Science.gov

Sample records for langmuir-blodgett films based

  1. Synthesis and photoreaction of Schiff bases derived from p-nitro cinnamaldehyde and diamines in Langmuir and Langmuir Blodgett films

    NASA Astrophysics Data System (ADS)

    Kanthimathi, Mookandi; Dhathathreyan, Aruna

    2003-01-01

    Monolayers of Schiff bases derived from ethylene diamine and o-phenylene diamine with p-nitro cinnamaldehyde, (compounds 1 and 2) at air/water interface have been studied. Photolysis of 1 in chloroform solution undergoes cis- trans isomerization on irradiation of white light while compound 2 does not undergo isomerization under photolytic conditions. The photolysis of 1 and 2 in Langmuir-Blodgett films (LB films) transferred to quartz plates form dimers. The change in product distribution is attributed to the influence of bridging group of the cinnamaldehyde moieties, molecular configuration and mobility of the compounds in solution, solid state and the aggregation of molecules in monolayer assemblies.

  2. Polyheterocycle Langmuir-Blodgett Films

    DTIC Science & Technology

    1989-05-29

    3-alkyl thiophene) and Stearic acid LB films. Thc oricntation of single- and Multi-laycr films on platinum substrates have bccn studicd by Ncar Edgc...not surface active. The LB films were obtained by spreading a mixture of the poly(3-alkvl thiophenes) and stearic acid (C,71-5 COOH ) onto the water

  3. Tribology of Langmuir-Blodgett Films

    DTIC Science & Technology

    1992-03-01

    the 1970" s . used a three-term model . The frictional force and hence the friction coefficient were modeled as the sum of three terms: adhesion between...N/A N/A 4. TITLE (and Subtitle) S . TyPE OF REPORT & PERIOD COVERED Tribology of Langmuir-Blodgett Films Interim Technical Report 6. PERFORMING ORO...AOORESS 12. REPORT OATE U. S . Army Research Office March 1992 Post Office Box 12211 I. NUMREROF PAGES R~~Arrh Tr npl= n D, ift’ n 25 14. MONITORING

  4. Stable Ordering in Langmuir-Blodgett Films

    NASA Astrophysics Data System (ADS)

    Takamoto, Dawn Y.; Aydil, Eray; Zasadzinski, Joseph A.; Ivanova, Ani T.; Schwartz, Daniel K.; Yang, Tinglu; Cremer, Paul S.

    2001-08-01

    Defects in the layering of Langmuir-Blodgett (LB) films can be eliminated by depositing from the appropriate monolayer phase at the air-water interface. LB films deposited from the hexagonal phase of cadmium arachidate (CdA2) at pH 7 spontaneously transform into the bulk soap structure, a centrosymmetric bilayer with an orthorhombic herringbone packing. A large wavelength folding mechanism accelerates the conversion between the two structures, leading to a disruption of the desired layering. At pH > 8.5, though it is more difficult to draw LB films, almost perfect layering is obtained due to the inability to convert from the as-deposited structure to the equilibrium one.

  5. Surface acoustic wave devices including Langmuir-Blodgett films (Review)

    NASA Astrophysics Data System (ADS)

    Plesskii, V. P.

    1991-06-01

    Recent theoretical and experimental research related to the use of Langmuir-Blodgett (LB) films in surface acoustic wave (SAW) devices is reviewed. The sensitivity of the different cuts of quartz and lithium niobate to inertial loading is investigated, and it is shown that some cuts in lithium niobate are twice as sensitive to mass loading than the commonly used YZ-cut. The large variety of organic compounds suitable for the production of LB films makes it possible to create SAW sensors reacting selectively to certain substances. The existing SAW sensors based on LB films are characterized by high sensitivity and fast response.

  6. Second-order nonlinear optical Langmuir-Blodgett films based on a series of azo rare-earth coordination compounds

    SciTech Connect

    Gao, L.H.; Wang, K.Z.; Huang, C.H.

    1995-06-01

    A series of novel azo dyes composed of a lanthanide complex anion and an azo cation, in which strongly electron-donating (dihexadecylamino)phenyl and electron-accepting pyridinium groups are separated by an azo group, was designed as second-order nonlinear optical Langmuir-Blodgett (LB) film materials. The compounds are of good film-forming properties. The values of second-order molecular hyperpolarizability {beta} were determined to be (1.20-3.03) x 10{sup {minus}27} esu, comparable to the largest value known for azo LB materials. The compounds studied may be attactive in the application in future optical devices. 13 refs., 5 figs., 1 tab.

  7. Langmuir Blodgett films of hydrophobins HFBI and HFBII

    NASA Astrophysics Data System (ADS)

    Kisko, Kaisa; Torkkeli, Mika; Vuorimaa, Elina; Lemmetyinen, Helge; Seeck, Oliver H.; Linder, Markus; Serimaa, Ritva

    2005-06-01

    Hydrophobins are small fungal proteins, which have remarkable surface-chemical properties. They self-assemble at hydrophobic/hydrophilic interfaces and work as adhesive agents and coatings. Sixteen layer Langmuir-Blodgett films of hydrophobins HFBI and HFBII from the fungus Trichoderma reesei were prepared and studied using grazing-incidence X-ray diffraction and reflectivity techniques. Both kind of films contain hexagonally ordered crystallites on the substrate with unit cell parameters of a = b = 54 Å (HFBI) and a = b = 55 Å (HFBII). The structure is similar to the structure of monolayer Langmuir-Blodgett films.

  8. Thermal conductance of nanoscale Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Ziade, Elbara; Goni, Miguel; Sato, Toshiyuki; Czubarow, Pawel; Schmidt, Aaron J.

    2015-11-01

    Thermal transport across organic-inorganic interfaces is fundamental to understanding heat transfer in polymer-based composites, microelectronics, and energy conversion systems. We used the Langmuir-Blodgett (LB) technique to deposit nanometer-thick films of poly(vinyl acetate) (PVAc) on silicon and gold substrates in two distinct states: Liquid condensed (Lc) and Liquid expanded (Le). We used frequency domain thermoreflectance to measure the thermal conductivity of the PVAc film and its thermal interface conductance to the substrate. We found that PVAc films prepared through the LB process have a higher thermal conductivity when compared to bulk. We measured the thermal interface conductance between PVAc and gold to be approximately 90 MW/m2 K for both the Le and Lc states, and the thermal interface conductance between PVAc and silicon to be approximately 70 MW/m2 K for both the Le and Lc states.

  9. Langmuir-Blodgett films of salophen-based metallosurfactants as surface pretreatment coatings for corrosion mitigation.

    PubMed

    Gonawala, Sunalee; Leopoldino, Verônica R; Kpogo, Kenneth; Verani, Cláudio N

    2016-09-25

    Salophen-based metallosurfactants are successfully used as pretreatment LB films for corrosion mitigation in acidic and saline media. Passivation of electron transfer is clearly demonstrated in gold electrodes, while 99.5% iron substrates treated with such films show up to an impressive 30% corrosion mitigation.

  10. A low-symmetrical zinc phthalocyanine-based Langmuir-Blodgett thin films forNO2 gas sensor applications

    NASA Astrophysics Data System (ADS)

    Krichevsky, D. M.; Zasedatelev, A. V.; Tolbin, A. Yu; Zelenskiy, Yu M.; Krasovskii, V. I.; Karpo, A. B.; Tomilova, L. G.

    2016-08-01

    For many years effective detection of hazardous substances such as nitrogen oxides has remained a crucial task for environmental safety. In this article, we demonstrate high promising NO2-sensitive Langmuir-Blodgett monolayer structures based on 2-((2'- hydroxymethyl)-benzyloxy)-9(10),16(17),23(24)-tri-/re/-butyl- substituted low symmetrical zinc phthalocyanine complex bearing hydroxyl group on the periphery (compound 1). Amphiphilic arrangement of macrocycles was demonstrated to eliminate disordered molecular aggregation, resulting in a marked NO2 gas sensing effect under real atmospheric conditions. The optical response of monolayers was at room temperature, with the significant spectral changes being caused by the specific charge transfer process in phthalocyanine n-conjugated electronic system.

  11. Size and molecular configuration of dye aggregates in mixed Langmuir-Blodgett films based on merocyanine dye

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshiaki; Okada, Takuya M.; Miura, Yasuhiro F.; Sugi, Michio; Ishii, Toshio

    2000-11-01

    We have studied the blue-shifted and the red-shifted bands formed in mixed Langmuir-Blodgett films of the merocyanine dye (MS)-arachidic acid (C20)-n-octadecane (AL18) ternary system with the molar mixing ratio [MS]:[C20]:[AL18]=1:2:x(0.5≦x≦5.0). The formation of the blue-shifted and the red-shifted bands depends on the AL18 content, and shows that the aggregation state can be modulated by changing the AL18 content. The observed overlapping spectra of the blue-shifted and the red-shifted bands are deconvoluted into two original bands. The extended dipole model has been applied to examine the aggregation state of MS referring to the deconvoluted spectra. Thus the estimated minimum aggregation number Nmin and the slip angle α between the long axis of the aggregate and the transition dipole moment are Nmin=40 and α=30° and Nmin=40 and α=50° for fully-developed J- and H-aggregates, respectively, seen for x≦1.5, and Nmin tends to decrease with increasing x.

  12. Second-harmonic generation in a polymer Langmuir - Blodgett film

    SciTech Connect

    Ivanova, V N; Kudryavtsev, V V; Lebedeva, G K; Maslyanitsyn, I A; Shigorin, V D; Chudinova, G K

    1998-09-30

    Second-harmonic generation was used to investigate nonlinear optical properties and the structure of multilayer Langmuir - Blodgett films of a copolymer of fluoroalkylmethacrylate with methacrylates containing an azo dye and a cinnamoyl group inside a chain. Quantum-chemical calculations were made of the components of the molecular hyperpolarisability tensor in which the intermolecular interactions were taken into account. The orientation of nonlinear optical fragments of a polymer chain relative to the substrate and components of the quadratic optical susceptibility tensor of the film were determined. (nonlinear optical phenomena)

  13. Photochemical switching in conductive Langmuir-Blodgett films

    SciTech Connect

    Tachibana, Hiroaki; Nakamura, Takayoshi; Matsuboto, Mutsuyoshi; Komizu, Hideo; Manda, Eiichiro; Niino, Hiroyuki; Yabe, Akira; Kawabata, Yasujiro )

    1989-04-12

    Conductive Langmuir-Blodgett (LB) films have recently attracted much interest from the viewpoint of ultrathin film conductors at the molecular level. We have reported that the structure of the TCNQ (7,7,8,8-tetracyanoquinodimethane) column in the LB film of N-docosylpyridinium 7,7,8,8-tetracyanoquinodimethane is changed by the variation of the subphase temperature. In addition, a partial charge transfer state of N-docosylpyridinium bis(7,7,8,8-tetracyanoquinodimethane) is stable at the air-water interface and the as-deposited LB film is highly conductive without doping or any other treatments. It will open up a wide scope of applications of the functions of the LB films can be controlled by external stimuli such as light, heat, or chemical treatments. One of the most promising candidates for this purpose is to introduce a switching unit into an amphiphilic molecule. When the switching unit is triggered by an external stimulus, the signal is conveyed through the transmission unit to the working unit and induces a change in the structure and functions of the working unit. In this paper, we use the azobenzene as the switching unit, the alkyl chain as the transmission unit, and the charge-transfer complex of TCNQ as the working unit. In this arrangement, the photoisomerization of the azobenzene induces the reversible change in the lateral conductivity of the LB film.

  14. Molecular aggregation of naphthalimide dyes in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Bielejewska, Natalia; Bauman, Danuta

    2011-05-01

    Langmuir-Blodgett (LB) films formed of some naphthalimide dyes, namely derivatives of 4-aminonaphthalimide, mixed with arachidic acid have been studied. The electronic absorption and fluorescence spectra were recorded. The results obtained have led to conclusions about formation of self-aggregates of dye molecules. The absorption spectra have indicated that in the ground electronic state, depending on the molecular structure of substituents to the main core of the dye molecule, some fractions of J-type and/or H-type aggregates can be created. The fluorescence spectra have been dominated by the emission from excimer states. The efficiency of fluorescence has been dependent on the dye content and the number of layers in LB films. Comparison of the results of this study with those obtained previously for these same dyes mixed with the thermotropic liquid crystal 4-heptyl-4'-cyanobiphenyl has revealed that the interactions among dye molecules in monolayers formed at interfaces are strongly affected by a compound used as a supporting matrix.

  15. Langmuir-Blodgett films of amphiphilic push-pull porphyrins

    SciTech Connect

    Chou, H.; Chen, C.T.; Stork, K.F.; Bohn, P.W.; Suslick, K.S. )

    1994-01-13

    A series of nitrophenyl-amidophenyl-substituted porphyrins with n-C[sub 17]H[sub 35] tails have been synthesized and fully characterized. Good Langmuir-Blodgett films of these materials can be prepared on water and transferred successfully to glass slides. Mean molecular areas for the series were measured and found to increase from 80 to 230 A[sup 2] as the number of aliphatic chains increased from one to four. As determined by linear dichroic measurements, this change in area does not correspond to a change in the orientation of the porphyrin with respect to the surface. In the absence of the steric constraints of multiple aliphatic chains, porphyrin-porphyrin stacking permits close packing of the rings. As the number of aliphatic chains on the porphyrin periphery increases, however, the porphyrin planes must pack more loosely. Thus, the porphyrin macrocycle orientation is determined by interactions between porphyrin rings and between porphyrins and the aqueous (or polar glass) surface. In contrast, the differences in the observed mean molecular area are determined independently by packing constraints imposed by the pendant hydrocarbon chains. 13 refs., 3 figs., 1 tab.

  16. Surface wettability and platelet adhesion studies on Langmuir Blodgett films

    NASA Astrophysics Data System (ADS)

    Lee, Yuh-Lang; Chen, Chi-Yun

    2003-02-01

    Because Langmuir-Blodgett (LB) deposition technique is known to be capable of preparing highly ordered monomolecular films with densely packed structure, LB technique is used to prepare films of DPPC, DMPC, cholesterol, octadecylamine (ODA), and stearic acid, with thickness of one molecular layer. The film surfaces were characterized by dynamic contact angle measurement and the interaction between blood and these materials were investigated. The properties of LB films were also compared with the results obtained on continuous films prepared by solution dipping. The results show that the contact angles of water on LB films of the five compounds decreases as the following order: ODA> DMPC≈ DPPC> stearic acid > cholesterol. The hydrophobic property reflects the highest organization of ODA molecules on the substrate, which is related to its interaction between the molecule and substrate. The advancing contact angle of ODA is equivalent to that of a methyl-terminated SAM, but its receding contact angle is smaller which implies the exposing of hydrophilic pole or glass substrate on LB film. The irregular orientation of molecules on LB film increases with decreasing of contact angle and is especially significant on LB film of cholesterol which has highest hydrophilic property. The plate adhesion experiments on the continuous films show that the hemocompatibility of the five materials decreases as the order: DPPC≈ DMPC> ODA> cholesterol> stearic acid ≈ glass. This result implies that the lipid has highest blood compatibility, and then -NH 2, and then -OH functionality. On the contrary, the glass surface, -COOH and -CH 3 functionalities have high reactivity to platelet. Due to the possibility of glass exposure on LB films, as estimated from the surface wettability, the LB films have higher platelet reactivity, especially for the cholesterol, compared with the continuous films. Because the interaction of the LB film to the substrate is physical force, the deposited

  17. Langmuir-Blodgett film of phycobilisomes from blue-green alga Spirulina platensis.

    PubMed

    Chen, Chao; Zhang, Yu-Zhong; Chen, Xiu-Lan; Zhou, Bai-Cheng; Gao, Hong-Jun

    2003-10-01

    The phycobilisomes were isolated from blue-green alga Spirulina platensis, and could form monolayer film at air/water interface. The monolayer film of phycobilisomes was transferred to newly cleaved mica, and coated with gold. Scanning tunneling microscope was used to investigate the structure of the Langmuir-Blodgett film of phycobilisomes. It was shown that phycobilisomes in the monolayer arrayed in rows with core attaching on the substrate surface and rods radiating towards the air phase, this phenomenon was similar to the arrangement of phycobilisomes on cytoplasmic surface of thylakoid membrane in vivo. The possible applications of the Langmuir-Blodgett film of phycobilisomes were also discussed.

  18. Enzyme activity of catalase immobilized in Langmuir-Blodgett films of phospholipids.

    PubMed

    Goto, Thiago E; Lopez, Ricardo F; Oliveira, Osvaldo N; Caseli, Luciano

    2010-07-06

    A major challenge for producing low cost biosensors based on nanostructured films with control of molecular architectures is to preserve the catalytic activity of the immobilized biomolecules. In this study, we show that catalase (HRP) keeps its activity if immobilized in Langmuir-Blodgett (LB) films of dipalmitoyl phosphatidylglycerol (DPPG). The incorporation of catalase into a DPPG monolayer at the air-water interface was demonstrated with surface pressure and surface potential isotherms, in addition to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). According to the PM-IRRAS data, catalase was not denatured upon adsorption on a preformed DPPG monolayer and could be transferred onto a solid substrate. The catalytic activity of catalase in a mixed LB film with DPPG was ca. 13% higher than in solution. The control of molecular architecture and choice of a suitable phospholipid matrix allows catalase-containing LB films to be used in sensing hydrogen peroxide.

  19. Investigation on single walled carbon nanotube thin films deposited by Langmuir Blodgett method

    SciTech Connect

    Vishalli, Dharamvir, Keya; Kaur, Ramneek; Raina, K. K.

    2015-05-15

    Langmuir Blodgett is a technique to deposit a homogeneous film with a fine control over thickness and molecular organization. Thin films of functionalized SWCNTs have been prepared by Langmuir Blodgett method. The good surface spreading properties of SWCNTs at air/water interface are indicated by surface pressure-area isotherm and the monolayer formed on water surface is transferred onto the quartz substrate by vertical dipping. A multilayer film is thus obtained in a layer by layer manner. The film is characterized by Atomic Force Microscope (AFM), UV-Vis-NIR spectroscopy and FTIR.AFM shows the surface morphology of the deposited film. UV-Vis-NIR spectroscopy shows the characteristic peaks of semiconducting SWCNTs. The uniformity of LB film can be used further in understanding the optical and electrical behavior of these materials.

  20. All-Carbon Electrode Molecular Electronic Devices Based on Langmuir-Blodgett Monolayers.

    PubMed

    Sangiao, Soraya; Martín, Santiago; González-Orive, Alejandro; Magén, César; Low, Paul J; De Teresa, José M; Cea, Pilar

    2017-02-01

    Nascent molecular electronic devices, based on monolayer Langmuir-Blodgett films sandwiched between two carbonaceous electrodes, have been prepared. Tightly packed monolayers of 4-((4-((4-ethynylphenyl)ethynyl)phenyl)ethynyl)benzoic acid are deposited onto a highly oriented pyrolytic graphite electrode. An amorphous carbon top contact electrode is formed on top of the monolayer from a naphthalene precursor using the focused electron beam induced deposition technique. This allows the deposition of a carbon top-contact electrode with well-defined shape, thickness, and precise positioning on the film with nm resolution. These results represent a substantial step toward the realization of integrated molecular electronic devices based on monolayers and carbon electrodes.

  1. Surface-acoustic-wave device incorporating conducting Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Holcroft, B.; Roberts, G. G.; Barraud, A.; Richard, J.

    1987-04-01

    Surface-acoustic-wave devices incorporating conducting Langmuir-Blodgett films are reported for the first time. Excellent characteristics have been obtained using a mixed valence charge transfer salt of a substituted pyridinium tetracyanoquinodimethane. The control afforded by the deposition technique has enabled the fractional change in surface wave velocity due to the electrical effects to be distinguished from those due to mass loading. The resistivity of the organic surface layer is measured to be 2 ohm-cm.

  2. Synthesis of novel electrically conducting polymers: Potential conducting Langmuir-Blodgett films and conducting polymers on defined surfaces

    NASA Technical Reports Server (NTRS)

    Zimmer, Hans

    1993-01-01

    Based on previous results involving thiophene derived electrically conducting polymers in which it was shown that thiophene, 3-substituted thiophenes, furans, and certain oligomers of these compounds showed electrical conductivity after polymerization. The conductivity was in the order of up to 500 S/cm. In addition, these polymers showed conductivity without being doped and most of all they were practically inert toward ambient conditions. They even could be used in aqueous media. With these findings as a guide, a number of 3-long-chain-substituted thiophenes and 1-substituted-3-long-chain substituted pyrrols were synthesized as monomers for potential polymeric electrically conducting Langmuir-Blodgett films.

  3. Matrix dependent changes in metachromasy of crystal violet in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Shil, Ashis; Saha, Mitu; Debnath, Chandan; Hussain, S. A.; Bhattacharjee, D.

    2016-11-01

    This communication reports the effect of building matrices and nano clay platelets on the aggregation pattern of a water soluble cationic fluorescent dye Crystal Violet (CV) in Langmuir-Blodgett (LB) Films. When stearic acid (SA) was used as a building matrix, pressure induced changes in metachromasy was observed in the SA-CV complex LB films with a characteristic J-band formed at the longer wavelength side. On the other hand, clay incorporated hybrid LB films showed high degree of control over H-dimeric band. Isotherm characteristics, Brewster Angle Microscopic (BAM) images, UV-vis absorption and fluorescence characteristic studies were employed to investigate this result.

  4. Langmuir and Langmuir-Blodgett films of a maleic anhydride derivative: effect of subphase divalent cations.

    PubMed

    Martín-García, B; Velázquez, M Mercedes; Pérez-Hernández, J A; Hernández-Toro, J

    2010-09-21

    We report the study of the equilibrium and dynamic properties of Langmuir monolayers of poly(styrene-co-maleic anhydride) partial 2-buthoxyethyl ester cumene terminated polymer and the effect of the Mg(NO(3))(2) addition in the water subphase on the film properties. Results show that the polymer monolayer becomes more expanded when the electrolyte concentration in the subphase increases. Dense polymer films aggregate at the interface. The aggregates are transferred onto silicon wafers using the Langmuir-Blodgett methodology and the morphology is observed by AFM. The structure of aggregates depends on the subphase composition of the Langmuir film transferred onto the silicon wafer.

  5. Magnetic ordering in nickel-zinc nanoferrite thin film formed by Langmuir Blodgett technique

    NASA Astrophysics Data System (ADS)

    Thakur, Sangeeta; Pandit, Pallavi; Sharma, S. K.; Katyal, S. C.; Singh, Mahavir; Gupta, Ajay

    2013-12-01

    Nickel-zinc nanoferrite thin films, which reveal application for magnetic materials, were prepared by Langmuir-Blodgett technique. X-ray reflectivity fitting was done using three layer model. Thickness of a monolayer of nanoparticles is obtained as 23.5 Å. Surface roughness increases as the thickness of the film increases. Fourier transform infrared spectra confirmed that the structure remains cubic spinel after thin film formation. We have measured zero-field cooled and field cooled magnetization and discussed the behavior in three parts: the ferromagnetic part, transition region, and the superparamagnetic part.

  6. Influence of magnetic field on delayed fluorescence of coumarin dye in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Ibrayev, N. Kh.; Afanasyev, D. A.

    2012-06-01

    The triplet-triplet annihilation (TTA) was studied in mixed Langmuir-Blodgett films of 7-decyloxy-3 (4'-ethoxyphenyl)-coumarin molecules and palmitic acid. The thermal activation of the TTA process is observed due to the inhomogeneous broadening of triplet energy levels. Modulation of the TTA rate constant in the external magnetic field for the multilayer films shows the dependence that is characteristic of crystals. Only negative magnetic effect is observed for the monolayers. Time dependence of the magnetic effect in conditions of high rate constant of triplet excitons migration is connected with the dominating contribution of ordered clusters or randomly oriented molecule clusters into the TTA process.

  7. Bulk organisation and alignment in Langmuir and Langmuir-Blodgett films of tetrachloroperylene tetracarboxylic acid esters

    NASA Astrophysics Data System (ADS)

    Modlińska, Anna; Filipowicz, Marek; Martyński, Tomasz

    2016-12-01

    Perylene derivatives with chlorine atoms attached at the bay position to the dye core are expected to affect organisation and tendency to aggregation in Langmuir and Langmuir-Blodgett (LB) films. Therefore, newly synthesized core-twisted homologous series of tetrachloroperylene tetracarboxylic acid esters with n = 1,4,5,6,9 carbon atoms in terminal alkyl chains were studied. Phase transitions and crystalline structures were specified by differential scanning calorimetry (DSC) and single crystal X-ray diffraction (XRD), respectively. Intermolecular interactions and organisation of the dyes in monomolecular films were investigated by means of Brewster angle microscope (BAM), UV-Vis absorption and emission spectroscopy, fluorescence microscopy and atomic force microscopy (AFM). The dyes investigated do not form thermotropic mesogenic phases in bulk. The crystalline triclinic elementary cell with P-1 symmetry is revealed from X-ray experiments. In Langmuir and Langmuir-Blodgett films molecular tilted head-on alignment is postulated. Spectroscopic research confirmed by AFM texture images of the LB films show that in the Langmuir and LB films the dyes, depending on length of terminal chains, have a tendency to create H or I molecular aggregates. The impact of the twisted core on the molecular behavior in a bulk and thin films is discussed.

  8. Optoelectronic properties of graphene thin films deposited by a Langmuir-Blodgett assembly.

    PubMed

    Kim, HoKwon; Mattevi, Cecilia; Kim, Hyun Jun; Mittal, Anudha; Mkhoyan, K Andre; Riman, Richard E; Chhowalla, Manish

    2013-12-21

    Large area thin films of few-layered unfunctionalized graphene platelets are developed with fine control over the thickness. The thin films are obtained by a Langmuir-Blodgett assembly at the interface of graphene solution in N-methyl-2-pyrrolidone (NMP) and water, and their optoelectronic properties and conduction mechanism are investigated in relation to lateral flake size and thin film thickness. The electrical conductivity and carrier mobility are affected by the flake size (200 nm to 1 μm) and by the packing of the nanostructure platelet network. General effective medium theory is used to explain the thickness dependent conductivity and to determine the percolation threshold film thickness which was found to be about 10 nm (at a volume fraction of ~39%) for a Langmuir-Blodgett film of an average platelet lateral size of 170 ± 40 nm. The electronic behaviour of the material shows more similarities with polycrystalline turbostratic graphite than thin films of reduced graphene oxide, carbon nanotubes, or disordered conducting polymers. While in these systems the conduction mechanism is often dominated by the presence of an energy barrier between conductive and non-conductive regions in the network, in the exfoliated graphene networks the conduction mechanism can be explained by the simple two-band model which is characteristic of polycrystalline graphite.

  9. A multiscale structural study of nanoparticle films prepared by the Langmuir-Blodgett technique

    NASA Astrophysics Data System (ADS)

    Dochter, Alexandre; Pichon, Benoit P.; Fleutot, Solenne; Medard, Nicolas; Begin-Colin, Sylvie

    2013-02-01

    Arrays of magnetic nanoparticles (NPs) represent a very interesting challenge toward the development of new devices for magnetic applications such as data storage and spintronic. The final properties of such assemblies depending essentially on the spatial arrangement of NPs, it is of first importance to investigate precisely their structure. Here, the structure of monolayer and multilayer films of magnetic iron oxide NPs assembled by the Langmuir-Blodgett (LB) technique has been studied by usual techniques such as SEM, AFM and ellipsometry and by a new and an easy to process enhanced optical technique: the Surface Enhancement Ellipsometry Contrast (SEEC) microscopy. This technique is based on the use of a new generation of microscope slides used as substrates which allow the strong enhancement of the sample contrast to a point where it becomes possible to visualize the structure of monolayer and multilayer films at the nanoscale with a conventional optical microscope. The SEEC microscopy is demonstrated to be complementary to usual characterization techniques to study the structure of NPs films, especially for films containing very small nanosized NPs which are more difficult to analyze by usual techniques. While the film structure is investigated with lateral resolution of microns, the layer thickness is analyzed at the nanoscale (with a precision of 0.3 nm) with a close fit to the experimental measurements on local (AFM) and on larger (ellipsometry) areas. This technique presents the advantage to visualize directly the topography of NPs assemblies on very large areas by extracting information such as the height profile, the film roughness and generating 3D images.

  10. Langmuir-Blodgett films of cellulose nanocrystals: preparation and characterization.

    PubMed

    Habibi, Youssef; Foulon, Laurence; Aguié-Béghin, Véronique; Molinari, Michaël; Douillard, Roger

    2007-12-15

    The goal of this work is the preparation of monolayers of cellulose I nanocrystals providing flat crystalline cellulose surfaces. Suspensions of cellulose nanocrystals were prepared by hydrolyzing ramie and tunicin fibers with sulfuric acid. Due to surface grafted sulfate groups, the negatively charged, rod-like cellulose nanocrystals were found to form stable layers at the air-water interface in the presence of a cationic amphiphilic molecule such as dioctadecyldimethylammonium (DODA) used in this work. These layers were formed at different cellulose-DODA weight ratios, compressed and analyzed by tensiometry, ellipsometry and Brewster angle microscopy. At low cellulose concentrations the layers are discontinuous, becoming dense and homogeneous upon reaching a critical weight ratio, which depends on the aspect ratio of the cellulose nanocrystals. After transfer onto silicon wafers, the surface composition and morphology as well as the thickness of the films were examined by X-ray photoelectron spectroscopy, ellipsometry and atomic force microscopy. The results indicate that they are monolayer films, well structured, relatively smooth and pure. These films offer a crystalline and easily reproducible model cellulose surface.

  11. Oriented polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) films by Langmuir-Blodgett deposition: a synchrotron X-ray diffraction study.

    PubMed

    Lindemann, W R; Philiph, R L; Chan, D W W; Ayers, C T; Perez, E M; Beckman, S P; Strzalka, J; Chaudhary, S; Vaknin, D

    2015-11-21

    Langmuir-Blodgett films of polyvinylidene fluoride trifluoroethylene - P(VDF-TrFE)-copolymers possess substantially improved electrocaloric and pyroelectric properties, when compared with conventionally spin-cast films. In order to rationalize this, we prepared single-layered films of P(VDF-TrFE) (70 : 30) using both deposition techniques. Grazing incidence wide-angle X-ray scattering (GIWAXS), reveals that Langmuir-Blodgett deposited films have a higher concentration of the ferroelectric β-phase crystals, and that these films are highly oriented with respect to the substrate. Based on these observations, we suggest alternative means of deposition, which may substantially enhance the electrocaloric effect in P(VDF-TrFE) films. This development has significant implications for the potential use of P(VDF-TrFE) in solid-state refrigeration.

  12. Using phospholipid Langmuir and Langmuir-Blodgett films as matrix for urease immobilization.

    PubMed

    Caseli, Luciano; Crespilho, Frank N; Nobre, Thatyane M; Zaniquelli, Maria Elisabete D; Zucolotto, Valtencir; Oliveira, Osvaldo N

    2008-03-01

    The immobilization of enzymes in organized two-dimensional matrices is a key requirement for many biotechnological applications. In this paper, we used the Langmuir-Blodgett (LB) technique to obtain controlled architectures of urease immobilized in solid supports, whose physicochemical properties were investigated in detail. Urease molecules were adsorbed at the air-water interface and incorporated into Langmuir monolayers of the phospholipid dipalmitoyl phosphatidyl glycerol (DPPG). Incorporation of urease made DPPG monolayers more flexible and caused the reduction of the equilibrium and dynamic elasticity of the film. Urease and DPPG-urease mixed monolayers could be transferred onto solid substrates, forming LB films. A close packing arrangement of urease was obtained, especially in the mixed LB films, which was inferred with nanogravimetry and electrochemistry measurements. From the blocking effect of the LB films deposited onto indium tin oxide (ITO) substrates, the electrochemical properties of the LB films pointed to a charge transport controlled by the lipid architecture.

  13. Optical storage in azobenzene-containing epoxy polymers processed as Langmuir Blodgett films.

    PubMed

    Fernández, Raquel; Mondragon, Iñaki; Sanfelice, Rafaela C; Pavinatto, Felippe J; Oliveira, Osvaldo N; Oyanguren, Patricia; Galante, María J

    2013-04-01

    In this study, azocopolymers containing different main-chain segments have been synthesized with diglycidyl ether of bisphenol A (DGEBA, DER 332, n=0.03) and the azochromophore Disperse Orange 3 (DO3) cured with two monoamines, viz. benzylamine (BA) and m-toluidine (MT). The photoinduced birefringence was investigated in films produced with these azopolymers using the spin coating (SC) and Langmuir Blodgett (LB) techniques. In the LB films, birefringence increased with the content of azochromophore and the film thickness, as expected. The nanostructured nature of the LB films led to an enhanced birefringence and faster dynamics in the writing process, compared to the SC films. In summary, the combination of azocopolymers and the LB method may allow materials with tuned properties for various optical applications, including in biological systems were photoisomerization may be used to trigger actions such as drug delivery.

  14. Langmuir-Blodgett films of a pyrrole and ferrocene mixed surfactant system

    SciTech Connect

    Samuelson, L.; Rahman, A.K.M.; Clough, S.; Tripathy, S.; Hale, P.D.; Inagaki, T.; Skotheim, T.A.; Okamoto, Y. . Dept. of Chemistry; Brookhaven National Lab., Upton, NY; Polytechnic Univ., Brooklyn, NY . Dept. of Chemistry)

    1989-01-01

    The Langmuir-Blodgett technique was used to study the molecular organization of a mixed 3-hexadecyl pyrrole (3HDP) and ferrocene-derivatized pyrrole (Fc-Py) surfactant system. It has been determined that stable monolayer films of the mixed system could be formed at the air-water interface. The growth and assembly process led to polypyrrole 2-D lattices with heretofore unsurpassed order. In fact, the process of template polymerization, it appears, leads to a new crystal phase for the polypyrrole component of the thin film structure. Various monolayer and multilayer films were prepared on platinum coated substrates for surface spectroscopic characterization. Near Edge X-Ray Absorption Fine Structure (NEXAFS) studies revealed that highly ordered multilayer structures are being formed. Electrochemical studies have been initiated to determine the feasibility of these films in molecular electronic device applications. 13 refs., 6 figs., 1 tab.

  15. Optoelectronic properties of graphene thin films deposited by a Langmuir-Blodgett assembly

    NASA Astrophysics Data System (ADS)

    Kim, Hokwon; Mattevi, Cecilia; Kim, Hyun Jun; Mittal, Anudha; Mkhoyan, K. Andre; Riman, Richard E.; Chhowalla, Manish

    2013-11-01

    Large area thin films of few-layered unfunctionalized graphene platelets are developed with fine control over the thickness. The thin films are obtained by a Langmuir-Blodgett assembly at the interface of graphene solution in N-methyl-2-pyrrolidone (NMP) and water, and their optoelectronic properties and conduction mechanism are investigated in relation to lateral flake size and thin film thickness. The electrical conductivity and carrier mobility are affected by the flake size (200 nm to 1 μm) and by the packing of the nanostructure platelet network. General effective medium theory is used to explain the thickness dependent conductivity and to determine the percolation threshold film thickness which was found to be about 10 nm (at a volume fraction of ~39%) for a Langmuir-Blodgett film of an average platelet lateral size of 170 +/- 40 nm. The electronic behaviour of the material shows more similarities with polycrystalline turbostratic graphite than thin films of reduced graphene oxide, carbon nanotubes, or disordered conducting polymers. While in these systems the conduction mechanism is often dominated by the presence of an energy barrier between conductive and non-conductive regions in the network, in the exfoliated graphene networks the conduction mechanism can be explained by the simple two-band model which is characteristic of polycrystalline graphite.Large area thin films of few-layered unfunctionalized graphene platelets are developed with fine control over the thickness. The thin films are obtained by a Langmuir-Blodgett assembly at the interface of graphene solution in N-methyl-2-pyrrolidone (NMP) and water, and their optoelectronic properties and conduction mechanism are investigated in relation to lateral flake size and thin film thickness. The electrical conductivity and carrier mobility are affected by the flake size (200 nm to 1 μm) and by the packing of the nanostructure platelet network. General effective medium theory is used to explain the

  16. Thin nanocomposite films of polyaniline/Au nanoparticles by the Langmuir-Blodgett technique.

    PubMed

    Tanami, Golan; Gutkin, Vitaly; Mandler, Daniel

    2010-03-16

    The Langmuir-Blodgett (LB) method was used to deposit multilayers of polyaniline (PANI)- and mercaptoethanesulfonate (MES)-stabilized Au nanoparticles. The electrostatic interaction between the negatively charged nanoparticles in the subphase and the positively charged PANI at the air-water interface assisted the deposition of the nanocomposite film onto a solid support. These PANI/Au-NPs films were characterized using cyclic voltammetry, copper under potential deposition, scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. We found that the nanocomposite layers were uniform and reproducible. The density of Au-NPs in the monolayer depended on the acidity of the subphase as well as on the nanoparticles concentration. Moreover, the Au-NPs extrude above the PANI and therefore could be used as nanoelectrodes for the underpotential deposition (UPD) of copper.

  17. Experimental analysis of the thermodynamic mechanism of Langmuir-Blodgett film transfer

    SciTech Connect

    Egusa, Syun; Gemma, Nobuhiro, Azuma, Makoto )

    1990-03-22

    An experimental investigation was made on the mechanism for the transfer of a Langmuir-Blodgett (LB) film. The transfer ratio ({rho}) and the interfacial force (f) were observed for stearyl alcohol and cadmium stearate monolayers on silicon substrates, by systematically varying both the surface pressures ({pi}) of the monolayer and the hydrophilicities of the substrate characterized by contact angle ({theta}{sub 0}). It was found that the ratios {rho} observed both for up- and down-stroke depositions changed discretely within zero and unity, divided at the critical values of {pi} and {theta}{sub 0}. To examine the film-transfer characteristics, on the basis of thermodynamics, the interfacial forces applied to the moving substrate were measured during the deposition process.

  18. Correlations in the interface structure of Langmuir-Blodgett films observed by x-ray scattering

    NASA Astrophysics Data System (ADS)

    Nitz, V.; Tolan, M.; Schlomka, J.-P.; Seeck, O. H.; Stettner, J.; Press, W.; Stelzle, M.; Sackmann, E.

    1996-08-01

    X-ray scattering experiments within the region of total external reflection as well as grazing-incidence-diffraction measurements from Langmuir-Blodgett films are shown. All measurements are explained quantitatively using the distorted-wave Born approximation (small qz regions) or a simple kinematic scattering theory (large qz regions) for layered systems. Since rather imperfect systems are investigated, strong vertical correlations between the roughnesses of the organic layer interfaces were found for two samples consisting of 9 and 11 layers, respectively, of cadmium-arachidate on silicon (100) surfaces. This conformal roughness does not stem from the substrate but from defects and holes of the first transferred layer. The model of self-affine rough interfaces yields consistent parameters compared with grazing incidence diffraction experiments and no hints towards a cadmium-arachidate island formation are observed.

  19. Electronic Properties and Langmuir-Blodgett Films of Discotic Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Ahmida, Mohamed M.

    Columnar mesophases of discotic liquid crystals (DLCs) are an emerging class of organic semiconductors that have several advantages over widely applied organic semiconductors based on conductive polymers and glasses of small molecules, such as high charge carrier mobility of >1 cm2 V-1s-1 and charge carrier diffusion length of 70 nm. Two important deficiencies that hamper the application of DLCs in organic electronic devices are an insufficient control over their frontier orbital energies and the alignment of their columnar stacks. This dissertation reports a first systematic study on the control of frontier orbital energies, along with other electronic properties, by alterations of molecular structure and two new approaches towards monomolecular alignment layers for columnar discotic mesophases. Solution cyclic voltammetry and UV-Vis absorption spectroscopy as well as computational studies at the DFT level were employed to measure and predict electronic properties of DLCs based on triphenylene and phthalocyanine derivatives (Chapters 2-4). These are the first reported studies that systematically compare changes of the molecular structures of DLCs with changes of their frontier orbital energies and mesomorphism. Our comparative studies on electron acceptor DLCs provide the first ranking of electron withdrawing groups based on their potential of lowering the energy of the lowest unoccupied molecular orbital (LUMO) of the discotic core. Unexpected was the large dependence of the frontier orbital energies on the symmetry of the substitution patterns. Symmetric patterns give higher LUMO energies mainly because of degenerated frontier orbitals. Objective of the investigation of octa-carboxylic acid and octa-alcohol substituted tetraazaporphyrin (TAP) dyes in Langmuir-Blodgett (LB) monolayers (Chapter 5) is the generation of self-assembled monolayers with the elusive face-on orientation of the TAP macrocycles. Monolayers are formed only by the TAP derivatives with the

  20. Epifluorescence imaging of electrochemically switchable Langmuir-Blodgett films of Nafion.

    PubMed

    Moretto, Ligia Maria; Kohls, Thiago; Chovin, Arnaud; Sojic, Neso; Ugo, Paolo

    2008-06-17

    A combination of electrochemistry and luminescence methods was exploited to obtain information on the electrochemical activity and homogeneity of Nafion Langmuir-Blodgett films. The redox behavior of the Ru(bpy)3(2+) probe incorporated in the Nafion film was monitored by epifluorescence microscopy. The photoluminescent images, recorded by a charge-coupled device (CCD) camera, reflect the distribution of the probe in the film, which resulted as very uniform, particularly in comparison with spin-coated films. Apparent diffusion coefficients (Dapp) determined by cyclic voltammetry for films of less than 10 layers are in the range of 1 x 10(-12) to 8 x 10(-12) cm(2) s(-1), that is, 2 orders of magnitude lower than values reported in the literature for spin-coated Nafion films. The application to the electrode of a potential able to oxidize the luminescent Ru(bpy)3(2+) to the nonluminescent Ru(bpy)3(3+) switched off the photoluminescence with a response time that for the LB films was much shorter than that for the spin-coated ones. Experimental evidence and calculations indicate that lowering of the film thickness down to the nanometric level is very effective in shortening the switching time, notwithstanding the lowering of the Dapp value in LB films.

  1. Redox-active cellulose Langmuir-Blodgett films containing beta-carotene as a molecular wire.

    PubMed

    Sakakibara, Keita; Kamitakahara, Hiroshi; Takano, Toshiyuki; Nakatsubo, Fumiaki

    2007-05-01

    Redox-active Langmuir-Blodgett (LB) films containing dihydrophytyl ferrocenoate (DFc) and beta-carotene (betaC) were fabricated by use of 6-O-dihydrophytylcellulose (DHPC) as a matrix. A mixture of DFc-DHPC formed a stable monolayer. Atomic force microscopy images revealed that the DFc molecules were dispersed uniformly throughout the surface in the ratio DFc:DHPC = 2:8 at 30 mN m-1. The DFc-DHPC monolayer was transferred successfully onto a substrate, yielding Y-type LB films. Cyclic voltammograms for the DFc-DHPC LB films on an indium tin oxide (ITO) electrode exhibited a well-defined surface wave. The voltammograms of the DFc-DHPC LB films exhibited 60-40% redox-active ferrocene moieties, whereas those of the DFc-DHPC-betaC LB films exhibited 90-70%. X-ray diffraction patterns indicated that the distance between layers was independent of betaC molecules incorporated into the LB films. Consequently, these results suggested that betaC can function as a molecular wire.

  2. Anomalous conformational transitions in cytochrome C adsorbing to Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Kamatchi; Nair, B. U.; Dhathathreyan, A.

    2013-05-01

    Helix to beta conformational transitions in proteins has attracted much attention due to their relevance to fibril formation which is implicated in many neurological diseases. This study reports on unusual conformational transition of cytochrome C adsorbing to hydrophilic surface containing pure cationic lipid and mixed Langmuir-Blodgett films (LB films) of cationic and neutral lipids. Evidence for conformational changes of the protein from its native helical state to beta sheet comes from Circular dichroic spectroscopy (CD spectroscopy). Analysis of these samples using High resolution TEM (HRTEM) shows a typical fibrillar pattern with each strand spacing of about 0.41 nm across which can be attributed to the repeat distance of interdigitated neighboring hydrogen-bonded ribbons in a beta sheet. Changes in contact angles of protein adsorbing to the LB films together with the increased mass uptake of water using quartz crystal microbalance (QCM) confirm the role of positive charges in the conformational transition. Dehydration of the protein resulting from the excess water entrainment in the polar planes of the cationic lipid in hydrophilic surface seems to trigger the refolding of the protein to beta sheet while it retains its native conformation in hydrophobic films. The results suggest that drastic conformational changes in CytC adsorbing to cationic lipids may be of significance in its role as a peripheral membrane protein.

  3. Colloidal interactions between Langmuir-Blodgett bitumen films and fine solid particles.

    PubMed

    Long, Jun; Zhang, Liyan; Xu, Zhenghe; Masliyah, Jacob H

    2006-10-10

    In oil sand processing, accumulation of surface-active compounds at various interfaces imposes a significant impact on bitumen recovery and bitumen froth cleaning (i.e., froth treatment) by altering the interfacial properties and colloidal interactions among various oil sand components. In the present study, bitumen films were prepared at toluene/water interfaces using a Langmuir-Blodgett (LB) upstroke deposition technique. The surface of the prepared LB bitumen films was found to be hydrophobic, comprised of wormlike aggregates containing a relatively high content of oxygen, sulfur, and nitrogen, indicating an accumulation of surface-active compounds in the films. Using an atomic force microscope, colloidal interactions between the LB bitumen films and fine solids (model silica particles and clay particles chosen directly from an oil sand tailing stream) were measured in industrial plant process water and compared with those measured in simple electrolyte solutions of controlled pH and divalent cation concentrations. The results show a stronger long-range repulsive force and weaker adhesion force in solutions of higher pH and lower divalent cation concentration. In plant process water, a moderate long-range repulsive force and weak adhesion were measured despite its high electrolyte content. These findings provide more insight into the mechanisms of bitumen extraction and froth treatment.

  4. Magnetic Langmuir-Blodgett films of ferritin with different iron contents.

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; Soriano-Portillo, Alejandra; Colacio, Enrique; Domínguez-Vera, José M; Galvez, Natividad; Madueño, Rafael; Martín-Romero, María T

    2006-08-01

    Magnetic Langmuir-Blodgett films of four ferritin derivatives with different iron contents containing 4220, 3062, 2200, and 1200 iron atoms, respectively, have been prepared by using the adsorption properties of a 6/1 mixed monolayer of methyl stearate (SME) and dioctadecyldimethylammonium bromide (DODA). The molecular organization of the mixed SME/DODA monolayer is strongly affected by the presence of the water-soluble protein in the subphase as shown by pi-A isotherms, BAM images, and imaging ellipsometry at the water-air interface. BAM images reveal the heterogeneity of this mixed monolayer at the air-water interface. We propose that the ferritin is located under the mixed matrix in those regions where the reflectivity is higher whereas the dark regions correspond to the matrix. Ellipsometric angle measurements performed in zones of different brightness of the mixed monolayer confirm such a heterogeneous distribution of the protein under the lipid matrix. Transfer of the monolayer onto different substrates allowed the preparation of multilayer LB films of ferritin. Both infrared and UV-vis spectroscopy indicate that ferritin molecules are incorporated within the LB films. AFM measurements show that the heterogeneous distribution of the ferritin at the water-air interface is maintained when it is transferred onto solid substrates. Magnetic measurements show that the superparamagnetic properties of these molecules are preserved. Thus, marked hysteresis loops of magnetization are obtained below 20 K with coercive fields that depend on the number of iron atoms of the ferritin derivative.

  5. Studies on Mixed Monolayers and Langmuir-Blodgett Films of Schiff-Base Complex Cu(SBC(18))(2) and Calix

    PubMed

    Pang, Shufeng; Ye, Zhifeng; Li, Chun; Liang, Yingqiu

    2001-08-15

    Mixed monolayers of Schiff-base complex Cu(SBC(18))(2) with an octadecyl hydrocarbon chain and Calix[4]arene without a long alkyl chain at an air/water interface were studied in ultrapure water at different temperatures. Interface behavior and thermodynamic estimation of the mixed monolayer indicate that a strong intermolecular interaction exists between the mixed components (Cu(SBC(18))(2) and calix[4]arene) and the two-dimensional miscibility decreases with the molar fraction of Cu(SBC(18))(2). It is noticeable that the calix[4]arene monolayer can be transferred successfully onto solid substrates due to the introduction of Cu(SBC(18))(2). FTIR transmission and UV-Vis absorption spectra of mixed LB films provide further evidence of molecular interaction between the headgroups. Copyright 2001 Academic Press.

