reference experimental data found on the literature which support this result. Also computational data are presented.

  16. Modeling of current characteristics of segmented Langmuir probe on DEMETER

    SciTech Connect

    Imtiaz, Nadia; Marchand, Richard; Lebreton, Jean-Pierre

    2013-05-15

    We model the current characteristics of the DEMETER Segmented Langmuir probe (SLP). The probe is used to measure electron density and temperature in the ionosphere at an altitude of approximately 700 km. It is also used to measure the plasma flow velocity in the satellite frame of reference. The probe is partitioned into seven collectors: six electrically insulated spherical segments and a guard electrode (the rest of the sphere and the small post). Comparisons are made between the predictions of the model and DEMETER measurements for actual ionospheric plasma conditions encountered along the satellite orbit. Segment characteristics are computed numerically with PTetra, a three-dimensional particle in cell simulation code. In PTetra, space is discretized with an unstructured tetrahedral mesh, thus, enabling a good representation of the probe geometry. The model also accounts for several physical effects of importance in the interaction of spacecraft with the space environment. These include satellite charging, photoelectron, and secondary electron emissions. The model is electrostatic, but it accounts for the presence of a uniform background magnetic field. PTetra simulation results show different characteristics for the different probe segments. The current collected by each segment depends on its orientation with respect to the ram direction, the plasma composition, the magnitude, and the orientation of the magnetic field. It is observed that the presence of light H{sup +} ions leads to a significant increase in the ion current branch of the I-V curves of the negatively polarized SLP. The effect of the magnetic field is demonstrated by varying its magnitude and direction with respect to the reference magnetic field. It is found that the magnetic field appreciably affects the electron current branch of the I-V curves of certain segments on the SLP, whereas the ion current branch remains almost unaffected. PTetra simulations are validated by comparing the computed

  17. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  18. Cylindrical Langmuir probe measurements in an ion thruster plume

    SciTech Connect

    Semak, V.V.; Keefer, D.

    1995-12-31

    Cylindrical Langmuir probe measurements have been made in the exhaust plume of a 15 cm diameter three-grid ion thruster. Xenon gas was used as a propellant. The experiments were performed in a large vacuum chamber with background pressure values of 2 {times} 10{sup {minus}4} Torr and 3 {times} 10{sup {minus}6} Torr. A 250 {micro}m diameter tungsten probe 2.78 mm long was used in the experiments. The data collected for radial and axial scans were analyzed to provide measurements of electron temperature, plasma potential and electron density. It was found that, unlike the case of a stationary plasma, the electron saturation current is only several times higher than ion current. Small errors in the determination of the ion current component of the characteristic curve can result in significant overestimation of electron temperature. A method of data analysis was developed which includes an estimation of the collected ion current. This method is compared with a numerical particle simulation model for calculation of the ion current component.

  19. A fast reciprocating Langmuir probe for the DIII-D divertor

    SciTech Connect

    Watkins, J.G.; Hunter, J.; Tafoya, B.

    1996-11-01

    A new reciprocating Langmuir probe has been used to measure density and temperature profiles, ion flow, and potential fluctuation levels from the lower divertor floor up to the X-point on the DIII-D tokamak. This probe is designed to make fast (2 kHz swept, 20 kHz Mach, 500 kHz Vfloat) measurements with 2 mm spatial resolution in the region where the largest gradients on the plasma open flux tubes are found and therefore provide the best benchmarks for SOL and divertor numerical models. Profiles are constructed using the 300 ms time history of the probe measurements during the 25 cm reciprocating stroke. Both single and double null plasmas can be measured and compared with a 20 Hz divertor Thomson scattering system. The probe head is constructed of four different kinds of graphite to optimize the electrical and thermal characteristics. Electrically insulated pyrolytic graphite rings act as a heat shield to absorb the plasma heat flux on the probe shaft and are mounted on a carbon/carbon composite core for mechanical strength. The Langmuir probe sampling tips are made of a linear carbon fiber composite. The mechanical, electrical, data acquisition and power supply systems design will be described. Initial measurements will also be presented.

  20. Langmuir probe diagnostic suite in the C-2 field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Roche, T.; Sun, X.; Armstrong, S.; Knapp, K.; Slepchenkov, M.

    2014-11-01

    Several in situ probes have been designed and implemented into the diagnostic array of the C-2 field-reversed configuration (FRC) at Tri Alpha Energy [M. Tuszewski et al. (the TAE Team), Phys. Rev. Lett. 108, 255008 (2012)]. The probes are all variations on the traditional Langmuir probe. They include linear arrays of triple probes, linear arrays of single-tipped swept probes, a multi-faced Gundestrup probe, and an ion-sensitive probe. The probes vary from 5 to 7 mm diameter in size to minimize plasma perturbations. They also have boron nitride outer casings that prevent unwanted electrical breakdown and reduce the introduction of impurities. The probes are mounted on motorized linear-actuators allowing for programmatic scans of the various plasma parameters over the course of several shots. Each probe has a custom set of electronics that allows for measurement of the desired signals. High frequency ( > 5MHz) analog optical-isolators ensure that plasma parameters can be measured at sub-microsecond time scales while providing electrical isolation between machine and data acquisition systems. With these probes time-resolved plasma parameters (temperature, density, spatial potential, flow, and electric field) can be directly/locally measured in the FRC jet and edge/scrape-off layer.

  1. The Langmuir Probe and Waves (LPW) Instrument for MAVEN

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Ergun, R. E.; Delory, G. T.; Eriksson, A.; Westfall, J.; Reed, H.; McCauly, J.; Summers, D.; Meyers, D.

    2015-12-01

    We describe the sensors, the sensor biasing and control, the signal-processing unit, and the operation of the Langmuir Probe and Waves (LPW) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The LPW instrument is designed to measure the electron density and temperature in the ionosphere of Mars and to measure spectral power density of waves (DC-2 MHz) in Mars' ionosphere, including one component of the electric field. Low-frequency plasma waves can heat ions resulting in atmospheric loss. Higher-frequency waves are used to calibrate the density measurement and to study strong plasma processes. The LPW is part of the Particle and Fields (PF) suite on the MAVEN spacecraft. The LPW instrument utilizes two, 40 cm long by 0.635 cm diameter cylindrical sensors with preamplifiers, which can be configured to measure either plasma currents or plasma waves. The sensors are mounted on a pair of {˜}7 meter long stacer booms. The sensors and nearby surfaces are controlled by a Boom Electronics Board (BEB). The Digital Fields Board (DFB) conditions the analog signals, converts the analog signals to digital, processes the digital signals including spectral analysis, and packetizes the data for transmission. The BEB and DFB are located inside of the Particle and Fields Digital Processing Unit (PFDPU).

  2. Rocket-borne Langmuir probe for plasma density irregularities

    NASA Astrophysics Data System (ADS)

    Sinha, H. S. S.

    2013-11-01

    Ionospheric plasma density exhibits very large spatial and temporal variations known as ionosphere irregularities. These irregularities are generated by a number of processes related to plasma as well as neutral dynamics. The rocket- or satellite-borne Langmuir probe (LP) is very simple and yet a very powerful tool to measure spatial variation of plasma density enabling one to study ionosphere irregularities. This article describes how a rocket-borne LP can be used to study ionosphere irregularities. It begins with the basic principle of the LP, the ionospheric regions where it can be used, various sizes and shapes of the LP sensors, the effect of geomagnetic field and vehicle wake on LP measurements. Mechanical and electronic details of typical LP instrument are given next. Strengths, weaknesses and specifications of LP instrument are also given. Rocket-borne LP has been used by a large number of scientists in the world to study ionospheric irregularities produced through plasma instabilities in the equatorial electrojet region, in spread F and those produced by neutral turbulence. Highlights of such irregularity measurements are presented to give the reader a flavor of the type of studies which can be undertaken using a rocket-borne LP. The present capability of rocket-borne LP is to detect vertical scale sizes of ionospheric irregularities from a few km down to about 10 cm with percentage amplitudes as small as 0.001%. Finally, a few suggestions are given for the improvement the LP instrumentation for future use.

  3. Langmuir probe measurements in the Hollow Cathode Magnetron

    NASA Astrophysics Data System (ADS)

    Vukovic, Mirko; Lai, Kwok-Fai

    1997-10-01

    The Hollow Cathode Magnetron (HCM) is a new kind of a high density plasma device which has been proposed as an ionized physical vapor deposition source for semiconductor device fabrication(John C. Helmer, Kwok F. Lai, Robert L. Anderson US Patent 5,482,661, Jan. 9, 1996). The target is of high purity metal machined to resemble a hollow cathode (id. 4cm, depth 6cm). It resides in a cooled metal housing. The magnetic field (several hundred Gauss) is generated by permanent magnets stacked on the outside of the metal housing, aligned parallel to the HCM axis. At the mouth of the HCM, a magnetic cusp traps a high density plasma. Beyond the cusp, a slowly diverging magnetic field produces a low temperature (T_e ~ 2-3eV), high density (n_e ~ 10^12-10^13cm-3∝ P_DC) plume. The HCM serves to both sputter and ionize metal atoms from the target. These ions may deposit onto a silicon device wafer, enabling metal deposition into the bottom of very small (<0.5μm) high aspect ratio (>=6:1) features. The unique properties of the films deposited using the HCM will be presented and related to the plasma parameters obtained from Langmuir probe data and magnetic field modeling. discharge is on the inside wall

  4. Langmuir probe measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Kirov, B.; Asenovski, S.; Bachvarov, D.; Boneva, A.; Grushin, V.; Georgieva, K.; Klimov, S. I.

    2016-12-01

    In the current work we describe the Langmuir Probe (LP) and its operation on board the International Space Station. This instrument is a part of the scientific complex "Ostonovka". The main goal of the complex is to establish, on one hand how such big body as the International Space Station affects the ambient plasma and on the other how Space Weather factors influence the Station. The LP was designed and developed at BAS-SRTI. With this instrument we measure the thermal plasma parameters-electron temperature Te, electron and ion concentration, respectively Ne and Ni, and also the potential at the Station's surface. The instrument is positioned at around 1.5 meters from the surface of the Station, at the Russian module "Zvezda", located at the farthermost point of the Space Station, considering the velocity vector. The Multi- Purpose Laboratory (MLM) module is providing additional shielding for our instrument, from the oncoming plasma flow (with respect to the velocity vector). Measurements show that in this area, the plasma concentration is two orders of magnitude lower, in comparison with the unperturbed areas. The surface potential fluctuates between-3 and-25 volts with respect to the ambient plasma. Fast upsurges in the surface potential are detected when passing over the twilight zone and the Equatorial anomaly.

  5. Langmuir Probe Distortions and Probe Compensation in an Inductively Coupled Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Cappelli, M. A.; Kim, J. S.; Rao, M. V. V. S.; Sharma, S. P.

    1999-01-01

    In many RF discharges, Langmuir probe measurements are usually made against a background of sinusoidal (and not so sinusoidal) fluctuations in the plasma parameters such as the plasma potential (Vp), the electron number density (ne), and the electron temperature (Te). The compensation of sinusoidal fluctuations in Vp has been extensively studied and is relatively well understood. Less attention has been paid to the possible distortions introduced by small fluctuations in plasma density and/or plasma temperature, which may arise in the sheath and pre-sheath regions of RF discharges. Here, we present the results of a model simulation of probe characteristics subject to fluctuations in both Vp and ne. The modeling of probe distortion due to possible fluctuations in Te is less straightforward. A comparison is presented of calculations with experimental measurements using a compensated and uncompensated Langmuir probe in an inductively coupled GEC reference cell plasma, operating on Ar and Ar/CF4 mixtures. The plasma parameters determined from the compensated probe characteristics are compared to previous measurements of others made in similar discharges, and to our own measurements of the average electron density derived from electrical impedance measurements.

  6. H-mode Edge Turbulence and Pedestal Measurements in Pegasus Plasmas using Langmuir Probes

    NASA Astrophysics Data System (ADS)

    Kriete, D. M.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Thome, K. E.; Thompson, D. S.

    2015-11-01

    In Pegasus discharges, L-H mode transitions are induced using Ohmic heating and high-field-side fueling. H-mode plasmas have energy confinement consistent with the ITER98pb(y,2) scaling law, indications of increased electron and ion temperature, and an increase in core rotation compared to L-mode plasmas. Electron density and temperature profiles have been measured in the edge region using a scannable triple Langmuir probe on a shot-by-shot basis. In H-mode, a pressure pedestal that has a hyperbolic tangent shape and a ~ 2 cm ∇pe scale length is observed, in contrast to a linear shape in L-mode. Autopower spectra of the collected ion saturation current in H-mode discharges show a factor of ~ 3 reduction in fluctuations in the 50-200 kHz band with respect to L-mode. Two Langmuir probes with 8 cm poloidal separation have been installed on Pegasus. The turbulence correlation length in the edge will be measured by radially scanning the probes. Knowledge of the correlation length will be used to inform the design of a future 8-channel radial multiprobe array. This system will simultaneously measure the dynamic ne (R , t) , Te (R , t) , and Φ (R , t) profiles and fluctuations across the L-H mode transition and be used to investigate nonlinear ELM dynamics. Work supported by US DOE grant DE-FG02-96ER54375.

  7. Means to remove electrode contamination effect of Langmuir probe measurement in space

    NASA Astrophysics Data System (ADS)

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z.

    2012-05-01

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  8. Means to remove electrode contamination effect of Langmuir probe measurement in space.

    PubMed

    Oyama, K-I; Lee, C H; Fang, H K; Cheng, C Z

    2012-05-01

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  9. Means to remove electrode contamination effect of Langmuir probe measurement in space

    SciTech Connect

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z.

    2012-05-15

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  10. Single Langmuir probe characteristic in a magnetized plasma at the text tokamak

    SciTech Connect

    Jachmich, Stefan

    1995-05-01

    A single Langmuir probe tip was used at TEXT-Upgrade to obtain I-V characteristics in a magnetized plasma. Noisy data were reduced by a boxcar-averaging routine. Unexpected effects, namely nonsaturation of ion current, hysterises in the characteristics and I(V)-data were observed, which are in disagreement to the common single probe model. A double probe model allows parameterization of the I(V) curves and to determine the plasma properties in the scrape-off layer. It is shown in this model that a Langmuir probe does perturb the local space potential in the plasma. Comparisons were made with the triple probe technique of measuring temperatures. The nonsaturation of ion current leads to an error in the triple probe technique of order 20%.

  11. Combined Impedance Probe and Langmuir Probe Studies of the Low-Latitude E Region

    NASA Technical Reports Server (NTRS)

    Rowland, D. E.; Pfaff, R. F.; Steigies, C. T.

    2008-01-01

    The EQUIS-2 sounding rocket and radar campaign, launched from Kwajalein Atoll in 2004, included a mission to study low-latitude irregularities and electrodynamics, led by NASA GSFC. This mission included two instrumented rockets launched into the nighttime E region (apogee near 120 km), which included comprehensive electrodynamics and neutral density instrumentation. These rockets carried the first of a new generation of impedance probes, that utilize a wide-band drive signal to simultaneously measure the impedance of an antenna in a plasma as a function of frequency from 7 kEIz to 4 MHz. at a rapid cadence. This technique promises to permit true plasma spectroscopy, and resulted in the identification of multiple plasma resonances and accurate measurements of the plasma density, even in the low density nighttime E region. We present analyses of the technique and resulting spectra, and show how these data may be combined with fixed-bias Langmuir Probe data to infer the temperature structure of the E region as well as providing accurate absolute calibrations for the very high time resolution fixed-bias probe data. The data is shown to agree well with data from ionosonde, the ALTAIR radar, and the Peruvian beacon experiment.

  12. Magnetic and Langmuir Probe Measurements on the Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Eskridge, Richard; Lee, Michael H.; Martin, Adam; Hawk, Clark W.; Fimognan, Peter

    2004-01-01

    The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and ejecting them at high velocity. A plasmoid is a plasma with an imbedded closed magnetic field structure. The shape and magnetic field structure of the translating plasmoids have been measured with of an array of magnetic field probes. Six sets of two B-dot probes were constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes are wound on a square G10 form, and have an average (calibrated) NA of 9.37 x l0(exp -5) square meters, where N is the number of turns and A is the cross-sectional area. The probes were calibrated with a Helmholtz coil, driven by a high-voltage pulser to measure NA, and by a signal generator to determine the probe's frequency response. The plasmoid electron number density n(sub e) electron temperature T(sub e), and velocity ratio v/c(sub m), (where v is the bulk plasma flow velocity and c(sub m), is the ion thermal speed) have also been measured with a quadruple Langmuir probe. The Langmuir probe tips are 10 mm long, 20-mil diameter stainless steel wire, housed in a 6-inch long 4-bore aluminum rod. Measurements on PTX with argon and hydrogen from the magnetic field probes and quadruple Langmuir probe will be presented in this paper.

  13. Application of cylindrical Langmuir probes to streaming plasma diagnostics.

    NASA Technical Reports Server (NTRS)

    Segall, S. B.; Koopman, D. W.

    1973-01-01

    The current-voltage characteristics of cylindrical probes in a high velocity collisionless plasma flow have been investigated experimentally and theoretically. The plasma was generated by a focused laser pulse incident on a metallic target in vacuum. An analysis, developed from a stationary plasma analog to the flowing case, demonstrated a failure of plasma shielding of probe potential in the electron attracting region. Modifications of relatively simple previous treatments were found to be valid for computing electron current to a probe. The electron characteristics derived from the present analysis agree well with experimental results. The ion and electron portions of the characteristics are consistent with each other and with independent diagnostic measurements.

  14. Deriving large electron temperatures and small electron densities with the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, Philippe; Wahlund, Jan-Erik; Holmberg, Mika; Lewis, Geraint; Schippers, Patricia; Rochel Grimald, Sandrine; Gurnett, Donald; Coates, Andrew; Dandouras, Iannis; Waite, Hunter

    2014-05-01

    The Langmuir Probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigate the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), and manage to reproduce the observations with a reasonable precision through empirical and theoretical methods. Conversely, the modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). We finally show that a significant influence of the energetic electrons (larger than the contribution of thermal ions) is also expected in various plasma environments of the Solar System, such as at Jupiter (i.e near Ganymede, Europa, Callisto and Io), or even at Earth (in the plasmasheet, the magnetosheath or in plasma cavities). Large electron temperatures and small electron densities could potentially be derived in these environments, which may be of interest for Langmuir Probes in the Earth magnetosphere or onboard the future JUICE mission at Jupiter.

  15. LabVIEW software for analyzing Langmuir probe characteristics in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Gandhi, S.; Binwal, S.; Kabariya, H.; Karkari, S. K.

    2016-03-01

    This paper describes the methodology for processing Ampere-Volts (I-V) characteristics of the Langmuir probe in magnetized plasma using graphical programming language based on LabVIEW. Computing the plasma parameters from I-V characteristic involves several steps that include signal processing, interpolation, linear and non-linear curve fitting based on physical models, finding the derivatives of the experimental curve and determining the zero-crossing of the probe current as a function of the applied voltage. These operations are practically tedious to perform manually causing systematic errors in output parameters. To overcome this challenge, software is developed to analyze the planar Langmuir probe characteristics in magnetized plasma. The software allows simultaneous display of different plasma parameters that helps to verify the consistency of the analyzed plasma parameters with the standard probe theory. Using this software, plasma parameters are obtained in a linear plasma device and its characteristics are discussed.

  16. Langmuir Probe Measurements in an Inductively Coupled GEC Reference Cell Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    Measurements of electron number density, electron temperature, and electron energy distribution function (EEDF) using a compensated Langmuir probe have been performed on an inductively (transformer ) coupled Gaseous Electronics Conference (GEC) reference cell plasma. The plasma source is operated with CH4, CF4, or their mixtures with argon. The effect of independently driving the electrode supporting the wafer on the probe data is studied. In particular, we find that the plasma structure depends on the phase in addition to the magnitude of the power coupled to the electrode relative to that of the transformer coil. The Langmuir probe is translated in a plane parallel to the electrode to investigate the spatial structure of the plasma. The probe data is also compared with fluid model predictions.

  17. Investigation of adaptive signal processing methods for denoised I-V curve of Langmuir probe

    NASA Astrophysics Data System (ADS)

    Lee, Jung Yeol; Han, Moon-Ki; Lee, Ho-Jun; Lee, Hae June

    2016-09-01

    It is an important issue to obtain a clear second derivative of Langmuir probe I-V curve which involves the electron energy distribution function. Therefore, noise suppressions against random walk of charges are required in the experimental data. Proper numerical methods including fitting, digital smoothing, digital filtering with window function should be used to remove each types of noise to determine electron energy distribution. The calculation of electron energy distributions demands sequential algorithm of several numerical methods to reduce the noise in I-V curve. In this presentation, a new noise suppression method is suggested to achieve advanced Langmuir probe diagnostics. Combined utilization of nonlinear curve fitting and low pass filter with window function shows more precise results than the utilization of smoothing only. Therefore, results including noise analysis algorithm give new guideline of probe diagnostics.

  18. An on-line Langmuir probe technique for the study of afterglow plasmas

    NASA Astrophysics Data System (ADS)

    Spanel, Patrik

    1995-11-01

    A new analytical technique has been developed to determine from Langmuir probe characteristics the electron number densities, electron energy distribution functions and electron temperatures in thermal and near-thermal afterglow plasmas. This technique utilises a standard personal computer equipped with a simple 12-bit analogue/digital and digital/analogue converters coupled to the Langmuire probe via a specially designed differential amplifier. The energy distribution functions are obtained by numerical differentiation of the probe characteristics using a fast noise-suppressing numerical technique, the mathematical principles of which are discussed in some detail. Some sample data, which have been obtained in truly thermalised helium flowing afterglows and in argon flowing afterglow at elevated electron temperatures, are presented to demonstrate the value of this new analytical technique.

  19. Radial Density Profile in the SSX Plasma Wind Tunnel using a Double Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Weinhold, D. L.; Flanagan, K.; Gray, T.; Brown, M. R.

    2011-10-01

    We present preliminary results from a moveable double Langmuir probe in the present plasma wind tunnel configuration of SSX. The probe is designed to measure radial profiles of electron density (ne) and electron temperature (Te) across the midplane with a 1 cm resolution. Line-averaged densities from He-Ne interferometry show densities of 1 - 5 ×1015 cm-3 . In addition to mean values, we will also present electrostatic fluctuations and correlations with magnetic field measurements. The double Langmuir probe also measures local Te. Line-averaged measurements from VUV spectroscopy indicate Te ~ 10 eV . The Langmuir probe stalk diameter measures 6 . 5 mm and tip spacing is 1 . 1 mm . The SSX plasma wind tunnel has dimensions L ≅ 1 m and R = 0 . 08 m . Plasma flow speeds are v >= 50 km / s . The cylindrical copper boundary and probe surfaces are baked and cleaned in a He glow discharge to maintain excellent vacuum and surface conditions. Electrostatic measurements during merging will be presented if available. Work supported by US DOE and CMSO.

  20. On the issue of the surface contamination of a Langmuir Probe sensor: Demeter ISL results

    NASA Astrophysics Data System (ADS)

    Lebreton, J. P.

    2011-10-01

    The Demeter Instrument Sonde de Langmuir (ISL) comprises two Langmuir Probe sensors. It includes a classical cylindrical sensor and a 6-sector spherical Segmented Langmuir Probe (SLP) sensor. The CNES Demeter satellite was launched in June 2004 on a 700-km altitude high-inclination orbit. ISL worked flawlessly till the satellite was decommissioned in March 2011. It provided more than 6 years of data. For operational reasons, the science payload was only operated below magnetic latitude 65°. It was switched off twice per orbit when above 65°. A transient behavior of the ISL sensors was systematically observed each time it was turned on at the beginning of each half-orbit segment. This transient behavior is attributed to surface contamination of the sensors. Some surface contamination of the sensor is indeed inferred from the recording of a series of I-V curves at different sweep rates using a special mode designed to monitor the evolution of the surface state of the sensor during the mission. As independently observed from the comparison between Demeter ISL measurements and Ground-based radar ionospheric sounding measurements, (J.-L. Berthelier, private communication, 2011) it is shown that the electron temperature measurements performed by a contaminated Langmuir Probe are significantly higher than the true physical value. Based on the work of Piel at al., a method was developed to determine the electrical characteristics of the surface contamination layer, and to remove the effect of the contamination layer on the determination of the main plasma parameters from the analysis of the I-V curve (the plasma electron density Ne and the Electron temperature Ne). Potential contamination issues for Langmuir Probes on future planetary mission orbiters will be addressed and ways to avoid or at least mitigate the effects of will be discussed.

  1. Plasma monitoring of the RLVIP-process with a Langmuir probe

    NASA Astrophysics Data System (ADS)

    Huber, D.; Hallbauer, A.; Pulker, H. K.

    2005-09-01

    The aim of this investigation was to study the characteristics of a reactive-low-voltage-high-current-ion-plating plasma and to correlate the observed plasma data with the properties of films deposited under such conditions. A Langmuir probe system (Smart Probe - Scientific Systems) was inserted into a Balzers BAP 800 ion plating plant above the e-gun evaporation source close to the insulated substrate holder. In this position during RLVIP deposition, plasma potential, floating potential, self-bias voltage, electron temperature, ion current density, and particle number density were measured and calculated, respectively. All measurements were performed in dependence of arc current (20-80A) and oxygen partial pressure (1 - 36 x 10-4mbar). With rising arc current the number of charged particles, the self-bias voltage between plasma and substrates as well as the energy of the condensing and bombarding species were increased. These data explain the increase of density, refractive index and mechanical stress of RLVIP-metal-oxide-layers, like Ta2O5 and Nb2O5, deposited with higher arc currents. An increase of gas pressure decreased the energy of the particles and therefore reduced slightly film density and refractive index. However, it improved chemistry and eliminated unwanted residual optical absorption and also decreased compressive mechanical film stress.

  2. On the interpretation of Langmuir probe data inside a spacecraft sheath.

    PubMed

    Olson, J; Brenning, N; Wahlund, J-E; Gunell, H

    2010-10-01

    If a Langmuir probe is located inside the sheath of a negatively charged spacecraft, there is a risk that the probe characteristic is modified compared to that of a free probe in the ambient plasma. We have studied this probe-in-spacecraft-sheath problem in the parameter range of a small Langmuir probe (with radius r(LP)≪λ(D)) using a modified version of the orbit motion limited (OML) probe theory. We find that the ambient electron contribution I(e)(U(LP)) to the probe characteristic is suitably analyzed in terms of three regions of applied probe potential U(LP). In region I, where the probe is negatively charged (i.e., U(LP)probe position), the probe characteristic I(e)(U(LP)) is close to that of OML theory for a free probe in the ambient plasma. In the probe potential range U(LP)>U(1), there is first a transition region II in applied potential, U(1)probe and the ambient plasma. This minimum gives the depth U(pl)-U(M) of a potential barrier that prevents the lowest energy ambient electrons from reaching the probe. For a high enough positive probe potential, in region III, the barrier becomes small. Here, I(e)(U(LP)) again approaches OML theory for a free probe. The boundary U(2) between regions II and III is somewhat arbitrary; we propose a condition on the barrier, U(pl)-U(M)≪k(B)T(e)/e, as the definition of region III. The main findings in this work are qualitative rather than quantitative. The existence of the transition region points to that special care must be taken to extract plasma parameters from measured I(U(LP)) as the probe characteristic is likely to depart from usual OML in crucial respects: (1) the ambient plasma potential U(pl) falls into the transition region, but there is no obvious knee or other feature to identify it, (2) there is in this region no exponential part of I

  3. On the interpretation of Langmuir probe data inside a spacecraft sheath

    SciTech Connect

    Olson, J.; Brenning, N.; Wahlund, J.-E.; Gunell, H.

    2010-10-15

    If a Langmuir probe is located inside the sheath of a negatively charged spacecraft, there is a risk that the probe characteristic is modified compared to that of a free probe in the ambient plasma. We have studied this probe-in-spacecraft-sheath problem in the parameter range of a small Langmuir probe (with radius r{sub LP}<<{lambda}{sub D}) using a modified version of the orbit motion limited (OML) probe theory. We find that the ambient electron contribution I{sub e}(U{sub LP}) to the probe characteristic is suitably analyzed in terms of three regions of applied probe potential U{sub LP}. In region I, where the probe is negatively charged (i.e., U{sub LP}probe position), the probe characteristic I{sub e}(U{sub LP}) is close to that of OML theory for a free probe in the ambient plasma. In the probe potential range U{sub LP}>U{sub 1}, there is first a transition region II in applied potential, U{sub 1}probe and the ambient plasma. This minimum gives the depth U{sub pl}-U{sub M} of a potential barrier that prevents the lowest energy ambient electrons from reaching the probe. For a high enough positive probe potential, in region III, the barrier becomes small. Here, I{sub e}(U{sub LP}) again approaches OML theory for a free probe. The boundary U{sub 2} between regions II and III is somewhat arbitrary; we propose a condition on the barrier, U{sub pl}-U{sub M}<probe characteristic is likely to depart from usual OML in crucial respects: (1) the ambient plasma potential U{sub pl} falls into the transition

  4. Multi-surface Langmuir probe observations from the MTeX and WADIS rocket campaigns

    NASA Astrophysics Data System (ADS)

    Barjatya, A.; Collins, R. L.; Strelnikov, B.; Friedrich, M.; Varney, R. H.; Lehmacher, G. A.

    2015-12-01

    We present results from two mesospheric rocket campaigns: MTeX rockets from Poker Flat Research Range and WADIS rockets from the Andoya Rocket Range. The various payloads carried a novel multi-surface Langmuir probe: three fixed bias Langmuir probes, each with a different work function. In addition to collecting thermal electrons, each surface interacts differently with the neutral constituents of the mesosphere: neutral metal atoms, mesospheric smoke particles, ice particles, etc. The WADIS campaign had one rocket each in polar winter and summer, whereas MTeX campaign had two rockets within half hour of each other in polar winter. We show the data from all rockets and estimate various particle densities from the measured current data.

  5. Langmuir Probe Measurements of Capacitive Radio Frequency Discharge for Mixture Gases

    NASA Astrophysics Data System (ADS)

    Tanisli, Murat; Sahin, Neslihan; Demir, Suleyman

    2016-10-01

    Radio frequency discharges at low pressure have been used for very much applications, but their properties have not well-known for plasma diagnostics. In this study, mixture discharges are obtained at the quartz glass reactor for different powers and flow rates under the laboratory conditions, and then the optical properties of gas discharges are examined by means of Langmuir probe. When the flow rates of gases and power values are changed, it can be investigated that how the plasma parameters change. Debye length is one of the important plasma parameters. Thus, the relationship between the mixture amount of two different gases and Debye length is determined from Langmuir probe data. The graphs obtained by using these data will give information about generating the discharge of mixture gases, in detail. Therefore, the results may be the useful reference for future works of industrial applications.

  6. Four free parameter empirical parametrization of glow discharge Langmuir probe data.

    PubMed

    Azooz, A A

    2008-10-01

    For the purpose of developing a simple empirical model capable of producing the electron energy distribution function (EEDF) from Langmuir probe I-V characteristics, a four parameter empirical equation that fits most Langmuir probe experimental data is suggested. The four free fitting parameters are related to the main plasma properties. These properties include the ion and electron saturation currents and the plasma electron temperature. This equation can be readily differentiated twice to give the EEDF according to the Druyvesteyn formula. Furthermore, a MATLAB platform based computer code based on this model yielding results for the plasma potential and all plasma parameters mentioned above is presented. The information given below can be used to write other computer codes for the same purpose in any other programming language.

  7. Four free parameter empirical parametrization of glow discharge Langmuir probe data

    NASA Astrophysics Data System (ADS)

    Azooz, A. A.

    2008-10-01

    For the purpose of developing a simple empirical model capable of producing the electron energy distribution function (EEDF) from Langmuir probe I-V characteristics, a four parameter empirical equation that fits most Langmuir probe experimental data is suggested. The four free fitting parameters are related to the main plasma properties. These properties include the ion and electron saturation currents and the plasma electron temperature. This equation can be readily differentiated twice to give the EEDF according to the Druyvesteyn formula. Furthermore, a MATLAB platform based computer code based on this model yielding results for the plasma potential and all plasma parameters mentioned above is presented. The information given below can be used to write other computer codes for the same purpose in any other programming language.

  8. Four free parameter empirical parametrization of glow discharge Langmuir probe data

    SciTech Connect

    Azooz, A. A.

    2008-10-15

    For the purpose of developing a simple empirical model capable of producing the electron energy distribution function (EEDF) from Langmuir probe I-V characteristics, a four parameter empirical equation that fits most Langmuir probe experimental data is suggested. The four free fitting parameters are related to the main plasma properties. These properties include the ion and electron saturation currents and the plasma electron temperature. This equation can be readily differentiated twice to give the EEDF according to the Druyvesteyn formula. Furthermore, a MATLAB platform based computer code based on this model yielding results for the plasma potential and all plasma parameters mentioned above is presented. The information given below can be used to write other computer codes for the same purpose in any other programming language.

  9. Dynamical changes of ion current distribution for a Penning discharge source using a Langmuir probe arraya)

    NASA Astrophysics Data System (ADS)

    Li, M.; Xiang, W.; Xiao, K. X.; Chen, L.

    2012-02-01

    A paralleled plate electrode and a 9-tip Langmuir probe array located 1 mm behind the extraction exit of a cold cathode Penning ion source are employed to measure the total current and the dynamical changes of the ion current in the 2D profile, respectively. Operation of the ion source by 500 V DC power supply, the paralleled plate electrode and the Langmuir probe array are driven by a bias voltage ranging from -200 V to 200 V. The dependence of the total current and the dynamical changes of the ion current in the 2D profile are presented at the different bias voltage. The experimental results show that the distribution of ion current is axial symmetry and approximate a unimodal distribution.

  10. Characterization of helium/argon working gas systems in a radiofrequency glow discharge atomic emission source. Part II: Langmuir probe and emission intensity studies for Al, Cu and Macor samples

    NASA Astrophysics Data System (ADS)

    Belkin, Mikhail; Caruso, Joseph A.; Christopher, Steven J.; Marcus, R. Kenneth

    1998-08-01

    The application of a tuned Langmuir probe is extended to the measurement of the charged particle characteristics (electron and ion number density, average electron energy and electron temperature) in an analytical radiofrequency glow discharge (RF-GD) in helium. The effects of discharge operating conditions, such as RF power and pressure, on the charged particle characteristics for conducting (aluminum) and nonconducting (Macor) samples are studied. The differences in plasma characteristics between argon and helium working gases are discussed. Langmuir probe measurements are also performed in an argon/helium mixture. Variations of the emission intensities of sputtered analytes (copper and aluminum) are investigated when helium is introduced into an argon RF glow discharge plasma. It is recognized that, although the number of sample atoms in the plasma gradually decreases due to reduced sputtering, the emission intensities of various Al(I) and Cu(I) lines increase with helium addition. Measured electron and ion number densities also decrease with helium addition, whereas the average electron energy and electron temperature increase, accounting for the enhancement of emission intensities.

  11. Application of electrostatic Langmuir probe to atmospheric arc plasmas producing nanostructures

    NASA Astrophysics Data System (ADS)

    Shashurin, A.; Li, J.; Zhuang, T.; Keidar, M.; Beilis, I. I.

    2011-07-01

    The temporal evolution of a high pressure He arc producing nanotubes was considered and the Langmuir probe technique was applied for plasma parameter measurements. Two modes of arc were observed: cathodic arc where discharge is supported by erosion of cathode material and anodic arc which is supported by ablation of the anode packed with carbon and metallic catalysts in which carbon nanotubes are synthesized. Voltage-current (V-I) characteristics of single probes were measured and unusually low ratio of saturation current on positively biased probe to that on negatively biased of about 1-4 was observed. This effect was explained by increase of measured current at the negatively biased probe above the level of ion saturation current due to secondary electron emission from the probe surface. Since utilization of standard collisionless approach to determine plasma parameters from the measured V-I characteristic is not correct, the electron saturation current was used to estimate the plasma density.

  12. Time-resolved Langmuir Probing of a New Lanthanum Hexaboride (LaB6) Hollow Cathode

    DTIC Science & Technology

    2011-09-01

    like texture and is easily machineable with standard tooling. Competing thermally conductive but electrically insulating ceramics such as aluminum...The 32nd International Electric Propulsion Conference, Wiesbaden, Germany September 11 – 15, 2011 1 Time-resolved Langmuir Probing of a New...Lanthanum Hexaboride (LaB6) Hollow Cathode IEPC-2011-245 Presented at the 32nd International Electric Propulsion Conference, Wiesbaden

  13. Dust Impact Detection by the Cassini Langmuir Probe in Saturn's E ring

    NASA Astrophysics Data System (ADS)

    Hsu, H.-W.; Wahlund, J.-E.; Morooka, M.; Kempf, S.; Horanyi, M.

    2015-10-01

    In this work, we present preliminary analysis of dust impact detections recorded by the Cassini Langmuir probe (LP) in Saturn's E ring. These signals appear as sharp spikes in the LP current-voltage (I-V) curves and show clear correlation with the E ring dust density. The statistical analysis will help to understand the nature of these detections as well as provide an alternative method to study the densest part of the E ring.

  14. Langmuir probe measurements of double-layers in a pulsed discharge

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Crawford, F. W.

    1980-01-01

    Langmuir probe measurements were carried out which confirm the occurrence of double-layers in an argon positive column. Pulsing the discharge current permitted probe measurements to be performed in the presence of the double-layer. Supplementary evidence, obtained from DC and pulsed discharges, indicated that the double-layers formed in the two modes of operation were similar. The double-layers observed were weak and stable; their relation to other classes of double-layers are discussed, and directions for future work are suggested.

  15. High accuracy plasma density measurement using hybrid Langmuir probe and microwave interferometer method.

    PubMed

    Deline, C; Gilchrist, B E; Dobson, C; Jones, J E; Chavers, D G

    2007-11-01

    High spatial resolution plasma density measurements have been taken as part of an investigation into magnetic nozzle physics at the NASA/MSFC Propulsion Research Center. These measurements utilized a Langmuir triple probe scanned across the measurement chord of either of two stationary rf interferometers. By normalizing the scanned profile to the microwave interferometer line-integrated density measurement for each electrostatic probe measurement, the effect of shot-to-shot variation of the line-integrated density can be removed. In addition, by summing the voltage readings at each radial position in a transverse scan, the line density can be reconstituted, allowing the absolute density to be determined, assuming that the shape of the profile is constant from shot to shot. The spatial and temporal resolutions of this measurement technique depend on the resolutions of the scanned electrostatic probe and the interferometer. The measurement accuracy is 9%-15%, which is on the order of the accuracy of the rf interferometer. The measurement technique was compared directly with both scanning rf interferometer and standard Langmuir probe theory. The hybrid technique compares favorably with the scanning rf interferometer, and appears more accurate than probe theory alone. Additionally, our measurement technique is generally applicable even for nonaxisymmetric plasmas.

  16. Updates on Optical Emission Spectroscopy & Langmuir Probe Investigations on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Karama, Jackson; Frank, John; Azzari, Phillip; Hopson, Jordan; James, Royce; Duke-Tinson, Omar; Paolino, Richard; Sandri, Eva; Sherman, Justin; Wright, Eva; Turk, Jeremy

    2015-11-01

    HPX is developing a to shorter lifetime (20 - 30 ns) more reproducible plasma at the Coast Guard Academy Plasma Laboratory (CGAPL). Once achieved, spectral and particle probes will help to verify plasma mode transitions to the W-mode. These optical probes utilize movable filters, and ccd cameras to gather data at selected spectral frequency bands. Once corrections for the RF field are in place for the Langmuir probe, raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Direct measurements of plasma properties can be determined with modeling and by comparison with the state transition tables, both using Optical Emission Spectroscopy (OES). The spectral will add to HPX's data collection capabilities and be used in conjunction with the particle probes, and Thomson Scattering device to create a robust picture of the internal and external plasma parameters on HPX. Progress on the implementation of the OES and Langmuir probes will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15.

  17. Investigation of Radio Frequency Discharges and Langmuir Probe Diagnostic Methods in a Fast Flowing Electronegative Background Gas

    DTIC Science & Technology

    2007-12-01

    the equations 1.43, 1.44, and 1.45, can be solved using a Runge - Kutta or other standard numerical techniques with the results of the solution to the...INVESTIGATION OF RADIO FREQUENCY DISCHARGES AND LANGMUIR PROBE DIAGNOSTIC METHODS IN A FAST FLOWING...AFIT/DS/ENP/DSP-04J INVESTIGATION OF RADIO FREQUENCY DISCHARGES AND LANGMUIR PROBE DIAGNOSTIC METHODS IN A FAST FLOWING ELECTRONEGATIVE

  18. Magnetic and Langmuir Probe Measurements on the Plasmoid Thruster Experiment (PTX)

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Eskridge, Richard; Fimognari, Peter; Hawk, Clark W.; Lee, Mike; Martin, Adam

    2004-01-01

    The Plasmoid Thruster Experiment (PTX) operates by inductively producing plasmoids in a conical theta-pinch coil and subsequently ejecting them at high velocity. An overview of PTX is described in a companion paper. The shape and magnetic field structure of the translating plasmoids will be measured with of an array of inductive magnetic field probes. Six sets of two B-dot probes (for a total of twelve probes) have been constructed for measuring B(sub z) and B(sub theta), the axial and azimuthal components of the magnetic field. The probes were calibrated with a Helmholtz coil, driven alternately by a high-voltage pulser or a signal generator. The probes are wound on a G-10 form, and have an average (calibrated) NA of 9.37 x 10(exp -5) square meters, where N is the number of turns and A is cross-sectional area. The frequency response of the probes was measured over the range from 1 kHz to 10 MHZ. The electron number density n(sub e), electron temperature T(sub e) and velocity v will be determined from measurements taken with a quadruple Langmuir probe, situated in the exhaust chamber. Three of the four probes on the quadruple probe sample the current-voltage characteristic, and from this yield measurements of T(sub e) and n(sub e). The fourth probe provides a measurement of plasma flow velocity. A 6-inch long alumina rod, hollowed with four holes to house the probe wires, is being used to construct the quadruple probe. A variety of propellants will be used, including hydrogen, nitrogen and argon. From the measurements of the plasmoid mass, density, temperature, and velocity, the basic propulsion characteristics of PTX will be evaluated.

  19. High heat flux Langmuir probe array for the DIII-D divertor platesa)

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Taussig, D.; Boivin, R. L.; Mahdavi, M. A.; Nygren, R. E.

    2008-10-01

    Two modular arrays of Langmuir probes designed to handle a heat flux of up to 25 MW/m2 for 10 s exposures have been installed in the lower divertor target plates of the DIII-D tokamak. The 20 pyrolytic graphite probe tips have more than three times higher thermal conductivity and 16 times larger mass than the original DIII-D isotropic graphite probes. The probe tips have a fixed 12.5° surface angle to distribute the heat flux more uniformly than the previous 6 mm diameter domed collectors and a symmetric "rooftop" design to allow operation with reversed toroidal magnetic field. A large spring-loaded contact area improves heat conduction from each probe tip through a ceramic insulator into a cooled graphite divertor floor tile. The probe tips, brazed to molybdenum foil to ensure good electrical contact, are mounted in a ceramic tray for electrical isolation and reliable cable connections. The new probes are located 1.5 cm radially apart in a staggered arrangement near the entrance to the lower divertor pumping baffle and are linearly spaced 3 cm apart on the shelf above the in-vessel cryopump. Typical target plate profiles of Jsat, Te, and Vf with 4 mm spatial resolution are shown.

  20. The spherical segmented Langmuir probe in a flowing thermal plasma: numerical model of the current collection

    NASA Astrophysics Data System (ADS)

    Séran, E.; Berthelier, J.-J.; Saouri, F. Z.; Lebreton, J.-P.

    2005-07-01

    The segmented Langmuir probe (SLP) has been recently proposed by one of the authors (Lebreton, 2002) as an instrument to derive the bulk velocity of terrestrial or planetary plasmas, in addition to the electron density and temperature that are routinely measured by Langmuir probes. It is part of the scientific payload on the DEMETER micro-satellite developed by CNES. The basic concept of this probe is to measure the current distribution over the surface using independent collectors under the form of small spherical caps and to use the angular anisotropy of these currents to obtain the plasma bulk velocity in the probe reference frame. In order to determine the SLP capabilities, we have developed a numerical PIC (Particles In Cell) model which provides a tool to compute the distribution of the current collected by a spherical probe. Our model is based on the simultaneous determination of the charge densities in the probe sheath and on the probe surface, from which the potential distribution in the sheath region can be obtained. This method is well adapted to the SLP problem and has some advantages since it provides a natural control of the charge neutrality inside the simulation box, allows independent mesh sizes in the sheath and on the probe surface, and can be applied to complex surfaces. We present in this paper initial results obtained for plasma conditions corresponding to a Debye length equal to the probe radius. These plasma conditions are observed along the Demeter orbit. The model results are found to be in very good agreement with those published by Laframboise (1966) for a spherical probe in a thermal non-flowing plasma. This demonstrates the adequacy of the computation method and of the adjustable numerical parameters (size of the numerical box and mesh, time step, number of macro-particles, etc.) for the considered plasma-probe configuration. We also present the results obtained in the case of plasma flowing with mesothermal conditions reproducing the

  1. The Use of Langmuir Probes in Non-Maxwellian Space Plasmas

    NASA Technical Reports Server (NTRS)

    Hoegy, Walter R.; Brace, Larry H.

    1998-01-01

    Disturbance of the Maxwellian plasma may occur in the vicinity of a spacecraft due to photoemission, interactions between the spacecraft and thermospheric gases, or electron emissions from other devices on the spacecraft. Significant non-maxwellian plasma distributions may also occur in nature as a mixture of ionospheric and magnetospheric plasmas or secondaries produced by photoionization in the thermosphere or auroral precipitation. The general formulas for current collection (volt-ampere curves) by planar, cylindrical, and spherical Langmuir probes in isotropic and anisotropic non-maxwellian plasmas are examined. Examples are given of how one may identify and remove the non-maxwellian components in the Langmuir probe current to permit the ionospheric parameters to be determined. Theoretical volt-ampere curves presented for typical examples of non-maxwellian distributions include: two-temperature plasmas and a thermal plasma with an energetic electron beam. If the non-ionospheric electrons are Maxwellian at a temperature distinct from that of the ionosphere electrons, the volt-ampere curves can be fitted directly to obtain the temperatures and densities of both electron components without resorting to differenting the current. For an arbitrary isotropic distribution, the current for retarded particles is shown to be identical for the three geometries. For anisotropic distributions, the three probe geometries are not equally suited for measuring the ionospheric electron temperature and density or for determining the distribution function in the presence of non-maxwellian back-round electrons.

  2. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments

    NASA Astrophysics Data System (ADS)

    Knudsen, D. J.; Burchill, J. K.; Buchert, S. C.; Eriksson, A. I.; Gill, R.; Wahlund, J.-E.; Åhlen, L.; Smith, M.; Moffat, B.

    2017-02-01

    The European Space Agency's three Swarm satellites were launched on 22 November 2013 into nearly polar, circular orbits, eventually reaching altitudes of 460 km (Swarm A and C) and 510 km (Swarm B). Swarm's multiyear mission is to make precision, multipoint measurements of low-frequency magnetic and electric fields in Earth's ionosphere for the purpose of characterizing magnetic fields generated both inside and external to the Earth, along with the electric fields and other plasma parameters associated with electric current systems in the ionosphere and magnetosphere. Electric fields perpendicular to the magnetic field B→ are determined through ion drift velocity v→i and magnetic field measurements via the relation E→⊥=-v→i×B→. Ion drift is derived from two-dimensional images of low-energy ion distribution functions provided by two Thermal Ion Imager (TII) sensors viewing in the horizontal and vertical planes; v→i is corrected for spacecraft potential as determined by two Langmuir probes (LPs) which also measure plasma density ne and electron temperature Te. The TII sensors use a microchannel-plate-intensified phosphor screen imaged by a charge-coupled device to generate high-resolution distribution images (66 × 40 pixels) at a rate of 16 s-1. Images are partially processed on board and further on the ground to generate calibrated data products at a rate of 2 s-1; these include v→i, E→⊥, and ion temperature Ti in addition to electron temperature Te and plasma density ne from the LPs.

  3. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  4. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  5. Langmuir Probe and Waves instrument on Mars Atmosphere and Volatile EvolutioN mission

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Ergun, R.; Delory, G. T.; Eparvier, F.; Chamberlin, P. C.; Eriksson, A. I.

    2013-12-01

    To understand how the water was lost at Mars it is critical to understand the atmosphere. One important parameter that is needed and is complicated to model is the electron temperature. At present time most atmospheric models use a fixed temperature profile based on only two in-situ measurements made over 30 years ago by the Viking landers. How important the ion outflow at Mars is for the atmospheric loss depends on how much heating takes place close to the exobase. At Mars the frequencies of the fluctuations in the solar wind can couple directly to the exobase, where such frequencies are close to the heavy ions gyro motion allowing efficient energy transfer from the solar wind to the ions at the exobase. Another part of the puzzle of the atmospheric escape is the ionization rate that is mainly driven by wavelengths in EUV from the sun. Therefore, the newest NASA mission, Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, to be launched in November 2013 and arrive at Mars September 2014, has included a Langmuir Probe and Waves (LPW) instrument which incudes and EUV detector. This instrument measures (1) electron temperature and density via a Langmuir probe; (2) DC and AC electric fields; and (3) the most critical EUV bands of the solar irradiance with a separate detector. This presentation describes the instrument capabilities and the expected impact the data will have on the field.

  6. Probe diagnostics in low pressure dc discharge. Does the Langmuir Paradox exist?

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Alexandrovich, Ben; Rahman, Abdur

    2006-10-01

    Maxwellian electron energy distributions in a highly non-equilibrium plasma of low pressure dc discharges is one the oldest and fascinating mysteries of gas discharge physics. There is extensive literature and many hypotheses attempting to explain this paradox, but the problem still remains unsolved. In this report we present results on the EEDF measurement in the positive column of a dc discharge in mercury vapor with differently oriented probes placed along the positive column over a wide range of discharge current showed that: a) - the EEDF is not Maxwellian, b) - is essentially anisotropic, c) - is not in equilibrium with discharge current (i.e. EEDF changes along the positive column), d) - the electron temperature inferred from the measured EEDF and that determined by the slope of the probe characteristic in semi-log scale are essentially different, e) - the linearity of the probe characteristic in semi-log scale (the sign of a Maxwellian EEDF) may occurs at essentially nonlinear dependence of the second derivative of the probe characteristic on the probe voltage in semi-log scale. The main conclusions of this study are: a) - the absence of Maxwellian EEDF in the low pressure dc discharge and b) - the Druyvesteyn method is not applicable for measurement of highly anisotropic EEDF typical for the Langmuir Paradox condition.

  7. Identification of when a Langmuir probe is in the sheath of a spacecraft: The effects of secondary electron emission from the probe

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hsu, H.-W.; Horányi, M.

    2015-04-01

    Langmuir probes on spacecraft have been used for characterizing the ambient plasma parameters in space. When their boom is short compared to the Debye length, the probes remain immersed in the spacecraft sheath, causing the current-voltage (I-V) characteristics to deviate from that of a probe far away from the spacecraft. We present identification of when a Langmuir probe is in a sheath, based on the secondary electron (SE) emission from the probe itself. The I-V characteristics of a spherical probe are investigated in a plasma sheath above a conducting plate. Plasmas with cold and hot electrons (1 eV and 10 eV), as well as monoenergetic electrons (50-100 eV), are created. The derivative (dI/dV) of the probe I-V curves shows that in addition to a "knee" at a potential more positive than the plasma potential, an additional knee appears at a sheath potential at the probe location. This additional knee is created due to the SE emission from the probe and is identified as an indication of the probe being immersed in the sheath. Our experimental results reproduced the aspects of the Cassini Langmuir probe I-V characteristics, suggesting that at times, the probe may have been immersed in the sheath of the spacecraft in Saturn's magnetosphere, and SE emission from the probe itself may have significantly altered its I-V characteristics.

  8. Dust impact detection by the Cassini Langmuir probe in Saturn's E ring

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Wahlund, J. E.; Kempf, S.; Wang, X.; Horanyi, M.; Morooka, M. W.

    2015-12-01

    Individual examination reveals the existence of sharp spikes in the Cassini Radio and Plasma Wave Science / Langmuir probe (RPWS/LP) I-V (current-voltage) sweeps. These spikes are characterized as a sudden increase or decrease in the probe current, with many of them appearing as one-point anomalies lasting less than a millisecond. Their occurrence generally correlates with the E ring dust density - the closer to the ring plane and Enceladus, the more frequent the appearance of spikes. These characteristics suggest that the LP spike signals are caused by dust impacts - most likely the collection of plasma produced from high velocity dust-probe impacts. Because of the low detection rate and the flexibility regarding to the spacecraft attitude, LP spikes provide an alternative way to explore the densest part of the E ring. Here we will present a preliminary statistical analysis of the LP spike appearance as a function of the spacecraft location, the relative dust speed, the spacecraft and probe potentials, and other relevant parameters. Comparison with measurements carried out by the High Rate Detector, a subsystem of the Cassini Cosmic Dust Analyser, will provide constraints on the dust grain size responsible for these detections. We will also examine their spatial distribution to identify features that may associate with ring dynamical effects, such as the seasonal variation or the noon-to-midnight electric field.

  9. Plasma diagnostics with Langmuir probes in the equatorial ionosphere: II. Evaluation of DEOS flight F06

    NASA Astrophysics Data System (ADS)

    Hirt, M.; Steigies, C. T.; Piel, A.

    2001-09-01

    The flight data of an ionospheric sounding rocket (DEOS campaign flight F06) are evaluated with respect to electron density and temperature profiles. The probe characteristic is analysed in the frame of a model that takes the influence of the geomagnetic field and of a contamination layer into account, as described in part I (Piel et al 2001 J. Phys. D: Appl. Phys.). The electron temperature of the night-time ionosphere is found to be higher (1300 K) than that predicted by the IRI-95 model (Bilitza D 1999 J. Atmos. Terr. Phys. 61 167), but in general agreement with the model of Watanabe et al (Watanabe et al 1995 J. Geophys. Res. 100 14 581). It is also found that the electron temperature in depleted plasma regions (plasma bubbles) is lower than in the unperturbed plasma. This is a hint at the action of the Rayleigh-Taylor mechanism that convects cold low-density plasma from the bottomside of the F-layer to higher altitudes inside the plasma bubbles. An absolute comparison of the electron density profiles from the analysis of the Langmuir probe and by an independent impedance probe is performed. Excellent agreement of the profile shape and of absolute density values can be achieved over the entire altitude regime. It is demonstrated which steps in the evaluation procedure of the probe characteristic may lead to systematic errors in electron density.