  6. Carbon nanotube growth from films of Langmuir-Blodgett deposited Fe nanoparticles with filler molecules

    NASA Astrophysics Data System (ADS)

    Kuriyama, Naoki; Takezawa, Akihiro; Kanasugi, Osamu; Nara, Ryuta; Kushida, Masahito

    2014-02-01

    Independently controlling the number density and diameter of Fe nanoparticles (FeNPs) used as a catalyst for vertically aligned carbon nanotube (VA-CNT) growth is difficult by conventional methods. In this study, mixed solutions of FeNPs and palmitic acid (C16) used as filler molecules were prepared to prevent the thermal aggregation of FeNPs and control the number density of VA-CNTs. FeNPs mixed with C16 monolayer films were prepared on the water surface and deposited on SiO2/Si substrates by the Langmuir-Blodgett (LB) technique. VA-CNTs were synthesized by a thermal chemical vapor deposition method using acetylene gas. Furthermore, we studied the optimum hydrogen reduction temperature and time of FeNPs used as a catalyst to encourage VA-CNT growth. By controlling the ratio of FeNP catalyst to C16 as a filler molecule in the LB film and optimizing hydrogen reduction condition, we were able to control the number density and diameter of FeNPs independently.

  7. Thermally induced conformational changes of Ca-arachidate Langmuir-Blodgett Films at different compression

    NASA Astrophysics Data System (ADS)

    Weber, Jan; Beier, Andre; Hasselbrink, Eckart; Balgar, Thorsten

    2014-07-01

    The conformational order in Ca-arachidate Langmuir-Blodgett films on solid glass supports is investigated by means of vibrational sum-frequency generation spectroscopy (VSFG). The symmetric C-H stretching vibrations of both the terminal methyl and the methylene groups are utilized to monitor the chain conformation at various sample temperatures under ambient conditions. At room temperature the film is well-ordered consisting almost entirely of all-trans configured chains. Between 340 and 430 K we observe a marked increase in gauche-defects before oxidative degeneration starts at sample temperatures above 470 K. The temperature dependence of the data is well represented by apparent enthalpy changes for the formation of gauche-defects, sharply increasing with packing density from 29 to 62 kJ/mol; values, which are an order of magnitude larger than those of the gas phase molecule. These large apparent enthalpies do not prevent the formation of a high degree of conformational disorder at elevated temperatures.

  8. Ionic channels in Langmuir-Blodgett films imaged by a scanning tunneling microscope.

    PubMed Central

    Kolomytkin, O V; Golubok, A O; Davydov, D N; Timofeev, V A; Vinogradova, S A; Tipisev SYa

    1991-01-01

    The molecular structure of channels formed by gramicidin A in a lipid membrane was imaged by a scanning tunneling microscope operating in air. The mono- and bimolecular films of lipid with gramicidin A were deposited onto a highly oriented pyrolitic graphite substrate by the Langmuir-Blodgett technique. It has been shown that under high concentration gramicidin A molecules can form in lipid films a quasi-regular, densely packed structure. Single gramicidin A molecules were imaged for the first time as well. The cavity of 0.4 +/- 0.05 nm in halfwidth was found on the scanning tunneling microscopy image of the gramicidin A molecule. The results of direct observation obtained by means of scanning tunneling microscope are in good agreement with the known molecular model of gramicidin A. It was shown that gramicidin A molecules can exist in a lipid monolayer as individual molecules or combined into clusters. The results demonstrate that scanning tunneling microscope can be used for high spatial resolution study of ionic channel structure. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 PMID:1712239

  9. FABRICATION AND OPTOELECTRONIC PROPERTIES OF MgxZn1-xO ULTRATHIN FILMS BY LANGMUIR-BLODGETT TECHNOLOGY

    NASA Astrophysics Data System (ADS)

    Tang, Dongyan; Feng, Qian; Jiang, Enying; He, Baozhu

    2012-08-01

    By transferring MgxZn1-xO sol and stearic acid onto a hydrophilic silicon wafer or glass plate, the Langmuir-Blodgett (LB) multilayers of MgxZn1-xO (x:0, 0.2, 0.4) were deposited. After calcinations at 350°C for 0.5 h and at 500°C for 3 h, MgxZn1-xO ultrathin films were fabricated. The optimized parameters for monolayer formation and multilayer deposition were determined by the surface pressure-surface (Π-A) area and the transfer coefficient, respectively. The expended areas of stearic acid with MgxZn1-xO sols under Π-A isotherms inferred the interaction of stearic acid with MgxZn1-xO sols during the formation of monolayer at air-water interface. X-ray diffraction (XRD) was used to determine the crystal structures of MgxZn1-xO nanoparticles and ultrathin films. The surface morphologies of MgxZn1-xO ultrathin films were observed by scanning probe microscopy (AFM). And the optoelectronic properties of MgxZn1-xO were detected and discussed based on photoluminescence (PL) spectra.

  10. Preparation of TiO2 thin films using octadecylamine Langmuir-Blodgett films and evaluation of their photocatalytic activity.

    PubMed

    Takahashi, Masashi; Sendoh, Mitsuyuki; Kobayashi, Koichi; Tajima, Kazuo

    2011-01-01

    A study was conducted to demonstrate that nanometer-thick titanium dioxide (TiO(2)) thin films could be prepared by the hydrolysis of titanium potassium oxalate using octadecylamine (ODA) Langmuir-Blodgett (LB) films as templates. The amount of TiO(2) generated in the LB film was found to be proportional to the number of deposited ODA layers, which enables precise control of the TiO(2) film thickness. After heat treatment of the LB films at 300-600°C, the photocatalytic activities of the resulting TiO(2) films were determined from the decomposition of stearic acid cast films when irradiated with UV light for different time periods. Higher photocatalytic activity was observed in TiO(2) films heat treated at lower temperatures.

  11. Formation and structure of Langmuir-Blodgett films of organo-modified aluminosilicate with high surface coverage.

    PubMed

    Fujimori, Atsuhiro; Arai, Shuntaro; Kusaka, Jun-ichi; Kubota, Munehiro; Kurosaka, Kei-ichi

    2013-02-15

    We have developed an effective organo-modification method at the organic solvent/distilled water interface of natural aluminosilicate clay surfaces. We also investigated the molecular arrangement of organo-modified aluminosilicate with high surface coverage in Langmuir-Blodgett films (LB) by performing out-of-plane and in-plane X-ray diffraction (XRD) measurements. In addition, the surface morphology of mixed monolayers of organo-modified aluminosilicate and several biodegradable polymers (e.g., poly(L-lactide), PLLA) was also characterized by atomic force microscopy (AFM). The in-plane XRD results of multilayers of organo-modified aluminosilicate formed by the LB method indicate the formation of a two-dimensional lattice of hydrocarbons on the aluminosilicate surface. These hydrocarbons of organo-modified reagents packed hexagonal or orthorhombic in films. Based on our experimental findings, the LB technique enabled the formation of a densely packed organo-modified aluminosilicate monolayer at the water surface. Furthermore, for mixed monolayer systems comprising an organo-modified clay with high surface coverage and biodegradable polymers, a miscible surface was observed by AFM on a mesoscopic scale, whereas those with low surface coverage formed phase-separated structures.

  12. White light-emitting electrochemical cells based on the Langmuir-Blodgett technique.

    PubMed

    Fernández-Hernández, Jesús M; De Cola, Luisa; Bolink, Henk J; Clemente-León, Miguel; Coronado, Eugenio; Forment-Aliaga, Alicia; López-Muñoz, Angel; Repetto, Diego

    2014-11-25

    Light-emitting electrochemical cells (LECs) showing a white emission have been prepared with Langmuir-Blodgett (LB) films of the metallosurfactant bis[2-(2,4-difluorophenyl)pyridine][2-(1-hexadecyl-1H-1,2,3-triazol-4-yl)pyridine]iridium(III) chloride (1), which work with an air-stable Al electrode. They were prepared by depositing a LB film of 1 on top of a layer of poly(N,N'-diphenyl-N,N'-bis(4-hexylphenyl)-[1,1'-biphenyl]-4,4'-diamine (pTPD) spin-coated on indium tin oxide (ITO). The white color of the electroluminescence of the device contrasts with the blue color of the photoluminescence of 1 in solution and within the LB films. Furthermore, the crystal structure of 1 is reported together with the preparation and characterization of the Langmuir monolayers (π-A compression isotherms and Brewster angle microscopy (BAM)) and LB films of 1 (IR, UV-vis and emission spectroscopy, X-ray photoelectron spectroscopy (XPS), specular X-ray reflectivity (SXR), and atomic force microscopy (AFM)).

  13. Langmuir-Blodgett films of cholesterol oxidase and S-layer proteins onto screen-printed electrodes

    NASA Astrophysics Data System (ADS)

    Guimarães, Juliana Aguilar; Ferraz, Helen Conceição; Alves, Tito Lívio Moitinho

    2014-04-01

    Stable Langmuir monolayers of cholesterol oxidase (ChOx) and S-layer proteins were produced at the water-air interface and subsequently transferred onto the surface of screen-printed carbon electrodes by the Langmuir-Blodgett (LB) technique. The modified electrode surface was characterized by atomic force microscopy (AFM) and cyclic voltammetry (CV). AFM indicated the presence of deposited layers, showing reduction of surface roughness (RMS and Rt parameters). Significant changes in the shape of CVs were observed in modified electrodes compared to bare electrodes. The anodic peaks could be observed in cyclic voltammograms (CV), at a scan rate equal to 25 mV s-1, using electrodes with Z-type LB deposition. The presence of S-layer proteins in the ChOx LB film increases the oxidation peak intensity and reduces the oxidation potential. Altogether, these results demonstrate the feasibility of producing a cholesterol biosensor based on the immobilization of ChOx and S-layer proteins by LB technique.

  14. Fabrication of Metal Oxide Thin Films Using the Langmuir-Blodgett Deposition Technique.

    NASA Astrophysics Data System (ADS)

    Johnson, David John

    The Langmuir Blodgett (LB) deposition of metal arachidates was investigated as a technique for fabrication of metal oxides with emphasis placed on the lanthanide arachidates. Traditionally, these materials are difficult to deposit via the LB process, due to the rigidity of the floating monolayer. Studies on yttrium arachidate have shown that the quality of deposition of these materials is highly dependent on the concentration of the metal salt and the pH of the subphase. Yttrium arachidate was thus deposited at 10^{-5} M YCl_3 over a pH range of 4.0 to 6.9. Uniform multilayer films were produced with films at the higher pH's showing 100% yttrium arachidate. A pK_{rm a} value of 4.9 +/- 0.2 was obtained under these conditions. Fourier transform infrared spectroscopy, Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy data indicate that the metal is being incorporated into the arachidic acid predominantly as Y(OH) ^{2+}. A saturation areal density of (2.0 +/- 0.1) times 10^{14} Y/cm ^2 was measured for one layer of yttrium arachidate. Ellipsometric measurements were performed on films of yttrium arachidate to study order-disorder transitions. Upon heating the films were observed to undergo two transitions at 65^circC and 100 ^circC. At room temperature, the as -deposited films were found to be anisotropic with indices of refraction of N_{rm x} = 1.503 +/- 0.005 and N _{rm z} = 1.554 +/- 0.005 and a monolayer spacing of 2.73 +/- 0.03 nm. Above 100^ circC the films were isotropic with N = 1.440 +/- 0.005 and a thickness of 3.13 +/- 0.03 nm per original layer. The films showed no desorption below 100^circ C. In contrast to films of cadium arachidate, the yttrium arachidate films were observed to undergo supercooling by 35^circC. This may point to a lack of nucleation sites in the yttrium arachidate films explaining why they maintain areal integrity at high temperature while cadmium arachidate films do not. The decomposition of LB films was

  15. Molecular orientation of asphaltenes and PAH model compounds in Langmuir-Blodgett films using sum frequency generation spectroscopy.

    PubMed

    Andrews, A Ballard; McClelland, Arthur; Korkeila, Oona; Demidov, Alexander; Krummel, Amber; Mullins, Oliver C; Chen, Zhan

    2011-05-17

    Asphaltenes are an important class of compounds in crude oil whose surface activity is important for establishing reservoir rock wettability which impacts reservoir drainage. While many phenomenological interfacial studies with crude oils and asphaltenes have been reported, there is very little known about the molecular level interactions between asphaltenes and mineral surfaces. In this study, we analyze Langmuir-Blodgett films of asphaltenes and related model compounds with sum frequency generation (SFG) vibrational spectroscopy. In SFG, the polarization of the input (vis, IR) and output (SFG) beams can be varied, which allows the orientation of different functional groups at the interface to be determined. SFG clearly indicates that asphaltene polycyclic aromatic hydrocarbons (PAHs) are highly oriented in the plane of the interface and that the peripheral alkanes are transverse to the interface. In contrast, model compounds with oxygen functionality have PAHs oriented transverse to the interface. Computational quantum chemistry is used to support corresponding band assignments, enabling robust determination of functional group orientations.

  16. Effects of nanoparticle doping on the phase transitional behaviour of ferroelectric liquid crystal Langmuir-Blodgett composite films

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Raina, K. K.

    2015-12-01

    Langmuir-Blodgett films of ferroelectric liquid crystals (FLCs) doped with a low concentration of functionalized Al: ZnO (AZO) nanoparticles were prepared and characterized. Pressure-area isotherms show that the nanoparticles as well as FLC composite systems have the capability to form stable monolayers at the air-water interface. The molecular interaction between nanoparticles and FLC molecules increased during barrier compression, which resulted in increased surface pressure. We observed various phases in isotherms with increasing concentration of nanoparticles in the FLC matrix. An X-ray diffraction profile at a low angle confirmed that FLCs retain their layer structure at a low concentration doping of AZO nanoparticles in the FLC matrix. Atomic force microscopy images indicate that low wt% composites are uniformly deposited without disturbing the translation behaviour of SmC* liquid crystals.

  17. Glued Langmuir-Blodgett bilayers from calix[n]arenes: Influence of calix[n]arene size on ionic cross-linking, film thickness, and permeation selectivity

    DOE PAGES

    Wang, Minghui; Janout, Vaclav; Regen, Steven L.

    2010-07-12

    A homologous series of calix[4]arene-, calix[5]arene- and calix[6]arene-based surfactants, containing pendant trimethylammonium and n-hexadecyl groups, have been compared with respect to their ability (i) to undergo ionic crosslinking at the air/water interface, (ii) to incorporate poly(4-styrenesulfonate) (PSS) in Langmuir-Blodgett (LB) bilayers, and (iii) to act as barriers towards He, N2 and CO2 when assembled into crosslinked LB bilayers. As these calix[n]arenes increase in size, their ability to undergo ionic crosslinking has been found to increase, the thickness of corresponding glued LB bilayers has been found to decrease, and their barrier properties and permeation selectivities have been found to increase. Inmore » conclusion, the likely origin for these effects and the probable mechanism by which He, N2 and CO2 cross these ultrathin films are discussed.« less

  18. Nanostructured PdO Thin Film from Langmuir-Blodgett Precursor for Room-Temperature H2 Gas Sensing.

    PubMed

    Choudhury, Sipra; Betty, C A; Bhattacharyya, Kaustava; Saxena, Vibha; Bhattacharya, Debarati

    2016-07-06

    Nanoparticulate thin films of PdO were prepared using the Langmuir-Blodgett (LB) technique by thermal decomposition of a multilayer film of octadecylamine (ODA)-chloropalladate complex. The stable complex formation of ODA with chloropalladate ions (present in subphase) at the air-water interface was confirmed by the surface pressure-area isotherm and Brewster angle microscopy. The formation of nanocrystalline PdO thin film after thermal decomposition of as-deposited LB film was confirmed by X-ray diffraction and Raman spectroscopy. Nanocrystalline PdO thin films were further characterized by using UV-vis and X-ray photoelectron spectroscopic (XPS) measurements. The XPS study revealed the presence of prominent Pd(2+) with a small quantity (18%) of reduced PdO (Pd(0)) in nanocrystalline PdO thin film. From the absorption spectroscopic measurement, the band gap energy of PdO was estimated to be 2 eV, which was very close to that obtained from specular reflectance measurements. Surface morphology studies of these films using atomic force microscopy and field-emission scanning electron microscopy indicated formation of nanoparticles of size 20-30 nm. These PdO film when employed as a chemiresistive sensor showed H2 sensitivity in the range of 30-4000 ppm at room temperature. In addition, PdO films showed photosensitivity with increase in current upon shining of visible light.

  19. Langmuir-Blodgett films of random copolymers of fluoroalkyl(meth)acrylate and methacrylic acid: Fabrication and X-ray diffraction study

    SciTech Connect

    Safronov, V.; Feigin, L.A.; Budovskaya, L.D.; Ivanova, V.N.

    1994-12-31

    Langmuir-Blodgett films of amphiphilic fluorinated copolymers were fabricated and studied by X-ray diffraction. Although these films show poor interlayer periodicity, they possess a uniform thickness even in the case of very thin films of one bilayer (22 {angstrom}). This feature was used to obtain complex LB structures (superlattices) with alteration of copolymer and fatty acid bilayers. X-ray diffraction data proved the regular periodical organization of these structures and allowed to calculate electron density distribution across the superlattices.

  20. Controlling the molecular architecture of lactase immobilized in Langmuir-Blodgett films of phospholipids to modulate the enzyme activity.

    PubMed

    Ayoub, Fábio de Paula; Caseli, Luciano

    2017-02-01

    In this present work, the adsorption of the enzyme lactase onto Langmuir monolayers of the phospholipid dimyristoylphosphatidic acid (DMPA) was investigated and characterized with surface pressure-area isotherms, surface potential-area isotherms and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). The adsorption of the enzyme at the air-water interface expanded the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the CN and CO dipole moments lying parallel to the monolayer plane, revealing that the structuring of the enzyme into β-sheets was kept in the mixed monolayer. The enzyme-lipid films were transferred from the floating monolayer to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. The catalytic activity of the films was measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 80% of the enzyme activity after 20days, in contrast for the homogeneous medium, which preserved less than 60% of the enzyme activity. The method presented in this present work not only allows for an enhanced catalytic activity toward lactose, but also can help explain why certain film architectures exhibit better performance.

  1. Modeling and characterization of molecular structures in self assembled and Langmuir-Blodgett films for controlled fabrication

    SciTech Connect

    Cesarano, J. III

    1997-10-01

    Self Assembled (SA) thin films and Langmuir-Blodgett (LB) thin films are emerging technologies for the development of chemical and bio-chemical sensors, electrooptic films, second harmonic generators (frequency doublers), templates for biomimetic growth etc. One of the goals of this project was to extend Sandia`s characterization techniques and molecular modeling capabilities for these complex two-dimensional geometries with the objective of improving the control of the fabrication of these structures for specific applications. Achieving this requires understanding both the structure throughout the thickness of the films and the in-plane lattice of the amphiphilic molecules. To meet these objectives they used atomic force microscopy (AFM), X-ray reflectivity, and molecular modeling. While developing these capabilities, three different materials systems were fabricated and characterized: (1) Self Assembled Monolayers (SAMs) of octadecyltrichlorosilane (OTS) and LB films of arachidic acid on silicon wafers; (2) SAMs on PZT substrates; and (3) electrochemical deposition of CdS on LB film templates.

  2. Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Hsuan; Wu, Jau-Yann; Chen, Liang-Huei; Lee, Yuh-Lang

    2016-03-01

    The Langmuir-Blodgett (LB) deposition technique is employed to prepare nano-composite films consisting of glucose oxidase (GOx) and gold nanoparticles (AuNPs) for glucose sensing applications. The GOx and AuNPs are co-adsorbed from an aqueous solution onto an air/liquid interface in the presence of an octadecylamine (ODA) template monolayer, forming a mixed (GOx-AuNP) monolayer. Alternatively, a composite film with a cascade architecture (AuNP/GOx) is also prepared by sequentially depositing monolayers of AuNPs and GOx. The architecture effects of the composite LB films on the glucose sensing are studied. The results show that the presence of AuNPs in the co-adsorption system does not affect the adsorption amount and preferred conformation (α-helix) of GOx. Furthermore, the incorporation of AuNPs in both composite films can significantly improve the sensing performance. However, the enhancement effects of the AuNPs in the two architectures are distinct. The major effect of the AuNPs is on the facilitation of charge-transfer in the (GOx-AuNP) film, but on the increase of catalytic activity in the (AuNP/GOx) one. Therefore, the sensing performance can be greatly improved by utilizing a film combining both architectures (AuNP/GOx-AuNP).

  3. Growth and stability of Langmuir-Blodgett films on OH-, H-, or Br-terminated Si(001)

    NASA Astrophysics Data System (ADS)

    Bal, J. K.; Kundu, S.; Hazra, S.

    2010-01-01

    Growth of Langmuir-Blodgett (LB) films of nickel arachidate (NiA) on differently terminated (OH-, H-, or Br-terminated) Si(001) substrates and their structural evolution with time have been investigated by x-ray reflectivity technique and complemented by atomic force microscopy. Stable and strongly attached asymmetric monolayer (AML) of NiA is found to grow on freshly prepared oxide-covered Si substrate while unstable and weakly attached symmetric monolayer (SML) of NiA grows on H-terminated Si substrate, corresponding to stable hydrophilic and unstable hydrophobic natures of the substrates, respectively. The structure of LB film on Br-terminated Si substrate, however, shows intermediate behavior, namely, both AML and SML are present on the substrate, indicative of coexisting (hydrophilic and hydrophobic) nature of this terminated surface. Such coexisting nature of the substrate shows unusual growth behavior of LB films: (i) hydrophilic and hydrophobic attachments of NiA molecules in single up stroke of deposition and (ii) growth of few ring-shaped large-heights islands in subsequent deposition. These probably occur due to the presence of substrate-induced perturbation in the Langmuir monolayer and release of initially accumulated strain in the film structures near hydrophilic/hydrophobic interface, respectively, and provide the possibility to grow desired structures (AML or SML) of LB films by passivation-selective surface engineering.

  4. The long-period fiber grating coated with Langmuir-Blodgett thin film for applications on biochemistry sensors

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Zhang, Min; Liao, Yanbiao; Zhu, Jing

    2005-11-01

    The resonant wavelength of long-period fiber gratings (LPFGs) is very sensitive to the ambient refractive index. LPFGs will have many potential applications on biochemistry sensors and environment monitor system. At present, LPFGs chemical sensors can only measure the medium, which has lower refractive index than that of the fiber cladding, however, the detecting range can be greatly enlarged if the LPFGs coated with Langmuir-Blodgett thin film are used. LPFGs will have more extensive applications with the mature of the L-B thin film technology. In this paper, the spectrum performance of the resonant wavelength of LPFGs varying with the changes of the ambient refractive index (1< n < 1.8) is theoretically analyzed. As the ambient index is increased, each resonance wavelength first shifts toward the shorter-wavelength direction and then disappears where the value of n is about 1.45. When the ambient index is larger than that of the cladding (~1.45), the resonance wavelengths reappear at slightly longer wavelength than those measured in ambient air. According to the mode coupling method, the theoretical four-layered fiber model is developed on the relationships among the resonant wavelengths of LPFGs coated with L-B thin film, the refractive index and thickness of the L-B thin film, and ambient refractive index. The shift of the resonant wavelength is calculated through numeric method and is presented graphically.

  5. Fabrication, structural characterization, and applications of langmuir and langmuir-blodgett films of a poly(azo)urethane.

    PubMed

    Alessio, Priscila; Ferreira, Daniele M; Job, Aldo E; Aroca, Ricardo F; Riul, Antonio; Constantino, Carlos J L; Gonzalez, Eduardo R Pérez

    2008-05-06

    The synthesis of a poly(azo)urethane by fixing CO(2) in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed "clean method" and the polymers obtained are named "NIPUs" (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per mer unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.

  6. Immobilization of biomaterials to nano-assembled films (self-assembled monolayers, Langmuir-Blodgett films, and layer-by-layer assemblies) and their related functions.

    PubMed

    Ariga, Katsuhiko; Nakanishi, Takashi; Michinobu, Tsuyoshi

    2006-08-01

    For utilization of highly sophisticated functions of biomaterials in nano-scale functional systems, immobilization of biomaterials on artificial devices such as electrodes via thin film technology is one of the most powerful strategies. In this review, we focus on three major organic ultrathin films, self-assembled monolayers (SAM), Langmuir-Blodgett (LB) films, and layer-by-layer (LBL) assemblies, and from the viewpoints of biomaterial immobilization, typical examples and recent progresses in these film technologies are described. The SAM method allows facile contact between biomaterials and man-made devices, and well used for bio-related sensors. In addition, recent micro-fabrication techniques such as micro-contact printing and dip-pen nanolithography were successfully applied to preparation of biomaterial patterning. A monolayer at the air-water interface, which is a unit structure of LB films, provides a unique environment for recognition of aqueous biomaterials. Recognition and immobilization of various biomaterials including nucleotides, nucleic acid bases, amino acids, sugars, and peptides were widely investigated. The LB film can be also used for immobilization of enzymes in an ultrathin film on an electrode, resulting in sensor application. The LBL assembling method is available for wide range of biomaterials and provides great freedom in designs of layered structures. These advantages are reflected in preparation of thin-film bio-reactors where multiple kinds of enzymes sequentially operate. LBL assemblies were also utilized for sensors and drug delivery systems. This kind of assembling structures can be prepared on micro-size particle and very useful for preparation of hollow capsules with biological functions.

  7. Electrical conductivity in Langmuir-Blodgett films of n-alkyl cyanobiphenyls using current sensing atomic force microscope

    SciTech Connect

    Gayathri, H. N.; Suresh, K. A.

    2015-06-28

    We report our studies on the nanoscale electrical conductivity in monolayers of n-alkyl cyanobiphenyl materials deposited on solid surface. Initially, the 8CB, 9CB, and 10CB monolayer films were prepared by the Langmuir technique at air-water interface and characterized by surface manometry and Brewster angle microscopy. The monolayer films were transferred on to solid substrates by the Langmuir-Blodgett (L-B) technique. The 8CB, 9CB, and 10CB monolayer L-B films were deposited on freshly cleaved mica and studied by atomic force microscope (AFM), thereby measuring the film thickness as ∼1.5 nm. The electrical conductivity measurements were carried out on 9CB and 10CB monolayer L-B films deposited onto highly ordered pyrolytic graphite using current sensing AFM. The nanoscale current-voltage (I-V) measurements show a non-linear variation. The nature of the curve indicates electron tunneling to be the mechanism for electrical conduction. Furthermore, analysis of the I-V curve reveals a transition in the electron conduction mechanism from direct tunneling to injection tunneling. From the transition voltage, we have estimated the values of barrier height for 9CB and 10CB to be 0.71 eV and 0.37 eV, respectively. For both 9CB and 10CB, the effective mass of electron was calculated to be 0.021 m{sub e} and 0.065 m{sub e}, respectively. These parameters are important in the design of molecular electronic devices.

  8. TECHNICAL NOTE: New photosensitive ultrathin films fabricated by the Langmuir Blodgett technique

    NASA Astrophysics Data System (ADS)

    Hafiz, H. R.

    2004-08-01

    A new hybrid LB film composed of an azobenzene-based photochromic layer (the host) and a p-phenylenediacrylic acid-based photosensitive layer (the guest) has been fabricated. The host was demonstrated to regulate the photoreaction kinetics of the guest during UV illumination. The photoresponses of the relevant guest chromophores were verified to be very sensitive to the intermolecular bonding state during the course of the illumination. Both the conversion factor (and its sensitivity) and the insoluble fraction were determined; they imply that such hybrid LB film has a photoresist fingerprint. The photoreactivity of the LB film was explained in terms of a model structure.

  9. Fabrication and Characterization of ZnO Langmuir-Blodgett Film and Its Use in Metal-Insulator-Metal Tunnel Diode.

    PubMed

    Azad, Ibrahim; Ram, Manoj K; Goswami, D Yogi; Stefanakos, Elias

    2016-08-23

    Metal-insulator-metal tunnel diodes have great potential for use in infrared detection and energy harvesting applications. The quantum based tunneling mechanism of electrons in MIM (metal-insulator-metal) or MIIM (metal-insulator-insulator-metal) diodes can facilitate rectification at THz frequencies. In this study, the required nanometer thin insulating layer (I) in the MIM diode structure was fabricated using the Langmuir-Blodgett technique. The zinc stearate LB film was deposited on Au/Cr coated quartz, FTO, and silicon substrates, and then heat treated by varying the temperature from 100 to 550 °C to obtain nanometer thin ZnO layers. The thin films were characterized by XRD, AFM, FTIR, and cyclic voltammetry methods. The final MIM structure was fabricated by depositing chromium/nickel over the ZnO on Au/Cr film. The current voltage (I-V) characteristics of the diode showed that the conduction mechanism is electron tunneling through the thin insulating layer. The sensitivity of the diodes was as high as 32 V(-1). The diode resistance was ∼80 Ω (at a bias voltage of 0.78 V), and the rectification ratio at that bias point was about 12 (for a voltage swing of ±200 mV). The diode response exhibited significant nonlinearity and high asymmetry at the bias point, very desirable diode performance parameters for IR detection applications.

  10. Cellulase and alcohol dehydrogenase immobilized in Langmuir and Langmuir-Blodgett films and their molecular-level effects upon contact with cellulose and ethanol.

    PubMed

    Rodrigues, Dilmer; Camilo, Fernanda Ferraz; Caseli, Luciano

    2014-02-25

    The key challenges for producing devices based on nanostructured films with control over the molecular architecture are to preserve the catalytic activity of the immobilized biomolecules and to provide a reliable method for determining the intermolecular interactions and the accommodation of molecules at very small scales. In this work, the enzymes cellulase and alcohol dehydrogenase (ADH) were coimmobilized with dipalmitoylphosphatidylcholine (DPPC) as Langmuir-Blodgett (LB) films, and their biological activities were assayed by accommodating the structure formed in contact with cellulose. For this purpose, the polysaccharide was dissolved in an ionic liquid, 1-buthyl-3-methylimidazolium chloride (BMImCl), and dropped on the top of the hybrid cellulase-ADH-DPPC LB film. The interactions between cellulose and ethanol, which are the catalytic substrates of the enzymes as well as important elements in the production of second-generation fuels, were then investigated using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Investigation of the secondary structures of the enzymes was performed using PM-IRRAS, through which the presence of ethanol and cellulose was observed to highly affect the structures of ADH and cellulase, respectively. The detection of products formed from the catalyzed reactions as well as the changes of secondary structure of the enzymes immobilization could be carried out, which opens the possibility to produce a means for producing second-generation ethanol using nanoscale arrangements.

  11. Molecular-level interactions of an azopolymer and poly(dodecylmethacrylate) in mixed Langmuir and Langmuir-Blodgett films for optical storage.

    PubMed

    Ceridório, Lucinéia F; Balogh, Débora T; Caseli, Luciano; Cardoso, Marcos R; Viitala, Tapani; Mendonça, Cleber R; Oliveira, Osvaldo N

    2010-06-01

    The applicability of azopolymers in optical storage can be extended through the use of nanostructured films produced with the Langmuir-Blodgett (LB) technique, but the film properties need to be optimized since these polymers generally do not form stable Langmuir films to be transferred onto solid substrates. Here, photoinduced birefringence was investigated for mixed Langmuir-Blodgett films from the homopolymers 4-[N-ethyl-N-(2-methacryloxyethyl)]-4'-nitroazobenzene (HPDR1-MA) and poly(dodecylmethacrylate) (HPDod-MA). The interactions between these polymers were studied in Langmuir and LB films. Surface pressure-area isotherms pointed to molecular-level interactions for proportions of 51 mf%, 41 mf% and 31 mf% of HPDR1-MA. Phase segregation was not apparent in the BAM images, in which the morphology of the blend film was clearly different from that of the Langmuir films of neat homopolymers. Through PM-IRRAS, we noted that the interaction between the azopolymer and HPDod-MA affected the orientation of carbonyl groups. Strong interactions for the mixture with 41 mf% of poly(dodecylmethacrylate) led to stable Langmuir films that were transferred onto solid supports as LB films. The photoinduced birefringence of 101-layer mixed LB films show features that make these films useful for optical storage, with the advantage of short writing times in comparison to other azopolymer films.

  12. Langmuir-Blodgett and Langmuir-Schaefer films of homoleptic and heteroleptic phthalocyanine complexes as voltammetric sensors:. Applications to the study of antioxidants

    NASA Astrophysics Data System (ADS)

    Casilli, Serena; De Luca, Mariangela; Apetrei, Constantin; Parra, Vicente; Arrieta, Álvaro A.; Valli, Ludovico; Jiang, Jianzhuang; Rodríguez-Méndez, María L.; De Saja, José A.

    2005-06-01

    Double- and triple-decker phthalocyanine derivatives have been successfully used as the sensitive materials for liquid electrochemical sensors. The materials include homoleptic and heteroleptic phthalocyanine complexes formed by phthalocyanine, porphyrin and naphthalocyanine rings. A high degree of cross-selectiviy towards antioxidant compounds (including vannilic acid, pyrogallol, ascorbic acid and catechin) has been attained by using different phthalocyanine complexes. The features observed in the cyclic voltammograms reflect the rich electrochemistry of either the phthalocyanine molecules or the studied solutions. In consequence, each sensor shows a selective response to the antioxidant analysed. The obtained voltammograms from by using highly ordered electrodes prepared using the Langmuir-Blodgett (LB) or the Langmuir-Schaefer (LS) techniques show better resolution and stability than those of disordered electrodes prepared by casting. For this reason, ordered films have been chosen to construct an array of liquid sensors. The principal component analysis (PCA) of the obtained signals has allowed that a clear discrimination of the antioxidant solutions be achieved. The rich and varied responses produced by antioxidant molecules evidences that voltammetric electrodes based on phthalocyanines, are especially suitable for the analysis of compounds with electrochemical activity.

  13. Photocatalytic decomposition of an alkylammonium cation in a Langmuir-Blodgett film of a titania nanosheet.

    PubMed

    Umemura, Yasushi; Shinohara, Emi; Koura, Akihiro; Nishioka, Terumichi; Sasaki, Takayoshi

    2006-04-11

    The formation of inorganic-organic hybrid films of a titania nanosheet and an amphiphilic alkylammonium cation has been investigated, and the photocatalytic decomposition of the alkylammonium cation in the film has been pursued. When a solution of the amphiphilic alkylammonium salt (octadecylammonium chloride: ODAH+ Cl-) was spread on an interface between the air and a titania nanosheet suspension, the negatively charged nanosheets were adsorbed onto the floating monolayer of ODAH+ to form a hybrid monolayer. The hybridization was confirmed by pi-A isotherm measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. Multilayered films were fabricated in a layer-by-layer way by transferring the hybrid monolayers onto glass plates. Areas per ODAH+ cation in the films were estimated from the infrared (IR) spectra of the films, but these areas were smaller than those estimated from the pi-A isotherm curves. The orientation of the alkyl chain of ODAH+ in the hybrid film was determined by means of polarized IR spectroscopy. The alkyl chains were tilted 41 +/- 1 degrees and 47 +/- 1 degrees from the surface normal for the films prepared from the 8 and 20 ppm (ppm = mg dm(-3)) suspensions, respectively. Together with X-ray diffraction data of the films, the structure of the hybrid film was discussed. When the films were illuminated with a UV light, the absorption intensities due to the alkyl chain of ODAH+ decreased exponentially, indicating the photocatalytic decomposition of ODAH+ by the titania nanosheets in the films. Deviation from the exponential trend in the decomposition rate was observed in the initial period for the hybrid films prepared from the suspensions at low concentrations. Interestingly, the layered structure of the hybrid film was disturbed significantly after the ODAH+ cations were decomposed.

  14. Thickness and energy dependence of secondary ion emissions from Langmuir Blodgett films

    NASA Astrophysics Data System (ADS)

    Hoshi, T.; Yoshida, S.; Watanabe, T.; Ichinohe, Y.; Kudo, M.

    1999-04-01

    Using Cd arachidate films formed on Ag and Si substrates, secondary ion intensities were investigated by TOF-SIMS. The intensities of [M+H] +, [M+Cd] + and Ag cationized ions from samples on the Ag and Si substrates were found to change as a function of LB film thickness, as well as the primary beam energy. The intensities of [M+H] + and [M+Cd] + were seen to be (1) the highest at a one-layer LB film, (2) to decrease as the LB film becomes thicker, (3) change slightly with the primary ion beam energy. On the other hand, the intensities of Ag cationized secondary ions were almost constant with the changes of LB thickness and the energy of the primary ion beam, after normalized by Ag + intensity. The results were discussed in terms of the energy transfer of the primary beam to the LB films, the property of the substrate materials, and the strength of chemical bondings.

  15. A Langmuir Blodgett film presenting a ferromagnetic state below 25 K

    NASA Astrophysics Data System (ADS)

    Lafuente, C.; Mingotaud, C.; Delhaes, P.

    1999-03-01

    A positively charged monolayer spread on a sub-phase containing copper hexacyanoferrate leads to hybrid inorganic-organic LB films. Those multilayers present a spin ordering below 25 K. The Curie temperature of the LB films is found to be independent of the multilayer thickness. Their magnetization is clearly proportional to the number of transferred layers, demonstrating that the deposition process is perfectly regular. These results show that a bulk ferromagnetic behavior can be observed in this hybrid material, even if the distance between magnetic layers is considered as large.

  16. Cognition and order in Langmuir-Blodgett films of a 3-hexadecyl pyrrole and ferrocene-derivatized pyrrole mixed monolayer system

    SciTech Connect

    Samuelson, L.; Rahman, A.K.M.; Puglia, G.P.; Clough, S.; Tripathy, S.; Inagaki, T.; Yang, X.Q.; Skotheim, T.A.; Okamoto, Y.

    1989-01-01

    Novel, self-assembled materials have been designed and produced from first principle to possess unique structural hierarchy and electronic and optical properties. The Langmuir-Blodgett technique was used to study the molecular organization of a mixed 3-hexadecyl pyrrole (3HDP) and ferrocene-derivatized pyrrole (Fc-Py) surfactant system. The pyrrole moiety was chosen for its' well established electronic and optical properties when polymerized, while ferrocene, it is theorized, if properly oriented into a Langmuir-Blodgett monolayer film may show a layered array of transition metals which would be extremely valuable as a model for two-dimensional magnets. The ferrocene group may also provide the possibility of charge coupling between neutral ferrocene and oxidized ferricenium which could be controlled electrochemically or photochemically. It has been determined that stable monolayer films of the mixed system could be formed at the air-water interface. The growth and assembly process led to polypyrrole 2-D lattices with heretofore unsurpassed order. In fact, the process of template polymerization leads to a new crystal phase for the polypyrrole component of the thin film structure. Various monolayer and multilayer films were prepared on platinum coated substrates for surface spectroscopic characterization using synchrotron radiation. Near Edge X-Ray Absorption Fine Structure studies revealed that highly ordered multilayer structures are being formed. 8 refs., 4 figs., 1 tab.

  17. Langmuir-Blodgett films of fluorinated glycolipids and polymerizable lipids and their phase separating behavior.

    PubMed

    Scheibe, Patrick; Schoenhentz, Jerome; Platen, Tobias; Hoffmann-Röder, Anja; Zentel, Rudolf

    2010-12-07

    This paper describes the phase separating behavior of Langmuir monolayers from mixtures of different lipids that (i) either carry already a glycopeptide recognition site or can be easily modified to carry one and (ii) polymerizable lipids. To ensure demixing during compression, we used fluorinated lipids for the biological headgroups and hydrocarbon based lipids as polymerizable lipids. As a representative for a lipid monomer, which can be polymerized in the hydrophilic headgroup, a methacrylic monomer was used. As a monomer, which can be polymerized in the hydrophobic tail, a lipid with a diacetylene unit was used (pentacosadiynoic acid, PDA). The fluorinated lipids were on the one hand a perfluorinated lipid with three chains and on the other hand a partially fluorinated lipid with a T(N)-antigen headgroup. The macroscopic phase separation was observed by Brewster angle microscopy, whereas the phase separation on the nanoscale level was observed by atomic force microscopy. It turned out that all lipid mixtures showed (at least) a partial miscibility of the hydrocarbon compounds in the fluorinated compounds. This is positive for pattern formation, as it allows the formation of small demixed 2D patterned structures during crystallization from the homogeneous phase. For miscibility especially a liquid analogue phase proved to be advantageous. As lipid 3 with three fluorinated lipid chains (very stable monolayer) is miscible with the polymerizable lipids 1 and 2, it was mostly used for further investigations. For all three lipid mixtures, a phase separation on both the micrometer and the nanometer level was observed. The size of the crystalline domains could be controlled not only by varying the surface pressure but also by varying the molar composition of the mixtures. Furthermore, we showed that the binary mixture can be stabilized via UV polymerization. After polymerization and subsequent expansion of the barriers, the locked-in polymerized structures are stable

  18. Comparative Study of the Behavior of Bathophenanthroline in the Restricted Geometry of Langmuir-Blodgett Film with Two Different Fatty Acids

    NASA Astrophysics Data System (ADS)

    Nath, Jayasree; Deb, Subrata; Chakrabarti, Adrita; Pal, Ajitesh; Nath, Ranendu Kumar

    2014-12-01

    This communication reports the successful fabrication and the comparative study of Langmuir and Langmuir-Blodgett (LB) films of nonamphiphilic phenanthrene derivative, 1, 10 phenanthroline (bathophenanthroline) (BATH), when incorporated to a long chain fatty acid viz. heptadecanoic acid and stearic acid. Measurements of compressibility modulus from the surface pressure versus area per molecule isotherm indicate that the mixed film of BATH and SA is harder than that with HA. The plot of area per molecule versus mole fraction is the indication of some repulsive interactions between binary components of the mixed monolayer which facilitates the formation of aggregates. UV-Vis absorption spectroscopy and steady-state fluorescence spectroscopy confirms the formation of microcrystalline aggregates in the mixed LB films. Scanning electron microscopic study supports this observation. The dependence of various LB parameters in the mixed films such as mole fraction, number of layers and surface pressure of lifting have also been investigated in the light of electronic absorption spectroscopy.

  19. Immobilization of urease on poly(N-vinyl carbazole)/stearic acid Langmuir-Blodgett films for application to urea biosensor.

    PubMed

    Singhal, Rahul; Gambhir, Anamika; Pandey, M K; Annapoorni, S; Malhotra, B D

    2002-08-01

    Urease was immobilized in mixed monolayers of poly(N-vinyl carbazole) (PNVK) and stearic acid (SA) formed at an air-water interface. The monolayers were transferred onto indium-tin-oxide (ITO) coated glass plates using Langmuir-Blodgett (LB) film deposition technique. Urease immobilized on PNVK/SA LB films, characterized using FTIR and UV-visible spectroscopy, was found to exhibit increased stability over a wide pH (6.5-8.5) and temperature (25-50 degrees C) range. Potentiometric measurements on these urease electrodes were carried out using an ammonium ion analyzer. Two values for K(m)(app) were obtained at lower and higher concentrations of substrate urea.

  20. Synergy between polyaniline and OMt clay mineral in Langmuir-Blodgett films for the simultaneous detection of traces of metal ions.

    PubMed

    de Barros, Anerise; Ferreira, Mariselma; Constantino, Carlos José Leopoldo; Bortoleto, José Roberto Ribeiro; Ferreira, Marystela

    2015-04-01

    We report on Langmuir-Blodgett (LB) films made with emeraldine salt polyaniline (PAni-ES) and organophilic montmorillonite clay mineral (OMt), where synergy between the components was reached to yield an enhanced performance in detecting trace levels of cadmium (Cd(2+)), lead (Pb(2+)) and copper (Cu(2+)). Detection was carried out using square wave anodic stripping (SWAS) voltammetry with indium tin oxide (ITO) electrodes modified with LB films of PAni-ES/OMt nanocomposite, whose data were compared to those obtained with electrodes coated with neat PAni-ES and neat OMt LB films. The enhanced performance in the nanocomposite may be attributed to the stabilizing and ordering effect promoted by OMt in PAni-ES Langmuir films, which then led to more homogeneous LB films. According to X-ray diffraction data, the stacking of OMt layers was preserved in the LB films and therefore the PAni-ES chains did not cause clay mineral exfoliation. Instead, OMt affected the polaronic state of PAni-ES as indicated in UV-vis, Raman and FTIR spectra, also consistent with the changes observed for the Langmuir films. Taken together these results do indicate that semiconducting polymers and clay minerals may be combined for enhancing the electrical properties of nanostructures for sensing and related applications.

  1. Hybrid Langmuir and Langmuir-Blodgett films of a viologen derivative and TCNQ in a mixed valence state: preparation route and characterization

    NASA Astrophysics Data System (ADS)

    Martín, Santiago; Cea, Pilar; Lafuente, Carlos; Royo, Félix M.; López, María. C.

    2004-08-01

    Hybrid Langmuir and Langmuir-Blodgett (LB) films containing two moieties of great chemical and electrochemical interest, namely a viologen derivative and tetracyanoquinodimethane (TCNQ) in a mixed valence state, were fabricated. To do so, positively ionized monolayers of 1,1 '-dioctadecyl 4,4 '-bipyridilium were prepared onto aqueous solutions of tetracyanoquinodimethane in a mixed valence state. Surface pressure vs. area ( π- A), surface potential vs. area (Δ V- A), and Brewster angle microscope (BAM) images were recorded and interpreted in terms of molecular interactions as well as the incorporation of the hydrophobic anions into the monolayer. After a comprehensive study, a 10 -6 M TCNQ aqueous solution was chosen as the best one to build hybrid LB films. Thus, the floating films were transferred onto solid substrates that were characterized using several techniques including ultraviolet-visible (UV-vis), infrared (IR), scanning electron microscopy (SEM), and atomic force microscopy (AFM) proving the incorporation of the TCNQ onto the film. These films show a good optical conductivity as well as a high degree of order and layers with a constant architecture.

  2. The effects of chain number and state of lipid derivatives of nucleosides on hydrogen bonding and self-assembly through the investigation of Langmuir Blodgett films

    NASA Astrophysics Data System (ADS)

    Jin, Yiguang; Qiao, Yingxin; Hou, Xinpu

    2006-09-01

    The long-chain lipid derivatives of acyclovir—a nucleoside analogue were used to prepare Langmuir-Blodgett (LB) films, including the single-chained derivative (SGSA) and the double-chained derivative (DASA). The bilayer LB film of DASA or the SGSA/cholesterol (SGSA/Chol) mixture (1:1, mol/mol) on quartz plates was investigated with ultraviolet absorption spectroscopy, and the blue-shifted absorption with 4 nm (DASA) or 18 nm (SGSA/Chol) wavelength changes was observed in comparison with their solutions in chloroform. The rigid double chains of DASA prevented adjacent molecules from approach, while the flexible single chains of SGSA did not. Then the strength of intermolecular hydrogen bonding between the nucleoside moieties of DASA was much more weaker than one of SGSA, and their blue-shifted wavelength in LB films was different. DASA and SGSA/Chol also showed the different bilayer LB films on mica according to the atomic force microscopic observation. The former was prone to tilting on solid supports while the latter would like to stand vertically with the help of cholesterol that could insert into the flexible single chains of SGSA. The chain number (one or two) and state (flexible or rigid) of lipid derivatives of nucleosides strongly impact intermolecular hydrogen bonding and self-assembly behavior.

  3. Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito

    2016-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir-Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP-C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.

  4. Rhodanese incorporated in Langmuir and Langmuir-Blodgett films of dimyristoylphosphatidic acid: Physical chemical properties and improvement of the enzyme activity.

    PubMed

    de Araújo, Felipe Tejada; Caseli, Luciano

    2016-05-01

    Preserving the catalytic activity of enzymes immobilized in bioelectronics devices is essential for optimal performance in biosensors. Therefore, ultrathin films in which the architecture can be controlled at the molecular level are of interest. In this work, the enzyme rhodanese was adsorbed onto Langmuir monolayers of the phospholipid dimyristoylphosphatidic acid and characterized by surface pressure-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The incorporation of the enzyme (5% in mol) in the lipid monolayer expanded the film, providing small surface domains, as visualized by BAM. Also, amide bands could be identified in the PM-IRRAS spectra, confirming the presence of the enzyme at the air-water interface. Structuring of the enzyme into α-helices was identified in the mixed monolayer and was preserved when the film was transferred from the liquid interface to solids supports as Langmuir-Blodgett (LB) films. The enzyme-lipid LB films were then characterized by fluorescence spectroscopy, PM-IRRAS, and atomic force microscopy. Measurements of the catalytic activity towards cyanide showed that the enzyme accommodated in the LB films preserved more than 87% of the enzyme activity in relation to the homogeneous medium. After 1 month, the enzyme in the LB film maintained 85% of the activity in contrast to the homogeneous medium, which 24% of the enzyme activity was kept. The method presented in this work not only points to an enhanced catalytic activity toward cyanide, but also may explain why certain film architectures exhibit an improved performance.