  10. I-V characteristics of the Langmuir probe in flowing afterglow plasmas

    NASA Astrophysics Data System (ADS)

    Shun'ko, E. V.

    2003-04-01

    The specific features of the probe I-V characteristics in flowing-afterglow plasmas are studied experimentally and in theory. As it was found at a probe potential equal to the plasma one, V=0, an electron concentration in a probe vicinity (and a probe current) is decreased due to a predominant outflow of the electrons into an electrical circuit of the probe from the probe vicinity. The expression allowing one to reconstruct the undisturbed-by-probe electron concentration from only experimental data is derived. The reconstructed values of the electron concentration enable one to find from the experiments the semiempiric expressions allowing to describe quantitatively the behavior of the probe I-V characteristics at the electron-attracting as well as at the ion-attracting potential, respectively. The expressions found (both for electron-attracting and ion-attracting potential) include the "separating length," which merely is the Langmuir length with a factor equal to the square root of the electron mass over the ion mass ratio for two-component plasma. The intermediate part of the probe I-V characteristics is discovered for probes operating with afterglow plasmas. This intermediate part is described in terms of the experimental parameter L0 having a dimension of the length (presumably electron-orbital length). The value of the parameter L0 does not depend on plasma parameters to within the ranges of plasma parameter variations for experimentally investigated plasmas as it was found. The experiments were performed with two cylindrical probes of 10 and 25 μm diam and ˜3 mm lengths in the experimentally investigated ranges of the afterglow plasma parameters: 105 cm-3

  11. Langmuir probe study of an inductively coupled magnetic-pole-enhanced helium plasma

    NASA Astrophysics Data System (ADS)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Naeem, M.; Zaka-ul-Islam, M.; Zakaullah, M.

    2017-03-01

    This study reports the effects of RF power and filling gas pressure variation on the plasma parameters, including the electron number density n e , electron temperature T e , plasma potential V p , skin depth δ, and electron energy probability functions (EEPFs) in a low-pressure inductively coupled helium plasma source with magnetic pole enhancement. An RF compensated Langmuir probe is used to measure these plasma parameters. It is observed that the electron number density increases with both the RF power and the filling gas pressure. Conversely, the electron temperature decreases with increasing RF power and gas pressure. It is also noted that, at low RF powers and gas pressures, the EEPFs are non-Maxwellian, while at RF powers of ≥50 W, they evolve into a Maxwellian distribution. The dependences of the skin depth and plasma potential on the RF power are also studied and show a decreasing trend.

  12. Soft Particle Spectrometer, Langmuir Probe, and Data Analysis for Aerospace Magnetospheric/Thermospheric Coupling Rocket Program

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Frahm, R. A.; Scherrer, J. R.

    1997-01-01

    Under this grant two instruments, a soft particle spectrometer and a Langmuir probe, were refurbished and calibrated, and flown on three instrumented rocket payloads as part of the Magnetosphere/Thermosphere Coupling program. The flights took place at the Poker Flat Research Range on February 12, 1994 (T(sub o) = 1316:00 UT), February 2, 1995 (T(sub o) = 1527:20 UT), and November 27, 1995 (T(sub o) = 0807:24 UT). In this report the observations of the particle instrumentation flown on all three of the flights are described, and brief descriptions of relevant geophysical activity for each flight are provided. Calibrations of the particle instrumentation for all ARIA flights are also provided.

  13. Understanding narrow SOL power flux component in COMPASS limiter plasmas by use of Langmuir probes

    NASA Astrophysics Data System (ADS)

    Dejarnac, R.; Stangeby, P. C.; Goldston, R. J.; Gauthier, E.; Horacek, J.; Hron, M.; Kocan, M.; Komm, M.; Panek, R.; Pitts, R. A.; Vondracek, P.

    2015-08-01

    The narrow scrape-off layer power component observed in COMPASS inner wall limiter circular discharges by means of IR thermography is investigated by Langmuir probes embedded in the limiter. The power flux profiles are in good agreement with IR observations and can be described by a double-exponential decay with a short decay length (<5 mm) just outside the separatrix and a longer one (∼50 mm) for the rest of the profile in the main scrape-off layer. Non-ambipolar currents measured at the limiter apex play a relatively modest role in the formation of the narrow component. The fraction of the deposited power due to non-ambipolarity varies between 2% and 45%. On the other hand, the measured power widths are roughly consistent in magnitude with a model that takes into account drift effects, suggesting these effects may be dominant.

  14. Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from Radio Frequency plasma) experiment: tests in BATMAN (BAvarian Test Machine for Negative ions).

    PubMed

    Brombin, M; Spolaore, M; Serianni, G; Pomaro, N; Taliercio, C; Dalla Palma, M; Pasqualotto, R; Schiesko, L

    2014-11-01

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors' holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  15. Langmuir probes for SPIDER (source for the production of ions of deuterium extracted from radio frequency plasma) experiment: Tests in BATMAN (Bavarian test machine for negative ions)

    SciTech Connect

    Brombin, M. Spolaore, M.; Serianni, G.; Pomaro, N.; Taliercio, C.; Palma, M. Dalla; Pasqualotto, R.; Schiesko, L.

    2014-11-15

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors’ holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  16. Solar EUV measurements at Venus based on photoelectron emission from the Pioneer Venus Langmuir Probe

    SciTech Connect

    Brace, L.H.; Hoegy, W.R.; Theis, R.F. )

    1988-07-01

    The photoelectron current from the Pioneer Venus Langmuir probe has provided measurements of the solar extreme ultraviolet flux at Venus since 1979. This current is the product of the photoelectric yield of the collector and the solar spectrum at wavelengths short enough to cause emission. Calculations show that approximately 51% of the emission is due to Lyman {alpha} (1,216 {angstrom}), 46% is produced by wavelengths between 550 and 1,100 {angstrom}, and less than 3% is due to wavelengths longer than Lyman {alpha}. Thus, the Langmuir probe provides a direct measure of the total solar EUV flux, including most of the wavelengths that produce the Venus ionosphere and heat and excite neutrals in the thermosphere. The measurement technique is described, and the daily average measurements of photocurrent obtained between 1979 and 1987 are presented. The photocurrents exhibit variations related to the solar cycle and solar rotation, as well as a major 7.2-month periodicity. The authors present three indices of EUV based on the measurements: (1) the photoemission current itself, (2) the total EUV flux, and (3) an F{sub 10.7}-like solar index. These are compared with related measurements made simultaneously at Earth. These data may also help solar physicists track the intensity of EUV emission regions on the Sun while they are not visible from the Earth. The EUV flux profile of a solar flare event is also illustrated. In the future the method also could be applied on a comet mission to obtain the incident solar EUV flux, to measure the EUV extinction profiles of the cometary atmosphere, and to sample directly the dust and gas environment of the comet through the ionization the dust and gas produce when they impact the collector.

  17. On the Measurement of Electron Temperature by Single Langmuir Probes in High Recycling Divertors

    NASA Astrophysics Data System (ADS)

    Pitts, Richard; Horacek, Jan; Loarte, Alberto

    2000-10-01

    Under high recycling and detached conditions, divertor Langmuir probes often yield a significantly higher value of Te than expected. The influence of plasma turbulence and the effect of fast electrons/plasma collisionality are two reasons why this might occur. We concentrate on these two candidates, with particular reference to observations on the TCV tokamak. A systematic study of the effects of noise on simulated probe characteristics at low T_e, shows that the asymmetric, exponential nature of the characteristic favours electron collection such that fluctuations in Vf alone actually tend to reduce the derived Te from that which would otherwise be found. We have also studied the effects of correlated density and potential fluctuations, finding no effect on the fitted T_e. The sheath potential fall energetically filters electrons such that at high densities, the probe measured Te may be characteristic of hotter, more distant zones in the plasma. We use model parallel field profiles of Te and ne generated from B2-Eirene simulations of TCV discharges as input to the analytic theory of Wesson [1] to show how a divertor plate measurement of Te in TCV can exceed the expected value by factors of up to 6 as detachment is approached. [1] J. A. Wesson, Plasma Phys. and Contr. Fusion 37 (1995) 1459

  18. Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics

    NASA Astrophysics Data System (ADS)

    Boedo, J. A.; Rudakov, D. L.

    2017-03-01

    We present a method to calculate the ion saturation current, Isat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of Isat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating Te. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuously biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and its use in reducing arcs.

  19. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    SciTech Connect

    Prevosto, L.; Mancinelli, B. R.; Kelly, H.

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  20. Measurement of electronegativity at different laser wavelengths: accuracy of Langmuir probe assisted laser photo-detachment

    NASA Astrophysics Data System (ADS)

    Sirse, N.; Oudini, N.; Bendib, A.; Ellingboe, A. R.

    2016-08-01

    Langmuir probe (LP) assisted pulsed laser photo-detachment (LPD) of negative ions is one of the frequently used diagnostic techniques in electronegative plasmas. The technique is based on measuring the rise in electron saturation current following photo-detachment. During the photo-detachment process it is assumed that the background electron parameters (temperature and density) remain unchanged in the laser channel and the photo-detached electrons thermalize instantaneously with the background electrons (same temperature). Therefore, the measured electronegativity should be independent of laser wavelengths. However, our recent simulation results (2015 Phys. Plasmas 22 073509) demonstrates a failure of these assumptions and suggests that the measured rise in electron saturation current has a dependence on the laser wavelength. This letter presents experimental evidence in support of these simulation results. In this work, photo-detachment is performed at two different laser wavelengths in an oxygen inductively coupled plasma discharge. Electronegativity measured by LP assisted LPD is compared with those obtained by the hairpin probe (HPP) assisted LPD which is based on quasi-neutrality assumption. The experimental results reveal that the electronegativities measured by LP assisted LPD are affected by the laser wavelength, whereas, electronegativities measured by HPP assisted LPD are almost independent. The discrepancy between the measurements is higher at high electronegativities. In conclusion, the experimental results validate the weakness of assumptions to estimate electronegativity from LPD combined with LP and therefore emphasizes the need of a more realistic model to analyze raw data or an alternate solution is to utilize HPP.

  1. Design of a Miniaturized Langmuir Plasma Probe for the QuadSat/PnP

    NASA Astrophysics Data System (ADS)

    Landavazo, M.; Jorgensen, A. M.; Del Barga, C.; Ferguson, D.; Guillette, D.; Huynh, A.; Klepper, J.; Kuker, J.; Lyke, J. C.; Marohn, B.; Mason, J.; Quiroga, J.; Ravindran, V.; Yelton, C.; Zagrai, A. N.; Zufelt, B.

    2011-12-01

    We have developed a miniaturized Langmuir plasma probe for measuring plasma density in low-earth orbit. Measuring plasma density in the upper ionosphere is important as a diagnostic for the rest of the ionosphere and as an input to space weather forecasting models. Developing miniaturized instrumentation allows easier deployment of a large number of small satellites for monitoring space weather. Our instrument was designed for the Swedish QuadSat/PnP, with the following constraints: A volume constraint of 5x5x1.25cm for the electronics enclosure, a mass budget 100 g, and a power budget of 0.5 W. We met the volume and mass constraints and where able to use less power than budgeted, only 0.25 W. We designed the probe for a bias range of +/-15V and current measurements in the 1 nA to 1 mA range (6 orders of magnitude). Necessary voltage of +/- 15 V and 3.3 V were generated on-board from a single 5 V supply. The electronics suite is based off carefully selected yet affordable commercial components that exhibit low noise, low leakage currents and low power consumption. Size constraints, low noise and low leakage requirements called for a carefully designed four layer PCB with a properly guarded current path using surface mount components on both sides. An ultra-low power microcontroller handles instrument functionality and is fully controllable over i2c using SPA-1 space plug and play. We elected for a probe launched deployed, which required careful design to survive launch vibrations while staying within the mass budget. The QuadSat/PnP has not been launched at the time of writing. We will present details of the instrument design and initial calibration data.

  2. Rocket-borne Langmuir Probe response to an applied periodic potential

    NASA Astrophysics Data System (ADS)

    Muralikrishna, P.; Abdu, M. A.; Kantor, I. J.

    1988-10-01

    A Langmuir Probe (LP), payload designed and developed at Instituto de Pesuisas Espaciais (INPE/MCT) was flown on board a SONDA III rocket at 2259 hrs. (LST) on October 31, 1986 from the Centro de Lancamento da Barreira do Inferno in Natal, RN, Brazil, under a collaborative program between INPE and Instituto de Atividades Espaciais (IAE/CTA). The rocket reached an apogee of about 444 km and the LP payload functioned satisfactorily during the ascent as well as descent of the rocket. A sweep voltage varying between -1V and +4V in a period of about 2.6 seconds was applied to the LP sensor. As the applied voltage increased from -1V to +4V, the LP sensor current first showed an increase, reached a saturation level, and then, though the sensor potential increased towards a steady value, the current showed a systematic decrease. This sensor current characteristic also showed a clear dependence on altitude and hence on the ambient plasma parameters. Possible physical mechanisms responsible for these LP response characteristics are analyzed and discussed here.

  3. A new technique for studying ion-ion recombination in a flowing afterglow Langmuir probe apparatus

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, A. A.

    2007-11-01

    We present a new technique for measuring ion-ion recombination rate constants in a flowing afterglow Langmuir probe (FALP) apparatus. The technique involves measuring the fractional negative ion product distribution following electron attachment versus the initial electron density when two or more products are formed. The concentration of reactant gas is kept low enough that the plasma retains its electron-Ar+, ambipolar diffusion character along the entire length of the flow tube. If only polyatomic anions are formed, accurate relative rates are obtained. When one of the species is atomic, absolute rates are also possible by doing a detailed model of the plasma kinetics. Here we present rate constants for Ar+ recombining with Cl2- ((5.3 ± 1.6) × 10-8 cm3 s-1 at 302 K), Br2- ((3.9 ± 1.2) × 10-8 cm3 s-1 at 302 K), the phosgene negative ion CCl2O- ((8.9 ± 2.7) × 10-8 cm3 s-1 at 302 K), and relative rate constants for Ar+ + SF6- and SF5- (ratio 1.2 at 550 K, with an uncertainty of +0.3 and -0.1). The diatomic negative ions are found to recombine slower than the polyatomic ones, in agreement with earlier indications.

  4. Effect of fast drifting electrons on electron temperature measurement with a triple Langmuir probe

    SciTech Connect

    Biswas, Subir Chowdhury, Satyajit; Pal, Rabindranath

    2015-08-14

    Triple Langmuir Probe (TLP) is a widely used diagnostics for instantaneous measurement of electron temperature and density in low temperature laboratory plasmas as well as in edge region of fusion plasma devices. Presence of a moderately energetic flowing electron component, constituting only a small fraction of the bulk electrons, is also a generally observed scenario in plasma devices, where plasmas are produced by electron impact ionization of neutrals. A theoretical analysis of its effect on interpretation of the TLP data for bulk electron temperature measurement is presented here assuming electron velocity distribution is not deviating substantially from a Maxwellian. The study predicts conventional expression from standard TLP theory to give overestimated value of bulk electron temperature. Correction factor is significant and largely depends on population density, temperature, and energy of the fast component. Experimental verification of theoretical results is obtained in the magnetized plasma linear experimental device of Saha Institute of Nuclear Physics where plasma is produced by an electron cyclotron resonance method and known to have a fast flowing electron component.

  5. Characterization of RF He-N2/Ar mixture plasma via Langmuir probe and optical emission spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Younus, Maria; Rehman, N. U.; Shafiq, M.; Hussain, S. S.; Zakaullah, M.; Zaka-ul-Islam, M.

    2016-08-01

    A Magnetic Pole Enhanced inductively coupled RF H e - N 2 / A r plasma is characterized using a Langmuir probe and optical emission spectroscopy (OES) techniques. The effect of helium mixing on electron density ( n e ) and temperature ( T e ) , electron energy probability functions (EEPFs), [ N ] atomic density, and N 2 dissociation is investigated. A Langmuir probe and a zero slope method based on trace rare gas-optical emission spectroscopy (TRG-OES) are employed to measure the electron temperature. It is noted that the electron temperature shows an increasing trend for both methods. However, the temperature measured by a zero slope method T e ( Z . S ) approaches the temperature measured by a Langmuir probe; T e ( L . P ) at 56% and above helium concentration in the discharge. "Advance actinometry" is employed to monitor the variation in [ N ] atomic density with helium concentration and gas pressure. It is noted that [ N ] atomic density increases at 56% and above helium in the discharge, which is consistent with the trend of electron temperature and EEPFs. A drastic enhancement in N 2 dissociation fraction D 1 determined by "advance actinometry" is noted at 56% and above helium concentration in the mixture due to modifications in different population and depopulation mechanisms. However, it is also noted that the dissociation fraction D 2 determined by intensity ratio method increases linearly with helium addition.

  6. Progress on Langmuir Probe, Data Analysis, Acquisition and Optimization Innovations at the Coast Guard Academy Plasma Lab (CGAPL)

    NASA Astrophysics Data System (ADS)

    Wright, Erin; Frank, John; Azzari, Phil; James, Royce; Hopson, Jordan; Duke-Tinson, Omar; Paolino, Richard; Sandi, Eva; Sherman, Justin; Turk, Jeremy

    2016-10-01

    CGAPL houses four major plasma experiments that span large temperature, density, energy and functionality regimes. Often automation and remote operation of intelligent devices are required in adverse operating environments for digital and analogue systems. Plasma data collected by a multitude of diagnostics and sensors (to include Langmuir probes) over long timescales mandates CGAPL's 40-channel Data Acquisition (DAQ) system that collects and stores data plus controls CGAPL. The ability to remotely control and operate lab diagnostics then collect and store data through a LabView collective Graphic User Interface (GUI) currently under construction, enable users to remotely control, collect, and store CGAPL experimental data. Innovative solutions to optimize data collection and apparatus command and control, will enhance the ability to run experiments remotely, improve the validity of results, and advance participation in fusion grade diagnostic development. Instrument automation, optimization, and data collection obstacles, solutions, and procedures will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  7. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA 300M Hall Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A; Shastry, Rohit; Huang, Wensheng; Soulas, George C.; KamHawi, Hani

    2012-01-01

    In order to aid in the design of high-power Hall thrusters and provide experimental validation for existing modeling efforts, plasma potential and Langmuir probe measurements were performed in the near-field plume of the NASA 300M Hall thruster. A probe array consisting of a Faraday probe, Langmuir probe, and emissive probe was used to interrogate the plume from approximately 0.1 - 2.0 DT,m downstream of the thruster exit plane at four operating conditions: 300 V, 400 V, and 500 V at 20 kW as well as 300 V at 10 kW. Results show that the acceleration zone and high-temperature region were contained within 0.3 DT,m from the exit plane at all operating conditions. Isothermal lines were shown to strongly follow magnetic field lines in the nearfield, with maximum temperatures ranging from 19 - 27 eV. The electron temperature spatial distribution created large drops in measured floating potentials in front of the magnetic pole surfaces where the plasma density was small, which suggests strong sheaths at these surfaces. The data taken have provided valuable information for future design and modeling validation, and complements ongoing internal measurement efforts on the NASA 300 M.

  8. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA-300M Hall Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Shastry, Rohit; Huang, Wensheng; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to aid in the design of high-power Hall thrusters and provide experimental validation for existing modeling efforts, plasma potential and Langmuir probe measurements were performed in the near-field plume of the NASA-300M Hall thruster. A probe array consisting of a Faraday probe, Langmuir probe, and emissive probe was used to interrogate the plume from approximately 0.1 - 2.0 mean thruster diameters downstream of the thruster exit plane at four operating conditions: 300 V, 400 V, and 500 V at 20 kW as well as 300 V at 10 kW. Results show that the acceleration zone and high-temperature region were contained within 0.3 mean thruster diameters from the exit plane at all operating conditions. Isothermal lines were shown to strongly follow magnetic field lines in the near-field, with maximum temperatures ranging from 19 - 27 eV. The electron temperature spatial distribution created large drops in measured floating potentials in front of the magnetic pole surfaces where the plasma density was low, which suggests strong sheaths at these surfaces. The data taken have provided valuable information for future design and modeling validation, and complements ongoing internal measurement efforts on the NASA-300M.

  9. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA-457Mv2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 - 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 - 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.

  10. Plasma Potential and Langmuir Probe Measurements in the Near-Field Plume of the NASA-457Mv2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 ? 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 ? 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.

  11. Improvement of the noise level of the Split Langmuir Probe - a spatial current density meter

    NASA Astrophysics Data System (ADS)

    Marusenkov, Andriy; Dudkin, Fedor; Shuvalov, Valentyn

    2013-04-01

    One of the main tasks at the experimental investigations of the wave processes in space plasma is the determination of the dispersion relations between their wave vector and frequency. The frequency analysis of the magnetic field fluctuations and the electric current density in plasma is very efficient in this case. It had been shown that the simultaneous measurements of the magnetic field orthogonal components and the spatial current density fluctuations can give the wave vector k values for the plane wave spectra, by which a wave field in a plasma reference frame can be represented. The measurements of the magnetic field fluctuations usually are made by a variety of magnetometers using well developed methods. Unfortunately, up to the moment the methods and instruments for the reliable measurements of the space current density are not so good developed as the magnetic ones. There are three independent techniques to study the spatial current density in plasma: the contactless Rogovsky coil, the Faraday cap and the Split Langmuir Probe (SLP). The attempt to compare the different approaches and instruments was carried out during the experiment "Variant" onboard Ukrainian remote sensing satellite SICH-1M launched 2004. The clear advantages of the SLP over other instruments were revealed and proved. Using whistler as a test signal the very good consistency between the magnetic and electric fields and the spatial electric current density was obtained. However, the signal-to-noise ratio of the current density meters has to be further improved. In this report we analyze the sources of the SLP noises and propose the ways to decrease it. The computer simulation of the improved current density meter reveals that the introduced changes have almost no influence on the sensor matching with the space plasma and, as a result, the minor changes of the transformation factor in operation frequency band are expected. The modernized version of the SLP was successfully tested in the

  12. Development of a novel sweeping Langmuir probe instrument for monitoring the upper ionosphere on board a pico-satellite

    NASA Astrophysics Data System (ADS)

    Ranvier, Sylvain; De Keyser, Johan; Cardoen, Pepijn; Pieroux, Didier

    2014-05-01

    A novel Langmuir probe instrument, which will fly on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO), is under development at the Belgian Institute for Space Aeronomy. PICASSO was initiated to join the QB50 project as scientific in-orbit demonstrator. The sweeping Langmuir probe (SLP) instrument is designed to measure both plasma density and electron temperature at an altitude varying from about 400 km up to 700 km from a high inclination orbit. Therefore, the plasma density is expected to fluctuate over a wide range, from about 1e6/m³ at high latitude and high altitude up to 1e12/m³ at low/mid latitude and low altitude. The electron temperature is expected to lie between approximately 1000 K and 3000 K. Given the high inclination of the orbit, the SLP instrument will allow a global monitoring of the ionosphere with a maximum spatial resolution of the order of 150 m. The main goals are to study 1) the ionosphere-plasmasphere coupling, 2) the subauroral ionosphere and corresponding magnetospheric features, 3) auroral structures, 4) polar caps, and 5) ionospheric dynamics via coordinated observations with EISCAT's heating radar. To achieve the scientific objectives described above, the instrument includes four thin cylindrical probes whose electrical potential is swept in such a way that both plasma density and electron temperature can be derived. In addition, since at least two probes will be out of the spacecraft's wake at any given time, differential measurements can be performed to increase the accuracy. Along the orbit, the Debye length is expected to vary from a few millimetres up to a few meters. Due to the tight constraints in terms of mass and volume inherent to pico-satellites, the use of long booms, which would guarantee that the probes are outside the sheath of the spacecraft (several Debye lengths away), is not possible. Consequently, the probes might be in the sheath of the spacecraft in polar regions. Extensive

  13. Evaluation of the scrape-off-layer plasma parameters by a horizontal reciprocating Langmuir probe in the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Dimitrova, M.; Popov, Tsv K.; Ivanova, P.; Vasileva, E.; Hasan, E.; Horáček, J.; Vondráček, P.; Dejarnac, R.; Stöckel, J.; Weinzettl, V.; Havlicek, J.; Janky, F.; Panek, R.

    2014-05-01

    The scrape-off-layer (SOL) parameters in the COMPASS tokamak are studied by using a Langmuir probe mounted on a horizontal reciprocating manipulator. The radial profiles of the plasma potential, the electron energy distribution function and the electron densities are derived from the measured current-voltage probe characteristics by applying the firstderivative probe technique (FDPT). It is shown that close to the tokamak wall the electron energy distribution function is Maxwellian, while in the SOL, in the vicinity of the last closed flux surface and inside the confined plasma, the electron energy distribution function is bi-Maxwellian with a low-energy electron fraction dominating over a higher energy one. The radial profiles of the electron pressure and the parallel electron power flux density in COMPASS are also presented.

  14. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    SciTech Connect

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energy distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.

  15. A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation

    SciTech Connect

    Patterson, J R; Emig, J A; Fournier, K B; Jenkins, P P; Trautz, K M; Seiler, S W; Davis, J F

    2012-05-01

    Langmuir probes (LP) are used extensively to characterize plasma environments produced by radio frequency, pulsed plasma thrusters, and laser ablation. We discuss here the development of a LP diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/{micro}s, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

  16. Method for obtaining electron energy-density functions from Langmuir-probe data using a card-programmable calculator

    SciTech Connect

    Longhurst, G.R.

    1981-01-01

    This paper presents a method for obtaining electron energy density functions from Langmuir probe data taken in cool, dense plasmas where thin-sheath criteria apply and where magnetic effects are not severe. Noise is filtered out by using regression of orthogonal polynomials. The method requires only a programmable calculator (TI-59 or equivalent) to implement and can be used for the most general, nonequilibrium electron energy distribution plasmas. Data from a mercury ion source analyzed using this method are presented and compared with results for the same data using standard numerical techniques.

  17. A method for obtaining electron energy density functions from Langmuir probe data using a card-programable calculator

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.

    1981-04-01

    This paper presents a method for obtaining electron energy density functions from Langmuir probe data taken in cool, dense plasmas where thin-sheath criteria apply and where magnetic effects are not severe. Noise is filtered out by using regression of orthogonal polynomials. The method requires only a programable calculator (TI-59 or equivalent) to implement and can be used for the most general, nonequilibrium electron energy distribution plasmas. Data from a mercury ion source analyzed using this method are presented and compared with results for the same data using standard numerical techniques.

  18. An experimental study of plasma density determination by cylindrical Langmuir probe in a flowing afterglow plasma at elevated pressures

    SciTech Connect

    Kudrna, P.; Chudacek, O.; Sicha, M.; Tichy, M.

    1995-12-31

    The collection of positive ions by a cylindrical Langmuir probe at the pressures when the ion mean free path is much shorter than the probe sheath thickness (usually called the collisional case of positive ion collection) has been treated by several authors. The idea, that the ions can only be scattered by collisions with neutral particles and hence the effect of collisions results in the reduction of the ion current to the probe had to be corrected owing to the experimental facts which showed that the ion current in the presence of collisions can be greater than in the collisionless; case and hence results in greater apparent ion density compared to the electron one. A simple explanation of the fact that the ion current can be increased by the effect of collisions of positive ions with neutrals, has been brought up by Zakrzewski and Kopiczynski in and was based on the fact that the collisions can destroy the ion orbital motion in the space charge sheath surrounding the Langmuir probe and the ions have hence greater chance to be collected by the probe. The upper limit for the ion current increase has been set in to be the current calculated by the radial motion theory by Allen, the collisionless, current limit has been taken after Laframboise. Quantitatively this effect is described by a factor {gamma}{sub 1} which ranges from 1 in the collisionless case to the ratio I{sub A}/I{sub L}, where I{sub A} and I{sub L} are the ion collisionless. Simultaneously it is supposed in the work that the collisions can scatter ions which leads to the decrease of the ion current, the effect is described quantitatively by a factor {gamma}{sub 2}.

  19. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    SciTech Connect

    Zanáška, M.; Kudrna, P.; Tichý, M.; Adámek, J.; Peterka, M.

    2015-03-15

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I{sub sat}{sup −}/I{sub sat}{sup +} to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.

  20. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  1. Assessment of the effect of parallel temperature gradients in the JET SOL on Te measured by divertor target Langmuir probes

    NASA Astrophysics Data System (ADS)

    Ďuran, I.; Ješko, K.; Fuchs, V.; Groth, M.; Guillemaut, C.; Gunn, J. P.; Horacek, J.; Pitts, R. A.; Tskhakaya, D.

    2015-08-01

    Higher than expected electron temperatures (Te) are often measured by divertor Langmuir probes (LP) in high recycling and detached regimes in JET and other tokamaks. As a possible mechanism to explain this discrepancy, we investigate the effect of penetration of fast, almost collisionless electrons connecting the hot upstream scrape-off layer (SOL) region to the divertor targets in JET. We simulate the electron velocity distribution function (EVDF) near the divertor targets using a simple 1D kinetic model using parallel SOL profiles from EDGE2D-EIRENE simulations. The resulting EVDF is used to construct synthetic LP current-voltage (IV) characteristics and evaluation of Te is performed in the same way as for experimental data. Results indicate that the process does not explain the anomalously high Te values estimated from the target probe measurements if the EDGE2D-EIRENE simulated parallel profiles are a good representation of reality.

  2. An improved model to analyze Langmuir probe assisted photo-detachment signal for measuring electronegative plasma parameters

    NASA Astrophysics Data System (ADS)

    Sirse, Nishant; Oudini, Noureddine; Bendib, Abderrezeg; Ellingboe, Albert R.

    2016-09-01

    A diagnostic technique for measuring negative ion parameters based on Langmuir probe assisted laser photo-detachment relies on a theoretical model which relates the rise in the electron saturation current to electronegativity in the plasma. The existing model depend on various assumptions and neglect electrostatic potential barrier formed between the laser column (electropositive column) and the surrounding electronegative plasma in order to prevent the outward flow of electrons from the electropositive plasma column. These assumptions leads to erroneous estimation of the plasma electronegativity. In the present work, we present an analytical model to analyze Langmuir probe assisted photo-detachment signal in order to improve the accuracy of measured electronegativity and extended this technique for measuring electron temperature and charged species density. The analytical model is validated using both experiments and particle-in-cell simulation. The results shows improved accuracy in the measured parameters when compared to existing model. This work was supported by the Korea Institute for the Advancement of Technology and Ministry of Knowledge Economy (L-2010-1438-000), Republic of Korea, Enterprise Ireland and the European Regional Development Fund (ERDF) under NSRF 2007-2013.

  3. Comparison of currents predicted by NASCAP/LEO model simulations with elementary Langmuir-type bare probe models for an insulated cable containing a single pinhole

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.

    1990-01-01

    The behavior of a defect in the insulation of a short biased section of cable in a Low Earth Orbit (LEO) space environment was examined. Such studies are of the utmost importance for large space power systems where great quantities of cabling will be deployed. An insulated probe containing a pinhole was placed into a hypothetical high speed LEO plasma. The NASA Charging Analyzer Program (NASCAP/LEO) was used to explore sheath growth about the probe as a function of applied voltage and to predict I-V behavior. A set of independent current calculations using Langmuir's formulations for concentric spheres and coaxial cylinders were also performed. The case of concentric spheres was here extended to include the case of concentric hemispheres. Several simple Langmuir-type models were then constructed to bracket the current collected by the cable. The space-charge sheath radius and impact parameters were used to determine the proper current regime. I-V curves were plotted for the models and comparisons were made with NASCAP/LEO results. Finally, NASCAP/LEO potential contours and surface cell potential plots were examined to explain interesting features in the NASCAP/LEO I-V curve.

  4. The Influence of Energetic Electrons on the Cassini Langmuir Probe at Saturn : Deriving Large Electron Temperatures and Small Electron Densities

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Wahlund, J.; Holmberg, M.; Lewis, G.; Schippers, P.; Thomsen, M. F.; Rochel Grimald, S.; Gurnett, D. A.; Coates, A. J.; Dandouras, I. S.; Waite, J. H.

    2013-12-01

    The Langmuir probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigated the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), showing that both the DC level and slope of the I-V curve are modified. The influence of energetic electrons may be interpreted in terms of the critical and anticritical temperatures concept that is important for spacecraft charging studies. Estimations of the maximum secondary yield value for the LP surface are obtained without using laboratory measurements. Empirical and theoretical methods were developed to reproduce the influence of the energetic electrons with a reasonable precision. Conversely, this modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). The understanding of this influence may be used for other missions using Langmuir probes, such as the future missions JUICE at Jupiter, BepiColombo at Mercury, or even the probes in the Earth magnetosphere.

  5. A direct Vlasov code to study the non-stationary current collection by a cylindrical Langmuir probe

    SciTech Connect

    Sanchez-Arriaga, G.

    2013-01-15

    The time-dependent current collection by a cylindrical Langmuir probe, whose bias is suddenly changed from zero to a positive or negative finite value, is studied with a novel direct Vlasov code. The numerical algorithm is based on finite-difference formulas to approximate spatial and velocity derivatives and the time integration is carried out with an explicit Runge-Kutta method, or in the case of probe radius small compared with the Debye length, by using the unconditionally stable backward Euler scheme. Both electrons and ions are treated kinetically by the code, which implements initial and boundary conditions that are consistent with the presence of the probe. Within the considered parameter range, the plasma sheath around the probe exhibited an overshoot and it later recovered a steady state. Phase space diagrams of the particle trajectories revealed the presence of a trapped population of particles. The dependence of this population as a function of the probe radius is presented as well as a comparison with the stationary theory. The performance of the code and a comparison with previously used particle-in-cell algorithms are discussed.

  6. Application of Langmuir Probe Method to the Atmospheric Pressure Discharge Plasma

    SciTech Connect

    Matsuura, Hiroto; Matsumura, Yasuhiro; Nakano, Ken

    2008-12-31

    The heat balance model in the probe tip applied to atmospheric pressure plasma is constructed. Considering the natural convective heat loss, the limitation of plasma density for probe application to such a plasma is estimated. The rough limit is about n{sub e} = 10{sup 18} m{sup -3}. Four kind of materials (Cu, SUS, W, Al) are used for probe tips, and are tested in DC atmospheric pressure discharge. Heat conductivity is found to be a more important property than melting point in design of probes in high pressure discharge. DC atmospheric pressure discharge plasma parameters are obtained with our test probes. Obtained density is the order of 10{sup 17} m{sup -3} and does not contradict with the above density limitation. Change of space potential in air/Ar plasma is also confirmed.

  7. Langmuir probe diagnostics of electron energy distributions with optical emission spectroscopy in capacitively coupled rf discharge in nitrogen

    SciTech Connect

    Abdel-Fattah, E.; Bazavan, M.; Sugai, H.

    2011-12-01

    Measurements with a rf compensated Langmuir probe and optical emission spectroscopy are carried out in capacitively coupled rf (13.56 MHz) pure nitrogen N{sub 2} discharges at fixed rf voltage over a wide range of pressure, 30 to 400 mTorr. The electron energy probability function (EEPF) measured below 100 mTorr resembles a bi-Maxwellian-type distribution. At pressure range of 100-200 mTorr, the EEPF has non-Maxwellian distribution with a ''dip'' near 4.5 eV. At the highest pressure of 400 mTorr, the EEPF evolves into a Druyvestein-like distribution and the ''dip'' disappears. The electron density significantly decreases with increase in the N{sub 2} pressure. On the other hand, the electron temperatures gradually decrease with an increase in N{sub 2} pressure, reaching minimum at 150 mTorr, beyond which it abruptly increases. Such evolution of the EEPFs shape with gas pressure has been discussed in terms of non-local electron kinetics and heating mode transition. The emission intensities of nitrogen (0-0) band of second positive system at 337.1 nm and (0-0) band of first negative systems at 391.4 nm are used to determine the dependence of their radiative states N{sub 2}(C{sup 3}{Pi}{sub u}) and N{sub 2}{sup +}(B{sup 2}{Sigma}{sub u}{sup +}) with nitrogen pressure. It is observed that the pressure influences the radiative states differently owing to their different populating mechanisms. The vibrational temperature T{sub {nu}ib} and rotational temperature T{sub rot} are measured for the sequence ({Delta}{nu}=-2) of N{sub 2} second positive system (C{sup 3}{Pi}{yields}B{sup 3}{Pi}{sub g}) using the method of comparing the measured and calculated spectra with a chi-squared minimization procedure. It was found that both T{sub {nu}ib} and T{sub rot} have similar dependences with N{sub 2} pressure; peaked at 100 mTorr beyond which it monotonically decreases with increase in the N{sub 2} pressure. The correlation between the observed maximum value of T{sub {nu}ib} around

  8. PICASSO-SLP: a Langmuir probe instrument for monitoring the upper ionosphere on board a pico-satellite

    NASA Astrophysics Data System (ADS)

    Ranvier, Sylvain; Anciaux, Michel; Cardoen, Pepijn; Gamby, Emmanuel; Bonnewijn, Sabrina; De Keyser, Johan; Echim, Marius; Pieroux, Didier

    2016-04-01

    A novel Langmuir probe instrument, which will fly on board the Pico-Satellite for Atmospheric and Space Science Observations (PICASSO), is under development at the Royal Belgian Institute for Space Aeronomy. PICASSO, an ESA in-orbit demonstrator, is a triple unit CubeSat of dimensions 340.5x100x100 mm. The sweeping Langmuir probe (SLP) instrument, which includes four thin cylindrical probes whose electrical potential is swept, is designed to measure both plasma density and electron temperature at an altitude varying from about 400 km up to 700 km from a high inclination orbit. Therefore, the plasma density is expected to fluctuate over a wide range, from about 1e8/m³ at high latitude and high altitude up to several times 1e12/m³ at low/mid latitude and low altitude. The electron temperature is expected to lie between approximately 1.000 K and 10.000 K. Given the high inclination of the orbit, the SLP instrument will allow a global monitoring of the ionosphere with a maximum spatial resolution of the order of 150 m for the electron density and temperature, and up to a few meters for electron density only. The main goals are to study 1) the ionosphere-plasmasphere coupling, 2) the subauroral ionosphere and corresponding magnetospheric features, 3) auroral structures, 4) polar caps, 5) for the density, the multi-scale behaviour, spectral properties and turbulence of processes typical for the auroral regions, and 6) ionospheric dynamics via coordinated observations with EISCAT's heating radar. Along the orbit, the Debye length is expected to vary from a few millimetres up to a few meters. Due to the tight constraints in terms of mass and volume inherent to pico-satellites, the use of long booms, which would guarantee that the probes are outside the sheath of the spacecraft (several Debye lengths away), is not possible. Consequently, the probes might be in the sheath of the spacecraft in polar regions. Extensive modelling and simulations of the sheath effects on the

  9. Indium-chlorine and gallium-chlorine tetrasubstituted phthalocyanines in a bulk system, Langmuir monolayers and Langmuir-Blodgett nanolayers--spectroscopic investigations.

    PubMed

    Bursa, B; Wróbel, D; Biadasz, A; Kędzierski, K; Lewandowska, K; Graja, A; Szybowicz, M; Durmuş, M

    2014-07-15

    The paper deals with spectroscopic characterization of metallic phthalocyanines (Pc's) (indium and gallium) complexed with chlorine and substituted with four benzyloxyphenoxy peripheral groups in bulk systems, 2D Langmuir monolayers and Langmuir-Blodgett nanolayers. An influence of the molecular structure of dyes (the presence of metal and of substitutes attached to the phthalocyanine macroring) on the in situ measurements of light absorption is reported. Molecular arrangement of the phthalocyanine molecular skeleton in the Langmuir monolayers on water substrate and in the Langmuir-Blodgett nanolayers is evaluated. A comparison of the light absorption spectra of the phthalocyanine monolayers with the spectra of the dyes in solution supports the existence of dye aggregates in the monolayer. It was shown that the type of dye aggregates (oblique and H types) depends markedly on the dye molecular structures. The NIR-IR, IR reflection-absorption and Raman spectra are also monitored for Langmuir-Blodgett nanolayers in non-polarized and polarized light. It was shown that the dye molecules in the Langmuir-Blodgett layers are oriented nearly vertically with respect to a gold substrate.

  10. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  11. Theory of cylindrical and spherical Langmuir probes in the limit of vanishing Debye number

    SciTech Connect

    Parrot, M.J.M.; Storey, L.R.O.; Parker, L.W.; Laframboise, J.G.

    1982-12-01

    A theory has been developed for cylindrical and spherical probes and other collectors in collisionless plasmas, in the limit where the ratio of Debye length to probe radius (the Debye number lambda/sub D/) vanishes. Results are presented for the case of equal electron and ion temperatures. On the scale of the probe radius, the distributions of potential and density in the presheath appear to have infinite slope at the probe surface. The dimensionless current--voltage characteristic is the same for the cylinder as for the sphere, within the limits of error of the numerical results, although no physical reason for this is evident. As the magnitude of probe potential (relative to space) increases, the current does not saturate abruptly but only asymptotically; its limiting value is about 45% larger than at space potential. Probe currents for small nonzero lambda/sub D/ approach those for zero lambda/sub D/ only very slowly, showing power-law behavior as function of lambda/sub D/ in the limit as lambda/sub D/ ..-->.. 0, with power-law exponents less than unity, resulting in infinite limiting derivatives with respect to lambda/sub D/.

  12. Measurement of Electron Density Using the Multipole Resonance Probe, Langmuir Probe and Optical Emission Spectroscopy in Low Pressure Plasmas with Different Electron Energy Distribution Functions

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Bibinov, Nikita; Ries, Stefan; Awakowicz, Peter; Institute of Electrical Engineering; Plasma Technology Team

    2016-09-01

    In recently publication, the young diagnostic tool Multipole Resonance Probe (MRP) for electron density measurements was introduced. It is based on active plasma resonance spectroscopy (APRS). The probe was simulated und evaluated for different devices. The geometrical and electrical symmetry simplifies the APRS model, so that the electron density can be easily calculated from the measured resonance. In this work, low pressure nitrogen mixture plasmas with different electron energy distribution functions (EEDF) are investigated. The results of the MRP measurement are compared with measurements of a Langmuir Probe (LP) and Optical Emission Spectroscopy (OES). Probes and OES measure in different regimes of kinetic electron energy. Both probes measure electrons with low kinetic energy (<10 eV), whereas the OES is influenced by electrons with high kinetic energy which are needed for transitions of molecule bands. By the determination of the absolute intensity of N2(C-B) and N2+(B-X)electron temperature and density can be calculated. In a non-maxwellian plasma, all plasma diagnostics need to be combined.

  13. Characterization of O2/Ar inductively coupled plasma studied by using a Langmuir probe and global model

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wen, De-Qi; Zhao, Shu-Xia; Gao, Fei; Wang, You-Nian

    2015-04-01

    An O2/Ar inductively coupled plasma is investigated by a Langmuir probe and a global model (volume averaged model). The electron density, electron temperature and electron energy distribution function (EEDF) are measured at different O2 contents, gas pressures and applied powers. At fixed pressure and power, the electron density first drops quickly with the O2 ratio and then tends to saturate in the high O2 ratio range. The effective electron temperature exhibits completely opposite behaviors at low and high pressures. This is caused by the different evolving behaviors of low and high energy electrons of the EEDFs with the O2 ratio. Both the Langmuir probe and the global model predict that the electron density of O2/Ar mixed plasma first increases, peaks and then drops constantly, upon increasing the pressure. An analysis based on the simulation reveals that the non-monotonic variation of electron density with the pressure is due to the non-monotonic variation of the ionizations from both ground state O and metastable O*. Due to the strong ionizations, the electron density increases linearly with the power. The effective electron temperature is unchanged because the EEDF shape that determines the electron temperature is not varied upon increasing the power. The calculated electron density and temperature when varying the power agree better with the experiments at high pressure, i.e. 45 mTorr. The quantitative deviation between the model and the experiment when varying the pressure and the O2 ratio can be explained by two aspects. (1) The electron energy probability function is assumed to have a Maxwellian distribution in the global model while the realistic EEDFs vary significantly with the pressure and/or the O2 ratio, as revealed by the experiment. (2) The power transfer efficiency (i.e. the fraction of the power coupled into plasma) increases with the pressure.

  14. Measurement of plasma parameters in the exhaust of a magnetoplasma rocket by gridded energy analyzer and emissive Langmuir probe

    NASA Astrophysics Data System (ADS)

    Glover, Timothy Ward

    2002-01-01

    The 10 kilowatt prototype of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine, abbreviated as VX-10, is designed to eject plasma at exhaust velocities of tens of kilometers per second. In this device, energy is imparted to the plasma ions by two mechanisms: ion cyclotron resonant heating (ICRH), and acceleration in an ambipolar electric field. Measurements from two different electrostatic probes are combined to determine how much each mechanism contributes to the total ion energy. The first probe is a gridded retarding potential analyzer (RPA) that incorporates a multi-channel collimator to obtain precise measurement of the ion and electron parallel energy distributions. The second is an emissive Langmuir probe that measures the DC and RF components of the plasma potential. The plasma potential obtained from the emitting probe allows calculation of the parallel velocity distribution once the parallel energy distribution is obtained from the energy analyzer data. Biasing the RPA housing is shown to minimize the plasma perturbation, as monitored by an auxiliary probe. When this minimization is done, the RPA measurements become compatible with the emissive probe's measurement of plasma potential. The collimated RPA and emissive probe have been used to examine the effects of a double dual half-turn (DDHT) antenna encircling the plasma. When power at the ion cyclotron frequency is applied, changes are seen in the saturation current and mean ion energy of the collimated RPA characteristic. The evolution of these changes as the RPA is moved downstream from the antenna is interpreted as firm evidence of ion cyclotron heating, albeit at absorbed energies of less than 1 electronvolt per ion. The emissive probe shows that, within experimental error, all of the increased ion energy is accounted for by an increase in the plasma potential that occurs when the ICRF power is applied. The combined RPA and emissive probe data also show that there is a jet of

  15. Driven diffusive systems with mutually interactive Langmuir kinetics

    NASA Astrophysics Data System (ADS)

    Vuijk, H. D.; Rens, R.; Vahabi, M.; MacKintosh, F. C.; Sharma, A.

    2015-03-01

    We investigate the simple one-dimensional driven model, the totally asymmetric exclusion process, coupled to mutually interactive Langmuir kinetics. This model is motivated by recent studies on clustering of motor proteins on microtubules. In the proposed model, the attachment and detachment rates of a particle are modified depending upon the occupancy of neighboring sites. We first obtain continuum mean-field equations and in certain limiting cases obtain analytic solutions. We show how mutual interactions increase (decrease) the effects of boundaries on the phase behavior of the model. We perform Monte Carlo simulations and demonstrate that our analytical approximations are in good agreement with the numerics over a wide range of model parameters. We present phase diagrams over a selective range of parameters.

  16. Formation and characterization of Langmuir and Langmuir-Blodgett films of Newkome-type dendrons in presence and absence of a therapeutic compound, for the development of surface mediated drug delivery systems.

    PubMed

    Dib, Nahir; Reviglio, Ana Lucia; Fernández, Luciana; Morales, Gustavo; Santo, Marisa; Otero, Luis; Alustiza, Fabrisio; Liaudat, Ana Cecilia; Bosch, Pablo; Calderón, Marcelo; Martinelli, Marisa; Strumia, Miriam

    2017-06-15

    Organic macromolecules with dendrimeric architectures are polymeric materials potentially useful as nanocarriers for therapeutic drugs. In this work, we evaluate a series of Newkome-type dendrons in Langmuir and Langmuir-Blodgett films as platforms capable of interacting with a potential antitumoral agent. The nanocomposite is proposed as model for the development of surface mediated drug delivery systems. We were successful in the formation and characterization of pure (dendrons) and composite (drug-dendron) stable and reproducible monolayers, and their transfer to solid substrates. A detailed study of topographic characteristics of the generated surfaces by atomic force microscopy was conducted. Furthermore, we probed dendron monolayer films as anchorage surfaces for mammalian cells. Normal cell attachment and proliferation on the surfaces were observed. No evident cytotoxic effects were detected, demonstrating the adequate biocompatibility of the surfaces.

  17. Extraction of electron energy distribution functions from Langmuir probes using integrated step function response and regularized least squares solver

    NASA Astrophysics Data System (ADS)

    Elsaghir, Ahmed; Shannon, Steve

    2008-10-01

    Electron energy distribution function (EEDF) extraction from Langmuir probe data is an ill-posed problem due to the integral relationship between electron current and EEDF with respect to probe voltage. Curve fitting solutions to extract this EEDF assume a specific type of distribution. Point by point extraction of the second derivative relationship uses a small fraction of the integrated data to extract the EEDF. Recently EEDF extraction techniques have been evaluated using regularized solutions to the integral problem.ootnotetextGuti'errez-Tapia and Flores-Llamas, Phys. Plasmas 11 5102 (2004) These techniques do not assume any mathematical representation of the EEDF and solve the integral problem for any function that best represents the EEDF. In this paper the electron current for arbitrary functions is derived assuming that the electron density is a sum of step functions representing such a function. This technique for EEDF extraction is validated by adding noise to numerically generated data and using a regularized least squares method to calculate the original function by solving for the individual step function contribution to the total electron current. The methodology, reconstruction, and comparison to current best-known methods will be presented.

  18. Application of an RF Biased Langmuir Probe to Etch Reactor Chamber Matching, Fault Detection and Process Control

    NASA Astrophysics Data System (ADS)

    Keil, Douglas; Booth, Jean-Paul; Benjamin, Neil; Thorgrimsson, Chris; Brooks, Mitchell; Nagai, Mikio; Albarede, Luc; Kim, Jung

    2008-10-01

    Semiconductor device manufacturing typically occurs in an environment of both increasing equipment costs and per unit sale price shrinkage. Profitability in such a conflicted economic environment depends critically on yield, throughput and cost-of-ownership. This has resulted in increasing interest in improved fault detection, process diagnosis, and advanced process control. Achieving advances in these areas requires an integrated understanding of the basic physical principles driving the processes of interest and the realities of commercial manufacturing. Following this trend, this work examines the usefulness of an RF-biased planar Langmuir probe^1. This method delivers precise real-time (10 Hz) measurements of ion flux and tail weighted electron temperature. However, it is also mechanically non-intrusive, reliable and insensitive to contamination and deposition on the probe. Since the measured parameters are closely related to physical processes occurring at the wafer-plasma interface, significant improvements in process control, chamber matching and fault detection are achieved. Examples illustrating the improvements possible will be given. ^1J.P. Booth, N. St. J. Braithwaite, A. Goodyear and P. Barroy, Rev.Sci.Inst., Vol.71, No.7, July 2000, pgs. 2722-2727.

  19. Predictions of VRF on a Langmuir Probe under the RF Heating Spiral on the Divertor Floor on NSTX-U

    SciTech Connect

    Hosea, J C; Perkins, R J; Jaworski, M A; Kramer, G J; Ahn, J-W

    2014-07-01

    RF heating deposition spirals are observed on the divertor plates on NSTX as shown in for a NB plus RF heating case. It has been shown that the RF spiral is tracked quite well by the spiral mapping of the strike points on the divertor plate of magnetic field lines passing in front of the high harmonic fast wave (HHFW) antenna on NSTX. Indeed, both current instrumented tiles and Langmuir probes respond to the spiral when it is positioned over them. In particular, a positive increment in tile current (collection of electrons) is obtained when the spiral is over the tile. This current can be due to RF rectification and/or RF heating of the scrape off layer (SOL) plasma along the magnetic field lines passing in front of the the HHFW antenna. It is important to determine quantitatively the relative contributions of these processes. Here we explore the properties of the characteristics of probes on the lower divertor plate to determine the likelyhood that the primary cause of the RF heat deposition is RF rectification.

  20. The behavior of the plasmapause at mid-latitudes - Isis 1 Langmuir probe measurements

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.

    1974-01-01

    Observations of the electron concentration and the temperature from the electrostatic probes on the Isis 1 satellite were used to examine the location and behavior of the plasmapause at about 3000-km altitude in the vicinity of L = 4. At these altitudes the electron concentration measurements are equivalent to measurements of H(+), since the satellite is well into the protonosphere. The plasmapause is evident as a sharp drop in electron concentration by a factor of 100 as the satellite passes into the polar cap, and a corresponding increase is observed as it enters the plasmasphere on the opposite side of the earth. An enhancement of temperature is also observed at the plasmapause, an effect that is most visible at night, when the temperatures at latitudes above and below the plasmapause are usually very low. The position of the plasmapause decreases with magnetic activity but is found to be somewhat less sensitive to Kp than is the equatorial plasmapause.

  1. Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER-like wall

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Lennholm, M.; Harrison, J.; Carvalho, I.; Valcarcel, D.; Felton, R.; Griph, S.; Hogben, C.; Lucock, R.; Matthews, G. F.; Perez Von Thun, C.; Pitts, R. A.; Wiesen, S.; contributors, JET

    2017-04-01

    Burning plasmas with 500 MW of fusion power on ITER will rely on partially detached divertor operation to keep target heat loads at manageable levels. Such divertor regimes will be maintained by a real-time control system using the seeding of radiative impurities like nitrogen (N), neon or argon as actuator and one or more diagnostic signals as sensors. Recently, real-time control of divertor detachment has been successfully achieved in Type I ELMy H-mode JET-ITER-like wall discharges by using saturation current (I sat) measurements from divertor Langmuir probes as feedback signals to control the level of N seeding. The degree of divertor detachment is calculated in real-time by comparing the outer target peak I sat measurements to the peak I sat value at the roll-over in order to control the opening of the N injection valve. Real-time control of detachment has been achieved in both fixed and swept strike point experiments. The system has been progressively improved and can now automatically drive the divertor conditions from attached through high recycling and roll-over down to a user-defined level of detachment. Such a demonstration is a successful proof of principle in the context of future operation on ITER which will be extensively equipped with divertor target probes.

  2. The behavior of the plasmapause at mid-latitudes: ISIS-1 Langmuir probe measurements

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.

    1973-01-01

    Observations of the electron concentration, N sub e, and temperature, T sub e, from the electrostatic probes on the ISIS-1 satellite were used to examine the location and behavior of the plasmapause at about 3000 kilometers altitude in the vicinity of L = 4. At these altitudes, the N sub e measurements are equivalent to measurements of H(+) since the satellite is well into the protonosphere. The plasmapause as is evident as a sharp drop in N sub e by a factor of 10 to 100 as the satellite passes into the polar cap, and a corresponding increase is observed as it enters the plasmasphere on the opposite side of the Earth. An enhancement of T sub e is also observed at the plasmapause, an effect that is most visible at night when the temperatures at latitudes above and below the plasmapause are usually very low. The position of the plasmapause decreases with magnetic activity but is found to be somewhat less sensitive to K sub p than is the equatorial plasmapause. Also unlike its equatorial behavior, the mid-latitude plasmapause exhibits no detectable late afternoon bulge. These differences imply rather complex coupling of the thermal plasma along the field lines that link these two regions of the plasmasphere. An additional factor may be the recently observed axial asymmetry in the geomagnetic field at high altitudes.

  3. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    PubMed

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  4. Langmuir probe-based observables for plasma-turbulence code validation and application to the TORPEX basic plasma physics experiment

    SciTech Connect

    Ricci, Paolo; Theiler, C.; Fasoli, A.; Furno, I.; Labit, B.; Mueller, S. H.; Podesta, M.; Poli, F. M.

    2009-05-15

    The methodology for plasma-turbulence code validation is discussed, with focus on the quantities to use for the simulation-experiment comparison, i.e., the validation observables, and application to the TORPEX basic plasma physics experiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. The considered validation observables are deduced from Langmuir probe measurements and are ordered into a primacy hierarchy, according to the number of model assumptions and to the combinations of measurements needed to form each of them. The lowest levels of the primacy hierarchy correspond to observables that require the lowest number of model assumptions and measurement combinations, such as the statistical and spectral properties of the ion saturation current time trace, while at the highest levels, quantities such as particle transport are considered. The comparison of the observables at the lowest levels in the hierarchy is more stringent than at the highest levels. Examples of the use of the proposed observables are applied to a specific TORPEX plasma configuration characterized by interchange-driven turbulence.

  5. Estimation of Al2O3 critical temperature using a Langmuir probe in laser ablation

    NASA Astrophysics Data System (ADS)

    Yahiaoui, K.; Abdelli-Messaci, S.; Messaoud Aberkane, S.; Kellou, A.

    2016-11-01

    Pulsed laser deposition (PLD) has demonstrated its capacity in thin films growing under the moderate laser intensity. But when the laser intensity increases, the presence of droplets on the thin film limits the PLD efficiency such that the process needs an optimization study. In this way, an experimental study has been conducted in order to correlate between the appearance of those droplets and the laser fluence. The comprehension of the physical mechanism during ablation and the control of the deposition parameters allowed to get a safe process. Our experiment consists in measuring the amount of ejected matter from polycrystalline alumina target as a function of the laser fluence when irradiated by a KrF laser. According to laser fluence, several kinds of ablation regimes have been identified. Below a threshold value found as 12 J/cm2, the mechanism of ablation was assigned to normal evaporation, desorption and nonthermal processes. While above this threshold value, the mechanism of ablation was assigned to phase explosion phenomenon which is responsible of droplets formation when the surface temperature approaches the critical temperature T tc. A negative charge collector was used to collect the positive ions in the plume. Their times of flight (TOF) signal were used to estimate the appropriate T tc for alumina target. Ions yield, current as well as kinetic energy were deduced from the TOF signal. Their evolutions show the occurrence of an optical breakdown in the vapor plume which is well correlated with the onset of the phase explosion phenomenon. At 10 J/cm2, the ions velocities collected by the probe have been compared to those obtained from optical emission spectroscopy diagnostic and were discussed. To prove the occurrence of phase explosion by the appearance of droplets, several thin films were elaborated on Si (100) substrate at different laser fluence into vacuum. They have been characterized by scanning electron microscope. The results were well

  6. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  7. A measurement of the TPMU - PROBA II Microsatellite Instrument and its comparison with the SWARM Langmuir Probes results

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina; Hruska, Frantisek; Truhlik, Vladimir

    2016-04-01

    This contribution deals with the long-term measurement of the floating potential (FP) and the electron temperature (Te) provided by the Thermal Plasma Measurement Unit (TPMU) scientific instrument on-board the PROBA II microsatellite. The device is working with limitations of scientific measurements caused very probably by installed on-board software. This brings lower data volume as it was planned. Affected are the ion measurement and partially the electron temperature measurement. We present comparisons of the TPMU long-term measurement of the FP and the Te with the Te and the FP SWARM Langmuir Probes measured data. We implement the method of stochastic comparison of the probability distribution between measurements of FP and Te of both instruments to recognize seasonal and solar activity similarities. The analysis is performed for all seasons of the period from the years 2013 - 2015 for the Equatorial region, North and South hemisphere. The data are divided into the three groups by the geographical latitude to the Nothern hemisphere (lat>15'), the Southern hemisphere (lat<-5') and Equatorial zone (lat 15'- -15') and to four groups by season. This comparison confirms that the TPMU PROBAII Te and FP measurement statistically corresponds to the SWARM Te and FP measurement. The annual seasonal changes in the floating potential are observed in this analysis. Changes in the beginning, the end and duration of seasons over a period of years reflect also changes of the Kp index. Changes over the solar cycle are also visible. The main TPMU goal is the validation and testing of new design of the instrument which is necessary for possible applications of TPMU design for future scientific missions.

  8. Observed Coupling Between the International Space Station PCU Plasma and a FPMU Langmuir Probe Facilitated by the Geomagnetic Field

    NASA Technical Reports Server (NTRS)

    Hartman, William; Koontz, Steven L.

    2010-01-01

    Electrical charging of the International Space Station (ISS) is a matter of serious concern resulting from the possibility of vehicle arcing and electrical shock hazard to crew during extravehicular activity (EVA). A Plasma Contactor Unit (PCU) was developed and integrated into ISS in order to control the ISS floating potential, thereby, minimize vehicle charging and associated hazards. One of the principle factors affecting ISS electrical charging is the ionosphere plasma state (i.e., electron temperature and density). To support ISS electrical charging studies a Floating Potential Monitoring Unit (FPMU) is also integrated into ISS in order to measure the ionosphere properties using Langmuir probes (LP). The FPMU was located on the Starboard side of ISS. The PCU is located near the center of ISS with its plasma exhaust pointed to port. From its integration on ISS in 2006 through November of 2009, the FPMU data exhibited nominal characteristics during PCU operation. On November 21, 2009 the FPMU was relocated from the Starboard location to a new Port location. After relocation significant enhanced noise was observed in both the LP current-voltage sweeps and the derived electron temperature data. The enhanced noise only occurred when the PCU was in discharge and at unique and repeatable locations of the ISS orbit. The cause of this enhanced noise was investigated. It was found that there is coupling occurring between the PCU plasma and the FPMU LP. In this paper we shall 1) present the on-orbit data and the presence of enhanced noise, 2) demonstrate that the coupling of the PCU plasma and the FPMU measurements is geomagnetically organized, 3) show that coupling of the PCU plasma and the FPMU is primarily due to and driven by particle-wave interaction and 4) show that the ionosphere conditions are adequate for Alfven waves to be generated by the PCU plasma.

  9. Divertor sheath power studies in DIII-D using fixed Langmuir probes and three-dimensional modeling of tile heat flows

    NASA Astrophysics Data System (ADS)

    Donovan, D.; Nygren, R.; Buchenauer, D.; Watkins, J.; Rudakov, D.; Leonard, A.; Wong, C. P. C.; Makowski, M.

    2014-04-01

    Experimental results are presented from the three-Langmuir probe (LP) diagnostic head of the divertor material evaluation system (DiMES) on DIII-D that confirm the size of the projected current collection area of the LPs, which is essential for properly measuring ion saturation current density (Jsat) and the sheath power transmission factor (SPTF). Also using the 3-LP DiMES head, the hypothesis that collisional effects on plasma density occurring in the magnetic sheath of the tile are responsible for a lower than expected SPTF is tested and deemed not to have a significant impact on the SPTF. Three-dimensional thermal modeling of wall tiles is presented that accounts for lateral heat conduction, temperature dependence of tile material properties and radiative heat loss from the tile surface. This modeling was developed to be used in the analysis of temperature profiles of the divertor embedded thermocouple (TC) array to obtain more accurate interpretations of TC temperature profiles to infer divertor surface heat flux than have previously been accomplished using more basic one-dimensional methods.

  10. [Characteristics of interaction of adenylate cyclase modulators and phosphoinositide cell signaling systems with lipid langmuir monolayers].

    PubMed

    Liakhov, O M; Prokopenko, V V; Prokopenko, R A; Mohylevych, S Ie

    2006-01-01

    Interaction of two groups of bioregulators, which oppositely affect activity of adenylate cyclase and phosphoinositide cellular signaling systems, with the Langmuir monolayer films made of natural lecithin was studied. Most significant influence on the structural and energy characteristics of lipid monolayers was revealed for the group of bioregulators, which inhibit polyphosphoinositide signaling system or/and activate adenylate cyclase signaling system. It is shown, that using the cluster analysis the bioregulators can be divided into two groups according to general orientation of their action on the considered systems of transduction of a signal.

  11. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  12. Deriving the characteristics of warm electrons (100-500 eV) in the magnetosphere of Saturn with the Cassini Langmuir probe

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Holmberg, M. K. G.; Wahlund, J.-E.; Lewis, G. R.; Schippers, P.; Coates, A.; Gurnett, D. A.; Waite, J. H.; Dandouras, I.

    2014-12-01

    agreement with the CAPS measurements than the values derived from the proxy technique (Morooka et al., 2009) based on the floating potential of the LP. Both the electron temperature and the density estimates lie outside the classical capabilities of the LP, which are essentially ne > 5 cc and Te < 5 eV at Saturn. This approximate derivation technique may be used in the regions where the cold plasma component is small with an average temperature in the range ~ [ 100 - 500 ] eV, which occurs often in the L range 6.4-9.4 RS when Cassini is off the equator, but may occur anywhere in the magnetosphere. This technique may be all the more interesting since the CAPS instrument was shut down, and, though it cannot replace the CAPS instrument, the technique can provide useful information about the electron moments, with probably even better estimates than CAPS in some cases (when the plasma is strongly anisotropic). Finally, a simple modeling approach allows us to predict the impact of the energetic contributions on LP measurements in any plasma environment whose characteristics (density, temperature, etc.) are known. LP observations may thus be influenced by warm electrons in several planetary plasma regions in the solar system, and ambient magnetospheric electron density and temperature could be estimated in some of them (e.g. around several galilean satellites) through the use of Langmuir probes.

  13. Electron energy distribution function in plasma determined using numerical simulations of multiple harmonic components on Langmuir probe characteristic: efficiency of the method.

    PubMed

    Jauberteau, J L; Jauberteau, I

    2007-04-01

    The method proposed to determine the electron energy distribution is based on the numerical simulation of the effect induced by a sinusoidal perturbation superimposed to the direct current voltage applied to the probe. The simulation is generating a multiple harmonic components signal over the rough experimental data. Each harmonic component can be isolated by means of finite impulse response filters. Then, the second derivative is deduced from the second harmonic component using the Taylor expansion. The efficiency of the method is proved first on simple cases and second on typical Langmuir probes characteristics recorded in the expansion of a microwave plasma containing argon or nitrogen-hydrogen gas mixture. Results obtained using this method are compared to those, which are determined using a classical Savitzsky-Golay filter.

  14. Electron energy distribution function in plasma determined using numerical simulations of multiple harmonic components on Langmuir probe characteristic--Efficiency of the method

    SciTech Connect

    Jauberteau, J. L.; Jauberteau, I.

    2007-04-15

    The method proposed to determine the electron energy distribution is based on the numerical simulation of the effect induced by a sinusoidal perturbation superimposed to the direct current voltage applied to the probe. The simulation is generating a multiple harmonic components signal over the rough experimental data. Each harmonic component can be isolated by means of finite impulse response filters. Then, the second derivative is deduced from the second harmonic component using the Taylor expansion. The efficiency of the method is proved first on simple cases and second on typical Langmuir probes characteristics recorded in the expansion of a microwave plasma containing argon or nitrogen-hydrogen gas mixture. Results obtained using this method are compared to those, which are determined using a classical Savitzsky-Golay filter.

  15. Studies on the radical species in inductively coupled Ar/CH4 plasma using improved single Langmuir probe diagnostic methods and fluid simulation

    NASA Astrophysics Data System (ADS)

    Cha, Ju-Hong; Seo, Kwon-Sang; Lee, Jung Yeol; Lee, Hae June; Lee, Ho-Jun

    2016-09-01

    An inductively coupled plasma source driven by 13.56MHz was prepared for the deposition of a-C:H thin film. Properties of the plasma source are investigated by fluid simulation including Navier-Stokes equation and home-made tuned single Langmuir probe. Signal attenuation ratios of the Langmuir probe at first and second harmonic frequency were 49dB and 46dB respectively. Numerical methods including fitting, digital smoothing, digital filter with window function were used to calculate the electron energy distribution accurately. Dependencies of plasma parameters on process were well agreed with simulation results. It was found that RF power, inlet pressure and composition ratio significantly affect to the electron density, temperature and energy distribution. Electron density and plasma potential profile were changed along the input power and gas pressure. Below the input power density of 0.1W/cm3 , higher plasma potential was observed at higher pressure. However, over the 0.1W/cm3 , lower plasma potential was observed along the higher pressure. This result was occurred owing to the change of electron energy distribution. And from the simulation results, the specific chemical reaction channel, not CxHy but CHx, affect to the radical density profile.

  16. RF power deposition effects observed for the scrape off layer in NSTX/NSTX_U and EAST and the accompanying RF effects on divertor Langmuir probes

    NASA Astrophysics Data System (ADS)

    Hosea, J.; Perkins, R. J.; Jaworski, M.; Bertelli, N.; Taylor, G.; Qin, C.; Wang, L.; Yang, J.; Zhang, X. J.

    2016-10-01

    Strong RF power deposition effects in the divertor regions have been observed in NSTX for the HHFW regime and in EAST for the minority ICRF regime. On NSTX the RF power deposition in the scrape off layer (SOL) follows the magnetic field lines from in front of the antenna to an RF heat deposition spiral on the divertor regions. The strong SOL deposition and the spiral formation occur for edge densities above the cutoff density in front of the antenna. On EAST the RF heat deposition appears to be less intense as predicted with AORSA simulations. At coupled powers on EAST up to 700 kW here, bands of deposition are observed on the lower divertor. RF deposition is also indicated on Langmuir probes on the lower outer divertors. For divertor probes in NSTX located to intercept field lines passing in the SOL away from the antenna, the floating potential is pushed negatively as expected for RF rectification. Similarly, on EAST the floating potential is pushed negatively for the field lines out in front of the antenna, but more positively for field lines that intercept the antenna/wall. To understand this latter behavior, probe IV characteristics will be investigated on NSTX-U to establish the electron energy distribution and space potential at a set of probes covering the entire SOL field strike point range. This work is supported by USDOE Contract No. DE-AC02-09CH11466.

  17. Langmuir-Blodgett films of a pyrrole and ferrocene mixed surfactant system

    SciTech Connect

    Samuelson, L.; Rahman, A.K.M.; Clough, S.; Tripathy, S.; Hale, P.D.; Inagaki, T.; Skotheim, T.A.; Okamoto, Y. . Dept. of Chemistry; Brookhaven National Lab., Upton, NY; Polytechnic Univ., Brooklyn, NY . Dept. of Chemistry)

    1989-01-01

    The Langmuir-Blodgett technique was used to study the molecular organization of a mixed 3-hexadecyl pyrrole (3HDP) and ferrocene-derivatized pyrrole (Fc-Py) surfactant system. It has been determined that stable monolayer films of the mixed system could be formed at the air-water interface. The growth and assembly process led to polypyrrole 2-D lattices with heretofore unsurpassed order. In fact, the process of template polymerization, it appears, leads to a new crystal phase for the polypyrrole component of the thin film structure. Various monolayer and multilayer films were prepared on platinum coated substrates for surface spectroscopic characterization. Near Edge X-Ray Absorption Fine Structure (NEXAFS) studies revealed that highly ordered multilayer structures are being formed. Electrochemical studies have been initiated to determine the feasibility of these films in molecular electronic device applications. 13 refs., 6 figs., 1 tab.

  18. The Huygens Probe System Design

    NASA Astrophysics Data System (ADS)

    Clausen, K. C.; Hassan, H.; Verdant, M.; Couzin, P.; Huttin, G.; Brisson, M.; Sollazzo, C.; Lebreton, J.-P.

    2002-07-01

    The Huygens Probe is the ESA-provided element of the joint NASA/ESA Cassini/Huygens mission to Saturn and its largest moon Titan. Huygens is an entry probe designed to enter Titan's atmosphere and descend under parachute down to the surface. The Probe is carried to Titan on board the Cassini Saturn Orbiter. Huygens is dormant for 7.2 years, during the interplanetary journey and during the first 6 months around Saturn. It is activated about every 6 months for an in-flight checkout to verify and monitor its health and to perform a periodic maintenance and calibration of the payload instruments. The Probe will be targeted to Titan and released from the Orbiter about 3 weeks before the Titan encounter on the third Orbit around Saturn. During the 3-week coast phase the Probe is ‘OFF’, except a timer unit that has the task to awaken Huygens before it enters Titan's atmosphere. The Probe's aeroshell will decelerate it in less than 2 minutes from the entry speed of about 6 km s-1 to 400 m s-1 (Mach 1.5) at an altitude of 150 180 km. From that point onwards, a pre-programmed sequence will trigger the parachute deployment and the heat-shield ejection. The main part of the scientific mission will then start, lasting for a descent of 2 21/2 hours. The Orbiter will listen to the Probe for a total duration of at least 3 hours, which includes time to receive data from the surface, should the Probe continue to transmit data after touchdown. Huygens' transmissions are received and stored aboard the Orbiter for later retransmission to the Earth. This paper presents a technical description of the elements of the Huygens Probe System. The reader is invited to refer to the companion paper (Lebreton and Matson, 2002) for further background information about the Huygens mission, and the payload. The early in-flight performance of the Probe is briefly discussed. During in-flight testing in 2000, a technical anomaly was found with the Probe-to-Orbiter telecommunication system that

  19. Langmuir Probe Measurements Within the Discharge Channel of the 20-kW NASA-300M and NASA-300MS Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Haag, Thomas W.; Kamhawi, Hani

    2013-01-01

    NASA is presently developing a high-power, high-efficiency, long-lifetime Hall thruster for the Solar Electric Propulsion Technology Demonstration Mission. In support of this task, studies have been performed on the 20-kW NASA-300M Hall thruster to aid in the overall design process. The ability to incorporate magnetic shielding into a high-power Hall thruster was also investigated with the NASA- 300MS, a modified version of the NASA-300M. The inclusion of magnetic shielding would allow the thruster to push existing state-of-the-art technology in regards to service lifetime, one of the goals of the Technology Demonstration Mission. Langmuir probe measurements were taken within the discharge channels of both thrusters in order to characterize differences at higher power levels, as well as validate ongoing modeling efforts using the axisymmetric code Hall2De. Flush-mounted Langmuir probes were also used within the channel of the NASA-300MS to verify that magnetic shielding was successfully applied. Measurements taken from 300 V, 10 kW to 600 V, 20 kW have shown plasma potentials near anode potential and electron temperatures of 4 to 12 eV at the walls near the thruster exit plane of the NASA-300MS, verifying magnetic shielding and validating the design process at this power level. Channel centerline measurements on the NASA-300M from 300 V, 10 kW to 500 V, 20 kW show the electron temperature peak at approximately 0.1 to 0.2 channel lengths upstream of the exit plane, with magnitudes increasing with discharge voltage. The acceleration profiles appear to be centered about the exit plane with a width of approximately 0.3 to 0.4 channel lengths. Channel centerline measurements on the NASA-300MS were found to be more challenging due to additional probe heating. Ionization and acceleration zones appeared to move downstream on the NASA-300MS compared to the NASA-300M, as expected based on the shift in peak radial magnetic field. Additional measurements or alternative

  20. Long-range excitation energy transfer in Langmuir-Blodgett multilayer systems

    NASA Astrophysics Data System (ADS)

    Draxler, Sonja; Lippitsch, Max E.; Aussenegg, Franz R.

    1989-07-01

    In Langmuir-Blodgett films containing organic dyes, efficient energy transfer over distances exceeding 100 nm is observed. This exceptionally long-range transfer is interpreted as due to special mutual orientation of the dye molecules.

  1. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2013-12-15

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  2. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    PubMed

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  3. Numerical experiment to estimate the validity of negative ion diagnostic using photo-detachment combined with Langmuir probing

    SciTech Connect

    Oudini, N.; Sirse, N.; Ellingboe, A. R.; Benallal, R.; Taccogna, F.; Bendib, A.

    2015-07-15

    This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n{sub -}/n{sub e}. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numerical experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2 ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3 ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.

  4. Optimized design of recycle chromatography to isolate intermediate retained solutes in ternary mixtures: Langmuir isotherm systems.

    PubMed

    Lee, Ju Weon; Wankat, Phillip C

    2009-10-09

    Batch chromatography with a recycle stream is a popular and simple technique to separate a single target component in a complex mixture with moderate operating conditions. Design of recycle chromatography depends on the retention behaviors of the mixture components. In this work, four nucleosides were considered as solutes. Feed concentration and recycle methods were optimized to isolate only the intermediate retained solute in ternary and pseudo-ternary mixtures. Two recycle methods introduced in our previous work for linear isotherms, the desorbent and feed recycle methods, were compared in terms of productivity and desorbent to feed ratio, D/F, with various feed concentrations for competitive Langmuir isotherm systems. The simulation results show that the target (intermediate retained solute) was separated with over 99.76% purity and 99.88% yield. Productivity of the feed recycle method was increased by up to 162% and D/F was decreased by up to 59% compared to the desorbent recycle method. For the separation of nucleosides, recycle chromatography was compared to eight column simulated moving bed (SMB) cascades with a recycle stream and D/F of the SMB cascades was 58% lower than D/F of recycle chromatography at the same productivity. However, recycle chromatography is much simpler.

  5. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, Sheng; Young, Jack P.

    1998-01-01

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  6. Experimental estimation of tungsten impurity sputtering due to Type I ELMs in JET-ITER-like wall using pedestal electron cyclotron emission and target Langmuir probe measurements

    NASA Astrophysics Data System (ADS)

    Guillemaut, C.; Jardin, A.; Horacek, J.; Borodkina, I.; Autricque, A.; Arnoux, G.; Boom, J.; Brezinsek, S.; Coenen, J. W.; De La Luna, E.; Devaux, S.; Eich, T.; Harting, D.; Kirschner, A.; Lipschultz, B.; Matthews, G. F.; Meigs, A.; Moulton, D.; O'Mullane, M.; Stamp, M.; contributors, JET

    2016-02-01

    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode and will be achieved with a tungsten (W) divertor. W atoms sputtered from divertor targets during mitigated ELMs are expected to be the dominant source in ITER. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of the target W source due to sputtering during ELMs and inter-ELMs is important and can be helped by experimental measurements with improved precision. It has been established that the ELMy target ion impact energy has a simple linear dependence with the pedestal electron temperature measured by Electron Cyclotron Emission (ECE). It has also been shown that Langmuir Probes (LP) ion flux measurements are reliable during ELMs due to the surprisingly low electron temperature. Therefore, in this paper, LP and ECE measurements in JET-ITER-Like-Wall (ILW) unseeded Type I ELMy H-mode experiments have been used to estimate the W sputtering flux from divertor targets in ELM and inter-ELM conditions. Comparison with similar estimates using W I spectroscopy measurements shows a reasonable agreement for the ELM and inter-ELM W source. The main advantage of the method involving LP measurements is the very high time resolution of the diagnostic (˜10 μs) allowing very precise description of the W sputtering source during ELMs.

  7. Mass Spectrometric and Langmuir Probe Measurements in Inductively Coupled Plasmas in Ar, CHF3/Ar and CHF3/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2000-01-01

    Absolute fluxes and energy distributions of ions in inductively coupled plasmas of Ar, CHF3/Ar, and CHF3/Ar/O2 have been measured. These plasmas were generated in a Gaseous Electronics Conference (GEC) cell modified for inductive coupling at pressures 10-50 mTorr and 100-300 W of 13.56 MHz radio frequency (RF) power in various feedgas mixtures. In pure Ar plasmas, the Ar(+) flux increases linearly with pressure as well as RF-power. Total ion flux in CHF3 mixtures decreases with increase in pressure and also CHF3 concentration. Relative ion fluxes observed in the present studies are analyzed with the help of available cross sections for electron impact ionization and charge-exchange ion-molecule reactions. Measurements of plasma potential, electron and ion number densities, electron energy distribution function, and mean electron energy have also been made in the center of the plasma with a RF compensated Langmuir probe. Plasma potential values are compared with the mean ion energies determined from the measured ion energy distributions and are consistent. Electron temperature, plasma potential, and mean ion energy vary inversely with pressure, but increase with CHF3 content in the mixture.

  8. New insights on boundary plasma turbulence and the quasi-coherent mode in Alcator C-Mod using a Mirror Langmuir Probe

    SciTech Connect

    LaBombard, B.; Golfinopoulos, T.; Terry, J. L.; Brunner, D.; Davis, E.; Greenwald, M.; Hughes, J. W.

    2014-05-15

    A new “Mirror Langmuir Probe” diagnostic, combined with a double-coil scanning magnetic probe, is used to interrogate Alcator C-Mod's quasi-coherent mode (QCM) with unprecedented detail. In ohmic EDA H-modes, the QCM is found to reside in a region of positive radial electric field, with a radial width (∼3 mm) that spans open and closed field line regions. Large amplitude, in-phase sinusoidal bursts (∼100 kHz) in density, electron temperature, and plasma potential are observed, with potential lagging density by ∼16°, producing an outward radial transport velocity of ∼10 m/s. Mode propagation corresponds to the sum of local E × B and electron diamagnetic drift velocities. Poloidal magnetic field fluctuations project to current filaments carrying peak current densities of ∼25 A/cm{sup 2}. An evaluation of parallel electron force balance (Ohm's law) over a fluctuation cycle indicates a significant electromotive component. Interchange drive is also a contributor in the current continuity (vorticity) equation. Thus, the QCM is primarily a separatrix-spanning electron drift-wave with interchange and electromagnetic contributions.

  9. Edge transport studies in the edge and scrape-off layer of the National Spherical Torus Experiment with Langmuir probes

    SciTech Connect

    Boedo, J. A. Rudakov, D. L.; Myra, J. R.; D'Ippolito, D. A.; Zweben, S.; Maingi, R.; Maqueda, R. J.; Bell, R.; Kugel, H.; Leblanc, B.; Roquemore, L. A.; Soukhanovskii, V. A.; Ahn, J. W.; Canik, J.; Crocker, N.

    2014-04-15

    Transport and turbulence profiles were directly evaluated using probes for the first time in the edge and scrape-off layer (SOL) of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] in low (L) and high (H) confinement, low power (P{sub in}∼ 1.3 MW), beam-heated, lower single-null discharges. Radial turbulent particle fluxes peak near the last closed flux surface (LCFS) at ≈4×10{sup 21} s{sup −1} in L-mode and are suppressed to ≈0.2×10{sup 21} s{sup −1} in H mode (80%–90% lower) mostly due to a reduction in density fluctuation amplitude and of the phase between density and radial velocity fluctuations. The radial particle fluxes are consistent with particle inventory based on SOLPS fluid modeling. A strong intermittent component is identified. Hot, dense plasma filaments 4–10 cm in diameter, appear first ∼2 cm inside the LCFS at a rate of ∼1×10{sup 21} s{sup −1} and leave that region with radial speeds of ∼3–5 km/s, decaying as they travel through the SOL, while voids travel inward toward the core. Profiles of normalized fluctuations feature levels of 10% inside LCFS to ∼150% at the LCFS and SOL. Once properly normalized, the intermittency in NSTX falls in similar electrostatic instability regimes as seen in other devices. The L-H transition causes a drop in the intermittent filaments velocity, amplitude and number in the SOL, resulting in reduced outward transport away from the edge and a less dense SOL.

  10. Galileo probe battery systems design

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Van Ess, J. S.; Marcoux, L. S.

    1986-01-01

    NASA's Galileo mission to Jupiter will consist of a Jovian orbiter and an atmospheric entry probe. The power for the probe will be derived from two primary power sources. The main source is composed of three Li-SO2 battery modules containing 13 D-size cell strings per module. These are required to retain capacity for 7.5 years, support a 150 day clock, and a 7 hour mission sequence of increasing loads from 0.15 to 9.5 amperes for the last 30 minutes. This main power source is supplemented by two thermal batteries (CaCrO4-Ca) for use in firing the pyrotechnic initiators during the atmospheric staging events. This paper describes design development and testing of these batteries at the system level.

  11. Application of Langmuir Probe for Study of Recombination of D3+ Ions with Electrons in He-Ar-D2 Stationary and Flowing Afterglow Plasma

    NASA Astrophysics Data System (ADS)

    Tichy, M.; Poterya, V.; Plasil, R.; Pysanenko, A.; Kudrna, P.; Novotny, O.; Zakouril, P.; Glosik, J.

    2003-06-01

    We report measurements of the rate coefficient for recombination of D3+ and D5+ with electrons in He-Ar-D2 plasma. Two afterglow experiments, flowing afterglow and stationary afterglow were used to cover large extent of pressures of He buffer gas (2-10 Torr) and large extent of partial number densities of D2 (5×1010-3×1015cm-3). Langmuir probes and mass spectrometers were used to monitor decay of the plasma during the afterglow. The observed rate coefficient is dependent on the deuterium number density indicating that third-body-assisted recombination is efficient and significantly contributes to recombination when sufficient number density of deuterium is present. At low D2 number densities the ions D3+ dominate the ion composition and electron density decay is controlled by recombination of D3+ with recombination rate coefficient α(D3+). At higher D2 number densities and lower temperatures D5+ are formed and electron density decay is controlled by recombination of D5+ ions with recombination rate coefficient α(D5+). The overall effective recombination rate coefficient αeff as a function of D2 number density was measured and from this dependence the rates α(D3+) and α(D5+) at several temperatures were determined. Obtained pressure dependencies are in good agreement with thermodynamic data. When the deuterium number density is decreased down to 5×1010cm-3, the rate coefficient also decreases to αeff ˜4×10-9 cm3s-1. These data indicate that the binary dissociative recombination of D3+ is very slow with αDR <4×10-9 cm3s-1. The observation of an additional de-ionization process proceeding via formation of D5+ and its recombination is also reported.

  12. Cross Comparison of Electron Density and Electron Temperature Observations from the DICE CubeSat Langmuir Probes and the Millstone Hill Incoherent Scatter Radar.

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Erickson, P. J.; Crowley, G.; Pilinski, M.; Barjatya, A.; Fish, C. S.

    2014-12-01

    The Dynamic Ionosphere CubeSat Experiment (DICE) consists of two identical 1.5U CubeSats deployed simultaneously from a single P-POD (Poly Picosatellite Orbital Deployer) into the same orbit. Several observational campaigns were planned between the DICE CubeSats and the mid-latitude Millstone Hill Incoherent Scatter Radar (ISR) in order to calibrate the DICE measurements of electron density and electron temperature. In this presentation, we compare in-situ observations from the Dynamic Ionosphere CubeSat Experiment (DICE) and from the Millstone Hill ISR. Both measurements are cross-calibrated against an assimilative model of the global ionospheric electron density. The electron density and electron temperature were obtained for three Millstone Hill DICE overflights (2013-03-12, 2013-03-15, 2013-03-17). We compare the data during quiet and geomagnetically disturbed conditions and find evidence of an storm enhanced density (SED) plume in the topside ionosphere on 2013-03-17 at 19? UTC. During this disturbed interval, American longitude sector high density plasma was convected near 15 SLT towards the noontime cusp. DICE was selected for flight under the NSF "CubeSat-based Science Mission for Space Weather and Atmospheric Research" program. The DICE twin satellites were launched on a Delta II rocket on October 28, 2011. The satellites are flying in a "leader-follower" formation in an elliptical orbit which ranges from 820 to 400 km in altitude. Each satellite carries a fixed-bias DC Langmuir Probe (DCP) to measure in-situ ionospheric plasma densities and a science grade magnetometer to measure DC and AC geomagnetic fields. The purpose of these measurements was to permit accurate identification of storm-time features such as the SED bulge and plume. The mission team combines expertise from ASTRA, Utah State University/Space Dynamics Laboratory (USU/SDL), and Embry-Riddle Aeronautical University. In this paper we present a comparison of data from DICE and Millstone Hill

  13. Different Adsorption Behavior of Rare Earth and Metallic Ion Complexes on Langmuir Mono layers Probed by Sum-Frequency Generation Spectroscopy

    SciTech Connect

    Song, Woongmo; Vaknin, David; Kim, Doseok

    2013-02-25

    Adsorption behavior of counterions under a Langmuir monolayer was investigated by sum-frequency generation (SFG) spectroscopy. By comparing SFG spectra of arachidic acid (AA) Langmuir monolayer/water interface with and without added salt, it was found that the simple trivalent cation La3+ adsorbed on AA monolayer only when the carboxylic headgroups are charged (deprotonated), implying that counterion adsorption is induced by Coulomb interaction. On the other hand, metal hydroxide complex Fe(OH)3 adsorbed even on a charge-neutral AA monolayer, indicating that the adsorption of iron hydroxide is due to chemical interaction such as covalent or hydrogen bonding to the headgroup of the molecules at the monolayer.

  14. Three axis velocity probe system

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  15. Biopolymer-induced calcium phosphate scaling in membrane-based water treatment systems: Langmuir model films studies.

    PubMed

    Dahdal, Yara N; Oren, Yoram; Schwahn, Dietmar; Pipich, Vitaliy; Herzberg, Moshe; Ying, Wang; Kasher, Roni; Rapaport, Hanna

    2016-07-01

    Biofouling and scaling on reverse osmosis (RO) or nanofiltration (NF) membranes during desalination of secondary and tertiary effluents pose an obstacle that limits the reuse of wastewater. In this study we explored the mineral scaling induced by biopolymers originated from bacterial biofilms: bovine serum albumin (BSA), fibrinogen, lysozyme and alginic acid, as well as an extracts of extracellular polymeric substances (EPS) from bio-fouled RO membranes from wastewater treatment facility. Mineralization studies were performed on Langmuir films of the biopolymers deposited at the interface of a solution simulating RO desalination of secondary-treated wastewater effluents. All studied biopolymers and EPS induced heterogeneous mineralization of mainly calcium phosphate. Using IR spectroscopy coupled with systematic quantitative analysis of the surface pressure versus molecular-area isotherms, we determined the mineralization tendencies of the biopolymers to be in the order of: fibrinogen>lysozyme>BSA>alginic acid. The biopolymers and EPS studied here were found to be accelerators of calcium-phosphate mineralization. This study demonstrates the utilization of Langmuir surface-pressure area isotherms and a model solution in quantitatively assessing the mineralization tendencies of various molecular components of EPS in context of membrane-based water treatment systems.

  16. Probing Signal Design for Power System Identification

    SciTech Connect

    Pierre, John W.; Zhou, Ning; Tuffner, Francis K.; Hauer, John F.; Trudnowski, Daniel J.; Mittelstadt, William

    2010-05-31

    This paper investigates the design of effective input signals for low-level probing of power systems. In 2005, 2006, and 2008 the Western Electricity Coordinating Council (WECC) conducted four large-scale system wide tests of the western interconnected power system where probing signals were injected by modulating the control signal at the Celilo end of the Pacific DC intertie. A major objective of these tests is the accurate estimation of the inter-area electromechanical modes. A key aspect of any such test is the design of an effective probing signal that leads to measured outputs rich in information about the modes. This paper specifically studies low-level probing signal design for power-system identification. The paper describes the design methodology and the advantages of this new probing signal which was successfully applied during these tests. This probing input is a multi-sine signal with its frequency content focused in the range of the inter-area modes. The period of the signal is over two minutes providing high-frequency resolution. Up to 15 cycles of the signal are injected resulting in a processing gain of 15. The resulting system response is studied in the time and frequency domains. Because of the new probing signal characteristics, these results show significant improvement in the output SNR compared to previous tests.

  17. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system.

    PubMed

    Herman, Daniel A; Gallimore, Alec D

    2008-01-01

    Extensive resources have been allocated to diagnose and minimize lifetime-limiting factors in gridded ion thrusters. While most of this effort has focused on grid erosion, results from wear tests indicate that discharge cathode erosion may also play an important role in limiting the lifetime of ring-cusp ion thrusters proposed for future large flagship missions. The detailed characterization of the near-cathode discharge plasma is essential for mitigating discharge cathode erosion. However, severe difficulty is encountered when attempting to measure internal discharge plasma parameters during thruster operation with conventional probing techniques. These difficulties stem from the high-voltage, high-density discharge cathode plume, which is a hostile environment for probes. A method for interrogating the discharge chamber plasma of a working ion thruster over a two-dimensional grid is demonstrated. The high-speed axial reciprocating probe positioning system is used to minimize thruster perturbation during probe insertion and to reduce heating of the probe. Electrostatic probe measurements from a symmetric double Langmuir probe are presented over a two-dimensional spatial array in the near-discharge cathode assembly region of a 30-cm-diameter ring-cusp ion thruster. Electron temperatures, 2-5 eV, and number density contours, with a maximum of 8 x 10(12) cm(-3) on centerline, are measured. These data provide detailed electron temperature and number density contours which, when combined with plasma potential measurements, may shed light on discharge cathode erosion processes and the effect of thruster operating conditions on erosion rates.

  18. Characterization of Fiber Optic CMM Probe System

    SciTech Connect

    K.W.Swallow

    2007-05-15

    This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

  19. Laboratory plasma probe studies

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.

  20. Fluid to soft-glass transition in a quasi-2D system: thermodynamic and rheological evidences for a Langmuir monolayer.

    PubMed

    Maestro, Armando; Guzmán, Eduardo; Chuliá, Raquel; Ortega, Francisco; Rubio, Ramón G; Miller, Reinhard

    2011-05-28

    We report an experimental study that points out the existence of a fluid to soft-glass transition in Langmuir polymer monolayers of poly(methyl methacrylate) (PMMA), for which the water/air interface behaves as a poor-solvent. The temperature dependence of surface pressure vs. surface area equilibrium isotherms shows a glass-like transition temperature at T(g,2D)≈ 298 K, significantly lower than the value for bulk PMMA (T(g,bulk)≈ 378 K). The plot of the film thickness h vs. temperature shows a sharp change of slope at about the same temperature, 298 K, which is a typical hallmark of a glass transition in thin polymer films [J. L. Keddie, R. A. L. Jones, R. A. Cory, Europhys. Lett., 1996, 27, 59-64]. Furthermore, slightly above T(g,2D), the temperature dependence of the dilational viscosity does not follow an Arrhenius law, but instead can be described by a Vogel-Fulcher-Tamman equation with parameters that are typical of a fragile glass. Not only the qualitative behavior of three distinct equilibrium and dynamic properties, but also the quantitative agreement of the values of T(g) obtained, are a strong evidence of the existence of a fluid to soft-glass transition in this quasi-2D system.

  1. Scattering, Adsorption, and Langmuir-Hinshelwood Desorption Models for Physisorptive and Chemisorptive Gas-Surface Systems

    NASA Astrophysics Data System (ADS)

    Bentley, Brook I.

    Surface effects limit the performance of hypersonic vehicles, micro-electro-mechanical devices, and directed energy systems. This research develops methods to predict adsorption, scattering, and thermal desorption of molecules on a surface. These methods apply to physisorptive (adsorption and scattering) and chemisorptive (thermal desorption) gas-surface systems. Engineering and design applications will benefit from these methods, hence they are developed under the Direct Simulation Monte Carlo construct. The novel adsorption and scattering contribution, the Modified Kisliuk with Scattering method, predicts angular and energy distributions, and adsorption probabilities. These results agree more closely with experiment than the state-of-the-art Cercignani-Lampis-Lord scattering kernel. Super-elastic scattering is predicted. Gas-adlayer interactions are included for the first time. Accommodation coefficents can be determined by fitting simulations to experimental data. The new thermal desorption model accurately calculates angular, translational, rotational, and vibrational distributions, and the rotational alignment parameter. The model is validated by comparing with experiments. Multiple transition states are considered in a set of non-dimensionalized equations of motion, linked with temporally-accurate event timing. Initial conditions are chosen from a new truncated Maxwell-Boltzmann distribution. Run times are improved by eliminating the Gaussian Weighting of desorbing products. The absorption energy barrier is shown to significantly contribute only to the translational energy of desorbing molecules by contributing energy to each adatom in a similar manner.

  2. Raman spectroscopy system with hollow fiber probes

    NASA Astrophysics Data System (ADS)

    Liu, Bing-hong; Shi, Yi-Wei

    2012-11-01

    A Raman remote spectroscopy system was realized using flexible hollow optical fiber as laser emittion and signal collection probes. A silver-coated hollow fiber has low-loss property and flat transmission characteristics in the visible wavelength regions. Compared with conventional silica optical fiber, little background fluorescence noise was observed with optical fiber as the probe, which would be of great advantages to the detection in low frequency Raman shift region. The complex filtering and focusing system was thus unnecessary. The Raman spectra of CaCO3 and PE were obtained by using the system and a reasonable signal to noise ratio was attained without any lens. Experiments with probes made of conventional silica optical fibers were also conducted for comparisons. Furthermore, a silver-coated hollow glass waveguide was used as sample cell to detect liquid phase sample. We used a 6 cm-long hollow fiber as the liquid cell and Butt-couplings with emitting and collecting fibers. Experiment results show that the system obtained high signal to noise ratio because of the longer optical length between sample and laser light. We also give the elementary theoretical analysis for the hollow fiber sample cell. The parameters of the fiber which would affect the system were discussed. Hollow fiber has shown to be a potential fiber probe or sample cell for Raman spectroscopy.

  3. Saturn Probe: Revealing Solar System Origins

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2015-12-01

    Comparative studies of the gas giant and ice giant planets are needed to reliably discriminate among competing theories of the origin and evolution of giant planets and the solar system, but we lack critical measurements. A Saturn atmospheric entry probe mission would fill a vital part of that gap, allowing comparative studies of Jupiter and Saturn, providing the basis for later comparisons with the ice giants Uranus and Neptune, and informing studies of extrasolar planetary systems now being characterized. The Galileo Probe mission provided the first in situ studies of Jupiter's atmosphere. Similar measurements at Saturn, Uranus and Neptune would provide an important comparative planetology context for the Galileo results. Cassini's "Proximal Orbits" in 2017 will reveal Saturn's internal structure to complement the Juno mission's similar measurements at Jupiter. A Saturn entry probe, complementing the Galileo Probe investigations at Jupiter, would complete a solid basis for improved understanding of both Jupiter and Saturn, an important stepping stone to understanding Uranus and Neptune and solar system formation and evolution. The 2012 Decadal Survey ("DS") added Saturn Probe science objectives to NASA's New Frontiers Program: highest-priority Tier 1 objectives any New Frontiers implementation must achieve, and Tier 2, high priority but lower than Tier 1. A DS mission concept study using extremely conservative assumptions concluded that a Saturn Probe project could fit within New Frontiers resource constraints, giving a PI confidence that they could pursue some Tier 2 objectives, customizing for the proper balance of science return, science team composition, procured or contributed instruments, etc. Contributed instruments could significantly enhance the payload and the science team for greater science return. They also provide international collaboration opportunities, with science benefits well demonstrated by missions such as Cassini-Huygens and Rosetta.

  4. Outer planet entry probe system study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    General mission considerations and science prospectus, which are of a general nature that applies to several or all planetary applications, are presented. Five probe systems are defined: nominal Jupiter probe system, and Jupiter probe-dedicated alternative probe system, Jupiter spacecraft radiation-compatible alternative probe system, Saturn probe system, and Saturn probe applicability for Uranus. Parametric analysis is summarized for mission analysis of a general nature, and then for specific missions to Jupiter, Saturn, Uranus, and Neptune. The program is also discussed from the hardware availability viewpoint and the aspect of commonality.

  5. Modelling and simulation of photocatalytic oxidation mechanism of chlorohalogenated substituted phenols in batch systems: Langmuir-Hinshelwood approach.

    PubMed

    Khuzwayo, Z; Chirwa, E M N

    2015-12-30

    This study investigated, modelled and simulated the influence of multi-chlorohalogenation in heterogeneous photocatalytic degradation of substituted phenols (pentachlorophenol (PCP), trichlorophenol (TCP), dichlorophenol (DCP), and monochlorophenol (CP)). The Langmuir-Hinshelwood approach was applied to determine oxidation kinetics. Aquasim 2.0 computational software was used to model, simulate and estimate model parameters of the different chlorophenols. Chemical adsorption equilibrium isotherms for the four chlorophenols and phenol were studied and modelled for adsorption onto titanium dioxide (TiO2) semiconductor catalyst. Langmuir adsorption parameters were determined and used to calculate adsorption constant and maximum adsorption capacity. The adsorption of chloride phenolics onto titanium dioxide catalyst increased in the order of 4 - CP < DCP < Ph < TCP < PCP. Photocatalytic studies analysed the efficiency of oxidation and found improved degradation with higher chloride substituted phenolics in the order of PCP > TCP > DCP ≥ 4 - CP. Photocatalytic parameters were calculated and estimated along with sensitivity and uncertainty analyses.

  6. Concepts in strong Langmuir turbulence theory

    SciTech Connect

    DuBois, D.F.; Rose, H.A.

    1990-01-01

    Some of the basic concepts of strong Langmuir turbulence (SLT) theory are reviewed. In SLT system, a major fraction of the turbulent energy is carried by local, time-dependent, nonlinear excitations called cavitons. Modulational instability, localization of Langmuir fields by density fluctuations, caviton nucleation, collapse, and burnout and caviton correlations are reviewed. Recent experimental evidence will be presented for SLT phenomena in the interaction of powerful HF waves with the ionosphere and in laser-plasma interaction experiments. 38 refs., 11 figs.

  7. Gravity Probe B gyroscope readout system

    NASA Astrophysics Data System (ADS)

    Muhlfelder, B.; Lockhart, J.; Aljabreen, H.; Clarke, B.; Gutt, G.; Luo, M.

    2015-11-01

    We describe the Gravity Probe B London-moment readout system successfully used on-orbit to measure two gyroscope spin axis drift rates predicted by general relativity. The system couples the magnetic signal of a spinning niobium-coated rotor into a low noise superconducting quantum interference device. We describe the multi-layered magnetic shield needed to attenuate external fields that would otherwise degrade readout performance. We discuss the ∼35 nrad/yr drift rate sensitivity that was achieved on-orbit.

  8. Outer planet entry probe system study. Volume 4: Common Saturn/Uranus probe studies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results are summarized of a common scientific probe study to explore the atmospheres of Saturn and Uranus. This was a three-month follow-on effort to the Outer Planet Entry Probe System study. The report presents: (1) a summary, conclusions and recommendations of this study, (2) parametric analysis conducted to support the two system definitions, (3) common Saturn/Uranus probe system definition using the Science Advisory Group's exploratory payload and, (4) common Saturn/Uranus probe system definition using an expanded science complement. Each of the probe system definitions consists of detailed discussions of the mission, science, system and subsystems including telecommunications, data handling, power, pyrotechnics, attitude control, structures, propulsion, thermal control and probe-to-spacecraft integration. References are made to the contents of the first three volumes where it is feasible to do so.

  9. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  10. Did Irving Langmuir Observe Langmuir Circulations?

    NASA Astrophysics Data System (ADS)

    D'Asaro, E. A.; Harcourt, R. R.; Shcherbina, A.; Thomson, J. M.; Fox-Kemper, B.

    2012-12-01

    Although surface waves are known to play an important role in mixing the upper ocean, the current generation of upper ocean boundary layer parameterizations does not include the explicit effects of surface waves. Detailed simulations using LES models which include the Craik-Leibovich wave-current interactions, now provide quantitative predictions of the enhancement of boundary layer mixing by waves. Here, using parallel experiments in Lake Washington and at Ocean Station Papa, we show a clear enhancement of vertical kinetic energy across the entire upper ocean boundary layer which can be attributed to surface wave effects. The magnitude of this effect is close to that predicted by LES models, but is not large, less than a factor of 2 on average, and increased by large Stokes drift and shallow mixed layers. Global estimates show the largest wave enhancements occur on the equatorial side of the westerlies in late Spring, due to the combination of large waves, shallow mixed layers and weak winds. In Lakes, however, the waves and the Craik-Leibovich interactions are weak, making it likely that the counter-rotating vortices famously observed by Irving Langmuir in Lake George were not driven by wave-current interactions.

  11. Proposed Solar Probe telecommunications system concept

    NASA Technical Reports Server (NTRS)

    Kellogg, K.; Devereaux, A.; Vacchione, J.; Kapoor, V.; Crist, R.

    1992-01-01

    A proposed telecommunications system concept for NASA's Solar Probe mission is described. Key system requirements include 70 kbps data rate at perihelion and operation at X-band (uplink/downlink) and Ka-band (downlink). A design control table is presented to demonstrate design compliance with telecommunication needs. The Ka-band feed is to be a hexagonal array of 37 active elements, each containing 1/4W HEMT amplifiers. The array is located at the Cassegrain point of a 0.75-m reflector. When compared to the TWTA-based system, the Ka-band active array feed provides advantages of reduced mass, increased dc power efficiency, enhanced reliability, graceful degradation, and reduced volume requirements.

  12. Gravity Probe B data system description

    NASA Astrophysics Data System (ADS)

    Bennett, Norman R.

    2015-11-01

    The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles & Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed’s earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the ‘guide star valid’ data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed’s independent research and development effort, will be discussed.

  13. Cognition and order in Langmuir-Blodgett films of a 3-hexadecyl pyrrole and ferrocene-derivatized pyrrole mixed monolayer system

    SciTech Connect

    Samuelson, L.; Rahman, A.K.M.; Puglia, G.P.; Clough, S.; Tripathy, S.; Inagaki, T.; Yang, X.Q.; Skotheim, T.A.; Okamoto, Y.

    1989-01-01

    Novel, self-assembled materials have been designed and produced from first principle to possess unique structural hierarchy and electronic and optical properties. The Langmuir-Blodgett technique was used to study the molecular organization of a mixed 3-hexadecyl pyrrole (3HDP) and ferrocene-derivatized pyrrole (Fc-Py) surfactant system. The pyrrole moiety was chosen for its' well established electronic and optical properties when polymerized, while ferrocene, it is theorized, if properly oriented into a Langmuir-Blodgett monolayer film may show a layered array of transition metals which would be extremely valuable as a model for two-dimensional magnets. The ferrocene group may also provide the possibility of charge coupling between neutral ferrocene and oxidized ferricenium which could be controlled electrochemically or photochemically. It has been determined that stable monolayer films of the mixed system could be formed at the air-water interface. The growth and assembly process led to polypyrrole 2-D lattices with heretofore unsurpassed order. In fact, the process of template polymerization leads to a new crystal phase for the polypyrrole component of the thin film structure. Various monolayer and multilayer films were prepared on platinum coated substrates for surface spectroscopic characterization using synchrotron radiation. Near Edge X-Ray Absorption Fine Structure studies revealed that highly ordered multilayer structures are being formed. 8 refs., 4 figs., 1 tab.

  14. Galileo Atmospheric Entry Probe System - Design, development, and test

    NASA Technical Reports Server (NTRS)

    Givens, J. J.; Nolte, L. J.; Pochettino, L. R.

    1983-01-01

    The overall development of the Galileo Atmospheric Entry Probe System is described. The Probe will be carried to Jupiter by the Galileo Orbiter and released on an entry trajectory 150 days before entry. A complement of seven science instruments will measure the near-Jupiter radiation field and the characteristics of the Jovian atmosphere from a distance of about 5 Jupiter radii above the 1-bar level down to levels in the 10-20-bar range. Probe data are to be transmitted to earth via the Orbiter. System requirements are discussed. Probe design features and those features of the development test program peculiar to entry probes are described.

  15. Study of new systems concepts for a Titan atmospheric probe

    NASA Technical Reports Server (NTRS)

    Bernard, Doug; Citron, Todd; Drean, Robert; Lewis, Scott; Lo, Martin; Mccarthy, John; Soderblom, Robert; Steffy, Dave; Vargas, Tina; Wolff, Marty

    1986-01-01

    Results of a systems concepts study for a Titan Probe were examined. The key tradeoffs performed are described in detail. Mass breakdown of each Probe subsystem or major element were given. The mission analysis performed to determine compliance with the high altitude sampling and descent time requirements are described. The baseline Descent Module design was derived. The element of the Probe System left on the Carrier after separation were described.

  16. Correlation of insulin-enhancing properties of vanadium-dipicolinate complexes in model membrane systems: phospholipid langmuir monolayers and AOT reverse micelles.

    PubMed

    Sostarecz, Audra G; Gaidamauskas, Ernestas; Distin, Steve; Bonetti, Sandra J; Levinger, Nancy E; Crans, Debbie C

    2014-04-22

    We explore the interactions of V(III) -, V(IV) -, and V(V) -2,6-pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood-glucose-lowering effects of these compounds on STZ-induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2-ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self-assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the V(III) -phospholipid interactions result in a slight decrease in DPPC molecular area, whereas V(IV) and V(V) -phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of V(III) - and V(IV) -dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of V(IV) complexes in reverse micelles indicate that the neutral and smaller 1:1 V(IV) -dipic complex penetrates the interface, whereas the larger 1:2 V(IV) complex does not. UV/Vis spectroscopy studies of the anionic V(III) -dipic complex show only minor interactions. These results are in contrast to behavior of the V(V) -dipic complex, [VO2 (dipic)](-) , which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that V(III) -, V(IV) -, and V(V) -dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds' efficacy at lowering elevated blood glucose levels in diabetic rats.