  5. Triggered J-aggregation in mixed Langmuir-Blodgett films of amphiphilic spiropyran having a methoxy group at the 5' position and an azobenzene derivative.

    PubMed

    Kawasaki, Hisashi; Tozawa, Shinnosuke; Matani, Takashi; Hayashi, Toshihiro; Watanabe, Satoshi; Shibata, Hirobumi; Matsumoto, Mutsuyoshi

    2014-01-01

    Here, we describe the formation of J-aggregates triggered by isomerization of an azobenzene derivative, N-[p-[(p-dodecylphenylazo)phenyloxy]dodecylpyridinium bromide (AzP), in mixed Langmuir-Blodgett (LB) films that contain an amphiphilic spiropyran with a methoxy group at the 5' position, MeO-SP1822. Pure LB films of MeO-SP1822 consist of multilayer domains embedded in a monolayer. UV irradiation of the films causes the isomerization of MeO-SP1822 to its merocyanine form, MeO-MC1822. Pure LB films of AzP comprise finger-like domains and granular domains. Irradiating mixed films of MeO-SP1822 and AzP with alternating UV and visible light causes J-aggregation of MeO-MC1822, with the amount of J-aggregates reaching a maximum at a 1:1 molar ratio. J-aggregation occurs in flat finger-like structures originating in the AzP-rich granular domains that are located on top of the MeO-MC1822-rich multilayer domains. J-aggregates are also present under the AzP-rich granular domains, though these domains do not serve as nucleation sites for the finger-like structures. We propose that granular domains serving as nucleation sites are partially buried in the multilayer domains, whereas those triggering the J-aggregation of MeO-MC1822 under the granular domains are situated on top of the multilayer domains.

  6. Long-range excitation energy transfer in Langmuir-Blodgett multilayer systems

    NASA Astrophysics Data System (ADS)

    Draxler, Sonja; Lippitsch, Max E.; Aussenegg, Franz R.

    1989-07-01

    In Langmuir-Blodgett films containing organic dyes, efficient energy transfer over distances exceeding 100 nm is observed. This exceptionally long-range transfer is interpreted as due to special mutual orientation of the dye molecules.

  7. External electric field effect on interlayer vectorial electron transfer from photoexcited oxacarbocyanine to viologen in Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Ito, Takashi; Yamazaki, Iwao; Ohta, Nobuhiro

    1997-10-01

    Photoinduced interlayer electron transfer from the excited state of oxacarbocyanine (OCC) to viologen (VIO) is depressed or enhanced by an external electric field, depending on the direction of applied electric fields, in a donor-acceptor system composed of mixed monolayers of OCC and mixed monolayers of VIO separated by a spacer layer of fatty acid. As a result, field-induced increase and decrease of the quantum yield of OCC fluorescence are observed in the molecular assemblies of LB films.

  8. Formation and characterization of Langmuir and Langmuir-Blodgett films of Newkome-type dendrons in presence and absence of a therapeutic compound, for the development of surface mediated drug delivery systems.

    PubMed

    Dib, Nahir; Reviglio, Ana Lucia; Fernández, Luciana; Morales, Gustavo; Santo, Marisa; Otero, Luis; Alustiza, Fabrisio; Liaudat, Ana Cecilia; Bosch, Pablo; Calderón, Marcelo; Martinelli, Marisa; Strumia, Miriam

    2017-06-15

    Organic macromolecules with dendrimeric architectures are polymeric materials potentially useful as nanocarriers for therapeutic drugs. In this work, we evaluate a series of Newkome-type dendrons in Langmuir and Langmuir-Blodgett films as platforms capable of interacting with a potential antitumoral agent. The nanocomposite is proposed as model for the development of surface mediated drug delivery systems. We were successful in the formation and characterization of pure (dendrons) and composite (drug-dendron) stable and reproducible monolayers, and their transfer to solid substrates. A detailed study of topographic characteristics of the generated surfaces by atomic force microscopy was conducted. Furthermore, we probed dendron monolayer films as anchorage surfaces for mammalian cells. Normal cell attachment and proliferation on the surfaces were observed. No evident cytotoxic effects were detected, demonstrating the adequate biocompatibility of the surfaces.

  9. Fabrication and spectroscopic characterization of Langmuir-Blodgett films with luminescent rare earth complexes of long chain double functional ligands mono-L phthalate (L = hexadecyl, octadecyl and eicosyl).

    PubMed

    Yan, Bing; Xu, Bing

    2009-07-01

    In this paper, some novel long chain amphiphillic monoester molecules were designed to afford double functions: film-formation ability and luminescent sensitization ability. Subsequently organized molecular films of rare earth complexes with these functional ligands formulated as ML2NO3 were fabricated by the Langmuir-Blodgett film (LB) technology, where RE denotes rare earth ions Eu3+, Tb3+ and Dy3+; L denotes the long chain carboxylic ligands monohexadecyl phthalate (16-Phth), monooctadecyl phthalate (18-Phth) and monoeicosyl phthalate (20-Phth). The average molecular area was obtained according to the pi-A isotherms. The layer structure of the LB films was demonstrated by low-angle X-ray diffraction and the average layer spacing was determined from the Bragg equation. UV absorption intensity increases linearly with the number of LB films layers, which indicates that the LB films are homogeneously deposited. The fluorescence spectra of these LB films were quite different from those of their solid complexes. It reveals that the long chain ester ligands are suitable for the excited states of Tb3+ and Dy3+ in the LB films as well as in the solid complexes, but not match with the europium ion in the LB films.

  10. Structural investigation of Langmuir and Langmuir-Blodgett monolayers of semifluorinated alkanes.

    PubMed

    Dynarowicz Łatka, Patrycja; Pérez-Morales, Marta; Muñoz, Eulogia; Broniatowski, Marcin; Martín-Romero, María T; Camacho, Luis

    2006-03-30

    The behavior of a semi-fluorinated alkane (C(10)F(21)C(19)H(39)) has been studied at the air-water interface by using surface pressure and surface potential-area isotherms as well as infrared spectroscopy for the Langmuir-Blodgett films. In addition, based on the quantum chemical PM3 semiempirical approach, the dimer structure was investigated, and the double helix was found to be the most stable conformation of the dimer. The obtained results allow us to imply that the phase transition observed in the course of the surface pressure/area isotherm is due to a conformational change originating from the double helix to a vertical, single helix configuration.

  11. Supramolecular assembly and nanostructures of a series of luminol derivatives with aromatic/alkyl substituted groups in Langmuir-Blodgett films.

    PubMed

    Jiao, Tifeng; Xing, Yuanyuan; Zhang, Qingrui; Zhang, Li; Liu, Minghua; Zhou, Jingxin; Gao, Faming

    2014-06-01

    A series of functional luminol derivatives with aromatic and alkyl substituted groups has been designed and synthesized from the reaction of the corresponding chloride precursors with luminol. These compounds can be spread on water surface to form stable Langmuir films at the air-water interface. It has been found that UV and IR spectra confirmed the characteristic aromatic segment, imide group, and aromatic/alkyl substituted groups. In addition, for the interfacial assembly process of compounds with alkyl substituted groups, there are obvious spectral changes for the alkyl chains. AFM results indicated that various different aggregated domains may be fabricated in the transferred LB films. For all cases, the substituted groups in molecular structures have an important effect in regulating the aggregation mode and spectral changes in organized molecular films. The present results showed that the modified luminol derivatives may have potential application in functional material fields such as ECL sensor, which may give some insight to study the relationship between the molecular structures and supramolecular aggregation of amphiphiles in organized molecular films.

  12. Influence of heat treatment in air, and subsequent hydrothermal treatment in the liquid phase or water treatment in the liquid phase on a mixed Langmuir-Blodgett film of merocyanine dye-arachidic acid- n-octadecane ternary system

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshiaki; Maio, Ari; Fukuda, Akira; Kitahama, Yasutaka; Ozaki, Yukihiro

    2010-07-01

    We have investigated the influence of heat treatment in air (HT), and subsequent hydrothermal treatment in the liquid phase (HTTL) or water treatment in the liquid phase (WTL) on the H-aggregate of mixed Langmuir-Blodgett (LB) films of merocyanine dye (MS 18)-arachidic acid (C 20)- n-octadecane (AL 18) ternary system by means of polarized visible and IR absorption spectroscopy. The MS 18 monomer is obtained from the first application of HT to the H-aggregate, and the monomer rapidly changes into the J-aggregate upon subsequent HTTL. This demonstrates variation via the monomer for reorganization of the MS 18 chromophore from H- to J-aggregates induced by directly performing HTTL to the H-aggregate in our previous study. While the number of gauche conformers in the MS 18 hydrocarbon chain increases by initial HT, the hydrocarbon chain adopts an all- trans conformation after subsequent HTTL. In addition, the degree of orientation of the MS 18 hydrocarbon chain after HT also approximates to that before HT. The C 20 hexagonal packing after HT turns to orthorhombic one with subsequent HTTL, and the orientation disorder of C 20 hydrocarbon chain caused by HT is renovated as well. The structural changes in the MS 18 and C 20 hydrocarbon chains resulting from latter HTTL arise from the hydrophobic effect in the presence of warm water. Moreover, it has been verified that the AL 18 evaporation strongly relates to the dissociation of H-aggregate, but is not responsible for the variation from the monomer to J-aggregate. Comparing the results obtained upon application of HT/HTTL and HT/WTL, it has been concluded that both large relative permittivity and thermal energy inherent in warm water are quite essential in inducing the rapid reconstitution of MS 18 aggregation state from the monomer to J-aggregate. These also promote the restoration of conformation and orientation changes in the MS 18 hydrocarbon chain, and the modification of subcell packing and orientation disorder in

  13. Dynamics Simulation of Langmuir-Blodgett Films

    DTIC Science & Technology

    1990-04-01

    of water. During the dynamics simulation, theposition of the water molecules are frozen. A 1515 edge effect as shown in Fig. 4: the tilts for...temperature, I.e. 300K, by gradually assigning random understand. The strong edge effect makes it necessary to iintroduce periodic boundaries In future

  14. Calorimetry and Langmuir-Blodgett studies on the interaction of a lipophilic prodrug of LHRH with biomembrane models.

    PubMed

    Sarpietro, Maria G; Accolla, Maria L; Santoro, Nancy; Mansfeld, Friederike M; Pignatello, Rosario; Toth, Istvan; Castelli, Francesco

    2014-05-01

    The interaction between an amphiphilic luteinizing hormone-releasing hormone (LHRH) prodrug that incorporated a lipoamino acid moiety (C12-LAA) with biological membrane models that consisted of multilamellar liposomes (MLVs) and phospholipid monolayers, was studied using Differential Scanning Calorimetry (DSC) and Langmuir-Blodgett film techniques. The effect of the prodrug C12[Q1]LHRH on the lipid layers was compared with the results obtained with the pure precursors, LHRH and C12-LAA. Conjugation of LHRH with a LAA promoiety showed to improve the peptide interaction with biomembrane models. Basing on the calorimetric findings, the LAA moiety aided the transfer of the prodrug from an aqueous solution to the biomembrane model.

  15. Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly

    PubMed Central

    Kaur, Harneet; Yadav, Sandeep; Srivastava, Avanish. K.; Singh, Nidhi; Schneider, Jörg J.; Sinha, Om. P.; Agrawal, Ved V.; Srivastava, Ritu

    2016-01-01

    Phosphorene is a recently new member of the family of two dimensional (2D) inorganic materials. Besides its synthesis it is of utmost importance to deposit this material as thin film in a way that represents a general applicability for 2D materials. Although a considerable number of solvent based methodologies have been developed for exfoliating black phosphorus, so far there are no reports on controlled organization of these exfoliated nanosheets on substrates. Here, for the first time to the best of our knowledge, a mixture of N-methyl-2-pyrrolidone and deoxygenated water is employed as a subphase in Langmuir-Blodgett trough for assembling the nanosheets followed by their deposition on substrates and studied its field-effect transistor characteristics. Electron microscopy reveals the presence of densely aligned, crystalline, ultra-thin sheets of pristine phosphorene having lateral dimensions larger than hundred of microns. Furthermore, these assembled nanosheets retain their electronic properties and show a high current modulation of 104 at room temperature in field-effect transistor devices. The proposed technique provides semiconducting phosphorene thin films that are amenable for large area applications. PMID:27671093

  16. Modeling success and failure of Langmuir-Blodgett transfer of phospholipid bilayers to silicon dioxide.

    PubMed Central

    Osborn, T D; Yager, P

    1995-01-01

    Formation of planar phospholipid bilayers on solid and porous substrates by Langmuir-Blodgett transfer of monolayers from the air-water interface could be of much greater utility if the process were not irreproducible and poorly understood. To that end the energetics of transferring two phospholipid monolayers to a hydrophilic surface has been examined. An approximate mathematical relationship is formulated that relates the surface pressure of the precursor monolayers to the tension within the bilayer created. Data are presented that demonstrate that bilayer transfer can be carried out reproducibly even with refractory phospholipids such as phosphatidylcholine, but only over a very narrow range of precursor monolayer surface pressures. This range is related to the lysis tension of the bilayer. The morphology of films formed within and below the successful range of surface pressures are examined by fluorescence microscopy, and the observed features are discussed in terms of the relationship above. These results provide practical guidelines for successful formation of lipid bilayers on hydrophilic surfaces; these guidelines should prove useful for research into the properties of biomembranes and for development of bilayer-based biosensors. Images FIGURE 4 FIGURE 5 PMID:7540429

  17. Distance dependence of surface-enhanced resonance raman enhancement in Langmuir-Blodgett dye multilayers

    SciTech Connect

    Cotton, T.M.; Uphaus, R.A.; Moebius, D.

    1986-11-06

    Monolayers of a surface-active dye incorporated into inert matrix material were transferred onto structurally defined silver island films by the Langmuir-Blodgett technique. The dye-containing monolayers were spaced from the surface by accurately known increments by deposition of inert spacer monolayers. Surface-enhanced resonance Raman spectra were observed from dye molecules spaced as distant as six spacer increments (ca. 16 nm) from the silver surface. These results indicate an electromagnetic mechanism is operative in this system in contradiction to a chemical mechanism which would require direct contact between the Raman-active species and the metal surface.

  18. The Shear Properties of Langmuir-Blodgett Layers

    NASA Astrophysics Data System (ADS)

    Briscoe, B. J.; Evans, D. C. B.

    1982-04-01

    The sliding friction between two highly oriented monolayers has been studied by using molecularly smooth mica substrates in the form of contacting orthogonal cylinders. The monolayers in the form of various normal alipathic carboxylic acids and their soaps were deposited with the aid of the Langmuir-Blodgett technique by transfer from aqueous substrates. The normal alkyl group has been varied in length from 14 to 22 methylene repeat units. Data are reported also on the influence of partial saponification of the carboxylic acid and fluorination of the alkyl chain. Most of the investigation has been confined to two contacting single monolayers although a limited amount of data is presented for multilayers sliding over one another. The character of the sliding motion depends not only on the machine but also on the monolayers, particularly their chemistry. Most of the monolayers studied provide a continuous rate of energy dissipation. However, a small number, such as certain soaps, show discontinuous or stick-slip motion. The experimental arrangement allows simultaneous measurement of the sliding frictional force, contact area and film thickness to be made during sliding. In some experiments this friction is the monotonic sliding friction but in others it is the mean maximum value during the stick phase. The film thickness measurement is accurate to 0.2 mm which allows a precise assessment of the shear plane during sliding. In all cases the monolayers and multilayers were found to be extremely durable and shear invariably occurred at the original interface between the monolayers. The sliding friction data are presented as the dynamic specific friction force or interface shear strength, and a number of contact variables have been examined. These include the applied normal load per unit contact area or mean contact pressure, the temperature and the sliding velocity. The interface shear strength is found, to a good approximation, to increase linearly with mean contact

  19. Comparison of host-guest Langmuir-Blodgett multilayer formation by two different amphiphilic cyclodextrins

    SciTech Connect

    Parazak, D.P.; Khan, A.R.; D`Souza, V.T.; Stine, K.J.

    1996-08-07

    We report here our results for Langmuir monolayers of the derivatives of cyclodextrin shown: hexakis(6-deoxy-6-dodecylamino)-{alpha}-cyclodextrin (1a), heptakis(6-deoxy-6-dodecylamino)-{beta}-cyclodextrin (1b), and heptakis(6-deoxy-6-dodecylthio)-{beta}-cyclodextrin (2b ), which was found to be partially substituted. Langmuir films of these derivatives were examined using {Pi}-A isotherm measurements and Brewster angle microscopy. Langmuir-Blodgett (LB) multilayer films of these derivatives were deposited from subphases containing p-nitrophenol to determine the extent of incorporation of the guest molecule in the LB film. The transfer ratios of the film exhibited a noteworthy evolution with the transfer pressure. The variation in the extent of guest molecule incorporation is discussed and compared with the binding behavior in solution of unmodified cyclodextrins. 29 refs., 4 figs.

  20. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization.

    PubMed

    Tsai, Ping-Szu; Yang, Yu-Min; Lee, Yuh-Lang

    2007-11-21

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 µm/50 nm, 1.0 µm/50 nm, and 0.5 µm/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 µm>1.0 µm>1.5 µm. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

  1. Nanopatterned cadmium selenide Langmuir-Blodgett platform for leukemia detection.

    PubMed

    Sharma, Aditya; Pandey, Chandra M; Matharu, Zimple; Soni, Udit; Sapra, Sameer; Sumana, Gajjala; Pandey, Manoj K; Chatterjee, Tathagat; Malhotra, Bansi D

    2012-04-03

    We present results of the studies relating to preparation of Langmuir-Blodgett (LB) monolayers of tri-n-octylphosphine oxide-capped cadmium selenide quantum dots (QCdSe) onto indium-tin oxide (ITO) coated glass substrate. The monolayer behavior has been studied at the air-water interface under various subphase conditions. This nanopatterned platform has been explored to fabricate an electrochemical DNA biosensor for detection of chronic myelogenous leukemia (CML) by covalently immobilizing the thiol-terminated oligonucleotide probe sequence via a displacement reaction. The results of electrochemical response studies reveal that this biosensor can detect target DNA in the range of 10(-6) to 10(-14) M within 120 s, has a shelf life of 2 months, and can be used about 8 times. Further, this nucleic acid sensor has been found to distinguish the CML-positive and the control negative clinical patient samples.

  2. Lipid reassembly in asymmetric Langmuir-Blodgett/Langmuir-Schaeffer bilayers.

    PubMed

    Yuan, Jie; Hao, Changchun; Chen, Maohui; Berini, Pierre; Zou, Shan

    2013-01-08

    Molecular-reorganization-induced morphology alteration in asymmetric substrate-supported lipid bilayers (SLBs) was directly visualized by means of atomic force microscopy (AFM) and total internal reflection fluorescence (TIRF) microscopy. SLB samples were fabricated on mica-on-glass and glass substrates by Langmuir-Blodgett (LB)/Langmuir-Schaeffer (LS) using binary lipid mixtures, namely, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and ternary mixtures DOPC/DPPC/1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), labeled with 0.2 mol % Texas Red 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt (TR-DHPE) dye. Phase segregations were characterized by TIRF imaging, and DPPC-enriched domain structures were also observed. Interestingly for ∼40% (n = 6) of the samples with binary mixtures in the LB leaflet and a single component in the LS leaflet, that is, (DOPC/DPPC)(LB)+DOPC(LS), the contrast of the DPPC domains changed from the original dark (without dye) to bright (more TR dye partitioning) on TIRF images, returning to dark again. This contrast reverse was also correlated to AFM height images, where a DPPC-DPPC gel phase was spotted after the TIRF image contrast returned to dark. The rupture force mapping results measured on these binary mixture samples also confirmed unambiguously the formation of DPPC-DPPC gel domain components during the contrast change. The samples were tracked over 48 h to investigate the lipid molecule movements in both the DPPC domains and the DOPC fluid phase. The fluorescence contrast changes from bright to dark in SLBs indicate that the movement of dye molecules was independent of the movement of lipid molecules. In addition, correlated multimodal imaging using AFM, force mapping, and fluorescence provides a novel route to uncover the reorganization of lipid molecules at the solid-liquid interface, suggesting that the dynamics of dye molecules is highly

  3. Surface Patterns of Tetragonal Phase FePt Thin Films from Pt{at}Fe2O3 Core-Shell Nanoparticles Using Combined Langmuir-Blodgett and Soft Lithographic Techniques

    SciTech Connect

    Guo, Q.; Teng, X.; Yang, H.

    2003-09-30

    OAK B204 We present the fabrication of micron-sized patterns of FePt thin films from Pt{at}Fe2O3 core-shell nanoparticles. In a typical procedure, Pt@Fe2O3 core-shell nanoparticles were spread and formed a Langmuir film using water as the subphase. This film was lifted onto polydimethylsiloxane (PDMS) stamps with micron-sized patterns of lines, dots and wells, and transferred onto silicon wafers using microcontact printing (u-CP). The patterns of Pt@Fe2O3 core-shell nanoparticles were converted into face-centered tetragonal phase FePt alloy at enhanced temperatures in the presence of 5% hydrogen. Scanning electron microscopy (SEM), atomic force microscopy (AFM), powder X-ray diffraction (PXRD) and superconducting quantum interference device (SQUID) magnetometer were used to characterize the patterns and the properties of the final FePt alloy films.

  4. Atomic force microscopy for the study of specially prepared surfaces including transferred Langmuir-Blodgett layers. Final report

    SciTech Connect

    Dr. J. D. Miller

    1999-06-02

    During the past four years a major number of surface science research programs in the Department of Metallurgical Engineering at the University of Utah have involved the use of the Atomic Force Microscope (AFM) and the Langmuir-Blodgett (LB) film balance procured with financial assistance from DOE under grant number DE-FG03-96ER76049. These instruments have been used for research in the areas of nonsulfide flotation chemistry, mineral processing, waste paper deinking, water treatment, treatment of contaminated soil, coal preparation, and plastics recycling. In addition, the AFM and LB film balance have been of great help to university researchers in other departments at the University of Utah and elsewhere, as well as researchers from industry.

  5. Dip-coating with prestructured substrates: transfer of simple liquids and Langmuir-Blodgett monolayers

    NASA Astrophysics Data System (ADS)

    Wilczek, Markus; Zhu, Juan; Chi, Lifeng; Thiele, Uwe; Gurevich, Svetlana V.

    2017-01-01

    When a plate is withdrawn from a liquid bath, either a static meniscus forms in the transition region between the bath and the substrate or a liquid film of finite thickness (a Landau-Levich film) is transferred onto the moving substrate. If the substrate is inhomogeneous, e.g. has a prestructure consisting of stripes of different wettabilities, the meniscus can be deformed or show a complex dynamic behavior. Here we study the free surface shape and dynamics of a dragged meniscus occurring for striped prestructures with two orientations, parallel and perpendicular to the transfer direction. A thin film model is employed that accounts for capillarity through a Laplace pressure and for the spatially varying wettability through a Derjaguin (or disjoining) pressure. Numerical continuation is used to obtain steady free surface profiles and corresponding bifurcation diagrams in the case of substrates with different homogeneous wettabilities. Direct numerical simulations are employed in the case of the various striped prestructures. The final part illustrates the importance of our findings for particular applications that involve complex liquids by modeling a Langmuir-Blodgett transfer experiment. There, one transfers a monolayer of an insoluble surfactant that covers the surface of the bath onto the moving substrate. The resulting pattern formation phenomena can be crucially influenced by the hydrodynamics of the liquid meniscus that itself depends on the prestructure on the substrate. In particular, we show how prestructure stripes parallel to the transfer direction lead to the formation of bent stripes in the surfactant coverage after transfer and present similar experimental results.

  6. Simple solutions for relativistic generalizations of the Child-Langmuir law and the Langmuir-Blodgett law

    SciTech Connect

    Zhang Yongpeng; Liu Guozhi; Yang Zhanfeng; Shao Hao; Xiao Renzhen; Xing Qingzi; Zhong Huaqiang; Lin Yuzheng

    2009-04-15

    In this paper, the Child-Langmuir law and Langmuir-Blodgett law are generalized to the relativistic regime by a simple method. Two classical laws suitable for the nonrelativistic regime are modified to simple approximate expressions applicable for calculating the space-charge-limited currents of one-dimensional steady-state planar diodes and coaxial diodes under the relativistic regime. The simple approximate expressions, extending the Child-Langmuir law and Langmuir-Blodgett law to fit the full range of voltage, have small relative errors less than 1% for one-dimensional planar diodes and less than 5% for coaxial diodes.

  7. Crossover from layering to island formation in Langmuir-Blodgett growth: role of long-range intermolecular forces.

    PubMed

    Mukherjee, Smita; Datta, Alokmay

    2011-04-01

    Combined studies by atomic force microscopy, x-ray reflectivity, and Fourier transform infrared spectroscopy on transition-metal stearate (M-St, M = Mn, Co, Zn, and Cd) Langmuir-Blodgett films clearly indicate association of bidentate coordination of the metal-carboxylate head group to layer-by-layer growth as observed in MnSt and CoSt and partially in ZnSt. Crossover to islandlike growth, as observed in CdSt and ZnSt, is associated with the presence of unidentate coordination in the head group. Morphological evolutions as obtained from one, three, and nine monolayers (MLs) of M-St films are consistent with Frank van der Merwe, Stranski-Krastanov, and Volmer Weber growth modes for M=Mn/Co, Zn, and Cd, respectively, as previously assigned, and are found to vary with number (n) of metal atoms per head group, viz. n=1 (Mn/Co), n=0.75 (Zn), and n=0.5 (Cd). The parameter n is found to decide head-group coordination such that n=1.0 corresponds to bidentate and n=0.5 corresponds to unidentate coordination; the intermediate value in Zn corresponds to a mixture of both. The dependence of the growth mode on head-group structure is explained by the fact that in bidentate head groups, with the in-plane dipole moment being zero, intermolecular forces between adjacent molecules are absent and hence growth proceeds via layering. On the other hand, in unidentate head groups, the existence of a nonzero in-plane dipole moment results in the development of weak in-plane intermolecular forces between adjacent molecules causing in-plane clustering leading to islandlike growth.

  8. Photoluminescence kinetics in CdS nanoclusters formed by the Langmuir-Blodgett technique

    SciTech Connect

    Zarubanov, A. A. Zhuravlev, K. S.

    2015-03-15

    The photoluminescence kinetics in CdS nanocrystals produced by the Langmuir-Blodgett technique is studied at a temperature of 5 K. The photoluminescence kinetics is described by the sum of two exponential functions, with characteristic times of about 30 and 160 ns. It is found that the fast and slow decay times become longer, as the nanocrystal size increases. Analysis of the data shows that the fast decay time is controlled by trion recombination in nanocrystals with defects, whereas the slow decay time is controlled by the annihilation of optically inactive excitons in nanocrystals without defects. It is established that, as the nanocrystal size is decreased, the fraction of imperfect nanocrystals is reduced because of an increase in the energy of defect formation.

  9. Polymerization of Conducting Polymers Confined to Free Surfaces: A comparison of the Langmuir-Blodgett Polymerization of 3-Alkyl Pyrroles and 2- Alkyl Anilines

    DTIC Science & Technology

    1992-05-19

    Confined to Free Surfaces: A Comparison of the Langmuir-Blodgett Polymerization of 3- Alkyl Pyrroles and 2- Alkyl Anilines Submitted for Publication in...Surfaces: A Comparison of the Langmuir Blodgett Polymerizations of 3- alkyl pyrroles and 2- alkyl anilines R. S. Duran and H.C. Zhou Dept. of Chemistry...polymerization reactions in more detail and compare them. To do this, the polymerization reactions were run under two conditions. In the first case

  10. Atomic-force and fluorescence microscopy of Langmuir-Blodgett monolayers of [ital L]-[alpha]-dimyristoylphosphatidic acid

    SciTech Connect

    Mikrut, J.M. ); Dutta, P.; Ketterson, J.B. ); MacDonald, R.C. )

    1993-11-15

    We have obtained fluorescence and atomic-force-microscopy images of the liquid and solid phases of Langmuir-Blodgett monolayers of [ital L]-[alpha]-dimyristoylphosphatidic acid, some containing [similar to]1 mol % of [ital L]-[alpha]-phosphatidylethanolamine-[ital N]-4-nitrobenzo-2-oxa-1,3-diazole. The fluorescence microscopy images are similar to those of monolayers at the air-water interface, but slight differences indicate that changes occur in the monolayers as a result of the deposition process. The atomic-force-microscopy images show the clean glass substrates to be very much rougher than when the monolayers are deposited on them. We propose that a water layer provides a smooth surface on which the Langmuir-Blodgett monolayers rest. We measured a [similar to]25-A height difference between the liquid and solid phase region, one explanation being that the alkyl chains of the molecule are standing up in the solid phase and lying down in the liquid phase. This result is consistent with the fluorescence and atomic-force-microscopy images which show an increase in the amount of solid phase domains as a result of the deposition process. Further, the atomic-force-microscopy images of the monolayers show features which have not been described before and which could not be attributed to the presence of the dye. Finally, we showed that if the Langmuir-Blodgett monolayers are not stored in a humid environment, they begin to collapse into multilayers.

  11. Emergence of the bifurcation structure of a Langmuir-Blodgett transfer model

    NASA Astrophysics Data System (ADS)

    Köpf, Michael H.; Thiele, Uwe

    2014-11-01

    We explore the bifurcation structure of a modified Cahn-Hilliard equation that describes a system that may undergo a first-order phase transition and is kept permanently out of equilibrium by a lateral driving. This forms a simple model, e.g., for the deposition of stripe patterns of different phases of surfactant molecules through Langmuir-Blodgett transfer. Employing continuation techniques the bifurcation structure is numerically investigated using the non-dimensional transfer velocity as the main control parameter. It is found that the snaking structure of steady front states is intertwined with a large number of branches of time-periodic solutions that emerge from Hopf or period-doubling bifurcations and end in global bifurcations (sniper and homoclinic). Overall the bifurcation diagram has a harp-like appearance. This is complemented by a two-parameter study in non-dimensional transfer velocity and domain size (as a measure of the distance to the phase transition threshold) that elucidates through which local and global codimension 2 bifurcations the entire harp-like structure emerges.

  12. Surface morphologies of Langmuir-Blodgett monolayers of PEOnPSn multiarm star copolymers.

    PubMed

    Gunawidjaja, Ray; Peleshanko, Sergiy; Genson, Kirsten L; Tsitsilianis, Constantinos; Tsukruk, Vladimir V

    2006-07-04

    Star polymers composed of equal numbers of poly(ethylene oxide) (PEO) and polystyrene (PS) arms with variable lengths and a large (up to 38 total) number of arms, PEO(n)PS(n), have been examined for their ability to form domain nanostructures at the air-water and air-solid interfaces. All PEO(n)PS(n) star polymers formed stable Langmuir-Blodgett (LB) monolayers transferable to a solid substrate. A range of nanoscale surface morphologies have been observed, ranging from cylindrical to circular domains to bicontinuous structures as the weight fraction of the PEO block varied from 19% to 88% and n from 8 to 19. For the PS-rich stars and at elevated surface pressure, a two-dimensional supramolecular netlike nanostructure was formed. In contrast, in the PEO-rich star polymer with the highest PEO content, we observed peculiar dendritic superstructures caused by intramolecular segregation of nonspherical core-shell micellar structures. On the basis of Langmuir isotherms and observed monolayer morphologies, three different models of possible surface behavior of the star polymers at the interfaces were proposed.

  13. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers.

    PubMed Central

    ten Grotenhuis, E; Demel, R A; Ponec, M; Boer, D R; van Miltenburg, J C; Bouwstra, J A

    1996-01-01

    The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8874014

  14. The use of surface tension to predict the formation of 2D arrays of latex spheres formed via the Langmuir-Blodgett-like technique.

    PubMed

    Marquez, Maricel; Grady, Brian P

    2004-12-07

    Highly ordered hexagonal arrays of latex spheres on highly ordered pyrolytic graphite (HOPG) have been prepared from a Langmuir-Blodgett-like (LB-like) technique using both polymers and surfactants as spreading agents. The role of spreading agent concentration in forming a well-ordered, stable monolayer at the air-liquid interface was studied by means of atomic force microscopy, scanning electron microscopy, optical microscopy, and surface tension measurements for three different systems: a nonionic surfactant, octylphenoxy poly(ethyleneoxy)ethanol (Igepal CO 630); an anionic surfactant, sodium dodecyl sulfate; and a low-molecular-weight, water-soluble polymer, polyacrylamide. For both the anionic surfactant and the water soluble polymer, a correlation was found between a unique feature in surface tension measurements of the latex-spreading agent mixture and the concentrations at which hexagonal arrays of latex spheres form on the surface of HOPG. For the nonionic surfactant, no ordered structures were found on HOPG for any surfactant concentration, consistent with no appearance of the unique feature in surface tension measurements. These results show that a tensiometer can be used to determine the conditions under which well-ordered latex films have the possibility of forming on a substrate using the LB-like technique; however, other factors, such as pulling speed and surface chemistry, play a role as well.

  15. Angle-resolved X-ray photoelectron spectroscopy study of poly(vinylidene fluoride)/poly(N-dodecylacrylamide) Langmuir-Blodgett nanofilms

    NASA Astrophysics Data System (ADS)

    Zhu, Huie; Gao, Yu; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya

    2016-03-01

    Our earlier research prepared ferroelectric poly(vinylidene fluoride) (PVDF) homopolymer monolayers at the air-water interface using amphiphilic poly(N-dodecylacrylamide) (pDDA) nanosheets with Langmuir-Blodgett (LB) technique. However, the miscibility of solvent for PVDF with the water sub-phase in the Langmuir trough makes the film composition unclear in spite of the feeding ratio of \\text{PVDF}:\\text{pDDA} (50:1). In this study, angle-resolved X-ray photoelectron spectroscopy (AR-XPS) was used to investigate the surface chemical composition and the depth profile of the PVDF/pDDA LB nanofilms. The X-ray photoelectron spectroscopy (XPS) spectra confirmed by the detection of fluorine atoms that PVDF molecules were deposited successfully onto the substrate. The constant chemical composition with increasing takeoff angle from 15 to 75° reflects a well-regular layer structure of the PVDF LB nanofilm. The mixing ratio of \\text{PVDF}:\\text{pDDA} is 33:1, which contributes 89.8 wt % PVDF and 10.2 wt % in the PVDF/pDDA LB nanofilms.

  16. Au/Cr-ZnO-Ni structured metal-insulator-metal diode fabrication using Langmuir-Blodgett technique for infrared sensing

    NASA Astrophysics Data System (ADS)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2016-05-01

    The thin nanolayer film of ZnO was synthesized through Langmuir-Blodgett (LB) organic precursor film. The zinc stearate monolayer was formed at air-water interface using zinc acetate as a subphase. The zinc stearate monolayers were deposited on silicon (Si), glass, and gold (Au)/chromium (Cr) plated Silicon (Si) substrates using LB technique. Later, the zinc stearate multilayers LB films on various substrates were annealed at two different temperatures (300oC and 550oC) for the fabrication of zinc oxide (ZnO) nanolayer film. The zinc stearate monolayers as well zinc oxide (ZnO) nanolayer films were characterized using atomic force microscopy (AFM) and X-ray diffraction techniques. The X-ray diffraction measurement has shown the hexagonal wurtzite structure of the ZnO nanolayer on the substrate. The average surface roughness was estimated to be 1.076 nm using AFM technique. The metal-insulator-metal (MIM) diode structure was realized by sandwiching ZnO nanolayer film between thin layer of Gold (Au)/Chromium (Cr) and Nickel (Ni) on silicon substrates. The electron tunneling conduction mechanism is understood through the current-voltage (I-V) characteristics of MIM diode. The highest measured sensitivity magnitude of 20 in inverse of voltage (V-1) with rectification ratio of nearly 10 at +/-400 mV in MIM diode is an indicative of its potential application in infrared sensing applications. However, the thin film of ZnO synthesized using LB film as an insulating layer in metal-insulator-metal diode structure was studied for the first time.

  17. How Langmuir-Blodgett trilayers act as templates for directed self-assembly of nanoparticles

    NASA Astrophysics Data System (ADS)

    Mukherjee, Smita; Datta, Alokmay; Biswas, Nupur; Giglia, Angelo; Nannarone, Stefano

    2014-04-01

    Atomic force microscopy (AFM) shows that Langmuir-Blodgett (LB) deposition of dissimilar metal stearates (MSt, M = Co, Zn, Cd) on templates of Co-stearate (Co-T) and Cd-stearate (Cd-T) results in self-assembly of MSts into nanocrystalline grains having clear and consistent morphological habits. The grains are better formed and well separated on Cd-T than on Co-T. Fourier transform infrared spectroscopy (FTIR) results show that the headgroup coordination of the overlayer is tuned by the coordination of the Cd-T template and remains unaffected by that of the Co-T template. They also indicate co-existence of a different kind of headgroup structure that is close to the undissociated fatty acid headgroup but differing more in the two types of carbon-oxygen bonds, suggesting an inter-headgroup bonding such as hydrogen bond that may exist on a nanocrystal surface. Results of synchrotron x-ray diffraction at C K-edge, of ZnSt on Cd-T (ZnSt/Cd-T) and Co-T (ZnSt/Co-T), point to a non-closed packed structure for ZnSt/Cd-T and a closed-packed structure for ZnSt/Co-T, with significant superlattice order in the former. The presence of crystalline phases of ZnSt in the nanometer scale, on LB templates, in contrast to the the presence of lamellar phase in bulk ZnSt, is attributed to the the presence of unidentate metal-carboxylate coordination in the former and absence of it in the latter, creating different gradients of dipolar forces at template overlayer interface. Relative strength of this long-range force over short-range intermolecular forces in the templates qualitatively explains better crystallinity and higher ordering in ZnSt/Cd-T compared to ZnSt/Co-T. We propose that the role of dipole moment gradient between template and overlayer in tuning of these metal-organic nanoparticles may be somewhat similar to structural and optical tunability of semiconductor nanocrystals by thermal and self-equilibrium strain.

  18. New effects in Langmuir and Langmuir-Blodgett monolayers from fluorescently labelled phospholipids and their possible use for water quality control

    NASA Astrophysics Data System (ADS)

    Ivanov, G. R.; Geshev, N. I.

    2016-02-01

    Secondary water contamination poses significant challenges to the sensitivity and selectivity of sensors used for its detection and monitoring. Currently only lab tests can detect these contaminants and by the time this happens the contaminated water has entered the city water supply system. Fluorescent chromophore NitroBenzoxaDiazole (NBD) is very suitable and had been successfully used in biosensor applications due to its high sensitivity to close proximity polarity of the medium. Over the years we have discovered 3 new effects in NBD- labelled phospholipids which can significantly improve the performance of biosensors. The phospholipid matrix provides flexible biocompatible environment for immobilization of selectively reacting enzymes, microorganisms, DNA, immunoagents, whole cells. Use of single layer (3.1 nm thickness) films at the air-water interface (Langmuir films) or deposited on solid support as Langmuir-Blodgett (LB) film gives fast response times for real time monitoring (no slow diffusion processes) and precise molecule ordering and orientation. The first new effect was fluorescence self-quenching in Langmuir and LB films. In the liquid phase films exhibit normal fluorescence. Upon transition to solid phase fluorescence intensity is almost completely self-quenched and fluorescence lifetimes in the nanosecond region decrease 2 times. This is easily measured. Usually large heavy metal atoms quench fluorescence. We observed the opposite new effect when LB film is deposited in the solid phase from a subphase containing heavy metals. The third new effect is the obtaining of nanosized cylinders with bilayer thickness, which remain stable at least for months, when LB monolayer is deposited in the phase coexistence region at thermodynamic equilibrium. This greatly increases reacting surface and sensitivity of possible sensors. Almost all possible optical experimental methods were used for this research. This includes polarized ATR FTIR and polarized UV

  19. Indium-chlorine and gallium-chlorine tetrasubstituted phthalocyanines in a bulk system, Langmuir monolayers and Langmuir-Blodgett nanolayers--spectroscopic investigations.

    PubMed

    Bursa, B; Wróbel, D; Biadasz, A; Kędzierski, K; Lewandowska, K; Graja, A; Szybowicz, M; Durmuş, M

    2014-07-15

    The paper deals with spectroscopic characterization of metallic phthalocyanines (Pc's) (indium and gallium) complexed with chlorine and substituted with four benzyloxyphenoxy peripheral groups in bulk systems, 2D Langmuir monolayers and Langmuir-Blodgett nanolayers. An influence of the molecular structure of dyes (the presence of metal and of substitutes attached to the phthalocyanine macroring) on the in situ measurements of light absorption is reported. Molecular arrangement of the phthalocyanine molecular skeleton in the Langmuir monolayers on water substrate and in the Langmuir-Blodgett nanolayers is evaluated. A comparison of the light absorption spectra of the phthalocyanine monolayers with the spectra of the dyes in solution supports the existence of dye aggregates in the monolayer. It was shown that the type of dye aggregates (oblique and H types) depends markedly on the dye molecular structures. The NIR-IR, IR reflection-absorption and Raman spectra are also monitored for Langmuir-Blodgett nanolayers in non-polarized and polarized light. It was shown that the dye molecules in the Langmuir-Blodgett layers are oriented nearly vertically with respect to a gold substrate.

  20. Polyelectrolyte multilayers on PTMSP as asymmetric membranes for gas separations: Langmuir-Blodgett versus self-assembly methods of anchoring.

    PubMed

    Lin, Cen; Chen, Qibin; Yi, Song; Wang, Minghui; Regen, Steven L

    2014-01-28

    Polyelectrolyte multilayers derived from poly(diallyldimethylamonium chloride) and poly(sodium 4-styrenesulfonate) have been deposited onto poly[1-(trimethylsilyl)-1-propyne] (PTMSP) with anchoring layers formed by Langmuir-Blodgett and self-assembly methods. Using gas permeation selectivity as a basis for judging the efficacy of each anchoring method, we have found that similar CO2/N2 selectivities (ranging from 110 to 140) could be achieved by both methods and that their permeances were also similar. Although LB anchors require fewer layers of polyelectrolyte to reach this level of selectivity, the greater ease associated with self-assembly and its applicability to curved, high-surface-area supports (e.g., PTMSP-coated hollow fibers) encourage its use with PTMSP in creating new membrane materials for the practical separation of gases.

  1. Langmuir-Blodgett assembly of visible light responsive TiO2 nanotube arrays/graphene oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Gao, Hongyan; Wei, Danming; Dong, Xinju; Cao, Yan

    2017-01-01

    The hybrid nanocomposites of titanium dioxide (TiO2) with graphene oxide (GO) have recently garnered much attention as electronic devices, energy conversion devices, photocatalysts and other applications. In this study, Langmuir-Blodgett (LB) assembly method was firstly reported to prepare a TiO2 nanotube arrays (TNA)-GO heterostructure. The as-prepared TNA-GO sample was characterized by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The promising characteristics of this TNA-GO material, the inexpensive, nontoxic and highly visible-light responsiveness, may raise the potential uses in many, various photocatalytic applications.

  2. Langmuir and langmuir-blodgett films of metallosupramolecular polyelectrolyte-amphiphile complexes.

    PubMed

    Lehmann, Pit; Symietz, Christian; Brezesinski, Gerald; Krass, Henning; Kurth, Dirk G

    2005-06-21

    A detailed analysis of a metallosupramolecular polyelectrolyte-amphiphile complex (PAC) at the air-water interface is presented. Langmuir isotherms, Brewster angle microscopy, and X-ray reflectance and diffraction methods are employed to investigate the structure of the Langmuir monolayers. The PAC is self-assembled from 1,3-bis[4'-oxa-(2,2':6',2' '-terpyridinyl)]propane, iron acetate, and dihexadecyl phosphate (DHP). Spreading the PAC at the air-water interface results in a monolayer that consists of two strata. DHP forms a monolayer at the top of the interface, while the metallosupramolecular polyelectrolyte is immersed in the aqueous subphase. Both strata are coupled to each other through electrostatic interactions. The monolayers can be transferred onto solid substrates, resulting in well-ordered multilayers. Such multilayers are model systems for well-ordered metal ions in two dimensions.

  3. Applications of Piezoelectric and Pyroelectric Thin Films: Opportunities for Langmuir-Blodgett Technology.

    DTIC Science & Technology

    1984-12-31

    currently employed to improve resolution and con, ast in pyroelectric vidicons is known as target reticulation . The idea is to - 19 - F- rr-r .-_- T 7 7... Reticulation was mentioned as a means to further improve performance by lowering lateral thermal diffusivity. Research in the photoresist area has... reticulation . Optical Applications The modulation and deflection of guided optical waves was discussed with respect to SAW devices. Actual optical

  4. JPRS Report, Science & Technology, Japan, 4th International Conference on Langmuir-Blodgett Films

    DTIC Science & Technology

    2007-11-02

    Monolayers and Amorphous Monolayers Shuji Okada, Hachiro Nakanishi, Hiro Matsuda, Masao Kato, Takashi Abe , and Hiroshi Ito Research Institute for...together with UV ab - sorption and fluorescence spectra. Fig.2 shows the surface pressure-area isotherms for monolayers of long-chain derivatives of...the molecular area of 50-60A and w B about 25mN/m. While the UV ab - S*° sorption spectra for the mono- isof layer(I) on water were

  5. Two-dimensional folded chain crystals of a synthetic polymer in a Langmuir-Blodgett film.

    PubMed

    Kumaki, Jiro; Kawauchi, Takehiro; Yashima, Eiji

    2005-04-27

    Isotactic poly(methyl methacrylate) monolayers deposited from a water surface onto mica at different surface pressures were studied by atomic force microscopy, and their structure formation from single chains to two-dimensional folded chain crystals was clearly observed. Furthermore, gentle crystallization of the monolayer by slow compression on the water surface enabled the observation of crystals at a molecular level, thus visualizing the chain foldings and tie-chains for the first time. The resulting molecular level information will provide an important clue toward the understanding of polymer crystals not only in two dimensions but also in three dimensions.

  6. Quartz Crystal Microbalance Studies Of Dimethyl Methylphosphonate Sorption Into Trisilanolphenyl-Poss Films

    DTIC Science & Technology

    2006-11-06

    Keywords: Langmuir -Blodgett film, trisilanolphenyl-POSS, chemical warfare agent simulant, quartz crystal microbalance Report Documentation Page Form...study the sorption phenomena of DMMP into highly ordered Langmuir -Blodgett (LB) films of TPP. In a saturated environment, DMMP sorbs into the TPP...order desorption kinetics and readily desorbs from the film, returning the TPP film to its original state. The views expressed in this

  7. Controllable assembly of diverse rare-earth nanocrystals via the Langmuir-Blodgett technique and the underlying size- and symmetry-dependent assembly kinetics.

    PubMed

    Zhou, Huan-Ping; Zhang, Chao; Yan, Chun-Hua

    2009-11-17

    The Langmuir-Blodgett (LB) technique provides a facile and robust method for the formation of large-area films of various nanoparticles (NPs), including 24.9 nm NaYF(4):Yb,Er nanospheres, 12.0 nm LiYF(4) nanopolyhedra, 14.1 x 1.8 nm triagonal-shaped LaF(3), 12.6 nm square CaF(2), 9.5 x 2.0 nm hexagonal EuF(3), and so forth. The assembly patterns of the deposited films were studied in accordance with the pi-A isotherms. Combined with the TEM observations, several representative stages of assembly process can be distinguished. The scrutiny of the self-assembly process by means of their pi-A isotherms elucidates that the concentration, size, and symmetry of nanoparticles play crucial roles in this process. The concept of "effective concentration", which is defined as the amount of nanoblocks in the "gas phase" rather than the actual number of nanoparticles at the air-water interface, was first proposed as a control parameter to elucidate the possible assembly kinetics. The similarly shaped 12.0 nm LiYF(4) and the 24.9 nm NaYF(4):Yb,Er were selected as the size-dependent examples. The smaller nanoparticles show a strong tendency of congregation to lower the surface energy. Three representative samples, namely, 24.9 nm NaYF(4):Yb,Er nanospheres (O(h)), 14.1 x 1.8 nm oblate triagonal LaF(3) nanosheets (D(3h)), and 41.3 nm x 24.6 nm NaYF(4) rods (D(6h)), were selected as the shape-dependent samples, which showed that the assembly patterns were contributed by the stability arising from the geometry of the nanoparticles, the tendency of aggregation of nanoparticles, and the probable rotation energy during the compression. More importantly, guided by the above assembly kinetics, for the 9.5 x 2.0 nm hexagonal EuF(3), we can effectively acquire the desirable assembly pattern.

  8. The production of PEO polymer brushes via Langmuir-Blodgett and Langmuir-Schaeffer methods: incomplete transfer and its consequences.

    PubMed

    de Vos, Wiebe M; de Keizer, Arie; Kleijn, J Mieke; Cohen Stuart, Martien A

    2009-04-21

    Using fixed-angle ellipsometry, we investigate the degree of mass transfer upon vertically dipping a polystyrene surface through a layer of a polystyrene-poly(ethylene oxide) (PS-PEO) block copolymer at the air water interface (Langmuir-Blodgett or LB transfer). The transferred mass is proportional to the PS-PEO grafting density at the air-water interface, but the transferred mass is not equal to the mass at the air-water interface. We find that depending on the chain length of the PEO block only a certain fraction of the polymers at the air-water interface is transferred to the solid surface. For the shortest PEO chain length (PS36-PEO148), the mass transfer amounts to 94%, while for longer chain lengths (PS36-PEO370 and PS38-PEO770), a transfer of, respectively 57% and 19%, is obtained. We attribute this reduced mass transfer to a competition for the PS surface between the PEO block and the PS block. Atomic force microscopy shows that after transfer the material is evenly spread over the surface. However, upon a short heating of these transferred layers (95 degrees C, 5 min) a dewetting of the PS-PEO layer takes place. These results have a significant impact on the interpretation of the results in a number of papers in which the above-described transfer method was used to produce PEO polymer brushes, in a few cases in combination with heating. We briefly review these papers and discuss their main results in light of this new information. Furthermore, we show that, by using Langmuir-Schaeffer (LS, horizontal) dipping, much higher mass transfers can be reached than with the LB method. When the LB or LS methods are carefully applied, it is a very powerful technique to produce PEO brushes, as it gives full control over both the grafting density and the chain length.

  9. Studies on ultrathin films of tricycloquinazoline (TCQ) based discotic liquid crystal molecules

    NASA Astrophysics Data System (ADS)

    Gupta, Raj Kumar; V, Manjuladevi; Karthik, C.; Kumar, Sandeep

    2013-03-01

    The assembly of disk-shaped molecules on surfaces has drawn considerable attention because of their unique electro-optical properties. We have studied the monolayer of the tricycloquinazoline based disk-shaped (TCQCB) molecules at air-water and air-solid interfaces. The TCQCB molecules form a stable Langmuir monolayer at the air-water interface. The monolayer exhibits gas, low density liquid (L1), and high density liquid (L2) phases. In L1 and L2 phases, the molecules prefer edge-on conformation. The atomic force microscope study on the Langmuir-Blodgett films of the molecules reveals a structural transformation. The elongated domains in the film deposited in L1 phase transformed to a compact grainy texture in the film deposited in the L2 phase.

  10. Langmuir films of amphiphilic schiff base of O-Vaniline and its metal complexes

    NASA Astrophysics Data System (ADS)

    Hemakanthi, G.; Unni Nair, Balachandran; Dhathathreyan, Aruna

    2001-06-01

    Stable monolayers of the Schiff base of O-Vaniline have been formed at the air/water interface and on a subphase containing Cu 2+, Ni 2+ and Zn 2+ ions. Polarized UV-Visible spectra of the Langmuir-Blodgett (LB) films of the pure Schiff base and those of the metal complexes on solid substrates have been studied. The LB films indicate that the aromatic rings in the polar plane are oriented slightly out of plane to the solid substrate and the orientation remains nearly the same for the ligand and for the complexes. Low angle XRD shows that the copper complex and the ligand stack into multimeric structures as the monolayer is compressed on the water surface.

  11. Structure and Sensor Properties of Thin Ordered Solid Films

    PubMed Central

    Sołoducho, Jadwiga; Cabaj, Joanna; Świst, Agnieszka

    2009-01-01

    Miniaturized gas sensors and biosensors based on nanostructured sensing elements have attracted considerable interest because these nanostructured materials can be used to significantly improve sensor sensitivity and the response time. We report here on a generic, reversible sensing platform based on hybrid nanofilms. Thin ordered Langmuir-Blodgett (LB) films built of fluorene derivatives were used as effective gas sensors for both oxidative and reductive analytes. A novel immobilization method based on thin LB films as a matrix has been developed for construction of sensing protein layers. Biomolecules can often be incorporated into and immobilized on Langmuir-Blodgett films using adsorption methods or by covalent immobilization of proteins. The sensor sensitisation was achieved by an amphiphilic N-alkyl-bis(thiophene)arylenes admixed into the film. The interlaced derivative was expected to facilitate the electron transfer, thereby enhancing the sensor sensitivity. The results suggest that this may be very promising approach for exploring the interactions between proteins and high throughput detection of phenol derivatives in wastewater. PMID:22408477

  12. Distributions of ionic concentrations and electric field around the three-phase contact at high rates of Langmuir-Blodgett deposition.

    PubMed

    Bondarenko, M P; Zholkovskiy, E K; Kovalchuk, V I; Vollhardt, D

    2006-02-02

    A mathematical problem is formulated and numerically solved for addressing the electric field and ionic concentration distributions developing around the three-phase contact line during the Langmuir-Blodgett deposition of charged monolayers. Compared to a previous paper dealing with the same effect (J. Phys. Chem. B 2004, 108, 13449), the present analysis is not restricted to the case of low deposition rates and small concentration changes. The obtained results show that, for sufficiently high deposition rates, the subphase composition substantially changes in the immediate vicinity of the three-phase contact line. It is shown that the predicted changes in the subphase composition can drastically affect the adhesion work and the dynamic contact angle. On this basis, the influence of the concentration polarization effect on meniscus behavior is discussed.

  13. Conjugation Length Distribution in Poly(p-phenylenevinylene) (PPV) Films.

    PubMed

    da Silva, Marcelo C; Cassemiro, Sandra de M; Machado, Angelita M; Alves, Joniel C F; Nogueira, Sandra L; Jarrosson, Thibault; Serein-Spirau, Françoise; Akcelrud, Leni; Tozoni, José R; Silva, Raigna A; Freire, José A; Marletta, Alexandre

    2016-12-15

    We studied the absorption line-shape of poly(p-phenylenevinylene) (PPV) films deposited via spin coating and Langmuir-Blodgett techniques with the intent of identifying the conjugation length distribution in these two types of films, a key morphological aspect of conjugated polymer films. We treated the excitons in the polymer as independent oligomer excitons and modeled the absorption spectra of the individual oligomers using simple expressions for the oligomer size dependence of the gap energy, the line-broadening factor, the transition dipole moment and the Huang-Rhys parameter. We validated these expressions by independent measurements on phenyl-based oligomers and Density Functional Theory calculations. Our results show clear evidence that, for both types of PPV films, the conjugation length distribution depends exponentially on the segment size. Our results also set a lower limit, of about ten repeat units, for the maximum exciton length of three different phenyl-based oligomers.

  14. A new approach to the deposition of nanostructured biocatalytic films

    NASA Astrophysics Data System (ADS)

    Troitsky, V. I.; Berzina, T. S.; Pastorino, L.; Bernasconi, E.; Nicolini, C.

    2003-06-01

    In the present work, monolayer engineering was used to fabricate biocatalytic nanostructured thin films based on the enzyme penicillin G acylase. The biocatalytic films with enhanced characteristics were produced by the deposition of alternate-layer assemblies with a predetermined structure using a combination of Langmuir-Blodgett and adsorption techniques. The value of enzyme activity and the level of protein detachment were measured in dependence on the variation of film composition and on the sequence of layer alternation. As a result, highly active and stable structures were found, which could be promising candidates for practical applications. The method of modification of the deposition method to provide continuous film formation on large-area supports is discussed.

  15. Thermodynamic aspects of cholesterol effect on properties of phospholipid monolayers: Langmuir and Langmuir-Blodgett monolayer study.

    PubMed

    Jurak, Małgorzata

    2013-04-04

    Cholesterol is an important component of lipid rafts in mammalian cell membranes. Studies of phospholipid monolayers containing cholesterol provide insight into the role of cholesterol in regulating the properties of animal cells, raft stability, and organization. In this contribution, a study of the characteristics of binary Langmuir monolayers consisting of phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG), and cholesterol (Chol), was conducted on the basis of the surface pressure-area per molecule (π-A) isotherms. Analysis of the results obtained provided information on the mean molecular area, the excess Gibbs energy of mixing, and condensation in the monolayer. The mixed monolayers were also deposited onto the mica plates and investigated by the contact angle measurements of water, formamide, and diiodomethane. The contact angles allowed calculating surface free energy of the films from the van Oss et al. approach. It was found that cholesterol determines the molecular packing and ordering of the monolayers closely connected with the kind of phospholipid. This is reflected in the values of surface free energy of the model membranes. From the thermodynamic analysis of phospholipid/cholesterol/liquid interactions, one may draw conclusions about the most favorable composition (stoichiometry) of the binary film which is especially important in view of the lipid rafts formation.

  16. Effect of cadmium arachidate layers on the growth of pentacene and the performance of pentacene-based thin film transistors.

    PubMed

    Nayak, Pradipta K; Kim, Jinwoo; Cho, Junhee; Lee, Changhee; Hong, Yongtaek

    2009-06-02

    The effect of cadmium arachidate (CdA) layers deposited by Langmuir-Blodgett technique on the growth of pentacene thin films and the performance of pentacene-based thin film transistors has been investigated. The hydrophobicity of the SiO2 gate dielectric surface was increased (surface energy reduced) with the deposition of CdA layers as a result of the presence of long hydrophobic alkyl chains attached to the cadmium atoms. The change in surface wetting properties of SiO2 strongly influenced the growth mechanism of pentacene thin films. The grain size and root-mean-square surface roughness of pentacene was decreased with an increase in the number of CdA layers compared to the pentacene deposited on a bare SiO2 surface. Organic thin film transistors (OTFTs) with seven layers of CdA on SiO2 showed the highest mobility of 0.27 cm2/Vs and the lowest subthreshold slope of 2.4 V/dec. The enhanced electrical properties of the OTFTs with SiO2/CdA as the dielectric is attributed to the better intermolecular connection, tight packing, and improved surface quality of the pentacene, as evident from the X-ray diffraction (XRD) and atomic force microscopy (AFM) results.

  17. Graphene oxide thin films: influence of chemical structure and deposition methodology.

    PubMed

    Hidalgo, R S; López-Díaz, D; Velázquez, M Mercedes

    2015-03-10

    We synthesized graphene oxide sheets of different functionalization by oxidation of two different starting materials, graphite and GANF nanofibers, followed by purification based on alkaline washing. The chemical structure of graphene oxide materials was determined by X-ray photoelectron spectroscopy (XPS), and the nanoplatelets were characterized by ζ potential and dynamic light scattering (DLS) measurements. The XPS results indicated that the chemical structure depends on the starting material. Two different deposition methodologies, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS), were employed to build the graphene oxide thin films. The film morphology was analyzed by scanning electron microscopy (SEM). The SEM images allow us to conclude that the LB methodology provides the highest coverage. This coverage is almost independent of the chemical composition of sheets. Conversely, the coverage obtained by the LS methodology increases with the percentage of C-O groups attached to sheets. Surface-pressure isotherms of these materials were interpreted according to the Volmer model.

  18. Gel-to-fluid phase transformations in solid-supported phospholipid bilayers assembled by the Langmuir-Blodgett technique: effect of the Langmuir monolayer phase state and molecular density.

    PubMed

    Ramkaran, Mohini; Badia, Antonella

    2014-08-14

    Planar-supported phospholipid bilayers are increasingly used as synthetic membranes for scientific and practical applications. The thermotropic phase properties of supported bilayers are important for recreating biologically relevant situations. Unlike free-standing lipid membranes that undergo one gel-to-fluid or main phase transition, mica-supported single bilayers have been found to undergo two separate leaflet transitions. Although the distinctive nature of the main transition in mica-supported bilayers has been attributed to different effects, determining their relevance has been problematic because vesicle fusion, the technique most widely used to prepare solid-supported bilayer membranes, does not allow one to readily control the lipid surface coverage and molecular density. To circumvent the limitations of the vesicle fusion method and systematically investigate the effects on the individual leaflet transitions of the lipid phase state and molecular density before deposition on the substrate, mica-supported single bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were prepared using the Langmuir-Blodgett technique. The gel-to-fluid transitions of the bilayer leaflets were tracked by controlled-temperature atomic force microscopy to determine the relative fractions of the gel and fluid phases as a function of temperature. The fraction of solid versus temperature data was fit to the van't Hoff equation to determine the leaflet melting temperatures and transition enthalpies. The phase state and molecular density of the Langmuir monolayer precursor at the transfer pressure of 35 mN m(-1) was found to have a greater effect on the main transition temperature and width of the distal (upper) leaflet than that of the proximal (lower) one. The contributions of substrate-mediated condensation, asymmetric lipid densities, and surface area available for thermal expansion of the bilayer are addressed

  19. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts

    NASA Astrophysics Data System (ADS)

    Alaferdov, A. V.; Savu, R.; Rackauskas, T. A.; Rackauskas, S.; Canesqui, M. A.; de Lara, D. S.; Setti, G. O.; Joanni, E.; de Trindade, G. M.; Lima, U. B.; de Souza, A. S.; Moshkalev, S. A.

    2016-09-01

    A simple and scalable method was developed for the fabrication of wearable strain and bending sensors, based on high aspect ratio (length/thickness ˜103) graphite nanobelt thin films deposited by a modified Langmuir-Blodgett technique onto flexible polymer substrates. The sensing mechanism is based on the changes in contact resistance between individual nanobelts upon substrate deformation. Very high sensor response stability for more than 5000 strain-release cycles and a device power consumption as low as 1 nW were achieved. The device maximum stretchability is limited by the metal electrodes and the polymer substrate; the maximum strain that could be applied to the polymer used in this work was 40%. Bending tests carried out for various radii of curvature demonstrated distinct sensor responses for positive and negative curvatures. The graphite nanobelt thin flexible films were successfully tested for acoustic vibration and heartbeat sensing.

  20. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts.

    PubMed

    Alaferdov, A V; Savu, R; Rackauskas, T A; Rackauskas, S; Canesqui, M A; de Lara, D S; Setti, G O; Joanni, E; de Trindade, G M; Lima, U B; de Souza, A S; Moshkalev, S A

    2016-09-16

    A simple and scalable method was developed for the fabrication of wearable strain and bending sensors, based on high aspect ratio (length/thickness ∼10(3)) graphite nanobelt thin films deposited by a modified Langmuir-Blodgett technique onto flexible polymer substrates. The sensing mechanism is based on the changes in contact resistance between individual nanobelts upon substrate deformation. Very high sensor response stability for more than 5000 strain-release cycles and a device power consumption as low as 1 nW were achieved. The device maximum stretchability is limited by the metal electrodes and the polymer substrate; the maximum strain that could be applied to the polymer used in this work was 40%. Bending tests carried out for various radii of curvature demonstrated distinct sensor responses for positive and negative curvatures. The graphite nanobelt thin flexible films were successfully tested for acoustic vibration and heartbeat sensing.

  1. International Conference on Langmuir-Blodgett Films (5th) Held in Paris, France on 26-30 August 1991, Abstracts Booklet

    DTIC Science & Technology

    1991-08-01

    a SuperQ system consisting of activated carbon , deioniser and 0.2pm filter cartridges. Surface pressure and surface potential isotherms were obtained...docosylcyclam. We examined the electrociemical properties of its monolayer and the catalytic activity for reduction of carbon dioxide. The monolayer of the Ni...the complex possess sufficient electrocatalytic activity to reduce carbon dioxide. References (1) J.P.Sauvage, et.al., J. Am. Chem. Soc. 108, 7461

  2. Fabrication Of Nano-Silver Thin Films Using Self Assembly And Its Interaction With Proteins

    SciTech Connect

    Verma, Gunjan; Choudhury, Sipra; Hassan, P. A.

    2010-12-01

    The silver nanoparticle thin films were prepared with an aim to use them for sensing of biomolecules. The monolayers of arachidic acid were deposited on glass plates by Langmuir Blodgett (LB) technique and silver nanoparticles thin films were deposited within the arachidic acid films. Small angle XRD studies confirm the formation of ordered array of nanoparticles. These thin films were treated with a model protein, bovine serum albumin (BSA a natural protein). From the optical absorption spectra a shift in the intensity as well as lambda max ({lambda}max) could be observed when silver thin films were treated with BSA.

  3. Self-assembly of ferromagnetic organic-inorganic perovskite-like films.

    PubMed

    Akhtar, Naureen; Polyakov, Alexey O; Aqeel, Aisha; Gordiichuk, Pavlo; Blake, Graeme R; Baas, Jacob; Amenitsch, Heinz; Herrmann, Andreas; Rudolf, Petra; Palstra, Thomas T M

    2014-12-10

    Perovskite-based organic-inorganic hybrids hold great potential as active layers in electronics or optoelectronics or as components of biosensors. However, many of these applications require thin films grown with good control over structure and thickness--a major challenge that needs to be addressed. The work presented here is an effort towards this goal and concerns the layer-by-layer deposition at ambient conditions of ferromagnetic organic-inorganic hybrids consisting of alternating CuCl4-octahedra and organic layers. The Langmuir-Blodgett technique used to assemble these structures provides intrinsic control over the molecular organization and film thickness down to the molecular level. Magnetic characterization reveals that the coercive field for these thin films is larger than that for solution-grown layered bulk crystals. The strategy presented here suggests a promising cost effective route to facilitate the excellently controlled growth of sophisticated materials on a wide variety of substrates that have properties relevant for the high density storage media and spintronic devices.

  4. Development of Pressure Sensitive Molecular Film as a Measurement Technique for Micro-Flows

    NASA Astrophysics Data System (ADS)

    Matsuda, Y.; Mori, H.; Sakazaki, Y.; Uchida, T.; Suzuki, S.; Yamaguchi, H.; Niimi, T.

    2008-12-01

    The pressure-sensitive paint (PSP) has potential as a diagnostic tool for pressure measurement in the high Knudsen number regime because it works as a so-called "molecular sensor." However, there are few reports concerning application of the PSP to micro devices, because the conventional PSP is too thick owing to the use of polymer binder. In our previous work, we have adopted Langmuir-Blodgett (LB) technique to fabricate pressure sensitive molecular films (PSMFs) using Pd(II) Mesoporphyrin IX (PdMP). The PSMF based on PdMP has pressure sensitivity only at low pressure range (below 3 kPa). In this study, we have constructed PSMF composed of Pt(II) Mesoporphyrin IX (PtMP) to be applied to pressure measurement near atmospheric pressure. The pressure sensitivity of PSMF based on PtMP has been tested, and it is clarified that the PSMF of PtMP has equivalent pressure sensitivity of polymer PSP. Moreover, we have applied PSMF to measurement of pressure distribution of micro-channel gas flow, showing its usefulness.

  5. Characteristic Fragmentation of Polysiloxane Monolayer Films by Bombardment with Monatomic and Polyatomic Primary Ions in TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Moon, Hye Kyoung; Wells, David D.; Gardella, Joseph A.

    2012-01-01

    This study reports the characteristic fragmentation patterns from two polysiloxane polymers that form ordered overlayer on silver substrates. Results are compared for the bombardment of various monatomic and polyatomic projectiles of Cs+, C{60/+} (10 keV), Bi{1/+}, and Bi{3/+} (25 keV) in the high mass range time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra. Results are reported from sub-monolayer (solution cast) coverages of poly(dimethylsiloxane)s with the number average molecular weights (Mn) of 2200 and 6140 Da, respectively, and Langmuir-Blodgett monolayers of poly(methylphenylsiloxane) with molecular weights (MW) from 600 and 1000 Da. For each film, Bi projectiles resulted in the emission of positive silver cluster ions from the substrate under the polymer overlayer and peaks corresponding to silver cluster ions with larger mass were observed by impact of polyatomic 25 keV Bi{3/+} projectiles. In addition, depending on the change of energy of Bi{3/+}, a different pattern of fragments was observed. With Cs+ and C{60/+} impact, however, the emission of silver cluster ions was not detected. In the case of C{60/+} impact for PDMS-6140, peaks corresponding to silver-cationized intact oligomers were not observed. In this paper, these results are explained by the possible bombardment mechanism for each projectile, based on its mass, energy, and split trajectories of the component atoms under the polyatomic impact.

  6. Characteristic fragmentation of polysiloxane monolayer films by bombardment with monatomic and polyatomic primary ions in TOF-SIMS.

    PubMed

    Moon, Hye Kyoung; Wells, David D; Gardella, Joseph A

    2012-01-01

    This study reports the characteristic fragmentation patterns from two polysiloxane polymers that form ordered overlayer on silver substrates. Results are compared for the bombardment of various monatomic and polyatomic projectiles of Cs(+), C(60)(+) (10 keV), Bi(1)(+), and Bi(3)(+) (25 keV) in the high mass range time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra. Results are reported from sub-monolayer (solution cast) coverages of poly(dimethylsiloxane)s with the number average molecular weights (M(n)) of 2200 and 6140 Da, respectively, and Langmuir-Blodgett monolayers of poly(methylphenylsiloxane) with molecular weights (MW) from 600 and 1000 Da. For each film, Bi projectiles resulted in the emission of positive silver cluster ions from the substrate under the polymer overlayer and peaks corresponding to silver cluster ions with larger mass were observed by impact of polyatomic 25 keV Bi(3)(+) projectiles. In addition, depending on the change of energy of Bi (3) (+) , a different pattern of fragments was observed. With Cs(+) and C(60)(+) impact, however, the emission of silver cluster ions was not detected. In the case of C(60)(+) impact for PDMS-6140, peaks corresponding to silver-cationized intact oligomers were not observed. In this paper, these results are explained by the possible bombardment mechanism for each projectile, based on its mass, energy, and split trajectories of the component atoms under the polyatomic impact.

  7. REVIEW ARTICLE: Trends in interfacial design for surface plasmon resonance based immunoassays

    NASA Astrophysics Data System (ADS)

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-12-01

    Immunosensors based on surface plasmon resonance (SPR) have become a promising tool in sensor technology for biomedical, food, environmental, industrial and homeland security applications. SPR is a surface sensitive optical technique, suitable for real-time and label-free analysis of biorecognition events at functional transducer surfaces. Fabrication of highly active and robust sensing surfaces is an important part in immunoassays because the quality, quantity, chemistry and topography of the interfacial biomembranes play a major role in immunosensor performance. Eventually, a variety of immobilization methods such as physical adsorption, covalent coupling, Langmuir Blodgett film, polymer thin film, self-assembly, sol gel, etc, have been introduced over the years for the immobilization of biomolecules (antibody or antigen) on the transducer surfaces. The selection of an immobilization method for an immunoassay is governed by several factors such as nature and stability of the biomolecules, target analyte, application, detection principle, mode of signal transduction, matrix complexity, etc. This paper provides an overview of the various surface modification methods for SPR based immunosensor fabrication. The preparation, structure and application of different functional interfacial surfaces have been discussed along with a brief introduction to the SPR technology, biomolecules and detection principles.

  8. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    NASA Astrophysics Data System (ADS)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  9. Impedimetric and amperometric bifunctional glucose biosensor based on hybrid organic-inorganic thin films.

    PubMed

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    2015-02-01

    A novel glucose biosensor with an immobilized mediator was studied using electrochemical impedance spectroscopy (EIS) and amperometry measurements. The biosensor has a characteristic ultrathin form and is composed of a self-assembled monolayer anchoring glucose oxidase (GOx) covered with Langmuir-Blodgett (LB) films of Prussian blue (PB). The immobilized PB in the LB films acts as a mediator and enables the biosensor to work under a low potential (0.0V vs. Ag/AgCl). In the EIS measurements, a dramatic decrease in charge transfer resistance (Rct) was observed with sequential addition of glucose, which can be attributed to enzymatic activity. The linearity of the biosensor response was observed by the variation of the sensor response (1/Rct) as a function of glucose concentration in the range 0 to 25mM. The sensor also showed linear amperometric response below 130mM glucose. The organic-inorganic system of GOx and PB nanoclusters demonstrated bifunctional sensing action, both amperometry and EIS modes, as well as long sensing stability for 4 days.

  10. The preparation, characterization, and application of thin film devices

    NASA Astrophysics Data System (ADS)

    Berno, Bob

    This thesis deals with the preparation of two thin film devices, in particular a nitrogen dioxide (NOsb2) gas sensor and a rechargeable lithium battery. A number of different thin film preparation techniques were used for a variety of applications and the resultant films were characterized by spectroscopic and electrochemical methods. The NOsb2 gas sensor was based on Langmuir-Blodgett (LB) monolayer films of the sandwich molecule europium bisphthalocyanine (EuPcsb2). The intense UV-visible absorption spectrum of a monolayer of the EuPcsb2 dye molecules was recorded before and after exposure to NOsb2 gas. It was noted that with time the film spectrum returned to its original colour, thus indicating the process to be reversible. The powerful spectroscopic technique of surface enhanced Raman scattering (SERS) was also utilized for film characterization. As with the absorption spectroscopy, the SERS experiments also indicated a reversible NOsb2 adsorption-desorption process. An interdigitated gold electrode was used to measure the electrical conductivity of LB monolayers of EuPcsb2. The activation energy for conduction for this molecular semiconductor was determined to be 0.27 eV from thermal conductivity experiments. Upon exposure to NOsb2 gas, the conductivity of the film increases considerably until it reaches saturation. Kinetics studies indicated that the conductivity changes resulted from two sources: the adsorption of NOsb2 molecules on the surface, and the absorption of the molecules into the film. While the spectroscopic experiments suggested this process to be completely reversible, the electrical measurements indicated that heating was required to remove the residual absorbed NOsb2. Thin film cathodes for a rechargeable lithium battery were fabricated by the magnetron sputtering technique. The cathodes were deposited from a sample of the LiMnsb2Osb4 pure spinel material. The Li-Mn-O film was characterized by grazing angle x-ray diffraction, Raman and

  11. Surface acoustic wave vapor sensors based on resonator devices

    NASA Astrophysics Data System (ADS)

    Grate, Jay W.; Klusty, Mark

    1991-05-01

    Surface acoustic wave (SAW) devices fabricated in the resonator configuration have been used as organic vapor sensors and compared with delay line devices more commonly used. The experimentally determined mass sensitivities of 200, 300, and 400 MHz resonators and 158 MHz delay lines coated with Langmuir-Blodgett films of poly(vinyl tetradecanal) are in excellent agreement with theoretical predictions. The response of LB- and spray-coated sensors to various organic vapors were determined, and scaling laws for mass sensitivities, vapor sensitivities, and detection limits are discussed. The 200 MHz resonators provide the lowest noise levels and detection limits of all the devices examined.

  12. Aggregation of gramicidin A in phospholipid Langmuir-Blodgett monolayers.

    PubMed Central

    Diociaiuti, Marco; Bordi, Federico; Motta, Annelisa; Carosi, Alessandra; Molinari, Agnese; Arancia, Giuseppe; Coluzza, Carlo

    2002-01-01

    The aggregation of Gramicidin A (gA) in dipalmitoylphosphatidylcoline (DPPC) monolayers is investigated by both thermodynamic and structural methods. Compression isotherm analysis and atomic force microscopy (AFM) observations are performed. Our experimental results indicate that gA aggregation does occur in DPPC monolayers even at very low gA concentration (about 8 x 10(-4) mol%). At the low gA concentration limit, the aggregation process seems to be mainly horizontal (i.e., side-by-side, into the monolayer plane), following a fractal pattern growth producing the formation of typical, flat (0.5 nm height) "doughnut" structures, with a diameter of approximately 150 nm. These structures appear to be composed of smaller subunits (about 70 nm diameter) showing the same doughnut structure. At a molar fraction of approximately 3.8 mol%, the big doughnuts start to disaggregate and only small doughnuts appear. Above a gA concentration of approximately 4.4 mol%, all doughnuts (large and small) disappear, and the morphology assumes the appearance of a patchwork of two distinct phases: one that, being very flat, can be associated with a gA-free or gA-poor DPPC phase, and a second one, characterized by a more corrugated surface, associated with a gA-rich DPPC phase. At gA concentration of approximately 5 mol%, a percolation transition in the gA-rich DPPC phase occurs. Thermodynamic data indicate that the maximum of miscibility between gA and DPPC molecules occurs at approximately 28 mol%, suggesting that gA could aggregate in hexamers that are, on average, bound to 16 DPPC molecules. At the same concentration, AFM images show a network of small gA aggregation units of a size compatible with gA hexamers. PMID:12023244

  13. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.

    PubMed

    Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng

    2015-09-15

    Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.

  14. The influence of the preparation conditions on structure and optical properties of solid films of graphene oxide

    NASA Astrophysics Data System (ADS)

    Seliverstova, E.; Ibrayev, N.; Dzhanabekova, R.; Gladkova, V.

    2016-02-01

    In this study, we investigated the physico-chemical properties of graphene oxide monolayers at the interface water-air. Monolayers were formed by the spreading of dispersion of graphene oxide in acetone and THF. It was found than graphene monolayers are in the “liquid” state on the surface of subphase. Monolayers were transferred onto solid substrates according to Langmuir-Blodgett (LB) method. SEM images show that the films have an island structure. The films obtained from acetone solutions are more uniform, which makes them more promising in terms of their use as conductive coatings. Absorption spectrum of graphene LB films exhibits a broad band in the ultraviolet and visible region of the spectrum. The optical density of the film obtained from acetone solution is greater than the optical density of the film prepared from THF. In the visible region of the spectrum both films have high transparency.

  15. Polarization dependence of Raman scattering from a thin film involving optical anisotropy theorized for molecular orientation analysis.

    PubMed

    Itoh, Yuki; Hasegawa, Takeshi

    2012-06-14

    Polarized Raman scattering from a thin film involving uniaxial optical anisotropy deposited on a dielectric substrate has analytically been theorized. The analyte film is modeled as a three-phase system (air/film/substrate) to calculate the electromagnetic fields of the incident and scattered light propagating across the system with an aid of the transfer matrix method to exactly take the optical anisotropy of the film into account. On the new theory, a methodology for molecular orientation analysis of an extended polymethylene chain in the film is proposed, which is employed for determination of the tilt angles of the chains in single- and five-monolayer Langmuir-Blodgett (LB) films of cadmium stearate deposited on a glass plate. The results agree well with those obtained by infrared spectroscopy, which confirms reliability of the present method.

  16. How electrolyte and polyelectrolyte affect the adsorption of the anionic surfactant SDS onto the surface of a cellulose thin film and the structure of the cellulose film. 1. Hydrophobic cellulose.

    PubMed

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K

    2012-07-24

    The nature of hydrophobic thin cellulose films, formed by Langmuir-Blodgett (LB) deposition on silica, has been studied using neutron reflectivity (NR). The impact of electrolyte and a polyelectrolyte, poly(dimethyldiallylammonium chloride) (polydmdaac), on the adsorption of the anionic surfactant sodium dodecyl sulfate (SDS) onto the surface of the hydrophobic cellulose film and upon the structure of the cellulose film has been investigated. The results show how a combination of polyelectrolytes and electrolyte can be used to manipulate surfactant adsorption onto hydrophobic cellulose surfaces and modify the structure of the cellulose film by swelling and penetration. The results illustrate how polyelectrolytes can be used to reverse adsorption and swelling of cellulose films which are not reversible simply by dilution in solvent.

  17. Polymeric Materials for Electro-Optic Testing.

    DTIC Science & Technology

    1987-07-01

    what Langmuir Blodgett films are, how they are grown and deposited on a material, and the electro - optic effects in Langmuir/Blodgett films. Stephen...Kowel has experimented with several different types of organic dyes mixed in the films to increase the electro - optic effect in the films. The bulk of his...test integrated circuits. Keywords: Langmuir Blodgett films, Electro - optic testing, Integrated circuits, Linear electro - optic effect.

  18. Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes.

    PubMed

    Medina-Plaza, C; de Saja, J A; Rodriguez-Mendez, M L

    2014-07-15

    In this work, a multisensor system formed by nanostructured voltammetric biosensors based on phenol oxidases (tyrosinase and laccase) has been developed. The enzymes have been incorporated into a biomimetic environment provided by a Langmuir-Blodgett (LB) film of arachidic acid (AA). Lutetium bisphthalocyanine (LuPc2) has also been introduced in the films to act as electron mediator. The incorporation of the enzymes to the floating layers to form Tyr/AA/LuPc2 and Lac/AA/LuPc2 films has been confirmed by the expansion in the surface pressure isotherms and by the AFM images. The voltammetric response towards six phenolic compounds demonstrates the enhanced performance of the biosensors that resulted from a preserved activity of the tyrosinase and laccase combined with the electron transfer activity of LuPc2. Biosensors show improved detection limits in the range of 10(-7)-10(-8) mol L(-1). An array formed by three sensors AA/LuPc2, Tyr/AA/LuPc2 and Lac/AA/LuPc2 has been employed to discriminate phenolic antioxidants of interest in the food industry. The Principal Component Analysis scores plot has demonstrated that the multisensor system is able to discriminate phenols according to the number of phenolic groups attached to the structure. The system has also been able to discriminate grapes of different varieties according to their phenolic content. This good performance is due to the combination of four factors: the high functionality of the enzyme obtained using a biomimetic immobilization, the signal enhancement caused by the LuPc2 mediator, the improvement in the selectivity induced by the enzymes and the complementary activity of the enzymatic sensors demonstrated in the loading plots.

  19. Towards Organized Hybrid Nanomaterials at the Air/Water Interface Based on Liquid-Crystal/ZnO Nanocrystals.

    PubMed

    Paczesny, Jan; Wolska-Pietkiewicz, Małgorzata; Binkiewicz, Ilona; Wróbel, Zbigniew; Wadowska, Monika; Matuła, Kinga; Dzięcielewski, Igor; Pociecha, Damian; Smalc-Koziorowska, Julita; Lewiński, Janusz; Hołyst, Robert

    2015-11-16

    The ability to self-assemble nanosized ligand-stabilized metal oxide or semiconductor materials offers an intriguing route to engineer nanomaterials with new tailored properties from the disparate components. We describe a novel one-pot two-step organometallic approach to prepare ZnO nanocrystals (NCs) coated with deprotonated 4-(dodecyloxy)benzoic acid (i.e., an X-type liquid-crystalline ligand) as a model LC system (termed ZnO-LC1 NCs). Langmuir and Langmuir-Blodgett films of the resulting hybrids are investigated. The observed behavior of the ZnO NCs at the air/water interface is rationalized by invoking a ZnO-interdigitation process mediated by the anchored liquid-crystalline shell. The ordered superstructures form according to mechanism based on a ZnO-interdigitation process mediated by liquid crystals (termed ZIP-LC). The external and directed force applied upon compression at the air/water interface and the packing of the ligands that stabilize the ZnO cores drives the formation of nanorods of ordered internal structure. To study the process in detail, we follow a nontraditional protocol of thin-film investigation. We collect the films from the air/water interface in powder form (ZnO-LC1 LB), resuspend the powder in organic solvents and utilize otherwise unavailable experimental techniques. The structural and physical properties of the resulting superlattices were studied by using electron microscopy, atomic force microscopy, X-ray studies, dynamic light scattering, thermogravimetric analysis, UV/Vis absorption, and photoluminescence spectroscopy.

  20. Surface chemistry and spectroscopy of UG8 asphaltene Langmuir film, part 1.

    PubMed

    Orbulescu, Jhony; Mullins, Oliver C; Leblanc, Roger M

    2010-10-05

    This research focuses on a systematic investigation of UG8 asphaltene Langmuir films at the air-water interface using toluene as the spreading solvent. From the surface pressure-area isotherms, it was concluded that small-sized aggregates are spread on the water surface and the compression of the film leads to formation of large aggregates. Our methods provide a stringent test and confirmation for the formation of corresponding asphaltene nanoaggregates that have recently been proposed for bulk solutions. These results were confirmed by compression-decompression isotherms, Brewster angle microscopy, and p-polarized infrared reflection-absorption spectroscopy. The transfer of a single layer using both the Langmuir-Schaefer and Langmuir-Blodgett deposition techniques shows different aggregate shapes depending on the technique used as imaged using atomic force microscopy. The films reveal the existence of nanoaggregates spread on the water surface that coexist with large aggregates formed during compression. For the nanoaggregate, the thickness of the Langmuir-Schaefer and Langmuir-Blodgett films determined by AFM is consistent with small aggregation numbers of nanoaggregates determined by Langmuir film compression. In addition to these findings, the spreading solvent, toluene, was found to be trapped within the aggregates as confirmed by in situ UV-vis spectroscopy at the air-water interface. This result was possible only after waiting a time period of 1 h to allow the complete evaporation of the spreading solvent. This is the only study that reveals the presence of the in situ toluene within the UG8 aggregates directly at the air-water interface.

  1. Investigation of ferroelectric domains in thin films of vinylidene fluoride oligomers

    SciTech Connect

    Sharma, Pankaj Poddar, Shashi; Ducharme, Stephen; Gruverman, Alexei; Korlacki, Rafal

    2014-07-14

    High-resolution vector piezoresponse force microscopy (PFM) has been used to investigate ferroelectric domains in thin vinylidene fluoride oligomer films fabricated by the Langmuir-Blodgett deposition technique. Molecular chains are found to be preferentially oriented normal to the substrate, and PFM imaging shows that the films are in ferroelectric β-phase with a predominantly in-plane polarization, in agreement with infrared spectroscopic ellipsometry and X-ray diffraction measurements. The fractal analysis of domain structure has yielded the Hausdorff dimension (D) in the range of ∼1.3–1.5 indicating a random-bond nature of the disorder potential, with domain size exhibiting Landau-Lifshitz-Kittel scaling.

  2. Microcavity Laser Based on a Single Molecule Thick High Gain Layer.

    PubMed

    Palatnik, Alexander; Aviv, Hagit; Tischler, Yaakov R

    2017-04-05

    The ability to confine excitons within monolayers has led to fundamental investigations of non-radiative energy transfer, super-radiance, strong light-matter coupling, high-efficiency LEDs, and recently lasers in lateral resonator architectures. Vertical Cavity Surface Emitting Lasers (VCSELs), in which lasing occurs perpendicular to the device plane, are critical for telecommunications and large-scale photonics integration, however strong optical self-absorption and low fluorescence quantum yields have thus far prevented coherent emission from a monolayer microcavity device. Here we show lasing from a monolayer VCSEL using a single molecule thick film of amphiphilic fluorescent dye, assembled via Langmuir-Blodgett deposition, as the gain layer. Threshold was observed when 5% of the molecules were excited (4.4 μJ/cm(2)). At this level of excitation, the optical gain in the monolayer exceeds 1056 cm(-1). High localization of the excitons in the VCSEL gain layer can enhance their collective emission properties with Langmuir-Blodgett deposition presenting a paradigm for engineering the high gain layers on the molecular level.

  3. PM IRRAS investigation of thin silica films deposited on gold. Part 1. Theory and proof of concept.

    PubMed

    Zawisza, Izabella; Wittstock, Gunther; Boukherroub, Rabah; Szunerits, Sabine

    2007-08-28

    Polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) was successfully used for the first time to characterize an optically transparent thin oxide film. SiO2 layers of 7 nm thickness were synthesized by plasma enhanced chemical vapor deposition (PECVD) on 200 nm thick gold covered glass slides. Despite the fact that silica is transparent and absorptive to IR radiation when deposited in the form of thin films on a gold surface, it preserves the high metallic reflectivity for the IR light. At grazing angles of incidence of the IR beam, the enhancement of the normal component of the electric field at the interface is comparable to that of Au alone. In addition, the analysis of the structure of a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid monolayer deposited using the Langmuir-Blodgett technique is demonstrated.

  4. Ordered and ultrathin reduced graphene oxide LB films as hole injection layers for organic light-emitting diode

    PubMed Central

    2014-01-01

    In this paper, we demonstrated the utilization of reduced graphene oxide (RGO) Langmuir-Blodgett (LB) films as high performance hole injection layer in organic light-emitting diode (OLED). By using LB technique, the well-ordered and thickness-controlled RGO sheets are incorporated between the organic active layer and the transparent conducting indium tin oxide (ITO), leading to an increase of recombination between electrons and holes. Due to the dramatic increase of hole carrier injection efficiency in RGO LB layer, the device luminance performance is greatly enhanced comparable to devices fabricated with spin-coating RGO and a commercial conducting polymer PEDOT:PSS as the hole transport layer. Furthermore, our results indicate that RGO LB films could be an excellent alternative to commercial PEDOT:PSS as the effective hole transport and electron blocking layer in light-emitting diode devices. PMID:25298757

  5. Ordered and ultrathin reduced graphene oxide LB films as hole injection layers for organic light-emitting diode.

    PubMed

    Yang, Yajie; Yang, Xiaojie; Yang, Wenyao; Li, Shibin; Xu, Jianhua; Jiang, Yadong

    2014-01-01

    In this paper, we demonstrated the utilization of reduced graphene oxide (RGO) Langmuir-Blodgett (LB) films as high performance hole injection layer in organic light-emitting diode (OLED). By using LB technique, the well-ordered and thickness-controlled RGO sheets are incorporated between the organic active layer and the transparent conducting indium tin oxide (ITO), leading to an increase of recombination between electrons and holes. Due to the dramatic increase of hole carrier injection efficiency in RGO LB layer, the device luminance performance is greatly enhanced comparable to devices fabricated with spin-coating RGO and a commercial conducting polymer PEDOT:PSS as the hole transport layer. Furthermore, our results indicate that RGO LB films could be an excellent alternative to commercial PEDOT:PSS as the effective hole transport and electron blocking layer in light-emitting diode devices.

  6. Multimodal underwater adsorption of oxide nanoparticles on catechol-based polymer nanosheets

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shunsuke; Uchiyama, Shun; Miyashita, Tokuji; Mitsuishi, Masaya

    2016-03-01

    Multimodal underwater adsorption behaviour of catechol units was demonstrated by examining the adsorption of different oxide nanoparticles on nanoscale-integrated polymer nanosheets. Catechol-based polymer nanosheets were fabricated using the Langmuir-Blodgett (LB) technique with random copolymers (p(DDA/DMA)s) of N-dodecylacrylamide (DDA) and dopamine methacrylamide (DMA). The p(DDA/DMA) nanosheets were immersed into water dispersions of SiO2, Al2O3, and WO3 nanoparticles (NPs) respectively. The results show that the adsorption properties can be altered by varying the NP type: SiO2 NP adsorption was observed only below pH = 6, at which the o-quinone form in p(DDA/DMA) nanosheets transforms into the catechol form or vice versa. However, their transition point for Al2O3 NP adsorption was found at approximately pH 10, at which the surface potential of Al2O3 NPs changes the charge polarity, indicating that the electrostatic interaction is predominant. For WO3 NPs, adsorption was observed when citric acid, which modifies the surface of WO3 NPs by complex formation, was used as a pH-controlling agent, but no adsorption was found for hydrochloric acid used as a pH controlling agent. FT-IR measurements proved that miniscule amounts of water molecules were trapped in p(DDA/DMA) nanosheets and that they acquired hydrogen bonding network formations, which might assist nanoparticle adsorption underwater and make the catechol units adjustable. The results indicate that the nanoscale spatial arrangements of catechol units in films are crucially important for the application of multimodal adsorption of oxide nanoparticles on catechol-based polymer materials.Multimodal underwater adsorption behaviour of catechol units was demonstrated by examining the adsorption of different oxide nanoparticles on nanoscale-integrated polymer nanosheets. Catechol-based polymer nanosheets were fabricated using the Langmuir-Blodgett (LB) technique with random copolymers (p(DDA/DMA)s) of N

  7. Free-standing lipid films stabilized by Annexin-A5.

    PubMed

    Simon, Anne; Gounou, Céline; Tan, Sisareuth; Tiefenauer, Louis; Di Berardino, Marco; Brisson, Alain R

    2013-11-01

    Free-standing lipid bilayers in nano- and micro-pores are interesting membrane models and attractive for biotechnological applications. We describe here the controlled preparation of proteo-lipid mono- and bilayers using the Langmuir-Schaefer transfer or Langmuir-Blodgett technique, respectively on hydrophobic and hydrophilic surfaces. We demonstrate the formation of suspended proteo-lipid layers by Transmission Electron Microscopy (TEM) and in situ Atomic Force Microscopy (AFM) imaging. Using Annexin-A5 as a membrane-associated protein, continuous proteo-lipid mono- and bilayers were formed, which span pore arrays over areas of several square-micrometers. The 2D organization of proteins associated to lipid monolayer is well preserved during the transfer process and the protein association is Ca(2+)-dependent and therefore reversible. The simple formation and reliable transfer of stabilized free-standing lipid films is a first crucial step to create biomimetic membranes for biotechnological applications and membrane protein research.

  8. Enzymatic modification and X-ray photoelectron spectroscopy analysis of a functionalized polydiacetylene thin film

    SciTech Connect

    Wilson, T.E.; Spevak, W.; Bednarski, M.D. Lawrence Berkeley Lab., CA ); Charych, D.H. )

    1994-05-01

    The mild conditions and specificity of biological catalysts are attractive incentives for their use in the formation of surfaces with well-defined chemical functionality. Herein, we describe the synthesis, characterization, and enzymatic modification of a functionalized polymeric bilayer assembly. The assembly is composed of a self-assembled monolayer of octadecylsilane and a Langmuir-Blodgett monolayer of polydiacetylene functionalized with the dipeptide phenylalanine-alanine (Phe-Ala). We demonstrate via X-ray photoelectron spectroscopy surface analysis that the surface-bound Phe-Ala dipeptide is a substrate for specific cleavage by the enzyme subtilisin BPN[prime]. In-situ surface transformations via enzymatic synthesis or cleavage offer an alternative to chemical treatments of organic thin films. 28 refs., 4 figs.

  9. Attenuation Lengths of Photoelectrons in Hydrocarbon Films

    DTIC Science & Technology

    1988-10-01

    lower than those obtained by Ringsdorf7 for polymerized , Langmuir-Blodgett cadmium diacetylene multilayers, by King 8 for Langmuir- Blodgett barium...Sci., Po’ . Chem. Ed. 1977, i5, 2843. 7 Hupfer, B.; Schupp, H.; Andrade, J. D.; Ringsdorf, H. J. Electron Spectrosc. 1981, 23, 103. 8 Cartier , E...Warren T. Ford Dr. J.C.H. Chien Department of Chemistry Department of Polymer Science and Oklahoma State University Engineering Stillwater, OK 74078

  10. Thin films and assemblies of photosensitive membrane proteins and colloidal nanocrystals for engineering of hybrid materials with advanced properties.