  17. Beyond Sedna: Probing the Distant Solar System

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.

    This thesis presents studies in observational planetary astronomy probing the structure of the Kuiper belt and beyond. The discovery of Sedna on a highly eccentric orbit beyond Neptune challenges our understanding of the solar system and suggests the presence of a population of icy bodies residing past the Kuiper belt. With a perihelion of 76 AU, Sedna is well beyond the reach of the gas-giants and could not be scattered onto its highly eccentric orbit from interactions with Neptune alone. Sedna's aphelion at ˜1000 AU is too far from the edge of the solar system to feel the perturbing effects of passing stars or galactic tides in the present-day solar neighborhood. Sedna must have been emplaced in its orbit at an earlier time when massive unknown bodies were present in or near the solar system. The orbits of distant Sedna-like bodies are dynamically frozen and serve as the relics of their formation process. We have performed two surveys to search for additional members of the Sedna population. In order to find the largest and brightest Sedna-like bodies we have searched ˜12,000 deg² within +/-30 degrees of the ecliptic to a limiting R magnitude of 21.3 using the QUEST camera on the 1.2m Samuel Oschin Telescope. To search for the fainter, more common members of this distant class of solar system bodies, we have performed an deep survey using the Subaru Prime Focus Camera on the 8.2m Subaru telescope covering 43 deg² to a limiting R magnitude of 25.3. Searching over a two-night baseline, we were sensitive to motions out to distances of approximately 1000 AU. We present the results of these surveys. We discuss the implications for a distant Sedna-like population beyond the Kuiper belt and discuss future prospects for detecting and studying these distant bodies, focusing in particular on the constraints we can place on the embedded stellar cluster environment the early Sun may have been born in, where the location and distribution of Sedna-like orbits sculpted by

  18. Relative importance of column and adsorption parameters on the productivity in preparative liquid chromatography II: Investigation of separation systems with competitive Langmuir adsorption isotherms.

    PubMed

    Forssén, Patrik; Samuelsson, Jörgen; Fornstedt, Torgny

    2014-06-20

    In this study we investigated how the maximum productivity for commonly used, realistic separation system with a competitive Langmuir adsorption isotherm is affected by changes in column length, packing particle size, mobile phase viscosity, maximum allowed column pressure, column efficiency, sample concentration/solubility, selectivity, monolayer saturation capacity and retention factor of the first eluting compound. The study was performed by generating 1000 random separation systems whose optimal injection volume was determined, i.e., the injection volume that gives the largest achievable productivity. The relative changes in largest achievable productivity when one of the parameters above changes was then studied for each system and the productivity changes for all systems were presented as distributions. We found that it is almost always beneficial to use shorter columns with high pressure drops over the column and that the selectivity should be greater than 2. However, the sample concentration and column efficiency have very limited effect on the maximum productivity. The effect of packing particle size depends on the flow rate limiting factor. If the pumps maximum flow rate is the limiting factor use smaller packing, but if the pressure of the system is the limiting factor use larger packing up to about 40μm.

  19. Development of a reciprocating probe servomotor control system with real-time feedback on plasma position for the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Brunner, D.; Kuang, A. Q.; Labombard, B.; Burke, W.

    2015-11-01

    Reciprocating probe drives are one of the diagnostic workhorses in the boundary of magnetic confinement fusion experiments. The probe is scanned into an exponentially increasing heat flux, which demands a prompt and precise turn around to maintain probe integrity. A new linear servomotor controlled reciprocating drive utilizing a commercial linear servomotor and drive controller has been developed for the Alcator C-Mod tokamak. The quick response of the controller (able to apply an impulse of 50A in about 1ms) along with real-time plasma measurements from a Mirror Langmuir Probe (MLP) allows for real-time control of the probe trajectory based on plasma conditions at the probe tip. Since the primary concern for probe operation is overheating, an analog circuit has been created that computes the surface temperature of the probe from the MLP measurements. The probe can be programmed to scan into the plasma at various times and then turns around when the computed surface temperature reaches a set threshold, maximizing the scan depth into the plasma while avoiding excessive heating. Design, integration, and first measurements with this new system will be presented. This work was supported by U.S. Department of Energy award DE-FC02-99ER54512, using Alcator C-Mod, A DOE SC User Facility.

  20. Tamm-Langmuir surface waves

    NASA Astrophysics Data System (ADS)

    Golenitskii, K. Â. Yu.; Koshelev, K. Â. L.; Bogdanov, A. Â. A.

    2016-10-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states—we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  1. Phenomenological Modeling for Langmuir Monolayers

    NASA Astrophysics Data System (ADS)

    Baptiste, Dimitri; Kelly, David; Safford, Twymun; Prayaga, Chandra; Varney, Christopher N.; Wade, Aaron

    Experimentally, Langmuir monolayers have applications in molecular optical, electronic, and sensor devices. Traditionally, Langmuir monolayers are described by a rigid rod model where the rods interact via a Leonard-Jones potential. Here, we propose effective phenomenological models and utilize Monte Carlo simulations to analyze the phase behavior and compare with experimental isotherms. Research reported in this abstract was supported by UWF NIH MARC U-STAR 1T34GM110517-01.

  2. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect

    Shibata, Y. Manabe, T.; Ohno, N.; Takagi, M.; Kajita, S.; Tsuchiya, H.; Morisaki, T.

    2014-09-15

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ∼4 × 10{sup 19} m{sup −2} s{sup −1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  3. Computational characterization of cutoff probe system for the measurement of electron density

    SciTech Connect

    Na, Byung-Keun; Kim, Dae-Woong; Kwon, Jun-Hyuk; Chang, Hong-Young; Kim, Jung-Hyung; You, Shin-Jae

    2012-05-15

    The wave cutoff probe, a precise measurement method for measuring the electron density, was recently proposed. To characterize the cutoff probe system, in this paper, the microwave simulations of a cutoff probe system were performed at various configurations of the cutoff probe system. The influence of the cutoff probe spectrum stemming from numerous parametric elements such as the probe tip length, probe tip distance, probe tip plane orientation, chamber volume/geometry, and coaxial cable length is presented and discussed. This article is expected to provide qualitative and quantitative insight into cutoff probe systems and its optimization process.

  4. Logarithmic axicon characterized by scanning optical probe system.

    PubMed

    Cao, Zhaolou; Wang, Keyi; Wu, Qinglin

    2013-05-15

    A scanning optical probe system is proposed to measure a logarithmic axicon (LA) with subwavelength resolution. Multiple plane intensity profiles measured by a fiber probe are interpreted by solving an optimization problem to get the phase retardation function (PRF) of the LA. Experimental results show that this approach can accurately obtain the PRF with which the optical path difference of the generated quasi-nondiffracting beam in the propagation is calculated.

  5. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  6. Situ soil sampling probe system with heated transfer line

    DOEpatents

    Robbat, Jr., Albert

    2002-01-01

    The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

  7. Fast reciprocating probe system on the EAST superconducting tokamak.

    PubMed

    Zhang, W; Chang, J F; Wan, B N; Xu, G S; Xiao, C J; Li, B; Xu, C S; Yan, N; Wang, L; Liu, S C; Jiang, M; Liu, P

    2010-11-01

    A new fast reciprocating probe system (FRPS) has been built and installed on the outer midplane of the EAST tokamak to investigate the profiles of the boundary plasma parameters such as electron density and temperature. The system consists of a two-stage motion drive mechanism: slow motion and fast motion. The fast motion is powered by a servo motor, which drives the probe horizontally up to 50 cm to scan the edge region of the EAST tokamak. The maximum velocity achieved is 2 m/s. High velocity and flexible control of the fast motion are the remarkable features of this FRPS. A specially designed connector installed at the front end of the probe shaft makes it easy to install or replace the probe head on FRPS. During the latest experimental campaign in the spring of 2010, a probe head with seven tips, including two tips for a Mach probe, has been used. An example is given for simultaneous profile measurements of the plasma temperature, plasma density, and the plasma flow velocity.

  8. Langmuir wave harmonics due to driven nonlinear currents

    NASA Astrophysics Data System (ADS)

    Malaspina, David M.; Graham, Daniel B.; Ergun, Robert E.; Cairns, Iver H.

    2013-11-01

    The conversion of Langmuir waves into electromagnetic radiation near the local plasma frequency (fpe) and twice the local plasma frequency (2fpe) occurs in diverse heliospheric environments including along the path of type III radio bursts, at interplanetary shocks, and in planetary foreshocks. This radiation has the potential to act as a probe of remote plasma conditions, provided that the conversion mechanism is well understood. One candidate conversion mechanism is the antenna radiation of localized Langmuir waves. Antenna radiation near 2fpe requires the presence of nonlinear currents at 2fpe. In this work, properties of these currents are predicted from theory and compared with observations of Langmuir wave electric fields made using the WAVES instrument on the STEREO spacecraft. It is found that the observed frequency structure, polarization, and wave number ratio are consistent with nonlinear current predictions, once electric fields near 2fpeconsistent with sheath effects are taken into account.

  9. Probe Measurements of Electrostatic Fluctuations in LDX

    NASA Astrophysics Data System (ADS)

    Ortiz, E. E.; Mauel, M. E.; Garnier, D. T.; Hansen, A. K.; Levitt, B. J.; Kesner, J.; Boxer, A.; Ellsworth, J. L.; Karim, I.; Mahar, S.; Roach, A. H.; Zimmermann, M.

    2004-11-01

    Electrostatic fluctuations play an important role in the equilibrium and stability of a high-beta plasma confined in a dipolar magnetic field. Initial plasma experiments in LDX will use movable edge probes to measure plasma potential, plasma characteristics, and plasma mass flow. Three probe systems have been installed: a triple Langmuir probe (constructed of 1 cm long, 0.5 mm dia. tungsten wire probe tips), an emissive probe (constructed of 0.9 cm long, 1 mm dia. thoriated tungsten wire), and a Mach probe (constructed with two 0.7 cm long, 1.5 mm dia. tungsten wires). Each probe is mounted on an adjustable feed-through capable of scanning parameters along a 40 cm cord at the plasma edge. Initial measurements and interpretations from first plasma experiments will be presented.

  10. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  11. Langmuir rogue waves in electron-positron plasmas

    SciTech Connect

    Moslem, W. M.

    2011-03-15

    Progress in understanding the nonlinear Langmuir rogue waves which accompany collisionless electron-positron (e-p) plasmas is presented. The nonlinearity of the system results from the nonlinear coupling between small, but finite, amplitude Langmuir waves and quasistationary density perturbations in an e-p plasma. The nonlinear Schroedinger equation is derived for the Langmuir waves' electric field envelope, accounting for small, but finite, amplitude quasistationary plasma slow motion describing the Langmuir waves' ponderomotive force. Numerical calculations reveal that the rogue structures strongly depend on the electron/positron density and temperature, as well as the group velocity of the envelope wave. The present study might be helpful to understand the excitation of nonlinear rogue pulses in astrophysical environments, such as in active galactic nuclei, in pulsar magnetospheres, in neutron stars, etc.

  12. Design study for electronic system for Jupiter Orbit Probe (JOP)

    NASA Technical Reports Server (NTRS)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  13. Probing and mapping plasmonic systems by spectroscopic methods (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia; Hussain, Rabia; Mashhadi, Soheila

    2016-09-01

    Rare earth ions having both electric and magnetic dipole transitions in emission spectra can be used as local probe to provide information on degree of modification and local distribution of optical electric and magnetic fields in plasmonic systems. In our research, we use highly luminescent organic systems with Eu3+ to study and analyze modification of magnetic and electric dipoles emission in different environment, including systems having plasmonic electric resonance or magnetic resonance in the range of Eu3+ emission, and flat metal. Experimental setup based on selective detection of the particular transition was built and used for probing and mapping of electric and magnetic fields in plasmonic systems and metasurfaces. The method developed can find applications in characterization of plasmonic systems and metamaterials, and engineering of emission properties of rare earth ions and other emitters.

  14. Dynamic Force Sensing Using an Optically Trapped Probing System

    PubMed Central

    Huang, Yanan; Cheng, Peng; Menq, Chia-Hsiang

    2013-01-01

    This paper presents the design of an adaptive observer that is implemented to enable real-time dynamic force sensing and parameter estimation in an optically trapped probing system. According to the principle of separation of estimation and control, the design of this observer is independent of that of the feedback controller when operating within the linear range of the optical trap. Dynamic force sensing, probe steering/clamping, and Brownian motion control can, therefore, be developed separately and activated simultaneously. The adaptive observer utilizes the measured motion of the trapped probe and input control effort to recursively estimate the probe–sample interaction force in real time, along with the estimation of the probing system’s trapping bandwidth. This capability is very important to achieving accurate dynamic force sensing in a time-varying process, wherein the trapping dynamics is nonstationary due to local variations of the surrounding medium. The adaptive estimator utilizes the Kalman filter algorithm to compute the time-varying gain in real time and minimize the estimation error for force probing. A series of experiments are conducted to validate the design of and assess the performance of the adaptive observer. PMID:24382944

  15. Dichromatic Langmuir waves in degenerate quantum plasma

    SciTech Connect

    Dubinov, A. E. Kitayev, I. N.

    2015-06-15

    Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.

  16. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1983-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  17. Topics in strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Nicholson, D. R.

    1982-01-01

    Progress in two approaches to the study of strong Langmuir turbulence is reported. In two spatial dimensions, numerical solution of the Zakharov equations yields a steady state involving linear growth, linear damping, and a collection of coherent, long-lived entities which might loosely be called solitons. In one spatial dimension, a statistical theory is applied to the cubically nonlinear Schroedinger equation and is solved analytically in a special case.

  18. Multi-function diamond film fiber optic probe and measuring system employing same

    DOEpatents

    Young, J.P.

    1998-11-24

    A fused fiber optic probe having a protective cover, a fiber optic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiber optic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 9 figs.

  19. Multi-function diamond film fiberoptic probe and measuring system employing same

    DOEpatents

    Young, Jack P.

    1998-01-01

    A fused fiberoptic probe having a protective cover, a fiberoptic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  20. Langmuir and langmuir-blodgett films of metallosupramolecular polyelectrolyte-amphiphile complexes.

    PubMed

    Lehmann, Pit; Symietz, Christian; Brezesinski, Gerald; Krass, Henning; Kurth, Dirk G

    2005-06-21

    A detailed analysis of a metallosupramolecular polyelectrolyte-amphiphile complex (PAC) at the air-water interface is presented. Langmuir isotherms, Brewster angle microscopy, and X-ray reflectance and diffraction methods are employed to investigate the structure of the Langmuir monolayers. The PAC is self-assembled from 1,3-bis[4'-oxa-(2,2':6',2' '-terpyridinyl)]propane, iron acetate, and dihexadecyl phosphate (DHP). Spreading the PAC at the air-water interface results in a monolayer that consists of two strata. DHP forms a monolayer at the top of the interface, while the metallosupramolecular polyelectrolyte is immersed in the aqueous subphase. Both strata are coupled to each other through electrostatic interactions. The monolayers can be transferred onto solid substrates, resulting in well-ordered multilayers. Such multilayers are model systems for well-ordered metal ions in two dimensions.

  1. Two-axis probing system for atomic force microscopy.

    PubMed

    Jayanth, G R; Jhiang, Sissy M; Menq, Chia-Hsiang

    2008-02-01

    A novel two-axis probing system is proposed for multiaxis atomic force microscopy (AFM). It employs a compliant manipulator that is optimally designed in terms of geometries and kinematics, and is actuated by multiple magnetic actuators to simultaneously control tip position and change tip orientation to achieve greater accessibility of the sample surface when imaging surfaces having large geometric variations. It leads to the creation of a multiaxis AFM system, which is a three-dimensional surface tool rather than a two-dimensional planar surface tool. The use of the system to scan the bottom corner of a grating step is reported.

  2. Kinetic dispersion of Langmuir waves. I. The Langmuir decay instability

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Williams, E. A.; Hinkel, D. E.; Divol, L.; Strozzi, D. J.

    2009-09-01

    We derive a fully kinetic, three-dimensional dispersion relation for Langmuir waves with a focus on the Langmuir decay instability (LDI). The kinetic dispersion is compared to the standard fluid dispersion found with an equation of state (EOS) closure. The EOS closure fails to capture the intricacies of the nonlinear pressure when high frequency electron plasma waves (EPWs) couple to low frequency ion acoustic waves (IAWs). In particular, we find discrepancies in the kλd scaling of the LDI growth rate, where k is the wavenumber of the incident EPW and λd is the Debye length. As a result, the kinetic dispersion relation for LDI results in instability thresholds that can be in excess of twice those predicted by the fluid theory. Both the fluid and kinetic dispersion relations predict a nonlinear frequency shift due to the beating of the pump and scattered EPWs, but again the kλd scaling of these frequency shifts differ. In addition, the kinetic dispersion predicts a nonlinear reduction in the IAW damping from the three-wave interaction.

  3. Kinetic dispersion of Langmuir waves. I. The Langmuir decay instability

    SciTech Connect

    Palastro, J. P.; Williams, E. A.; Hinkel, D. E.; Divol, L.; Strozzi, D. J.

    2009-09-15

    We derive a fully kinetic, three-dimensional dispersion relation for Langmuir waves with a focus on the Langmuir decay instability (LDI). The kinetic dispersion is compared to the standard fluid dispersion found with an equation of state (EOS) closure. The EOS closure fails to capture the intricacies of the nonlinear pressure when high frequency electron plasma waves (EPWs) couple to low frequency ion acoustic waves (IAWs). In particular, we find discrepancies in the k{lambda}{sub d} scaling of the LDI growth rate, where k is the wavenumber of the incident EPW and {lambda}{sub d} is the Debye length. As a result, the kinetic dispersion relation for LDI results in instability thresholds that can be in excess of twice those predicted by the fluid theory. Both the fluid and kinetic dispersion relations predict a nonlinear frequency shift due to the beating of the pump and scattered EPWs, but again the k{lambda}{sub d} scaling of these frequency shifts differ. In addition, the kinetic dispersion predicts a nonlinear reduction in the IAW damping from the three-wave interaction.

  4. Evaluation of the NDP (neutron diagnostic probe) system

    SciTech Connect

    Pentaleri, E.A.; Eisen, Y.Y.

    1990-12-01

    The neutron diagnostic probe (NDP), an explosive detection system developed by Consolidated Controls Corporation and based on the associated-alpha-particle technique, was evaluated. Although many problems were found with the prototype system that make it useless for most practical applications, the NDP system may be considered a successful proof-of-principle for the basic explosive detection system design. In addition to evaluating the design and performance of the present system, models were developed to estimate the performance that might reasonably be expected from full scale systems of different conceptual design. Specific examples involved various types of bulk and sheet explosives contained in a suitcase and a large crate. Also considered were the effects of innocuous materials surrounding explosives in different scenarios, including the deliberate use of shielding materials as a countermeasure to detection. 11 refs., 46 figs., 24 tabs.

  5. The Microwave Anisotropy Probe (MAP) Attitude Control System

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  6. Lipid reassembly in asymmetric Langmuir-Blodgett/Langmuir-Schaeffer bilayers.

    PubMed

    Yuan, Jie; Hao, Changchun; Chen, Maohui; Berini, Pierre; Zou, Shan

    2013-01-08

    Molecular-reorganization-induced morphology alteration in asymmetric substrate-supported lipid bilayers (SLBs) was directly visualized by means of atomic force microscopy (AFM) and total internal reflection fluorescence (TIRF) microscopy. SLB samples were fabricated on mica-on-glass and glass substrates by Langmuir-Blodgett (LB)/Langmuir-Schaeffer (LS) using binary lipid mixtures, namely, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and ternary mixtures DOPC/DPPC/1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), labeled with 0.2 mol % Texas Red 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt (TR-DHPE) dye. Phase segregations were characterized by TIRF imaging, and DPPC-enriched domain structures were also observed. Interestingly for ∼40% (n = 6) of the samples with binary mixtures in the LB leaflet and a single component in the LS leaflet, that is, (DOPC/DPPC)(LB)+DOPC(LS), the contrast of the DPPC domains changed from the original dark (without dye) to bright (more TR dye partitioning) on TIRF images, returning to dark again. This contrast reverse was also correlated to AFM height images, where a DPPC-DPPC gel phase was spotted after the TIRF image contrast returned to dark. The rupture force mapping results measured on these binary mixture samples also confirmed unambiguously the formation of DPPC-DPPC gel domain components during the contrast change. The samples were tracked over 48 h to investigate the lipid molecule movements in both the DPPC domains and the DOPC fluid phase. The fluorescence contrast changes from bright to dark in SLBs indicate that the movement of dye molecules was independent of the movement of lipid molecules. In addition, correlated multimodal imaging using AFM, force mapping, and fluorescence provides a novel route to uncover the reorganization of lipid molecules at the solid-liquid interface, suggesting that the dynamics of dye molecules is highly

  7. Measuring correlations of cold-atom systems using multiple quantum probes

    NASA Astrophysics Data System (ADS)

    Streif, Michael; Buchleitner, Andreas; Jaksch, Dieter; Mur-Petit, Jordi

    2016-11-01

    We present a nondestructive method to probe a complex quantum system using multiple-impurity atoms as quantum probes. Our protocol provides access to different equilibrium properties of the system by changing its coupling to the probes. In particular, we show that measurements with two probes reveal the system's nonlocal two-point density correlations, for probe-system contact interactions. We illustrate our findings with analytic and numerical calculations for the Bose-Hubbard model in the weakly and strongly interacting regimes, under conditions relevant to ongoing experiments in cold-atom systems.

  8. Child-Langmuir flow with periodically varying anode voltage

    NASA Astrophysics Data System (ADS)

    Rokhlenko, A.

    2015-02-01

    Using the Lagrangian technique, we study settled Child-Langmuir flows in a one dimensional planar diodes whose anode voltages periodically vary around given positive values. Our goal is to find analytically if the average currents in these systems can exceed the famous Child-Langmuir limit found for the stationary current a long time ago. The main result of our study is that in a periodic quasi-stationary regime the average current can be larger than the Child-Langmuir maximum even by 50% compared with its adiabatic average value. The cathode current in this case has the form of rectangular pulses which are formed by a very special triangular voltage modulation. This regime, i.e., periodicity, shape of pulses, and their amplitude, needs to be carefully chosen for the best performance.

  9. Child-Langmuir flow with periodically varying anode voltage

    SciTech Connect

    Rokhlenko, A.

    2015-02-15

    Using the Lagrangian technique, we study settled Child-Langmuir flows in a one dimensional planar diodes whose anode voltages periodically vary around given positive values. Our goal is to find analytically if the average currents in these systems can exceed the famous Child-Langmuir limit found for the stationary current a long time ago. The main result of our study is that in a periodic quasi-stationary regime the average current can be larger than the Child-Langmuir maximum even by 50% compared with its adiabatic average value. The cathode current in this case has the form of rectangular pulses which are formed by a very special triangular voltage modulation. This regime, i.e., periodicity, shape of pulses, and their amplitude, needs to be carefully chosen for the best performance.

  10. Probing TRAPPIST-1-like Systems with K2

    NASA Astrophysics Data System (ADS)

    Demory, Brice-Olivier; Queloz, Didier; Alibert, Yann; Gillen, Ed; Gillon, Michael

    2016-07-01

    The search for small planets orbiting late M dwarfs holds the promise of detecting Earth-size planets for which their atmospheres could be characterized within the next decade. The recent discovery of TRAPPIST-1 entertains hope that these systems are common around hosts located at the bottom of the main sequence. In this Letter, we investigate the ability of the repurposed Kepler mission (K2) to probe planetary systems similar to TRAPPIST-1. We perform a consistent data analysis of 189 spectroscopically confirmed M5.5 to M9 late M dwarfs from Campaigns 1-6 to search for planet candidates and inject transit signals with properties matching TRAPPIST-1b and c. We find no transiting planet candidates across our K2 sample. Our injection tests show that K2 is able to recover both TRAPPIST-1 planets for 10% of the sample only, mainly because of the inefficient throughput at red wavelengths resulting in Poisson-limited performance for these targets. Increasing injected planetary radii to match GJ 1214b’s size yields a recovery rate of 70%. The strength of K2 is its ability to probe a large number of cool hosts across the different campaigns, out of which the recovery rate of 10% may turn into bona fide detections of TRAPPIST-1-like systems within the next two years.

  11. Measurement of electron density using reactance cutoff probe

    NASA Astrophysics Data System (ADS)

    You, K. H.; You, S. J.; Kim, D. W.; Na, B. K.; Seo, B. H.; Kim, J. H.; Seong, D. J.; Chang, H. Y.

    2016-05-01

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure the electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).

  12. Excitation of electron Langmuir frequency harmonics in the solar atmosphere

    SciTech Connect

    Fomichev, V. V.; Fainshtein, S. M.; Chernov, G. P.

    2013-05-15

    An alternative mechanism for the excitation of electron Langmuir frequency harmonics as a result of the development of explosive instability in a weakly relativistic beam-plasma system in the solar atmosphere is proposed. The efficiency of the new mechanism as compared to the previously discussed ones is analyzed.

  13. Limitations to Using Linearized Langmuir Equations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most commonly used models for describing solute sorption to soils is the Langmuir model. Because the Langmuir model is nonlinear, fitting the model to sorption data requires that the model be solved iteratively using an optimization program. To avoid the use of optimization programs, a li...

  14. The Jupiter System Observer: Probing the Foundations of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Senske, D.; Prockter, L.; Collins, G.; Cooper, J.; Hendrix, A.; Hibbitts, K.; Kivelson, M.; Orton, G.; Schubert, G.; Showman, A.; Turtle, E.; Williams, D.; Kwok, J.; Spilker, T.; Tan-Wang, G.

    2007-12-01

    Galileo's observations in the 1600's of the dynamic system of Jupiter and its moons launched a revolution in understanding the way planetary systems operate. Now, some 400 years later, the discovery of extra solar planetary systems with Jupiter-sized bodies has led to a similar revolution in thought regarding how these systems form and evolve. From the time of Galileo, the Jovian system has been viewed as a solar system in miniature, providing a laboratory to study, diverse and dynamic processes in a single place. The icy Galilean satellites provide a window into solar system history by preserving in their cratering records a chronology dating back nearly 4.5 By and extending to the present. The continuously erupting volcanoes of Io may provide insight into the era when magma oceans were common. The discovery of an internally generated magnetic field at Ganymede, one of only three terrestrial bodies to possess such a field, is a place to gain insight as to how dynamos work. The confirmation and characterization of icy satellite subsurface oceans impacts the way habitability is considered. Understanding the composition and volatile inventory of Jupiter can shed light into how planets accrete from the solar nebulae. Finally, like our sun, Jupiter influences its system through its extensive magnetic field. In early 2007, NASA's Science Mission Directorate formed four Science Definition Teams (SDTs) to formulate science goals and objectives in anticipation of the initiation of a flagship-class mission to the outer solar system (Europa, Jupiter system, Titan and Enceladus). The Jupiter System Observer (JSO) mission concept emphasizes overall Jupiter system science: 1) Jupiter and its atmosphere, 2) the geology and geophysics of the Galilean satellites (Io, Europa, Ganymede and Callisto), 3) the magnetosphere environment - both Jupiter's and Ganymede's&pand 4) interactions within the system. Focusing on the unique geology, presence of an internal magnetic field and

  15. Development of a system for aerodynamic fast-response probe measurements

    NASA Astrophysics Data System (ADS)

    Gossweiler, C.; Humm, H.; Kupferschmied, P.

    This paper describes the development of a fast-response probe measurement system. Small pressure probes have been equipped with up to 4 miniature pressure sensors. The high frequency response of such sensors allied to minimized cavities between the flow and the sensing diaphragm enables the probe system to take measurements up to 40 kHz bandwidth (typical blade passing frequency: 2-10 kHz). First results of investigations on the aerodynamic of high frequency response measurement probes are presented including experiments in a water towing channel with unsteady flows around different probe geometries. The packaging of the sensor chip into the probe, the properties of the sensors and the measurement errors are examined. Probe calibration methods and aerodynamic evaluation procedures are discussed, followed by a presentation of the data acquisition system and of the data evaluation software. Measurements in a radial compressor test rig and in a fully developed pipe flow are shown as applications.

  16. Abegg, Lewis, Langmuir, and the Octet Rule.

    ERIC Educational Resources Information Center

    Jensen, William B.

    1984-01-01

    Discusses major events leading to the development of the octet rule. Three conclusions based on the work of Mendeleev, Abegg, Thompson, Kossel, Lewis, and Langmuir are considered as is the debate over the rule's validity. (JN)

  17. All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle.

    PubMed

    Miida, Yusuke; Matsuura, Yuji

    2013-09-23

    An all-optical 3D photoacoustic imaging probe that consists of an optical fiber probe for ultrasound detection and a bundle of hollow optical fibers for excitation of photoacoustic waves was developed. The fiber probe for ultrasound is based on a single-mode optical fiber with a thin polymer film attached to the output end surface that works as a Fabry Perot etalon. The input end of the hollow fiber bundle is aligned so that each fiber in the bundle is sequentially excited. A thin and flexible probe can be obtained because the probe system does not have a scanning mechanism at the distal end.

  18. Relativistically modulational instability by strong Langmuir waves

    SciTech Connect

    Liu, X. L.; Liu, S. Q.; Li, X. Q.

    2012-09-15

    Based on the set of nonlinear coupling equations, which has considered the relativistic effects of electrons, modulational instability by strong Langmuir waves has been investigated in this paper. Both the characteristic scale and maximum growth rate of the Langmuir field will enhance with the increase in the electron relativistic effect. The numerical results indicate that longitudinal perturbations induce greater instability than transverse perturbations do, which will lead to collapse and formation of the pancake-like structure.

  19. Restoring Redundancy to the Wilkinson Microwave Anisotrophy Probe Propulsion System

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Davis, Gary T.; Ward, David K.

    2004-01-01

    The Wilkinson Microwave Anisotropy Probe is a follow-on to the Differential Microwave Radiometer instrument on the Cosmic Background Explorer. Attitude control system engineers discovered sixteen months before launch that configuration changes after the critical design review had resulted in a significant migration of the spacecraft's center of mass. As a result, the spacecraft no longer had a viable backup control mode in the event of a failure of the negative pitch-axis thruster. A tiger team was formed and identified potential solutions to this problem, such as adding thruster-plume shields to redirect thruster torque, adding or removing mass from the spacecraft, adding an additional thruster, moving thrusters, bending thruster nozzles or propellant tubing, or accepting the loss of redundancy. The project considered the impacts on mass, cost, fuel budget, and schedule for each solution, and decided to bend the propellant tubing of the two roll-control thrusters to allow the pair to be used for backup control in the negative pitch axis. This paper discusses the problem and the potential solutions, and documents the hardware and software changes and verification performed. Flight data are presented to show the on-orbit performance of the propulsion system and lessons learned are described.

  20. The Attitude Control System for the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe mission produces a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. Sufficient attitude knowledge is provided to yield instrument pointing to a standard deviation (l sigma) of 1.3 arc-minutes per axis. In addition, the spacecraft acquires and holds the sunline at initial acquisition and in the event of a failure, and slews to the proper orbit adjust orientations and to the proper off-sunline attitude to start the compound spin. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  1. The CRRES Langmuir Probe and Fluxgate Magnetometer Instrument

    DTIC Science & Technology

    1989-05-09

    VOLTAGE’CURRENT MODE MT • m 0015 PIAYFIA6 EQU 80H PLAYBACK ENABLE BIT »00 0017 KÜHN E8U 8 MIR rRANSHIT OVERRIDE 0000 0018 I •:• oe ooi9 mil...RAH34+AN6SHP 1B1A C9 0065 RET 1B1B 0066 * 181B 0067 t COHHAND ENTRY IN CHL1 1816 0068 t 181B 7C 0069 SNPCHD HOV A,H IF REBIAS COHHAND, SETRESULT

  2. Probe based confocal laser endomicroscopy of the pancreatobiliary system

    PubMed Central

    Almadi, Majid A; Neumann, Helmut

    2015-01-01

    AIM: To review applications of confocal laser endomicroscopy (CLE) in pancreatobiliary lesions and studies that assessed training and interpretation of images. METHODS: A computerized literature search was performed using OVID MEDLINE, EMBASE, Cochrane library, and the ISI Web of Knowledge from 1980 to October 2014. We also searched abstracts from major meetings that included the Digestive Disease Week, Canadian Digestive Disease Week and the United European Gastroenterology Week using a combination of controlled vocabulary and text words related to pCLE, confocal, endomicroscopy, probe-based confocal laser endomicroscopy, and bile duct to identify reports of trials. In addition, recursive searches and cross-referencing was performed, and manual searches of articles identified after the initial search was also completed. We included fully published articles and those in abstract form. Given the relatively recent introduction of CLE we included randomized trials and cohort studies. RESULTS: In the evaluation of indeterminate pancreatobiliary strictures CLE with ERCP compared to ERCP alone can increase the detection of cancerous strictures with a sensitivity of (98% vs 45%) and has a negative predictive value (97% vs 69%), but decreased the specificity (67% vs 100%) and the positive predictive value (71% vs 100%) when compared to index pathology. Modifications in the classification systems in indeterminate biliary strictures have increased the specificity of pCLE from 67% to 73%. In pancreatic cystic lesions there is a need to develop similar systems to interpret and characterize lesions based on CLE images obtained. The presence of superficial vascular network predicts serous cystadenomas accurately. Also training in acquiring and interpretation of images is feasible in those without any prior knowledge in CLE in a relatively simple manner and computer-aided diagnosis software is a promising innovation. CONCLUSION: The role of pCLE in the evaluation of

  3. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  4. Performance Assessment of a New Variable Stiffness Probing System for Micro-CMMs.

    PubMed

    Alblalaihid, Khalid; Kinnell, Peter; Lawes, Simon; Desgaches, Dorian; Leach, Richard

    2016-04-08

    When designing micro-scale tactile probes, a design trade-off must be made between the stiffness and flexibility of the probing element. The probe must be flexible enough to ensure sensitive parts are not damaged during contact, but it must be stiff enough to overcome attractive surface forces, ensure it is not excessively fragile, easily damaged or sensitive to inertial loads. To address the need for a probing element that is both flexible and stiff, a novel micro-scale tactile probe has been designed and tested that makes use of an active suspension structure. The suspension structure is used to modulate the probe stiffness as required to ensure optimal stiffness conditions for each phase of the measurement process. In this paper, a novel control system is presented that monitors and controls stiffness, allowing two probe stiffness values ("stiff" and "flexible") to be defined and switched between. During switching, the stylus tip undergoes a displacement of approximately 18 µm, however, the control system is able ensure a consistent flexible mode tip deflection to within 12 nm in the vertical axis. The overall uncertainty for three-dimensional displacement measurements using the probing system is estimated to be 58 nm, which demonstrates the potential of this innovative variable stiffness micro-scale probe system.

  5. Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

    PubMed Central

    Sahin, Ferat; Yablon, Dalia

    2015-01-01

    Summary A novel instrumentation approach to nanoindentation is described that exhibits improved resolution and depth sensing. The approach is based on a multi-probe scanning probe microscopy (SPM) tool that utilizes tuning-fork based probes for both indentation and depth sensing. Unlike nanoindentation experiments performed with conventional AFM systems using beam-bounce technology, this technique incorporates a second probe system with an ultra-high resolution for depth sensing. The additional second probe measures only the vertical movement of the straight indenter attached to a tuning-fork probe with a high spring constant and it can also be used for AFM scanning to obtain an accurate profiling. Nanoindentation results are demonstrated on silicon, fused silica, and Corning Eagle Glass. The results show that this new approach is viable in terms of accurately characterizing mechanical properties of materials through nanoindentation with high accuracy, and it opens doors to many other exciting applications in the field of nanomechanical characterization. PMID:26665072

  6. Langmuir solitons in a plasma with inhomogeneous electron temperature

    NASA Astrophysics Data System (ADS)

    Gromov, Evgeny M.; Malomed, Boris A.

    2015-06-01

    Dynamics of Langmuir solitons is considered in plasmas with spatially inhomogeneous electron temperature. An underlying Zakharov-type system of two unidirectional equations for the Langmuir and ion-sound fields is reduced to an inhomogeneous nonlinear Schrödinger equation with spatial variation of the second-order dispersion and self-phase modulation coefficients, induced by a spatially inhomogeneous profile of the electron temperature. Analytical trajectories of motion of a soliton in the plasma with an electron-temperature hole, barrier, or cavity between two barriers are found, using the method of integral moments. The possibility of the soliton to pass a high-temperature barrier is shown too. Analytical results are well corroborated by numerical simulations.

  7. Saturn Uranus atmospheric entry probe mission spacecraft system definition study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The modifications required of the Pioneer F/G spacecraft design for it to deliver an atmospheric entry probe to the planets Saturn and Uranus are investigated. It is concluded that it is feasible to conduct such a mission within the constraints and interfaces defined. The spacecraft required to perform the mission is derived from the Pioneer F/G design, and the modifications required are generally routinely conceived and executed. The entry probe is necessarily a new design, although it draws on the technology of past, present, and imminent programs of planetary atmospheric investigations.

  8. Outer planet entry probe system study. Volume 2: Supporting technical studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The environment, science investigations, and general mission analysis considerations are given first. These data are followed by discussions of the studies pertaining to the planets Jupiter, Saturn, Uranus, and Neptune. Except for Neptune, each planet discussion is divided into two parts: (1) parametric activities and (2) probe definition for that planet, or the application of a given probe for that planet. The Neptune discussion is limited to parametrics in the area of science and mission analysis. Each of the probe system definitions consists of system and subsystem details including telecommunications, data handling, power pyrotechnics, attitude control, structures, propulsion, thermal control, and probe to spacecraft integration. The first configuration is discussed in detail and the subsequent configuration discussions are limited to the differences. Finally, the hardware availability to support a probe system and commonality of science, missions, and subsystems for use at the various planets are considered.

  9. Fibre Fabry - Perot cavity-based aperture probe for near-field optical microscopy systems

    SciTech Connect

    Kulchin, Yurii N; Vitrik, O B; Bezverbnyi, A V; Pustovalov, E V; Kuchmizhak, A A; Nepomnyashchii, A V

    2011-03-31

    We report a theoretical analysis and experimental study of the possibility of producing a novel type of interferometric near-field aperture probe for near-field optical microscopy systems using a fibre Fabry - Perot microcavity with a nanometre-scale aperture made in one of its output mirrors. The probe ensures a spatial resolution no worse than {lambda}/14. (fibre optics)

  10. Sungrazing comets: Probing the inner extremes of the Solar System

    NASA Astrophysics Data System (ADS)

    Knight, M.

    2014-07-01

    /Machholz 1. The third group, Meyer, has not been linked to any known solar system object and has an unknown orbital period. The remaining known sungrazing comets have a variety of orbits and, with the notable exception of ISON, are generally not observed extensively. Due to their extreme orbits, sungrazing comets offer unique opportunities for understanding evolutionary processes in our solar system. During their perihelion passages they experience equilibrium temperatures exceeding 1500 K, resulting in sublimation of their dust and potentially allowing the least volatile components of our solar system to be cataloged. In fact, while all of the near-Sun objects discovered by SOHO and STEREO are designated ''comets'', many of those not associated with other known cometary objects may be asteroids or defunct comets whose apparent activity at these distances is due to sublimation of their bare surfaces. Sungrazing comets also experience strong tidal forces, resulting in frequent fragmentation. Such breakups expose the unprocessed interiors, potentially allowing intercomparison of the compositions of discrete fragments and revealing the size distribution of the planetessimals out of which the parent comet formed. Finally, it has recently become possible to use comets as ''solar probes'', treating them as test particles that can reveal properties of the solar environment such as the coronal temperature and density, magnetic field strength, and solar wind speed and direction.

  11. Systems-level study of a nonsurvivable Jupiter turbopause probe. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Wiltshire, R. S.

    1972-01-01

    The design of a space probe to explore the atmosphere of the planet Jupiter is discussed. Five major areas were considered: (1) definition of science requirements, (2) mission evaluation, (3) definition of probe system, (4) definition of spacecraft support requirements, and (5) nonequilibrium flow field analysis for communications blackout evaluation. The overall mission and system design are emphasized. The integration of the various technologies into complete systems designs is described. Results showed that a nonsurvivable turbopause probe mission to Jupiter with adequate data return to meet the science objectives is feasible and practical.

  12. Langmuir mixing effects on global climate: WAVEWATCH III in CESM

    NASA Astrophysics Data System (ADS)

    Li, Qing; Webb, Adrean; Fox-Kemper, Baylor; Craig, Anthony; Danabasoglu, Gokhan; Large, William G.; Vertenstein, Mariana

    2016-07-01

    Large-Eddy Simulations (LES) have shown the effects of ocean surface gravity waves in enhancing the ocean boundary layer mixing through Langmuir turbulence. Neglecting this Langmuir mixing process may contribute to the common shallow bias in mixed layer depth in regions of the Southern Ocean and the Northern Atlantic in most state-of-the-art climate models. In this study, a third generation wave model, WAVEWATCH III, has been incorporated as a component of the Community Earth System Model, version 1.2 (CESM1.2). In particular, the wave model is now coupled with the ocean model through a modified version of the K-Profile Parameterization (KPP) to approximate the influence of Langmuir mixing. Unlike past studies, the wind-wave misalignment and the effects of Stokes drift penetration depth are considered through empirical scalings based on the rate of mixing in LES. Wave-Ocean only experiments show substantial improvements in the shallow biases of mixed layer depth in the Southern Ocean. Ventilation is enhanced and low concentration biases of pCFC-11 are reduced in the Southern Hemisphere. A majority of the improvements persist in the presence of other climate feedbacks in the fully coupled experiments. In addition, warming of the subsurface water over the majority of global ocean is observed in the fully coupled experiments with waves, and the cold subsurface ocean temperature biases are reduced.

  13. Ultrasonic probe system for the bore-side inspection of tubes and welds therein

    DOEpatents

    Cook, K. Von; Koerner, Dan W.; Cunningham, Jr., Robert A.; Murrin, Jr., Horace T.

    1977-07-26

    A probe system is provided for the bore-side inspection of tube-to-header welds and the like for small diameter tubes. The probe head of the system includes an ultrasonic transmitter-receiver transducer, a separate ultrasonic receiver, a reflector associated with the transducer to properly orient the ultrasonic signal with respect to a tube wall, a baffle to isolate the receiver from the transducer, and means for maintaining the probe head against the tube wall under investigation. Since the probe head must rotate to inspect along a helical path, special ultrasonic signal connections are employed. Through the use of the probe, flaws at either the inner or outer surfaces may be detected.

  14. A heavy ion beam probe system for investigation of a modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Kambic, G. X.; Krawczonek, W. M.

    1977-01-01

    An ion beam probe diagnostic system can measure time- and space-resolved profiles of plasma space potential and electron density. In combination with a computer iterative technique, the ion beam probe can determine both the space potential profile in plasmas containing strong electric fields and potentials comparable in magnitude to the energy of the probing ion beam. During ion beam probing of a modified Penning discharge, several groups of secondary ions were observed coming from the plasma with a fixed primary beam energy and momentum. The energies of these ions were within 10 percent of the values predicted by a computer-generated model of the potential profile in the plasma. The mechanical and electronic components of the system are described, with particular emphasis on those features required to probe plasma potentials comparable in magnitude to the ion beam energy.

  15. Langmuir and Langmuir-Blodgett films of a maleic anhydride derivative: effect of subphase divalent cations.

    PubMed

    Martín-García, B; Velázquez, M Mercedes; Pérez-Hernández, J A; Hernández-Toro, J

    2010-09-21

    We report the study of the equilibrium and dynamic properties of Langmuir monolayers of poly(styrene-co-maleic anhydride) partial 2-buthoxyethyl ester cumene terminated polymer and the effect of the Mg(NO(3))(2) addition in the water subphase on the film properties. Results show that the polymer monolayer becomes more expanded when the electrolyte concentration in the subphase increases. Dense polymer films aggregate at the interface. The aggregates are transferred onto silicon wafers using the Langmuir-Blodgett methodology and the morphology is observed by AFM. The structure of aggregates depends on the subphase composition of the Langmuir film transferred onto the silicon wafer.

  16. Nanopatterned cadmium selenide Langmuir-Blodgett platform for leukemia detection.

    PubMed

    Sharma, Aditya; Pandey, Chandra M; Matharu, Zimple; Soni, Udit; Sapra, Sameer; Sumana, Gajjala; Pandey, Manoj K; Chatterjee, Tathagat; Malhotra, Bansi D

    2012-04-03

    We present results of the studies relating to preparation of Langmuir-Blodgett (LB) monolayers of tri-n-octylphosphine oxide-capped cadmium selenide quantum dots (QCdSe) onto indium-tin oxide (ITO) coated glass substrate. The monolayer behavior has been studied at the air-water interface under various subphase conditions. This nanopatterned platform has been explored to fabricate an electrochemical DNA biosensor for detection of chronic myelogenous leukemia (CML) by covalently immobilizing the thiol-terminated oligonucleotide probe sequence via a displacement reaction. The results of electrochemical response studies reveal that this biosensor can detect target DNA in the range of 10(-6) to 10(-14) M within 120 s, has a shelf life of 2 months, and can be used about 8 times. Further, this nucleic acid sensor has been found to distinguish the CML-positive and the control negative clinical patient samples.

  17. Basic Questions About the Solar System: The Need for Probes

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2005-01-01

    Probes are an essential element in the scientific study of planets with atmospheres. In-situ measurements provide the most accurate determination of composition, winds, temperatures, clouds, and radiative fluxes. They address fundamental NASA objectives concerning volatile compounds, climate, and the origin of life. Probes also deliver landers and aerobots that help in the study of planetary surfaces. This talk focuses on Venus, Titan, and the giant planets. I review the basic science questions and discuss the recommended missions. I stress the need for a balanced program that includes an array of missions that increase in size by factors of two. Gaps in this array lead to failures and cancellations that are harmful to the program and to scientific exploration.

  18. Study of a high-resolution PET system using a Silicon detector probe

    NASA Astrophysics Data System (ADS)

    Brzeziński, K.; Oliver, J. F.; Gillam, J.; Rafecas, M.

    2014-10-01

    A high-resolution silicon detector probe, in coincidence with a conventional PET scanner, is expected to provide images of higher quality than those achievable using the scanner alone. Spatial resolution should improve due to the finer pixelization of the probe detector, while increased sensitivity in the probe vicinity is expected to decrease noise. A PET-probe prototype is being developed utilizing this principle. The system includes a probe consisting of ten layers of silicon detectors, each a 80 × 52 array of 1 × 1 × 1 mm3 pixels, to be operated in coincidence with a modern clinical PET scanner. Detailed simulation studies of this system have been performed to assess the effect of the additional probe information on the quality of the reconstructed images. A grid of point sources was simulated to study the contribution of the probe to the system resolution at different locations over the field of view (FOV). A resolution phantom was used to demonstrate the effect on image resolution for two probe positions. A homogeneous source distribution with hot and cold regions was used to demonstrate that the localized improvement in resolution does not come at the expense of the overall quality of the image. Since the improvement is constrained to an area close to the probe, breast imaging is proposed as a potential application for the novel geometry. In this sense, a simplified breast phantom, adjacent to heart and torso compartments, was simulated and the effect of the probe on lesion detectability, through measurements of the local contrast recovery coefficient-to-noise ratio (CNR), was observed. The list-mode ML-EM algorithm was used for image reconstruction in all cases. As expected, the point spread function of the PET-probe system was found to be non-isotropic and vary with position, offering improvement in specific regions. Increase in resolution, of factors of up to 2, was observed in the region close to the probe. Images of the resolution phantom showed

  19. STEREO database of interplanetary Langmuir electric waveforms

    NASA Astrophysics Data System (ADS)

    Briand, C.; Henri, P.; Génot, V.; Lormant, N.; Dufourg, N.; Cecconi, B.; Nguyen, Q. N.; Goetz, K.

    2016-02-01

    This paper describes a database of electric waveforms that is available at the Centre de Données de la Physique des Plasmas (CDPP, http://cdpp.eu/). This database is specifically dedicated to waveforms of Langmuir/Z-mode waves. These waves occur in numerous kinetic processes involving electrons in space plasmas. Statistical analysis from a large data set of such waves is then of interest, e.g., to study the relaxation of high-velocity electron beams generated at interplanetary shock fronts, in current sheets and magnetic reconnection region, the transfer of energy between high and low frequencies, the generation of electromagnetic waves. The Langmuir waveforms were recorded by the Time Domain Sampler (TDS) of the WAVES radio instrument on board the STEREO mission. In this paper, we detail the criteria used to identify the Langmuir/Z-mode waves among the whole set of waveforms of the STEREO spacecraft. A database covering the November 2006 to August 2014 period is provided. It includes electric waveforms expressed in the normalized frame (B,B × Vsw,B × (B × Vsw)) with B and Vsw the local magnetic field and solar wind velocity vectors, and the local magnetic field in the variance frame, in an interval of ±1.5 min around the time of the Langmuir event. Quicklooks are also provided that display the three components of the electric waveforms together with the spectrum of E∥, together with the magnitude and components of the magnetic field in the 3 min interval, in the variance frame. Finally, the distribution of the Langmuir/Z-mode waves peak amplitude is also analyzed.

  20. Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 2: Calculations and derivations

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.

    1988-01-01

    This volume of the final report on the unmanned Multiple Exploratory Probe System (MEPS) details all calculations, derivations, and computer programs that support the information presented in the first volume.

  1. Mode of interaction of ganglioside Langmuir monolayer originated from echinoderms: three binary systems of ganglioside/DPPC, ganglioside/DMPE, and ganglioside/cholesterol.

    PubMed

    Hoda, Kazuki; Ikeda, Yuriko; Kawasaki, Hideya; Yamada, Koji; Higuchi, Ryuichi; Shibata, Osamu

    2006-09-01

    The surface pressure (pi)-area (A), the surface potential (DeltaV)-A, and the dipole moment (mu( perpendicular))-A isotherms were obtained for monolayers made from a ganglioside originated from echinoderms [Diadema setosum ganglioside (DSG-1)], dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylethanolamine (DMPE), cholesterol (Ch), and their combinations. Monolayers spread on several different substrates were investigated at the air/water interface by the Wilhelmy method, ionizing electrode method, fluorescence microscopy (FM) and atomic force microscopy (AFM). Surface potentials (DeltaV) of pure components were analyzed using the three-layer model proposed by Demchak and Fort [R.J. Demchak, T. Fort, J. Colloid Interface Sci. 46 (1974) 191-202]. The new finding was that DSG-1 was stable and showed a liquid-expanded film and that its monolayer behavior of DeltaV was sensitive for the change of the NaCl concentration in the subphase. Moreover, the miscibility of DSG-1 and three major lipids in the two-component monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the DSG-1 molar fraction (X(DSG-1)), using the additivity rule. From the A-X(DSG-1) and DeltaV(m)-X(DSG-1) plots, partial molecular surface area (PMA) and apparent partial molecular surface potential (APSP) were determined at the discrete surface pressure. The PMA and APSP with the mole fraction were extensively discussed for the miscible system. The miscibility was also investigated from the two-dimensional phase diagrams. Furthermore, a regular surface mixture, for which the Joos equation was used for the analysis of the collapse pressure of two-component monolayers, allowed calculation of the interaction parameter (xi) and the interaction energy (-Deltavarepsilon) between them. The observations using fluorescence microscopy and AFM image also provide us the miscibility in the monolayer state.

  2. The fast reciprocating magnetic probe system on the J-TEXT tokamak.

    PubMed

    Li, Fuming; Chen, Zhipeng; Zhuang, Ge; Liu, Hai; Zhu, Lizhi

    2016-11-01

    The fast reciprocating magnetic probe (FRMP) system is newly developed on the Joint Texas Experimental Tokamak (J-TEXT) to measure the local magnetic fluctuations at the plasma edge. The magnetic probe array in the FRMP consists of four 2-dimensional magnetic probes arranged at different radial locations to detect local poloidal and radial magnetic fields. These probes are protected by a graphite and boron nitride casing to improve the frequency response of each probe; they are mounted on the head of a movable rod, which is oriented along radial direction at the top of the torus. In the experiments, multiple core diagnostics show that the insertion of the FRMP has little impact on the equilibrium of the plasma. Local magnetic fluctuations inside the last closed flux surface are successfully measured by the FRMP.

  3. Improved thermometry of low-temperature quantum systems by a ring-structure probe

    NASA Astrophysics Data System (ADS)

    Guo, Li-Sha; Xu, Bao-Ming; Zou, Jian; Shao, Bin

    2015-11-01

    The thermometry precision of a sample is a question of both fundamental and technological importance. In this paper, we consider a ring-structure system as our probe to estimate the temperature of a bath. Based on the Markovian master equation of the probe, we calculate the quantum Fisher information (QFI) of the probe at any time. We find that for the thermal equilibrium thermometry, the ferromagnetic structure can measure a lower temperature of the bath with a higher precision compared with the nonstructure probe, while for the dynamical thermometry, the antiferromagnetic structure can make the QFI of the probe in the dynamical process much larger than that in equilibrium with the bath, which is somewhat counterintuitive. Moreover, the best accuracy for the thermometry achieved in the antiferromagnetic structure case can be much higher than that in the nonstructure case. The physical mechanisms of the above phenomena are given in this paper.

  4. The fast reciprocating magnetic probe system on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Li, Fuming; Chen, Zhipeng; Zhuang, Ge; Liu, Hai; Zhu, Lizhi

    2016-11-01

    The fast reciprocating magnetic probe (FRMP) system is newly developed on the Joint Texas Experimental Tokamak (J-TEXT) to measure the local magnetic fluctuations at the plasma edge. The magnetic probe array in the FRMP consists of four 2-dimensional magnetic probes arranged at different radial locations to detect local poloidal and radial magnetic fields. These probes are protected by a graphite and boron nitride casing to improve the frequency response of each probe; they are mounted on the head of a movable rod, which is oriented along radial direction at the top of the torus. In the experiments, multiple core diagnostics show that the insertion of the FRMP has little impact on the equilibrium of the plasma. Local magnetic fluctuations inside the last closed flux surface are successfully measured by the FRMP.