    PubMed

    Zaitsev, Sergei Yu; Solovyeva, Daria O; Nabiev, Igor

    2012-11-15

    The development and study of nano-bio hybrid materials engineered from membrane proteins (the key functional elements of various biomembranes) and nanoheterostructures (inorganic colloidal nanoparticles, transparent electrodes, and films) is a rapidly growing field at the interface of materials and life sciences. The mainspring of the development of bioinspired materials and devices is the fact that biological evolution has solved many problems similar to those that humans are attempting to solve in the field of light-harvesting and energy-transferring inorganic compounds. Along this way, bioelectronics and biophotonics have shown considerable promise. A number of proteins have been explored in terms of bioelectronic device applications, but bacteriorhodopsin (bR, a photosensitive membrane protein from purple membranes of the bacterium Halobacterium salinarum) and bacterial photosynthetic reaction centres have received the most attention. The energy harvesting in plants has a maximum efficiency of 5%, whereas bR, in the absence of a specific light-harvesting system, allows bacteria to utilize only 0.1-0.5% of the solar light. Recent nano-bioengineering approaches employing colloidal semiconductor and metal nanoparticles conjugated with biosystems permit the enhancement of the light-harvesting capacity of photosensitive proteins, thus providing a strong impetus to protein-based device optimisation. Fabrication of ultrathin and highly oriented films from biological membranes and photosensitive proteins is the key task for prospective bioelectronic and biophotonic applications. In this review, the main advances in techniques of preparation of such films are analyzed. Comparison of the techniques for obtaining thin films leads to the conclusion that the homogeneity and orientation of biomembrane fragments or proteins in these films depend on the method of their fabrication and increase in the following order: electrophoretic sedimentation < Langmuir-Blodgett and

  11. The cis-bis(decanoate)tin phthalocyanine/DPPC film at the air/water interface.

    PubMed

    Ramos, Salvador; Garza, Cristina; Beltran, Hiram I; Campos-Terán, José; Arenas-Alatorre, Jesús; Castillo, Rolando

    2012-03-01

    Films made of cis-bis-decanoate-tin(IV) phthalocyanine (PcSn10) and racemic dipalmitoylphosphatidylcholine (DPPC) are studied with compression isotherms and Brewster angle microscopy (BAM) at the air/water interface. Films enriched in PcSn10 present phase separation elliptical-shaped domains. These domains present optical anisotropy and molecular order. They are enriched in PcSn10, and the film outside these domains is enriched in DPPC, as shown in by high-angle annular dark-field transmission electron microscopy on Langmuir-Blodgett (LB) transferred films. Film collapse area and atomic force microscopy images of LB transferred films on mica indicate that the films are actually multilayers. A computational survey was performed to determine how the PcSn10 molecules prefer to self-assemble, in films basically made of PcSn10. The relative energetic stability for several dimeric assemblies was obtained, and a crystal model of the film was developed through packing and repeating the PcSn10 molecules, along the crystallographic directions of the unit cell. Our results contribute to understanding the strong interaction between PcSn10 and DPPC at the air/water interface, where even small quantities of DPPC (~1-2%) can modify the film in an important way.

  12. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solidsa)

    NASA Astrophysics Data System (ADS)

    Greene, J. E.

    2015-03-01

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (˜1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ˜78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese "floating-ink" art (suminagashi) developed ˜1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO2 and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including controlled wetting

  13. Tracing the 4000 year history of organic thin films: From monolayers on liquids to multilayers on solids

    SciTech Connect

    Greene, J. E.

    2015-03-15

    The recorded history of organic monolayer and multilayer thin films spans approximately 4000 years. Fatty-acid-based monolayers were deposited on water by the ancients for applications ranging from fortune telling in King Hammurabi's time (∼1800 BC, Mesopotamia) to stilling choppy waters for sailors and divers as reported by the Roman philosopher Pliny the Elder in ∼78 AD, and then much later (1774) by the peripatetic American statesman and natural philosopher Benjamin Franklin, to Japanese “floating-ink” art (suminagashi) developed ∼1000 years ago. The modern science of organic monolayers began in the late-1800s/early-1900s with experiments by Lord Rayleigh and the important development by Agnes Pockels, followed two decades later by Irving Langmuir, of the tools and technology to measure the surface tension of liquids, the surface pressure of organic monolayers deposited on water, interfacial properties, molecular conformation of the organic layers, and phase transitions which occur upon compressing the monolayers. In 1935, Katherine Blodgett published a landmark paper showing that multilayers can be synthesized on solid substrates, with controlled thickness and composition, using an apparatus now known as the Langmuir-Blodgett (L-B) trough. A disadvantage of LB films for some applications is that they form weak physisorbed bonds to the substrate. In 1946, Bigelow, Pickett, and Zisman demonstrated, in another seminal paper, the growth of organic self-assembled monolayers (SAMs) via spontaneous adsorption from solution, rather than from the water/air interface, onto SiO{sub 2} and metal substrates. SAMs are close-packed two-dimensional organic crystals which exhibit strong covalent bonding to the substrate. The first multicomponent adsorbed monolayers and multilayer SAMs were produced in the early 1980s. Langmuir monolayers, L-B multilayers, and self-assembled mono- and multilayers have found an extraordinarily broad range of applications including

  14. Evolution of Nanoflowers and Nanospheres of Zinc Bisporphyrinate Tweezers at the Air/water Interface.

    PubMed

    Xie, Fan; Zhuo, Congcong; Hu, Chuanjiang; Liu, Ming Hua

    2017-03-22

    While the sophisticated Langmuir and Langmuir-Blodgett technique facilitates the fabrication of uniform ultrathin monolayer and films, it is also revealed as a powerful tool for the bottom-up constructions of the nanostructures through the air/water interface. In this paper, unique nanoflowers or nanospheres were constructed based on the synthesized m-phthalic diamide-linked Zinc bis-porphyrinate tweezers using the Langmuir and Langmuir-Blodgett (LB) technique. It was found that both the two tweezer type Zinc bisporphyrinates could form stable two-dimensional spreading films at the air/water interface, which could be subsequently transferred onto solid substrates by the vertical lifting method. The atomic force microscope (AFM) revealed that at the initial spreading stage the compound formed flat disk-like domains and then hierarchically evolved into nanoflowers or nanospheres upon compressing the floating film. Such nanostructures have not been reported before and cannot be fabricated using the other self-assembly methods.

  15. Thin films under chemical stress

    SciTech Connect

    Not Available

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  16. Langmuir films of asphaltene model compounds and their fluorescent properties.

    PubMed

    Nordgård, Erland L; Landsem, Eva; Sjöblom, Johan

    2008-08-19

    The relationship between the physicochemical properties of asphaltenes and asphaltene structure is an issue of increasing focus. Surface pressure-area isotherms of asphaltene model compounds have been investigated to gain more knowledge of their arrangement at an aqueous surface. Variations in interfacial activity have been correlated to proposed arrangements. The presence of a carboxylic acid has shown to be crucial for their interfacial activity and film properties. The acid group directs the molecules normal to the surface, forming a stable monolayer film. The high stability was absent when no acidic groups were present. Fluorescence spectra of deposited Langmuir-Blodgett films showed only the presence of the excimer emission for thin films of acidic model compounds, indicating a close face-to-face arrangement of the molecules. Time-correlated single photon counting (TCSPC) of the model compounds in toluene indicated the presence of aggregates for two of four compounds at low concentrations. However, a sudden drop of interfacial tension observed could not be correlated to the aggregation. Instead, aggregation induced by addition of a "poor" solvent showed decreased interfacial activity when aggregated due to decrease of monomers in bulk. The findings regarding these asphaltene model compounds and their structural differences show the great effect an acidic group has on their physicochemical properties.

  17. Novel Liquid Crystals - Polymers and Monomers - As Nonlinear Optical Materials

    DTIC Science & Technology

    1987-12-31

    and pyridine N - oxides . Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described...Polymalonate Liquid Crystals for Nonlinear Optics", A. C. Griffin, A. M. Bhatti and R. S. L. Hung, Mol Cryst LiS Cryst, 155, 129 (1988). " Pyridine N - oxides ... pyridine N - oxide based side chain polymers having a push-pull pi electronic structure, (d) generation of a series of copolymers involving both an nlo

  18. Ordered organic thin films self-assembled from the vapor phase

    NASA Technical Reports Server (NTRS)

    Debe, M. K.

    1993-01-01

    Organic films self-assembled from a liquid phase, as in Langmuir-Blodgett or adsorption from solution, have received much attention in the past decade as techniques to achieve highly oriented-ordered polymeric thin films. Many organic compounds including some of the same fatty acids have been vapor deposited as well. However, organic pigments and dyes comprise a major class of important materials which have very low solubilities yet excellent thermal stabilities, making them ideally suited for film deposition from the vapor phase. Surprisingly, such molecular systems exhibit a significant propensity to self order, a high sensitivity to deposition parameters, and a range of microstructural forms that cannot be duplicated by the less energetic mechanisms associated with solution adsorption processes. Molecular solids such as heterocyclic polynuclear aromatics are excellent candidates for film formation by vacuum deposition means. Over the past decade, our work and that of others investigating a wide variety of perylene and phthalocyanine derivatives identified five deposition parameters that can significantly affect film morphology, physical microstructure, and type and extent of ordering developed in vacuum and vapor transport grown films. These parameters are substrate temperature, deposition rate, substrate chemistry and epitaxy, ambient gas convective flows, and post deposition annealing. Examples of how each of these conditions manifest themselves in the film structure and ordering, most frequently revealed by scanning electron microscopy, reflection absorption infrared spectroscopy (RAIR), and grazing incidence x-ray diffraction (GIX), are presented.

  19. Structure and mechanical properties of poly(benzyl ether) monodendron Langmuir films

    NASA Astrophysics Data System (ADS)

    Kampf, James Patrick

    2000-10-01

    preliminary study of the organization and surface viscoelasticity of Langmuir-Blodgett films of the monodendrons on hydrophilic silicon substrates using ellipsometry and atomic force microscopy. These films exhibit a viscoelastic transition consistent with the behavior of monolayers at the air-water interface. Furthermore, the Langmuir-Blodgett films assume a number of morphologies that depend on film thickness and may be generated by dewetting from the solid surface.

  20. Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer.

    PubMed

    Keller, R; Kwak, M; de Vries, J W; Sawaryn, C; Wang, J; Anaya, M; Müllen, K; Butt, H-J; Herrmann, A; Berger, R

    2013-11-01

    The self-assembly of amphiphilic hybrid materials containing an oligonucleotide sequence at the air/water interface was investigated by means of pressure-molecular area (Π-A) isotherms. In addition, films were transferred onto solid substrates and imaged using scanning force microscopy. We used oligonucleotide molecules with lipid tails, which consisted of a single stranded oligonucleotide 11 mer containing two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases (dU11) at the 5'-end of the oligonucleotide sequence. The air/water interface was used as confinement for the self-assembling process of dU11. Scanning force microscopy of films transferred via Langmuir-Blodgett technique revealed mono-, bi- (Π ≥ 2 mN/m) and multilayer formation (Π ≥ 30 mN/m). The first layer was 1.6 ± 0.1 nm thick. It was oriented with the hydrophilic oligonucleotide moiety facing the hydrophilic substrate while the hydrophobic alkyl chains faced air. In the second layer the oligonucleotide moiety was found to face the air. The second layer was found to cover up to 95% of the sample area. Our measurements indicated that the rearrangement of the molecules into bi- and multiple bilayers happened already at the air/water interface. Similar results were obtained with a second type of oligonucleotide amphiphile, an oligonucleotide block copolymer, which was composed of an oligonucleotide 11 mer covalently attached at the terminus to polypropyleneoxide (PPO).

  1. Antireflective polyimide based films

    NASA Astrophysics Data System (ADS)

    Cao, Yuanmei

    The goal of this work was to prepare antireflective and anti-abrasion films using polyimide and organically modified silica nanoparticle thin films. A series of thin film were prepared from colorless and soluble polyimide with organically modified silica colloids via a solution casting method. The polyimide was selected for its optical properties. Three type of organically modified silica nanoparticles were prepared by grafting polysiloxane, polyfluoroester and fluoroalkyl groups onto silica nanoparticles. The molecular weight of the polysiloxane, polyfluoroester and the amount of fluorinated alkyl groups were varied. The organically modified silica colloids were characterized by TEM, DLS, FTIR, 1H NMR, solid state 13C NMR and solid state 29Si NMR. The coatings were characterized by UV-Vis transmittance spectra and SEM. The effect of modified silica loading, the molecular weight of polymer and type of solvent on AR properties were studied. An enhancement in antireflective activity was observed for 1 wt% LPDMS modified (low molecular weight) silica coatings, 3 wt% fluorosilica-10 and 3% L-MPS-PF-SILICA nanoparticles (low molecular weight polyfluoroester modified silica) in dimethylacetamide (DMAc). In comparison with cyclopentanone (CPT), DMAc favors migration of silica particles towards coating-air interface giving higher transmittance. The migration of particles to the surface and consequent increased surface roughness were observed by SEM. The present study suggested a roll to roll solution casting method to create antireflective coatings. This approach had potential to be used for a one-step large-scale manufacturing of antireflective coating. Four acrylated bismaleimide were made via two-step process. The first step involved the solution imidization to form hydroxylated bismaleimide. In the second step, hydroxylated bismaleimide was reacted with acryloyl chloride to form acrylated bismaleimide. The acrylated bismaleimide were characterized by FTIR, 1H NMR, 13C

  2. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  3. Monomolecular films of cholesterol oxidase and S-Layer proteins

    NASA Astrophysics Data System (ADS)

    Ferraz, Helen Conceição; Guimarães, Juliana Aguilar; Alves, Tito Livio Moitinho; Constantino, Carlos José Leopoldo

    2011-05-01

    Cholesterol oxidase (ChOx) is a flavoenzyme that catalyzes the oxidation of cholesterol to cholest-5-en-3-one and subsequently the isomerization to cholest-4-en-3-one. ChOx has been very commonly studied as the detection element in cholesterol biosensors. In the biosensor development field, a relatively new approach is the use of crystalline bacterial cell surface layers, known as S-Layer proteins. These proteins exhibit the ability of self-assembling at surfaces, opening a vast spectrum of applications, both in basic and applied researches. In our study, monomolecular films of ChOx and mixed films of ChOx/S-Layer proteins and DPPC/S-Layer proteins were produced using the Langmuir technique. Characterization of the films was performed by means of surface pressure-molecular area ( π- A) isotherms. Stable monolayers were obtained, which means that they can be transferred to solid substrates by Langmuir-Blodgett technique. Mixed monolayers showed an ideal like behavior.

  4. Thiophene-based monolayer OFETs prepared by Langmuir techniques

    NASA Astrophysics Data System (ADS)

    Agina, Elena V.; Sizov, Alexey S.; Anisimov, Daniil S.; Trul, Askold A.; Borshchev, Oleg V.; Paraschuk, Dmitry Y.; Shcherbina, Maxim A.; Chvalun, Sergey N.; Ponomarenko, Sergey A.

    2015-08-01

    A novel fast, easily processible and highly reproducible approach to thiophene-based monolayer OFETs fabrication by Langmuir-Blodgett or Langmuir-Schaefer techniques was developed and successfully applied. It is based on selfassembly of organosilicon derivatives of oligothiophenes or benzothienobenzothiophene on the water-air interface. Influence of the conjugation length and the anchor group chemistry of the self-assembling molecules on the monolayer structure and electric performance of monolayer OFETs was systematically investigated. The efficient monolayer OFETs with the charge carrier mobilities up to 0.01 cm2/Vs and on/off ratio up to 106 were fabricated, and their functionality in integrated circuits under normal air conditions was demonstrated.

  5. 70 Years of Built-Up Films: Katharine Blodgett's Scientific Legacy

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel

    2004-03-01

    While working at the General Electric Research Laboratories in 1934, Katharine Blodgett published a brief account (in JACS) of her success at transferring layers of fatty acids from the water surface to a glass plate layer-by-layer; creating what was arguably the first rationally-designed nanostructured material. These structures would come bear her name along with that of her mentor, Irving Langmuir. Although various commercial applications have been proposed, ranging from anti-reflection coatings to soft X-ray monochromators, Langmuir-Blodgett (LB) films have never truly found their way into the marketplace in a significant way. Nevertheless, the scientific interest in LB films remains strong after 70 years because the technique offers a controlled method for building supermolecular assemblies with well-defined molecular arrangement and orientation. LB films have proven extremely useful as a research tool in order to explore fundamental interactions of amphiphilic molecules, chemical reactions in confined geometries, and to create model systems to calibrate and challenge new experimental techniques. From a statistical physics standpoint, LB films offer the possibility of studying the evolution of structure and phase transitions as a molecular system evolves from two to three dimensions. LB methods are also frequently used to create model biological membranes of known composition as well as molecular (or nanoparticle) layers for studies of potential nanoscale optoelectronic devices.

  6. The Effect of Surface Pressure on the Langmuir-Blodgett Polymerization of 2-Pentadecyl Aniline

    DTIC Science & Technology

    1992-05-19

    the mean molecular area was decreasing during the polymerization of 2-pentadecyl aniline . Also no polymer was found when the reaction was run at low...and polymer, we suppose, is the cause of Mma decrease during the polymerization of 2-pentadecyl aniline . Compared with the area of a long alkyl ...is put into changing its conformation at the surface. In the case of 2-pentadecyl aniline , the work done upon compressing the monolayer, we suppose, is

  7. Interaction of lipophilic gemcitabine prodrugs with biomembrane models studied by Langmuir-Blodgett technique.

    PubMed

    Castelli, Francesco; Sarpietro, Maria Grazia; Rocco, Flavio; Ceruti, Maurizio; Cattel, Luigi

    2007-09-01

    The stability and bioavailability of anticancer agents, such as gemcitabine, can be increased by forming prodrugs. Gemcitabine is rapidly deaminated to the inactive metabolite (2('),2(')-difluorodeoxyuridine), thus to improve its stability a series of increasingly lipophilic gemcitabine prodrugs linked through the 4-amino group to valeroyl, lauroyl, and stearoyl acyl chains were synthesized. Studies of monolayer properties are important to improve understanding of biological phenomena involving lipid/gemcitabine or lipid/gemcitabine derivative interactions. The interfacial behavior of monolayers constituted by DMPC plus gemcitabine or lipophilic gemcitabine prodrugs at increasing molar fractions was studied at the air/water interface at temperatures below (10 degrees C) and above (37 degrees C) the lipid phase transition. The effect of the hydrophobic chain length of gemcitabine derivatives on the isotherm of pure DMPC was investigated by surface tension measurement, and the results are reported as molar fractions as a function of mean molecular area per molecule. The results show that the compounds interact with DMPC producing mixed monolayers that are subject to an expansion effect, depending on the prodrug chain length. The results give useful hints of the interaction of these prodrugs with biological membranes and increase knowledge on the incorporation site of such compounds, as a function of their lipophilicity, in a lipid carrier; they may lead to improved liposomal formulation design.

  8. Cellulose antibody films for highly specific evanescent wave immunosensors

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Bock, Daniel; Jaworek, Thomas; Kaul, Sepp; Schulze, Matthais; Tebbe, H.; Wegner, Gerhard; Seeger, Stefan

    1996-01-01

    For the production of recognition elements for evanescent wave immunosensors optical waveguides have to be coated with ultrathin stable antibody films. In the present work non amphiphilic alkylated cellulose and copolyglutamate films are tested as monolayer matrices for the antibody immobilization using the Langmuir-Blodgett technique. These films are transferred onto optical waveguides and serve as excellent matrices for the immobilization of antibodies in high density and specificity. In addition to the multi-step immobilization of immunoglobulin G(IgG) on photochemically crosslinked and oxidized polymer films, the direct one-step transfer of mixed antibody-polymer films is performed. Both planar waveguides and optical fibers are suitable substrates for the immobilization. The activity and specificity of immobilized antibodies is controlled by the enzyme-linked immunosorbent assay (ELISA) technique. As a result reduced non-specific interactions between antigens and the substrate surface are observed if cinnamoylbutyether-cellulose is used as the film matrix for the antibody immobilization. Using the evanescent wave senor (EWS) technology immunosensor assays are performed in order to determine both the non-specific adsorption of different coated polymethylmethacrylat (PMMA) fibers and the long-term stability of the antibody films. Specificities of one-step transferred IgG-cellulose films are drastically enhanced compared to IgG-copolyglutamate films. Cellulose IgG films are used in enzymatic sandwich assays using mucine as a clinical relevant antigen that is recognized by the antibodies BM2 and BM7. A mucine calibration measurement is recorded. So far the observed detection limit for mucine is about 8 ng/ml.

  9. Aggregation of quantum dots in hybrid structures based on TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kolesova, Ekaterina P.; Orlova, Anna O.; Maslov, Vladimir G.; Gun'ko, Yurii K.; Cleary, Olan; Baranov, Aleksander V.; Fedorov, Anatoly V.

    2016-04-01

    A morphology and photoinduced changes of luminescence properties of two types of hybrid structures based on TiO2 nanoparticles and CdSe/ZnS QDs were examined. A spin-coating method and a modified Langmuir- Blodgett technique have been applied to form the multilayer hybrid structures on glass slides. It was demonstrated that uniformity of QD surface concentration in hybrid structures depends on the method of structure formation. A photodegradation of luminescence properties of the structures is associated with the formation of QD aggregates. The QD aggregate concentration and their size depend on the method of the structure formation and the concentration of TiO2 nanoparticles. A decay of luminescence of QD aggregates in hybrid structures contains a microsecond components. An exposure of the hybrid structures with uniform QD surface concentration by visible light resulted in a photopassivation of their surface, which is accompanied by significant increase of luminescence quantum yield of QDs.

  10. Influence of the type of phospholipid head and of the conformation of the polyelectrolyte on the growth of calcium carbonate thin films on LB/LbL matrices.

    PubMed

    Ramos, Ana P; Espimpolo, Daniela M; Zaniquelli, Maria Elisabete D

    2012-06-15

    Calcium carbonate is one of the most important biominerals, and it is the main constituent of pearls, seashells, and teeth. The in vitro crystallization of calcium carbonate using different organic matrices as templates has been reported. In this work, the growth of calcium carbonate thin films on special organic matrices consisting of layer-by-layer (LbL) polyelectrolyte films deposited on a pre-formed phospholipid Langmuir-Blodgett (LB) film has been studied. Two types of randomly coiled polyelectrolytes have been used: lambda-carrageenan and poly(acrylic acid). A precoating comprised of LB films has been prepared by employing a negatively charged phospholipid, the sodium salt of dimyristoilphosphatidyl acid (DMPA), or a zwitterionic phospholipid, namely dimyristoilphosphatidylethanolamine (DMPE). This approach resulted in the formation of particulate calcium carbonate continuous films with different morphologies, particle sizes, and roughness, as revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystalline structure of the calcium carbonate particles was analyzed by Raman spectroscopy. The randomly coiled conformation of the polyelectrolytes seems to be the main reason for the formation of continuous films rather than CaCO(3) isolated crystals.

  11. Membrane-mimetic films of asymmetric phosphatidylcholine lipid bolaamphiphiles.

    PubMed

    Sun, Xue-Long; Biswas, Nilanjana; Kai, Toshitsugu; Dai, Zhifei; Dluhy, Richard A; Chaikof, Elliot L

    2006-01-31

    Membrane-spanning phospholipid bolaamphiphiles either alone or as a constituent of a multicomponent lipid membrane may prove to be facile building blocks for generating robust bioactive membrane-mimetic assemblies. We have previously reported the synthesis of asymmetric dialkyl phospholipid bolaamphiphiles that contain ester linked phosphatidylcholine and amine functionalities at opposite chain ends. In this report, we describe the synthesis of phospholipid bolaamphiphiles that are conjugated to biotin via the terminal amine with or without a poly(ethylene oxide) spacer arm of varying chain length. The behavior of biotinylated bolaamphiphiles as a self-assembled monolayer at an air-water interface was characterized by epi-fluorescence microscopy and revealed that domain structure and pi-A isotherms were substantially influenced by linker type and size. Substrate bound assemblies were produced by Langmuir-Blodgett deposition onto planar substrates coated with an avidin derivatized polyelectrolyte multilayer. Significantly, external reflectance infrared spectroscopy confirmed the fabrication of bolaamphiphile thin films that display extended stability in vitro.

  12. Effects of Ca(2+) ions on bestrophin-1 surface films.

    PubMed

    Mladenova, Kirilka; Petrova, Svetla D; Andreeva, Tonya D; Moskova-Doumanova, Veselina; Topouzova-Hristova, Tanya; Kalvachev, Yuri; Balashev, Konstantin; Bhattacharya, Shomi S; Chakarova, Christina; Lalchev, Zdravko; Doumanov, Jordan A

    2017-01-01

    Human bestrophin-1 (hBest1) is a transmembrane calcium-activated chloride channel protein - member of the bestrophin family of anion channels, predominantly expressed in the membrane of retinal pigment epithelium (RPE) cells. Mutations in the protein cause ocular diseases, named Bestrophinopathies. Here, we present the first Fourier transform infrared (FTIR) study of the secondary structure elements of hBest1, π/A isotherms and hysteresis, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) visualization of the aggregation state of protein molecules dispersed as Langmuir and Langmuir-Blodgett films. The secondary structure of hBest1 consists predominantly of 310-helices (27.2%), α-helixes (16.3%), β-turns and loops (32.2%). AFM images of hBest1 suggest approximate lateral dimensions of 100×160Å and 75Å height. Binding of calcium ions (Ca(2+)) induces conformational changes in the protein secondary structure leading to assembly of protein molecules and changes in molecular and macro-organization of hBest1 in monolayers. These data provide basic information needed in pursuit of molecular mechanisms underlying retinal and other pathologies linked to this protein.

  13. Self-Assembled, Perforated Monolayers for Enhanced Permselectivity in Membranes

    DTIC Science & Technology

    2006-11-01

    Selective Membranes. In the 1930s, Irving Langmuir and Katherine Blodgett introduced a method for fabricating monolayer and multilayer arrays of... Langmuir -Blodgett (LB) films. Here, we show how ionic cross-linking of multiply-charged surfactants (a process that we have termed, “gluing”) can yield...LB films on the order of 6 nm thick having extraordinary barrier properties, high flux, and stability. 2. Langmuir -Blodgett Films as Permeation

  14. Thin Films of Uniform Hematite Nanoparticles: Controls on Surface Hydrophobicity and Self-Assembly

    SciTech Connect

    Wang, Wei; Liang, Liyuan; Johs, Alexander; Gu, Baohua

    2008-01-01

    In this study we show that uniform hematite ( -Fe2O3) nanoparticle thin films with controlled layer thickness can be formed by Langmuir-Blodgett (LB) monolayer deposition on surface areas of several square centimeters. The technique involves synthesis of uniform hematite nanoparticles by forced hydrolysis and surface modifications for increased hydrophobicity to bring the particles to the air-water interface. Methods of thermal treatment, stepped solvent exchange, and oleate surfactant coating were studied for their effectiveness in increasing hydrophobicity by removing surface adsorbed water and OH groups and were subsequently validated by Fourier-transform infrared (FTIR) spectral analysis. Surface pressure-area ( -A) and surface pressure-time ( -t) isotherms indicate that the stability of the particle monolayer at the air-water interface depends on the method of surface modification. Thermal evaporation treatment was found to produce thin films of hematite nanoparticles with the greatest uniformity and surface coverage as characterized by UV-visible spectroscopic, scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses.

  15. Structural and electrochemical properties of lutetium bis-octachloro-phthalocyaninate nanostructured films. Application as voltammetric sensors.

    PubMed

    Alessio, P; Apetrei, C; Rubira, R J G; Constantino, C J L; Medina-Plazal, C; De Saja, J A; Rodríguez-Méndez, M L

    2014-09-01

    Thin films of the bis[2,3,9,10,16,17,23,24-octachlorophthalocyaninate] lutetium(III) complex (LuPc2Cl32) have been prepared by the Langmuir-Blodgett and the Langmuir-Schaefer (LS) techniques. The influence of the chlorine substituents in the structure of the films and in their spectroscopic, electrochemical and sensing properties has been evaluated. The π-A isotherms exhibit a monolayer stability greater than the observed in the unsubstituted analogue (LuPc2), being easily transferred to solid substrates, also in contrast to LuPc2. The LB and LS films present a linear growth forming stratified layers, monitored by UV-VIS absorption spectroscopy. The latter also revealed the presence of LuPc2Cl32 in the form of monomers and aggregates in both films. The FTIR data showed that the LuPc2Cl32 molecules present a non-preferential arrangement in both films. Monolayers of LB and LS were deposited onto 6 nm Ag island films to record surface-enhanced resonance Raman scattering (SERRS), leading to enhancement factors close to 2 x 10(3). Finally, LB and LS films deposited onto ITO glass have been successfully used as voltammetric sensors for the detection of catechol. The improved electroactivity of the LB and LS films has been confirmed by the reduction of the overpotential of the oxidation of catechol. The enhancement of the electrocatalytic effect observed in LB and LS films is the result of the nanostructured arrangement of the surface which increases the number of active sites. The sensors show a limit of detection in the range of 10(-5) mol/L.

  16. Chirality Transfer and Modulation in LB Films Derived From the Diacetylene/Melamine Hydrogen-Bonded Complex.

    PubMed

    Zhu, Yu; Xu, Yangyang; Zou, Gang; Zhang, Qijin

    2015-08-01

    Introduction of hydrogen-bonding interaction into π-conjugated systems is a promising strategy, since the highly selective and directional hydrogen-bonding can increase the binding strength, provide enhanced stability to the assemblies, and position the π-conjugated molecules in a desired arrangement. The helical packing of the rigid melamine cores seems to play a dominating role in the subsequent formation of the peripheral helical PDA backbone. The polymerized Langmuir-Blodgett (LB) films exhibited reversible colorimetric and chiroptical changes during repeated heating-cooling cycles, which should be ascribed to the strong hydrogen-bonding interaction between the carboxylic acid and the melamine core. Further, the closely helical packing of the melamine cores could be destroyed upon exposure to HCl or NH(3) gas, whereas the peripheral helical polyaniline and polydiacetylene (PDA) backbone exhibited excellent stability. Although similar absorption changes could be observed for the films upon exposure to HCl or NH(3) gas, their distinct circular dichroism (CD) responses enabled us to distinguish the above two stimuli.

  17. Perforated Monolayers for Enhanced Permselectivity in Chemical Biological Barrier Membranes

    DTIC Science & Technology

    2004-12-01

    Membranes. In the 1930s, Irving Langmuir and Katherine Blodgett introduced a method for fabricating monolayer and multilayer arrays of surfactants...pass. With this goal in mind, we have been developing an ultra-thin membrane capable of blocking chemical agents, utilizing Langmuir -Blodgett (LB...order of 6 nm thick having extraordinary barrier properties, high flux, and stability. 2. Langmuir -Blodgett Films as Permeation-Selective

  18. Thin films under chemical stress. [Final Report], September 1, 1988--April 1, 1991

    SciTech Connect

    Not Available

    1991-12-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  19. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film....

  20. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film....

  1. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film. [Amdt. 173-224, 55 FR 52643...

  2. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film....

  3. 49 CFR 173.183 - Nitrocellulose base film.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nitrocellulose base film. 173.183 Section 173.183... Nitrocellulose base film. Films, nitrocellulose base, must be packaged in packagings conforming to the... tape or paper; authorized only for not over 600 m (1969 feet) of film....

  4. Plasmonic films based on colloidal lithography.

    PubMed

    Ai, Bin; Yu, Ye; Möhwald, Helmuth; Zhang, Gang; Yang, Bai

    2014-04-01

    This paper reviews recent advances in the field of plasmonic films fabricated by colloidal lithography. Compared with conventional lithography techniques such as electron beam lithography and focused ion beam lithography, the unconventional colloidal lithography technique with advantages of low-cost and high-throughput has made the fabrication process more efficient, and moreover brought out novel films that show remarkable surface plasmon features. These plasmonic films include those with nanohole arrays, nanovoid arrays and nanoshell arrays with precisely controlled shapes, sizes, and spacing. Based on these novel nanostructures, optical and sensing performances can be greatly enhanced. The introduction of colloidal lithography provides not only efficient fabrication processes but also plasmonic films with unique nanostructures, which are difficult to be fabricated by conventional lithography techniques.

  5. Algal polysaccharides as matrices for the immobilization of urease in lipid ultrathin films studied with tensiometry and vibrational spectroscopy: Physical-chemical properties and implications in the enzyme activity.

    PubMed

    de Brito, Audrey Kalinouski; Nordi, Cristina S F; Caseli, Luciano

    2015-11-01

    Currently, many biological substances extracted from algae have received special attention because of their intrinsic characteristics, which can be applied to different areas of biotechnology. Therefore, in the current study, exopolysaccharides (EPS) from the microalgae Cryptomonas tetrapirenoidosa were employed as an aqueous subphase of a monolayer formed by the lipid dioctadecyldimethylammonium bromide (DODAB). The primary objective of this approach was to evaluate whether EPS could serve as a matrix for the immobilization of the enzyme urease to produce biosensors for urea. After DODAB was spread on the EPS solutions, urease was injected into the aqueous subphase, and the surface was submitted to compression using lateral barriers. The monolayers were subsequently characterized by surface pressure-area isotherms and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The results indicated that EPS enhanced the adsorption of the enzyme on the lipid monolayer. The mixed films were later transferred to solid supports using the Langmuir-Blodgett (LB) technique and were characterized by transfer ratio, PM-IRRAS, quartz crystal microbalance, and atomic force microscopy. The immobilization of the enzyme on solid supports was fundamental for providing an ideal geometrical accommodation of urease because the interaction of EPS with urease in solution causes a decrease of the relative activity of urease. Therefore, these LB films are promising for the fabrication of future urea biosensors, the architecture of which can be manipulated and enhanced at the molecular level.

  6. Synthesis and Characterization of Thionated Reduced Graphene Oxides and Their Thin Films

    NASA Astrophysics Data System (ADS)

    Jeon, Kiwan

    Thiol functionalization is one potentially useful way to tailor physical and chemical properties of graphene oxides (GOs) and reduced graphene oxides (RGOs). Despite the ubiquitous presence of thiol functional groups in diverse chemical systems, efficient thiol functionalization has been challenging for GOs and RGOs, or for carbonaceous materials in general. In this work, thionation of GOs has been achieved in high yield through two new methods that also allow concomitant chemical reduction/thermal reduction of GOs; a solid-gas metathetical reaction method with boron sulfides (BxSy) gases and a solvothermal reaction method employing phosphorus decasulfide (P4S10). The thionation products, called "mercapto reduced graphene oxides (m-RGOs)", were characterized by employing X-ray photoelectron spectroscopy, powder X-ray diffraction, UV-Vis spectroscopy, FT-IR spectroscopy, Raman spectroscopy, electron probe analysis, scanning electron microscopy, (scanning) transmission electron microscopy, nano secondary ion mass spectrometry, Ellman assay and atomic force microscopy. The excellent dispersibility of m-RGOs in various solvents including alcohols has allowed fabrication of thin films of m-RGOs. Deposition of m-RGOs on gold substrates was achieved through solution deposition and the m-RGOs were homogeneously distributed on gold surface shown by atomic force microscopy. Langmuir-Blodgett (LB) films of m-RGOs were obtained by transferring their Langmuir films, formed by simple drop casting of m-RGOs dispersion on water surface, onto various substrates including gold, glass and indium tin oxide. The m-RGO LB films showed low sheet resistances down to about 500 kΩ/sq at 92% optical transparency. The successful results make m-RGOs promising for applications in transparent conductive coatings, biosensing, etc.

  7. Organization of Artificial Superlattices Utilizing Nanosheets as a Building Block and Exploration of Their Advanced Functions

    NASA Astrophysics Data System (ADS)

    Ma, Renzhi; Sasaki, Takayoshi

    2015-07-01

    This review covers some of the latest developments in the organization of artificial superlattice assemblies utilizing colloidal oxide or hydroxide nanosheets bearing a negative or positive charge, respectively. Various solution-based procedures, e.g., flocculation, electrostatic sequential adsorption, and Langmuir-Blodgett deposition, have been introduced for the self-assembly of 2D nanosheets. Superlattice composites or films integrated with different nanosheets may yield concerted or synergistic modulation, e.g., soft coupling or new electronic states at interfaces. This behavior offers an unprecedented opportunity for the exploration of high-performance devices, as well as advanced or novel functions that cannot be achieved with a single-component material.

  8. Kaolin-based particle films for arthropod control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particle film technology was conceived by ARS scientists in the mid-1990's as an alternative to chemical pesticides. This technology was based on coating plant parts with mineral films that were chemically inert, could be formulated to spread and create a uniform film, formed a porous film that doe...

  9. Lignin and silicate based hydrogels for biosensor applications

    NASA Astrophysics Data System (ADS)

    Burrs, S. L.; Jairam, S.; Vanegas, D. C.; Tong, Z.; McLamore, E. S.

    2013-05-01

    Advances in biocompatible materials and electrocatalytic nanomaterials have extended and enhanced the field of biosensors. Immobilization of biorecognition elements on nanomaterial platforms is an efficient technique for developing high fidelity biosensors. Single layer (i.e., Langmuir-Blodgett) protein films are efficient, but disadvantages of this approach include high cost, mass transfer limitations, and Vromer competition for surface binding sites. There is a need for simple, user friendly protein-nanomaterial sensing membranes that can be developed in laboratories or classrooms (i.e., outside of the clean room). In this research, we develop high fidelity nanomaterial platforms for developing electrochemical biosensors using sustainable biomaterials and user-friendly deposition techniques. Catalytic nanomaterial platforms are developed using a combination of self assembled monolayer chemistry and electrodeposition. High performance biomaterials (e.g., nanolignin) are recovered from paper pulp waste and combined with proteins and nanomaterials to form active sensor membranes. These methods are being used to develop electrochemical biosensors for studying physiological transport in biomedical, agricultural, and environmental applications.

  10. Biomimetic biosensor based on lipidic layers containing tyrosinase and lutetium bisphthalocyanine for the detection of antioxidants.

    PubMed

    Apetrei, C; Alessio, P; Constantino, C J L; de Saja, J A; Rodriguez-Mendez, M L; Pavinatto, F J; Ramos Fernandes, E Giuliani; Zucolotto, V; Oliveira, O N

    2011-01-15

    This paper describes the preparation of a biomimetic Langmuir-Blodgett film of tyrosinase incorporated in a lipidic layer and the use of lutetium bisphthalocyanine as an electron mediator for the voltammetric detection of phenol derivatives, which include one monophenol (vanillic acid), two diphenols (catechol and caffeic acid) and two triphenols (gallic acid and pyrogallol). The first redox process of the voltammetric responses is associated with the reduction of the enzymatically formed o-quinone and is favoured by the lutetium bisphthalocyanine because significant signal amplification is observed, while the second is associated with the electrochemical oxidation of the antioxidant and occurs at lower potentials in the presence of an electron mediator. The biosensor shows low detection limit (1.98×10(-6)-27.49×10(-6) M), good reproducibility, and high affinity to antioxidants (K(M) in the range of 62.31-144.87 μM). The excellent functionality of the enzyme obtained using a biomimetic immobilisation method, the selectivity afforded by enzyme catalysis, the signal enhancement caused by the lutetium bisphthalocyanine mediator and the increased selectivity of the curves due to the occurrence of two redox processes make these sensors exceptionally suitable for the detection of phenolic compounds.

  11. Pulsed Laser Deposition of the Ni-Base Superalloy Films

    NASA Astrophysics Data System (ADS)

    Shin, Joonghan; Mazumder, Jyotirmoy

    2016-03-01

    Ni-base superalloy films were deposited on single-crystal (SC) Ni-base superalloy substrates from a target with the same alloy composition by pulsed laser deposition (PLD) technique. Microstructure and growth behavior of the films deposited were investigated by X-ray diffraction and scanning electron microscopy, and atomic force microscope. The homoepitaxial growth of the SC Ni-base superalloy film occurred at the 1123 K (850 °C) substrate temperature and 2 J/cm2 pulse energy. Films generally exhibited a strong polycrystalline characteristic as the substrate temperature and pulse energy increased. The SC film had a smooth surface. The measured root mean square roughness of the SC film surface was ~6 nm. Based on the Taguchi analysis, the substrate temperature and pulse energy were the most significant process parameters influencing the structural characteristics of the films. Also, the influence of the pulse repletion rate and deposition time was not found to be significant.

  12. Tuning the peak position of subwavelength silica nanosphere broadband antireflection coatings.

    PubMed

    Tao, Fei; Hiralal, Pritesh; Ren, Lianbing; Wang, Yong; Dai, Qing; Amaratunga, Gehan Aj; Zhou, Hang

    2014-01-01

    Subwavelength nanostructures are considered as promising building blocks for antireflection and light trapping applications. In this study, we demonstrate excellent broadband antireflection effect from thin films of monolayer silica nanospheres with a diameter of 100 nm prepared by Langmuir-Blodgett method on glass substrates. With a single layer of compact silica nanosphere thin film coated on both sides of a glass, we achieved maximum transmittance of 99% at 560 nm. Furthermore, the optical transmission peak of the nanosphere thin films can be tuned over the UV-visible range by changing processing parameters during Langmuir-Blodgett deposition. The tunable optical transmission peaks of the Langmuir-Blodgett films were correlated with deposition parameters such as surface pressure, surfactant concentration, ageing of suspensions and annealing effect. Such peak-tunable broadband antireflection coating has wide applications in diversified industries such as solar cells, windows, displays and lenses.

  13. Study on aluminium-based single films.

    PubMed

    Vinod Kumar, G S; García-Moreno, F; Babcsán, N; Brothers, A H; Murty, B S; Banhart, J

    2007-12-28

    In the present paper the authors studied isolated metallic films made from the same material used for making metallic foams, and then characterised their properties. Metal films were made from a liquid aluminium alloy reinforced with ceramic particles of known concentration. Melts without such particles were also investigated. It is shown that stable films could not be made from Al-Si alloy having no particles, and just extremely thin and fragile films could be made from commercially-pure Al. In contrast, aluminium alloys containing particles such as SiC and TiB(2) allowed pulling thin, stable films, which did not rupture. Significant thinning of films was observed when the particle concentration in the melt decreased. By in situ X-ray monitoring of liquid films during pulling, film thickness and drainage effects within the liquid film could be studied. The morphology and microstructure of films was characterised after solidification. Our work shows that the question of how foams are stabilised can be studied using a simplified system such as a film, instead of having to deal with the multitude of different structural elements present in a foam.

  14. Sensitivity of linear CCD array based film scanners used for film dosimetry

    SciTech Connect

    Devic, Slobodan; Wang Yizhen; Tomic, Nada; Podgorsak, Ervin B.

    2006-11-15

    Film dosimetry is commonly performed by using linear CCD array transmission optical densitometers. However, these devices suffer from a variation in response along the detector array. If not properly corrected for, this nonuniformity may lead to significant overestimations of the measured dose as one approaches regions close to the edges of the scanning region. In this note, we present measurements of the spatial response of an AGFA Arcus II document scanner used for radiochromic film dosimetry. Results and methods presented in this work can be generalized to other CCD based transmission scanners used for film dosimetry employing either radiochromic or radiographic films.

  15. Quantum dot-based microfluidic biosensor for cancer detection

    NASA Astrophysics Data System (ADS)

    Ghrera, Aditya Sharma; Pandey, Chandra Mouli; Ali, Md. Azahar; Malhotra, Bansi Dhar

    2015-05-01

    We report results of the studies relating to fabrication of an impedimetric microfluidic-based nucleic acid sensor for quantification of DNA sequences specific to chronic myelogenous leukemia (CML). The sensor chip is prepared by patterning an indium-tin-oxide (ITO) coated glass substrate via wet chemical etching method followed by sealing with polydimethylsiloxane (PDMS) microchannel for fluid control. The fabricated microfluidic chip comprising of a patterned ITO substrate is modified by depositing cadmium selenide quantum dots (QCdSe) via Langmuir-Blodgett technique. Further, the QCdSe surface has been functionalized with specific DNA probe for CML detection. The probe DNA functionalized QCdSe integrated miniaturized system has been used to monitor target complementary DNA concentration by measuring the interfacial charge transfer resistance via hybridization. The presence of complementary DNA in buffer solution significantly results in decreased electro-conductivity of the interface due to presence of a charge barrier for transport of the redox probe ions. The microfluidic DNA biosensor exhibits improved linearity in the concentration range of 10-15 M to 10-11 M.

  16. Interferometric measurement method of thin film thickness based on FFT

    NASA Astrophysics Data System (ADS)

    Shuai, Gaolong; Su, Junhong; Yang, Lihong; Xu, Junqi

    2009-05-01

    The kernel of modern interferometry is to obtain necessary surface shape and parameter by processing interferogram with reasonable algorithm. The paper studies the basic principle of interferometry involving 2-D FFT, proposes a new method for measuring thin film thickness based on FFT: by CCD receiving and acquired card collecting with the help of Twyman-Green interferometer, can a fringe interferogram of the measured thin film be obtained. Based on the interferogram processing knowledge, an algorithm processing software/program can be prepared to realize identification of the edge films, regional extension, filtering, unwrapping the wrapped phase etc. And in this way can the distribution of film information-coated surface be obtained and the thickness of thin film samples automatically measured. The findings indicate the PV value and RMS value of the measured film samples are 0.256 λ and 0.068 λ respectively and prove the new method has high precision.

  17. Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film.

    PubMed

    He, Xin; Liu, A'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang

    2016-11-25

    We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq(-1). A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

  18. Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film

    NASA Astrophysics Data System (ADS)

    He, Xin; Liu, A.'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang

    2016-11-01

    We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq-1. A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

  19. Photochemical arrays formed by spatial compartmentalization of colloidal nanoparticles in a polymer-based hydrogel

    SciTech Connect

    Firestone, M. A.; Rajh, T.; Makarova, O. V.; Seifert, S.; Tiede, D. M.; Thurnauer, M. C.

    2000-01-13

    The development of practical strategies for the assembly of semiconductor and metal colloid nanoparticles into ordered architectures is an area of considerable current interest, since it offers an opportunity for exploiting the optical and electronic properties of these colloids for device development. Prior research has explored creating such organized nanoparticle assemblies by Langmuir-Blodgett techniques or controlled solvent evaporation on suitable substrates. These approaches suffer from several limitations, however, most notably the generation of relatively simple structures and the lack of structural tailorability, preventing full exploitation of these materials. More recently, directed assembly using chemisorption of streptavidin-biotin or thiol-derivatized gold nanoparticles onto substrates has been described. Alternative approaches to achieving two-dimensional confinement of nanoparticles that do not involve substrate-supported materials, but rather organize the nanoparticles into mesoscopically-ordered soft condensed matter, may offer the advantage of enhanced processability and may permit construction of nanocomposite structures based on functional nanoparticles embedded in a processable, polymer-based matrix. This work describes the development of an alternative strategy for constructing 2-D arrays of functional metal and semiconductor nanoparticles. The approach involves directing the organization of nanocrystals into a processable (i.e., by externally applied magnetic and electric fields) polymer-grafted lipid-based complex fluid. By altering the surface chemistry of the nanoparticles, they can be selectively placed into defined regions encapsulating matrix.

  20. Electrocaloric devices based on thin-film heat switches

    NASA Astrophysics Data System (ADS)

    Epstein, Richard I.; Malloy, Kevin J.

    2009-09-01

    We describe a new approach to refrigeration, heat pumping, and electrical generation that allows one to exploit the attractive properties of thin films of electrocaloric materials. Layers of electrocaloric material coupled with thin-film heat switches can work as either refrigerators and heat pumps or electrical generators, depending on the phasing of the applied voltages and heat switching. With heat switches based on thin layers of liquid crystals, the efficiency of electrocaloric thin-film devices can be at least as high as that of current thermoelectric devices. Advanced heat switches that may use carbon nanotubes would enable thin-film refrigerators and generators to outperform conventional vapor-compression devices.

  1. Electrocaloric devices based on thini-film heat switches

    SciTech Connect

    Epstein, Richard I; Malloy, Kevin J

    2009-01-01

    We describe a new approach to refrigeration and electrical generation that exploits the attractive properties of thin films of electrocaloric materials. Layers of electrocaloric material coupled with thin-film heat switches can work as either refrigerators or electrical generators, depending on the phasing of the applied voltages and heat switching. With heat switches based on thin layers of liquid crystals, the efficiency of these thin-film heat engines can be at least as high as that of current thermoelectric devices. Advanced heat switches would enable thin-film heat engines to outperform conventional vaporcompression devices.

  2. Microwave surface resistance in Tl-based superconducting thin films

    SciTech Connect

    Chang, L.D.; Moskowitz, M.J.; Hammond, R.B.; Eddy, M.M.; Olson, W.L.; Casavant, D.D.; Smith, E.J.; Robinson, M. ); Drabeck, L.; Gruner, G.; and others

    1989-09-25

    We report measurements of microwave surface resistance in Tl-based superconductor thin films made by laser ablation followed by a post-deposition thermal process. The films were measured by using cavity methods. The data at 9.5 and 148 GHz indicate that the residual resistance scales as {ital f}{sup 2}. At 77 K, the 9.5 GHz surface resistance is ten times smaller than oxygen-free high-conductance copper at the same temperature and frequency. The 9.5 GHz measurement also indicates that the film-substrate interface does not cause more microwave loss than the film surface.