  5. Channel direction information probing for multi-antenna cognitive radio system

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Villardi, Gabriel Porto; Kojima, Fumihide; Yano, Hiroyuki

    2015-12-01

    This work studies the problem of channel direction information (CDI) probing for multi-antenna cognitive radio system. The CDI of the channel from the secondary transmitter (ST) to primary receiver (PR) is elementary information in designing the beamforming at the ST for mitigating the interference to the PR. However, lacking the explicit cooperation between primary and secondary systems, the CDI has to be acquired by probing at the ST, which is challenging. To solve this, we consider the line of sight (LoS) channel between the ST and the PR, and propose one CDI probing scheme for the ST. Specifically, the ST sends two types of probing signals by beamforming towards an interested region where both the secondary receiver (SR) and the PR are located and then actively learns the hidden feedback information from the primary system to acquire the CDI. The proposed scheme has a closed-form solution, and avoids the iteration between the probing and acquisition, which is desirable for practical system. Moreover, we show that the proposed probing scheme can be extended for primary systems working under multi-access channel and broadcasting channel. Simulation results demonstrate that the proposed scheme can improve the accuracy of the acquired CDI at the ST in cognitive ratio system remarkably.

  6. Sounding-Rocket Studies of Langmuir-Wave Microphysics in the Auroral Ionosphere

    NASA Astrophysics Data System (ADS)

    Dombrowski, Micah P.

    agreement with expected signatures of beating between pure, field-aligned, linearly polarized Langmuir waves and obliquely propagating, elliptically polarized, hybrid whistler-Langmuir waves. Finally, an autonomous digital signal processor/receiver has been refined and augmented to achieve high time- and frequency-resolution radio observations, synchronized sampling between multiple receivers, and on-board processing of data. This system was deployed on the CHARM-II rocket, resulting in measurements of the polarization of fine structures in auroral roar emissions.

  7. Irving Langmuir and the light bulb

    NASA Astrophysics Data System (ADS)

    Lister, Graeme

    2009-02-01

    Irving Langmuir's principal contribution to lighting was a major improvement in the efficiency of the incandescent lamp. He also used experiments on these lamps to provide fundamental new insight into a number of other areas of physics, including evaporation of metals, the space charge limited current in a vacuum and thermionic emission of electrons from metallic surfaces. This paper describes his experiments, and the chain of ideas which led him to new discoveries.

  8. Common-path optical coherence tomography using a microelectromechanical-system-based endoscopic probe.

    PubMed

    Wang, Donglin; Duan, Can; Zhang, Xiaoyang; Yun, Zhao; Pozzi, Antonio; Xie, Huikai

    2016-09-01

    This paper presents a common-path (CP) swept-source optical coherence tomography (SSOCT) system based on a special endoscopic probe design with an in-line internal reflection as the reference and a two-axis electrothermal microelectromechanical system mirror for image scanning. The rear surface of a gradient reflective index (GRIN) lens inside the probe is set as the reference reflection plane. The length of the GRIN lens is optimized to eliminate the artifacts in SSOCT images successfully. Doppler OCT is also demonstrated based on the CP endoscopic probe. The diameter of the probe is only 2.5 mm, so it can be easily inserted into the biopsy channel of traditional endoscopes to access human internal organs for in vivo diagnoses.

  9. Caviton dynamics in strong Langmuir turbulence

    SciTech Connect

    DuBois, D.; Rose, H.A.; Russell, D.

    1989-01-01

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound samping the turbulent energy is dominantly in nonlinear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful hf waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. 40 refs., 19 figs.

  10. Dynamics of cavitons in strong Langmuir turbulence

    SciTech Connect

    DuBois, D.F.; Rose, H.A.; Russell, D.

    1990-01-01

    Recent studies of Langmuir turbulence as described by Zakharov's model will be reviewed. For parameters of interest in laser-plasma experiments and for ionospheric hf heating experiments a significant fraction of the turbulent energy is in nonlinear caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful hf waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that free'' Langmuir waves are emitted in the caviton collapse process. Observations and theoretical considerations also imply that when the pump frequency is slightly lower than the ambient electron plasma frequency cavitons may evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. 42 refs., 12 figs.

  11. Compact probing system using remote imaging for industrial plant maintenance

    NASA Astrophysics Data System (ADS)

    Ito, F.; Nishimura, A.

    2014-03-01

    Laser induced breakdown spectroscopy (LIBS) and endoscope observation were combined to design a remote probing device. We use this probing device to inspect a crack of the inner wall of the heat exchanger. Crack inspection requires speed at first, and then it requires accuracy. Once Eddy Current Testing (ECT) finds a crack with a certain signal level, another method should confirm it visually. We are proposing Magnetic particle Testing (MT) using specially fabricated the Magnetic Particle Micro Capsule (MPMC). For LIBS, a multichannel spectrometer and a Q-switch YAG laser were used. Irradiation area is 270 μm, and the pulse energy was 2 mJ. This pulse energy corresponds to 5-2.2 MW/cm2. A composite-type optical fiber was used to deliver both laser energy and optical image. Samples were prepared to heat a zirconium alloy plate by underwater arc welding in order to demonstrate severe accidents of nuclear power plants. A black oxide layer covered the weld surface and white particles floated on water surface. Laser induced breakdown plasma emission was taken into the spectroscope using this optical fiber combined with telescopic optics. As a result, we were able to simultaneously perform spectroscopic measurement and observation. For MT, the MPMC which gathered in the defective area is observed with this fiber. The MPMC emits light by the illumination of UV light from this optical fiber. The size of a defect is estimated with this amount of emission. Such technology will be useful for inspection repair of reactor pipe.

  12. Thermal characteristics of sapphire contact probe delivery systems for laser angioplasty.

    PubMed

    Ashley, S; Brooks, S G; Gehani, A A; Kester, R C; Rees, M R

    1990-01-01

    Contact probes made from synthetic sapphire crystal, designed for general laser surgery, are currently being evaluated for use in laser angioplasty. Their mode of action and safety in the context of arterial recanalisation is unknown, particularly with respect to the degree of probe and catheter heating. Infrared thermal imaging was used to investigate the surface temperature rise of various rounded sapphire probes during emission of continuous wave Nd-YAG (1,064 nm) laser energy. Catheter safety was addressed by analyzing the temperature of the metal interface between the optical fiber and sapphire, as well as the catheter proximal to this junction. Transmission of Nd-YAG energy through each probe was also measured. Five rounded probes of 1.8-3.0 mm diameter (three supplied by Surgical Laser Technologies [SLT], two by Living Technology [LT]), along with their respective optical catheters, were compared. There was a large temperature gradient between the front and rim of the probes. The maximum surface temperature rise of the sapphire (at 20 W, 5-second exposure) was 314-339 degrees C (SLT) and 90-108 degrees C (LT) [P less than 0.001, 3-way ANOVA]. The reason for this difference may be related to "crazing" of the front surface of the SLT sapphires. At all energy levels sapphire temperatures were considerably lower than attained by metal laser thermal angioplasty probes. Forward transmission was slightly higher in the SLT probes (75-85%) than the LT sapphires (54-69%). With fiber perfusion at 2 ml/minute, a minor degree of heating of the metal sapphire holders was recorded (maximum rise 35 degrees C), but heating of the catheter proximal to this was negligible. Therefore, it would appear that the risk of tip detachment or arterial injury due to heating of the connecting metal interface is extremely low. Without perfusion, however, there was a greater degree of interface heating in the LT delivery system suggestive of more laser backscattering by these sapphires

  13. Bulk organisation and alignment in Langmuir and Langmuir-Blodgett films of tetrachloroperylene tetracarboxylic acid esters

    NASA Astrophysics Data System (ADS)

    Modlińska, Anna; Filipowicz, Marek; Martyński, Tomasz

    2016-12-01

    Perylene derivatives with chlorine atoms attached at the bay position to the dye core are expected to affect organisation and tendency to aggregation in Langmuir and Langmuir-Blodgett (LB) films. Therefore, newly synthesized core-twisted homologous series of tetrachloroperylene tetracarboxylic acid esters with n = 1,4,5,6,9 carbon atoms in terminal alkyl chains were studied. Phase transitions and crystalline structures were specified by differential scanning calorimetry (DSC) and single crystal X-ray diffraction (XRD), respectively. Intermolecular interactions and organisation of the dyes in monomolecular films were investigated by means of Brewster angle microscope (BAM), UV-Vis absorption and emission spectroscopy, fluorescence microscopy and atomic force microscopy (AFM). The dyes investigated do not form thermotropic mesogenic phases in bulk. The crystalline triclinic elementary cell with P-1 symmetry is revealed from X-ray experiments. In Langmuir and Langmuir-Blodgett films molecular tilted head-on alignment is postulated. Spectroscopic research confirmed by AFM texture images of the LB films show that in the Langmuir and LB films the dyes, depending on length of terminal chains, have a tendency to create H or I molecular aggregates. The impact of the twisted core on the molecular behavior in a bulk and thin films is discussed.

  14. Oxygen transport as a structure probe for heterogeneous polymeric systems

    NASA Astrophysics Data System (ADS)

    Hu, Yushan

    Although permeability of small molecules is often measured as an important performance property, deeper analysis of the transport characteristics provides insight into polymer structure, especially if used in combination with other characterization techniques. Transport of small gas molecules senses the permeable amorphous structure and probes the nature of free volume. This work focuses on oxygen transport, supplemented with other methods of physical analysis, as a probe for: (1) the nature of free volume and crystalline morphology in the crystallized glassy state, (2) the nature of free volume and hierarchical structure in liquid crystalline polymers, and (3) the role of dispersed polyamide phase geometry on oxygen barrier properties of poly(ethylene terephthalate) (PET)/polyamide blends. In the first part, the improvement in oxygen-barrier properties of glassy polyesters by crystallization was examined. Examples included poly(ethylene naphthalate) (PEN), and a copolymer based on PET in which 55 mol% terephthalate was replaced with 4,4'-bibenzoate. Explanation of the unexpectedly high solubility of crystallized PEN required a two-phase transport model consisting of an impermeable crystalline phase of constant density and a permeable amorphous phase of variable density. The resulting relationship between oxygen solubility and amorphous phase density was consistent with free volume concepts of gas sorption. In the second part, oxygen barrier properties of liquid crystalline (LC) polyesters based on poly(diethylene glycol 4,4'-bibenzoate) (PDEGBB) were studied. This study extended the 2-phase transport model for oxygen transport of non-LC crystalline polymers to a smectic LCP. It was possible to systematically vary the solid state structure of (PDEGBB) from LC glass to crystallized LC glass. The results were consistent with a liquid crystalline state intermediate between the permeable amorphous glass and the impermeable 3-dimensional crystal. In this interpretation

  15. RECON - A new system for probing the outer solar system with stellar occultations

    NASA Astrophysics Data System (ADS)

    Buie, M. W.; Keller, J. M.; Wasserman, L. H.

    2015-10-01

    The Research and Education Collaborative Occultation Network (RECON) is a new system for coordinated occultation observations of outer solar system objects. Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited duration of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations too small to be resolved directly. Our system takes the new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from the International Occultation Timing Association. At our minimum size, two stations will record an event while the other stations will be probing for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We have successfully completed our first TNO observation which is presented in the compainion paper by G. Rossi et al (this conference).

  16. Use of the WECC WAMS in Wide Area Probing Tests for Validation of System Performance & Modeling

    SciTech Connect

    Hauer, John F.; Mittelstadt, William; Martin, Kenneth E.; Burns, J. W.; Lee, Harry; Pierre, John W.; Trudnowski, Daniel

    2009-02-01

    During 2005 and 2006 the Western Electricity Coordinating Council (WECC) performed three major tests of western system dynamics. These tests used a Wide Area Measurement System (WAMS) based primarily on Phasor Measurement Units (PMUs) to determine response to events including the insertion of the 1400-MW Chief Joseph braking resistor, probing signals, and ambient events. Test security was reinforced through real-time analysis of wide area effects, and high-quality data provided dynamic profiles for interarea modes across the entire western interconnection. The tests established that low-level optimized pseudo-random ±20-MW probing with the Pacific DC Intertie (PDCI) roughly doubles the apparent noise that is natural to the power system, providing sharp dynamic information with negligible interference to system operations. Such probing is an effective alternative to use of the 1400-MW Chief Joseph dynamic brake, and it is under consideration as a standard means for assessing dynamic security.

  17. Flight Performance of Gravity Probe B Cryogenic System

    NASA Astrophysics Data System (ADS)

    Murray, D. O.; Taber, M. A.; Burns, K. M.

    2006-04-01

    Gravity Probe B (GP-B) is a cryogenic and space-based test of Einstein's General Theory of Relativity by means of precision gyroscopes, The GP-B spacecraft was launched into a polar orbit from Vandenberg AFB on April 20, 2004. The launch and operation of GP-B represented the culmination of forty years of planning, technology development, hardware fabrication, and testing. The superfluid liquid helium became depleted on September 29, 2005, giving a lifetime of 17.3 months compared to the requirement of 16.5 months and a thermal model prediction of 16.6 months. The flight dewar contained 2320 liters of ~1.8 K superfluid helium at launch and housed the science instrument consisting of four precision gyroscopes and a telescope. A porous plug phase separator effected the venting of the helium boiloff gas. This venting helium was used to operate 16 thrusters, which are the actuators that effect precision pointing on a fixed star and adjust the orbit to be drag free or close to true zero-g.

  18. Isokinetic TWC Evaporator Probe: Calculations and Systemic Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Strapp, J. Walter; Lilie, Lyle; Ratvasky, Thomas P.; Dumont, Christopher

    2016-01-01

    A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics and the results are presented in a companion paper. This paper presents the equations used to determine the total water content (TWC) of the sampled atmosphere from the values measured by the IKP2 or necessary ancillary data from other instruments. The uncertainty in the final TWC is determined by propagating the uncertainty in the measured values through the calculations to the final result. Two techniques were used and the results compared. The first is a typical analytical method of propagating uncertainty and the second performs a Monte Carlo simulation. The results are very similar with differences that are insignificant for practical purposes. The uncertainty is between 2 percent and 3 percent at most practical operating conditions. The capture efficiency of the IKP2 was also examined based on a computational fluid dynamic simulation of the original IKP and scaled down to the IKP2. Particles above 24 microns were found to have a capture efficiency greater than 99 percent at all operating conditions.

  19. Isokinetic TWC Evaporator Probe: Calculations and Systemic Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Strapp, John W.; Lilie, Lyle E.; Ratvasky, Thomas P.; Dumont, Christopher

    2016-01-01

    A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics and the results are presented in a companion paper (Ref. 1). This paper presents the equations used to determine the total water content (TWC) of the sampled atmosphere from the values measured by the IKP2 or necessary ancillary data from other instruments. The uncertainty in the final TWC is determined by propagating the uncertainty in the measured values through the calculations to the final result. Two techniques were used and the results compared. The first is a typical analytical method of propagating uncertainty and the second performs a Monte Carlo simulation. The results are very similar with differences that are insignificant for practical purposes. The uncertainty is between 2 and 3 percent at most practical operating conditions. The capture efficiency of the IKP2 was also examined based on a computational fluid dynamic simulation of the original IKP and scaled down to the IKP2. Particles above 24 micrometers were found to have a capture efficiency greater than 99 percent at all operating conditions.

  20. Langmuir wave electric fields induced by electron beams in the heliosphere

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2017-01-01

    Solar electron beams responsible for type III radio emission generate Langmuir waves as they propagate out from the Sun. The Langmuir waves are observed via in situ electric field measurements. These Langmuir waves are not smoothly distributed but occur in discrete clumps, commonly attributed to the turbulent nature of the solar wind electron density. Exactly how the density turbulence modulates the Langmuir wave electric fields is understood only qualitatively. Using weak turbulence simulations, we investigate how solar wind density turbulence changes the probability distribution functions, mean value and variance of the beam-driven electric field distributions. Simulations show rather complicated forms of the distribution that are dependent upon how the electric fields are sampled. Generally the higher magnitude of density fluctuations reduce the mean and increase the variance of the distribution in a consistent manor to the predictions from resonance broadening by density fluctuations. We also demonstrate how the properties of the electric field distribution should vary radially from the Sun to the Earth and provide a numerical prediction for the in situ measurements of the upcoming Solar Orbiter and Solar Probe Plus spacecraft.

  1. Systems vaccinology: Probing humanity’s diverse immune systems with vaccines

    PubMed Central

    Pulendran, Bali

    2014-01-01

    Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such “systems vaccinology” approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity’s diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations. PMID:25136102

  2. Monte Carlo studies of model Langmuir monolayers.

    PubMed

    Opps, S B; Yang, B; Gray, C G; Sullivan, D E

    2001-04-01

    This paper examines some of the basic properties of a model Langmuir monolayer, consisting of surfactant molecules deposited onto a water subphase. The surfactants are modeled as rigid rods composed of a head and tail segment of diameters sigma(hh) and sigma(tt), respectively. The tails consist of n(t) approximately 4-7 effective monomers representing methylene groups. These rigid rods interact via site-site Lennard-Jones potentials with different interaction parameters for the tail-tail, head-tail, and head-head interactions. In a previous paper, we studied the ground-state properties of this system using a Landau approach. In the present paper, Monte Carlo simulations were performed in the canonical ensemble to elucidate the finite-temperature behavior of this system. Simulation techniques, incorporating a system of dynamic filters, allow us to decrease CPU time with negligible statistical error. This paper focuses on several of the key parameters, such as density, head-tail diameter mismatch, and chain length, responsible for driving transitions from uniformly tilted to untilted phases and between different tilt-ordered phases. Upon varying the density of the system, with sigma(hh)=sigma(tt), we observe a transition from a tilted (NNN)-condensed phase to an untilted-liquid phase and, upon comparison with recent experiments with fatty acid-alcohol and fatty acid-ester mixtures [M. C. Shih, M. K. Durbin, A. Malik, P. Zschack, and P. Dutta, J. Chem. Phys. 101, 9132 (1994); E. Teer, C. M. Knobler, C. Lautz, S. Wurlitzer, J. Kildae, and T. M. Fischer, J. Chem. Phys. 106, 1913 (1997)], we identify this as the L'(2)/Ov-L1 phase boundary. By varying the head-tail diameter ratio, we observe a decrease in T(c) with increasing mismatch. However, as the chain length was increased we observed that the transition temperatures increased and differences in T(c) due to head-tail diameter mismatch were diminished. In most of the present research, the water was treated as a hard

  3. Monte Carlo studies of model Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Opps, S. B.; Yang, B.; Gray, C. G.; Sullivan, D. E.

    2001-04-01

    This paper examines some of the basic properties of a model Langmuir monolayer, consisting of surfactant molecules deposited onto a water subphase. The surfactants are modeled as rigid rods composed of a head and tail segment of diameters σhh and σtt, respectively. The tails consist of nt~4-7 effective monomers representing methylene groups. These rigid rods interact via site-site Lennard-Jones potentials with different interaction parameters for the tail-tail, head-tail, and head-head interactions. In a previous paper, we studied the ground-state properties of this system using a Landau approach. In the present paper, Monte Carlo simulations were performed in the canonical ensemble to elucidate the finite-temperature behavior of this system. Simulation techniques, incorporating a system of dynamic filters, allow us to decrease CPU time with negligible statistical error. This paper focuses on several of the key parameters, such as density, head-tail diameter mismatch, and chain length, responsible for driving transitions from uniformly tilted to untilted phases and between different tilt-ordered phases. Upon varying the density of the system, with σhh=σtt, we observe a transition from a tilted (NNN)-condensed phase to an untilted-liquid phase and, upon comparison with recent experiments with fatty acid-alcohol and fatty acid-ester mixtures [M. C. Shih, M. K. Durbin, A. Malik, P. Zschack, and P. Dutta, J. Chem. Phys. 101, 9132 (1994); E. Teer, C. M. Knobler, C. Lautz, S. Wurlitzer, J. Kildae, and T. M. Fischer, J. Chem. Phys. 106, 1913 (1997)], we identify this as the L'2/Ov-L1 phase boundary. By varying the head-tail diameter ratio, we observe a decrease in Tc with increasing mismatch. However, as the chain length was increased we observed that the transition temperatures increased and differences in Tc due to head-tail diameter mismatch were diminished. In most of the present research, the water was treated as a hard surface, whereby the surfactants are only

  4. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, Stanislaw; Kross, Brian J.; Zorn, Carl J.; Majewski, Lukasz A.

    1996-01-01

    An optimized examination system and method based on the Reverse Geometry X-Ray.RTM. (RGX.RTM.) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging.

  5. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    DOEpatents

    Majewski, S.; Kross, B.J.; Zorn, C.J.; Majewski, L.A.

    1996-10-22

    An optimized examination system and method based on the Reverse Geometry X-Ray{trademark} (RGX{trademark}) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs.

  6. Influence of heat treatment in air, and subsequent hydrothermal treatment in the liquid phase or water treatment in the liquid phase on a mixed Langmuir-Blodgett film of merocyanine dye-arachidic acid- n-octadecane ternary system

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshiaki; Maio, Ari; Fukuda, Akira; Kitahama, Yasutaka; Ozaki, Yukihiro

    2010-07-01

    We have investigated the influence of heat treatment in air (HT), and subsequent hydrothermal treatment in the liquid phase (HTTL) or water treatment in the liquid phase (WTL) on the H-aggregate of mixed Langmuir-Blodgett (LB) films of merocyanine dye (MS 18)-arachidic acid (C 20)- n-octadecane (AL 18) ternary system by means of polarized visible and IR absorption spectroscopy. The MS 18 monomer is obtained from the first application of HT to the H-aggregate, and the monomer rapidly changes into the J-aggregate upon subsequent HTTL. This demonstrates variation via the monomer for reorganization of the MS 18 chromophore from H- to J-aggregates induced by directly performing HTTL to the H-aggregate in our previous study. While the number of gauche conformers in the MS 18 hydrocarbon chain increases by initial HT, the hydrocarbon chain adopts an all- trans conformation after subsequent HTTL. In addition, the degree of orientation of the MS 18 hydrocarbon chain after HT also approximates to that before HT. The C 20 hexagonal packing after HT turns to orthorhombic one with subsequent HTTL, and the orientation disorder of C 20 hydrocarbon chain caused by HT is renovated as well. The structural changes in the MS 18 and C 20 hydrocarbon chains resulting from latter HTTL arise from the hydrophobic effect in the presence of warm water. Moreover, it has been verified that the AL 18 evaporation strongly relates to the dissociation of H-aggregate, but is not responsible for the variation from the monomer to J-aggregate. Comparing the results obtained upon application of HT/HTTL and HT/WTL, it has been concluded that both large relative permittivity and thermal energy inherent in warm water are quite essential in inducing the rapid reconstitution of MS 18 aggregation state from the monomer to J-aggregate. These also promote the restoration of conformation and orientation changes in the MS 18 hydrocarbon chain, and the modification of subcell packing and orientation disorder in

  7. Probing the Conductance of the σ-System of Bipyridine Using Destructive Interference.

    PubMed

    Borges, Anders; Fung, E-Dean; Ng, Fay; Venkataraman, Latha; Solomon, Gemma C

    2016-12-01

    Guidelines to predict trends in the electrical conductance of molecules have been developed for the π-system of conjugated systems. Little is known, however, about the conductance of the underlying σ-systems because the π-system usually dominates the transport. Here we study a family of bipyridine-based molecules using STM-break junction experiments and density functional theory transport calculations. We use different lengths and substitution patterns to probe the role of both the σ-system and the π-system in controlling conductance. By exploiting the destructive interference feature found in the π-system of the meta-coupled six-membered aromatic rings, we show that the conductance of the σ-system of a meta-coupled molecule can be probed directly and can even exceed that of its para-coupled analog. These results add to the understanding of the conductance through the chemically hidden σ-electrons.

  8. Tribology of Langmuir-Blodgett Films

    DTIC Science & Technology

    1992-03-01

    the 1970" s . used a three-term model . The frictional force and hence the friction coefficient were modeled as the sum of three terms: adhesion between...N/A N/A 4. TITLE (and Subtitle) S . TyPE OF REPORT & PERIOD COVERED Tribology of Langmuir-Blodgett Films Interim Technical Report 6. PERFORMING ORO...AOORESS 12. REPORT OATE U. S . Army Research Office March 1992 Post Office Box 12211 I. NUMREROF PAGES R~~Arrh Tr npl= n D, ift’ n 25 14. MONITORING

  9. Measuring system with a dual needle probe for testing the parameters of heat-insulating materials

    NASA Astrophysics Data System (ADS)

    Chudzik, Stanislaw

    2011-07-01

    The paper presents a prototype of a measurement system with a hot probe based on a transient line heat source method, designed for testing the thermal parameters of heat insulation materials. The proposition is to use an auxiliary thermometer (dual needle probe) and a trained artificial neural network to determine the parameters of thermal insulation materials. The data extracted from the simulation of a nonstationary two-dimensional heat conduction model inside a sample of material with a dual needle probe trained the artificial neural network (ANN). The significant heat capacity of the needle probe is taken into account in the model. To solve the system of partial differential equations describing the model, the finite element method (FEM) was applied. The ANN is used to estimate the coefficients of the inverse heat conduction problem for a solid. The network determines the values of the effective thermal conductivity and effective thermal diffusivity on the basis of the temperature increases of the hot probe and the auxiliary thermometer. All calculations, such as FEM, and training and testing processes of the ANN, were carried out in the Matlab environment. The results of the experiment are also presented. The proposed measurement system for testing the parameters is suitable for temporary measurements in a building site or factory.

  10. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.

    1989-01-01

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.

  11. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    DOEpatents

    Prince, J.M.; Dodson, M.G.; Lechelt, W.M.

    1989-07-18

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis. 14 figs.

  12. Tethered Chains in Poor Solvent Conditions: An Experimental Study Involving Langmuir Diblock Copolymer Monolayers

    SciTech Connect

    Kent, M.S.; Lee, L.T.; Majewski, J.; Satija, S.; Smith, G.S.

    1998-10-13

    We have employed Langmuir monolayer of highly asymmetric polydimethylsiloxane- polystyrene (PDMS-PS) diblock copolymers on dioctyl phthalate (DOP) at temperatures ranging from 22 "C to -35 `C as a model system for tethered chains in poor solvent conditions. The thicknesses of the tethered PS layers extending into the DOP subphase, measured by neutron reflection, decrease with decreasing temperature (T) over this entire r~ge. However, the v~iation with T becomes weak below -20 "C. At the ]owest T, the layer thicknesses are contracted 55 % -75 `% of their values at the theta condition (T8 = 22 "C), but are still quite swollen compared to the fully collapsed, nonsolvent limit. The contraction of the layer with decreasing T is determined as a function of surface density and molecular weight. These data are compared to universal scaling forms. The PS segments are depleted from the air surface over the entire T range, the thickness of the depletion layer increasing slightly with decreasing T. The free energy of the surface layer is probed by surface tension measurements. Negative surface pressures are observed at low coverages for both PDMS-PS and PDMS monolayer, indicating metastability toward lateral phase separation. Evidence for a trruisition from a dispersed phase to a condensed phase with decreasing T was observed in the reflectivity at very low PDMS-PS coverage.

  13. A lidar system for remote probing of the lower atmosphere

    NASA Technical Reports Server (NTRS)

    Craig, C. D.; Bartz, R.; Olsson, L. E.; Hewson, E. W.

    1974-01-01

    The development and characteristics of a lidar system for atmospheric measurements are discussed. The lidar system employs a Q-switched ruby laser that radiates an intense pulse of light into the atmosphere to illuminate aerosol particles in the laser beam. Light backscattered from the particles is received by a Cassegrain telescope equipped with a sensitive photomultiplier tube. The output signal of the photomultiplier tube is displayed on an oscilloscope and recorded on polaroid film.

  14. PERFORMACE OF MULTI-PROBE CORROSION MONITORING SYSTEMS AT THE HANFORD SITE

    SciTech Connect

    CAROTHERS KD; BOOMER KD; ANDA VS; DAHL MM; EDGEMON GL

    2010-01-14

    Between 2007 and 2009, several different multi-probe corrosion monitoring systems were designed and installed in high-level nuclear waste tanks at the U.S. Department of Energy's Hanford Site in WaShington State. The probe systems are being monitored to ensure waste tanks operate in regions that minimize localized corrosion (i.e., pitting) and stress corrosion cracking. The corrosion monitoring systems have been installed in wastes with different chemistry types. An ongoing effort during the same time period has generated non-radioactive simulants that are tested in the laboratory to establish baseline corrosion monitoring system performance and characterize data to allow interpretation of readings from the multiple corrosion monitoring systems. Data collection from these monitoring systems has reached the point where the results allow comparison with the laboratory testing. This paper presents analytical results from the corrosion monitoring system development program.

  15. Probe Scanning Support System by a Parallel Mechanism for Robotic Echography

    NASA Astrophysics Data System (ADS)

    Aoki, Yusuke; Kaneko, Kenta; Oyamada, Masami; Takachi, Yuuki; Masuda, Kohji

    We propose a probe scanning support system based on force/visual servoing control for robotic echography. First, we have designed and formulated its inverse kinematics the construction of mechanism. Next, we have developed a scanning method of the ultrasound probe on body surface to construct visual servo system based on acquired echogram by the standalone medical robot to move the ultrasound probe on patient abdomen in three-dimension. The visual servo system detects local change of brightness in time series echogram, which is stabilized the position of the probe by conventional force servo system in the robot, to compensate not only periodical respiration motion but also body motion. Then we integrated control method of the visual servo with the force servo as a hybrid control in both of position and force. To confirm the ability to apply for actual abdomen, we experimented the total system to follow the gallbladder as a moving target to keep its position in the echogram by minimizing variation of reaction force on abdomen. As the result, the system has a potential to be applied to automatic detection of human internal organ.

  16. Probing other solar systems with current and future adaptive optics

    SciTech Connect

    Macintosh, B; Marois, C; Phillion, D; Poyneer, L; Graham, J; Zuckerman, B; Gavel, D; Veran, J; Wilhelmsen-Evans, J; Mellis, C

    2008-09-08

    Over the past decade, the study of extrasolar planets through indirect techniques--primarily Doppler measurements--has revolutionized our understanding of other solar systems. The next major step in this field will be the direct detection and characterization, via imaging and spectroscopy, of the planets themselves. To achieve this, we must separate the light from the faint planet from the extensive glare of its parent star. We pursued this goal using the current generation of adaptive optics (AO) systems on large ground-based telescopes, using infrared imaging to search for the thermal emission from young planets and developing image processing techniques to distinguish planets from telescope-induced artifacts. Our new Angular Differential Imaging (ADI) technique, which uses the sidereal rotation of the Earth and telescope, is now standard for ground-based high-contrast imaging. Although no young planets were found in our surveys, we placed the strongest limits yet on giant planets in wide orbits (>30 AU) around young stars and characterized planetary companion candidates. The imaging of planetary companions on solar-system-like scales (5-30 AU) will require a new generation of advanced AO systems that are an order of magnitude more powerful than the LLNL-built Keck AO system. We worked to develop and test the key technologies needed for these systems, including a spatially-filtered wavefront sensor, efficient and accurate wavefront reconstruction algorithms, and precision AO wavefront control at the sub-nm level. LLNL has now been selected by the Gemini Observatory to lead the construction of the Gemini Planet Imager, a $24M instrument that will be the most advanced AO system in the world.

  17. Electron probe microanalysis in the ternary Gd B C system

    NASA Astrophysics Data System (ADS)

    Ruiz, Domingo; Garland, Maria Teresa; Saillard, Jean-Yves; Halet, Jean-François; Bohn, Marcel; Bauer, Josef

    2002-09-01

    EPMA exploration of the Gd-B-C system in the region "Gd-GdB 2-GdBC" and in the neighborhood of the recently described Gd 4B 3C 4 compound led to the identification of 9 new ternary phases, which allows to clear up the phase diagram of this ternary system. A structural description of the bonding between the non-metal atoms in most of the identified compounds is proposed, on the basis of simple electron counting rules and using the planar repeat units or the finite linear anions which have been shown to exist in the structurally characterized rare-earth borocarbide compounds.

  18. Probing infinity in bounded two-dimensional electrostatic systems

    NASA Astrophysics Data System (ADS)

    Abutalib, M.; Batle, J.; Ooi, C. H. Raymond

    2016-07-01

    The total electrostatic energy of systems of identical particles of equal charge is studied in configurations bounded in space, but divergent in the number of charges. This approach shall guide us to unveil a non-linear, functional form specifying the divergent nature of system energy. We consider fractals to be physical entities, with charges located in their vertices or nodes. This description is interesting since features, such as the corresponding fractal dimension, can characterize the total energy EN. Finally, at local length scales, we describe how energy diverges at charge accumulation points in the fractal, that is, almost everywhere by definition.

  19. Growth of calcium oxalate monohydrate at phospholipid Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Whipps, Scott; Khan, Saeed R.; Jeffrey O'Palko, F.; Backov, Rénal; Talham, Daniel R.

    1998-08-01

    Calcium oxalate monohydrate crystals have been nucleated from metastable solutions at Langmuir monolayers of the phospholipids dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphatidylserine and dipalmitoylphosphatidylcholine and the fatty acid arachidic acid. The phospholipid monolayers were used as model systems for domains of pure lipid in cellular media as part of investigations of their potential role in the nucleation of calcium oxalate in the urinary tract. Crystal formation was monitored at the air/water interface using Brewster angle microscopy and in transferred films using SEM and TEM. For each Langmuir monolayer, it was observed that nucleation is heterogeneous and is selective with respect to the orientation and morphology of the precipitated crystals with up to 90% of crystals growing with the ( 1 0 1¯) face oriented towards the monolayer interface. The selectivity is attributed to calcium binding at the lipid monolayer favoring formation of the calcium-rich ( 1 0 1¯) face. The behavior at each monolayer was similar, although a higher rate of crystal formation was observed at the anionic DPPG interface.

  20. Quasiperiodic behavior in beam-driven strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Newman, D. L.

    1989-01-01

    The evolution of unmagnetized beam-driven strong Langmuir turbulence is studied in two dimensions by numerically integrating the Zakharov equations for systems pumped by monochromatic and broadband negative-damping drivers with nonzero central wavenumber. Long-time statistically steady states are reached for which the dependence of the evolution on the driver wavenumber, growth rate, and bandwidth is examined in detail. For monochromatic drivers, a quasiperiodic cycle is found to develop if the driver wavenumber is sufficiently large. The characteristic frequency of the quasiperiodic cycle and the average system energy are both approximately proportional to the growth rate. Broadening of the driver in wavenumber tends to degrade the system-wide coherence of the cycle, but its main features appear to survive on the scale of the coherence length of the driver.

  1. Probing quantum frustrated systems via factorization of the ground state.

    PubMed

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  2. Development of the STPX Spheromak System

    NASA Astrophysics Data System (ADS)

    Williams, R. L.; Clark, J.; Weatherford, C. A.

    2015-11-01

    The progress made in starting up the STPX Spheromak system, which is now installed at the Florida A&M University, is reviewed. Experimental, computational and theoretical activities are underway. The control system for firing the magnetized coaxial plasma gun and for collecting data from the diagnostic probes, based on LabView, is being tested and adapted. Preliminary results of testing the installed magnetic field probes, Langmuir triple probes, cylindrical ion probes, and optical diagnostics will be discussed. Progress in modeling this spheromak using simulation codes, such as NIMROD, will be discussed. Progress in investigating the use of algebraic topology to describe this spheromak will be reported.

  3. Complications with flush-mounted probe analysis beyond sheath-expansion

    NASA Astrophysics Data System (ADS)

    Kuang, A. Q.; Labombard, B.; Brunner, D.

    2016-10-01

    In a reactor relevant divertor, the heat-flux onto the target plate would be too large and traditional proud Langmuir probes will melt. By making the probes flush with the surface of the target plate they become nearly as robust as the divertor plates themselves. However, without a theoretically rigorous derivation of the sheath thickness, sheath expansion has been a primary concern for the interpretation of flush mounted probe data. Following the installation of a flush-mounted Langmuir probe system at Alcator C-Mod (toroidally-elongated and field-aligned to give it a `rail' geometry) that effectively mitigates the effects of sheath expansion down to incident field line angles of 0.5 degree, further complications have arisen that cannot be explained by sheath-expansion. The `rail' probes systematically measure lower densities and higher temperatures but have the same pressure. The evolution of the scrape-off layer profiles measured on the divertor target plate from sheath-limited to detached regimes is also different. These are indicative of important physics, perhaps unique to conditions in a vertical-target plate divertor with small field-line attack angles, that affects the I-V characteristics and is not currently included in probe data analyses. Controlled experiments performed at Alcator C-Mod mapped out this discrepancy and the results will be presented. Supported by USDoE Awards DE-FC02-99ER54512.

  4. TANK 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

    SciTech Connect

    TAYLOR T; HAGENSEN A; KIRCH NW

    2008-07-07

    During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency.

  5. Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 1: Trade analysis and design

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.

    1988-01-01

    This report presents the unmanned Multiple Exploratory Probe Systems (MEPS), a space vehicle designed to observe the planet Mars in preparation for manned missions. The options considered for each major element are presented as a trade analysis, and the final vehicle design is defined.

  6. Probing disorders of the nervous system using reprogramming approaches

    PubMed Central

    Ichida, Justin K; Kiskinis, Evangelos

    2015-01-01

    The groundbreaking technologies of induced pluripotency and lineage conversion have generated a genuine opportunity to address fundamental aspects of the diseases that affect the nervous system. These approaches have granted us unrestricted access to the brain and spinal cord of patients and have allowed for the study of disease in the context of human cells, expressing physiological levels of proteins and under each patient's unique genetic constellation. Along with this unprecedented opportunity have come significant challenges, particularly in relation to patient variability, experimental design and data interpretation. Nevertheless, significant progress has been achieved over the past few years both in our ability to create the various neural subtypes that comprise the nervous system and in our efforts to develop cellular models of disease that recapitulate clinical findings identified in patients. In this Review, we present tables listing the various human neural cell types that can be generated and the neurological disease modeling studies that have been reported, describe the current state of the field, highlight important breakthroughs and discuss the next steps and future challenges. PMID:25925386

  7. Probing Potential Energy Surface Exploration Strategies for Complex Systems.

    PubMed

    N'Tsouaglo, Gawonou Kokou; Béland, Laurent Karim; Joly, Jean-François; Brommer, Peter; Mousseau, Normand; Pochet, Pascal

    2015-04-14

    The efficiency of minimum-energy configuration searching algorithms is closely linked to the energy landscape structure of complex systems, yet these algorithms often include a number of steps of which the effect is not always clear. Decoupling these steps and their impacts can allow us to better understand both their role and the nature of complex energy landscape. Here, we consider a family of minimum-energy algorithms based, directly or indirectly, on the well-known Bell-Evans-Polanyi (BEP) principle. Comparing trajectories generated with BEP-based algorithms to kinetically correct off-lattice kinetic Monte Carlo schemes allow us to confirm that the BEP principle does not hold for complex systems since forward and reverse energy barriers are completely uncorrelated. As would be expected, following the lowest available energy barrier leads to rapid trapping. This is why BEP-based methods require also a direct handling of visited basins or barriers. Comparing the efficiency of these methods with a thermodynamical handling of low-energy barriers, we show that most of the efficiency of the BEP-like methods lie first and foremost in the basin management rather than in the BEP-like step.

  8. Fragmentation in isotopic and isobaric systems as probe of density dependence of nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Gautam, Sakshi; Puri, Rajeev K.

    2016-11-01

    We probe the density-dependent behavior of symmetry energy using the yield of various fragments in central collisions of various isotopic and isobaric colliding pairs. We calculate the yields of free nucleons, light charged particles and intermediate mass fragments in neutron-rich colliding systems as well as the ratio of relative yields of above fragments and free nucleons. Our findings reveal that the ratio of relative yield of light charged particles poses better candidate to probe the density dependence of nuclear symmetry energy.

  9. SPIN POLARIZED PHOTOELECTRON SPECTROSCOPY AS A PROBE OF MAGNETIC SYSTEMS.

    SciTech Connect

    JOHNSON, P.D.; GUNTHERODT, G.

    2006-11-01

    Spin-polarized photoelectron spectroscopy has developed into a versatile tool for the study of surface and thin film magnetism. In this chapter, we examine the methodology of the technique and its recent application to a number of different problems. We first examine the photoemission process itself followed by a detailed review of spin-polarization measurement techniques and the related experimental requirements. We review studies of spin polarized surface states, interface states and quantum well states followed by studies of the technologically important oxide systems including half-metallic transition metal oxides, ferromagnet/oxide interfaces and the antiferromagnetic cuprates that exhibit high Tc Superconductivity. We also discuss the application of high-resolution photoemission with spin resolving capabilities to the study of spin dependent self energy effects.

  10. Nanoelectrical probing with multiprobe SPM Systems compatible with scanning electron microscopes

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Ignatov, Andrey; Taha, Hesham; Zhinoviev, Oleg; Komissar, Anatoly; Krol, Alexander; Lewis, David

    2011-03-01

    A scanning electron microscope compatible platform that permits multiprobe atomic force microscopy based nanoelectrical characterization will be described. To achieve such multiple parameter nanocharacterization with scanning electron microscope compatibility involves a number of innovations both in instrument and probe design. This presentation will focus on how these advances were achieved and the results obtained with such instrumentation on electrical nano-characterization and electrical nano-manipulation. The advances include: 1. Specialized scanners; 2. An ultrasensitive feedback mechanism based on tuning forks with no optical feedback interference that can induce carriers in semiconductor devices; and 3. Unique probes compatible with multiprobe geometries in which the probe tips can be brought into physical contact with one another. Experiments will be described with such systems that will include multiprobe electrical measurements with metal and glass coated coaxial nanowires of platinum. This combination of scanning electron microscopes integrated with multiprobe instrumentation allows for important applications not available today in the field of semiconductor processing technology.

  11. Nondestructive measurements of complex tensor permittivity of anisotropic materials using a waveguide probe system

    SciTech Connect

    Chang, C.W.; Chen, K.M.; Qian, J.

    1996-07-01

    A nondestructive measurement of electromagnetic (EM) properties of anisotropic materials using an open-ended waveguide probe has been conducted. Two coupled electric field integral equations (EFIEs) for the aperture electric field are derived and solved numerically by employing the method of moments (MoM). After the determination of the aperture electric field, the reflection coefficient of the incident wave can be expressed in terms of the EM parameters of the material. Then, the EM parameters of the material layer can be inversely determined if the reflection coefficient of the incident wave is experimentally measured. A series of experiments has been conducted using the waveguide probe system constructed at MSU electromagnetics laboratory. The inverse results of the EM properties of various materials are presented. Finally, the effects of material parameters on the probe input admittance that cause problems in the measurement are analyzed.

  12. Quantum and classical dynamics of Langmuir wave packets.

    PubMed

    Haas, F; Shukla, P K

    2009-06-01

    The quantum Zakharov system in three spatial dimensions and an associated Lagrangian description, as well as its basic conservation laws, are derived. In the adiabatic and semiclassical cases, the quantum Zakharov system reduces to a quantum modified vector nonlinear Schrödinger (NLS) equation for the envelope electric field. The Lagrangian structure for the resulting vector NLS equation is used to investigate the time dependence of the Gaussian-shaped localized solutions, via the Rayleigh-Ritz variational method. The formal classical limit is considered in detail. The quantum corrections are shown to prevent the collapse of localized Langmuir envelope fields, in both two and three spatial dimensions. Moreover, the quantum terms can produce an oscillatory behavior of the width of the approximate Gaussian solutions. The variational method is shown to preserve the essential conservation laws of the quantum modified vector NLS equation. The possibility of laboratory tests in the next generation intense laser-solid plasma compression experiment is discussed.

  13. Polarized control of probe absorption in a single-layer graphene nanostructure system

    NASA Astrophysics Data System (ADS)

    Jamshidnejad, M.; Vaezzadeh, Majid; Rahimpour Soleimani, H.; Asadpour, Seyyed Hossein

    2016-02-01

    In this paper, we investigated the behaviors of the absorptive-dispersive properties of weak probe light based on quantum coherence and interference in a Landau-quantized graphene nanostructure driven by coherent pumping fields. The linear dynamical properties of the grapheme are discussed with reference to the density matrix method and the perturbation theory. It is found that under certain conditions and by an appropriate selection of the parameters of the medium, the absorption, dispersion and group index of the weak probe light can be controlled. Moreover, the superluminal light propagation in the system is accompanied by amplification to make sure that the probe field is amplified as it passes through the system via adjusting the corresponding controllable parameters such as the intensity, the detuning and the relative phase of the applied fields. Moreover, it is observed that the probe amplification can be obtained in the presence or absence of population inversion by properly choosing the system’s parameters. We hope that these results may have useful application in future quantum communicational systems and networks.

  14. Stable Ordering in Langmuir-Blodgett Films

    NASA Astrophysics Data System (ADS)

    Takamoto, Dawn Y.; Aydil, Eray; Zasadzinski, Joseph A.; Ivanova, Ani T.; Schwartz, Daniel K.; Yang, Tinglu; Cremer, Paul S.

    2001-08-01

    Defects in the layering of Langmuir-Blodgett (LB) films can be eliminated by depositing from the appropriate monolayer phase at the air-water interface. LB films deposited from the hexagonal phase of cadmium arachidate (CdA2) at pH 7 spontaneously transform into the bulk soap structure, a centrosymmetric bilayer with an orthorhombic herringbone packing. A large wavelength folding mechanism accelerates the conversion between the two structures, leading to a disruption of the desired layering. At pH > 8.5, though it is more difficult to draw LB films, almost perfect layering is obtained due to the inability to convert from the as-deposited structure to the equilibrium one.

  15. Langmuir films containing ibuprofen and phospholipids

    NASA Astrophysics Data System (ADS)

    Geraldo, Vananélia P. N.; Pavinatto, Felippe J.; Nobre, Thatyane M.; Caseli, Luciano; Oliveira, Osvaldo N.

    2013-02-01

    This study shows the incorporation of ibuprofen, an anti-inflammatory drug, in Langmuir monolayers as cell membrane models. Significant effects were observed for dipalmitoyl phosphatidyl choline (DPPC) monolayers with relevant changes in the elasticity of the monolayer. Dipalmitoyl phosphatidyl glycerol (DPPG) monolayers were affected by small concentrations of ibuprofen, from 1 to 5 mol%. For both types of monolayer, ibuprofen could penetrate into the hydrophobic part of the monolayer, which was confirmed with polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). Brewster angle microscopy (BAM) images showed that ibuprofen prevents the formation of large domains of DPPC. The pharmacological action should occur primarily with penetration of ibuprofen via electrically neutral phospholipid headgroups of the membrane.

  16. Coherency properties of strong Langmuir turbulence

    SciTech Connect

    Rose, H.A.; DuBois, D.F.; Russell, D. )

    1989-01-01

    Strongly correlated Langmuir wave collapse has been observed in two dimensional simulations of Zakharov's model in a regime characterized by strong ion sound wave damping and an external drive frequency, {omega}{sub 0}, close to but less than the plasma frequency, ({omega}{sub p} {minus} {omega}{sub 0})/{omega}{sub 0} > {epsilon} with {epsilon} {approx equal} 0.005. Caviton-caviton interactions induce temporal correlations between different collapse sites on a time scale the order of a collapse cycle, and on a longer time scale site locations migrate possibly leading to strong spatial correlations. Certain features of ionospheric incoherent scatter radar (ISR) spectra are consistent with such correlations. 6 refs.

  17. Probing the Structure-Function Relationships of Microbial Systems

    SciTech Connect

    Plomp, M; Leighton, T J; Holman, H; Malkin, A J

    2005-11-03

    The elucidation of microbial surface architecture and function is critical to determining mechanisms of pathogenesis, immune response, physicochemical properties, environmental resistance and development of countermeasures against bioterrorist agents. We have utilized high-resolution in vitro AFM for studies of structure, assembly, function and environmental dynamics of several microbial systems including bacteria and bacterial spores. Lateral resolutions of {approx}2.0 nm were achieved on pathogens, in vitro. We have demonstrated, using various species of Bacillus and Clostridium bacterial spores, that in vitro AFM can address spatially explicit spore coat protein interactions, structural dynamics in response to environmental changes, and the life cycle of pathogens at near-molecular resolution under physiological conditions. We found that strikingly different species-dependent crystalline structures of the spore coat appear to be a consequence of nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat, and we proposed a unifying mechanism for outer spore coat self-assembly. Furthermore, we revealed molecular-scale transformations of the spore coat during the germination process, which include profound, previously unrecognized changes of the spore coat. We will present data on the direct visualization of stress-induced environmental response of metal-resistant Arthrobacter oxydans bacteria to Cr (VI) exposure, resulting in the formation of a supramolecular crystalline hexagonal structure on the cell surface. At higher Cr (VI) concentrations the formation of microbial extracellular polymers, which cover microbial colony was observed. High-resolution visualization of stress-induced structures on bacterial surfaces builds a foundation for real time in vitro molecular scale studies of structural dynamics of metal-resistant bacteria in response to environmental stimuli. In the case of the bacterium Chlamedia trachomatis, we were

  18. Precise Wireless Triggering System for Anemometers with Long-Baseline Acoustic Probes

    NASA Astrophysics Data System (ADS)

    Wakatsuki, Naoto; Kinjo, Shin; Takarada, Jun; Mizutani, Koichi

    2010-07-01

    A wireless triggering system for acoustic anemometers using an acoustic probe with a long baseline is investigated. Acoustic probes for measuring micrometeorologic parameters, such as temperature and wind velocity, are used as noncontact and nondestructive methods. The acoustic probe with a long baseline was previously proposed by the authors and investigated to form a sensing grid system for micrometeorologic measurement. The authors have also partially investigated a wireless sensing grid using a wireless local-area network (LAN). However, because of the synchronization problem between sensor nodes, the trigger line has been left wired. In this paper, the problem of synchronization is solved by investigating a wireless triggering system using frequency modulated (FM) radio waves. The primitive triggering system of FM radio waves has some instability on time synchronization depending on such the communication environment as signal-to-noise ratio (SNR). To overcome the influence of the instability, a cross-correlation method is adopted to the triggering system. As a result, the time synchronization errors of the trigger system were reduced by up to one tenth. In addition, not only the instability problem but also other larger errors are compensated by the proposed system in an experimental wind velocity measurement.

  19. Simple solutions for relativistic generalizations of the Child-Langmuir law and the Langmuir-Blodgett law

    SciTech Connect

    Zhang Yongpeng; Liu Guozhi; Yang Zhanfeng; Shao Hao; Xiao Renzhen; Xing Qingzi; Zhong Huaqiang; Lin Yuzheng

    2009-04-15

    In this paper, the Child-Langmuir law and Langmuir-Blodgett law are generalized to the relativistic regime by a simple method. Two classical laws suitable for the nonrelativistic regime are modified to simple approximate expressions applicable for calculating the space-charge-limited currents of one-dimensional steady-state planar diodes and coaxial diodes under the relativistic regime. The simple approximate expressions, extending the Child-Langmuir law and Langmuir-Blodgett law to fit the full range of voltage, have small relative errors less than 1% for one-dimensional planar diodes and less than 5% for coaxial diodes.

  20. Investigating the momentum balance of a plasma pinch: An air-side stereoscopic imaging system for locating probes

    SciTech Connect

    Sears, Jason Intrator, T. P.; Feng, Y.; Swan, H. O.; Klarenbeek, J.; Gao, K.

    2014-10-01

    The momentum balance of a plasma pinch in the Reconnection Scaling Experiment (RSX) is examined in three dimensions using several repositionable, insertable probes. A new camera-based system described here triangulates the locations of the probe tips so that their measurements are spatially registered. The optical system locates probes to within ±1.5 mm of their absolute 3D position in the vessel and to within ±0.7 mm relative to other probes, on the order of the electron inertial length (1–2 mm)

  1. Using phospholipid Langmuir and Langmuir-Blodgett films as matrix for urease immobilization.

    PubMed

    Caseli, Luciano; Crespilho, Frank N; Nobre, Thatyane M; Zaniquelli, Maria Elisabete D; Zucolotto, Valtencir; Oliveira, Osvaldo N

    2008-03-01

    The immobilization of enzymes in organized two-dimensional matrices is a key requirement for many biotechnological applications. In this paper, we used the Langmuir-Blodgett (LB) technique to obtain controlled architectures of urease immobilized in solid supports, whose physicochemical properties were investigated in detail. Urease molecules were adsorbed at the air-water interface and incorporated into Langmuir monolayers of the phospholipid dipalmitoyl phosphatidyl glycerol (DPPG). Incorporation of urease made DPPG monolayers more flexible and caused the reduction of the equilibrium and dynamic elasticity of the film. Urease and DPPG-urease mixed monolayers could be transferred onto solid substrates, forming LB films. A close packing arrangement of urease was obtained, especially in the mixed LB films, which was inferred with nanogravimetry and electrochemistry measurements. From the blocking effect of the LB films deposited onto indium tin oxide (ITO) substrates, the electrochemical properties of the LB films pointed to a charge transport controlled by the lipid architecture.

  2. Systemic deterrence of aphid probing and feeding by novel β-damascone analogues.

    PubMed

    Gabryś, Beata; Dancewicz, Katarzyna; Gliszczyńska, Anna; Kordan, Bożena; Wawrzeńczyk, Czesław

    β-Damascone appeared a weak attractant close to not active to Myzus persicae, but modifications of its structure caused the avoidance of treated leaves by aphids during settling and reluctance to probe in simple choice- and no-choice experiments in previous studies. Here, the electrical penetration graph (EPG) technique, which allows monitoring of aphid probing within plant tissues, was applied to explore the biological background and localisation in plant tissues of the deterrent activities of β-damascone and its analogues. Activity of β-damascone and β-damascone-derived compounds depended on their substituents, which was manifested in the variation in the potency of the behavioural effect and differences in aphid probing phases that were affected. β-Damascone appeared a behaviourally inactive compound. The moderately active β-damascone ester affected aphid activities only during the phloem phase. The highly active deterrents-dihydro-β-damascol, β-damascone acetate, δ-bromo-γ-lactone, and unsaturated γ-lactone-affected pre-phloem and phloem aphid probing activities. The most effective structural modification that evoked the strongest negative response from M. persicae was the transformation of β-damascone into δ-bromo-γ-lactone. The behavioural effect of this transformation was demonstrated in frequent interruption of probing in peripheral tissues, which caused repeated failures in finding sieve elements, and reduction in the ingestion time during the phloem phase in favour of watery salivation. The inhibition of aphid probing at both the pre-phloem and phloem levels reveals the passage of the compounds studied through the plant surface and their distribution within plant tissues in a systemic way, which may reduce the risk of the transmission of non-persistent and persistent viruses.