  3. Microwave surface resistance in Tl-based superconducting thin films

    SciTech Connect

    Chang, L.D.; Moskowitz, M.J.; Hammond, R.B.; Eddy, M.M.; Olson, W.L.

    1989-09-25

    Measurements are reported of microwave surface resistance in Tl-based superconductor thin films made by laser ablation followed by a post-deposition thermal process. The films were measured by using cavity methods. The data at 9.5 and 148 GHz indicate that the residual resistance scales as f2. At 77 K, the 9.5 GHz surface resistance is ten times smaller than oxygen-free high-conductance copper at the same temperature and frequency. The 9.5 GHz measurement also indicates that the film-substrate interface does not cause more microwave loss than the film surface.

  4. DNA-Based Synthesis and Assembly of Organized Iron Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Khomutov, Gennady B.

    Organized bio-inorganic and hybrid bio-organic-inorganic nanostructures consisting of iron oxide nanoparticles and DNA complexes have been formed using methods based on biomineralization, interfacial and bulk phase assembly, ligand exchange and substitution, Langmuir-Blodgett technique, DNA templating and scaffolding. Interfacially formed planar DNA complexes with water-insoluble amphiphilic polycation or intercalator Langmuir monolayers were prepared and deposited on solid substrates to form immobilized DNA complexes. Those complexes were then used for the synthesis of organized DNA-based iron oxide nanostructures. Planar net-like and circular nanostructures of magnetic Fe3O4 nanoparticles were obtained via interaction of cationic colloid magnetite nanoparticles with preformed immobilized DNA/amphiphilic polycation complexes of net-like and toroidal morphologies. The processes of the generation of iron oxide nanoparticles in immobilized DNA complexes via redox synthesis with various iron sources of biological (ferritin) and artificial (FeCl3) nature have been studied. Bulk-phase complexes of magnetite nanoparticles with biomolecular ligands (DNA, spermine) were formed and studied. Novel nano-scale organized bio-inorganic nanostructures - free-floating sheet-like spermine/magnetite nanoparticle complexes and DNA/spermine/magnetite nanoparticle complexes were synthesized in bulk aqueous phase and the effect of DNA molecules on the structure of complexes was discovered.

  5. Metallosupramolecular coordination polyelectrolytes: potential building blocks for molecular-based devices.

    PubMed

    Kurth, Dirk G

    2002-04-01

    Metal-ion-induced self-assembly of ditopic ligands, based on bisterpyridines, and transition metal ions result in formation of metallosupramolecular coordination polyelectrolytes (MEPE). The positive charge of MEPE can be utilized in several ways to process highly ordered architectures. Alternating adsorption of MEPE and oppositely charged polyelectrolytes on solid substrates results in multilayers. The sequential nature of this process allows combining MEPEs with other functional components. This process permits nanometer thickness control, is readily adapted for automated processing, and is applicable to two-dimensional substrates as well as to colloidal templates. The surface chemical properties of MEPE are readily controlled by complexing MEPE with negatively charged amphiphiles. The resulting polyelectrolyte-amphiphile complexes (PAC) are soluble in organic solvents and form liquid crystalline phases. The PAC also spreads at the air-water interface as Langmuir monolayer, which can be transferred onto solid substrates. The resulting Langmuir-Blodgett multilayers are highly ordered and anisotropic. Materials with transition metal ions possess many interesting properties, including spin transitions, magnetism, as well as photochemical assets that are relevant for the construction of functional devices and materials. The presented approach combines principles of supramolecular and colloidal chemistry as well as surface science, is highly modular in nature, and provides extensive control of structure and function from molecular to macroscopic levels.

  6. Water-based oxygen-sensor films.

    PubMed

    Habibagahi, Arezoo; Mébarki, Youssef; Sultan, Yasir; Yap, Glenn P A; Crutchley, Robert J

    2009-08-01

    The luminescent cyclometalated iridium complex [Ir(fppy)(2)(t-Bu-iCN)(2)]CF(3)SO(3), 1 (fppy = 4-(2-pyridyl)benzaldehyde, and t-Bu-iCN = tert-butyl isocyanide), was synthesized and characterized by X-ray crystallography and (1)H NMR, absorption, and emission spectroscopies. Complex 1 was quantitatively bound to the water-soluble amine-functionalized polymer Silamine D208-EDA by reductive amination, to produce 2. The quantum yield of emission and excited state lifetime of 2 (varphi(em) = 0.23 and tau = 20.6 mus) are comparable to that of the model complex [Ir(tpy)(2)(t-Bu-iCN)(2)]CF(3)SO(3), 3 (tpy = 2-(p- tolyl) pyridine) with varphi(em) = 0.28 and tau = 35.6 mus. Aqueous blends of 2 with Silamine and colloidal microcrystalline cellulose (MC) were used to prepare oxygen-sensor films. Oxygen sensitivities of these films were determined as a function of Silamine:MC ratio and obeyed Stern-Volmer kinetics. The optimum oxygen-sensor film composition was 2 in 1:1 Silamine:MC, which had an oxygen sensitivity of 0.502 over an atmospheric pressure range of 0.007-45 psi. Temperature sensitivity (percentage loss of intensity per degrees C) of this film was determined to be -1.1 and -1.4% degrees C(-1) at vacuum and 1 bar atmospheric pressure, respectively. These results were compared to those of films incorporating dispersions of 1 and 3. Luminescence microscopy of 9:1, 1:1, and 1:5 Silamine:MC films of 2 show that the charged iridium complex in 2 associates with the surface of MC and lifetime measurements of these films show an increase in lifetime with increasing MC fraction. The optimum quenching sensitivity observed for the 1:1 Silamine:MC film suggests that the diffusion of oxygen must decrease with increasing fraction of MC and thereby decrease oxygen sensitivity. These novel materials offer an environmentally friendly alternative to the preparation of oxygen-sensor films.

  7. Antimicrobial nanostructured starch based films for packaging.

    PubMed

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material.

  8. Nanocrystalline silicon based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  9. Methods for preparing colloidal nanocrystal-based thin films

    DOEpatents

    Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.

    2016-05-10

    Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.

  10. Neutron Reflectivity Measurement for Polymer Dynamics near Graphene Oxide Monolayers

    NASA Astrophysics Data System (ADS)

    Koo, Jaseung

    We investigated the diffusion dynamics of polymer chains confined between graphene oxide layers using neutron reflectivity (NR). The bilayers of polymethylmetacrylate (PMMA)/ deuterated PMMA (d-PMMA) films and polystyrene (PS)/d-PS films with various film thickness sandwiched between Langmuir-Blodgett (LB) monolayers of graphene oxide (GO) were prepared. From the NR results, we found that PMMA diffusion dynamics was reduced near the GO surface while the PS diffusion was not significantly changed. This is due to the different strength of GO-polymer interaction. In this talk, these diffusion results will be compared with dewetting dynamics of polymer thin films on the GO monolayers. This has given us the basis for development of graphene-based nanoelectronics with high efficiency, such as heterojunction devices for polymer photovoltaic (OPV) applications.

  11. High-temperature superconducting thin-film-based electronic devices

    SciTech Connect

    Wu, X.D; Finokoglu, A.; Hawley, M.; Jia, Q.; Mitchell, T.; Mueller, F.; Reagor, D.; Tesmer, J.

    1996-09-01

    This the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved optimization of processing of Y123 and Tl-2212 thin films deposited on novel substrates for advanced electronic devices. The Y123 films are the basis for development of Josephson Junctions to be utilized in magnetic sensors. Microwave cavities based on the Tl-2212 films are the basis for subsequent applications as communication antennas and transmitters in satellites.

  12. Integrated thick-film nanostructures based on spinel ceramics

    PubMed Central

    2014-01-01

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications. PMID:24670141

  13. Thermoforming of film-based biomedical microdevices.

    PubMed

    Truckenmüller, Roman; Giselbrecht, Stefan; Rivron, Nicolas; Gottwald, Eric; Saile, Volker; van den Berg, Albert; Wessling, Matthias; van Blitterswijk, Clemens

    2011-03-18

    For roughly ten years now, a new class of polymer micromoulding processes comes more and more into the focus both of the microtechnology and the biomedical engineering community. These processes can be subsumed under the term "microthermoforming". In microthermoforming, thin polymer films are heated to a softened, but still solid state and formed to thin-walled microdevices by three-dimensional stretching. The high material coherence during forming is in contrast to common polymer microreplication processes where the material is processed in a liquid or flowing state. It enables the preservation of premodifications of the film material. In this progress report, we review the still young state of the art of microthermoforming technology as well as its first applications. So far, the applications are mainly in the biomedical field. They benefit from the fact that thermoformed microdevices have unique properties resulting from their special, unusual morphology. The focus of this paper is on the impact of the new class of micromoulding processes and the processed film materials on the characteristics of the moulded microdevices and on their applications.

  14. ZnS-nanocrystals/polypyrrole nanocomposite film based immunosensor

    NASA Astrophysics Data System (ADS)

    Mishra, Sujeet K.; Pasricha, Renu; Biradar, Ashok M.; Rajesh

    2012-01-01

    We report an electrochemically synthesized ZnS nanocrystals modified polypyrrole (PPy) nanocomposite film based immunosensor for the detection of C-reactive protein (αCRP). The ZnS-PPy composite film was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemical techniques. The modified film showed good biocompatibility with efficient binding to protein antibody (αCRP-Ab) molecules through ZnS nanocrystals, exhibited an attractive platform for immunosensor fabrication. The electrical and sensing properties of the polymer composite film of different thickness towards protein antigen (αCRP-Ag) were delineated. The immunosensor exhibited an impedance response to αCRP-Ag concentration in a linear range from 10 ng to 10 μg mL-1.

  15. A film pressure sensor based on optical fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Deng, Gang; Dai, Yongbo; Liu, Yanju; Leng, Jinsong

    2010-03-01

    The measurement of pressure is essential for the design and flying controlling of aircraft. In order to measure the surface pressures of the aircraft, the common pressure tube method and Pressure sensitive paint measurement method have their own disadvantages, and are not applicable to all aircraft structures and real time pressure monitoring. In this paper, a novel thin film pressure sensor based on Fiber Bragg Grating (FBG) is proposed, using FBG measuring the tangential strain of the disk sensing film. Theoretical circle strain of the disk sensing film of the pressure sensor under pressure and temperature variation are analyzed, and the linear relationship between FBG center wavelength shift and pressure, temperature variation is gotten. The pressure and temperature calibration experiments prove the theoretical analysis. But the calibration sensing parameters are small than the calculating ones, which is caused by the constraint of optical fibre to the thin sensing film.

  16. Development and Evaluation of Cefadroxil Drug Loaded Biopolymeric Films Based on Chitosan-Furfural Schiff Base

    PubMed Central

    Dixit, Ritu B.; Uplana, Rahul A.; Patel, Vishnu A.; Dixit, Bharat C.; Patel, Tarosh S.

    2010-01-01

    Cefadroxil drug loaded biopolymeric films of chitosan-furfural schiff base were prepared by reacting chitosan with furfural in presence of acetic acid and perchloric acid respectively for the external use. Prepared films were evaluated for their strength, swelling index, thickness, drug content, uniformity, tensile strength, percent elongation, FTIR spectral analysis and SEM. The results of in vitro diffusion studies revealed that the films exhibited enhanced drug diffusion as compared to the films prepared using untreated chitosan. The films also demonstrated good to moderate antibacterial activities against selective gram positive and gram negative bacteria. PMID:21179325

  17. SUBTLEX-ESP: Spanish Word Frequencies Based on Film Subtitles

    ERIC Educational Resources Information Center

    Cuetos, Fernando; Glez-Nosti, Maria; Barbon, Analia; Brysbaert, Marc

    2011-01-01

    Recent studies have shown that word frequency estimates obtained from films and television subtitles are better to predict performance in word recognition experiments than the traditional word frequency estimates based on books and newspapers. In this study, we present a subtitle-based word frequency list for Spanish, one of the most widely spoken…

  18. Surface chemistry and spectroscopy of UG8 asphaltene Langmuir film, part 2.

    PubMed

    Orbulescu, Jhony; Mullins, Oliver C; Leblanc, Roger M

    2010-10-05

    While there has been much focus on asphaltenes in toluene, there has been much less focus on asphaltenes in other solvents. It is important to quantify characteristics of asphaltenes in solvents besides toluene in order to better assess their molecular architecture as well as their fundamental aggregation characteristics. The present work focuses on the investigation of UG8 asphaltene Langmuir films at the air-water interface using chloroform as spreading solvent. The results are compared to the results recently obtained using toluene as spreading solvent. Surface pressure-area isotherms and UV-vis spectroscopy indicate that asphaltenes form smaller nanoaggregates in chloroform than in toluene in similar concentration ranges. Still these nanoaggreates share common features with those in toluene. From the surface pressure-area and compression-decompression isotherms, Brewster angle microscopy, and p-polarized infrared reflection-absorption spectroscopy, it was concluded that small size aggregates are spread on the water surface and the compression of the film leads to formation of large aggregates. The films (Langmuir-Schaefer and Langmuir-Blodgett) studied by atomic force microscopy reveal the existence of nanoaggregates spread on the water surface that coexist with large aggregates formed during compression. In addition to these findings, the spreading solvent, chloroform, allows the determination of asphaltene absorption bands using in situ UV-vis spectroscopy at the air-water interface after 15 min waiting time period. The absorbance data carried out after waiting a time period of 1 h shows similar features with the ones carried out after only 15 min; therefore, there is no need to wait 1 h as in the case when toluene is used as spreading solvent. A comparison of the data obtained from chloroform and toluene shows that smaller aggregate sizes are obtained from chloroform as suggested from the surface pressure-area isotherm, in situ UV-vis spectroscopy, and

  19. Field emission from graphene based composite thin films

    NASA Astrophysics Data System (ADS)

    Eda, Goki; Emrah Unalan, H.; Rupesinghe, Nalin; Amaratunga, Gehan A. J.; Chhowalla, Manish

    2008-12-01

    Field emission from graphene is challenging because the existing deposition methods lead to sheets that lay flat on the substrate surface, which limits the field enhancement. Here we describe a simple and general solution based method for the deposition of field emitting graphene/polymer composite thin films. The graphene sheets are oriented at some angles with respect to the substrate surface leading to field emission at low threshold fields (˜4Vμm-1). Our method provides a route for the deposition of graphene based thin film field emitter on different substrates, opening up avenues for a variety of applications.

  20. MBE growth of Fe-based superconducting films

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Yamagishi, T.; Takeda, S.; Agatsuma, S.; Takano, S.; Mitsuda, A.; Naito, M.

    2011-11-01

    We report MBE growth of the iron-based superconductors, Sr1-xKxFe2As2, Ba1-xKxFe2As2, and SmFeAs(O,F). In the growth of Sr1-xKxFe2As2 and Ba1-xKxFe2As2 films, the key to incorporating volatile K in films is low-temperature (300-350 °C) growth in reduced As flux. The highest Tc so far obtained are Tcon (Tcend) = 33.4K (31.0 K) and 38.3 K (35.5 K) for Sr1-xKxFe2As2 and Ba1-xKxFe2As2, respectively. In the growth of superconducting SmFeAs(O,F), we have adopted two approaches. In the first approach, we first grew F-free SmFeAsO films, and subsequently introduced F to the films via F diffusion from an overlayer of SmF3 or NdF3. In the second approach, we attempted the growth of as-grown superconducting SmFeAs(O,F) films by coevaporating Sm, SmF3, Fe, and As. In both the approaches, the growth temperature was as high as 650 °C. So far better results have been obtained by the first F diffusion method. The films prepared by F diffusion showed Tcon (Tcend) = 52 K (48.6 K) whereas the as-grown films showed Tcon = 47 K but with a long transition tail.

  1. Ferromagnetism in antiferromagnetic NiO-based thin films

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Hua; Zhan, Bin; Nan, Ce-Wen; Zhao, Rongjuan; Xu, Xiang; Kobayashi, M.

    2011-08-01

    Polycrystalline NiO-based thin films with Li or/and transition metal ions (V, Cr, Mn, Fe, Co, Cu, Zn) doping have been prepared by a sol-gel spin-coating method. Magnetization measurements reveal that V-, Fe-, and Mn-doped NiO thin films show obvious room-temperature ferromagnetic behaviors and ferromagnetic properties can be enhanced by the Li co-doping. Microstructure and X-ray core-level photoemission spectra analysis indicate that the ferromagnetism was not from the impurity TM metal cluster and may be ascribed to double exchange coupling effects via Li-induced holes.

  2. Switchable mirrors based on nickel-magnesium films

    SciTech Connect

    Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

    2001-01-16

    A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

  3. Supramolecular Assembly of Organic-Inorganic Hybrid Polyoxometalate Nanoclusters at Solid-liquid Interface

    NASA Astrophysics Data System (ADS)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2013-03-01

    Polyoxometalate (POM) inorganic nanoclusters have recently emerged as building blocks for the design and synthesis of novel functional materials for broad applications ranging from catalysis to nanomedicines. Rather than taking the slow self-assembly of POMs in aqueous solutions, we have investigated the assembly of hybrid Anderson-type Mo-based POMs with organic ligands at a solid surface by Langmuir-Blodgett (LB) deposition and characterized the films by AFM, TEM, and X-ray diffraction. We have observed the formation of well-ordered monolayer or bilayer consisting of periodic arrangement of hybrid POM nanoclusters, showing a strong dependence on substrate chemistry and LB compression pressure. The controlled assembly of hybrid POM nanocluster films by LB deposition could be used as a template with stoichiometric crystalline nanostructure to the programmed assembly of novel multi-functional supramolecular complexes.

  4. Monte-Carlo based prediction of radiochromic film response for hadrontherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Frisson, T.; Zahra, N.; Lautesse, P.; Sarrut, D.

    2009-07-01

    A model has been developed to calculate MD-55-V2 radiochromic film response to ion irradiation. This model is based on photon film response and film saturation by high local energy deposition computed by Monte-Carlo simulation. We have studied the response of the film to photon irradiation and we proposed a calculation method for hadron beams.

  5. Films.

    ERIC Educational Resources Information Center

    Philadelphia Board of Education, PA. Div. of Instructional Materials.

    The Affective Curriculum Research Project produced five films and two records during a series of experimental summer programs. The films and records form part of a curriculum designed to teach to the concerns of students. The films were an effort to describe the Philadelphia Cooperative Schools Program, to explain its importance, and to…

  6. Structure and Properties of Carbon Based Nanocomposite Films

    DTIC Science & Technology

    2004-03-18

    Research Institute for Technical Physics and Materials Science of the Hungarian Academy of Sciences Structure and Properties of Carbon Based...MAR 2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Structure and Properties of Carbon Based Nanocomposite Films 5a...INTRODUCTION The theoretically predicted superhard β-C3N4 has not yet been experimentally realized, however, the different CNx structures and their

  7. Polysaccharide films at an air/liquid and a liquid/silicon interface: effect of the polysaccharide and liquid type on their physical properties.

    PubMed

    Taira, Yasunori; McNamee, Cathy E

    2014-11-14

    We investigated the effect of the polysaccharide type, the subphase on which the Langmuir monolayers were prepared, and the liquid in which the properties of the transferred monolayers were measured on the physical properties of the polysaccharide films at an air/aqueous interface and at a silicon substrate, and the forces and friction of the polysaccharide transferred films when measured in solution against a silica probe. Chitosan was modified with a silane coupling agent to make chitosan derived compounds with a low and a medium molecular weight. Chitin and the chitosan-derived compounds were used to make Langmuir monolayers at air/water and air/pH 9 buffer interfaces. The monolayers were transferred to silicon substrates via Langmuir-Blodgett deposition, and the chitosan-derived compounds subsequently chemically reacted with the silicon substrates. Atomic force microscope force and friction measurements were made in water and in the pH 9 buffer, where the water and the pH 9 buffer acted as a good and a bad solvent for the polysaccharides, respectively. The polysaccharide type affected the friction of the polysaccharide film, where the physically adsorbed chitin gave the lowest friction. The friction of L-chitosan was higher than that of M-chitosan in water, suggesting that the molecular weight of the polymer affects its lubricating ability. The forces and friction of the polysaccharide films changed when the subphase on which the Langmuir monolayers were formed was changed or when the liquid in which the properties of the films adsorbed at the silicon substrate were measured was changed. The friction increased significantly when the liquid was changed from water to the pH 9 buffer. This increase was explained by the reduced charge of the chitin and chitosan-derived materials due to the pH increase, the screening of the charges by the salts in the buffer, and the possible hardening of the monolayer caused by the adsorption of salts from the buffer.

  8. Antistaphylococcal Nanocomposite Films Based on Enzyme-Nanotube Conjugates

    PubMed Central

    Pangule, Ravindra C.; Brooks, Sarah J.; Dinu, Cerasela Zoica; Bale, Shyam Sundhar; Salmon, Sharon L.; Zhu, Guangyu; Metzger, Dennis W.; Kane, Ravi S.; Dordick, Jonathan S.

    2010-01-01

    Infection with antibiotic-resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) is one of the primary causes of hospitalizations and deaths. To address this issue, we have designed antimicrobial coatings incorporating carbon nanotube-enzyme conjugates that are highly effective against antibiotic–resistant pathogens. Specifically, we incorporated conjugates of carbon nanotubes with lysostaphin, a cell wall degrading enzyme, into films to impart bactericidal properties against Staphylococcus aureus and Staphylococcus epidermidis. We fabricated and characterized nanocomposites containing different conjugate formulations and enzyme loadings. These enzyme–based composites were highly efficient in killing MRSA (>99% within 2 h) without release of the enzyme into solution. Additionally, these films were reusable and stable under dry storage conditions for a month. Such enzyme–based film formulations may be used to prevent growth of pathogenic and antibiotic-resistant microorganisms on various common surfaces in hospital settings. Polymer and paint films containing such antimicrobial conjugates, in particular, could be advantageous to prevent risk of staphylococcal-specific infection and biofouling. PMID:20604574

  9. Design, Fabrication and Characterization of MIM Diodes and Frequency Selective Thermal Emitters for Solar Energy Harvesting and Detection Devices

    NASA Astrophysics Data System (ADS)

    Sharma, Saumya

    Energy harvesting using rectennas for infrared radiation continues to be a challenge due to the lack of fast switching diodes capable of rectification at THz frequencies. Metal insulator metal diodes which may be used at 30 THz must show adequate nonlinearity for small signal rectification such as 30 mV. In a rectenna assembly, the voltage signal received as an output from a single nanoantenna can be as small as ~30microV. Thus, only a hybrid array of nanoantennas can be sufficient to provide a signal in the ~30mV range for the diode to be able to rectify around 30THz. A metal-insulator-metal diode with highly nonlinear I-V characteristics is required in order for such small signal rectification to be possible. Such diode fabrication was found to be faced with two major fabrication challenges. The first one being the lack of a precisely controlled deposition process to allow a pinhole free insulator deposition less than 3nm in thickness. Another major challenge is the deposition of a top metal contact on the underlying insulating thin film. As a part of this research study, most of the MIM diodes were fabricated using Langmuir Blodgett monolayers deposited on a thin Ni film that was sputter coated on a silicon wafer. UV induced polymerization of the Langmuir Blodgett thin film was used to allow intermolecular crosslinking. A metal top contact was sputtered onto the underlying Langmuir Blodgett film assembly. In addition to material characterization of all the individual films using IR, UV-VIS spectroscopy, electron microscopy and atomic force microscopy, the I-V characteristics, resistance, current density, rectification ratio and responsivity with respect to the bias voltage were also measured for the electrical characterization of these MIM diodes. Further improvement in the diode rectification ratio and responsivity was obtained with Langmuir Blodgett films grown by the use of horizontally oriented organic molecules, due to a smaller tunneling distance that

  10. Thick-film humidity sensor based on porous ? material

    NASA Astrophysics Data System (ADS)

    Qu, Wenmin; Meyer, Jörg-Uwe

    1997-06-01

    A new compact, robust, yet fast and highly sensitive ceramic humidity sensor based on the semiconducting metal oxide 0957-0233/8/6/002/img2 has been developed using thick-film technology. The sensor element possesses a novel `sandwich' configuration with a 0957-0233/8/6/002/img3 porous 0957-0233/8/6/002/img2 ceramic layer sandwiched by two 0957-0233/8/6/002/img5 polarity-reversed interdigitated metal films. Instead of traditional glass frits, LiCl powders were used as adhesion promoters. The sintered ceramic layer exhibits a porous structure. The degree of the porosity is controlled by the amount of LiCl added and by the firing conditions for the ceramic. The surfaces of ceramic grains behave like electrolytes and easily adsorb water vapour through the pores. The novel electrode arrangement combines the advantages of humidity sensors in the form of a parallel capacitor with those in the form of an interdigital capacitor. The influence of temperature on the sensor characteristics has been compensated for by integrating a thick-film NTC resistor. The results of studies on the material processing, the fabrication and the characterization of this novel thick-film humidity sensor are described.

  11. Hybrid Thin Films Based Upon Polyoxometalates-Polymer Assembly

    NASA Astrophysics Data System (ADS)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2014-03-01

    Block copolymers (BCPs) and polyoxometalates (POMs) have been used individually as building blocks for design and synthesis of novel functional materials. POM nanoclusters, the assemblies of transition metal oxides with well-defined atomic coordination structure, have been recently explored as novel nanomaterials... for catalysis, semiconductors, and even anti-cancer treatment due to their unique chemical, optical and electrical characteristics. We have explored the blending of inorganic POM nanocluster with BCPs into hierarchaically structured inorganic-organic hybrid nanocomposites. Using polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films as the template, we have observed that the spatial organization of BCP thin films is modified by molybdenum based POM nanocluster to form 2D in-plane hexagonal ordered or 3D ordered network of POM-BCP assemblies, depending on the concentration ratio of POM to PS-b-PEO. The dielectric properties of such hybrid thin films can be enhanced by embedded POMs but show a strong dependence on the supramolecular structures of POM-polymer complexes. The assembly of nanoclusters in BCP-templated thin films could pave a new path to design new hybrid nanocomposites with uniquely combined functionality and material properties.

  12. Fabrication, Characterization, and Applications of Graphene-based Flexible Films

    NASA Astrophysics Data System (ADS)

    Naik, Gautam

    Scientific interest in the field of nanotechnology has increased multifold since the discovery of multi-walled carbon nanotubes in the early 1990s. This further received a tremendous boost with the isolation of graphene, a single layer of sp2-hybridized carbon atoms, in 2004. Graphene has exceptional mechanical and electrical properties, which makes it an attractive candidate for electronics and composites. In order to realize the implementation of graphene for such applications, scalable production of graphene-based materials needs to be accomplished. Graphene oxide, the product of oxidation and exfoliation of graphite, is a promising precursor for bulk-production of graphene and graphene-like materials. The oxidation of graphite to synthesize graphene oxide results in the decoration of the basal plane of graphene with oxygen-containing functional groups. The presence of these functional groups makes graphene oxide strongly hydrophilic, making it soluble in water and a good candidate for solution-based processing. This hydrophilic nature of graphene oxide can also be utilized to fabricate highly sensitive and flexible humidity sensors, the results of which are included in this research. The fabricated humidity sensors show high sensitivity and a fast response time. A difference in response is observed at low and high humidity, with hysteresis observed at high humidity levels. A method to "reset" the sensor and a mechanism to explain the response is also proposed. Although the hydrophilic nature of graphene oxide makes it suitable for bulk processing, the presence of functional groups makes it defective and insulating. Graphene oxide needs to be reduced to make it electrically active. Numerous methodologies proposed for reduction of graphene oxide result in the simultaneous reduction and exfoliation of graphene oxide films. But for instances where flexible graphene films are required for certain applications, a method for reduction of graphene oxide flexible films

  13. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    NASA Astrophysics Data System (ADS)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  14. Films

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhang, Yang; Shao, Yayun; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J.-M.; Ishiwara, Hiroshi

    2014-09-01

    In this paper, we investigated the microstructure and electrical properties of Bi2SiO5 (BSO) doped SrBi2Ta2O9 (SBT) films deposited by chemical solution deposition. X-ray diffraction observation indicated that the crystalline structures of all the BSO-doped SBT films are nearly the same as those of a pure SBT film. Through BSO doping, the 2Pr and 2Ec values of SBT films were changed from 15.3 μC/cm2 and 138 kV/cm of pure SBT to 1.45 μC/cm2 and 74 kV/cm of 10 wt.% BSO-doped SBT. The dielectric constant at 1 MHz for SBT varied from 199 of pure SBT to 96 of 10 wt.% BSO-doped SBT. The doped SBT films exhibited higher leakage current than that of non-doped SBT films. Nevertheless, all the doped SBT films still had small dielectric loss and low leakage current. Our present work will provide useful insights into the BSO doping effects to the SBT films, and it will be helpful for the material design in the future nonvolatile ferroelectric memories.

  15. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract.

    PubMed

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-02-15

    The use of synthetic petroleum based packaging films caused serious environmental problems due to their difficulty in recycling and poor biodegradability. Therefore, present study was aimed to develop natural biopolymer-based antimicrobial packaging films as an alternative for the synthetic packaging films. As a natural antimicrobial agent, grapefruit seed extract (GSE) has been incorporated into agar to prepare antimicrobial packaging film. The films with different concentrations of GSE were prepared by a solvent casting method and the resulting composite films were examined physically and mechanically. In addition, the films were characterized by FE-SEM, XRD, FT-IR and TGA. The incorporation of GSE caused increase in color, UV barrier, moisture content, water solubility and water vapor permeability, while decrease in surface hydrophobicity, tensile strength and elastic modulus of the films. As the concentration of GSE increased from 0.6 to 13.3 μg/mL, the physical and mechanical properties of the films were affected significantly. The addition of GSE changed film microstructure of the film, but did not influence the crystallinity of agar and thermal stability of the agar-based films. The agar/GSE films exhibited distinctive antimicrobial activity against three test food pathogens, such as Listeria monocytogenes, Bacillus cereus and Escherichia coli. These results suggest that agar/GSE films have potential to be used in an active food packaging systems for maintaining food safety and extending the shelf-life of the packaged food.

  16. Synthesis, characterization and antibacterial activity of biodegradable films prepared from Schiff bases of zein.

    PubMed

    Soliman, E A; Khalil, A A; Deraz, S F; El-Fawal, G; Elrahman, S Abd

    2014-10-01

    Pure zein is known to be very hydrophobic, but is still inappropriate for coating and film applications because of their brittle nature. In an attempt to improve the flexibility and the antimicrobial activity of these coatings and films, Chemical modification of zein through forming Schiff bases with different phenolic aldhydes was tried. Influence of this modifications on mechanical, topographical, wetting properties and antimicrobial activity of zein films were evaluated. The chemical structure of the Schiff bases films were characterized by ATR-FTIR spectroscopy. The results indicate an improvement in mechanical properties with chemically modification of zein to form Schiff bases leading to a reduction in the elastic modulus. An increase in the elongation at break has been observed, but with slight influence on tensile strength. Plasticized zein films have similar initial contact angle (∼40°). An increase in reaction temperature and time increases film's affinity towards water. As shown by contact angle measurements, a noticeable relation was found between film composition and the hydrophilicity. Surface topography also varied by forming Schiff bases, becoming rougher than zein-based films. The antibacterial activities of zein and Schiff bases of zein-based films were investigated against gram-positive bacteria (Listeria innocua, Listeria monocytogenes, Bacillus cereus and Clostridium sporogenes) and gram-negative bacteria (Escherichia coli, Yersinia enterocolitica and Salmonella enterica). It was found that the antibacterial activity of the Schiff bases-based films was more effective than that of zein-based films.

  17. MEMS-based thin-film fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2003-10-28

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  18. Smooth surface roughness of silanized CdSe(ZnS) quantum dots.

    PubMed

    Xu, Jianmin; Wang, Chengshan; Wang, Jinhai; Huo, Qun; Crawford, Nicholas F; Véliz, Eduardo A; Leblanc, Roger M

    2013-03-01

    The interparticle distance of CdSe(ZnS) quantum dots was accurately controlled by polymerization at the air-water interface which provided an increased homogeneity of the Langmuir-Blodgett film leading to a surface smoothness comparable to mica. The choice of a silane derivative is based on the fact that silicon is semiconductor, and the compound CdSe being the core of the quantum dot is also semiconductor. The combination of the two semiconductors could bring some unusual conduction properties as a polymeric silanized network. But first, it is most important to characterize the smoothness of the surface, which might be correlated to the formation of "trap" states, i.e. the photo-excited electron can fall, or the photo-excited hole can "float". One will focus our research strategy, as a pilot study, to characterize the surface of the new polymeric material.

  19. Self-assembled dual-sided hemispherical nano-dimple-structured broadband antireflection coatings

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Yen; Lin, Kun-Yi; Tsai, Hui-Ping; He, Yi-Xuan; Yang, Hongta

    2016-11-01

    A non-lithography-based approach is developed in this study for assembling monolayer close-packed hemispherical nano-dimple arrays on both sides of a PET film by a scalable Langmuir-Blodgett technology. The resulting gratings greatly suppress specular reflection and therefore enhance specular transmission for a broad range of visible wavelengths, resulting from a gradual change in the effective refractive index at air/PET interface. The experimental results reveal that the antireflection properties of the as-fabricated coatings are affected by the size of the nano-dimples. Moreover, both optical performances of single-sided and dual-sided nano-dimple-structured coatings have been investigated in this study.

  20. Identification and annotation of erotic film based on content analysis

    NASA Astrophysics Data System (ADS)

    Wang, Donghui; Zhu, Miaoliang; Yuan, Xin; Qian, Hui

    2005-02-01

    The paper brings forward a new method for identifying and annotating erotic films based on content analysis. First, the film is decomposed to video and audio stream. Then, the video stream is segmented into shots and key frames are extracted from each shot. We filter the shots that include potential erotic content by finding the nude human body in key frames. A Gaussian model in YCbCr color space for detecting skin region is presented. An external polygon that covered the skin regions is used for the approximation of the human body. Last, we give the degree of the nudity by calculating the ratio of skin area to whole body area with weighted parameters. The result of the experiment shows the effectiveness of our method.

  1. Influence of hydroxypropylmethylcellulose addition and homogenization conditions on properties and ageing of corn starch based films.

    PubMed

    Jiménez, Alberto; Fabra, María José; Talens, Pau; Chiralt, Amparo

    2012-06-20

    Edible films based on corn starch, hydroxypropyl methylcellulose (HPMC) and their mixtures were prepared by using two different procedures to homogenize the film forming dispersions (rotor-stator and rotor-stator plus microfluidizer). The influence of both HPMC-starch ratio and the homogenization method on the structural, optical, tensile and barrier properties of the films was analysed. The ageing of the films was also studied by characterizing them after 5 weeks' storage. Starch re-crystallization in newly prepared and stored films was analysed by means of X-ray diffraction. HPMC-corn starch films showed phase separation of polymers, which was enhanced when microfluidization was applied to the film forming dispersion. Nevertheless, HPMC addition inhibited starch re-crystallization during storage, giving rise to more flexible films at the end of the period. Water barrier properties of starch films were hardly affected by the addition of HPMC, although oxygen permeability increased due to its poorer oxygen barrier properties.

  2. Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation

    NASA Astrophysics Data System (ADS)

    Wei, Chenhuinan; Wu, Guoxing; Yang, Sanjun; Liu, Qiming

    2016-10-01

    In this work layered copper films with smooth surface were successfully fabricated onto ITO substrate by electrochemical deposition (ECD) and the thickness of the films was nearly 60 nm. The resulting films were characterized by SEM, TEM, AFM, XPS, and XRD. We have investigated the effects of potential and the concentration of additives and found that 2D dendritic-like growth process leaded the formation of films. A suitable growth mechanism based on diffusion limited aggregation (DLA) mechanism for the copper films formation is presented, which are meaningful for further designing homogeneous and functional films.

  3. Electrochemical deposition of layered copper thin films based on the diffusion limited aggregation

    PubMed Central

    Wei, Chenhuinan; Wu, Guoxing; Yang, Sanjun; Liu, Qiming

    2016-01-01

    In this work layered copper films with smooth surface were successfully fabricated onto ITO substrate by electrochemical deposition (ECD) and the thickness of the films was nearly 60 nm. The resulting films were characterized by SEM, TEM, AFM, XPS, and XRD. We have investigated the effects of potential and the concentration of additives and found that 2D dendritic-like growth process leaded the formation of films. A suitable growth mechanism based on diffusion limited aggregation (DLA) mechanism for the copper films formation is presented, which are meaningful for further designing homogeneous and functional films. PMID:27734900

  4. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives

    PubMed Central

    Zhou, Ying; Azumi, Reiko

    2016-01-01

    Abstract Developments in the manufacturing technology of low-cost, high-quality carbon nanotubes (CNTs) are leading to increased industrial applications for this remarkable material. One of the most promising applications, CNT based transparent conductive films (TCFs), are an alternative technology in future electronics to replace traditional TCFs, which use indium tin oxide. Despite significant price competition among various TCFs, CNT-based TCFs have good potential for use in emerging flexible, stretchable and wearable optoelectronics. In this review, we summarize the recent progress in the fabrication, properties, stability and applications of CNT-based TCFs. The challenges of current CNT-based TCFs for industrial use, in comparison with other TCFs, are considered. We also discuss the potential of CNT-based TCFs, and give some possible strategies to reduce the production cost and improve their conductivity and transparency. PMID:27877899

  5. Development and Characterization of Novel Nonlinear Optical Ultrathin Films from Preformed Polymers

    NASA Astrophysics Data System (ADS)

    Cheong, Dong-Wook

    This thesis focuses on the fabrication of Langmuir -Blodgett (LB) films of performed polymers to achieve improved non-linear optical (NLO) properties. Two different classes of polymers have been investigated in the course of this study, which include an asymmetrically substituted polydiacetylene and a polyamic acid containing p-nitroazobenzene as NLO side group. The polyamic acid film has been subsequently imidized to obtain polyimide thin films. The hydrophilic side groups distributed at regular short intervals along the backbone of these polymers assist the formation of stable polymeric monolayers at the air-water interface, which could be transferred to solid surfaces as multilayers for further characterization. An asymmetric polydiacetylene studied here is poly-{8- ((butoxycarbonyl-methyl)urethanyl) -1- (5-pyrimidyl) octa-1,3-diyne} (P-BPOD), consisting of hetero-aromatic pyrimidyl ring at one side and flexible urethane group at the other. Multilayers of P-BPOD could be deposited on hydrophobic surfaces in a non-centrosymmetric fashion. Both linear and non-linear optical experiments have suggested that P-BPOD molecules organize in a structure having inplane anisotropy and bulk asymmetry. The second harmonic generation (SHG) studies have indicated that the p-polarized SHG signal is higher when the polarization of the fundamental beam is parallel to the dipping direction than when it is perpendicular. The preferential orientation of the backbone along the dipping direction, induced by the shear force applied to the viscous polymeric monolayer, has resulted in an enhanced _chi^{(3)} along the dipping direction, which is an order of magnitude higher as compared to that along the perpendicular direction. These preformed polymeric LB films may provide ultrathin NLO films, which can be applied towards the fabrication of thin-film waveguides and optical-switching with definite technological advantages such as negligible film shrinkage (thus less defects) and improved

  6. A biomimetic tactile sensing system based on polyvinylidene fluoride film

    NASA Astrophysics Data System (ADS)

    Xin, Yi; Tian, Hongying; Guo, Chao; Li, Xiang; Sun, Hongshuai; Wang, Peiyuan; Qian, Chenghui; Wang, Shuhong; Wang, Cheng

    2016-02-01

    Polyvinylidene fluoride (PVDF) film has been widely investigated as a sensing material due to its outstanding properties such as biocompatibility, high thermal stability, good chemical resistance, high piezo-, pyro- and ferro-electric properties. This paper reports on the design, test, and analysis of a biomimetic tactile sensor based on PVDF film. This sensor consists of a PVDF film with aluminum electrodes, a pair of insulating layers, and a "handprint" friction layer with a copper foil. It is designed for easy fabrication and high reliability in outputting signals. In bionics, the fingerprint of the glabrous skin plays an important role during object handling. Therefore, in order to enhance friction and to provide better manipulation, the ridges of the fingertips were introduced into the design of the proposed tactile sensor. And, a basic experimental study on the selection of the high sensitivity fingerprint type for the biomimetic sensor was performed. In addition, we proposed a texture distinguish experiment to verify the sensor sensitivity. The experiment's results show that the novel biomimetic sensor is effective in discriminating object surface characteristics. Furthermore, an efficient visual application program (LabVIEW) and a quantitative evaluation method were proposed for the verification of the biomimetic sensor. The proposed tactile sensor shows great potential for contact force and slip measurements.

  7. Enhanced optical discrimination system based on switchable retroreflective films

    NASA Astrophysics Data System (ADS)

    Schultz, Phillip; Heikenfeld, Jason

    2016-04-01

    Reported herein is the design, characterization, and demonstration of a laser interrogation and response optical discrimination system based on large-area corner-cube retroreflective films. The switchable retroreflective films use light-scattering liquid crystal to modulate retroreflected intensity. The system can operate with multiple wavelengths (visible to infrared) and includes variable divergence optics for irradiance adjustments and ease of system alignment. The electronic receiver and switchable retroreflector offer low-power operation (<4 mW standby) on coin cell batteries with rapid interrogation to retroreflected signal reception response times (<15 ms). The entire switchable retroreflector film is <1 mm thick and is flexible for optimal placement and increased angular response. The system was demonstrated in high ambient lighting conditions (daylight, 18k lux) with a visible 10-mW output 635-nm source out to a distance of 400 m (naked eye detection). Nighttime demonstrations were performed using a 1.5-mW, 850-nm infrared laser diode out to a distance of 400 m using a night vision camera. This system could have tagging and conspicuity applications in commercial or military settings.

  8. Study of carbon nanotubes based Polydimethylsiloxane composite films

    NASA Astrophysics Data System (ADS)

    Shahzad, M. I.; Giorcelli, M.; Shahzad, N.; Guastella, S.; Castellino, M.; Jagdale, P.; Tagliaferro, A.

    2013-06-01

    Thanks to their remarkable characteristics, carbon nanotubes (CNTs) have fields of applications which are growing every day. Among them, the use of CNTs as filler for polymers is one of the most promising. In this work we report on Polydimethylsiloxane (PDMS) composites with different weight percentages (0.0% to 3.0%) of multiwall carbon nanotubes (MWCNTs) having diameter 10-30 nm and length 20-30 μm. To achieve optimum dispersion of CNTs in PDMS matrix, high speed mechanical stirring and ultrasonication were performed. By using the doctor blade technique, 70 μm thick uniform films were produced on glass. They were subsequently thermally cured and detached from the glass to get flexible and self standing films. The surface morphological study done by FESEM, shows that CNTs are well dispersed in the PDMS. Raman spectroscopy and FTIR were used to investigate the possible structural changes in the polymer composite. To examine the optical behavior UV-VIS spectroscopy was employed in both specular and diffused modes. A linear increase in absorption coefficient is found with the increasing percentage of CNTs while the transmittance decreases exponentially. The results confirm the dependence of optical limiting effect on the quantity of MWCNTs. Based on optical study, MWCNTs/PDMS composite films can be a promising material to extend performances of optical limiters against laser pulses, which is often required in lasing systems.

  9. Tantalum-based thin film coatings for wear resistant arthroprostheses.

    PubMed

    Balagna, C; Faga, M G; Spriano, S

    2011-10-01

    Cobalt-chromium-molybdenum alloys with high carbon content (HC-CoCrMo) are widely used as materials for arthroprosthesis, in particular in metal-on-metal (MoM) hip joints. In spite of their good wear and corrosion resistance, production of metallic wear particles and metal ion release will occur on a large time-scale. An enhancement of the metal ion level in the patient's blood and urine is often reported in clinical data. Hypersensitivity, inflammatory response and cell necrosis can occur as consequence. So implants on young patients and women on childbearing age are not so widespread. The aim of this research is the realization of a thin film coating in order to improve the biocompatibility of Co-based alloys and to reduce debris production, ion release and citotoxicity. The innovative process consists of a thermal treatment in molten salts, in order to obtain a tantalum enriched thin film coating. Tantalum is chosen because it is considered a biocompatible metal with high corrosion resistance and low ion release. Three HC-CoCrMo alloys, produced by different manufacturing processes, are tested as substrates. The coating is a thin film of TaC or it can be composed by a multilayer of two tantalum carbides and metallic tantalum, depending on the temperature of the treatment and on the carbon content of the substrate. The thin films as well the substrates are characterized from the structural, chemical and morphological point of view. Moreover mechanical behaviour of treated and untreated materials is analyzed by means of nanohardness, scratch and ball-on-disc wear tests. The coating increases the mechanical and tribological properties of HC-CoCrMo.

  10. Photopolymerization-based fabrication of chemical sensing films

    SciTech Connect

    Yang, Xiaoguang; Swanson, Basil I.; Du, Xian-Xian

    2003-12-30

    A photopolymerization method is disclosed for attaching a chemical microsensor film to an oxide surface including the steps of pretreating the oxide surface to form a functionalized surface, coating the functionalized surface with a prepolymer solution, and polymerizing the prepolymer solution with ultraviolet light to form the chemical microsensor film. The method also allows the formation of molecular imprinted films by photopolymerization. Formation of multilayer sensing films and patterned films is allowed by the use of photomasking techniques to allow patterning of multiple regions of a selected sensing film, or creating a sensor surface containing several films designed to detect different compounds.

  11. Study on the Hydrogenated ZnO-Based Thin Film Transistors. Part 1

    DTIC Science & Technology

    2011-04-30

    zinc oxide (a-IGZO) thin film transistors ( TFTs ) was...Amorphous indium-gallium- zinc oxide thin - film transistors (a-IGZO TFTs ) have been investigated for switching devices in the active matrix liquid crystal...depletion-mode ZnO -based thin - film transistors ( TFTs ) were studied using two approaches. The first approach used elevated substrate

  12. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    SciTech Connect

    Tan, Y.M.; Lim, S.H.; Tay, B.Y.; Lee, M.W.; Thian, E.S.

    2015-09-15

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous and tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.

  13. Fast-response humidity-sensing films based on methylene blue aggregates formed on nanoporous semiconductor films

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryota; Katoh, Ryuzi

    2016-05-01

    We prepared fast-response colorimetric humidity-sensing (vapochromic) films based on methylene blue adsorption onto nanoporous semiconductor (TiO2, Al2O3) films. Color changes caused by changes of humidity could be easily identified visually. A characteristic feature of the vapochromic films was their fast response to changes of humidity. We found that the response began to occur within 10 ms. The response was rapid because all the methylene blue molecules attached to the nanoporous semiconductor surface were directly exposed to the environment. We also deduced that the color changes were caused by structural changes of the methylene blue aggregates on the surface.

  14. PET based nanocomposite films for microwave packaging applications

    NASA Astrophysics Data System (ADS)

    Galdi, M. R.; Olivieri, R.; Liguori, L.; Albanese, D.; Di Matteo, M.; Di Maio, L.

    2015-12-01

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  15. PET based nanocomposite films for microwave packaging applications

    SciTech Connect

    Galdi, M. R. Olivieri, R.; Liguori, L.; Albanese, D. Di Matteo, M.; Di Maio, L.

    2015-12-17

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  16. Preparation and characterization of bio-based hybrid film containing chitosan and silver nanowires.

    PubMed

    Shahzadi, Kiran; Wu, Lin; Ge, Xuesong; Zhao, Fuhua; Li, Hui; Pang, Shuping; Jiang, Yijun; Guan, Jing; Mu, Xindong

    2016-02-10

    A bio-based hybrid film containing chitosan (CS) and silver nanowires (AgNWs) has been prepared by a simple casting technique. X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-visible spectroscopy were employed to characterize the structure of bio-based film. The bio-based hybrid film showed unique performance compared with bare chitosan film. The incorporated nano-silver could improve the strength properly. The results revealed that AgNWs in CS film, improved its tensile strength more than 62% and Young modulus 55% compared with pure chitosan film. On the other hand tensile strength was increased 36.7% with AgNPs. Importantly, the film also exhibited conductivity and antibacterial properties, which may expand its future application.

  17. Graphene-based flexible and stretchable thin film transistors

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-07-01

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  18. Graphene-based flexible and stretchable thin film transistors.

    PubMed

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-08-21

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  19. Elements of adaptive optics based on metallized polymer films

    NASA Astrophysics Data System (ADS)

    Voliak, T. B.; Krasiuk, I. K.; Pashinin, P. P.