  3. Development of dual-probe atomic force microscopy system using optical beam deflection sensors with obliquely incident laser beams.

    PubMed

    Tsunemi, Eika; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2011-03-01

    We developed a dual-probe (DP) atomic force microscopy (AFM) system that has two independently controlled probes. The deflection of each cantilever is measured by the optical beam deflection (OBD) method. In order to keep a large space over the two probes for an objective lens with a large numerical aperture, we employed the OBD sensors with obliquely incident laser beams. In this paper, we describe the details of our developed DP-AFM system, including analysis of the sensitivity of the OBD sensor for detection of the cantilever deflection. We also describe a method to eliminate the crosstalk caused by the vertical translation of the cantilever. In addition, we demonstrate simultaneous topographic imaging of a test sample by the two probes and surface potential measurement on an α-sexithiophene (α-6T) thin film by one probe while electrical charges were injected by the other probe.

  4. Development of dual-probe atomic force microscopy system using optical beam deflection sensors with obliquely incident laser beams

    NASA Astrophysics Data System (ADS)

    Tsunemi, Eika; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2011-03-01

    We developed a dual-probe (DP) atomic force microscopy (AFM) system that has two independently controlled probes. The deflection of each cantilever is measured by the optical beam deflection (OBD) method. In order to keep a large space over the two probes for an objective lens with a large numerical aperture, we employed the OBD sensors with obliquely incident laser beams. In this paper, we describe the details of our developed DP-AFM system, including analysis of the sensitivity of the OBD sensor for detection of the cantilever deflection. We also describe a method to eliminate the crosstalk caused by the vertical translation of the cantilever. In addition, we demonstrate simultaneous topographic imaging of a test sample by the two probes and surface potential measurement on an α-sexithiophene (α-6T) thin film by one probe while electrical charges were injected by the other probe.

  5. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei V.; Rodriguez, Brian J.; Jesse, Stephen; Karapetian, Edgar; Mirman, Boris; Eliseev, Eugene A.; Morozovska, Anna N.

    2007-08-01

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  6. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect

    Kalinin, Sergei V; Rodriguez, Brian J; Jesse, Stephen; Karapetian, Edgar; Mirman, B; Eliseev, E. A.; Morozovska, A. N.

    2007-01-01

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  7. Non-linear Langmuir waves in a warm quantum plasma

    SciTech Connect

    Dubinov, Alexander E. Kitaev, Ilya N.

    2014-10-15

    A non-linear differential equation describing the Langmuir waves in a warm quantum electron-ion plasma has been derived. Its numerical solutions of the equation show that ordinary electronic oscillations, similar to the classical oscillations, occur along with small-scale quantum Langmuir oscillations induced by the Bohm quantum force.

  8. Using Weighted Least Squares Regression for Obtaining Langmuir Sorption Constants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most commonly used models for describing phosphorus (P) sorption to soils is the Langmuir model. To obtain model parameters, the Langmuir model is fit to measured sorption data using least squares regression. Least squares regression is based on several assumptions including normally dist...

  9. Two-Dimensional Axisymmetric Child-Langmuir Scaling Law

    NASA Astrophysics Data System (ADS)

    Ragan-Kelley, Benjamin; Verboncoeur, John

    2007-11-01

    The classical one-dimensional Child-Langmuir law has been extended to two dimensions by numerical simulation in planar geometries [1]. By considering an axisymmetric cylindrical system with emission radius r, outer radius R > r, and gap length L, we further examine the space charge limit in two dimensions. The ratio of the observed current density limit JCL2 to the theoretical one-dimensional value JCL1 is found to be a monotonically decreasing function of the ratio of emission area (r^2) to gap separation (L). This result is in agreement with the planar results, where the emission area is proportional to the cathode width (r) [1]. The simulations were run in the particle in cell code, OOPIC [2]. [1] J. W. Luginsland, Y. Y. Lau, and R. M. Gilgenbach, Phys. Rev. Lett. 77, 4668 (1996). [2] J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, Comp. Phys. Comm. 87, 199 (1995).

  10. Thermal conductance of nanoscale Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Ziade, Elbara; Goni, Miguel; Sato, Toshiyuki; Czubarow, Pawel; Schmidt, Aaron J.

    2015-11-01

    Thermal transport across organic-inorganic interfaces is fundamental to understanding heat transfer in polymer-based composites, microelectronics, and energy conversion systems. We used the Langmuir-Blodgett (LB) technique to deposit nanometer-thick films of poly(vinyl acetate) (PVAc) on silicon and gold substrates in two distinct states: Liquid condensed (Lc) and Liquid expanded (Le). We used frequency domain thermoreflectance to measure the thermal conductivity of the PVAc film and its thermal interface conductance to the substrate. We found that PVAc films prepared through the LB process have a higher thermal conductivity when compared to bulk. We measured the thermal interface conductance between PVAc and gold to be approximately 90 MW/m2 K for both the Le and Lc states, and the thermal interface conductance between PVAc and silicon to be approximately 70 MW/m2 K for both the Le and Lc states.

  11. Micromachined Silicon Stimulating Probes with CMOS Circuitry for Use in the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Tanghe, Steven John

    1992-01-01

    Electrical stimulation in the central nervous system is a valuable technique for studying neural systems and is a key element in the development of prostheses for deafness and other disorders. This thesis presents a family of multielectrode probe structures, fulfilling the need for chronic multipoint stimulation tools essential for interfacing to the highly complex neural networks in the brain. These probes are batch-fabricated on silicon wafers, employing photoengraving techniques to precisely control the electrode site and array geometries and to allow the integration of on-chip CMOS circuitry for signal multiplexing and stimulus current generation. Silicon micromachining is used to define the probe shapes, which have typical shank dimensions of 3 mm in length by 100 mu m in width by 15 μm in thickness. Each shank supports up to eight planar iridium oxide electrode sites capable of delivering charge densities in excess of 3 mC/cm^2 during current pulse stimulation. Three active probe circuits have been designed with varied complexity and capability. All three can deliver biphasic stimulus currents through 16 sites using only 5 external leads, and they are all compatible with the same external control system. The most complex design interprets site addresses and stimulus current amplitudes from 16-bit words shifted into the probe at 4 MHz. Sixteen on-chip, biphasic, 8-bit digital-to-analog converters deliver analog stimulus currents in the range of +/- 254 muA to any combination of electrode sites. These DACs exhibit full-scale internal linearity to better than +/-1/2 LSB and can be calibrated by varying the positive power supply voltage. The entire probe circuit dissipates only 80 muW from +/-5 V supplies when not delivering stimulus currents, it includes several safety features, and is testable from the input pads. Test results from the fabricated circuits indicate that they all function properly at clocking frequencies as high as 10 MHz, meeting or exceeding

  12. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give

  13. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  14. Landau damping of Langmuir twisted waves with kappa distributed electrons

    SciTech Connect

    Arshad, Kashif Aman-ur-Rehman; Mahmood, Shahzad

    2015-11-15

    The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and are illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].

  15. Comparative Analysis and Approximations of Space -Charge Formation in Langmuir Electrodes Including Temperature Effects.

    NASA Astrophysics Data System (ADS)

    Valdeblànquez, Eder

    2001-10-01

    Eder Valdeblànquez,Universidad del Zulia,Apartado 4011-A 526,Maracaibo,Venezuela. ABSTRACT: In this paper by space charge effect in Langmuir probes are compared for different kind of symmetries; plane, cylindrical and spherical. A detailed analysis is performed here including temperature effects, and therefore kinetic theory is used instead of fluid equations as other authors. The strongly non-linear equations obtained here have been solved first by numerical analysis and later by approximations using Bessel functions. The accuracy of each approximaton is also discussed. Space Charge effects are important in plane geometries than in the case of cylindrical or spherical symmetries.

  16. High repetition pump-and-probe photoemission spectroscopy based on a compact fiber laser system.

    PubMed

    Ishida, Y; Otsu, T; Ozawa, A; Yaji, K; Tani, S; Shin, S; Kobayashi, Y

    2016-12-01

    The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ∼310 fs, respectively, the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence (p) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm(2) is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm(2).

  17. High repetition pump-and-probe photoemission spectroscopy based on a compact fiber laser system

    NASA Astrophysics Data System (ADS)

    Ishida, Y.; Otsu, T.; Ozawa, A.; Yaji, K.; Tani, S.; Shin, S.; Kobayashi, Y.

    2016-12-01

    The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ˜310 fs, respectively, the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence (p) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm2 is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm2.

  18. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    NASA Astrophysics Data System (ADS)

    Vargas, Alex M.; Gülder, Ömer L.

    2016-05-01

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  19. Development of a Computer Control System for Heavy Ion Beam Probes

    NASA Astrophysics Data System (ADS)

    Andersen, J. K.; Roberts, S. L.; Westervelt, E. R.; Schoch, P. M.; Schatz, J. G.

    1996-11-01

    Enhanced computer control of heavy ion beam probes would increase the reproducability of experimental conditions by automation and feedback control of some system parameters. Also, operation from a remote site would then be feasible. Computer control has been implemented on a variety of Rensselaer heavy ion beam probe systems. However, no system to date has allowed complete remote operation. This has been primarily due to the limitations of the user interface. The next generation of HIBP control systems software is being created with National Instruments' graphical language, LabVIEW. The virtual instruments allow detailed monitoring and control of the injected beam conditions. The control and monitoring of the ion beam, including filament current and Pierce, focusing, quadrupole lens, and sweep electrodes' voltages has been tested on RPI's vertical test stand. A feedback routine to focus the beam using the quadrupole lens is currently being developed. When this capability is available, it will be implemented on a heavy ion beam probe diagnostic operating on a magnetic confinement device.

  20. A servomechanism for a micro-electro-mechanical-system-based scanning-probe data storage device

    NASA Astrophysics Data System (ADS)

    Pantazi, A.; Lantz, M. A.; Cherubini, G.; Pozidis, H.; Eleftheriou, E.

    2004-10-01

    Micro-electro-mechanical-system (MEMS)-based scanning-probe data storage devices are emerging as potential ultra-high-density, low-access-time, and low-power alternatives to conventional data storage. One implementation of probe-based storage uses thermomechanical means to store and retrieve information in thin polymer films. One of the challenges in building such devices is the extreme accuracy and the short latency required in the navigation of the probes over the polymer medium. This paper focuses on the design and characterization of a servomechanism to achieve such accurate positioning in a probe-based storage prototype. In our device, the polymer medium is positioned on a MEMS scanner with x/y-motion capabilities of about 100 µm. The device also includes thermal position sensors that provide x/y-position information to the servo controller. Based on a discrete state-space model of the scanner dynamics, a controller is designed using the linear quadratic Gaussian approach with state estimation. The random seek performance of this approach is evaluated and compared with that of the conventional proportional, integrator, and derivative (PID) approach. The results demonstrate the superiority of the state-space approach, which achieves seek times of about 4 ms in a ± 50 µm range. Finally, the experimental results show that closed-loop track following using the thermal position-sensor signals is feasible and yields a position-error standard deviation of approximately 2 nm.

  1. Probe tip heating assembly

    SciTech Connect

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  2. Electronic nose system combined with membrane interface probe for detection of VOCs in water

    NASA Astrophysics Data System (ADS)

    Cho, Junghwan; Howard, Zachary; Kurup, Pradeep

    2011-09-01

    This paper describes a novel electronic nose system combined with a membrane interface probe (MIP) for detecting volatile organic compounds (VOCs) in water. The MIP is an in situ tool that allows the detection of certain VOCs in the soil via a pushed or driven probe. The MIP was combined with a sensor array consisting of four different tin-oxide gas sensors known as an electronic nose (e-nose). The designed e-nose system was calibrated in aqueous media spiked with benzene, toluene, ethylbenzene, and p-xylene (BTEX) at concentrations of 100, 250, and 500 ppm. Since the experiment was conducted utilizing five repetitions for each analyte, a data set of 60 measurements was prepared for principal components analysis (PCA). The results of the PCA showed that two principal components contain more than 99% variance information and each VOC is separable and detectable by the e-nose.

  3. Hand-held probe based optical imaging system towards breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Ge, Jiajia; Jayachandran, Bhavani; Regalado, Steven; Zhu, Banghe; Godavarty, Anuradha

    2007-02-01

    Near-infrared (NIR) optical imaging is an emerging noninvasive modality for breast cancer diagnosis. However, the currently available optical imaging systems towards tomography studies are limited either by instrument portability, patient comfort, or flexibility to image any given tissue volume. Herein, a hand-held based optical imaging system is developed such that it can possibly overcome some of the above limitations. The unique features of the hand-held optical probe are: (i) to perform simultaneous multiple point illumination and detection, thus decreasing the total imaging time and improving the overall signal strength; (ii) to adapt to the contour of tissue surface, thus decreasing the leakage of excitation and emission signal at contact surface; and (iii) to obtain trans-illumination measurements apart from reflectance measurements, thus improving the depth information. The increased detected signal strength as well as total interrogated tissue volume is demonstrated by simulation studies (i.e. forward model) over a 5×10×10 cc slab phantom. The appropriate number and layout of the source and detection points on the probe head is determined and the hand-held optical probe is developed. A frequency-domain ICCD (intensified charge coupled device) detection system, which allows simultaneous multiple points detection, is developed and coupled to the hand-held probe in order to perform fluorescence-enhanced optical imaging of tissue phantoms. In the future, imaging of homogenous liquid phantoms will be used for the assessment of this hand-held system, followed by extensive imaging studies on different phantoms types under various experimental conditions.

  4. The cervical cancer detection system based on an endoscopic rotary probe

    NASA Astrophysics Data System (ADS)

    Yang, Yanshuang; Hou, Qiang; Zhao, Huijuan; Qin, Zhuanping; Gao, Feng

    2012-03-01

    To acquire the optical diffuse tomographic image of the cervix, a novel endoscopic rotary probe is designed and the frequency domain measurement system is developed. The finite element method and Gauss-Newton method are proposed to reconstruct the image of the phantom. In the optical diffuse tomographic imaging of the cervix, an endoscopic probe is needed and the detection of light at different separation to the irradiation spot is necessary. To simplify the system, only two optical fibers are adopted for light irradiation and collection, respectively. Two small stepper motors are employed to control the rotation of the incident fiber and the detection fiber, respectively. For one position of source fiber, the position of the detection fiber is changed from -61.875° to -50.625° and 50.625° to 61.875° to the source fiber, respectively. Then, the position of the source fiber is changed to another preconcerted position, which deviates the precious source position in an angle of 11.25°, and the detection fiber rotates within the above angles. To acquire the efficient irradiation and collection of the light, a gradient-index (GRIN) lens is connected at the head of the optical fiber. The other end of the GRIN lens is cut to 45°. With this design, light from optical fiber is reflected to the cervix wall, which is perpendicular to the optical fiber or vice versa. Considering the cervical size, the external diameter of the endoscopic probe is made to 20mm. A frequency domain (FD) near-infrared diffuse system is developed aiming at the detection of early cervical cancer, which modulates the light intensity in radio frequency and measures the amplitude attenuation and the phase delay of the diffused light using heterodyne detection. Phantom experiment results demonstrate that the endoscopic rotary scan probe and the system perform well in the endoscopic measurement.

  5. Properties of Langmuir monolayers from semifluorinated alkanes

    NASA Astrophysics Data System (ADS)

    Broniatowski, M.; Macho, I. Sandez; Miñones, J.; Dynarowicz-Łątka, P.

    2005-06-01

    The aim of this study was to characterize several semifluorinated alkanes (SFA), of the general formula F(CF 2) m(CH 2) nH (in short F mH n), containing 25 carbon atoms in total (pentacosanes) differing in the m/ n ratio, as Langmuir monolayers at the free water surface. The following compounds have been studied: F6H19, F8H17, F10H15 and F12H13. Surface pressure ( π) and electric surface potential (Δ V) isotherms were recorded in addition to quantitative Brewster angle microscopy results. The negative sign of Δ V evidenced for the orientation of all the investigated semifluorinated pentacosanes, regardless the length of the hydrogenated segment, with their perfluorinated parts directed towards the air. As inferred from apparent dipole moment values and relative reflectivity results, the fluorinated pentacosanes with shorter perfluorinated fragment (F6H19 and F8H17) were found to be vertically oriented at the air/water interface, while those with longer perfluorinated moiety (F10H15 and F12H13) remain titled even in the vicinity of the film collapse.

  6. Sensor probes and phantoms for advanced transcranial magnetic stimulation system developments

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Patel, Prashil; Trivedi, Sudhir; Du, Xiaoming; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Transcranial magnetic stimulation (TMS) has become one of the most widely used noninvasive method for brain tissue stimulation and has been used as a treatment tool for various neurological and psychiatric disorders including migraine, stroke, Parkinson's disease, dystonia, tinnitus and depression. In the process of developing advanced TMS deep brain stimulation tools, we need first to develop field measurement devices like sensory probes and brain phantoms, which can be used to calibrate the TMS systems. Currently there are commercially available DC magnetic or electric filed measurement sensors, but there is no instrument to measure transient fields. In our study, we used a commercial figure-8 shaped TMS coil to generate transient magnetic field and followed induced field and current. The coil was driven by power amplified signal from a pulse generator with tunable pulse rate, amplitude, and duration. In order to obtain a 3D plot of induced vector electric field, many types of probes were designed to detect single component of electric-field vectors along x, y and z axis in the space around TMS coil. We found that resistor probes has an optimized signal-to-noise ratio (SNR) near 3k ohm but it signal output is too weak compared with other techniques. We also found that inductor probes can have very high output for Curl E measurement, but it is not the E-field distribution we are interested in. Probes with electrical wire wrapped around iron coil can directly measure induced E-field with high sensitivity, which matched computer simulation results.

  7. Measuring the inboard side scrape-off layer of DIII-D plasmas using Swing-Probes

    NASA Astrophysics Data System (ADS)

    Tsui, Cedric

    The scrape-off layer (SOL) plasma of a tokamak often has a complicated spatial dependence. The temperatures, densities and flow speeds can vary significantly on the same magnetic flux tube at different poloidal locations. To fully understand the plasma variation, we must make active measurements along the full length of the flux tubes by expanding our diagnostic capability to include the critically under-diagnosed inboard side. To accomplish this, a new pair of in-situ reciprocating Mach probes called Swing-Probes have been developed and deployed on the DIII D centerpost. This design is unique in that the probe swings vertically through the SOL plasma, taking measurements along a 180° arc with a 20 cm radius. Two electrodes maintain a Mach-pair orientation throughout the swing and provide measurements of saturation current, electron temperature, and parallel flow speeds. The probes can handle very high heat fluxes and have taken measurements up to the Last Closed Flux Surface (LCFS) in high-powered H-Mode at 10 MW. The Swing-Probe temperature and density measurements have been verified against the floor Langmuir probes, the core Thomson scattering and the divertor Thomson scattering systems in DIII-D for conditions where poloidal variation are expected to be small. Measurements have been taken across a wide range of plasma conditions and provide informative relationships between the plasma parameters at the entrance of the inner divertor and the crown of the plasma. The low-turbulence plasmas on the inboard scrape-off layer make it possible to clearly quantify the sheath-expansion around Langmuir probes. An I-V fitter has been developed which can account for sheath-expansion in a theoretically consistent way, improving the reliability of Langmuir probe data analysis. In an inner-wall limited experiment in DIII-D requested by ITER, the Swing-Probes made the first Langmuir probe measurements of an enhanced heat flux feature just outside the LCFS. These measurements

  8. Laboratory measurements of the generation and evolution of Langmuir circulations

    NASA Astrophysics Data System (ADS)

    Melville, W. Kendall; Shear, Robert; Veron, Fabrice

    1998-06-01

    We present laboratory measurements of the generation and evolution of Langmuir circulations as an instability of a wind-driven surface shear layer. The shear layer, which is generated by an accelerating wind starting from rest above a quiescent water surface, both accelerates and deepens monotonically until the inception of the Langmuir circulations. The Langmuir circulations closely follow the initial growth of the wind waves and rapidly lead to vertical mixing of the horizontal momentum and a deceleration of the surface layer. Prior to the appearance of the Langmuir circulations, the depth of the shear layer scales with (vt)1/2 (v is the kinematic viscosity and t is time), in accordance with molecular rather than turbulent transport. For final wind speeds in the range 3 to 5 m s[minus sign]1, the wavenumber of the most unstable Langmuir circulation normalized by the surface wavenumber, k*lc, is 0.68±0.24, at a reciprocal Langmuir number, La[minus sign]1, of 52±21. The observations are compared with available theoretical results, although none are directly applicable to the conditions of the experiments. The implications of this work for the generation and evolution of Langmuir circulations in the ocean and other natural water bodies are discussed.

  9. Development of an Integrated Data Acquisition System for a Small Flight Probe

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Empey, Daniel M.; Skokova, Kristina A.; Venkatapathy, Ethiraj

    2012-01-01

    In support of the SPRITE concept, an integrated data acquisition system has been developed and fabricated for preliminary testing. The data acquisition system has been designed to condition traditional thermal protection system sensors, store their data to an on-board memory card, and in parallel, telemeter to an external system. In the fall of 2010, this system was integrated into a 14 in. diameter, 45 degree sphere cone probe instrumented with thermal protection system sensors. This system was then tested at the NASA Ames Research Center Aerodynamic Heating Facility's arc jet at approximately 170 W/sq. cm. The first test in December 2010 highlighted hardware design issues that were redesigned and implemented leading to a successful test in February 2011.

  10. Advanced surface-enhanced Raman gene probe systems and methods thereof

    DOEpatents

    Vo-Dinh, Tuan

    2001-01-01

    The subject invention is a series of methods and systems for using the Surface-Enhanced Raman (SER)-labeled Gene Probe for hybridization, detection and identification of SER-labeled hybridized target oligonucleotide material comprising the steps of immobilizing SER-labeled hybridized target oligonucleotide material on a support means, wherein the SER-labeled hybridized target oligonucleotide material comprise a SER label attached either to a target oligonucleotide of unknown sequence or to a gene probe of known sequence complementary to the target oligonucleotide sequence, the SER label is unique for the target oligonucleotide strands of a particular sequence wherein the SER-labeled oligonucleotide is hybridized to its complementary oligonucleotide strand, then the support means having the SER-labeled hybridized target oligonucleotide material adsorbed thereon is SERS activated with a SERS activating means, then the support means is analyzed.

  11. Initial Results in Power System Identification from Injected Probing Signals Using a Subspace Method

    SciTech Connect

    Zhou, Ning; Pierre, John W.; Hauer, John F.

    2006-08-01

    In this paper, the authors use the Numerical algorithm for Subspace State Space System IDentification (N4SID) to extract dynamic parameters from phasor measurements collected on the western North American Power Grid. The data were obtained during tests on June 7, 2000, and they represent wide area response to several kinds of probing signals including Low-Level Pseudo-Random Noise (LLPRN) and Single-Mode Square Wave (SMSW) injected at the Celilo terminal of the Pacific HVDC In-tertie (PDCI). An identified model is validated using a cross vali-dation method. Also, the obtained electromechanical modes are compared with the results from Prony analysis of a ringdown and with signal analysis of ambient data measured under similar op-erating conditions. The consistent results show that methods in this class can be highly effective even when the probing signal is small.

  12. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems

    NASA Astrophysics Data System (ADS)

    Miccoli, I.; Edler, F.; Pfnür, H.; Tegenkamp, C.

    2015-06-01

    The electrical conductivity of solid-state matter is a fundamental physical property and can be precisely derived from the resistance measured via the four-point probe technique excluding contributions from parasitic contact resistances. Over time, this method has become an interdisciplinary characterization tool in materials science, semiconductor industries, geology, physics, etc, and is employed for both fundamental and application-driven research. However, the correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific characteristics are intimately related to technical constraints such as the probe geometry and size of the sample. In particular, the latter is of importance for nanostructures which can now be probed technically on very small length scales. On the occasion of the 100th anniversary of the four-point probe technique, introduced by Frank Wenner, in this review we revisit and discuss various correction factors which are mandatory for an accurate derivation of the resistivity from the measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative size and geometry of the sample with respect to the contact assembly are considered. We are also able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a four-tip STM/SEM system. We are aware that this review article can only cover some of the most important topics. Regarding further aspects, e.g. technical realizations, the influence of inhomogeneities or different transport regimes, etc, we refer to other review articles in this field.

  13. Use of the MATRIXx Integrated Toolkit on the Microwave Anisotropy Probe Attitude Control System

    NASA Technical Reports Server (NTRS)

    Ward, David K.; Andrews, Stephen F.; McComas, David C.; ODonnell, James R., Jr.

    1999-01-01

    Recent advances in analytical software tools allow the analysis, simulation, flight code, and documentation of an algorithm to be generated from a single source, all within one integrated analytical design package. NASA's Microwave Anisotropy Probe project has used one such package, Integrated Systems' MATRIXx suite, in the design of the spacecraft's Attitude Control System. The project's experience with the linear analysis, simulation, code generation, and documentation tools will be presented and compared with more traditional development tools. In particular, the quality of the flight software generated will be examined in detail. Finally, lessons learned on each of the tools will be shared.

  14. Experimental signatures of localization in Langmuir wave turbulence

    SciTech Connect

    Rose, H.A.; DuBois, D.F.; Russell, D.; Bezzerides, B.

    1988-01-01

    Features in certain laser-plasma and ionospheric experiments are identified with the basic properties of Langmuir wave turbulence. Also, a model of caviton nucleation is presented which leads to certain novel scaling predictions. 12 refs., 19 figs.

  15. Parametric decay of wide band Langmuir wave spectra

    NASA Astrophysics Data System (ADS)

    Kono, Mitsuo; Pécseli, Hans L.

    2016-12-01

    Previous results obtained for modulational instability of a Langmuir wave spectrum are extended to account also for the Langmuir wave decay. The general model is tested by considering first the parametric decay of single-mode Langmuir waves, and also two-wave models, where several combinations are considered: one wave is modulationally unstable, another decay unstable and one where both waves are unstable with respect to decay. For the general case with continuous wave spectra it is found that distribution of the Langmuir wave energy over a wide wavenumber band reduces the decay rate when the correlation length for the spectrum becomes comparable to the wavelength of the most unstable sound wave among the possible decay products.

  16. Langmuir oscillations in a nonthermal nonextensive electron-positron plasma

    NASA Astrophysics Data System (ADS)

    El-Taibany, W. F.; Zedan, N. A.

    2017-02-01

    The high-frequency Langmuir-type oscillations in a pure pair plasma are studied using Vlasov-Poisson's equations in the presence of hybrid nonthermal nonextensive distributed species. The characteristics of the Langmuir oscillations, Landau damping, and growing unstable modes in a nonthermal nonextensive electron-positron (EP) plasma are remarkably modified. It is found that the phase velocity of the Langmuir waves increases by decreasing (increasing) the value of nonextensive (nonthermal) parameter, q ( α). In particular, depending on the degree of nonthermality and nonextensivity, both damping and growing oscillations are predicted in the proposed EP plasma. It is seen that the Langmuir waves suffer from Landau damping in two different q regions. Furthermore, the mechanism that leads to unstable modes is established in the context of the nonthermal nonextensive formalism, yet the damping mechanism is the same developed by Landau. The present study is useful in the regions where such mixed distributions in space or laboratory plasmas exist.

  17. Novel HDD-type SNDM ferroelectric data storage system aimed at high-speed data transfer with single probe operation.

    PubMed

    Hiranaga, Yoshiomi; Uda, Tomoya; Kurihashi, Yuichi; Tanaka, Kenkou; Cho, Yasuo

    2007-12-01

    In this study, several read/write tests were conducted using a novel ferroelectric data storage test system equipped with a spindle motor, targeted at high-speed data transfer using a single probe head. A periodically inverted signal can be read out correctly with a bit rate of 100 kbps using this test system, and 10 Mbps data transfer is also possible during writing operations. The effect of a dc-offset voltage applied to the writing waveform with high-speed probe scanning is discussed. In addition, a novel noncontact probe height control technique was adopted to solve the problem of tip abrasion.

  18. Probing vacuum-induced coherence via magneto-optical rotation in molecular systems

    NASA Astrophysics Data System (ADS)

    Kumar, Pardeep; Deb, Bimalendu; Dasgupta, Shubhrangshu

    2016-05-01

    Vacuum-induced coherence (VIC) arises due to the quantum interference between the spontaneous emission pathways from the degenerate excited states to a common ground state. The stringent requirement for the VIC to occur is the nonorthogonality of the transition dipole matrix elements. Unlike atoms, molecules are the promising systems for exploration of VIC, as it is possible to identify the non-orthogonal transitions due to the coupling of the rotation of molecular axis with molecular electronic angular momentum. Usually, the possible signatures of VIC are obtained by manipulating the absorption of the probe field. In this paper, we show how the dispersion of the probe field can be manipulated to obtain a measurable signature of VIC. Precisely speaking, we explore a way to probe VIC in molecules by observing its influence on magneto-optical rotation (MOR). We show that VIC in the presence of a control laser and a magnetic field can lead to large enhancement in the rotation of the plane of polarization of a linearly polarized weak laser with vanishing circular dichroism. This effect can be realized in cold molecular gases. Such a large MOR angle may be used as a tool for optical magnetometry to detect weak magnetic field with large measurement sensitivity.

  19. Through-wafer optical probe characterization for microelectromechanical systems positional state monitoring and feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    2000-12-01

    Implementation of closed-loop microelectromechanical system (MEMS) control enables mechanical microsystems to adapt to the demands of the environment that they are actuating, opening a broad range of new opportunities for future MEMS applications. Integrated optical microsystems have the potential to enable continuous in situ optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation that is necessary for realization of feedback control. We present the results of initial research evaluating through-wafer optical microprobes for surface micromachined MEMS integrated optical position monitoring. Results from the through-wafer free-space optical probe of a lateral comb resonator fabricated using the multiuser MEMS process service (MUMPS) indicate significant positional information content with an achievable return probe signal dynamic range of up to 80% arising from film transmission contrast. Static and dynamic deflection analysis and experimental results indicate a through-wafer probe positional signal sensitivity of 40 mV/micrometers for the present setup or 10% signal change per micrometer. A simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure given the availability of positional state information.

  20. Electron acceleration by parametrically excited Langmuir waves. [in ionospheric modification

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.; Graham, K. N.

    1974-01-01

    Simple physical arguments are used to estimate the downward-going energetic electron flux due to parametrically excited Langmuir waves in ionospheric modification experiments. The acceleration mechanism is a single velocity reversal as seen in the frame of the Langmuir wave. The flux is sufficient to produce the observed ionospheric airglow if focusing-type instabilities are invoked to produce moderate local enhancements of the pump field.

  1. Photoacoustic Imaging with a Commercial Ultrasound System and a Custom Probe

    PubMed Central

    Wang, Xueding; Fowlkes, J. Brian; Cannata, Jonathan M.; Hu, Changhong; Carson, Paul L.

    2010-01-01

    Building photoacoustic imaging (PAI) systems by using stand-alone ultrasound (US) units makes it convenient to take advantage of the state-of-the-art ultrasonic technologies. However, the sometimes limited receiving sensitivity and the comparatively narrow bandwidth of commercial US probes may not be sufficient to acquire high quality photoacoustic images. In this work, a high-speed PAI system has been developed using a commercial US unit and a custom built 128-element piezoelectric-polymer array (PPA) probe using a P(VDF-TrFE) film and flexible circuit to define the elements. Since the US unit supports simultaneous signal acquisition from 64 parallel receive channels, PAI data for synthetic image formation from a 64 or 128 element array aperture can be acquired after a single or dual laser firing, respectively. Therefore, 2D B-scan imaging can be achieved with a maximum frame rate up to 10 Hz, limited only by the laser repetition rate. The uniquely properties of P(VDF-TrFE) facilitated a wide -6 dB receiving bandwidth of over 120 % for the array. A specially designed 128-channel preamplifier board made the connection between the array and the system cable which not only enabled element electrical impedance matching but also further elevated the signal-to-noise ratio (SNR) to further enhance the detection of weak photoacoustic signals. Through the experiments on phantoms and rabbit ears, the good performance of this PAI system was demonstrated. PMID:21276653

  2. Automation of a Surface Sampling Probe/Electrospray Mass Spectrometry System

    SciTech Connect

    Kertesz, Vilmos; Ford, Michael J; Van Berkel, Gary J

    2005-01-01

    An image analysis automation concept and the associated software (HandsFree TLC/MS) were developed to control the surface sampling probe-to-surface distance during operation of a surface sampling electrospray system. This automation system enables both 'hands-free' formation of the liquid microjunction used to sample material from the surface and hands-free reoptimization of the microjunction thickness during a surface scan to achieve a fully automated surface sampling system. The image analysis concept and the practical implementation of the monitoring and automated adjustment of the sampling probe-to-surface distance (i.e., liquid microjunction thickness) are presented. The added capabilities for the preexisting surface sampling electrospray system afforded through this software control are illustrated by an example of automated scanning of multiple development lanes on a reversed-phase C8 TLC plate and by imaging inked lettering on a paper surface. The post data acquisition processing and data display aspects of the software package are also discussed.

  3. Manipulating and probing the polarisation of a methyl tunnelling system by field-cycling NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Abu-Khumra, Sabah M. M.; Aibout, Abdellah; Horsewill, Anthony J.

    2017-02-01

    In NMR the polarisation of the Zeeman system may be routinely probed and manipulated by applying resonant rf pulses. As with spin-1/2 nuclei, at low temperature the quantum tunnelling states of a methyl rotor are characterised by two energy levels and it is interesting to consider how these tunnelling states might be probed and manipulated in an analogous way to nuclear spins in NMR. In this paper experimental procedures based on magnetic field-cycling NMR are described where, by irradiating methyl tunnelling sidebands, the polarisations of the methyl tunnelling systems are measured and manipulated in a prescribed fashion. At the heart of the technique is a phenomenon that is closely analogous to dynamic nuclear polarisation and the solid effect where forbidden transitions mediate polarisation transfer between 1H Zeeman and methyl tunnelling systems. Depending on the irradiated sideband, both positive and negative polarisations of the tunnelling system are achieved, the latter corresponding to population inversion and negative tunnelling temperatures. The transition mechanics are investigated through a series of experiments and a theoretical model is presented that provides good quantitative agreement.

  4. An optical biopsy system with miniaturized Raman and spectral imaging probes; in vivo animal and ex vivo clinical application studies

    NASA Astrophysics Data System (ADS)

    Sato, Hidetoshi; Suzuki, Toshiaki; Andriana, Bibin B.; Morita, Shin'ichi; Maruyama, Atsushi; Shinzawa, Hideyuki; Komachi, Yuichi; Kanai, Gen'ichi; Ura, Nobuo; Masutani, Koji; Matsuura, Yuji; Toi, Masakazu; Shimosegawa, Toru; Ozaki, Yukihiro

    2009-02-01

    An optical biopsy system which equips miniaturized Raman probes, a miniaturized endoscope and a fluorescent image probe has been developed for in vivo studies of live experimental animals. The present report describes basic optical properties of the system and its application studies for in vivo cancer model animals and ex vivo human cancer tissues. It was developed two types of miniaturized Raman probes, micro Raman probe (MRP) made of optical fibers and ball lens hollow optical fiber Raman probe (BHRP) made of single hollow optical fiber (HOF) with a ball lens. The former has rather large working distance (WD), up to one millimeter. The latter has small WD (~300μm) which depends on the focal length of the ball lens. Use of multiple probes with different WD allows one to obtain detailed information of subsurface tissues in the totally noninvasive manner. The probe is enough narrow to be inserted into a biopsy needle (~19G), for observations of the lesion at deeper inside bodies. The miniaturized endoscope has been applied to observe progression of a stomach cancer in the same rat lesion. It was succeeded to visualize structure of non-stained cancer tissue in live model animals by the fluorescent image technique. The system was also applied to ex vivo studies of human breast and stomach cancers.

  5. Probing microelectromechanical systems in an environmentally controlled chamber using long working distance interferometry

    NASA Astrophysics Data System (ADS)

    Soylemez, E.; Plass, R. A.; Ashurst, W. R.; de Boer, M. P.

    2013-07-01

    It is well known that the environment in which micromechanical systems operate significantly affects their performance. It is, therefore, important to characterize micromachine behavior in environments where the humidity, pressure, and chemical composition of the ambient can be precisely controlled. Achieving such a level of environmental control presents significant challenges in view of the required instrumentation. To that end, a custom micromachine characterization system is built that allows for full environmental control (pressure, humidity, and gas composition) while retaining full micromachine characterization techniques (long working distance interferometry, electrical probe connectivity, actuation scripting capability). The system also includes an effective in situ surface cleaning mechanism. As an example of the system's utility, a microcantilever crack healing experiment is conducted and surface adhesion energy measurements are tracked over time after a step change in humidity is applied.

  6. Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment.

    PubMed

    Kalinin, Sergei V; Rodriguez, Brian J; Jesse, Stephen; Seal, Katyayani; Proksch, Roger; Hohlbauch, Sophia; Revenko, Irene; Thompson, Gary Lee; Vertegel, Alexey A

    2007-10-24

    Electromechanical coupling is ubiquitous in biological systems, with examples ranging from simple piezoelectricity in calcified and connective tissues to voltage-gated ion channels, energy storage in mitochondria, and electromechanical activity in cardiac myocytes and outer hair cell stereocilia. Piezoresponse force microscopy (PFM) originally emerged as a technique to study electromechanical phenomena in ferroelectric materials, and in recent years has been employed to study a broad range of non-ferroelectric polar materials, including piezoelectric biomaterials. At the same time, the technique has been extended from ambient to liquid imaging on model ferroelectric systems. Here, we present results on local electromechanical probing of several model cellular and biomolecular systems, including insulin and lysozyme amyloid fibrils, breast adenocarcinoma cells, and bacteriorhodopsin in a liquid environment. The specific features of PFM operation in liquid are delineated and bottlenecks on the route towards nanometre-resolution electromechanical imaging of biological systems are identified.

  7. A Thermal Melt Probe System for Extensive, Low-Cost Instrument Deployment Within and Beneath Ice Sheets

    NASA Astrophysics Data System (ADS)

    Winebrenner, D. P.; Elam, W. T.; Carpenter, M.; Kintner, P., III

    2014-12-01

    component and system testing. We are therefore revising the probe heaters using a newer but more development-intensive technology. With probe systems now validated in our tests, this will result in a reliable means to emplace instruments for studies of subglacial hydrology, ice dynamics, and possible subglacial ecologies.

  8. Probing for a deeper understanding of rhabdomyosarcoma: insights from complementary model systems

    PubMed Central

    Kashi, Venkatesh P.; Hatley, Mark E.; Galindo, Rene L.

    2015-01-01

    Abstract Rhabdomyosarcoma (RMS) is a mesenchymal malignancy composed of neoplastic primitive precursor cells that exhibit histological features of myogenic differentiation. Despite intensive conventional multimodal therapy, patients with high-risk RMS typically suffer from aggressive disease. The lack of directed therapies against RMS emphasizes the need to further uncover the molecular underpinnings of the disease. In this Review, we discuss the notable advances in the model systems now available to probe for new RMS-targetable pathogenetic mechanisms, and the possibilities for enhanced RMS therapeutics and improved clinical outcomes. PMID:26105539

  9. Status of the cryogenic inertial reference system for the Gravity Probe B mission

    NASA Technical Reports Server (NTRS)

    Lipa, J. A.; Gwo, D.-H.; Kirschman, R. K.

    1993-01-01

    We describe the status of the development and testing program for the inertial reference system for the Gravity Probe B gyroscopes. The gyroscope housings are attached to a cryogenic telescope with a 14 cm aperture that continuously points at a guide star. The star image is split to provide quadrant pointing information which is used to steer the spacecraft. This data is also combined with the gyro readout data to provide an absolute precession measurement. Motion of the guide star is independently checked by reference to background galaxies. Room temperature testing of a prototype telescope has been completed and preparations are being made for low temperature tests.

  10. The Modeling of Pulmonary Particulate Matter Transport Using Langmuir Monolayers

    NASA Astrophysics Data System (ADS)

    Eaton, Jeremy M.

    The effects of a barrier in proximity to the air-water interface on the dynamics of a Langmuir monolayer system are observed. A monolayer of Survanta, bovine lung surfactant, is deposited onto the interface of an aqueous buffer solution. Polystyrene particles one micron in diameter and tagged with fluorescent carboxylate groups are distributed evenly throughout the monolayer surface. The bead-monolayer system is compressed and expanded to induce folding. A polydimethylsiloxane (PDMS) substrate is placed below the monolayer in the buffer solution to study interactions between the folding monolayer and a barrier. The presence of the substrate is shown to shift surface pressure-area isotherms toward regions of lower area by an average of 8.9 mN/m. The surface of the PDMS substrate can be imaged using fluorescence microscopy to detect the presence of particles or surfactant that may have been transported there from the air-water interface during folding. Images show the transferral of particles and monolayer together suggesting the pinch-off of a fold or the direct interaction of a fold with the barrier.

  11. Two-dimensional axisymmetric Child-Langmuir scaling law

    SciTech Connect

    Ragan-Kelley, Benjamin; Verboncoeur, John; Feng Yang

    2009-10-15

    The classical one-dimensional (1D) Child-Langmuir law was previously extended to two dimensions by numerical calculation in planar geometries. By considering an axisymmetric cylindrical system with axial emission from a circular cathode of radius r, outer drift tube radius R>r, and gap length L, we further examine the space charge limit in two dimensions. Simulations were done with no applied magnetic field as well as with a large (100 T) longitudinal magnetic field to restrict motion of particles to 1D. The ratio of the observed current density limit J{sub CL2} to the theoretical 1D value J{sub CL1} is found to be a monotonically decreasing function of the ratio of emission radius to gap separation r/L. This result is in agreement with the planar results, where the emission area is proportional to the cathode width W. The drift tube in axisymmetric systems is shown to have a small but measurable effect on the space charge limit. Strong beam edge effects are observed with J(r)/J(0) approaching 3.5. Two-dimensional axisymmetric electrostatic particle-in-cell simulations were used to produce these results.

  12. Quantification of Gordona amarae Strains in Foaming Activated Sludge and Anaerobic Digester Systems with Oligonucleotide Hybridization Probes

    PubMed Central

    de los Reyes, M. Fiorella; de los Reyes, Francis L.; Hernandez, Mark; Raskin, Lutgarde

    1998-01-01

    Previous studies have shown the predominance of mycolic acid-containing filamentous actinomycetes (mycolata) in foam layers in activated sludge systems. Gordona (formerly Nocardia) amarae often is considered the major representative of this group in activated sludge foam. In this study, small-subunit rRNA genes of four G. amarae strains were sequenced, and the resulting sequences were compared to the sequence of G. amarae type strain SE-6. Comparative sequence analysis showed that the five strains used represent two lines of evolutionary descent; group 1 consists of strains NM23 and ASAC1, and group 2 contains strains SE-6, SE-102, and ASF3. The following three oligonucleotide probes were designed: a species-specific probe for G. amarae, a probe specific for group 1, and a probe targeting group 2. The probes were characterized by dissociation temperature and specificity studies, and the species-specific probe was evaluated for use in fluorescent in situ hybridizations. By using the group-specific probes, it was possible to place additional G. amarae isolates in their respective groups. The probes were used along with previously designed probes in membrane hybridizations to determine the abundance of G. amarae, group 1, group 2, bacterial, mycolata, and Gordona rRNAs in samples obtained from foaming activated sludge systems in California, Illinois, and Wisconsin. The target groups were present in significantly greater concentrations in activated sludge foam than in mixed liquor and persisted in anaerobic digesters. Hybridization results indicated that the presence of certain G. amarae strains may be regional or treatment plant specific and that previously uncharacterized G. amarae strains may be present in some systems. PMID:9647822

  13. Structural investigation of Langmuir and Langmuir-Blodgett monolayers of semifluorinated alkanes.

    PubMed

    Dynarowicz Łatka, Patrycja; Pérez-Morales, Marta; Muñoz, Eulogia; Broniatowski, Marcin; Martín-Romero, María T; Camacho, Luis

    2006-03-30

    The behavior of a semi-fluorinated alkane (C(10)F(21)C(19)H(39)) has been studied at the air-water interface by using surface pressure and surface potential-area isotherms as well as infrared spectroscopy for the Langmuir-Blodgett films. In addition, based on the quantum chemical PM3 semiempirical approach, the dimer structure was investigated, and the double helix was found to be the most stable conformation of the dimer. The obtained results allow us to imply that the phase transition observed in the course of the surface pressure/area isotherm is due to a conformational change originating from the double helix to a vertical, single helix configuration.

  14. The Anopheles punctulatus complex: DNA probes for identifying the Australian species using isotopic, chromogenic, and chemiluminescence detection systems

    SciTech Connect

    Cooper, L.; Cooper, R.D.; Burkot, T.R. )

    1991-07-01

    Isotopic and enzyme-labeled species-specific DNA probes were made for the three known members of the Anopheles punctulatus complex of mosquitoes in Australia (Anopheles farauti Nos. 1, 2, and 3). Species-specific probes were selected by screening total genomic libraries made from the DNA of individual species with 32P-labeled DNA of homologous and heterologous mosquito species. The 32P-labeled probes for A. farauti Nos. 1 and 2 can detect less than 0.2 ng of DNA while the 32P-labeled probe for A. farauti No. 3 has a sensitivity of 1.25 ng of DNA. Probes were then enzyme labeled for chromogenic and chemiluminescence detection and compared to isotopic detection using 32P-labeled probes. Sequences of the probe repeat regions are presented. Species identifications can be made from dot blots or squashes of freshly killed mosquitoes or mosquitoes stored frozen, dried, and held at room temperature or fixed in isopropanol or ethanol with isotopic, chromogenic, or chemiluminescence detection systems. The use of nonisotopic detection systems will enable laboratories with minimal facilities to identify important regional vectors.

  15. Validation Test Results for Orthogonal Probe Eddy Current Thruster Inspection System

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.

    2007-01-01

    Recent nondestructive evaluation efforts within NASA have focused on an inspection system for the detection of intergranular cracking originating in the relief radius of Primary Reaction Control System (PCRS) Thrusters. Of particular concern is deep cracking in this area which could lead to combustion leakage in the event of through wall cracking from the relief radius into an acoustic cavity of the combustion chamber. In order to reliably detect such defects while ensuring minimal false positives during inspection, the Orthogonal Probe Eddy Current (OPEC) system has been developed and an extensive validation study performed. This report describes the validation procedure, sample set, and inspection results as well as comparing validation flaws with the response from naturally occuring damage.

  16. Inverting pump-probe spectroscopy for state tomography of excitonic systems

    NASA Astrophysics Data System (ADS)

    Hoyer, Stephan; Whaley, K. Birgitta

    2013-04-01

    We propose a two-step protocol for inverting ultrafast spectroscopy experiments on a molecular aggregate to extract the time-evolution of the excited state density matrix. The first step is a deconvolution of the experimental signal to determine a pump-dependent response function. The second step inverts this response function to obtain the quantum state of the system, given a model for how the system evolves following the probe interaction. We demonstrate this inversion analytically and numerically for a dimer model system, and evaluate the feasibility of scaling it to larger molecular aggregates such as photosynthetic protein-pigment complexes. Our scheme provides a direct alternative to the approach of determining all Hamiltonian parameters and then simulating excited state dynamics.

  17. High Temperature Antenna Measurement System with GSG or GS Contact Probing Capability

    NASA Technical Reports Server (NTRS)

    Jordan, Jennifer L.; Scardelletti, Maximilian C.; Ponchak, George E.

    2009-01-01

    Applications that require data transmission at high temperatures are becoming more common due to growing commercial and military needs. Antennas are an indispensable part of these systems and the ability to characterize them at elevated temperatures is quite complicated with little or no information being reported on the subject [1]. This paper describes a measurement system that can characterize planar antennas up 600 C with ground-signal-ground (GSG) or ground-signal (GS) probe contacts. The return loss and radiation patterns of a folded slot antenna (FSA), designed to operate at 5 GHz (no ground plane on back side) and fabricated on an alumina substrate, are presented at room temperature (RT) and 250 C [2]. All measurements were made with Agilent's Precision Network Analyzer (PNA) E8361. The return loss and radiation patterns were also measured on a Styrofoam chuck to illustrate the effect the high temperature measurement system has on the patterns.

  18. MRT letter: An extended scanning probe microscopy system for macroscopic topography imaging.

    PubMed

    Fu, Ji; Li, Faxin

    2014-10-01

    Enlightened by the principle of scanning probe microscopy or atomic force microscope (AFM), we proposed a novel surface topography imaging system based on the scanning of a piezoelectric unimorph cantilever. The height of sample surface can be obtained by recording the cantilever's strain using an ultra-sensitive strain gauge and the Z-axis movement is realized by electric bending of the cantilever. This system can be operated in the way similar to the contact mode in AFM, with the practical height detection resolution better than 100 nm. Imaging of the inner surface of a steel tube and on a transparent wing of a honey bee were conducted and the obtained results showed that this proposed system is a very promising solution for in situ topography mapping.

  19. System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process

    NASA Astrophysics Data System (ADS)

    Yasuda, Nobuhiro; Fukuyama, Yoshimitsu; Kimura, Shigeru; Ito, Kiminori; Tanaka, Yoshihito; Osawa, Hitoshi; Matsunaga, Toshiyuki; Kojima, Rie; Hisada, Kazuya; Tsuchino, Akio; Birukawa, Masahiro; Yamada, Noboru; Sekiguchi, Koji; Fujiie, Kazuhiko; Kawakubo, Osamu; Takata, Masaki

    2013-06-01

    We have developed a system of laser-pump and synchrotron radiation probe microdiffraction to investigate the phase-change process on a nanosecond time scale of Ge2Sb2Te5 film embedded in multi-layer structures, which corresponds to real optical recording media. The measurements were achieved by combining (i) the pump-laser system with a pulse width of 300 ps, (ii) a highly brilliant focused microbeam with wide peak-energy width (ΔE/E ˜ 2%) made by focusing helical undulator radiation without monochromatization, and (iii) a precise sample rotation stage to make repetitive measurements. We successfully detected a very weak time-resolved diffraction signal by using this system from 100-nm-thick Ge2Sb2Te5 phase-change layers. This enabled us to find the dependence of the crystal-amorphous phase change process of the Ge2Sb2Te5 layers on laser power.

  20. Inverting pump-probe spectroscopy for state tomography of excitonic systems.

    PubMed

    Hoyer, Stephan; Whaley, K Birgitta

    2013-04-28

    We propose a two-step protocol for inverting ultrafast spectroscopy experiments on a molecular aggregate to extract the time-evolution of the excited state density matrix. The first step is a deconvolution of the experimental signal to determine a pump-dependent response function. The second step inverts this response function to obtain the quantum state of the system, given a model for how the system evolves following the probe interaction. We demonstrate this inversion analytically and numerically for a dimer model system, and evaluate the feasibility of scaling it to larger molecular aggregates such as photosynthetic protein-pigment complexes. Our scheme provides a direct alternative to the approach of determining all Hamiltonian parameters and then simulating excited state dynamics.

  1. Reply to 'Linking probe thermodynamics to microarray quantification'

    NASA Astrophysics Data System (ADS)

    Burden, Conrad J.; Binder, Hans

    2010-12-01

    We defend Langmuir-like models of microarrays from accusations by Li et al (2010 Phys. Biol. 7 048001) that they fail to link sequence-specific properties to hybridization signals. We argue that existing Langmuir-like models based on accepted principles of physical chemistry, together with a model of post-hybridization washing, are entirely consistent with various controlled experiments. Li et al's competitive hybridization model on the other hand is not verified experimentally using designs which allow for an unambiguous differentiation with respect to Langmuir-like models and exhibits no benefit in fitting microarray probe intensities.

  2. Development of a coumarin-furan conjugate as Zn2 + ratiometric fluorescent probe in ethanol-water system

    NASA Astrophysics Data System (ADS)

    Li, Chao-rui; Li, Si-liang; Yang, Zheng-yin

    2017-03-01

    In this study, a novel coumarin-derived compound bearing the furan moiety called 7-diethylamino-3-formylcoumarin (2‧-furan formyl) hydrazone (1) has been designed, synthesized and evaluated as a Zn2 + ratiometric fluorescent probe in ethanol-water system. This probe 1 showed good selectivity and high sensitivity towards Zn2 + over other metal ions investigated, and a decrease in fluorescence emission intensity at 511 nm accompanied by an enhancement in fluorescence emission intensity at 520 nm of this probe 1 was observed in the presence of Zn2 + in ethanol-water (V : V = 9 : 1) solution, which provided ratiometric fluorescence detection of Zn2 +. Additionally, the ratiometric fluorescence response of 1 to Zn2 + was nearly completed within 0.5 min, which suggested that this probe 1 could be utilized for sensing and monitoring Zn2 + in environmental and biological systems for real-time detection.

  3. Measurement of rare probes with the silicon tracking system of the CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Heuser, Johann; Friese, Volker

    2014-11-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR will explore the phase diagram of strongly interacting matter at highest net baryon densities and moderate temperatures. The CBM physics program will be started with beams delivered by the SIS 100 synchrotron, providing energies from 2 to 14 GeV/nucleon for heavy nuclei, up to 14 GeV/nucleon for light nuclei, and 29 GeV for protons. The highest net baryon densities will be explored with ion beams up to 45 GeV/nucleon energy delivered by SIS 300 in the next stage of FAIR. Collision rates up to 107 per second are required to produce very rare probes with unprecedented statistics in this energy range. Their signatures are complex. These conditions call for detector systems designed to meet the extreme requirements in terms of rate capability, momentum and spatial resolution, and a novel DAQ and trigger concept which is not limited by latency but by throughput. In this paper we outline the concepts of CBM's central detector, the Silicon Tracking System, and of the First-Level Event Selector, a dedicated computing farm to reduce on-line the raw data volume by up to three orders of magnitude to a recordable rate. Progress with the development of detector and software algorithms are discussed and examples of performance studies on the reconstruction of rare probes at SIS 100 and SIS 300 energies given.

  4. Study of a vibrating fiber probing system for 3-D micro-structures: performance improvement

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Katsuki, A.; Sajima, T.; Suematsu, T.

    2014-09-01

    This paper presents a system for measuring 3D micro-structures that uses an optical fiber probe equipped with a piezo element that causes the probe to vibrate. The optical fiber probe consists of a stylus shaft with a diameter of 3 µm and a glass ball with a diameter of 5 µm attached to the tip. The stylus is vibrated in a circular motion in a single plane. The vibrator mechanism is introduced to prevent adhesion of the stylus tip to the surface being measured. This adhesion, which adversely affects the accuracy and time of the measurement, is caused by intermolecular, electrostatic, and liquid bridge forces. The measuring principle involves monitoring the vibrational amplitude of the stylus shaft that is required to prevent the adhesion of the stylus tip to the surface being measured, this amplitude being measured optically. In our previous report (Murakami et al 2012 Key Eng. Mater. 523-524 907-12), we found that the stylus shaft actually moves in an elliptical motion when it is set to describe a circular motion in the X-Y plane. Therefore, when a measurement is taken, it is necessary to adjust the motion of the piezoelectric tube to compensate for the difference between the diameter of the perfect circle and the actual elliptical motion of the stylus shaft displacement. In this study, the stylus characteristics were examined and the motion of the stylus shaft was then corrected to attain the desired circular motion. Next, the expansion of the measuring area by using a line laser was investigated. Finally, an experiment involving the measurement of a micro-hole was performed to demonstrate the practicality of the vibrating fiber probe. As a result, it was shown that the displacement between the diameter of the perfect circle and the actual elliptical motion of the stylus tip was about 0.034 µm after compensation. In addition, it was confirmed that the measurement area can be expanded by using an optical slit, but the standard deviation of the

  5. Chromatography Models with Langmuir and Steric Mass Action Adsorption Isotherms are of Differential Index One

    NASA Astrophysics Data System (ADS)

    von Lieres, Eric

    2010-09-01

    Chromatography is commonly applied for the separation of bio-molecules in pharmaceutical industry, and chromatography models are increasingly applied for rational process analysis and optimization. A rapid equilibrium assumption is often applied for the adsorption equation, which results in a non-linear system of partial differential-algebraic equations (PDAEs). In this contribution a proof is given, that these PDAEs are of differential index one for the two most prominent isotherm models, Langmuir and steric mass action (SMA).

  6. All-optical optoacoustic microscopy system based on probe beam deflection technique

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  7. Interfacial Processes in Model Lithium Ion Systems Probed with Vibrational Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nicolau, Bruno G.; Garcia Rey, Natalia; Dlott, Dana

    2014-06-01

    Vibrational sum frequency generation (SFG) spectroscopy was used to probe electrochemical processes taking place at the interface between metal anodes and the liquid phase in model lithium ion systems. Lithium ion batteries have been extensively studied and characterized by numerous techniques. However, the mechanisms behind many properties are still unclear due to the lack of techniques that can directly probe them in situ. The formation of the electrode passivating layer known as solid-electrolyte interphase (SEI) is one such example. During the first charging cycle of a battery, some of the electrolyte undergoes reduction at the electrode surface forming an electrically isolating barrier that prevents the subsequent reduction of more electrolyte molecules. The SFG selection rules suppress signals from molecules in centrosymmetric environments such as electrolyte layers, so SFG is a selective probe of interfacial environments such as the SEI. In this study, ethylene carbonate's (EC) response to potential cycling was observed. EC is commonly used as a high permittivity solvent in batteries and is widely believed to be the main component of the SEI in its reduced form, lithium ethylene dicarbonyl. EC's carbonyl stretch (1850 cm-1) was measured in conjunction with cyclic voltammetry experiments. The SFG intensity showed remarkable agreement with the changing potential, as seen in the figure below. The shoulders on each side of the peaks in (a) are especially interesting, as they correspond to the potentials where lithium metal is oxidized and reduced. Vibrational modes found at 1300-1400 cm-1, usually assigned to the reduced form of EC, are also being studied in order to provide more information on the nature of the SEI.

  8. Langmuir Wave Decay in Inhomogeneous Solar Wind Plasmas: Simulation Results

    NASA Astrophysics Data System (ADS)

    Krafft, C.; Volokitin, A. S.; Krasnoselskikh, V. V.

    2015-08-01

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  9. LANGMUIR WAVE DECAY IN INHOMOGENEOUS SOLAR WIND PLASMAS: SIMULATION RESULTS

    SciTech Connect

    Krafft, C.; Volokitin, A. S.; Krasnoselskikh, V. V.

    2015-08-20

    Langmuir turbulence excited by electron flows in solar wind plasmas is studied on the basis of numerical simulations. In particular, nonlinear wave decay processes involving ion-sound (IS) waves are considered in order to understand their dependence on external long-wavelength plasma density fluctuations. In the presence of inhomogeneities, it is shown that the decay processes are localized in space and, due to the differences between the group velocities of Langmuir and IS waves, their duration is limited so that a full nonlinear saturation cannot be achieved. The reflection and the scattering of Langmuir wave packets on the ambient and randomly varying density fluctuations lead to crucial effects impacting the development of the IS wave spectrum. Notably, beatings between forward propagating Langmuir waves and reflected ones result in the parametric generation of waves of noticeable amplitudes and in the amplification of IS waves. These processes, repeated at different space locations, form a series of cascades of wave energy transfer, similar to those studied in the frame of weak turbulence theory. The dynamics of such a cascading mechanism and its influence on the acceleration of the most energetic part of the electron beam are studied. Finally, the role of the decay processes in the shaping of the profiles of the Langmuir wave packets is discussed, and the waveforms calculated are compared with those observed recently on board the spacecraft Solar TErrestrial RElations Observatory and WIND.

  10. Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system

    PubMed Central

    Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.

    2012-01-01

    We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429

  11. Dissipative dynamics of a system passing through a conical intersection: Ultrafast pump-probe observables

    NASA Astrophysics Data System (ADS)

    Gelman, David; Katz, Gil; Kosloff, Ronnie; Ratner, Mark A.

    2005-10-01

    The dynamics of a system incorporating a conical intersection, in the presence of a dissipative environment, is studied with the purpose of identifying observable ultrafast spectroscopic signatures. A model system consisting of two vibronically coupled electronic states with two nuclear degrees of freedom is constructed. Dissipation is treated by two different methods, Lindblad semigroup formalism and the surrogate Hamiltonian approach. Pump-probe experimental expectation values such as transient emission and transient absorption are calculated and compared to the adiabatic and diabatic population transfer. The ultrafast population transfer reflecting the conical intersection is not mirrored in transient absorption measurements such as the recovery of the bleach. Emission from the excited state can be suppressed on the ultrafast time scale, but the existence of a conical intersection is only one of the possible mechanisms that can provide ultrafast damping of emission.

  12. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification

    PubMed Central

    Desroches, Joannie; Jermyn, Michael; Mok, Kelvin; Lemieux-Leduc, Cédric; Mercier, Jeanne; St-Arnaud, Karl; Urmey, Kirk; Guiot, Marie-Christine; Marple, Eric; Petrecca, Kevin; Leblond, Frédéric

    2015-01-01

    A detailed characterization study is presented of a Raman spectroscopy system designed to maximize the volume of resected cancer tissue in glioma surgery based on in vivo molecular tissue characterization. It consists of a hand-held probe system measuring spectrally resolved inelastically scattered light interacting with tissue, designed and optimized for in vivo measurements. Factors such as linearity of the signal with integration time and laser power, and their impact on signal to noise ratio, are studied leading to optimal data acquisition parameters. The impact of ambient light sources in the operating room is assessed and recommendations made for optimal operating conditions. In vivo Raman spectra of normal brain, cancer and necrotic tissue were measured in 10 patients, demonstrating that real-time inelastic scattering measurements can distinguish necrosis from vital tissue (including tumor and normal brain tissue) with an accuracy of 87%, a sensitivity of 84% and a specificity of 89%. PMID:26203368

  13. Probing the Catalytic Charge-Relay System in Alanine Racemase with Genetically Encoded Histidine Mimetics.

    PubMed

    Sharma, Vangmayee; Wang, Yane-Shih; Liu, Wenshe R

    2016-12-16

    Histidine is a unique amino acid with an imidazole side chain in which both of the nitrogen atoms are capable of serving as a proton donor and proton acceptor in hydrogen bonding interactions. In order to probe the functional role of histidine involved in hydrogen bonding networks, fine-tuning the hydrogen bonding potential of the imidazole side chain is required but not feasible through traditional mutagenesis methods. Here, we show that two close mimetics of histidine, 3-methyl-histidine and thiazole alanine, can be genetically encoded using engineered pyrrolysine incorporation machinery. Replacement of the three histidine residues predicted to be involved in an extended charge-relay system in alanine racemase with 3-methyl-histidine or thiazole alanine shows a dramatic loss in the enzyme's catalytic efficiency, implying the role of this extended charge-relay system in activating the active site residue Y265, a general acid/base catalyst in the enzyme.

  14. A probe array for the investigation of spatio-temporal structures in drift wave turbulence

    SciTech Connect

    Latten, A.; Klinger, T.; Piel, A.; Pierre, T.

    1995-05-01

    A probe array with 64 azimuthally arranged Langmuir probes is presented as a new diagnostic tool for the investigation of drift waves. A parallel data acquisition system provides full spatio-temporal data of azimuthally propagating waves. For both regular and turbulent states of current-driven drift waves, the information provided by such space-time patterns is compared with results obtained from conventional two-point correlation methods. The probe array allows one to directly estimate the time-averaged wave number spectrum. In a turbulent state, the spectrum yields to a power law of {ital S}({ital k}){proportional_to}{ital k}{sup {minus}3.6{plus_minus}0.1}. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An

    2011-11-01

    Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.

  16. A trifurcated fiber-optic-probe-based optical system designed for AGEs measurement

    NASA Astrophysics Data System (ADS)

    Wang, Yikun; Zhang, Long; Zhu, Ling; Liu, Yong; Zhang, Gong; Wang, An

    2012-03-01

    Advanced Glycation End-products (AGEs) are biochemical end-products of non-enzymatic glycation and are formed irreversibly in human serum and skin tissue. AGEs are thought to play an important role in the pathogenesis of diabetes and corresponding complications. All conventional methods for measuring AGEs must take sampling and measure in vitro. These methods are invasive and have the problem of relatively time-consuming. AGEs have fluorescent characteristics. Skin AGEs can be assessed noninvasively by collecting the fluorescence emitted from skin tissue when excited with proper light. However, skin tissue has absorption and scattering effects on fluorescence of AGEs, it is not reliable to evaluate the accumulation of AGEs according the emitted fluorescence but not considering optical properties of skin tissue. In this study, a portable system for detecting AGEs fluorescence and skin reflectance spectrum simultaneously has been developed. The system mainly consists of an ultraviolet light source, a broadband light source, a trifurcated fiber-optic probe, and a compact charge coupled device (CCD) spectrometer. The fiber-optic probe consists of 36 optical fibers which are connected to the ultraviolet light source, 6 optical fibers connected to the broadband light source, and a core fiber connected to the CCD spectrometer. Demonstrative test measurements with the system on skin tissue of 40 healthy subjects have been performed. Using parameters that are calculated from skin reflectance spectrum, the distortion effects caused by skin absorption and scattering can be eliminated, and the integral intensity of corrected fluorescence has a strong correlation with the accumulation of AGEs. The system looks very promising for both laboratory and clinical applications to monitor AGEs related diseases, especially for chronic diabetes and complications.

  17. Commercial-Off-The-Shelf Microelectromechanical Systems (MEMS) Flow-Measurement Probes Fabricated And Assembled

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2002-01-01

    As an alternative to conventional tubing instrumentation for measuring airflow, designers and technicians at the NASA Glenn Research Center have been fabricating packaging components and assembling a set of unique probes using commercial-off-the-shelf microelectromechanical systems (MEMS) integrated circuits (computer chips). Using MEMS as an alternative has some compelling advantages over standard measurement devices. Sensor technologies have matured through high-production usage in industries such as automotive and aircraft manufacturers. Currently, MEMS are the choice in applications such as tire pressure monitors, altimeters, pneumatic controls, cable leak detectors, and consumer appliances. Conventional instrumentation uses tubing buried in the model aerodynamic surfaces or wind tunnel walls. The measurements are made when pressure is introduced at the tube opening. The pressure then must travel the tubing for lengths ranging from 20 to hundreds of feet before reaching an electronic signal conditioner. This condition causes a considerable amount of damping and requires measurements to be made only after the test rig has reached steady-state operation. The electronic MEMS pressure sensor is able to take readings continuously under dynamic states in nearly real time. The use of stainless steel tubing for pressure measurements requires many tubes to be cleaned, cut to length, carefully installed, and delicately deburred and spliced for use. A cluster of a few hundred 1/16-in.- (0.0625-in.-) diameter tubes (not uncommon in research testing facilities) can be several inches in diameter and may weigh enough to require two men to handle. Replacing hard tubing with electronic chips can eliminate much of the bulk. Each sensor would fit on the tip of the 1/16-in. tubing with room to spare. The P592 piezoresistive silicon pressure sensor (Lucas NovaSensor, Fremont, CA) was chosen for this project because of its cost, availability, and tolerance to extreme ambient

  18. Hard scattering of partons as a probe of collisions at RHIC using the STAR detector system

    SciTech Connect

    Christie, W.B.

    1995-07-15

    Presented here is the current state of the author`s investigations into the use of hard probes to study pp, pA, and AA collisions at the Relativistic Heavy Ion Collider (RHIC) being built at Brookhaven National Laboratory. The overall goal of the RHIC program is the discovery and study of the Quark-Gluon Plasma (QGP), which is predicted to be formed at the high energy densities reached at RHIC in high energy AA collisions. The term {open_quotes}Hard probes{close_quotes} as used in this document includes those particles whose origin is the result of a direct hard parton scatter (i.e qq, qg, or gg). The final states of these hard parton scatters which the author proposes to study include dijets, gamma-jet coincidences, and inclusive high P{sub t} particle spectra. A brief discussion of the physics objectives is given in section 1. This is followed by an introduction to the STAR detector system in section 2, with particular details given for the proposed STAR Electromagnetic Calorimeter (EMC). The present simulation studies and results are given in section 3. The author concludes with a summary and a discussion of future plans in section 4.

  19. On the Transfer and Control of Space Probes Around the L1 Point of the Sun-Earth+Moon System

    NASA Astrophysics Data System (ADS)

    Hou, Xi-Yun; Liu, Lin

    2008-01-01

    The motion around the collinear libration points in the restricted three body problem is unstable. But there exist conditionally stable periodic orbits around these points. Special-purpose space probes located in the vicinity of these points (e.g., ISEE-3, SOHO) can benefit from this dynamical property, in regard to maintaining the orbit in position and the energy required of placing the probe in position. As an example, we study in this paper the launch and orbital control of a space probe around the L1 libration point in the system consisting of the Sun and the Earth-Moon. We present some theoretical and numerical simulations' results, which may serve as a basis for the realization of such a space probe in future.

  20. Langmuir Films of Flexible Polymers Transferred to Aqueous/Liquid Crystal Interfaces Induce Uniform Azimuthal Alignment of the Liquid Crystal

    PubMed Central

    Kinsinger, Michael I.; Buck, Maren E.; Meli, Maria-Victoria; Abbott, Nicholas L.; Lynn, David M.

    2009-01-01

    We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4’-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4’-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous-5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous-5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous-air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films

  1. Nonlinear dilational mechanics of Langmuir lipid monolayers: a lateral diffusion mechanism.

    PubMed

    Arriaga, Laura R; López-Montero, Iván; Rodríguez-García, Ruddi; Monroy, Francisco

    2008-06-01

    We propose a theoretical model for the nonlinear mechanical response of Langmuir lipid monolayers subjected to a dilational in-plane deformation. Lateral diffusion in conjunction with free convection has been considered to drive nonlinear mass transport in Langmuir lipid monolayers. The present model combines the conservative dynamical equations for lipid transport along the monolayer plane together with a material relationship accounting for nonlinear hypoelasticity, as experimentally observed from high-strain rheological measurements [Hilles, Adv. Colloid Interface Sci. 122, 67 (2007)]. The dynamical equations have been resolved for oscillatory nonlinear motion, the theoretical spectral amplitudes being found in quantitative agreement with the experimental values obtained from surface rheology experiments performed in Langmuir monolayers of two different lipid systems, namely DPPC and native E. Coli lipids. The presence of micrometer-sized phase coexistence domains in these lipid systems has been claimed to pump diffusive transport along the monolayer plane. This dynamical scenario defines a relaxation regime compatible with the observed nonlinear mechanical behavior.

  2. The response of the Ocean Surface Boundary Layer and Langmuir turbulence to tropical cyclones

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Kukulka, Tobias; Reichl, Brandon; Hara, Tetsu; Ginis, Isaac

    2016-11-01

    The interaction of turbulent ocean surface boundary layer (OSBL) currents and the surface waves' Stokes drift generates Langmuir turbulence (LT), which enhances OSBL mixing. This study investigates the response of LT to extreme wind and complex wave forcing under tropical cyclones (TCs), using a large eddy simulation (LES) approach based on the wave-averaged Navier-Stokes equations. We simulate the OSBL response to TC systems by imposing the wind forcing of an idealized TC storm model, covering the entire horizontal extent of the storm systems. The Stokes drift vector that drives the wave forcing in the LES is determined from realistic spectral wave simulations forced by the same wind fields. We find that the orientations of Langmuir cells are vertically uniform and aligned with the wind in most regions despite substantial wind-wave misalignment in TC conditions. LT's penetration depth is related to Stokes drift depth and limited by OSBL depth. A wind-projected surface layer Langmuir number is proposed and successfully applied to scale turbulent vertical velocity variance in extreme TC conditions. Current affiliation: Princeton University/NOAA GFDL.

  3. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems.

    PubMed Central

    de los Reyes, F L; Ritter, W; Raskin, L

    1997-01-01

    Foaming in activated sludge systems is characterized by the formation of a thick, chocolate brown-colored scum that floats on the surface of aeration basins and secondary clarifiers. These viscous foams have been associated with the presence of filamentous mycolic acid-containing actinomycetes. To aid in evaluating the microbial representation in foam, we developed and characterized group-, genus-, and species-specific oligonucleotide probes targeting the small subunit rRNA of the Mycobacterium complex, Gordona spp., and Gordona (Nocardia) amarae, respectively. The use of a universal base analog, 5-nitroindole, in oligonucleotide probe design was evaluated by comparing the characteristics of two different versions of the Mycobacterium complex probe. The temperature of dissociation of each probe was determined. Probe specificity studies with a diverse collection of 67 target and nontarget rRNAs demonstrated the specificity of the probes to the target groups. Whole-cell hybridizations with fluorescein- and rhodamine-labeled probes were performed with pure cultures of various members of the Mycobacterium complex as well as with environmental samples from a full-scale activated sludge plant which experienced foaming. Quantitative membrane hybridizations with activated sludge and anaerobic digester foam showed that 15.0 to 18.3% of the total small-subunit rRNAs could be attributed to members of the Mycobacterium complex, of which a vast majority consisted of Gordona rRNA. Several G. amarae strains made up only a very small percentage of the Gordona strains present. We demonstrated that group-specific rRNA probes are useful tools for the in situ monitoring and identification of filamentous bacteria in activated sludge systems. PMID:9055425

  4. Backward Raman amplification in the Langmuir wavebreaking regime

    SciTech Connect

    Toroker, Z.; Malkin, V. M.; Fisch, N. J.

    2014-11-15

    In plasma-based backward Raman amplifiers, the output pulse intensity increases with the input pump pulse intensity, as long as the Langmuir wave mediating energy transfer from the pump to the seed pulse remains intact. However, at high pump intensity, the Langmuir wave breaks, at which point the amplification efficiency may no longer increase with the pump intensity. Numerical simulations presented here, employing a one-dimensional Vlasov-Maxwell code, show that, although the amplification efficiency remains high when the pump only mildly exceeds the wavebreaking threshold, the efficiency drops precipitously at larger pump intensities.

  5. Langmuir Blodgett films of hydrophobins HFBI and HFBII

    NASA Astrophysics Data System (ADS)

    Kisko, Kaisa; Torkkeli, Mika; Vuorimaa, Elina; Lemmetyinen, Helge; Seeck, Oliver H.; Linder, Markus; Serimaa, Ritva

    2005-06-01

    Hydrophobins are small fungal proteins, which have remarkable surface-chemical properties. They self-assemble at hydrophobic/hydrophilic interfaces and work as adhesive agents and coatings. Sixteen layer Langmuir-Blodgett films of hydrophobins HFBI and HFBII from the fungus Trichoderma reesei were prepared and studied using grazing-incidence X-ray diffraction and reflectivity techniques. Both kind of films contain hexagonally ordered crystallites on the substrate with unit cell parameters of a = b = 54 Å (HFBI) and a = b = 55 Å (HFBII). The structure is similar to the structure of monolayer Langmuir-Blodgett films.

  6. System identification: a multi-signal approach for probing neural cardiovascular regulation.

    PubMed

    Xiao, Xinshu; Mullen, Thomas J; Mukkamala, Ramakrishna

    2005-06-01

    Short-term, beat-to-beat cardiovascular variability reflects the dynamic interplay between ongoing perturbations to the circulation and the compensatory response of neurally mediated regulatory mechanisms. This physiologic information may be deciphered from the subtle, beat-to-beat variations by using digital signal processing techniques. While single signal analysis techniques (e.g., power spectral analysis) may be employed to quantify the variability itself, the multi-signal approach of system identification permits the dynamic characterization of the neural regulatory mechanisms responsible for coupling the variability between signals. In this review, we provide an overview of applications of system identification to beat-to-beat variability for the quantitative characterization of cardiovascular regulatory mechanisms. After briefly summarizing the history of the field and basic principles, we take a didactic approach to describe the practice of system identification in the context of probing neural cardiovascular regulation. We then review studies in the literature over the past two decades that have applied system identification for characterizing the dynamical properties of the sinoatrial node, respiratory sinus arrhythmia, and the baroreflex control of sympathetic nerve activity, heart rate and total peripheral resistance. Based on this literature review, we conclude by advocating specific methods of practice and that future research should focus on nonlinear and time-varying behaviors, validation of identification methods, and less understood neural regulatory mechanisms. Ultimately, we hope that this review stimulates such future investigations by both new and experienced system identification researchers.

  7. Some studies on a solid state sulfur probe for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1977-01-01

    Measurements on the solid electrolyte cell (Ar + H(2) + H(2)S/CaS + CaF(2) + (Pt)//CaF(2)//(Pt) + CaF(2) + CaS/H(2) + H(2)+Ar) show that the emf of the cell is directly related to the difference in sulfur potentials established at the Ar + H(2) + H(2)S/electrode interfaces. The electrodes convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient. Response time of the probe varies from approximately 9 hr at 990 K to 2.5 hr at 1225 K. The conversion of calcium sulfide and/or calcium fluoride into calcium oxide is not a problem anticipated in commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

  8. Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems

    PubMed Central

    2014-01-01

    Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodology to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed. PMID:25492398

  9. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Goyon, C.; Kemp, G. E.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Moody, J. D.; Michel, P.

    2017-01-01

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85 %- 87 % extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

  10. Space Systems Failures: Disasters and Rescues of Satellites, Rocket and Space Probes

    NASA Astrophysics Data System (ADS)

    Harland, David M.; Lorenz, Ralph

    In the 1960s and 1970s deep space missions were dispatched in pairs in case one was lost in launch or failed during its journey. Following the triumphs of the Viking landings on Mars in 1976 and both Voyagers spacecraft successfully surveying the outer giant planets of the Solar System, it was decided by NASA to cut costs and send out just a single probe. Although Magellan successfully mapped Venus by radar, it suffered from problems during the flight. Then came the loss of Mars Observer, whose engine exploded as it was preparing to enter Mars' orbit because it was using technology designed for Earth's satellites and the engine was not suited to spending several months in space.

  11. Friedel oscillations in graphene-based systems probed by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Mallet, Pierre; Brihuega, Iván; Cherkez, Vladimir; Gómez-Rodríguez, Jose Marìa; Veuillen, Jean-Yves

    2016-03-01

    For the last 25 years, scientists have demonstrated the capabilities of Scanning Tunneling Microscopy (STM) to visualize in real space the response of a two-dimensional electron gas to atomic-scale impurities. The analysis of the Friedel oscillations surrounding the impurities yields valuable information regarding the elastic scattering properties, the band structure, the doping level and the symmetry of the electronic states in the two-dimensional host system. We will address in this article the use of this technique for probing the electronic properties of graphene, the star two-dimensional compound of the last decade. In particular, we will emphasize how this technique can be pushed up to unravel the electronic pseudospin, a distinctive degree of freedom of graphene's Dirac fermions.

  12. Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System.

    PubMed

    Turnbull, D; Goyon, C; Kemp, G E; Pollock, B B; Mariscal, D; Divol, L; Ross, J S; Patankar, S; Moody, J D; Michel, P

    2017-01-06

    We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirect-drive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85%-87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices.

  13. A broadband proton backlighting platform to probe shock propagation in low-density systems

    NASA Astrophysics Data System (ADS)

    Sio, H.; Hua, R.; Ping, Y.; McGuffey, C.; Beg, F.; Heeter, R.; Li, C. K.; Petrasso, R. D.; Collins, G. W.

    2017-01-01

    A proton backlighting platform has been developed for the study of strong shock propagation in low-density systems in planar geometry. Electric fields at the converging shock front in inertial confinement fusion implosions have been previously observed, demonstrating the presence of—and the need to understand—strong electric fields not modeled in standard radiation-hydrodynamic simulations. In this planar configuration, long-pulse ultraviolet lasers are used to drive a strong shock into a gas-cell target, while a short-pulse proton backlighter side-on radiographs the shock propagation. The capabilities of the platform are presented here. Future experiments will vary shock strength and gas fill, to probe shock conditions at different Z and Te.

  14. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  15. Status of the heavy ion beam probe system in the Large Helical Device

    SciTech Connect

    Nishiura, M.; Ido, T.; Shimizu, A.; Nakano, H.; Kato, T.; Kato, S.; Hamada, Y.; Shevelko, V. P.; Janev, R. K.; Wada, M.

    2008-02-15

    A heavy ion beam probe (HIBP) system has been installed into the Large Helical Device (LHD) to measure the spatial profile of the plasma potential and density fluctuations. The optimization of the HIBP system, especially the beam injector, is described. The negative ion beam is required for the MeV beam production in a tandem accelerator. A sputter-type heavy negative ion source has been developed as an intense Au{sup -} beam source to produce Au{sup +} beams with energy in the MeV range. The extraction electrodes and the Einzel lens system of the ion source have been designed taking into account the beam optics, and installed into the real machine. Throughout the plasma diagnostics on LHD experiments, the consumptions of vaporized caesium and gold target are being characterized for practical operations. In addition, the experimental charge fractions are compared with the theoretical fractions for understanding the charge-changing behavior of Au{sup -} ions and optimizing the fraction of Au{sup +} ions at the exit of the tandem accelerator of the HIBP system.

  16. The fine structure of Langmuir waves observed upstream of the bow shock at Venus

    NASA Technical Reports Server (NTRS)

    Hospodarsky, G. B.; Gurnett, D. A.; Kurth, W. S.; Kivelson, M. G.; Strangeway, R. J.; Bolton, S. J.

    1994-01-01

    Highly structured Langmuir waves, also known as electron plasma oscillations, have been observed in the foreshock of Venus using the plasma wave experiment on the Galileo spacecraft during the gravity assist flyby on February 10, 1990. The Galileo wideband sampling system provides digital electric field waveform measurements at sampling rates up to 201,600 samples per second, much higher than any previous instrument of this type. The main Langmuir wave emission band occurs near the local electron plasma frequency, which was approximately 43 kHz. The Langmuir waves are observed to shift above and below the plasma frequency, sometimes by as much as 20 kHz. The shifts in frequency are closely correlated with the downstream distance from the tangent field line, implying that the shifts are controlled by the electron beam velocity. Considerable fine structure is also evident, with time scales as short as 0.15 milliseconds, corresponding to spatial scales of a few tens of Debye lengths. The frequency spectrum often consists of beat-type waveforms, with beat frequencies ranging from 0.2 to 7 kHz, and in a few cases, isolated wavepackets. The peak electric field strengths are approximately 1 mV/m. These field strengths are too small for strongly nonlinear processes to be important. The beat-type waveforms are suggestive of a parametric decay process.

  17. System and method for moving a probe to follow movements of tissue

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Andrews, T. W.; Crawford, D. W.; Cole, M. A. (Inventor)

    1981-01-01

    An apparatus is described for moving a probe that engages moving living tissue such as a heart or an artery that is penetrated by the probe, which moves the probe in synchronism with the tissue to maintain the probe at a constant location with respect to the tissue. The apparatus includes a servo positioner which moves a servo member to maintain a constant distance from a sensed object while applying very little force to the sensed object, and a follower having a stirrup at one end resting on a surface of the living tissue and another end carrying a sensed object adjacent to the servo member. A probe holder has one end mounted on the servo member and another end which holds the probe.

  18. Probe systems for measuring static pressure and turbulence intensity in fluid streams

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J. (Inventor)

    1993-01-01

    A method and an apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to characteristics of the fluid stream, preferably as a result of having varying cross sections. The responses from the probes are used to eliminate unwanted components in the measured quantities for accurate determination of selected characteristics.

  19. Terahertz generation by beating two Langmuir waves in a warm and collisional plasma

    SciTech Connect

    Zhang, Xiao-Bo; Qiao, Xin; Cheng, Li-Hong; Tang, Rong-An; Zhang, Ai-Xia; Xue, Ju-Kui

    2015-09-15

    Terahertz (THz) radiation generated by beating of two Langmuir waves in a warm and collisional plasma is discussed theoretically. The critical angle between the two Langmuir waves and the critical wave-length (wave vector) of Langmuir waves for generating THz radiation are obtained analytically. Furthermore, the maximum radiation energy is obtained. We find that the critical angle, the critical wave-length, and the generated radiation energy strongly depend on plasma temperature and wave-length of the Langmuir waves. That is, the THz radiation generated by beating of two Langmuir waves in a warm and collisional plasma can be controlled by adjusting the plasma temperature and the Langmuir wave-length.

  20. New effects in Langmuir and Langmuir-Blodgett monolayers from fluorescently labelled phospholipids and their possible use for water quality control

    NASA Astrophysics Data System (ADS)

    Ivanov, G. R.; Geshev, N. I.

    2016-02-01

    Secondary water contamination poses significant challenges to the sensitivity and selectivity of sensors used for its detection and monitoring. Currently only lab tests can detect these contaminants and by the time this happens the contaminated water has entered the city water supply system. Fluorescent chromophore NitroBenzoxaDiazole (NBD) is very suitable and had been successfully used in biosensor applications due to its high sensitivity to close proximity polarity of the medium. Over the years we have discovered 3 new effects in NBD- labelled phospholipids which can significantly improve the performance of biosensors. The phospholipid matrix provides flexible biocompatible environment for immobilization of selectively reacting enzymes, microorganisms, DNA, immunoagents, whole cells. Use of single layer (3.1 nm thickness) films at the air-water interface (Langmuir films) or deposited on solid support as Langmuir-Blodgett (LB) film gives fast response times for real time monitoring (no slow diffusion processes) and precise molecule ordering and orientation. The first new effect was fluorescence self-quenching in Langmuir and LB films. In the liquid phase films exhibit normal fluorescence. Upon transition to solid phase fluorescence intensity is almost completely self-quenched and fluorescence lifetimes in the nanosecond region decrease 2 times. This is easily measured. Usually large heavy metal atoms quench fluorescence. We observed the opposite new effect when LB film is deposited in the solid phase from a subphase containing heavy metals. The third new effect is the obtaining of nanosized cylinders with bilayer thickness, which remain stable at least for months, when LB monolayer is deposited in the phase coexistence region at thermodynamic equilibrium. This greatly increases reacting surface and sensitivity of possible sensors. Almost all possible optical experimental methods were used for this research. This includes polarized ATR FTIR and polarized UV

  1. Genetically-encoded tools for cAMP probing and modulation in living systems.

    PubMed

    Paramonov, Valeriy M; Mamaeva, Veronika; Sahlgren, Cecilia; Rivero-Müller, Adolfo

    2015-01-01

    Intracellular 3'-5'-cyclic adenosine monophosphate (cAMP) is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming-all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells), underpin the ensuing limitations of the conventional cAMP assays: (1) genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; (2) inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control-something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs.

  2. Genetically-encoded tools for cAMP probing and modulation in living systems

    PubMed Central

    Paramonov, Valeriy M.; Mamaeva, Veronika; Sahlgren, Cecilia; Rivero-Müller, Adolfo

    2015-01-01

    Intracellular 3′-5′-cyclic adenosine monophosphate (cAMP) is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming—all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells), underpin the ensuing limitations of the conventional cAMP assays: (1) genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; (2) inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control—something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs. PMID:26441653

  3. Development of a magic-angle spinning nuclear magnetic resonance probe with a cryogenic detection system for sensitivity enhancement.

    PubMed

    Mizuno, Takashi; Hioka, Katsuya; Fujioka, Koji; Takegoshi, K

    2008-04-01

    A novel nuclear magnetic resonance (NMR) probe for high-resolution solid-state NMR has been developed. In this probe, temperature of the detection coil is kept at cryogenic temperature (approximately 12 K) for sensitivity enhancement, which is achieved not only by suppression of thermal noise but also by increment of a Q factor of the coil. A marked feature of this probe is that a sample rotating at magic angle is thermally isolated from the cryogenic system in order to realize high-resolution solid-state NMR measurement at various sample temperatures. We call this system as cryocoil magic-angle spinning (cryocoil MAS). (1)H MAS NMR with the coil temperature of approximately 20 K was successfully observed for solid adamantane rotating at room temperature, and signal-to-noise increment due to this cryocoil approach was confirmed.

  4. Spatial Recognition of a Superconducting Quantum Interference Devices Nondestructive Evaluation System Using a Small Room-Temperature Probe

    NASA Astrophysics Data System (ADS)

    Chieh, Jen-Jie; Lin, I.-Sheng; Yang, Shieh-Yueh; Horng, Herng-Er; Hong, Chin-Yih; Yang, Hong-Chang

    2009-12-01

    A superconducting-qantum-interference-device (SQUID) nondestructive evaluation (NDE) system using a small room-temperature probe is developed for active scanning rather than for a massive movement occurring in a traditional SQUID NDE system. The small room-temperature probe is composed of a quadruple excitation coil and a double D-shaped pickup coil. It is connected to the input coil surrounding a high-Tc rf SQUID, immersed in liquid nitrogen, and shielded by a shielding can. Beyond the NDE function, the SQUID NDE scheme has spatial recognition functions, including the detection of the orientation and depth of a narrow line crack using different parameters, and the scanning of images of large objects with arbitrary shapes. Furthermore, the spatial sensitivity, limited by the size of the probe, reaches up to only 7 µm in the aspect of crack widths and 1 mm in the aspect of spatial intervals for precision NDE on a printed circuit board.

  5. Prospects for Probing Strong Gravity with a Pulsar-Black Hole System

    NASA Technical Reports Server (NTRS)

    Wex, N.; Liu, K.; Eatough, R. P.; Kramer, M.; Cordes, J. M.; Lazio, T. J. W.

    2012-01-01

    The discovery of a pulsar (PSR) in orbit around a black hole (BH) is expected to provide a superb new probe of relativistic gravity and BH properties. Apart from a precise mass measurement for the BH, one could expect a clean verification of the dragging of space-time caused by the BH spin. In order to measure the quadrupole moment of the BH for testing the no-hair theorem of general relativity (GR), one has to hope for a sufficiently massive BH. In this respect, a PSR orbiting the super-massive BH in the center of our Galaxy would be the ultimate laboratory for gravity tests with PSRs. But even for gravity theories that predict the same properties for BHs as GR, a PSR-BH system would constitute an excellent test system, due to the high grade of asymmetry in the strong field properties of these two components. Here we highlight some of the potential gravity tests that one could expect from different PSR-BH systems.

  6. System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process

    SciTech Connect

    Yasuda, Nobuhiro; Fukuyama, Yoshimitsu; Osawa, Hitoshi; Kimura, Shigeru; Ito, Kiminori; Tanaka, Yoshihito; Matsunaga, Toshiyuki; Kojima, Rie; Hisada, Kazuya; Tsuchino, Akio; Birukawa, Masahiro; Yamada, Noboru; Sekiguchi, Koji; Fujiie, Kazuhiko; Kawakubo, Osamu; Takata, Masaki

    2013-06-15

    We have developed a system of laser-pump and synchrotron radiation probe microdiffraction to investigate the phase-change process on a nanosecond time scale of Ge{sub 2}Sb{sub 2}Te{sub 5} film embedded in multi-layer structures, which corresponds to real optical recording media. The measurements were achieved by combining (i) the pump-laser system with a pulse width of 300 ps, (ii) a highly brilliant focused microbeam with wide peak-energy width ({Delta}E/E {approx} 2%) made by focusing helical undulator radiation without monochromatization, and (iii) a precise sample rotation stage to make repetitive measurements. We successfully detected a very weak time-resolved diffraction signal by using this system from 100-nm-thick Ge{sub 2}Sb{sub 2}Te{sub 5} phase-change layers. This enabled us to find the dependence of the crystal-amorphous phase change process of the Ge{sub 2}Sb{sub 2}Te{sub 5} layers on laser power.

  7. Adaptive filter based two-probe noise suppression system for transient evoked otoacoustic emission detection.

    PubMed

    Subotić, Miško; Šarić, Zoran; Jovičić, Slobodan T

    2012-03-01

    Transient otoacoustic emission (TEOAE) is a method widely used in clinical practice for assessment of hearing quality. The main problem in TEOAE detection is its much lower level than the level of environmental and biological noise. While the environmental noise level can be controlled, the biological noise can be only reduced by appropriate signal processing. This paper presents a new two-probe preprocessing TEOAE system for suppression of the biological noise by adaptive filtering. The system records biological noises in both ears and applies a specific adaptive filtering approach for suppression of biological noise in the ear canal with TEOAE. The adaptive filtering approach includes robust sign error LMS algorithm, stimuli response summation according to the derived non-linear response (DNLR) technique, subtraction of the estimated TEOAE signal and residual noise suppression. The proposed TEOAE detection system is tested by three quality measures: signal-to-noise ratio (S/N), reproducibility of TEOAE, and measurement time. The maximal TEOAE detection improvement is dependent on the coherence function between biological noise in left and right ears. The experimental results show maximal improvement of 7 dB in S/N, improvement in reproducibility near 40% and reduction in duration of TEOAE measurement of over 30%.

  8. Collective transport of weakly interacting molecular motors with Langmuir kinetics

    NASA Astrophysics Data System (ADS)

    Chandel, Sameep; Chaudhuri, Abhishek; Muhuri, Sudipto

    2015-04-01

    Filament-based intracellular transport involves the collective action of molecular motor proteins. Experimental evidences suggest that microtubule (MT) filament bound motor proteins such as kinesins weakly interact among themselves during transport and with the surrounding cellular environment. Motivated by these observations we study a driven lattice gas model for collective unidirectional transport of molecular motors on open filament. This model incorporates short-range next-nearest-neighbour (NNN) interactions between the motors and couples the transport process on filament with surrounding cellular environment through adsorption-desorption Langmuir kinetics (LK) of the motors. We analyse this model within the framework of a mean-field (MF) theory in the limit of weak interactions between the motors. We point to the mapping of this model with the non-conserved version of the Katz-Lebowitz-Spohn (KLS) model. The system exhibits rich phase behavior with a variety of inhomogeneous phases including localized shocks in the bulk of the filament. We obtain the steady-state density and current profiles, analyse their variation as a function of the strength of interaction and construct the non-equilibrium MF phase diagram. We compare these MF results with Monte Carlo simulations and find that the MF analysis shows reasonably good agreement with simulation results as long as the motors are weakly interacting. For sufficently strong NNN interaction between the motors, the mean-field results deviate significantly, and for very strong NNN interaction in the absence of LK, the current in the lattice is determined solely by the NNN interaction parameter and it becomes independent of entry and exit rates of motors at the filament boundaries.

  9. Development of an Optically Modulated Scatterer Probe for a Near-Field Measurement System

    DTIC Science & Technology

    2016-09-08

    loaded with a photodiode. The modulation scheme separates scattering off of the probe from background reflections. We present the design and...dipole antenna loaded with a photodiode. The modulation scheme separates scattering off of the probe from background reflections. We present the design

  10. A novel electro-optical pump-probe system for bioelectromagnetic investigations

    NASA Astrophysics Data System (ADS)

    De Angelis, Annalisa; Couderc, Vincent; Leproux, Philippe; Labruyère, Alexis; Tonello, Alessandro; El Amari, Saad; Arnaud-Cormos, Delia; Leveque, Philippe

    2012-10-01

    In the area of bioelectromagnetic studies there is a growing interest to understand the mechanisms leading to nanosecond electric fields induced electroporation. Real-time imaging techniques at molecular level could probably bring further advances on how electric fields interact with living cells. However the investigations are limited by the present-day lack of these kinds of advanced instrumentations. In this context, we present an innovative electro-optical pump-probe system. The aim of our project is to provide a performing and compact device for electrical stimulation and multiplex Coherent anti-Stokes Raman Scattering (M-CARS) imaging of biological cells at once. The system consists of a 1064 nm sub-nanosecond laser source providing both a monochromatic pump and a polychromatic Stokes optical beam used in a CARS process, as well as the trigger beam for the optoelectronic switching-based electrical pulse generator. The polychromatic Stokes beam (from 600 to 1700 nm) results from a supercontinuum generation in a photonic crystal fiber (PCF). A detailed spectro-temporal characterization of such a broadband spectrum shows the impact of the nonlinear propagation in the fiber on the Stokes wave. Despite the temporal distortions observable on Stokes pulse profiles, their spectral synchronization with the pump pulse remains possible and efficient in the interesting region between 1100 nm and 1700 nm. The electrical stimulation device consists of a customized generator combining microstrip-line technology and laser-triggered photoconductive semiconductor switches. Our experimental characterization highlights the capability for such a generator to control the main pulse parameters (profile, amplitude and duration) and to be easily synchronized with the imaging system. We finally test and calibrate the system by means of a KDP crystal. The preliminary results suggest that this electro-optical system provides a suitable tool for real-time investigation of

  11. Timing system design and tests for the Gravity Probe B relativity mission

    NASA Astrophysics Data System (ADS)

    Li, J.; Keiser, G. M.; Lockhart, J. M.; Ohshima, Y.; Shestople, P.

    2015-11-01

    In this paper, we discuss the timing system design and tests for the NASA/Stanford Gravity Probe B (GP-B) relativity mission. The primary clock of GP-B, called the 16fo clock, was an oven-controlled crystal oscillator that produced a 16.368 MHz master frequency3. The 16fo clock and the 10 Hz data strobe, which was divided down from the 16fo clock, provided clock signals to all GP-B components and synchronized the data collection, transmission, and processing. The sampled data of science signals were stamped with the vehicle time, a counter of the 10 Hz data strobe. The time latency between the time of data sampling and the stamped vehicle time was compensated in the ground data processing. Two redundant global positioning system receivers onboard the GP-B satellite supplied an external reference for time transfer between the vehicle time and coordinated universal time (UTC), and the time conversion was established in the ground preprocessing of the telemetry timing data. The space flight operation showed that the error of time conversion between the vehicle time and UTC was less than 2 μs. Considering that the constant timing offsets were compensated in the ground processing of the GP-B science data, the time latency between the effective sampling time of GP-B science signals and the stamped vehicle time was verified to within 1 ms in the ground tests.

  12. Optical systems modeling and experimental realization of pump and probe technique: investigation of nonlinear absorption in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Golinskaya, A.; Ezhova, K.; Kozlova, M.; Dneprovskii, V.

    2016-04-01

    Two optical systems modeling of laser and broadband radiation focusing, that is necessary for realization of the pump and probe method, was carried out in this work. Modeling was utilized to construct experimental setup for transmission spectra measuring of studied sample by probe nanosecond broadband radiation (coumarin photoluminescence) depending on the intensity of the nanosecond laser pump pulses. The saturation effect of absorption and the induced charge Stark-effect coexistence and predominate issue of these effects are determined by power of optical excitation. In dependence of tuning of excitation radiation frequency from basic exciton transition frequency nonlinear effects in colloidal CdSe/ZnS quantum dots has been investigated.

  13. Sensitivity enhancement of electro-optic polymer probing system using photo-isomerization and Fabry-Pérot effects

    NASA Astrophysics Data System (ADS)

    Kuo, Wen-Kai; Su, Tzu-Mao; Ke, Zong-You; Lin, Hui-Chi; Wu, Chien-Jang

    2013-07-01

    A sensitivity enhancement method for an external electro-optic (EO) probing system using a poled polymer as an EO sensor is proposed. A pumping laser, which induces the photo-isomerization effect in a prepoled EO polymer, and a tunable probing laser, which induces Fabry-Pérot effect, are combined to enhance the polymer EO sensor sensitivity. Results of an experiment with an EO sensor made of Disperse Red 1 poly(methy1 methacrylate) that demonstrates this combined effect are reported.

  14. A flow microslot NMR probe coupled with a capillary isotachophoresis system exhibits improved properties compared to solenoid designs.

    PubMed

    Gogiashvili, Mikheil; Telfah, Ahmad; Lambert, Jörg; Hergenröder, Roland

    2017-03-01

    We report on the hyphenation of capillary isotachophoresis (cITP) separations with online nuclear magnetic resonance (NMR) detection using a planar microslot waveguide probe design. While cITP is commonly coupled with a solenoidal microcoil NMR probe, the structural information provided is limited by broad resonances and poor spectral resolution due to the magnetic field created by the separation current. The microslot probe design described herein allows the separation capillary to be oriented parallel to the static magnetic field, B 0, eliminating the spectral broadening produced by the secondary magnetic field induced by the separation current. This allows high-resolution nuclear magnetic resonance spectra of the charged analytes to be obtained in online mode, whereas conventional solenoidal capillary NMR designs must resort to the stopped flow mode. The potential of the microslot probe for hyphenated electrophoretic separations is demonstrated by performing cITP focusing and online NMR detection of the (1)H NMR spectrum of a system containing spermine and aniline. Graphical Abstract High resolution NMR spectra in flow capillarelectrophoretic separations with microslot NMR probe.

  15. Immobilization of ɛ-polylysine onto the probe surface for molecular adsorption type endotoxin detection system

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Tsuji, Akihito; Nishishita, Naoki; Hirano, Yoshiaki

    2007-04-01

    adsorption reaction between ɛ-polylysine and endotoxin. ɛ-polylysine has the structure of straight chain molecule composed by 25-30 residues made by lysine, and it is used as an antimicrobial agent, moreover, cellulose beads with immobilized ɛ-polylysine is used as the barrier filter for endotoxin removal. Therefore, it is expected that the endotoxin be adsorbed to the immobilized ɛ-polylysine onto the probe. As the result of this reaction, the mass of the probe is increased, and endotoxin can be detected by using of Quartz Crystal Microbalance (QCM). In our previous research, we have already acquired the proteins immobilization technique onto Au and Si surface. In this report, the proposal of molecular adsorption type endotoxin detection system, and the immobilization of ɛ-polylysine onto the probe are described. We use X-ray Photoelectron Spectroscopy (XPS) to confirm the ɛ-polylysine immobilization, and the adsorptive activity of immobilized ɛ-polylysine is measured by XPS and AFM. The purpose of this study is to bring about the realization of "Real-time endotoxin detection system".

  16. A novel approach to study the structure-property relationships and applications in living systems of modular Cu2+ fluorescent probes

    NASA Astrophysics Data System (ADS)

    She, Mengyao; Yang, Zheng; Hao, Likai; Wang, Zhaohui; Luo, Tianyou; Obst, Martin; Liu, Ping; Shen, Yehua; Zhang, Shengyong; Li, Jianli

    2016-08-01

    A series of Cu2+ probe which contains 9 probes have been synthesized and established. All the probes were synthesized using Rhodamine B as the fluorophore, conjugated to various differently substituted cinnamyl aldehyde with C=N Schiff base structural motif as their core moiety. The structure-property relationships of these probes have been investigated. The change of optical properties, caused by different electronic effect and steric effect of the recognition group, has been analyzed systematically. DFT calculation simulation of the Ring-Close and Ring-Open form of all the probes have been employed to illuminate, summarize and confirm these correlations between optical properties and molecular structures. In addition, biological experiment demonstrated that all the probes have a high potential for both sensitive and selective detection, mapping of adsorbed Cu2+ both in vivo and environmental microbial systems. This approach provides a significant strategy for studying structure-property relationships and guiding the synthesis of probes with various optical properties.

  17. Surface dilatational viscosity of Langmuir monolayers

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Vogel, Michael; Hirsa, Amir

    2003-11-01

    With increased interest in microfluidic systems, interfacial phenomena is receiving more attention. As the length scales of fluid problems decrease, the surface to volume ratio increases and the coupling between interfacial flow and bulk flow becomes increasingly dominated by effects due to intrinsic surface viscosities (shear and dilatational), in comparison to elastic effects (due to surface tension gradients). The surface shear viscosity is well-characterized, as cm-scale laboratory experiments are able to isolate its effects from other interfacial processes (e.g., in the deep-channel viscometer). The same is not true for the dilatational viscosity, because it acts in the direction of surface tension gradients. Their relative strength scale with the capillary number, and for cm-scale laboratory flows, surface tension effects tend to dominate. In microfluidic scale flows, the scaling favors viscosity. We have devised an experimental apparatus which is capable of isolating and enhancing the effects of dilatational viscosity at the cm scales by driving the interface harmonically in time, while keeping the interface flat. In this talk, we shall present both the theory for how this works as well as experimental measurements of surface velocity from which we deduce the dilatational viscosity of several monolayers on the air-water interface over a substantial range of surface concentrations. Anomalous behavior over some range of concentration, which superficially indicates negative viscosity, maybe explained in terms of compositional effects due to large spatial and temporal variations in concentration and corresponding viscosity.

  18. Application of probe manipulator to repair probe cards

    NASA Astrophysics Data System (ADS)

    Konno, Takeshi; Kobayashi, Mikihiko; Egashira, Mitsuru; Machida, Kazumichi; Urata, Atsuo

    2006-03-01

    We fabricated an apparatus for manipulation and welding of fine metal objects using a probe. The apparatus is composed of a work probe of a tungsten alloy needle, stages, a DC power supply, and an observation system. The work probe is held vertically above a gold substrate placed on stages to control the relative position against the work probe. The DC power supply is equipped to apply voltage of 0-10kV between the work probe and the substrate. One application of the apparatus is to repair probe cards. Thousands of contact probes (needles) are mounted on the printed circuit board (PCB) in the probe card. The contact probes are mounted one by one by the hands. Recently, an array of the contact probe on the PCB is produced by the LIGA process in response to narrower semiconductor pitch length. The problem is that there are no methods to repair a wrong contact probe. Whole of the contact probes should be a waste owing to one wrong contact probe. We propose to replace a wrong contact probe with a good one using our apparatus. Experiments to remove a contact probe by the apparatus is carried out using the specimen of a mimic probe card, where a cantilever type contact probes are arranged with a pitch of 25 micrometers. Removal of the wrong contact probe is carried out by a non-contact discharge and a contact discharge using the apparatus. High voltage of about 1-2kV is applied after the work probe is moved to above the target contact probe for the non-contact discharge. While high voltage of about10kV is applied after the work probe is positioned in contact with the target contact probe for the contact discharge. The target contact probe is removed by both methods, though the neighboring contact probes are damaged. The latter method is hopeful for removal for repair of the probe card.

  19. High-bandwidth, high-sampling-rate, low-noise, two-probe transient photovoltage measuring system

    SciTech Connect

    Chen, Xiaoqing; Wu, Bo

    2015-01-15

    In this article, we present a two-probe configuration for measuring transient photovoltage (TPV) signals from photo-electronic semiconductor devices. Unlike in a conventional one-probe system, the two electrodes of the devices under test in this study are both monitored in our new measuring system, giving rise to a significantly enhanced signal-to-noise ratio. Tentative experimental data ob tained from N, N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine-based organic semiconductor devices show that the bandwidth and the sampling rate of the system reach 1.5 GHz and 50 GS/s, respectively, without degradation of the noise level. In addition, the study of TPV signals on each individual electrode is allowed. The TPV values measured by the two individual probes are not identically equal to half of the differential TPV and will not cancel each other out as expected. This abnormal phenomenon is due to the photoelectric response of the photo-electronic material. This novel two-probe TPV measuring technique and abnormal TPV behavior might be useful for studying more dynamic processes in photo-electronic semiconductors.

  20. Reacting to nuclear power systems in space: American public protests over outer planetary probes since the 1980s

    NASA Astrophysics Data System (ADS)

    Launius, Roger D.

    2014-03-01

    The United States has pioneered the use of nuclear power systems for outer planetary space probes since the 1970s. These systems have enabled the Viking landings to reach the surface of Mars and both Pioneers 10 and 11 and Voyagers 1 and 2 to travel to the limits of the solar system. Although the American public has long been concerned about safety of these systems, in the 1980s a reaction to nuclear accidents - especially the Soviet Cosmos 954 spacecraft destruction and the Three Mile Island nuclear power plant accidents - heightened awareness about the hazards of nuclear power and every spacecraft launch since that time has been contested by opponents of nuclear energy. This has led to a debate over the appropriateness of the use of nuclear power systems for spacecraft. It has also refocused attention on the need for strict systems of control and rigorous checks and balances to assure safety. This essay describes the history of space radioisotope power systems, the struggles to ensure safe operations, and the political confrontation over whether or not to allow the launch the Galileo and Cassini space probes to the outer planets. Effectively, these efforts have led to the successful flights of 12 deep space planetary probes, two-thirds of them operated since the accidents of Cosmos 954, Three Mile Island, and Chernobyl.