    Results of an experimental study of the stability of metallized polymer films exposed to laser radiation at wavelengths of 1.06 and 10.6 microns are reported, and methods for fabricating variable-curvature mirrors from these films are discussed. Formulas are presented for calculating the shape of film mirrors as a function of the pressure acting on the film, mounting contour, and film properties. The performance of film mirrors is investigated experimentally in a pulsed CO2 laser with stable and unstable resonators.

  20. Ion permeability of polydopamine films revealed using a Prussian blue-based electrochemical method.

    PubMed

    Gao, Bowen; Su, Lei; Tong, Ying; Guan, Miao; Zhang, Xueji

    2014-11-06

    Polydopamine (PDA) is fast becoming a popular surface modification technique. Detailed understanding of the ion permeability properties of PDA films will improve their applications. Herein, we report for the first time the thickness-independent ion permeability of PDA films using a Prussian blue (PB)-based electrochemical method. In this method, PDA films are deposited via ammonium persulfate-induced dopamine polymerization onto a PB electrode. The ion permeability of the PDA films can thus be detected by observing the changes in electrochemical behaviors of the PB coated by PDA films. On the basis of this method, it was unexpectedly found that the PDA films with thickness greater than 45 nm (e.g., ~60 and ~113 nm) can exhibit pH-switchable but thickness-insensitive permeability to monovalent cations such as potassium and sodium ions. These observations clearly indicate the presence of a continuous network of interconnected intermolecular voids within PDA films, regardless of film thickness.

  1. Bamboo (Neosinocalamus affinis)-based thin film, a novel biomass material with high performances.

    PubMed

    Song, Fei; Xu, Chen; Bao, Wen-Yi; Wang, Xiu-Li; Wang, Yu-Zhong

    2015-03-30

    Exploration of biomass based materials to replace conventional petroleum based ones has been a trend in recent decades. In this work, bamboo (Neosinocalamus affinis) with abundant resources was used for the first time to prepare films in the presence of cellulose. The effects of weight ratio of bamboo/cellulose on the appearances and properties of the films were investigated. It was confirmed there existed strong interactions between bamboo and cellulose, which were favorable to formation of homogeneous structure of blend films. Particularly, the presence of bamboo could improve the surface hydrophobicity, water resistance and thermal stability of blend films, and the films possessed an excellent oxygen barrier property, compared with generally used commercial packaging films. The bamboo biomass, therefore, is successfully used to create a new film material with a good application prospect in the fields of packaging, coating, and food industry.

  2. Crack width monitoring of concrete structures based on smart film

    NASA Astrophysics Data System (ADS)

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2014-04-01

    Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.

  3. NanoSQUIDs based on niobium nitride films

    NASA Astrophysics Data System (ADS)

    Russo, R.; Esposito, E.; Crescitelli, A.; Di Gennaro, E.; Granata, C.; Vettoliere, A.; Cristiano, R.; Lisitskiy, M.

    2017-02-01

    We present an experimental investigation of nanoSQUIDs based on niobium nitride films. Niobium nitride has a relatively high critical temperature and a large upper critical magnetic field, making it a good material for superconducting electronics working in high magnetic field. We have fabricated nanoSQUIDs using electron beam lithography lift-off technique and deposition of niobium nitride films by magnetron sputtering at room temperature. The characterization of nanoSQUIDs was performed at 4.2 K and it consists mainly of current-voltage (IV) characteristics and critical current as a function of external magnetic field (magnetic pattern). The fabricated nanoSQUIDs show a hysteretic IV characteristic and they present a multi-values magnetic pattern. We show that by reducing the critical current by ion etching it is possible to obtain nanoSQUIDs with a single value magnetic pattern suitable for magnetic particle measurements. Magnetic noise analysis has been performed and a white noise of 0.3 μΦ0 Hz-1/2 has been estimated.

  4. Research on the measurement of thin film thickness based on phaseshift interferometry

    NASA Astrophysics Data System (ADS)

    Shi, Yi-lei; Su, Jun-hong; Yang, Li-hong; Xu, Jun-qi

    2009-05-01

    Only by solving the problem of accurate measurement of thin film thickness, will it be possible to solve the problem of thin film preparation. A novel measurement method of thin film thickness based on phase-shift interferometry is presented in the paper. Taking advantage of Twyman-Green interferometer, the multi-frame interferogram measured the thin film can be obtained by receiving the interference fringes of thin film by means of CCD and using digital acquisition card to collect interferogram and with the help of computer control PZT driver and modulation piezoelectric regulator to promote reference mirror uniformly-spaced movement. After the gained interferogram were disposed of phase unwrapped, 3D wavefront containing the information of thin film thickness can be obtained. According to the characteristics between the thin film thickness and the unwrapping phase, taking advantage of the overlapping 4-frame average algorithm, corresponding relationships between the quantification phase information and thin film thickness of each point has been established to realize the thin film thickness accurate measurement. The results show that this method has the advantage of non-contact, the high accuracy, not only has testified the feasibility of film thickness measurement with phase-shift interferometry, but also has further ensured research and optimization of the thin film preparation technics. The PV and RMS value of the measured thin film thickness are 0.162μm and 0.043μm respectively.

  5. Printed organic thin-film transistor-based integrated circuits

    NASA Astrophysics Data System (ADS)

    Mandal, Saumen; Noh, Yong-Young

    2015-06-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted.

  6. Preparation and characterization of oxadiazole based electron transporting thin films

    NASA Astrophysics Data System (ADS)

    Mahajan, Aman; Aulakh, Ramanpreet Kaur; Bedi, R. K.

    2012-08-01

    To study the effect of aggregation of the 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) molecule in solid state, thin films of PBD have been prepared by the thermal evaporation technique onto glass and quartz substrates under different experimental conditions. These films have been studied for their structural, optical and electrical properties. AFM investigations of the films revealed that the films were smooth, dense and crack free with RMS roughness of 11-14 nm. XRD measurements indicate that films deposited on quartz are more crystalline than films deposited on glass substrate. Both absorption and reflectance spectra over the wavelength range 200-800 nm have been recorded to find optical parameters, namely, absorption, extinction coefficient, refractive index and dielectric constants. The inter-band transition energies are found to lie within the range 3.45-3.49 eV. Optical studies of the films indicate that PBD molecules preferred J-aggregation. A prominent single emission peak in the range of 370-390 nm has been observed which confirms that the fluorescent property of this molecule is not quenched in the thin film state. The electrical conductivity results for the evaporated films exhibited semiconductor behaviour within the investigated field and temperature range. The nature of the substrate is found to be a useful tool to modify the film morphology and for enhancing the charge transport within the films.

  7. Fennel waste-based films suitable for protecting cultivations.

    PubMed

    Mariniello, L; Giosafatto, C V L; Moschetti, G; Aponte, M; Masi, P; Sorrentino, A; Porta, R

    2007-10-01

    Biodegradable, flexible, and moisture-resistant films were obtained by recycling fennel waste and adding to fennel homogenates the bean protein phaseolin that was modified or not modified by the enzyme transglutaminase. All films were analyzed for their morphology, mechanical properties, water vapor permeability, and susceptibility to biodegradation under soil-like conditions. Our experiments showed that transglutaminase treatment of the phaseolin-containing fennel waste homogenates allowed us to obtain films comparable in their mechanical properties and water vapor permeability to the commercial films Ecoflex and Mater-Bi. Furthermore, biodegradability tests demonstrated that the presence of the enzyme in the film-casting sample significantly influences the integrity of such a product that lasts longer than films obtained either with fennel waste alone or with a mixture of fennel waste and phaseolin. These findings indicate the fennel-phaseolin film prepared in the presence of transglutaminase to be a promising candidate for a new environmentally friendly mulching bioplastic.

  8. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting.

    PubMed

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-12

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  9. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  10. Morphological, Mechanical and Thermal Study of ZnO Nanoparticle Reinforced Chitosan Based Transparent Biocomposite Films

    NASA Astrophysics Data System (ADS)

    Das, Kunal; Maiti, Sonakshi; Liu, Dagang

    2014-04-01

    Chitosan based biocomposite transparent films reinforced with zinc oxide (ZnO) nanoparticles at different loading i.e. 2, 4 and 6 wt% were successfully prepared by solution casting method. Shape, size and geometry of the zinc oxide nanoparticles were characterized by scanning electron microscopy (SEM). The biocomposite films were subjected to mechanical characterization, thermal analysis, morphology study and moisture uptake behaviour. The characterization tools used here include wide angle X-ray diffraction study, scanning electron microscopic analysis, differential scanning calorimetric analysis and also UV-visible transmittance behavior. SEM micrographs revealed uniformly dispersed ZnO nanoparticles in biocomposite films. Improvement of the tensile strength about 133 % was observed significantly in case of 4 wt% loaded chitosan/ZnO films with respect to the neat chitosan film. 43 % higher transparency was observed in case of 2 wt% ZnO loaded biocomposites films, thus indicating the best combination of properties of 2 wt% ZnO loaded biocomposite films.

  11. LTCC Phase Shifters Based on Tunable Ferroelectric Composite Thick Films

    NASA Astrophysics Data System (ADS)

    Nikfalazar, M.; Kohler, C.; Heunisch, A.; Wiens, A.; Zheng, Y.; Schulz, B.; Mikolajek, M.; Sohrabi, M.; Rabe, T.; Binder, J. R.; Jakoby, R.

    2015-11-01

    This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors.

  12. Moving beyond "Bookish Knowledge": Using Film-Based Assignments to Promote Deep Learning

    ERIC Educational Resources Information Center

    Olson, Joann S.; Autry, Linda; Moe, Jeffry

    2016-01-01

    This article investigates the effectiveness of a film-based assignment given to adult learners in a graduate-level group counseling class. Semi-structured interviews were conducted with four students; data analysis suggested film-based assignments may promote deep approaches to learning (DALs). Participants indicated the assignment helped them…

  13. Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles.

    PubMed

    Bilbao-Sáinz, Cristina; Avena-Bustillos, Roberto J; Wood, Delilah F; Williams, Tina G; McHugh, Tara H

    2010-03-24

    It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of this work was to enhance these properties by reinforcing the films with microcrystalline cellulose (MCC) at the nano scale level. Three sizes of MCC nanoparticles were incorporated into HPMC edible films at different concentrations. Identical MCC nanoparticles were lipid coated (LC) prior to casting into HPMC/LC-MCC composite films. The films were examined for mechanical and moisture barrier properties verifying how the addition of cellulose nanoparticles affected the water affinities (water adsorption/desorption isotherms) and the diffusion coefficients. The expected reinforcing effect of the MCC was observed: HPMC/MCC and HPMC/LC-MCC films showed up to 53% and 48% increase, respectively, in tensile strength values in comparison with unfilled HPMC films. Furthermore, addition of unmodified MCC nanoparticles reduced the moisture permeability up to 40% and use of LC-MCC reduced this value up to 50%. Water vapor permeability was mainly influenced by the differences in water solubility of different composite films since, in spite of the increase in water diffusivity values with the incorporation of MCC to HPMC films, better moisture barrier properties were achieved for HPMC/MCC and HPMC/LC-MCC composite films than for HPMC films.

  14. Patterning of Tl-based superconducting films using new etching solution

    NASA Astrophysics Data System (ADS)

    Sojková, M.; Štrbík, V.; Španková, M.; Chromik, Š.

    2014-09-01

    Tl-based cuprate superconducting films were prepared in a two-step process by RF magnetron sputtering of an amorphous precursor and ex situ thallination in open system. The films prepared on LaAlO3 and CeO2 buffered R-plane sapphire substrates consisted from c-axis oriented Tl-2212 superconducting phase. The zero resistance critical temperature TC0 exhibited values up to 94 K. Subsequently, superconducting structures were prepared from the Tl-based thin films using photolithography process and wet etching. A new etchant based on potassium iodide was used for the Tl-based film patterning. The prepared structures had sharp edges, unchanged phase composition and critical temperature values. Such a way of the Tl-based film patterning is very simple, fast and easy to realize.

  15. Optical Sensors Based on Single Arm Thin Film Waveguide Interferometer

    NASA Technical Reports Server (NTRS)

    Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)

    2001-01-01

    Single-arm double-mode double-order optical waveguide interferometer utilizes interference between two propagating modes of different orders. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric slab structure containing a dye-doped polymer film onto a fused quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional), TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TM(sub 1) or TE(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye sensitive to a particular gas. Change of optical absorption spectrum of the dye caused by the gaseous pollutant results change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As an indicator dyes, we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate, which shows a reversible growth of the absorption peak neat 600 nm after exposure to wet ammonia. We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed sensitivity to temperature change of the order of 2 C per one full oscillation of the signal. The sensitivity of the sensor to the presence of wet ammonia is 200 ppm per one full oscillation of the signal. The further improvements include switching to a longer wavelength laser source (750-nm semiconductor laser), substitution of poly(methyl) methacrylate with hydrophilic

  16. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity.

  17. Soil burial biodegradation studies of palm oil-based UV-curable films

    SciTech Connect

    Tajau, Rida Salleh, Mek Zah Salleh, Nik Ghazali Nik Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi Hamidi, Nur Amira

    2016-01-22

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  18. Characterization and performance of carbon films deposited by plasma and ion beam based techniques

    SciTech Connect

    Walter, K C; Kung, H; Levine, T

    1994-12-31

    Plasma and ion beam based techniques have been used to deposit carbon-based films. The ion beam based method, a cathodic arc process, used a magnetically mass analyzed beam and is inherently a line-of-sight process. Two hydrocarbon plasma-based, non-line-of-sight techniques were also used and have the advantage of being capable of coating complicated geometries. The self-bias technique can produce hard carbon films, but is dependent on rf power and the surface area of the target. The pulsed-bias technique can also produce hard carbon films but has the additional advantage of being independent of rf power and target surface area. Tribological results indicated the coefficient of friction is nearly the same for carbon films from each deposition process, but the wear rate of the cathodic arc film was five times less than for the self-bias or pulsed-bias films. Although the cathodic arc film was the hardest, contained the highest fraction of sp{sup 3} bonds and exhibited the lowest wear rate, the cathodic arc film also produced the highest wear on the 440C stainless steel counterface during tribological testing. Thus, for tribological applications requiring low wear rates for both counterfaces, coating one surface with a very hard, wear resistant film may detrimentally affect the tribological behavior of the counterface.

  19. Planting Healthy Roots: Using Documentary Film to Evaluate and Disseminate Community-Based Participatory Research.

    PubMed

    Brandt, Heather M; Freedman, Darcy A; Friedman, Daniela B; Choi, Seul Ki; Seel, Jessica S; Guest, M Aaron; Khang, Leepao

    2016-01-01

    Documentary filmmaking approaches incorporating community engagement and awareness raising strategies may be a promising approach to evaluate community-based participatory research. The study purpose was 2-fold: (1) to evaluate a documentary film featuring the formation and implementation of a farmers' market and (2) to assess whether the film affected awareness regarding food access issues in a food-desert community with high rates of obesity. The coalition model of filmmaking, a model consistent with a community-based participatory research (CBPR) approach, and personal stories, community profiles, and expert interviews were used to develop a documentary film (Planting Healthy Roots). The evaluation demonstrated high levels of approval and satisfaction with the film and CBPR essence of the film. The documentary film aligned with a CBPR approach to document, evaluate, and disseminate research processes and outcomes.

  20. Reduced graphene oxide based silver sulfide hybrid films formed at a liquid/liquid interface

    SciTech Connect

    Bramhaiah, K. John, Neena S.

    2014-04-24

    Free-standing, ultra-thin films of silver sulfide and reduced graphene oxide (RGO) based silver sulfide hybrids are prepared at a liquid/liquid interface employing in situ chemical reaction strategy. Ag{sub 2}S and RGO−Ag{sub 2}S hybrid films are characterized by various techniques such as UV-visible and photo luminescence spectroscopy, X-ray diffraction and scanning electron microscopy. The morphology of hybrid films consists of Ag{sub 2}S nanocrystals on RGO surface while Ag{sub 2}S films contains branched network of dendritic structures. RGO−Ag{sub 2}S exhibit interesting optical and electrical properties. The hybrid films absorb in the region 500–650 nm and show emission in the red region. A higher conductance is observed for the hybrid films arising from the RGO component. This simple low cost method can be extended to prepare other RGO based metal sulfides.

  1. Electrochemical double-layer capacitors based on functionalized graphene

    NASA Astrophysics Data System (ADS)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective

  2. Degradation studies of nitride-based low-e films

    NASA Astrophysics Data System (ADS)

    Andersson, Kent E.; Wahlstrom, M. K.; Roos, Arne; Ribbing, Carl-Gustaf

    1992-11-01

    Triple layer structures of TiO2/TiN/TiO2 and quadruple layer structures of TiO2/Al/TiN/TiO2 have been sputtered on glass substrates at temperatures ranging from room temperature to 300 degree(s)C. The reflectance and transmittance were measured in the visible and the near infrared wavelength regions. Accelerated degradation tests with respect to high temperature and acid exposure have been performed with these laboratory samples of low-e coatings and the degradation has been compared with that of commercial silver based window coatings. As expected the durability of the nitride based coatings is far superior to the stability of those based on noble metals. Furthermore, the nitride coatings with an aluminum sacrificial layer have been found to resist aging at elevated temperatures (as high as 350 - 400 degree(s)C) far better than similar coatings without the aluminum. It has also been shown that the aluminum layer protects the nitride film during deposition of the top oxide layer. The effects of high temperature annealing have been modeled with optical multilayer calculations. Comparison of two degradation mechanisms demonstrates that the silver layers fail by agglomeration while the nitride suffers successive oxidation. This explains the effectiveness of the aluminum layer which forms a dense oxide during the initial stages of TiO2- deposition.

  3. Polyester-based thin films with high photosensitivity

    SciTech Connect

    POTTER,KELLY SIMMONS; POTTER JR.,BARRETT G.; WHEELER,DAVID R.; JAMISON,GREGORY M.

    2000-02-29

    A great deal of research has been done to understand the photosensitive optical response of inorganic glasses, which exhibit a permanent, photo-induced refractive index change due to the presence of optically active point defects in the glass structure. In the present work, the authors have performed a preliminary study of the intrinsic photosensitivity of a polyester containing a cinnamylindene malonate group (CPE, a photo- and thermal-crosslinkable group) for use in photonic waveguide devices. Thin films of CPE (approximately 0.5 microns thick) were spun onto fused silica substrates. Optical absorption in the thin films was evaluated both before and after exposure to UV radiation sources. It was found that the polyester exhibits two dominant UV absorption bands centered about 240 nm and 330 nm. Under exposure to 337 nm radiation (nitrogen laser) a marked bleaching of the 330 nm band was observed. This band bleaching is a direct result of the photo-induced crosslinking in the cinnamylindene malonate group. Exposure to 248 nm radiation (excimer laser), conversely, resulted in similar bleaching of the 330 nm band but was accompanied by nearly complete bleaching of the higher energy 240 nm band. Based on a Kramers-Kronig analysis of the absorption changes, refractive index changes on the order of {minus}10{sup {minus}2} are estimated. Confirmation of this calculation has been provided via ellipsometry which estimates a refractive index change at 632 nm of {minus}0.061 {+-} 0.002. Thus, the results of this investigation confirm the photosensitive potential of this type of material.

  4. Evaluation of variational principle based model for LDPE large scale film blowing process

    NASA Astrophysics Data System (ADS)

    Kolarik, Roman; Zatloukal, Martin

    2013-04-01

    In this work, variational principle based film blowing model combined with Pearson and Petrie formulation, considering non-isothermal processing conditions and novel generalized Newtonian model allowing to capture steady shear and uniaxial extensional viscosities has been validated by using experimentally determined bubble shape and velocity profile for LDPE sample on large scale film blowing line. It has been revealed that the minute change in the flow activation energy can significantly influence the film stretching level.

  5. Functional Polymers and Guest-Host Polymer Blends for Optical and Electronic Applications: A Molecular Engineering Approach

    DTIC Science & Technology

    1993-04-14

    Langmuir-Blodgett (LB) method. Ultra-thin films of poly( benzothiazole ) (PBT) containing thiophene were successfully obtained by this method...benzimidazole) (PBI), 3 poly(benzoxazole) (PBO) or poly( benzothiazole ) PBT) are highly stable at elevated temperatures above 300’C and have the fully...previously found that fabrication of poly( benzothiazole ) (PBT) as a uniform thin film can be accomplished by using the LB method at air/water interfaces. The

  6. Raman spectra of heterogeneous nanostructures based on organosilicon films

    NASA Astrophysics Data System (ADS)

    Vlasukova, L. A.; Komarov, F. F.; Leontyev, A. V.; Parkhomenko, I. N.

    2013-01-01

    We studied the effect of ion bombardment on the structure of SOG (spin-on-glass) films. We used IR and Raman spectroscopy and plan-view transmission electron microscopy to study the characteristic features of the structural transformation in organosilicon films when bombarded by nitrogen ions. We show that they are heterogeneous and we establish the presence of inclusions of nanocrystalline graphite.

  7. Multielectrocatalysis by layer-by-layer films based on pararosaniline and vanadium-substituted phosphomolybdate.

    PubMed

    Fernandes, Diana M; Teixeira, Alexandra; Freire, Cristina

    2015-02-10

    Hybrid multilayer films based on the two molecular species pararosaniline (PR) and Keggin-type polyoxometalate K5[PMo11VO40)] (PMo11V) were prepared on different substrates using the electrostatic layer-by-layer (LbL) self-assembly method. The film buildup, monitored by electronic spectroscopy, showed a regular stepwise growth, and X-ray photoelectron spectroscopy data confirmed the presence of both molecular components within the LbL films. Scanning electron microscopy images revealed a completely covered surface with a nonuniform distribution of film components, and atomic force microscopy images confirmed a rough surface. The film electrochemical responses and permeability were studied by cyclic voltammetry. Films revealed three Mo-based redox processes (Mo(VI) → Mo(V)) and one V-based redox process (V(V) → V(IV)) in the potential range between 0.8 and -0.4 V vs Ag/AgCl. Studies with the redox probes [Fe(CN)6](3-/4-) and [Ru(NH3)6](3+/2+) showed that the films maintain the permeability even after six bilayers. Furthermore, the {PR/PMo11V}n multilayer films exhibit excellent Mo-based electrocatalytic activity toward reduction of iodate and V-based electrocatalytic activity toward ascorbic acid oxidation, thus acting as a versatile multielectrocatalyst.

  8. Thin-film chemical sensors based on electron tunneling

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  9. Structural and optical investigation of Te-based chalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Rita; Sharma, Shaveta; Chander, Ravi; Kumar, Praveen; Thangaraj, R.; Mian, M.

    2015-05-01

    We report the structural and optical properties of thermally evaporated Bi2Te3, In2Te3 and InBiTe3 films by using X-ray diffraction, optical and Raman Spectroscopy techniques. The as-prepared thin films were found to be Semi-crystalline by X-ray diffraction. Particle Size and Strain has been calculated from XRD data. The optical constants, film thickness, refractive index and optical band gap (Eg) has been reported for In2Te3, InBiTe3 films. Raman Spectroscopy was performed to investigate the effect of Bi, In, on lattice vibration and chemical bonding in Te based chalcogenide glassy alloys.

  10. Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites.

    PubMed

    Tian, Bian; Zhang, Zhongkai; Shi, Peng; Zheng, Chen; Yu, Qiuyue; Jing, Weixuan; Jiang, Zhuangde

    2017-01-01

    A tungsten-rhenium thin film thermocouple is designed and fabricated, depending on the principle of thermal-electric effect caused by the high temperature. The characteristics of thin film thermocouples in different temperatures are investigated via numerical analysis and analog simulation. The working mechanism and thermo-electric features of the thermocouples are analyzed depending on the simulation results. Then the thin film thermocouples are fabricated and calibrated. The calibration results show that the thin film thermocouples based on the tungsten-rhenium material achieve ideal static characteristics and work well in the practical applications.

  11. Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Tian, Bian; Zhang, Zhongkai; Shi, Peng; Zheng, Chen; Yu, Qiuyue; Jing, Weixuan; Jiang, Zhuangde

    2017-01-01

    A tungsten-rhenium thin film thermocouple is designed and fabricated, depending on the principle of thermal-electric effect caused by the high temperature. The characteristics of thin film thermocouples in different temperatures are investigated via numerical analysis and analog simulation. The working mechanism and thermo-electric features of the thermocouples are analyzed depending on the simulation results. Then the thin film thermocouples are fabricated and calibrated. The calibration results show that the thin film thermocouples based on the tungsten-rhenium material achieve ideal static characteristics and work well in the practical applications.

  12. Elastohydrodynamic film thickness formula based on X-ray measurements with a synthetic paraffinic oil

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.

    1973-01-01

    An empirical elastohydrodynamic film thickness formula for heavily loaded contacts based upon X-ray film thickness measurements made with a synthetic paraffinic oil is presented. The deduced relation was found to adequately reflect the high load dependence exhibited by the measured minimum film thickness data at high Hertizian contact stresses, that is, above 1.04 x 10 to the ninth N/sq m (150,000 psi). Comparisons were made with the numerical results from a theoretical isothermal film thickness formula. The effects of changes in contact geometry, material, and lubricant properties on the form of the empirical model are also discussed.

  13. Vacuum-vapor-deposited films based on benzo(a)phenoxazine derivatives under surface plasma fluorination

    NASA Astrophysics Data System (ADS)

    Agabekov, Vladimir E.; Ignasheva, Olga E.; Belyatsky, Vladimir N.

    1997-07-01

    Modification of vacuum vapor deposited thin films based on benzo(a)phenoxazone-5 derivatives with C3F8 and SF6 plasma were investigated. X-ray photoelectron spectroscopy (XPS) method was used to identify and study the distribution of surface functional groups of untreated and fluorinated films investigated. It was shown that fluor content in element composition of surface film layers and perfluorocarbon group content in Cls-lines of XP-spectra depended on chemical structure of the initial compounds. The more quantity and size of side substitutes were contained in the compound chemical structure the less was the content of fluor and perfluorocarbon groups in film surface fluorinated layer. The probable way of plasma active particle interaction with film surface is discussed. Using Kaelbe's method the influence of treatment conditions and initial compound chemical structure on surface properties of fluorinated films was studied.

  14. Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate.

    PubMed

    de Moraes, Ana Carolina Mazarin; Andrade, Patricia Fernanda; de Faria, Andreia Fonseca; Simões, Mateus Batista; Salomão, Francisco Carlos Carneiro Soares; Barros, Eduardo Bedê; Gonçalves, Maria do Carmo; Alves, Oswaldo Luiz

    2015-06-05

    Graphene oxide (GO) has been considered a promising filler material for building polymeric nanocomposites because of its excellent dispersibility and high surface area. In this work, we present the fabrication and characterization of transparent and ultraviolet (UV) shielding composite films based on GO and cellulose acetate (CA). GO sheets were found to be well-dispersed throughout the CA matrix, providing smooth and homogeneous composite films. Moreover, the GO sheets were completely embedded within the CA matrix and no presence of this nanomaterial was found at the surface. Nevertheless, CAGO composite films offered an improved high energy light-shielding capacity when compared to pristine CA films. Particularly for UVC irradiation, the CAGO film containing 0.50wt% GO displayed a UV-shielding capacity of 57%, combined with 79% optical transparency under visible light. These CAGO composite films can be potentially applied as transparent UV-protective coatings for packing biomedical, pharmaceutical, and food products.

  15. Structure and physicochemical properties of thin film photosemiconductor cells based on porphine derivatives

    NASA Astrophysics Data System (ADS)

    Kazak, A. V.; Usol'tseva, N. V.; Smirnova, A. I.; Bodnarchuk, V. V.; Sul'yanov, S. N.; Yablonskii, S. V.

    2016-05-01

    Photosemiconductor thin films based on two organic porphine derivatives have been investigated. These compounds have different pendent groups; the film morphology, along with the specific fabrication technique, is determined to a great extent by these groups. The films have been fabricated by vacuum sputtering and using the Langmuir-Schaefer method. According to the atomic force microscopy (AFM) data, the Langmuir-Schaefer films are more homogeneous than the sputtered ones. It is shown that the sputtered films based on substituted porphine have a looser stacking than the initial analog. A spectroscopy study revealed a bathochromic shift of the Soret band in the Langmuir-Schaefer films-sputtered films series. This shift is explained by the increase in the concentration and size of molecular aggregates in sputtered films. It is shown that a polycrystalline C60 fullerene film deposited onto an amorphous substituted porphine layer improves the photoelectric characteristics of the latter. Both the time stability of the photodiode structure and its ampere‒watt sensitivity increase (by a factor of 10 in the transition regime). The steady-state current does not change. The effect of polarity reversal of the photovoltaic signal is observed in a planar C60‒substituted metalloporphine heterostructure, which is similar to the pyroelectric effect. The polarity reversal can be explained by the contribution of the trap charge and discharge current at the interface between the amorphous photosemiconductor and crystalline photosemiconductor to the resulting photoelectric current.

  16. The Imagery of Rhetoric: Film and Academic Writing in the Discipline-based ESL Course.

    ERIC Educational Resources Information Center

    Kasper, Loretta F.

    2000-01-01

    Describes three reading/writing lessons on the topics of linguistics, environmental science, and anthropology used in a discipline-based college-level English as a second language course to illustrate how to use film to teach academic writing skills. Discusses how students analyze a film to help articulate the content of an essay or a book. (SR)

  17. Potential of Kaolin-based Particle Film Barriers for Formosan Subterranean Termite (Isoptera: Rhinotermitidae) Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of three particle film products on Formosan subterranean termites, Coptotermes formosanus Shiraki, were evaluated in feeding, tunneling, and contact assays. The particle films, hydrophobic M96-018 and hydrophilic Surround and Surround WP are based on the inert clay mineral kaolin. In 2-week ...

  18. Comparative study on properties of edible films based on pinhao (Araucaria angustifolia) starch and flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to develop and compare the properties of edible films based on pinhao starch and pinhao flour. Seven formulations were developed by casting methodology: 5% pinhao starch with 0, 1, 1.5, and 2% glycerol, and 5% pinhao flour with 1, 1.5, and 2% glycerol. The films were evalua...

  19. Versatile fluoride substrates for Fe-based superconducting thin films

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Reich, E.; Hänisch, J.; Ichinose, A.; Tsukada, I.; Hühne, R.; Trommler, S.; Engelmann, J.; Schultz, L.; Holzapfel, B.; Iida, K.

    2013-04-01

    We demonstrate the growth of Co-doped BaFe2As2 (Ba-122) thin films on CaF2 (001), SrF2 (001), and BaF2 (001) single crystal substrates using pulsed laser deposition. All films are grown epitaxially despite of a large misfit of -10.6% for BaF2 substrate. For all films, a reaction layer is formed at the interface confirmed by X-ray diffraction and for the films grown on CaF2 and BaF2 additionally by transmission electron microscopy. The superconducting transition temperature of the film on CaF2 is around 27 K, whereas the corresponding values of the films on SrF2 and BaF2 are around 22 K and 21 K, respectively. The Ba-122 on CaF2 shows almost identical crystalline quality and superconducting properties as films on Fe-buffered MgO.

  20. Systematics of Permanent Magnet Film Texturing and the Limits of Film Synthesized 1-12 and 2-17 Iron Based Rare Earth Transition Metal Permanent Systems

    DTIC Science & Technology

    1998-01-21

    onto a separate substrate was used to saturate the magnetization of the Bi- YIG waveguide. The TbCu7 SmCo based film magnet was 22 urn thick in this case...structure. Microwave circulators using ferrite disks and external bulk permanent magnets are an example of such devices. Magnetoresistive heads are...tested. In a preliminary device configuration consisting of a waveguide etched into a Bi- YIG film, a SmCo based permanent magnet film deposited

  1. Properties of blend film based on cuttlefish (Sepia pharaonis) skin gelatin and mungbean protein isolate.

    PubMed

    Hoque, Md Sazedul; Benjakul, Soottawat; Prodpran, Thummanoon; Songtipya, Ponusa

    2011-11-01

    Blend films based on cuttlefish (Sepia pharaonis) ventral skin gelatin (CG) and mungbean protein isolate (MPI) at different blend ratios (CG/MPI=10:0, 8:2, 6:4, 4:6, 2:8 and 0:10, w/w) prepared at pH 11 using 50% glycerol (based on total protein) as plasticizer were characterized. CG films incorporated with MPI at increasing amounts had the decreases in tensile strength (TS) (p<0.05). The increases in elongation at break (EAB) were observed when CG/MPI ratios of 6:4 or 4:6 were used (p<0.05). Decreased water vapor permeability (WVP) was obtained for films having the increasing proportion of MPI (p<0.05). CG/MPI blend films with higher MPI proportion had lower film solubility and L*-values (lightness) but higher b*-values (yellowness) and ΔE*-values (total color difference) (p<0.05). Electrophoretic study revealed that disulfide bond was present in MPI and CG/MPI blend films. However, hydrogen bonds between CG and MPI in the film matrix were dominant, as elucidated from FTIR spectroscopic analysis. Moreover, thermal stability of CG/MPI blend film was improved as compared to that of films from respective single proteins. Differential scanning calorimetry result suggested solid-state morphology of CG/MPI (6:4) blend film that consisted of amorphous phase of partially miscible CG/MPI mixture and the coexisting two different order phases of individual CG and MPI domains. Thus, the incorporation of MPI into gelatin film could improve the properties of resulting blend film, which were governed by CG/MPI ratio.

  2. Photoelectric properties of a detector based on dried bacteriorhodopsin film.

    PubMed

    Wang, Wei Wei; Knopf, George K; Bassi, Amarjeet S

    2006-01-15

    The photoelectric response of a detector using dried bacteriorhodopsin (bR) film as the light sensing material is mathematically modeled and experimentally verified in this paper. The photocycle and proton transfer kinetics of dried bR film differ dramatically from the more commonly studied aqueous bR material because of the dehydration process. The photoelectric response of the dried film is generated by charge displacement and recombination instead of transferring a proton from the cytoplasmic side to the extracellular side of the cell membrane. In this work, the wild-type bR samples are electrophoretically deposited onto an indium tin oxide (ITO) electrode to construct a simple multiple layered photo-detector with high sensitivity to small changes in incident illumination. The light absorption characteristics of the thin bR film are mathematically represented using the kinetics of the bR photocycle and the charge displacement theorem. An electrically equivalent RC circuit is used to describe the intrinsic photoelectric properties of the film and external measurement circuitry to analyze the detector's response characteristics. Simulated studies and experimental results show that the resistance of the dried bR film is in the order of 10(11) Omega. When the input impedance of the measurement circuitry is one order of magnitude smaller than the dried film, the detector exhibits a strong differential response to the original time-varying light signal. An analytical solution of the equivalent circuit also reveals that the resistance and capacitance values exhibited by the dried bR film, in the absence of incident light, are almost twice as large as the values obtained while the material is under direct illumination. Experimental observations and a predictive model both support the notion that dried bR film can be used in simple highly sensitive photo-detector designs.

  3. Design of camouflage material for visible and near infrared based on thin film technology

    NASA Astrophysics Data System (ADS)

    Miao, Lei; Shi, Jia-ming; Zhao, Da-peng; Liu, Hao; Wang, Chao; Xu, Yan-liang

    2015-11-01

    Visible light and near infrared based camouflage materials achieve good stealth under traditional optical detection equipment but its spectral differences with green plants can be taken advantage of by high spectrum based detection technologies. Based on the thin structure of bandpass filter, we designed an optical film with both green and near infrared spectrum. We conducted simulations using transfer matrix methods and optimized the result by simplex methods. The spectral reflectance curve of the proposed thin film matches that of green plants, and experiments show that the proposed thin film achieve good invisibility under visible light and near infrared in a wide viewing angle.

  4. Optical isolator based on mode conversion in magnetic garnet films.

    PubMed

    Hemme, H; Dötsch, H; Menzler, H P

    1987-09-15

    Calculations are presented describing a novel optical isolator which works by complete TE(0)-TM(0) mode conversion in magnetic garnet films caused by stress-induced optical anisotropy (50%) and by Faraday rotation (50%). These conversions take place along two different, perpendicular light paths in the same crystal that are connected by an integrated mirror. Possible tolerances of the film parameters are given so that a 30-dB isolation is still guaranteed.

  5. Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts.

    PubMed

    Talón, Emma; Trifkovic, Kata T; Nedovic, Viktor A; Bugarski, Branko M; Vargas, María; Chiralt, Amparo; González-Martínez, Chelo

    2017-02-10

    The aim of this study was to analyse the antioxidant activity of different polymeric matrices based on chitosan and starch, incorporating a thyme extract (TE) rich in polyphenols. TE provided the films with remarkable antioxidant activity. When mixed with chitosan, the polyphenols interacted with the polymer chains, acting as crosslinkers and enhancing the tensile behaviour of films. The opposite effect was observed when incorporated into the starch matrix. All the films became darker, more reddish and less transparent when TE was incorporated. These colour changes were more marked in starch matrices, which suggests that TE compounds were poorly encapsulated. The use of chitosan-based matrices carrying TE polyphenols is recommended as a means of obtaining antioxidant films, on the basis of their tensile response and greater antioxidant activity, which could be associated with the development of polyphenol-chitosan interactions, contributing to a better protection of the functionality of polyphenols during film formation and conditioning.

  6. Three-dimensional measurement of multilayer thin films based on scanning white light interferometer

    NASA Astrophysics Data System (ADS)

    Shi, Zhendong; Zhang, Lin; Ren, Huan; Yuan, Quan; Yang, Yi; Ma, Hua

    2016-09-01

    For multilayer films system, in order to obtain the thickness and surface profile in each layer of thin film, a method to measure the 3D morphology of a multilayer films system based on scanning white light interferometer has been proposed in this article. At first, the mathematical relationship between reflection phase and thickness of each film layer has been obtained by using the electromagnetic field boundary conditions. Then, a nonlinear least square algorithm has been used to fit the reflection phase which had been found through a scanning white light interferometer, in this way the linear and nonlinear terms of the reflection phase have been separated, which made it possible to measure top-layer surface profile and thickness of each thin film layer respectively and avoided the interference with each other, because the linear term is related to the top layer's surface profile but the nonlinear term is correlated to the thickness of each film layer in multilayer thin films system. Thus, the three-dimensional morphology of multilayer thin films system could be reconstructed. Experimental results showed this method was effective in the three-dimensional morphology measurement for multilayer thin films. And the measurement could be completed just using the existing commercial scanning white light interferometer, as a consequence the measurement cost is low, and the operation will be quite simple.

  7. Determining the elastic modulus of thin films using a buckling-based method: computational study

    NASA Astrophysics Data System (ADS)

    Zheng, Xiu-Peng; Cao, Yan-Ping; Li, Bo; Feng, Xi-Qiao; Jiang, Hanqing; Y Huang, Yonggang

    2009-09-01

    The buckling mode of a thin film lying on a soft substrate has been used to determine the elastic modulus of thin films and one-dimensional objects (e.g. nanowires and nanotubes). In this paper, dimensional analysis and three-dimensional nonlinear finite element computations have been made to investigate the buckling of a film with finite width bonded to a compliant substrate. Our study demonstrates that the effect of Poisson's ratio of the film can be neglected when its width-thickness ratio is smaller than 20. For wider films, omitting the influence of Poisson's ratio may lead to a significant systematic error in the measurement of the Young's modulus and, therefore, the film should be treated as a plate. It is also found that the assumption of the uniform interfacial normal stress along the width of the film made in the theoretical analysis does not cause an evident error, even when its width is comparable to its thickness. Based on the computational results, we further present a simple expression to correlate the buckling wavelength with the width and thickness of the film and the material properties (Young's moduli and Poisson's ratios) of the film and substrate, which has a similar form to that in the classical plane-strain problem. The fundamental solutions reported here are not only very accurate in a broad range of geometric and material parameters but also convenient for practical use since they do not involve any complex calculation.

  8. Oxide-based method of making compound semiconductor films and making related electronic devices

    DOEpatents

    Kapur, Vijay K.; Basol, Bulent M.; Leidholm, Craig R.; Roe, Robert A.

    2000-01-01

    A method for forming a compound film includes the steps of preparing a source material, depositing the source material on a base and forming a preparatory film from the source material, heating the preparatory film in a suitable atmosphere to form a precursor film, and providing suitable material to said precursor film to form the compound film. The source material includes oxide-containing particles including Group IB and IIIA elements. The precursor film includes non-oxide Group IB and IIIA elements. The compound film includes a Group IB-IIIA-VIA compound. The oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the source material. Similarly, non-oxides may constitute greater than about 95 molar percent of the Group IB elements and greater than about 95 molar percent of the Group IIIA elements in the precursor film. The molar ratio of Group IB to Group IIIA elements in the source material may be greater than about 0.6 and less than about 1.0, or substantially greater that 1.0, in which case this ratio in the compound film may be reduced to greater than about 0.6 and less than about 1.0. The source material may be prepared as an ink from particles in powder form. The oxide-containing particles may include a dopant, as may the compound film. Compound films including a Group IIB-IVA-VA compound may be substituted using appropriate substitutions in the method. The method, also, is applicable to fabrication of solar cells and other electronic devices.

  9. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity.

    PubMed

    Rhim, Jong-Whan; Hong, Seok-In; Park, Hwan-Man; Ng, Perry K W

    2006-08-09

    Four different types of chitosan-based nanocomposite films were prepared using a solvent-casting method by incorporation with four types of nanoparticles, that is, an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. Scanning electron micrographs showed that in all of the nanocomposite films, except the Nano-silver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, that is, tensile strength increased by 7-16%, whereas water vapor permeability decreased by 25-30% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity.

  10. Magnetic Fe-Co films electroplated in a deep-eutectic-solvent-based plating bath

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Shiraishi, K.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Suzuki, K.; Fukunaga, H.

    2015-05-01

    We fabricated Fe-Co films from a deep eutectic solvent (DES)-based plating bath and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2.4H2O, and CoCl2.6H2O. The composition of the plated films depended on the amount of FeCl2.4H2O in the plating bath, and Fe content of the films was varied from 0 to 100 at. %. Depending on the Fe content, the saturation magnetization and the coercivity of the films varied. The Fe76Co24 film shows high saturation magnetization and smooth surface, and the change in the saturation magnetization shows good agreement with the expected change by the Slater-Pauling curve. High current efficiency (>90%) could be obtained in the wide film composition. From these results, we concluded that the DES-based plating bath is one of effective baths for the Fe-Co films with high current efficiency.

  11. Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films.

    PubMed

    Mohajer, Setareh; Rezaei, Masoud; Hosseini, Seyed Fakhreddin

    2017-02-10

    This study was conducted with the aim of improving the physico-chemical properties of fish gelatin (FG) based films. For this purpose, FG was blended with agar (AG) in different compositions to acquire biodegradable films (100:0, 80:20, 60:40, 50:50 & 0:100, FG:AG). The obtained results showed that the AG addition strongly increased the film rigidity and resistance to fracture, while reducing the film stretchability, mainly at 50FG: 50AG ratio. AG incorporation greatly reduced the water vapor permeability (WVP) and solubility of gelatin films, as this decline for the blend film with a 50:50 ratio of biopolymers has been about 41% and 66%, respectively (p<0.05). Additional advantages of AG inclusion to FG films are the reduction of the UV-transmittance. Both polymers showed good compatibility, as demonstrated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. Therefore, the blend composition influenced the properties of FG/AG bio-based films.

  12. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOEpatents

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  13. Thermal conductivity and mechanical properties of AlN-based thin films

    NASA Astrophysics Data System (ADS)

    Moraes, V.; Riedl, H.; Rachbauer, R.; Kolozsvári, S.; Ikeda, M.; Prochaska, L.; Paschen, S.; Mayrhofer, P. H.

    2016-06-01

    While many research activities concentrate on mechanical properties and thermal stabilities of protective thin films, only little is known about their thermal properties being essential for the thermal management in various industrial applications. Based on the 3ω-method, we show the influence of Al and Cr on the temperature dependent thermal conductivity of single-phase cubic structured TiN and single-phase wurtzite structured AlN thin films, respectively, and compare them with the results obtained for CrN thin films. The dc sputtered AlN thin films revealed a highly c-axis oriented growth for deposition temperatures of 250 to 700 °C. Their thermal conductivity was found to increase strongly with the film thickness, indicating progressing crystallization of the interface near amorphous regions during the sputtering process. For the 940 nm AlN film, we found a lower boundary for the thermal conductivity of 55.3 W m-1 K-1 . By the substitution of only 10 at. % Al with Cr, κ significantly reduces to ˜5.0 W m-1 K-1 , although the single-phase wurtzite structure is maintained. The single-phase face centered cubic TiN and Ti0.36Al0.64N thin films exhibit κ values of 3.1 W m-1 K-1 and 2.5 W m-1 K-1 , respectively, at room temperature. Hence, also here, the substitutional alloying reduces the thermal conductivity, although at a significantly lower level. Single-phase face centered cubic CrN thin films show κ values of 3.6 W m-1 K-1 . For all nitride based thin films investigated, the thermal conductivity slightly increases with increasing temperature between 200 and 330 K. This rather unusual behavior is based on the high defect density (especially point defects) within the thin films prepared by physical vapor deposition.

  14. Thin-film-based sensitivity enhancement for total internal reflection fluorescence live-cell imaging.

    PubMed

    Kim, Kyujung; Cho, Eun-Jin; Huh, Yong-Min; Kim, Donghyun

    2007-11-01

    We investigated experimentally the evanescent field enhancement based on dielectric thin films in total internal reflection microscopy. The sample employed two layers of Al2O3 and SiO2 deposited on an SF10 glass substrate. Field intensity enhancement measured by fluorescent excitation of microbeads relative to that of a control sample without dielectric films was polarization dependent, determined as 4.2 and 2.4 for TE and TM polarizations, respectively, and was in good agreement with numerical results. The thin-film-based field enhancement was also applied to live-cell imaging of quantum dots, which confirmed the sensitivity enhancement qualitatively.

  15. Infrared Response and Optoelectronic Memory Device Fabrication Based on Epitaxial VO2 Film.

    PubMed

    Fan, Lele; Chen, Yuliang; Liu, Qianghu; Chen, Shi; Zhu, Lei; Meng, Qiangqiang; Wang, Baolin; Zhang, Qinfang; Ren, Hui; Zou, Chongwen

    2016-12-07

    In this work, high-quality VO2 epitaxial films were prepared on high-conductivity n-GaN (0001) crystal substrates via an oxide molecular beam epitaxy method. By fabricating a two-terminal VO2/GaN film device, we observed that the infrared transmittance and resistance of VO2 films could be dynamically controlled by an external bias voltage. Based on the hysteretic switching effect of VO2 in infrared range, an optoelectronic memory device was achieved. This memory device was operated under the "electrical writing-optical reading" mode, which shows promising applications in VO2-based optoelectronic device in the future.

  16. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    1985-12-01

    The first surfce acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposted on the acoustic progagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectric coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in N2 has been demonstrated.

  17. Surface acoustic wave gas sensor based on film conductivity changes

    NASA Astrophysics Data System (ADS)

    Ricco, A. J.; Martin, S. J.; Zipperian, T. E.

    The first surface acoustic wave (SAW) sensor that functions via changes in conductivity of a thin surface film is reported. A lead phthalocyanine (PbPc) thin film is deposited on the acoustic propagation path of a LiNbO3 SAW delay line, which serves as the feedback element of an oscillator circuit. Reaction with strongly oxidizing gases, in particular NO2, increases the conductivity of the PbPc film. Acoustoelectic coupling of the traveling electric potential wave associated with the SAW-to-charge carriers in the PbPc film slows the acoustic wave velocity, altering the oscillation frequency of the circuit. This sensor is about 1000 times more sensitive, in terms of the number of NO2 molecules that can be detected (10 to the 16th molecules/cu cm of PbPc film), than an identical SAW sensor functioning via mass loading would be. Sensitivity to a few ppm of NO2 in Ne was demonstrated.

  18. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  19. Experimental Evaluation of Biodegradable Film Compositions Based on Gelatin with Colchicine.