  1. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  2. An approach to achieve lateral superresolution for small probe confocal measurement system and its element

    NASA Astrophysics Data System (ADS)

    Zhao, Weiqian; Li, Qi; Qiu, Lirong; Tan, Jiubin; Wang, Qi

    2005-11-01

    A shaped annular beam superresolution approach is proposed to improve a lateral resolution of a small probe laser confocal measurement system (LCMS). The approach proposed enables lateral superresolution measurement of LCMS to be achieved by using a binary optical diffractive element to shape a He-Ne Gaussian laser beam into an annular beam with an inner diameter of 0.87 mm and an outer diameter of 1.8 mm required for superresolution measurement, and shift the beam spatial frequency from low to high. And a binary optical element (BOE) with 16 phase levels is designed and fabricated to shape a Gaussian laser beam into an annular beam. Preliminary experimental results indicate that an intensity distribution of a shaped annular beam is in agreement with simulation results, the diffractive efficiency is 87.2%; LCMS lateral and axial resolutions of 0.2 [mu]m and 3 nm are achieved, respectively, and its measurement range is expanded nearly to double, when BOE is used in LCMS and , NA=0.85.

  3. PHOTOEMISSION AS A PROBE OF THE COLLECTIVE EXCITATIONS IN CONDENSED MATTER SYSTEMS.

    SciTech Connect

    JOHNSON, P.D.; VALLA, T.

    2006-08-01

    New developments in instrumentation have recently allowed photoemission measurements to be performed with very high energy and momentum resolution.[1] This has allowed detailed studies of the self-energy corrections to the lifetime and mass renormalization of excitations in the vicinity of the Fermi level. These developments come at an opportune time. Indeed the discovery of high temperature superconductivity in the cuprates and related systems is presenting a range of challenges for condensed matter physics.[2] Does the mechanism of high T{sub c} superconductivity represent new physics? Do we need to go beyond Landau's concept of the Fermi liquid?[3] What, if any, is the evidence for the presence or absence of quasiparticles in the excitation spectra of these complex oxides? The energy resolution of the new instruments is comparable to or better than the energy or temperature scale of superconductivity and the energy of many collective excitations. As such, photoemission has again become recognized as an important probe of condensed matter. Studies of the high T{sub c} superconductors and related materials are aided by the observation that they are two dimensional. To understand this, we note that the photoemission process results in both an excited photoelectron and a photohole in the final state. Thus the experimentally measured photoemission peak is broadened to a width reflecting contributions from both the finite lifetime of the photohole and the momentum broadening of the outgoing photoelectron.

  4. Translational Studies of Phenotypic Probes for the Mononuclear Phagocyte System and Liposomal Pharmacology

    PubMed Central

    Caron, Whitney P.; Lay, John C.; Fong, Alan M.; La-Beck, Ninh M.; Kumar, Parag; Newman, Suzanne E.; Zhou, Haibo; Monaco, Jane H.; Clarke-Pearson, Daniel L.; Brewster, Wendy R.; Van Le, Linda; Bae-Jump, Victoria L.; Gehrig, Paola A.

    2013-01-01

    As nanoparticles (NPs) are cleared via phagocytes of the mononuclear phagocyte system (MPS), we hypothesized that the function of circulating monocytes and dendritic cells (MO/DC) in blood can predict NP clearance (CL). We measured MO/DC phagocytosis and reactive oxygen species (ROS) production in mice, rats, dogs, and patients with refractory solid tumors. Pharmacokinetic studies of polyethylene glycol (PEG)-encapsulated liposomal doxorubicin (PEGylated liposomal doxirubicin [PLD]), CKD-602 (S-CKD602), and cisplatin (SPI-077) were performed at the maximum tolerated dose. MO/DC function was also evaluated in patients with recurrent epithelial ovarian cancer (EOC) administered PLD. Across species, a positive association was observed between cell function and CL of PEGylated liposomes. In patients with EOC, associations were observed between PLD CL and phagocytosis (R2 = 0.43, P = 0.04) and ROS production (R2 = 0.61, P = 0.008) in blood MO/DC. These findings suggest that probes of MPS function may help predict PEGylated liposome CL across species and PLD CL in patients with EOC. PMID:24042160

  5. Integrated cantilever fabrication and system development for ultrasonic and acoustic scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Olson, Stephen; Sankaran, Balasubramanian; Altemus, Bruce; Xu, Bai; Geer, Robert

    2005-05-01

    Although the conventional optical lever technology typically used for scanning probe microscope applications has proven highly sensitive, accurate, and cost effective for most applications involving micromachined cantilever deflection measurements, frequency limitations and space needs limit its applicability to emerging ultrasonic-based SPM applications. Recently, the fabrication of cantilevers integrated with actuation and sensing components has opened avenues for feedback-based driving of micromachined cantilevers at higher-order resonance frequencies while sensing average deflection without the need for an optical deflection pathway for average deflection sensing. The work presented here will review recent efforts by our group in fabricating micromachined cantilevers with integrated piezoresistive deflection-sensing components combined with integrated ZnO actuation layers to induce cantilever deflection. These cantilevers are being fabricated for use in a heterodyne force microscopy system (HFM) to enable SPM imaging contrast based on viscoelastic response of a surface in contact with a micromachined tip wherein active-feedback technology is being applied to maintain ultrasonic tip excitation at higher order cantilever resonances. The first and second-pass fabrication results will be presented and reviewed regarding cantilever release and ZnO actuator (and electrode) fabrication. Dynamic response data from these structures, measured via laser Doppler vibrometery reveal the expected resonance structure for a cantilever of these dimensions.

  6. Langmuir waves: a database from the STEREO mission

    NASA Astrophysics Data System (ADS)

    Briand, Carine; Henri, Pierre; Génot, Vincent; Lormant, Nicolas; Dufourg, Nicolas; Cecconi, Baptiste; Nguyen, Quynh-Nhu

    2016-04-01

    Langmuir waves are ubiquitous in the planetary environments and the interplanetary medium. These electrostatic waves occur in the range 10-30 kHz in the solar wind. They are of interest as they are linked to the electron dynamics. Moreover, they are at the origin of the most intense electromagnetic radio waves related to solar flare and interplanetary shocks. The waveform analyzers of the WAVES instrument onboard of STEREO spacecraft have been observing the interplanetary medium since more than seven years. A complete database of the observed Langmuir waves is accessible to the community from the CDPP website (http://cdpp.eu/). We present here the details of the available information, as well as some analysis on different heliophysical contexts (interplanetary medium, shocks in particular).

  7. Thiophene-based monolayer OFETs prepared by Langmuir techniques

    NASA Astrophysics Data System (ADS)

    Agina, Elena V.; Sizov, Alexey S.; Anisimov, Daniil S.; Trul, Askold A.; Borshchev, Oleg V.; Paraschuk, Dmitry Y.; Shcherbina, Maxim A.; Chvalun, Sergey N.; Ponomarenko, Sergey A.

    2015-08-01

    A novel fast, easily processible and highly reproducible approach to thiophene-based monolayer OFETs fabrication by Langmuir-Blodgett or Langmuir-Schaefer techniques was developed and successfully applied. It is based on selfassembly of organosilicon derivatives of oligothiophenes or benzothienobenzothiophene on the water-air interface. Influence of the conjugation length and the anchor group chemistry of the self-assembling molecules on the monolayer structure and electric performance of monolayer OFETs was systematically investigated. The efficient monolayer OFETs with the charge carrier mobilities up to 0.01 cm2/Vs and on/off ratio up to 106 were fabricated, and their functionality in integrated circuits under normal air conditions was demonstrated.

  8. Methylene blue adsorption on a DMPA lipid langmuir monolayer.

    PubMed

    Giner Casares, Juan José; Camacho, Luis; Martín-Romero, Maria Teresa; López Cascales, José Javier

    2010-07-12

    Adsorption of methylene blue (MB) onto a dimyristoylphosphatidic acid (DMPA) Langmuir air/water monolayer is studied by molecular dynamics (MD) simulations, UV reflection spectroscopy and surface potential measurements. The free-energy profile associated with MB transfer from water to the lipid monolayer shows two minima of -66 and -60 kJ mol(-1) for its solid and gas phase, respectively, corresponding to a spontaneous thermodynamic process. From the position of the free-energy minima, it is possible to predict the precise location of MB in the interior of the DMPA monolayer. Thus, MB is accommodated in the phosphoryl or carbonyl region of the DMPA Langmuir air/water interface, depending on the isomorphic state (solid or gas phase, respectively). Reorientation of MB, measured from the bulk solution to the interior of the lipid monolayer, passes from a random orientation in bulk solution to an orientation parallel to the surface of the lipid monolayer when MB is absorbed.

  9. Moment equations for chromatography based on Langmuir type reaction kinetics.

    PubMed

    Miyabe, Kanji

    2014-08-22

    Moment equations were derived for chromatography, in which the reaction kinetics between solute molecules and functional ligands on the stationary phase was represented by the Langmuir type rate equation. A set of basic equations of the general rate model of chromatography representing the mass balance, mass transfer rate, and reaction kinetics in the column were analytically solved in the Laplace domain. The moment equations for the first absolute moment and the second central moment in the real time domain were derived from the analytical solution in the Laplace domain. The moment equations were used for predicting the chromatographic behavior under hypothetical HPLC conditions. The influence of the parameters relating to the adsorption equilibrium and to the reaction kinetics on the chromatographic behavior was quantitatively evaluated. It is expected that the moment equations are effective for a detailed analysis of the influence of the mass transfer rates and of the Langmuir type reaction kinetics on the column efficiency.

  10. In vivo reproducibility of robotic probe placement for a novel ultrasound-guided radiation therapy system

    PubMed Central

    Lediju Bell, Muyinatu A.; Sen, H. Tutkun; Iordachita, Iulian; Kazanzides, Peter; Wong, John

    2014-01-01

    Abstract. Ultrasound can provide real-time image guidance of radiation therapy, but the probe-induced tissue deformations cause local deviations from the treatment plan. If placed during treatment planning, the probe causes streak artifacts in required computed tomography (CT) images. To overcome these challenges, we propose robot-assisted placement of an ultrasound probe, followed by replacement with a geometrically identical, CT-compatible model probe. In vivo reproducibility was investigated by implanting a canine prostate, liver, and pancreas with three 2.38-mm spherical markers in each organ. The real probe was placed to visualize the markers and subsequently replaced with the model probe. Each probe was automatically removed and returned to the same position or force. Under position control, the median three-dimensional reproducibility of marker positions was 0.6 to 0.7 mm, 0.3 to 0.6 mm, and 1.1 to 1.6 mm in the prostate, liver, and pancreas, respectively. Reproducibility was worse under force control. Probe substitution errors were smallest for the prostate (0.2 to 0.6 mm) and larger for the liver and pancreas (4.1 to 6.3 mm), where force control generally produced larger errors than position control. Results indicate that position control is better than force control for this application, and the robotic approach has potential, particularly for relatively constrained organs and reproducibility errors that are smaller than established treatment margins. PMID:26158038

  11. Langmuir structure of poly (2-vinylpyridine-b-hexyl isocyanate) rod-coil diblock copolymers at the air/water Interface

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan

    2005-03-01

    We conducted a systematic interfacial study for the complete range (5%-90% of rod mole percentage) of an amphiphilic rod-coil system, poly (hexyl isocyanate)-b-(2-vinylpyridine) at the air/water and air/solid interface. We applied Langmuir balance technique, scanning probe microscopy (SPM), transmission electron microscopy (TEM) and X-ray reflectivity for the complete characterization of the monolayer at the interfaces. The phase isotherms showed the well amphiphilic balance for the diblock copolymers, and the formation of stable monolayers. With the increasing rod content, the consistent increase in the monolayer packing density was observed by the phase isotherms and supported by X-ray reflectivity. SPM and TEM characterization showed their interesting surface morphology according to the varying rod mole percentage in the rod-coil system. Rod mole percentage 5%-15% showed micellar morphology. Rod mole percentage 23%-32% showed distinct and dispersed rods, whereas rod mole percentage 70%-90% showed well packed structure similar to lamella phase. We found the tendency of the diblock system to adopt a packed monomolecular structure has increased by the increasing rod content. This lead us to conclude that it is the hexyl-isocyanate (rod part) that governs mostly the interfacial behavior of rod-coil block copolymers.

  12. A self-adjustable four-point probing system using polymeric three dimensional coils and non-toxic liquid metal

    NASA Astrophysics Data System (ADS)

    Oyunbaatar, Nomin-Erdene; Choi, Young Soo; Lee, Dong-Weon

    2015-12-01

    This paper describes a self-adjustable four-point probe (S4PP) system with a square configuration. The S4PP system consists of 3D polymer coil springs for the independent operation of each tungsten (W) probe, microfluidic channels filled with a nontoxic liquid metal, and a LabView-based control system. The 3D coil springs made by PMMA are fabricated with a 3D printer and are positioned in a small container filled with the non-toxic liquid metal. This unique configuration allows independent self-adjustment of the probe heights for precise measurements of the electrical properties of both flexible and large-step-height microsamples. The feasibility of the fabricated S4PP system is evaluated by measuring the specific resistance of Cr and Au thin films deposited on silicon wafers. The system is then employed to evaluate the electrical properties of a Au thin film deposited onto a flexible and easily breakable silicon diaphragm (spring constant: ˜3.6 × 10-5 N/m). The resistance of the Cr thin films (thickness: 450 nm) with step heights of 60 and 90 μm is also successfully characterized. These experimental results indicate that the proposed S4PP system can be applied to common metals and semiconductors as well as flexible and large-step-height samples.

  13. Color multiplexing hybridization probes using the apolipoprotein E locus as a model system for genotyping.

    PubMed

    Bernard, P S; Pritham, G H; Wittwer, C T

    1999-09-10

    Fluorescent hybridization probes were multiplexed for color genotyping of the apolipoprotein E locus using model oligonucleotide targets. Fluorescence resonance energy transfer was observed during adjacent hybridization of 3'-fluorescein-labeled "donor" probes paired with 5'-labeled "acceptor" probes with different emission spectra reporting at codons 112 and 158. The acceptor dyes emitted at either 640 nm (LightCycler Red 640) or 705 nm (LightCycler Red 705) and were monitored with a LightCycler, a thermal cycler with an integrated fluorimeter. The color of the acceptor dye identified each site and the characteristic melting temperatures of the fluorescein-labeled probes identified single base changes within each codon. Color compensation of temperature-dependent spectral overlap was applied to completely separate each channel. Competition between the probes and the complementary strand for the target sequence decreased resonance energy transfer, indicating an advantage of single-stranded target. Hybridization probes of the same length, but different GC content are T(m) shifted by the same amount during A:C mismatch duplex melting. Genotyping was optimal at both sites if melting curve analysis was preceded by a slow (1 degrees C/s) annealing phase. Although each site preferred different concentrations of Mg(2+) and target strand for optimal genotyping, conditions for multiplexing were found. This method, along with an appropriate amplification technique, should allow real-time multiplex genotyping from genomic DNA.

  14. Hydrogen exchange mass spectrometry of proteins at Langmuir monolayers

    PubMed Central

    Pirrone, Gregory F.; Vernon, Briana C.; Kent, Michael S.; Engen, John R.

    2015-01-01

    Hydrogen exchange (HX) mass spectrometry (MS) is valuable for providing conformational information for proteins/peptides that are very difficult to analyze with other methods such as peripheral membrane proteins and peptides that interact with membranes. We developed a new type of HX MS measurement that integrates Langmuir monolayers. A lipid monolayer was generated, a peptide or protein associated with it, and then the monolayer-associated peptide or protein was exposed to deuterium. The deuterated species was recovered from the monolayer, digested, and deuterium incorporation monitored by MS. Test peptides showed that deuterium recovery in an optimized protocol was equivalent to deuterium recovery in conventional solution HX MS. The reproducibility of the measurements was high despite the requirement of generating a new monolayer for each deuterium labeling time. We validated that known conformational changes in the presence of a monolayer/membrane could be observed with the peptide melittin and the myristoylated protein Arf-1. Results in an accompanying paper show that the method can reveal details of conformational changes in a protein (HIV-1 Nef) which adopts a different conformation depending on if it can insert into the lipid layer. Overall, the HX MS Langmuir monolayer method provided new and meaningful conformational information for proteins that associate with lipid layers. The combination of HX MS results with neutron or X-ray reflection of the same proteins in Langmuir monolayers can be more informative than isolated use of either method. PMID:26134943

  15. A Study of Uranus' Bow Shock Motions Using Langmuir Waves

    NASA Technical Reports Server (NTRS)

    Xue, S.; Cairns, I. H.; Smith, C. W.; Gurnett, D. A.

    1996-01-01

    During the Voyager 2 flyby of Uranus, strong electron plasma oscillations (Langmuir waves) were detected by the plasma wave instrument in the 1.78-kHz channel on January 23-24, 1986, prior to the inbound bow shock crossing. Langmuir waves are excited by energetic electrons streaming away from the bow shock. The goal of this work is to estimate the location and motion of Uranus' bow shock using Langmuir wave data, together with the spacecraft positions and the measured interplanetary magnetic field. The following three remote sensing analyses were performed: the basic remote sensing method, the lag time method, and the trace-back method. Because the interplanetary magnetic field was highly variable, the first analysis encountered difficulties in obtaining a realistic estimation of Uranus' bow shock motion. In the lag time method developed here, time lags due to the solar wind's finite convection speed are taken into account when calculating the shock's standoff distance. In the new trace-back method, limits on the standoff distance are obtained as a function of time by reconstructing electron paths. Most of the results produced by the latter two analyses are consistent with predictions based on the standard theoretical model and the measured solar wind plasma parameters. Differences between our calculations and the theoretical model are discussed.

  16. Studies of strong Langmuir turbulence effects at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Oyama, S. I.; Watkins, B. J.; Bristow, W. A.

    2006-10-01

    High power HF transmitters induce a number of plasma instabilities in the interaction region of overdense ionospheric plasma. Radars such as SuperDARN have been used to study artificial field-aligned irregularities (AFAI) created by the high power HF radiowave at the HAARP Ionospheric Observatory, Gakona, AK. A new Modular UHF Ionospheric Radar (MUIR) sited at HAARP may now be used to monitor changes in the Langmuir plasma waves detected in the UHF backscatter. We report the results from recent campaigns using these new facilities in coordinated and comprehensive studies of strong Langmuir turbulence (SLT). Among the effects observed and studied are: SLT spectra including the outshifted plasma line or `free-mode', appearance of a short timescale ponderomotive overshoot effect, temporal evolution of SLT, dependence of SLT on growth or suppression of AFAI, dependence of AFAI and MUIR backscatter on HAARP pulselength and duty-cycle, aspect angle dependence of the intensity of the plasma line. In particular, we explore the observed `magnetic-zenith' effect of increased turbulence with the HF wave directed up the field line. Langmuir modes parallel to the geomagnetic field are proposed to explain other features in stimulated electromagnetic emissions (SEE). These plasma waves are theorized to play a key role in certain features of radio-induced aurora. Experimental results are then compared to predictions from recent modeling efforts.

  17. Saturation of Langmuir waves in laser-produced plasmas

    SciTech Connect

    Baker, K.L.

    1996-04-01

    This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments are proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.

  18. Validation of break-apart and fusion MYC probes using a digital fluorescence in situ hybridization capture and imaging system

    PubMed Central

    Liew, Michael; Rowe, Leslie; Clement, Parker W.; Miles, Rodney R.; Salama, Mohamed E.

    2016-01-01

    Introduction: Detection of MYC translocations using fluorescence in situ hybridization (FISH) is important in the evaluation of lymphomas, in particular, Burkitt lymphoma and diffuse large B-cell lymphoma. Our aim was to validate a digital FISH capture and imaging system for the detection of MYC 8q24 translocations using LSI-MYC (a break-apart probe) and MYC 8;14 translocation using IGH-MYC (a fusion probe). Materials and Methods: LSI-MYC probe was evaluated using tissue sections from 35 patients. IGH-MYC probe was evaluated using tissue sections from forty patients. Sections were processed for FISH and analyzed using traditional methods. FISH slides were then analyzed using the GenASIs capture and analysis system. Results: Results for LSI-MYC had a high degree of correlation between traditional method of FISH analysis and digital FISH analysis. Results for IGH-MYC had a 100% concordance between traditional method of FISH analysis and digital FISH analysis. Conclusion: Annotated whole slide images of H and E and FISH sections can be digitally aligned, so that areas of tumor within a section can be matched and evaluated with a greater degree of accuracy. Images can be archived permanently, providing a means for examining the results retrospectively. Digital FISH imaging of the MYC translocations provides a better diagnostic tool compared to traditional methods for evaluating lymphomas. PMID:27217970

  19. Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications

    NASA Astrophysics Data System (ADS)

    Sharma, Manu; Marple, Eric; Reichenberg, Jason; Tunnell, James W.

    2014-08-01

    The design and characterization of an instrument combining Raman, fluorescence, and reflectance spectroscopic modalities is presented. Instrument development has targeted skin cancer applications as a novel fiber-optic probe has been specially designed to interrogate cutaneous lesions. The instrument is modular and both its software and hardware components are described in depth. Characterization of the fiber-optic probe is also presented, which details the probe's ability to measure diagnostically important parameters such as intrinsic fluorescence and absorption and reduced scattering coefficients along with critical performance metrics such as high Raman signal-to-noise ratios at clinically practical exposure times. Validation results using liquid phantoms show that the probe and system can extract absorption and scattering coefficients with less than 10% error. As the goal is to use the instrument for the clinical early detection of skin cancer, preliminary clinical data are also presented, which indicates our system's ability to measure physiological quantities such as relative collagen and nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume fraction, and mean vessel diameter.

  20. Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications

    PubMed Central

    Sharma, Manu; Marple, Eric; Reichenberg, Jason; Tunnell, James W.

    2014-01-01

    The design and characterization of an instrument combining Raman, fluorescence, and reflectance spectroscopic modalities is presented. Instrument development has targeted skin cancer applications as a novel fiber-optic probe has been specially designed to interrogate cutaneous lesions. The instrument is modular and both its software and hardware components are described in depth. Characterization of the fiber-optic probe is also presented, which details the probe's ability to measure diagnostically important parameters such as intrinsic fluorescence and absorption and reduced scattering coefficients along with critical performance metrics such as high Raman signal-to-noise ratios at clinically practical exposure times. Validation results using liquid phantoms show that the probe and system can extract absorption and scattering coefficients with less than 10% error. As the goal is to use the instrument for the clinical early detection of skin cancer, preliminary clinical data are also presented, which indicates our system's ability to measure physiological quantities such as relative collagen and nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume fraction, and mean vessel diameter. PMID:25173240

  1. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    PubMed Central

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2014-01-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10ng TNT (2,4,6-trinitrotoluene) with Creare 550g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130g drag pump. PMID:25404157

  2. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.

    PubMed

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  3. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  4. Distance dependence of surface-enhanced resonance raman enhancement in Langmuir-Blodgett dye multilayers

    SciTech Connect

    Cotton, T.M.; Uphaus, R.A.; Moebius, D.

    1986-11-06

    Monolayers of a surface-active dye incorporated into inert matrix material were transferred onto structurally defined silver island films by the Langmuir-Blodgett technique. The dye-containing monolayers were spaced from the surface by accurately known increments by deposition of inert spacer monolayers. Surface-enhanced resonance Raman spectra were observed from dye molecules spaced as distant as six spacer increments (ca. 16 nm) from the silver surface. These results indicate an electromagnetic mechanism is operative in this system in contradiction to a chemical mechanism which would require direct contact between the Raman-active species and the metal surface.

  5. Linear analysis of time dependent properties of Child-Langmuir flow

    SciTech Connect

    Rokhlenko, A.

    2013-01-15

    We continue our analysis of the time dependent behavior of the electron flow in the Child-Langmuir system, removing an approximation used earlier. We find a modified set of oscillatory decaying modes with frequencies of the same order as the inverse of the electron transient time. This range (typically MHz) allows simple experimental detection and maybe exploitation. We then study the time evolution of the current in response to a slow change of the anode voltage where the same modes of oscillations appear too. The cathode current in this case is systematically advanced or retarded depending on the direction of the voltage change.

  6. Mapping the process dependent conductivity of carbon nanotube thin-films using a non-invasive contact probing system.

    PubMed

    Choi, Eunsuk; Lee, Seung-Beck

    2016-02-01

    We report on a non-invasive contact probing (NICP) system for measuring the distribution of local surface conductivity of macroscopic thin-films of carbon nanotubes. Using the NICP system, we were able to obtain the local sheet resistance of the conducting thin-films continuously at ∼10 μm resolution over few centimeters which would not have been possible using conventional contact probing methods. Measurements performed on carbon nanotube thin-films with various nanotube densities, physical, and chemical treatments revealed that the local variation in electrical characteristics was not reflected in global conductance measurements. This demonstrated the usefulness of the NICP system for evaluating the effect of processing on the electrical uniformity of conducting thin-films made using nanomaterials.

  7. Adaptive Embedded Digital System for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier

    2014-05-01

    An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.

  8. Force probe simulations of a reversibly rebinding system: Impact of pulling device stiffness

    NASA Astrophysics Data System (ADS)

    Jaschonek, Stefan; Diezemann, Gregor

    2017-03-01

    We present a detailed study of the parameter dependence of force probe molecular dynamics (FPMD) simulations. Using a well studied calix[4]arene catenane dimer as a model system, we systematically vary the pulling velocity and the stiffness of the applied external potential. This allows us to investigate how the results of pulling simulations operating in the constant velocity mode (force-ramp mode) depend on the details of the simulation setup. The system studied has the further advantage of showing reversible rebinding meaning that we can monitor the opening and the rebinding transition. Many models designed to extract kinetic information from rupture force distributions work in the limit of soft springs and all quantities are found to depend solely on the so-called loading rate, the product of spring stiffness and pulling velocity. This approximation is known to break down when stiff springs are used, a situation often encountered in molecular simulations. We find that while some quantities only depend on the loading rate, others show an explicit dependence on the spring constant used in the FPMD simulation. In particular, the force versus extension curves show an almost stiffness independent rupture force but the force jump after the rupture transition does depend roughly linearly on the value of the stiffness. The kinetic rates determined from the rupture force distributions show a dependence on the stiffness that can be understood in terms of the corresponding dependence of the characteristic forces alone. These dependencies can be understood qualitatively in terms of a harmonic model for the molecular free energy landscape. It appears that the pulling velocities employed are so large that the crossover from activated dynamics to diffusive dynamics takes place on the time scale of our simulations. We determine the effective distance of the free energy minima of the closed and the open configurations of the system from the barrier via an analysis of the

  9. Force probe simulations of a reversibly rebinding system: Impact of pulling device stiffness.

    PubMed

    Jaschonek, Stefan; Diezemann, Gregor

    2017-03-28

    We present a detailed study of the parameter dependence of force probe molecular dynamics (FPMD) simulations. Using a well studied calix[4]arene catenane dimer as a model system, we systematically vary the pulling velocity and the stiffness of the applied external potential. This allows us to investigate how the results of pulling simulations operating in the constant velocity mode (force-ramp mode) depend on the details of the simulation setup. The system studied has the further advantage of showing reversible rebinding meaning that we can monitor the opening and the rebinding transition. Many models designed to extract kinetic information from rupture force distributions work in the limit of soft springs and all quantities are found to depend solely on the so-called loading rate, the product of spring stiffness and pulling velocity. This approximation is known to break down when stiff springs are used, a situation often encountered in molecular simulations. We find that while some quantities only depend on the loading rate, others show an explicit dependence on the spring constant used in the FPMD simulation. In particular, the force versus extension curves show an almost stiffness independent rupture force but the force jump after the rupture transition does depend roughly linearly on the value of the stiffness. The kinetic rates determined from the rupture force distributions show a dependence on the stiffness that can be understood in terms of the corresponding dependence of the characteristic forces alone. These dependencies can be understood qualitatively in terms of a harmonic model for the molecular free energy landscape. It appears that the pulling velocities employed are so large that the crossover from activated dynamics to diffusive dynamics takes place on the time scale of our simulations. We determine the effective distance of the free energy minima of the closed and the open configurations of the system from the barrier via an analysis of the

  10. Epifluorescence imaging of electrochemically switchable Langmuir-Blodgett films of Nafion.

    PubMed

    Moretto, Ligia Maria; Kohls, Thiago; Chovin, Arnaud; Sojic, Neso; Ugo, Paolo

    2008-06-17

    A combination of electrochemistry and luminescence methods was exploited to obtain information on the electrochemical activity and homogeneity of Nafion Langmuir-Blodgett films. The redox behavior of the Ru(bpy)3(2+) probe incorporated in the Nafion film was monitored by epifluorescence microscopy. The photoluminescent images, recorded by a charge-coupled device (CCD) camera, reflect the distribution of the probe in the film, which resulted as very uniform, particularly in comparison with spin-coated films. Apparent diffusion coefficients (Dapp) determined by cyclic voltammetry for films of less than 10 layers are in the range of 1 x 10(-12) to 8 x 10(-12) cm(2) s(-1), that is, 2 orders of magnitude lower than values reported in the literature for spin-coated Nafion films. The application to the electrode of a potential able to oxidize the luminescent Ru(bpy)3(2+) to the nonluminescent Ru(bpy)3(3+) switched off the photoluminescence with a response time that for the LB films was much shorter than that for the spin-coated ones. Experimental evidence and calculations indicate that lowering of the film thickness down to the nanometric level is very effective in shortening the switching time, notwithstanding the lowering of the Dapp value in LB films.

  11. Neutralizer Characterization of a NEXT Multi-Thruster Array With Electrostatic Probes

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael; Pencil, Eric; McEwen, Heather; Diaz, Esther

    2006-01-01

    Neutralizers in a multi-thruster array configuration were characterized using conventional diagnostics such as peak-to-peak keeper oscillation amplitude as well as unconventional methods which featured the application of electrostatic probes. The response of the array local plasma environment to neutralizer flow rate changes were documented using Langmuir probes and retarding potential analyzers. Such characterization is necessary for system efficiency and stability optimization. Because the local plasma environment was measured in conjunction with the neutralizer characterization, particle fluxes at the array and thus array lifetime impacts associated with neutralizer operating mode could also be investigated. Neutralizer operating condition was documented for a number of multithruster array configurations ranging from three-engines, three-neutralizers to a single engine, one-neutralizer all as a function of neutralizer flow rate.

  12. Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  13. Probing quantum spin glass like system with a double quantum dot

    NASA Astrophysics Data System (ADS)

    Koh, C. Y.; Kwek, L. C.

    2016-06-01

    We study the ground state properties of a 4-qubit spin glass like (SGL) chain with probes at the end of the chain and compare our results with the non-spin glass like (NSGL) case. The SGL is modeled as a spin chain with nearest-neighbor couplings, taking on normal variates with mean J and variance Δ2. The entanglement between the probes is used to detect any discontinuity in the ground state energy spectrum. For the NSGL case, it was found that the concurrence of the probes exhibits sharp transitions whenever there are abrupt changes in the energy spectrum. In particular, for the 4-qubit case, there is a sudden change in the ground state energy at an external magnetic field B of around 0.66 (resulting in a drop in concurrence of the probes) and 1.7 (manifest as a spike). The latter spike persists for finite temperature case. For the SGL sample with sufficiently large Δ, however, the spike is absent. Thus, an absence in the spike could act as a possible signature of the presence of SGL effects. Moreover, the sudden drop in concurrence at B ≈ 0.66 does not disappear but gets smeared with increasing Δ. However, this drop can be accentuated with a smaller probe coupling. The finite temperature case is also briefly discussed.

  14. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

    PubMed Central

    Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.

    2017-01-01

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399

  15. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A

    2017-03-13

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.

  16. Structure and mechanical properties of poly(benzyl ether) monodendron Langmuir films

    NASA Astrophysics Data System (ADS)

    Kampf, James Patrick

    2000-10-01

    The Langmuir technique combined with a traditional polymer science approach has been used to investigate the monolayer properties of poly(benzyl ether) monodendrons modified with linear oligo(ethylene glycol) chains at the air-water interface. Film balance measurements have been used to probe the relation between the amphiphilic balance of the monodendrons and the stability and structure of the monolayer. Analysis of the surface pressure-area (pi- A) isotherms indicates that the linear hydrophilic chain controls the adhesion to the interface, while the hydrophobic monodendron determines the molecular shape, monolayer compressibility, and film cohesion. A novel interpretation of the pi-A isotherm as a stress-strain curve allows for a more detailed analysis of the monolayer mechanical properties. The pseudo-2D monolayers behave in a manner analogous to many bulk polymers, showing a yield point and a region of plastic flow. Within the plastic flow region, the stress-strain behavior can be quantitatively captured using a constitutive law that assumes both a power law stress dependence and an Arrhenius temperature dependence for the strain rate. Constant strain rate and dilational creep experiments have been used to determine the stress exponent and the creep activation energy, respectively. Analysis of the isotherms suggests the existence of a monolayer glass transition within the temperature range studied. Compressibility experiments provide further evidence of a monolayer glass transition, the temperature for which lies more than 15°C below the bulk value. Dynamic mechanical analysis has been performed using an interfacial stress rheometer to study the viscoelasticity of the monolayer near the glass transition. A master curve of the frequency dependence of the shear modulus produced using time-temperature superposition also implies that the monolayer approaches a glass transition. As an extension of the work at the air-water interface, we have completed a

  17. Local density probing of atomic gas via cold Li-Ca+ inelastic collisions in an atom-ion hybrid system

    NASA Astrophysics Data System (ADS)

    Saito, Ryoichi; Haze, Shinsuke; Fujinaga, Munekazu; Kyuno, Kazuki; Mukaiyama, Takashi

    2015-05-01

    Ultracold atoms in a harmonic trap inevitably has an inhomogeneous density distribution, which makes an atomic gas an ensemble of atoms in different physical phases. Recent technical advances in the determination of local physical quantities in an atomic gas overcome this complexity and make it possible to directly compare experimental results with many-body theories of a homogeneous atomic gas. A laser-cooled ion can be used as a high-spatial resolution probe of physical quantities of an atomic gas. The spatial spread of an ion can be reduced to sub-microns, which is even small enough for the application of the local probe of atoms in optical lattices. In our experiment, we constructed Li and Ca+ ultracold hybrid system and observed inelastic collisions as a loss of ions. The inelastic collision is confirmed to be a charge-exchange process, whose rate depends linearly on the local atomic density. From the measurement of the rate of the charge-exchange, we can reproduce an atomic density profile. This is an important step toward a local probe of physical quantities of atoms with cold ions. In this presentation, we report on the observation of charge-exchange collisions between Li atom and Ca+ ions, and discuss the feasibility of the ions as a probe of the atoms.

  18. TEST PLAN AND PROCEDURE FOR THE EXAMINATION OF TANK 241-AY-101 MULTI-PROBE CORROSION MONITORING SYSTEM

    SciTech Connect

    WYRWAS RB; PAGE JS; COOKE GS

    2012-04-19

    This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 and in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.

  19. Phase control of probe response in a Doppler-broadened N-type four-level system

    SciTech Connect

    Fan Xijun; Liu Zhongbo; Liang Ying; Jia Kening; Tong Dianmin

    2011-04-15

    In this paper, we investigate theoretically the effect of the relative phase ({phi}) between the probe and driving fields on gain (absorption) and dispersion of the probe field in a Doppler-broadened N-type four-level system with spontaneously generated coherence from different respects. It is shown that gain (absorption) and dispersion are very sensitive to variations in the relative phase, and changing the Doppler width also has an obvious effect on the phase-dependent gain (absorption) and dispersion. When the probe and driving fields have the same propagation directions (copropagating), for the same Doppler width, the dispersion curve with {phi}={alpha} is the same as the gain (absorption) curve with {phi}={alpha}+{pi}/2; however, when the probe and driving fields have opposite propagation directions (counterpropagating), the dispersion curve and gain (absorption) curve are different and the difference becomes more considerable with an increase in Doppler width. In the co- and counterpropagating cases, gain (absorption) and dispersion always vary periodically with varying {phi}, and the period is 2{pi}. By adjusting the value of {phi}, the largest gain (absorption) and dispersion can be obtained, and a large index of refraction without absorption can be realized. Generally speaking, gain decreases with an increase in Doppler width, but by adjusting value of {phi}, at some special values of Doppler width, a larger gain than that without Doppler broadening can be obtained. Our study also shows that gain in the copropagating case is much larger than that in the counterpropagating case.

  20. S-(N-dansylaminoethyl)-6-mercaptoguanosine as a fluorescent probe for the uridine transport system in human erythrocytes.

    PubMed

    Shohami, E; Koren, R

    1979-02-15

    A fluorescent derivative of 6-mercaptoguanosine, S-(N-dansylaminoethyl)-6-mercaptoguanosine, was synthesized, and found to be a strong inhibitor of the uridine transport system of erythrocyte (Ki approximately 0.3 microM). The emission spectrum of this compound has peaks at 400 and 550 nm. The emission at 550, but not that a 400 nm, in environment-sensitive. A method was devised for preparing a suspension of erythrocyte-membrane fragments with sufficiently low light scattering so that a detailed study could be made of the fluorescence of the probe when bound to membranes. Direct binding measurements showed the existence of a tight binding site, with a dissociation constant of the same order of magnitude as the inhibition constant. Binding of probe and substrate are not mutually exclusive, but the fluorescence and affinity of the bound probe are sensitive to the presence of uridine. The emission spectrum suggests that the bound probe penetrates into the bilayer region of the membrane.

  1. A Statistical Analysis of Langmuir Wave-Electron Correlations Observed by the CHARM II Auroral Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2014-12-01

    Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.

  2. Study on electrostatic and electromagnetic probes operated in ceramic and metallic depositing plasmas

    NASA Astrophysics Data System (ADS)

    Styrnoll, T.; Bienholz, S.; Lapke, M.; Awakowicz, P.

    2014-04-01

    This paper discusses plasma probe diagnostics, namely the multipole resonance probe (MRP) and Langmuir probe (LP), operated in depositing plasmas. The aim of this work is to show that the combination of both probes provides stable and robust measurements and clear determination of plasma parameters for metallic and ceramic coating processes. The probes use different approaches to determine plasma parameters, e.g. electron density ne and electron temperature Te. The LP is a well-established plasma diagnostic, and its applicability in technological plasmas is well documented. The LP is a dc probe that performs a voltage sweep and analyses the measured current, which makes it insensitive against conductive metallic coating. However, once the LP is dielectrically coated with a ceramic film, its functionality is constricted. In contrast, the MRP was recently presented as a monitoring tool, which is insensitive to coating with dielectric ceramics. It is a new plasma diagnostic based on the concept of active plasma resonance spectroscopy, which uses the universal characteristic of all plasmas to resonate on or near the electron plasma frequency. The MRP emits a frequency sweep and the absorption of the signal, the |S11| parameter, is analysed. Since the MRP concept is based on electromagnetic waves, which are able to transmit dielectrics, it is insensitive to dielectric coatings. But once the MRP is metallized with a thin conductive film, no undisturbed RF-signal can be emitted into the plasma, which leads to falsified plasma parameter. In order to compare both systems, during metallic or dielectric coating, the probes are operated in a magnetron CCP, which is equipped with a titanium target. We present measurements in metallic and dielectric coating processes with both probes and elaborate advantages and problems of each probe operated in each coating environment.

  3. Langmuir Probes for Obstanovka Experiment Aboard the Russian Segment of the International Space Station

    DTIC Science & Technology

    2010-08-04

    charged due to the operation of so many instruments, solar batteries, life supporting devices, etc. The present grant is for the elaboration and tests of...sensors (in RKK “ Energia ” – Moscow)  Updating of the technological instruments - a new power supply block (PSB) was elaborated, which made it possible to...depending on space weather, Year of Astronomy: Solar and Solar - Terrestrial Physics 2009, Proceedings of the All-Russian Yearly Conference on Solar

  4. Nonlinear circuit analysis of harmonic currents in a floating Langmuir probe with a capacitive load

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Hyun; Kim, Dong-Hwan; Chung, Chin-Wook

    2017-02-01

    Plasma diagnostics using the floating harmonic technique were first used to obtain the electron temperature in a tokamak plasma. In this technique, the electron temperature depends on the ratio of the harmonic currents in a resistive sheath. Because these harmonic currents are determined by a modulated sheath voltage, calculation of the exact modulated voltage across the sheath is important; in general, the voltage is calculated using a phase of the first harmonic current. However, when a series load capacitance is present, the second harmonic currents are abnormally reduced compared to those expected by the conventional floating harmonic model, resulting in an unreliable measurement of the electron temperature. To describe this phenomenon, we used a modified floating harmonic model by applying the harmonic balance technique, a method that analyzes nonlinear circuits. Theoretical prediction of the harmonic current obtained from the modified model was compared with the experimental results, and they are in good agreement. In addition, the degrees of sheath nonlinearity, defined as the ratio of the second harmonic current (or voltage) to the fundamental current (or voltage), are discussed.

  5. Equatorial Scintillation Predictions from C/NOFS Planar Langmuir Probe Electron Density Fluctuation Data

    DTIC Science & Technology

    2014-09-05

    scintillation index S4 . The results from the calculations were compared with corresponding scintillation measurements by a 244-MHz Scintillation...the scintillation index S4 (the standard deviation of I/<I>, where I is the received intensity and <I> its average value) at the VHF SCINDA...combination of immediately available C/NOFS PLP data with a propagation model was used to forecast the scintillation index S4 and the results compared with

  6. Surface-enhanced raman medical probes and system for disease diagnosis and drug testing

    DOEpatents

    Vo-Dinh, Tuan

    1999-01-01

    A probe for a surface-enhanced Raman scattering spectrometer includes a member of optically transmissive material for receiving the excitation radiation from a laser and for carrying the radiation emitted from a specimen to a detector. An end of the member for placing against the specimen has a coating that produces surface enhancement of the specimen during Raman scattering spectroscopic analysis. Specifically the coating is formed by a first layer of microparticles on the member and a metal layer over the first layer. The first layer may form a microstructure surface over which a metal layer is applied. Alternatively the coating may be a material containing microparticles of a metal. An optional layer of a material may be applied to the metal layer to concentrate onto the probe compounds of analytical interest onto the probe.

  7. Surface-enhanced Raman medical probes and system for disease diagnosis and drug testing

    DOEpatents

    Vo-Dinh, T.

    1999-01-26

    A probe for a surface-enhanced Raman scattering spectrometer includes a member of optically transmissive material for receiving the excitation radiation from a laser and for carrying the radiation emitted from a specimen to a detector. An end of the member for placing against the specimen has a coating that produces surface enhancement of the specimen during Raman scattering spectroscopic analysis. Specifically the coating is formed by a first layer of microparticles on the member and a metal layer over the first layer. The first layer may form a microstructure surface over which a metal layer is applied. Alternatively the coating may be a material containing microparticles of a metal. An optional layer of a material may be applied to the metal layer to concentrate onto the probe compounds of analytical interest onto the probe. 39 figs.

  8. Theoretical Investigation of Dynamic Properties of Magnetic Molecule Systems as Probed by NMR and Pulsed Fields Experiments

    SciTech Connect

    Rousochatzakis, Ioannis

    2005-12-17

    The field of molecular magnetism[l-6] has become a subject of intense theoretical and experimental interest and has rapidly evolved during the last years. This inter-disciplinary field concerns magnetic systems at the molecular or "nanoscopic" level, whose realization has become feasible due to recent advances in the field of chemical synthesis. The present theoretical work provides a first step towards exploiting the possibilities that are offered by probing magnetic molecules using external magnetic fields with high sweep rates. These probes, apart for providing information specific to magnetic molecules, offer the possibility of conducting a detailed study of the relaxational behavior of interacting spin systems as a result of their coupling with a "heat bath" and in particular the excitations of the host lattice. Development of a broad theoretical framework for dealing with relaxational phenomena induced by dynamical magnetic fields is indeed a worthy goal.

  9. Description of two-metal biosorption equilibria by Langmuir-type models

    SciTech Connect

    Chong, K.H.; Volesky, B.

    1995-08-20

    A biosorbent prepared from Ascophyllum nodosum seaweed biomass, FCAN2, was examined for its sorption capacity. Equilibrium batch sorption studies were performed using two-metal systems containing either (Cu+Zn), (Cu+Cd), or (Zn+Cd). In the evaluation of the two-metal sorption system performance, simple isotherm curves had to be replaced by three-dimensional sorption isotherm surfaces. In order to describe the isotherm surfaces mathematically, three Langmuir-type models were evaluated. The apparent one-parameter Langmuir constant (b) was used to quantify FCAN2 ``affinity`` for one metal in the presence of another one. The uptake of Zn decreased drastically when Cu of Cd were present. The uptake of Cd was much more sensitive to the presence of Cu than to that of Zn. The presence of Cd and Zn alter the ``affinity`` of FCAN2 for Cu the least at high Cu equilibrium concentrations. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal (bio)sorption inhibition due to the influence of a second metal.

  10. The characterization of a sensitive room-temperature probe for use in a SQUID nondestructive evaluation system

    NASA Astrophysics Data System (ADS)

    Chieh, J. J.; Lin, I. S.; Y Yang, S.; Horng, H. E.; Hong, Chin-Yih; Yang, H. C.

    2009-01-01

    In this work, a SQUID nondestructive evaluation (NDE) system with outstanding mobility and performance is developed using two units connected by copper wire. One of those units is a SQUID unit consisting of a high-Tc SQUID as well as a surrounding input coil, which are both cooled in liquid nitrogen and kept in a Dewar shielded by a cylindrical can with a shielding factor of 80-100 dB ranging from DC to 1 kHz. The other is a small, room-temperature probe composed of excitation coils and pickup coils. Based on the quadruple excitation field with the advantages of not only good balance of excitation noise but also a higher field gradient for enhancing the magnetic field distorted by small cracks underneath and a coplanar and differential coil with good ability to diminish the sensing of the magnetic field in the non-flaw region, the small and activated probe is made of quadruple excitation coils distributed in double D-shape differential pickup coils. The analysis shows that the SQUID NDE system using the novel probe design has advantages such as low thermal-noise introduction to the SQUID system, high transfer efficiency, efficient balancing of the excitation field as well as the dynamic noise during scanning, and high sensitivity, with a signal-to-noise ration (SNR) of 2 against the noise level of 8.5 ± 1.5 pT. This SQUID NDE system with the proposed probe is characterized by cracks with different widths at different depths, for example, fine spatial resolution up to 7 µm crack width on the surface of copper foil.

  11. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Device

    SciTech Connect

    Shimizu, A. Ido, T.; Kato, S.; Hamada, Y.; Kurachi, M.; Makino, R.; Nishiura, M.; Nishizawa, A.

    2014-11-15

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (∼20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  12. In Situ Probing Nucleation, Growth, and Aggregation of Iron Oxides in Geochemical Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Jun, Y.; Hu, Y.; Ray, J. R.

    2012-12-01

    Nucleation, growth, and aggregation of iron oxide nanoparticles can significantly alter the fate of organic and inorganic contaminants in geochemical aquatic systems. This talk will address how we can improve our understanding of nucleation, growth, and aggregation of iron oxide nanoparticles by providing more accurate quantitative and qualitative empirical information. In this study, a novel environmental setup—which allows time-resolved simultaneous measurements of small angle x-ray scattering (SAXS) and grazing incidence small-angle scattering (GISAXS) in the presence of bulk solution—was utilized for real-time monitoring of nanoparticle formation at water-mineral interfaces. This setup enabled us to probe the size, shape, and location of iron oxide nanoparticles on the substrate and in solution without dehydration of samples. Experiments were conducted with 10-4 M ferric ions in the presence of environmentally important and abundant anions (nitrate, chlorite, sulfate) and cations (aluminum) at pH = 3.7 ± 0.1. The substrates used were geologically ubiquitous media such as quartz, mica, and organic polymer-coated surfaces. Once ferric solutions were introduced, the homogeneous and heterogeneous nucleation of iron oxides occurred and the size and volume evolution of nanoparticles were monitored. To complement these observations, atomic force microscopy, high-resolution transmission electron microscopy, high-resolution x-ray diffraction, contact angle analysis, dynamic light scattering, and electrophoretic mobility analysis were utilized. Based on in situ measurements of initial nuclei evolution at aqueous interfaces, this approach provided new, important information for upscaling such as size, volume, surface area, and location (i.e., in solution vs. on mineral surfaces) of iron oxides precipitates formed in the presence of organic matter and different substrate morphological and chemical properties. Using this quantitative information, we identified the

  13. Probing quantum coherence in a biological system by means of DNA amplification.

    PubMed

    Bieberich, E

    2000-07-01

    tunneling as the result of overlapping orbitals along the axis of the primer/template duplex. This effect was unique to the fractal primer due to the number of binding states that remained almost constant, irrespective of the size of shifting. It is suggested that fractal structures found in proteins or other macromolecules may facilitate a short-lived quantum coherent superposition of binding states. This may stabilize molecular complexes for rapid sorting of correct-from-false binding, e.g. during folding or association of macromolecules. The experimental model described in this paper provides a low-cost tool for simulating and probing quantum coherence in a biological system.

  14. The multipole resonance probe: characterization of a prototype

    NASA Astrophysics Data System (ADS)

    Lapke, Martin; Oberrath, Jens; Schulz, Christian; Storch, Robert; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Brinkmann, Ralf Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona

    2011-08-01

    The multipole resonance probe (MRP) was recently proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2008 Appl. Phys. Lett. 93 051502). This communication reports the experimental characterization of a first MRP prototype in an inductively coupled argon/nitrogen plasma at 10 Pa. The behavior of the device follows the predictions of both an analytical model and a numerical simulation. The obtained electron densities are in excellent agreement with the results of Langmuir probe measurements.

  15. Passivated diamond film temperature sensing probe and measuring system employing same

    DOEpatents

    Young, J.P.; Mamantov, G.

    1998-11-24

    A high temperature sensing probe includes an optical fiber or rod having a distal end and a proximal end. The optical fiber or rod has a coating secured to the distal end thereof, wherein the coating is capable of producing a Raman spectrum when exposed to an exciting radiation source. 3 figs.

  16. Rugged fiber optic probes and sampling systems for remote chemical analysis via the Raman technique

    SciTech Connect

    Nave, S.E.

    1996-07-01

    Recent advances in fiber optics, diode lasers, CCD detectors, dielectric and holographic optical filters, grating spectrometers, and chemometric data analysis have greatly simplified Raman spectroscopy. In order to make a rugged fiber optic Raman probe for solids/slurries like these at Savannah River, we have designed a probe that eliminates as many optical elements and surfaces as possible. The diffuse reflectance probe tip is modified for Raman scattering by installing thin dielectric in-line filters. Effects of each filter are shown for the NaNO{sub 3} Raman spectrum. By using a diode laser excitation at 780 nm, fluorescence is greatly reduced, and excellent spectra may be obtained from organic solids. At SRS, fiber optic Raman probes are being developed for in situ chemical mapping of radioactive waste storage tanks. Radiation darkening of silica fiber optics is negligible beyond 700 nm. Corrosion resistance is being evaluated. Analysis of process gas (off-gas from SRS processes) is investigated in some detail: hydrogen in nitrogen with NO{sub 2} interference. Other applications and the advantages of the method are pointed out briefly.

  17. Passivated diamond film temperature sensing probe and measuring system employing same

    DOEpatents

    Young, Jack P.; Mamantov, Gleb

    1998-01-01

    A high temperature sensing probe includes an optical fiber or rod having a distal end and a proximal end. The optical fiber or rod has a coating secured to the distal end thereof, wherein the coating is capable of producing a Raman spectrum when exposed to an exciting radiation source.

  18. The development of a universal diagnostic probe system for Tokamak fusion test reactor

    NASA Technical Reports Server (NTRS)

    Mastronardi, R.; Cabral, R.; Manos, D.

    1982-01-01

    The Tokamak Fusion Test Reactor (TFTR), the largest such facility in the U.S., is discussed with respect to instrumentation in general and mechanisms in particular. The design philosophy and detailed implementation of a universal probe mechanism for TFTR is discussed.

  19. Laser-Based Optical System for Reactive Radical Concentration Measurements in Plasmas and Flames

    DTIC Science & Technology

    2006-08-01

    activity are also those that have the shortest living time, which means that this flow of "decaying" plasma (sometimes called an " afterglow " or "plasma jet...about the electron component of plasma will be obtained using the method of Langmuir probes that has been successfully applied to obtain reliable...H20 2) and HCN. Measurements in Gliding Arc, Dielectric Barrier Discharge and Pulsed Corona Plasma systems and in flame and flow reactor systems are

  20. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies.

    PubMed

    Nguyen, Kim-Cuong T; Le, Lawrence H; Tran, Tho N H T; Sacchi, Mauricio D; Lou, Edmond H M

    2014-07-01

    Long bones are good waveguides to support the propagation of ultrasonic guided waves. The low-order guided waves have been consistently observed in quantitative ultrasound bone studies. Selective excitation of these low-order guided modes requires oblique incidence of the ultrasound beam using a transducer-wedge system. It is generally assumed that an angle of incidence, θi, generates a specific phase velocity of interest, co, via Snell's law, θi=sin(-1)(vw/co) where vw is the velocity of the coupling medium. In this study, we investigated the excitation of guided waves within a 6.3-mm thick brass plate and a 6.5-mm thick bovine bone plate using an ultrasound phased array system with two 0.75-mm-pitch array probes. Arranging five elements as a group, the first group of a 16-element probe was used as a transmitter and a 64-element probe was a receiver array. The beam was steered for six angles (0°, 20°, 30°, 40°, 50°, and 60°) with a 1.6-MHz source signal. An adjoint Radon transform algorithm mapped the time-offset matrix into the frequency-phase velocity dispersion panels. The imaged Lamb plate modes were identified by the theoretical dispersion curves. The results show that the 0° excitation generated many modes with no modal discrimination and the oblique beam excited a spectrum of phase velocities spread asymmetrically about co. The width of the excitation region decreased as the steering angle increased, rendering modal selectivity at large angles. The phenomena were well predicted by the excitation function of the source influence theory. The low-order modes were better imaged at steering angle ⩾30° for both plates. The study has also demonstrated the feasibility of using the two-probe phased array system for future in vivo study.