    PubMed

    Bokeriya, L A; Bokeriya, O L; Sivtsev, V S; Novikova, S P; Salokhedinova, R R; Nikolashina, L N; Samsonova, N N; Gorodkov, A Yu; Serov, R A

    2016-07-01

    Biodegradable film compositions based on natural biopolymer gelatin with immobilized colchicine were prepared and their efficiency in prevention of the adhesion process in the pericardium was evaluated on rabbit model of postoperative pericarditis. The use of gelatin-based biodegradable film compositions significantly reduced the intensity of adhesion formation in the pericardial cavity, while immobilization of anti-inflammatory drug colchicine amplified their anti-adhesion activity.

  20. Thin film thickness measurement of whole field based on spatial carrier frequency interferometry

    NASA Astrophysics Data System (ADS)

    Su, Junhong; Yang, Lihong; Ge, Jinman

    2009-12-01

    The kernel of modern interferometry is to the obtain necessary surface shape and parameter by processing interferogram with a reasonable algorithm. On the basis of the study the basic principle of interferometry by using 2-D FFT arithmetic, a new method to measure the thin film thickness is proposed based on the FFT algorithm. A test sample is placed into the light path in Twyman-Green interferometer, the interference fringes were generated by the reference beam with the tested beam reflected respectively from the film surface and the substrate surface. The interferogram is collected by the image acquisition system. The algorithm processing software is prepared to realize identification of the films edge, regional extension, filtering, unwrapping the wrapped phase etc, the film thickness distribution in whole field can be obtained to realize the thickness measurement of thin film samples automatically. The results indicate that the new method has the advantages of high precision, whole test and non-contact measurement.

  1. Thin film thickness measurement of whole field based on spatial carrier frequency interferometry

    NASA Astrophysics Data System (ADS)

    Su, Junhong; Yang, Lihong; Ge, Jinman

    2010-03-01

    The kernel of modern interferometry is to the obtain necessary surface shape and parameter by processing interferogram with a reasonable algorithm. On the basis of the study the basic principle of interferometry by using 2-D FFT arithmetic, a new method to measure the thin film thickness is proposed based on the FFT algorithm. A test sample is placed into the light path in Twyman-Green interferometer, the interference fringes were generated by the reference beam with the tested beam reflected respectively from the film surface and the substrate surface. The interferogram is collected by the image acquisition system. The algorithm processing software is prepared to realize identification of the films edge, regional extension, filtering, unwrapping the wrapped phase etc, the film thickness distribution in whole field can be obtained to realize the thickness measurement of thin film samples automatically. The results indicate that the new method has the advantages of high precision, whole test and non-contact measurement.

  2. Protein patterning on silicon-based surface using background hydrophobic thin film.

    PubMed

    Lee, Chang-Soo; Lee, Sang-Ho; Park, Sung-Soo; Kim, Yong-Kweon; Kim, Byung-Gee

    2003-04-01

    A new and convenient protein patterning method on silicon-based surface was developed for protein array by spin coating of hydrophobic thin film (CYTOP). Photolithographic lift-off process was used to display two-dimensional patterns of spatially hydrophilic region. The background hydrophobic thin film was used to suppress nonspecific protein binding, and the hydrophilic target protein binding region was chemically modified to introduce aldehyde group after removal of the photoresist layer. The difference in surface energy between the hydrophilic pattern and background hydrophobic film would induce easier covalent binding of proteins onto defined hydrophilic areas having physical and chemical constraints. Below 1 microg/ml of total protein concentration, the CYTOP hydrophobic film effectively suppressed nonspecific binding of the protein. During the process of protein patterning, inherent property of the hydrophobic thin film was not changed judging from static and dynamic contact angle survey. Quantitative analysis of the protein binding was demonstrated by streptavidin-biotin system.

  3. High-energy-density sol-gel thin film based on neat 2-cyanoethyltrimethoxysilane.

    PubMed

    Kim, Yunsang; Kathaperumal, Mohanalingam; Smith, O'Neil L; Pan, Ming-Jen; Cai, Ye; Sandhage, Kenneth H; Perry, Joseph W

    2013-03-13

    Hybrid organic-inorganic sol-gel dielectric thin films from a neat 2-cyanoethyltrimethoxysilane (CNETMS) precursor have been fabricated and their permittivity, dielectric strength, and energy density characterized. CNETMS sol-gel films possess compact, polar cyanoethyl groups and exhibit a relative permittivity of 20 at 1 kHz and breakdown strengths ranging from 650 V/μm to 250 V/μm for film thicknesses of 1.3 to 3.5 μm. Capacitors based on CNETMS films exhibit extractable energy densities of 7 J/cm(3) at 300 V/μm, as determined by charge-discharge and polarization-electric field measurements, as well as an energy extraction efficiency of ~91%. The large extractable energy resulting from the linear dielectric polarization behavior suggests that CNETMS films are promising sol-gel materials for pulsed power applications.

  4. Radiation dose dependent change in physiochemical, mechanical and barrier properties of guar gum based films.

    PubMed

    Saurabh, Chaturbhuj K; Gupta, Sumit; Bahadur, Jitendra; Mazumder, S; Variyar, Prasad S; Sharma, Arun

    2013-11-06

    Mechanical and water vapor barrier properties of biodegradable films prepared from radiation processed guar gum were investigated. Films prepared from GG irradiated up to 500 Gy demonstrated significantly higher tensile strength as compared to non-irradiated control films. This improvement in tensile strength observed was demonstrated to be due to the ordering of polymer structures as confirmed by small angle X-ray scattering analysis. Exposure to doses higher than 500 Gy, however, resulted in a dose dependent decrease in tensile strength. A dose dependent decrease in puncture strength with no significant differences in the percent elongation was also observed at all the doses studied. Water vapor barrier properties of films improved up to 15% due to radiation processing. Radiation processing at lower doses for improving mechanical and barrier properties of guar based packaging films is demonstrated here for the first time.

  5. Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products.

    PubMed

    López-Carballo, G; Hernández-Muñoz, P; Gavara, R; Ocio, M J

    2008-08-15

    The aim of this work was to develop antimicrobial photosensitizer-containing edible films and coatings based on gelatin as the polymer matrix, incorporating sodium magnesium chlorophyllin (E-140) and sodium copper chlorophyllin (E-141). Chlorophyllins were incorporated into the gelatin film-forming solution and the inhibiting effect of the cast films was tested against Staphylococcus aureus and Listeria monocytogenes. The results demonstrated that water soluble sodium magnesium chlorophyllin and water soluble sodium copper chlorophyllin reduced the growth of S. aureus and L. monocytogenes by 5 log and 4 log respectively. Subsequently, the activity of self-standing films and coatings containing E-140 was assessed on cooked frankfurters inoculated with S. aureus and L. monocytogenes. These tests showed that it was possible to reduce microorganism growth in cooked frankfurters inoculated with S. aureus and L. monocytogenes by covering them with sodium magnesium chlorophyllin-gelatin films and coatings.

  6. A glucose biosensor based on Prussian blue/chitosan hybrid film.

    PubMed

    Wang, Xueying; Gu, Haifang; Yin, Fan; Tu, Yifeng

    2009-01-01

    Based on electrodeposition of Prussian blue (PB) and chitosan (CS) directly on gold electrode, a hybrid film of PB/CS has been prepared. PB in this film shows a good stability compared with pure PB film when it worked in neutral and weak alkalescent solution and can act as redox mediator. It provides the potential application of such film in biosensor fabrication. A glucose biosensor was fabricated by electrodepositing glucose oxidase (GOD)/CS film on this PB/CS modified electrode. The optimum experimental conditions of biosensor for the detection of glucose have been studied in detail. Under the optimal conditions, a linear dependence of the catalytic current upon glucose concentration was obtained in the range of 2x10(-6) to 4x10(-4)M with a detection limit of 3.97x10(-7)M. The resulting biosensor could be applied to detect the blood sugar in real samples without any pretreatment.

  7. Mechanical and thermal properties of irradiated films based on Tilapia ( Oreochromis niloticus) proteins

    NASA Astrophysics Data System (ADS)

    Sabato, S. F.; Nakamurakare, N.; Sobral, P. J. A.

    2007-11-01

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia ( Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction.

  8. Atomic Oxygen Sensors Based on Nanograin ZnO Films Prepared by Pulse Laser Deposition

    SciTech Connect

    Wang Yunfei; Chen Xuekang; Li Zhonghua; Zheng Kuohai; Wang Lanxi; Feng Zhanzu; Yang Shengsheng

    2009-01-05

    High-quality nanograin ZnO thin films were deposited on c-plane sapphire (Al{sub 2}O{sub 3}) substrates by pulse laser deposition (PLD). Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to characterize the samples. The structural and morphological properties of ZnO films under different deposition temperature have been investigated before and after atomic oxygen (AO) treatment. XRD has shown that the intensity of the (0 0 2) peak increases and its FWHM value decreases after AO treatment. The AO sensing characteristics of nano ZnO film also has been investigated in a ground-based atomic oxygen simulation facility. The results show that the electrical conductivity of nanograin ZnO films decreases with increasing AO fluence and that the conductivity of the films can be recovered by heating.

  9. Modeling the mechanics of graphene-based polymer composite film measured by the bulge test

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Jun; Sun, You-yi; Li, Dian-sen; Cao, Yang; Wang, Zuo; Ma, Jing; Zhao, Gui-Zhe

    2015-10-01

    Graphene-based polymer composite films have wide-ranging potential applications, such as in sensors, electromagnetic shielding, absorbing materials, corrosion resistance and so on. In addition, the practical applications of graphene-based polymer composite films are closely related to their mechanical properties. However, the mechanical properties of graphene-based polymer composite films are difficult to characterize with tensile tests. In this paper, the bugle test was used to investigate the mechanical properties of graphene-based polymer composite films. The experimental results show that the Young’s modulus of polymer composite films increases non-linearly with an increase in the doping content of graphene, and viscoelastic deformation is induced under cyclic loading conditions. Moreover, in order to describe their mechanical behavior, an ‘Arruda-Boyce’ finite-strain constitutive model (modified BPA model), based on the strain amplification hypothesis, and a traditional ‘Arruda-Boyce’ model was proposed, which incorporated many of the features of previous theories. The numerical treatment of the modified BPA model associated with finite element analysis is also discussed. This new model is shown to be able to predict the experimentally observed mechanical behavior of graphene based polymer composite films measured by the bugle test effectively.

  10. Biosensor for dopamine based on stabilized lipid films with incorporated resorcin[4]arene receptor.

    PubMed

    Nikolelis, Dimitrios P; Theoharis, George

    2003-04-01

    This work reports a technique for the stabilization after storage in air of a lipid film with incorporated resorcin[4]arene receptor based biosensor for dopamine. Microporous filters composed of glass fibers (nominal pore sizes, 0.7 and 1.0 microm) were used as supports for the formation and stabilization of these devices and the lipid film is formed on the filter by polymerization prior its use. Methacrylic acid was the functional monomer, ethylene glycol dimethacrylate was the crosslinker and 2,2'-azobis-(2-methylpropionitrile) was the initiator. The stability of the lipid films by incorporation of a receptor for the preparation of stabilized lipid film biosensor is studied throughout this work. The response towards dopamine of the present stabilized for repetitive uses lipid membrane biosensor composed of dipalmitoyl phosphatidylcholine and dipalmitoyl phosphatidic acid was compared with planar freely suspended bilayer lipid membranes (BLMs). The stabilized lipid membranes provided similar artificial ion gating events as BLMs in the form of transient signals and can function for repetitive uses after storage in air. However, the response of the stabilized lipid films was slower than that of the freely suspended BLMs. This will allow the practical use of the techniques for chemical sensing based on lipid films and commercialization of these devices, because it is now possible to prepare stabilized lipid film based biosensors and store them in the air.

  11. Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film

    SciTech Connect

    Natanasabapathi, Gopishankar; Bisht, Raj Kishor

    2013-12-15

    Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage—110 kV, tube current—280 mA, pixel size—0.5 × 0.5 and 1 mm slice thickness. A treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film.

  12. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method

    SciTech Connect

    Mendez, I.; Hartman, V.; Hudej, R.; Strojnik, A.; Casar, B.

    2013-01-15

    Purpose:A dosimetric system formed by Gafchromic EBT2 radiochromic film and Epson Expression 10000XL flatbed scanner was commissioned for dosimetry. In this paper, several open questions concerning the commissioning of radiochromic films for dosimetry were addressed: (a) is it possible to employ this dosimetric system in reflection mode; (b) if so, can the methods used in transmission mode also be used in reflection mode; (c) is it possible to obtain accurate absolute dose measurements with Gafchromic EBT2 films; (d) which calibration method should be followed; (e) which calibration models should be used; and (f) does three-color channel dosimetry offer a significant improvement over single channel dosimetry. The purpose of this paper is to help clarify these questions. Methods: In this study, films were scanned in reflection mode, the effect of surrounding film was evaluated and the feasibility of EBT2 film dosimetry in reflection mode was studied. EBT2's response homogeneity has been reported to lead to excessive dose uncertainties. To overcome this problem, a new plan-based calibration method was implemented. Plan-based calibration can use every pixel and each of the three color channels of the scanned film to obtain the parameters of the calibration model. A model selection analysis was conducted to select lateral correction and sensitometric curve models. The commonly used calibration with fragments was compared with red-channel plan-based calibration and with three-channel plan-based calibration. Results: No effect of surrounding film was found in this study. The film response inhomogeneity in EBT2 films was found to be important not only due to differences in the fog but also due to differences in sensitivity. The best results for lateral corrections were obtained using absolute corrections independent of the dose. With respect to the sensitometric curves, an empirical polynomial fit of order 4 was found to obtain results equivalent to a gamma

  13. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems. Performance report, April 1, 1989--August 31, 1991

    SciTech Connect

    Fendler, J.H.

    1991-08-31

    Extending the frontiers of colloidal photochemistry and colloidal electrochemistry to solar photochemistry research had been the main objective of this research. More specific objectives of this proposal include the examination of semiconductor-particle-mediated photoelectron transfer and photoelectric effects in different membrane mimetic systems. Emphasis had been placed on developing bilayer lipid membranes and Langmuir-Blodgett films as new membrane-mimetic systems, as well as on the characterization and utilization of these systems.

  14. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems

    SciTech Connect

    Fendler, J.H.

    1991-08-31

    Extending the frontiers of colloidal photochemistry and colloidal electrochemistry to solar photochemistry research had been the main objective of this research. More specific objectives of this proposal include the examination of semiconductor-particle-mediated photoelectron transfer and photoelectric effects in different membrane mimetic systems. Emphasis had been placed on developing bilayer lipid membranes and Langmuir-Blodgett films as new membrane-mimetic systems, as well as on the characterization and utilization of these systems.

  15. Novel liquid crystals-polymers and monomers: As nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Griffin, Anselm C., III

    1987-12-01

    Progress is reviewed on research into the design, synthesis and characterization of, primarily, side chain liquid crystalline polymers for nonlinear optics. Materials described are polyesters and vinyl polymers and copolymers having push-pull pi-electronic nonlinear optically active structures as pendant groups. Chiral derivatives have also been prepared. The nonlinear optically active species employed have been nitroaromatics and pyridine N-oxides. Results of collaborative efforts in further characterization (electrooptic, dielectric, Langmuir-Blodgett films) are described.

  16. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed.

  17. First-principles studies of hydrogen interaction with ultrathin Mg and Mg-based alloy films

    NASA Astrophysics Data System (ADS)

    Yoon, Mina; Weitering, Hanno H.; Zhang, Zhenyu

    2011-01-01

    The search for technologically and economically viable storage solutions for hydrogen fuel would benefit greatly from research strategies that involve systematic property tuning of potential storage materials via atomic-level modification. Here, we use first-principles density-functional theory to investigate theoretically the structural and electronic properties of ultrathin Mg films and Mg-based alloy films and their interaction with atomic hydrogen. Additional delocalized charges are distributed over the Mg films upon alloying them with 11.1% of Al or Na atoms. These extra charges contribute to enhance the hydrogen binding strength to the films. We calculated the chemical potential of hydrogen in Mg films for different dopant species and film thickness, and we included the vibrational degrees of freedom. By comparing the chemical potential with that of free hydrogen gas at finite temperature (T) and pressure (P), we construct a hydrogenation phase diagram and identify the conditions for hydrogen absorption or desorption. The formation enthalpies of metal hydrides are greatly increased in thin films, and in stark contrast to its bulk phase, the hydride state can only be stabilized at high P and T (where the chemical potential of free H2 is very high). Metal doping increases the thermodynamic stabilities of the hydride films and thus significantly helps to reduce the required pressure condition for hydrogen absorption from H2 gas. In particular, with Na alloying, hydrogen can be absorbed and/or desorbed at experimentally accessible T and P conditions.

  18. Flexible fluidic microchips based on thermoformed and locally modified thin polymer films.

    PubMed

    Truckenmüller, R; Giselbrecht, S; van Blitterswijk, C; Dambrowsky, N; Gottwald, E; Mappes, T; Rolletschek, A; Saile, V; Trautmann, C; Weibezahn, K-F; Welle, A

    2008-09-01

    This paper presents a fundamentally new approach for the manufacturing and the possible applications of lab on a chip devices, mainly in the form of disposable fluidic microchips for life sciences applications. The new technology approach is based on a novel microscale thermoforming of thin polymer films as core process. The flexibility not only of the semi-finished but partly also of the finished products in the form of film chips could enable future reel to reel processes in production but also in application. The central so-called 'microthermoforming' process can be surrounded by pairs of associated pre- and postprocesses for micro- and nanopatterned surface and bulk modification or functionalisation of the formed films. This new approach of microscale thermoforming of thin polymer film substrates overlaid with a split local modification of the films is called 'SMART', which stands for 'substrate modification and replication by thermoforming'. In the process, still on the unformed, plane film, the material modifications of the preprocess define the locations where later, then on the spatially formed film, the postprocess generates the final local modifications. So, one can obtain highly resolved modification patterns also on hardly accessible side walls and even behind undercuts. As a first application of the new technology, we present a flexible chip-sized scaffold for three dimensional cell cultivation in the form of a microcontainer array. The spatially warped container walls have been provided with micropores, cell adhesion micropatterns and thin film microelectrodes.

  19. Immobilization of bioactive compounds in Cassia grandis galactomannan-based films: Influence on physicochemical properties.

    PubMed

    Albuquerque, Priscilla B S; Cerqueira, Miguel A; Vicente, António A; Teixeira, José A; Carneiro-da-Cunha, Maria G

    2017-03-01

    Galactomannan extracted from Cassia grandis seeds was used for the production of films containing different concentrations of the bioactive compounds lactoferrin (LF), bioactive peptides (BAPs), and phytosterols. SEM, FTIR, mechanical and thermal properties, colour, moisture content (MC), solubility, water vapour permeability (WVP), and contact angle (CA) were performed evaluating the effect of increasing concentrations of bioactive compounds on the films' physicochemical properties. The immobilization of bioactive compounds leads to films with roughness on their surface, as observed by SEM. The thermal events demonstrated that bioactive compounds avoided the establishment of more hydrogen bonds when compared to galactomannan control film; this behaviour was also confirmed by FTIR. All the studied films had a strong whiteness tendency as well as a yellowish appearance. The addition of Lf reduced MC and solubility values and leads to an increase of WVP and CA values, while the addition of BAPs and phytosterols did not changed the filmś solubility. The mechanical properties were affected by the addition of bioactive compounds, which improved the stiffness of the films. Galactomannan-based films from C. grandis showed to be a promising structure for the immobilization of biomolecules, pointing at a significant number of possible applications in food and pharmaceutical industries.

  20. Resonance surface plasmon spectroscopy by tunable enhanced light transmission through nanostructured gratings and thin films

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Hsun

    band of zinc phthalocyanine are observed. For both p- and s-polarized light, additional waveguided modes are observed and the wavelength from different guided modes are dispersed. Diffraction gratings can provide complicated optical information about SPs. Both front side (air/metal) and back side (metal/substrate) provide SPR signals simultaneously. In chapter 5, we use dispersion images to analyze the complicated optical responses of SPR from an asymmetrical diffraction grating consisting of three layers (air/gold/polycarbonate). We illustrate that clear identification of SPR responses from several diffraction orders at front side and back side can be achieved by the use of dispersion images. Theoretical prediction and experimental results show consistency. We also show that only the behavior of SPs from the front side is impacted by the deposition of Langmuir-Blodgett dielectric films. In chapter 6, we construct a diffraction grating that has a fixed pitch and several amplitudes on its surface by using interference lithography. The purpose of this work is to examine how the amplitude impacts the behavior of transmission peaks. Different amplitudes are successfully fabricated by varying development time in the lithography process. We observed that largest (optimized) enhanced transmission peak shows as the amplitude approach a critical value. Transmission is not maximized below or beyond a critical amplitude. We also found that transmission enhancements are strongly affected by the diffraction efficiencies. A maximum enhancement is observed as diffraction efficiency is largest where amplitude reaches the critical value. The experimental results are then compared to the simulation. (Abstract shortened by UMI.)

  1. Human‐Like Sensing and Reflexes of Graphene‐Based Films

    PubMed Central

    Zhang, Qin; Tan, Lifang; Chen, Yunxu; Zhang, Tao; Wang, Wenjie; Liu, Zhongfan

    2016-01-01

    Humans have numerous senses, wherein vision, hearing, smell, taste, and touch are considered as the five conventionally acknowledged senses. Triggered by light, sound, or other physical stimulations, the sensory organs of human body are excited, leading to the transformation of the afferent energy into neural activity. Also converting other signals into electronical signals, graphene‐based film shows its inherent advantages in responding to the tiny stimulations. In this review, the human‐like senses and reflexes of graphene‐based films are presented. The review starts with the brief discussions about the preparation and optimization of graphene‐based film, as where as its new progress in synthesis method, transfer operation, film‐formation technologies and optimization techniques. Various human‐like senses of graphene‐based film and their recent advancements are then summarized, including light‐sensitive devices, acoustic devices, gas sensors, biomolecules and wearable devices. Similar to the reflex action of humans, graphene‐based film also exhibits reflex when under thermal radiation and light actuation. Finally, the current challenges associated with human‐like applications are discussed to help guide the future research on graphene films. At last, the future opportunities lie in the new applicable human‐like senses and the integration of multiple senses that can raise a revolution in bionic devices. PMID:27981005

  2. Hot film anemometry. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Habercom, G. E., Jr.

    1980-08-01

    The principles of hot film anemometer operation are summarized; wind tunnel and laboratory tests are described; flow field dynamics are discussed involving turbulence, boundary layers, separation, shock waves, and stresses; mathematical models and analysis are presented; computer techniques are outlined; and a number of applications are given. This updated bibliography contains 58 citations, 3 of which are new entries to the previous edition.

  3. Homogeneous bilayer graphene film based flexible transparent conductor.

    PubMed

    Lee, Seunghyun; Lee, Kyunghoon; Liu, Chang-Hua; Zhong, Zhaohui

    2012-01-21

    Graphene is considered as a promising candidate to replace conventional transparent conductors due to its low opacity, high carrier mobility and flexible structure. Multi-layer graphene or stacked single layer graphenes have been investigated in the past but both have their drawbacks. The uniformity of multi-layer graphene is still questionable, and single layer graphene stacks require many transfer processes to achieve sufficiently low sheet resistance. In this work, bilayer graphene film grown with low pressure chemical vapor deposition was used as a transparent conductor for the first time. The technique was demonstrated to be highly efficient in fabricating a conductive and uniform transparent conductor compared to multi-layer or single layer graphene. Four transfers of bilayer graphene yielded a transparent conducting film with a sheet resistance of 180 Ω(□) at a transmittance of 83%. In addition, bilayer graphene films transferred onto the plastic substrate showed remarkable robustness against bending, with sheet resistance change less than 15% at 2.14% strain, a 20-fold improvement over commercial indium oxide films.

  4. Memory switches based on metal oxide thin films

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni (Inventor); Thakoor, Anilkumar P. (Inventor); Lambe, John J. (Inventor)

    1990-01-01

    MnO.sub.2-x thin films (12) exhibit irreversible memory switching (28) with an OFF/ON resistance ratio of at least about 10.sup.3 and the tailorability of ON state (20) resistance. Such films are potentially extremely useful as a connection element in a variety of microelectronic circuits and arrays (24). Such films provide a pre-tailored, finite, non-volatile resistive element at a desired place in an electric circuit, which can be electrically turned OFF (22) or disconnected as desired, by application of an electrical pulse. Microswitch structures (10) constitute the thin film element, contacted by a pair of separate electrodes (16a, 16b) and have a finite, pre-selected ON resistance which is ideally suited, for example, as a programmable binary synaptic connection for electronic implementation of neural network architectures. The MnO.sub.2-x microswitch is non-volatile, patternable, insensitive to ultraviolet light, and adherent to a variety of insulating substrates (14), such as glass and silicon dioxide-coated silicon substrates.

  5. Intense pulsed light treatment of cadmium telluride nanoparticle-based thin films.

    PubMed

    Dharmadasa, Ruvini; Lavery, Brandon; Dharmadasa, I M; Druffel, Thad

    2014-04-09

    The search for low-cost growth techniques and processing methods for semiconductor thin films continues to be a growing area of research; particularly in photovoltaics. In this study, electrochemical deposition was used to grow CdTe nanoparticulate based thin films on conducting glass substrates. After material characterization, the films were thermally sintered using a rapid thermal annealing technique called intense pulsed light (IPL). IPL is an ultrafast technique which can reduce thermal processing times down to a few minutes, thereby cutting production times and increasing throughput. The pulses of light create localized heating lasting less than 1 ms, allowing films to be processed under atmospheric conditions, avoiding the need for inert or vacuum environments. For the first time, we report the use of IPL treatment on CdTe thin films. X-ray diffraction (XRD), optical absorption spectroscopy (UV-Vis), scanning electron microscopy (SEM) and room temperature photoluminescence (PL) were used to study the effects of the IPL processing parameters on the CdTe films. The results found that optimum recrystallization and a decrease in defects occurred when pulses of light with an energy density of 21.6 J cm(-2) were applied. SEM images also show a unique feature of IPL treatment: the formation of a continuous melted layer of CdTe, removing holes and voids from a nanoparticle-based thin film.

  6. Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Xie, Guangzhong; Su, Yuanjie; Hongfei, Du; Ye, Zongbiao; Jiang, Yadong

    2016-02-01

    In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH3) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS2) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS2 composite film, P3HT/MoS2 bilayer film and MoS2/P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS2. Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π-π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors.

  7. Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors.

    PubMed

    Xie, Tao; Xie, Guangzhong; Su, Yuanjie; Hongfei, Du; Ye, Zongbiao; Jiang, Yadong

    2016-02-12

    In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH3) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS2) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS2 composite film, P3HT/MoS2 bilayer film and MoS2/P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS2. Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π-π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors.

  8. Biodegradable Zein-Based Blend Films: Structural, Mechanical and Barrier Properties.

    PubMed

    Serna, Carolina Pena; Filho, José Francisco Lopes

    2015-09-01

    The effect of adding a hydrocolloid on the structural, mechanical and barrier properties of zein-based blend films is evaluated. Zein-oleic acid blend film with added xanthan gum (Z-OA-XG) showed higher water solubility (13.09%) and opacity (8.49 AU/mm) than zein-oleic acid (Z-OA) film (10.80% and 5.19 AU/mm, respectively). Furthermore, Z-OA film had greater flexibility with lower Young's Modulus (YM=5.02 MPa) and higher elongation at break (η=10.62%); nonetheless, it was less resistant to tension (tensile strength σ=8.5 MPa) than Z-OA-XG film, which showed YM, η and σ of 6.38 MPa, 6.66% and 10.485 MPa, respectively. Both films had glossy and homogeneous structure with comparable water vapour and oxygen barrier properties around 4.39·10(-11) and 1.82·10(-13) g/(Pa·s·m), respectively. Based on that, xanthan gum structure influenced mainly mechanical and light barrier properties of zein-oleic acid blend films.

  9. Zein-based films and their usage for controlled delivery: Origin, classes and current landscape.

    PubMed

    Zhang, Yong; Cui, Lili; Che, Xiaoxia; Zhang, Heng; Shi, Nianqiu; Li, Chunlei; Chen, Yan; Kong, Wei

    2015-05-28

    Zein is a class of alcohol-soluble prolamine proteins present in maize endosperm, which was approved as a generally recognized as safe (GRAS) excipient in 1985 by the United States Food and Drug Administration (US-FDA) for film coating of pharmaceuticals, e.g., tablets. Despite its long-term application in tablet production, effects of zein coating on tablet properties are still not fully understood. Moreover, many studies have also been conducted to illustrate its potential as an active ingredient of direct compressed tablets and film-based delivery carriers. In addition, the use of zein as a functional film coating material for new biomedical applications was also widely investigated in recent reports, which involved medical devices, nanoparticles, quantum dots and nanofibers. In this review, the present status of zein in the form of a thin film and uniform layer for use as a biomedical material is discussed. In addition, studies related to the behaviors and properties of zein films are also summarized and analyzed based on published works to gain mechanistic insights into the relationship between zein film and various improved profiles. This review will benefit future prospects of the use of zein film in drug delivery and biomedical applications.

  10. Thin film transistor based on TiOx prepared by DC magnetron sputtering.

    PubMed

    Chung, Sung Mook; Shin, Jae-Heon; Hong, Chan-Hwa; Cheong, Woo-Seok

    2012-07-01

    This paper reports on the thin film transistor (TFT) based on TiOx prepared by direct current (DC) magnetron sputtering for the application of n-type channel transparent TFTs. A ceramic TiOx target was prepared for the sputtering of the TiO2 films. The structural, optical, and electrical properties of the TiO2 films were investigated after their heat treatment. It is observed from XRD measurement that the TiO2 films show anatase structure having (101), (004), and (105) planes after heat treatment. The anatase-structure TiO2 films show a band-gap energy of approximately 3.20 eV and a transmittance of approximately 91% (@550 nm). The bottom-gate TFTs fabricated with the TiO2 film as an n-type channel layer. These devices exhibit the on-off ratio, the field-effect mobility, and the threshold voltage of about 10(4), 0.002 cm2/Vs, and 6 V, respectively. These results indicate the possibility of applying TiO2 films depositied by DC magnetron sputtering to TiO2-based opto-electronic devices.

  11. High melt strength, tear resistant blown film based on poly(lactic acid)

    NASA Astrophysics Data System (ADS)

    Edmonds, Neil R.; Plimmer, Peter N.; Tanner, Chris

    2015-05-01

    A major problem associated with the commercial manufacture of thin films from PLA is inferior processing characteristics on blown film lines compared to low density polyethylene. PLA has poor melt strength (leading to bubble instability) and develops a permanent crease in the flattened film as it exits the tower of the film line. In addition, the thin film product has poor tear strength and an unacceptable `noise' level when converted into flexible packaging. Furthermore, fabricated articles based on PLA are known to show an unattractive tendency toward dimensional instability. This behaviour is associated with `cold crystallization', a phenomenon which also causes exudation of any plasticizer added for improving flexibility. Blow moulded articles based on PLA also exhibit dimensional sensitivity above 60°C. All of these issues have been overcome by the technology described in this paper. This has been accomplished without loss of the valuable compostability characteristic of PLA; this was confirmed by evaluation of film in a commercial composting operation. These results have been achieved through novel reactive compounding technology which: (a) Creates a PLA-rich structure containing long chain crosslinks, (b) generates a low glass transition temperature phase covalently bonded to the PLA structure, and (c) provides a material which performs like LDPE in a blown film manufacturing operation. The technology developed is covered by NZ Patent 580231 (3). The patent is held by UniServices Ltd, The University of Auckland, New Zealand.

  12. Electroplated Fe-Co-Ni films prepared from deep-eutectic-solvent-based plating baths

    NASA Astrophysics Data System (ADS)

    Yanai, Takeshi; Shiraishi, Kotaro; Akiyoshi, Toshiki; Azuma, Keita; Watanabe, Yoshimasa; Ohgai, Takeshi; Morimura, Takao; Nakano, Masaki; Fukunaga, Hirotoshi

    2016-05-01

    We fabricated soft magnetic films from DES-based plating baths, and investigated magnetic properties of the plated films. The plating baths were obtained by stirring the mixture of choline chloride, ethylene glycol, FeCl2 ṡ 4H2O, NiCl2 ṡ 6H2O and CoCl2 ṡ 6H2O. The composition of the electroplated film depended on the amount of the reagent in the plating bath, and we consequently obtained the films with various composition. The current efficiency of the plating process shows high values (> 88 %) in the wide composition range. The soft magnetic films with low coercivity were obtained at the Fe compositions of ≈ 30 at.% and > 80 at.%, and we found that low coercivity could be realized by the control of the film composition. We also found that the Fe-rich films prepared from DES-based plating bath have some advantages as a soft magnetic phase for a nanocomposite magnet due to their high saturation magnetization and very fine crystal structure.

  13. Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Guotao; Zhang, Qiuping; Xie, Guangzhong; Su, Yuanjie; Zhao, Kang; Du, Hongfei; Jiang, Yadong

    2016-11-01

    Polyaniline/zinc oxide (PANI/ZnO) hybrid film based sensors have been developed for ammonia (NH3) detection at room temperature (RT). Results shows that hybrid film sensor exhibits a p-type semiconductor behavior and larger response than that of pure PANI film sensor. In the system, ZnO nanorod arrays can not only create nanoscale gap for gas diffusion but also provide abundant adsorption sites, thus leading to enhancement of response. Besides, hydrothermal time is proportional to the length of nanorods, Longer nanorods will provide efficient gap for gas diffusion, which leads to better sensitivity. This work offers a promising way to optimize sensor performance.

  14. Correcting scan-to-scan response variability for a radiochromic film-based reference dosimetry system

    SciTech Connect

    Lewis, David; Devic, Slobodan

    2015-10-15

    Purpose: In radiochromic film dosimetry systems, measurements are usually obtained from film images acquired on a CCD-based flatbed scanner. The authors investigated factors affecting scan-to-scan response variability leading to increased dose measurement uncertainty. Methods: The authors used flatbed document scanners to repetitively scan EBT3 radiochromic films exposed to doses 0–1000 cGy, together with three neutral density filters and three blue optical filters. Scanning was performed under two conditions: scanner lid closed and scanner lid opened/closed between scans. The authors also placed a scanner in a cold room at 9 °C and later in a room at 22 °C and scanned EBT3 films to explore temperature effects. Finally, the authors investigated the effect of altering the distance between the film and the scanner’s light source. Results: Using a measurement protocol to isolate the contribution of the CCD and electronic circuitry of the scanners, the authors found that the standard deviation of response measurements for the EBT3 film model was about 0.17% for one scanner and 0.09% for the second. When the lid of the first scanner was opened and closed between scans, the average scan-to-scan difference of responses increased from 0.12% to 0.27%. Increasing the sample temperature during scanning changed the RGB response values by about −0.17, −0.14, and −0.05%/°C, respectively. Reducing the film-to-light source distance increased the RBG response values about 1.1, 1.3, and 1.4%/mm, respectively. The authors observed that films and film samples were often not flat with some areas up to 8 mm away from the scanner’s glass window. Conclusions: In the absence of measures to deal with the response irregularities, each factor the authors investigated could lead to dose uncertainty >2%. Those factors related to the film-to-light source distance could be particularly impactful since the authors observed many instances where the curl of film samples had the

  15. Development and characterization of an edible composite film based on chitosan and virgin coconut oil with improved moisture sorption properties.

    PubMed

    Binsi, P K; Ravishankar, C N; Srinivasa Gopal, T K

    2013-04-01

    An edible composite film was prepared from an emulsion system based on chitosan and virgin coconut oil (VCO). The effect of incorporation of VCO was evaluated at various concentrations and the optimum concentration was chosen based on resultant changes in the properties of the film. Addition of VCO in film forming solution resulted in increase in film thickness and marginal reduction in film transparency. Compatibility of VCO with chitosan was better at lower concentration of VCO as indicated by the microstructure of composite film in scanning electron micrographs. Phase separation was evident at higher level of oil incorporation and the optimal oil/chitosan ratio was determined to be at 0.5 to 1 mL/g chitosan. Furthermore, chemical interaction took place between VCO and chitosan as revealed by Fourier transform infrared spectroscopy data. Even though control chitosan films exhibited superior gas barrier properties, composite film with optimum VCO concentration revealed better mechanical and moisture sorption properties.

  16. The mechanisms of plant stress mitigation by kaolin-based particle films and its applications in horticultural and agricultural crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kaolin-based particle films have utility in reducing insect, heat, light, and uv stress in plants due to the reflective nature of the particles. Particle films with a residue density of 1 to 3 g/ square meter have been evaluated in a range of crops and agricultural environments. The particle film ...

  17. Synthesis and Electrochemical Behavior of Ceria Based Bi-Layer Films by Dip Coating Technique.

    PubMed

    Chinnu, M Karl; Anand, K Vijai; Kumar, R Mohan; Alagesan, T; Jayavel, R

    2015-01-01

    Ceria based bi-layer films of CeO2-CdS and CeO2-TiO2 were prepared by sol-gel based hydrothermal route combined with dip-coating. The synthesized samples were subjected to various characterizations such as X-ray diffraction, Field emission scanning electron microscopy, thermo-gravimetric analysis, UV-Vis absorption and photoluminescence studies. The prepared materials were dissolved in naffion solution and disposed as a thin film on glassy carbon electrode by dip coating technique. Electrochemical Li+ intercalation/deintercalation was performed by cyclic voltammetry and these results indicate that the CeO2/LiClO4 system is electrochemically reversible. The total intercalation/deintercalation of the CeO2 film, CeO2-CdS and CeO2-TiO2 bi-layer films was determined by cyclic voltammetry, which showed increased charge storage capacity.

  18. Predicting the optoelectronic properties of nanowire films based on control of length polydispersity

    PubMed Central

    Large, Matthew J.; Burn, Jake; King, Alice A.; Ogilvie, Sean P.; Jurewicz, Izabela; Dalton, Alan B.

    2016-01-01

    We demonstrate that the optoelectronic properties of percolating thin films of silver nanowires (AgNWs) are predominantly dependent upon the length distribution of the constituent AgNWs. A generalized expression is derived to describe the dependence of both sheet resistance and optical transmission on this distribution. We experimentally validate the relationship using ultrasonication to controllably vary the length distribution. These results have major implications where nanowire-based films are a desirable material for transparent conductor applications; in particular when application-specific performance criteria must be met. It is of particular interest to have a simple method to generalize the properties of bulk films from an understanding of the base material, as this will speed up the optimisation process. It is anticipated that these results may aid in the adoption of nanowire films in industry, for applications such as touch sensors or photovoltaic electrode structures. PMID:27158132

  19. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    DOEpatents

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  20. Investigation of frequency response of microwave active ring resonator based on ferrite film

    NASA Astrophysics Data System (ADS)

    Martynov, M. I.; Nikitin, A. A.; Ustinov, A. B.; Kalinikos, B. A.

    2016-11-01

    The complex transmission coefficient of active ring resonators based on ferrite-film delay lines was investigated both theoretically and experimentally. Influence of the parameters of the delay line on the transmission coefficients was investigated. It was shown that the resonant frequencies of the ring depend on the ferrite film thickness and the distance between spin-wave antennae. These dependences give possibility to control the shape of the transmission coefficient that in combination with magnetic tuning provide flexibility for microwave applications.

  1. Study of oxygen scavenging PET-based films activated by water

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  2. Brain-based decoding of mentally imagined film clips and sounds reveals experience-based information patterns in film professionals.

    PubMed

    de Borst, Aline W; Valente, Giancarlo; Jääskeläinen, Iiro P; Tikka, Pia

    2016-04-01

    In the perceptual domain, it has been shown that the human brain is strongly shaped through experience, leading to expertise in highly-skilled professionals. What has remained unclear is whether specialization also shapes brain networks underlying mental imagery. In our fMRI study, we aimed to uncover modality-specific mental imagery specialization of film experts. Using multi-voxel pattern analysis we decoded from brain activity of professional cinematographers and sound designers whether they were imagining sounds or images of particular film clips. In each expert group distinct multi-voxel patterns, specific for the modality of their expertise, were found during classification of imagery modality. These patterns were mainly localized in the occipito-temporal and parietal cortex for cinematographers and in the auditory cortex for sound designers. We also found generalized patterns across perception and imagery that were distinct for the two expert groups: they involved frontal cortex for the cinematographers and temporal cortex for the sound designers. Notably, the mental representations of film clips and sounds of cinematographers contained information that went beyond modality-specificity. We were able to successfully decode the implicit presence of film genre from brain activity during mental imagery in cinematographers. The results extend existing neuroimaging literature on expertise into the domain of mental imagery and show that experience in visual versus auditory imagery can alter the representation of information in modality-specific association cortices.

  3. Ammonia gas sensor based on electrosynthesized polypyrrole films.

    PubMed

    Carquigny, Stéphanie; Sanchez, Jean-Baptiste; Berger, Franck; Lakard, Boris; Lallemand, Fabrice

    2009-04-15

    In this work, design and fabrication of micro-gas-sensors, polymerization and deposition of poly(pyrrole) thin films as sensitive layer for the micro-gas-sensors by electrochemical processing, and characterization of the polymer films by FTIR, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), are reported. The change in conductance of thin polymer layers is used as a sensor signal. The behaviours, including sensitivity, reproducibility and reversibility, to various ammonia gas concentrations ranging from 8 ppm to 1000 ppm are investigated. The influence of the temperature on the electrical response of the sensors is also studied. The experimental results show that these ammonia gas sensors are efficient since they are sensitive to ammonia, reversible and reproducible at room temperature.

  4. An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution.

    PubMed

    Chen, Mingxing; Wu, Yizhen; Han, Yongzhen; Lin, Xiaohuan; Sun, Junliang; Zhang, Wei; Cao, Rui

    2015-10-07

    An ultrathin Fe-based film was prepared by electrodeposition from an Fe(II) solution through a fast and simple cyclic voltammetry method. The extremely low Fe loading of 12.3 nmol cm(-2) on indium tin oxide electrodes is crucial for high atom efficiency and transparence of the resulted film. This Fe-based film was shown to be a very efficient electrocatalyst for oxygen evolution from neutral aqueous solution with remarkable activity and stability. In a 34 h controlled potential electrolysis at 1.45 V (vs NHE) and pH 7.0, impressive turnover number of 5.2 × 10(4) and turnover frequency of 1528 h(-1) were obtained. To the best of our knowledge, these values represent one of the highest among electrodeposited catalyst films for water oxidation under comparable conditions. The morphology and the composition of the catalyst film was determined by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy, which all confirmed the deposition of Fe-based materials with Fe(III) oxidation state on the electrode. This study is significant because of the use of iron, the fast and simple cyclic voltammetry electrodeposition, the extremely low catalyst loading and thus the transparency of the catalyst film, the remarkable activity and stability, and the oxygen evolution in neutral aqueous media.

  5. Nucleophilic stabilization of water-based reactive ink for titania-based thin film inkjet printing

    NASA Astrophysics Data System (ADS)

    Gadea, C.; Marani, D.; Esposito, V.

    2017-02-01

    Drop on demand deposition (DoD) of titanium oxide thin films (<500 nm) is performed via a novel titanium-alkoxide-based solution that is tailored as a reactive ink for inkjet printing. The ink is developed as water-based solution by a combined use of titanium isopropoxide and n-methyldiethanolamine (MDEA) used as nucleophilic ligand. The function of the ligand is to control the fast hydrolysis/condensation reactions in water for the metal alkoxide before deposition, leading to formation of the TiO2 only after the jet process. The evolution of the titanium-ligand interactions at increasing amount of MDEA is here elucidated in terms of long term stability. The ink printability parameter (Z) is optimized, resulting in a reactive solution with printability, Z, >1, and chemical stability up to 600 h. Thin titanium oxide films (<500 nm) are proved on different substrates. Pure anatase phase is obtained after annealing at low temperature (ca. 400 °C).

  6. Peel-Off Characteristics at Interface between Base Film and Dielectrics with Spin-Coating Film Transfer and Hot-Pressing Technology

    NASA Astrophysics Data System (ADS)

    Kamei, Toshikazu; Sato, Norio; Kudou, Kazuhisa; Kawagoe, Masafumi; Adachi, Hideki; Machida, Katsuyuki

    2007-10-01

    This paper describes the peel-off characteristics of spin-coating film transfer and hot-pressing (STP) technology. STP technology is a new film-formation technology that enables the transfer of a dielectric on a base film onto a wafer by hot pressing. The base film is then peeled off at the interface between the base film and the dielectric. It is examined to control the peel force by the surface treatment of the base film of a fluoropolymer and STP process conditions. An apparatus for measuring peel force during peel off is also devised. The measurement results clarified that the magnitude of the normalized peel force ranges from about 2 to 3 N/cm for a 1-μm-thick dielectric, depending on the surface treatment and STP process conditions. The X-ray photoelectron spectroscopy spectrum of the surface of the base film after peel off indicated that peel off was carried out at the interface. Therefore, it is confirmed that STP technology enables the control of the characteristics of peel off.

  7. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  8. Composite film polarizer based on the oriented assembly of electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Hu, Zhongliang; Ma, Zhijun; Peng, Mingying; He, Xin; Zhang, Hang; Li, Yang; Qiu, Jianrong

    2016-04-01

    Polarizers are widely applied in antiglare glasses, planner displays, photography filters and optical communications, etc. In this investigation, we propose a new strategy for the preparation of a flexible film polarizer based on the electrospinning technique. An aligned assembly of polyvinyl acetate (PVA) nanofibers was electrospun and collected by a fast-rotating drum, then soaked in polymethyl methacrylate (PMMA) solution and dried thoroughly to obtain a transparent PVA-PMMA composite film polarizer. The morphology, structure and optical performance of the PVA nanofibers and the film polarizers were characterized with a scanning electron microscope, UV-vis-IR spectrometer and polarized Raman spectra, etc. The PVA-PMMA film polarizer demonstrated efficient polarizing activity toward visible and near-infrared light, while keeping fair transparency in the range of 400-1400 nm. Due to the protection from the hydrophobic PMMA matrix, the PVA-PMMA film polarizers show high moisture resistance, making it applicable in a humid environment. Considering the scalability and versatility of the strategy employed here, the PVA-PMMA film polarizer prepared could replace the conventional film polarizers in a wide range of applications.

  9. Steam-sterilizable, fluorescence lifetime-based sensing film for dissolved carbon dioxide.

    PubMed

    Chang, Q; Randers-Eichhorn, L; Lakowicz, J R; Rao, G

    1998-01-01

    An autoclavable sensing film was developed for monitoring dissolved CO2. The sensing film, based on fluorescence resonance energy transfer (FRET), consisted of a fluorescent donor, an acceptor, and a quaternary ammonium hydroxide, which were doped in a two-component silicone film. As no aqueous solution was used in the sensing film matrix, the sensing film was unaffected by osmotic pressure. Fluorescence lifetime was selected as the sensing parameter, and measured in frequency domain using phase fluorometry. Upon exposure to 20% CO2-saturated water, a 43 degrees increase in phase angle was observed at 100 MHz. The process was fully reversible when the sensing film was exposed to nitrogen-saturated water. The estimated response and recovery times for 90% signal change were 1 min (for a step change from 0 to 6.7% CO2-saturated water) and 1.5 min (for a step change from 6.7 to 3.3% CO2-saturated water). When used for on-line monitoring of dissolved CO2 produced by a culture of Escherichia coli, the sensing film showed a similar trend to that obtained from off-line measurements using a wet chemistry analyzer.

  10. Composite film polarizer based on the oriented assembly of electrospun nanofibers.

    PubMed

    Hu, Zhongliang; Ma, Zhijun; Peng, Mingying; He, Xin; Zhang, Hang; Li, Yang; Qiu, Jianrong

    2016-04-01

    Polarizers are widely applied in antiglare glasses, planner displays, photography filters and optical communications, etc. In this investigation, we propose a new strategy for the preparation of a flexible film polarizer based on the electrospinning technique. An aligned assembly of polyvinyl acetate (PVA) nanofibers was electrospun and collected by a fast-rotating drum, then soaked in polymethyl methacrylate (PMMA) solution and dried thoroughly to obtain a transparent PVA-PMMA composite film polarizer. The morphology, structure and optical performance of the PVA nanofibers and the film polarizers were characterized with a scanning electron microscope, UV-vis-IR spectrometer and polarized Raman spectra, etc. The PVA-PMMA film polarizer demonstrated efficient polarizing activity toward visible and near-infrared light, while keeping fair transparency in the range of 400-1400 nm. Due to the protection from the hydrophobic PMMA matrix, the PVA-PMMA film polarizers show high moisture resistance, making it applicable in a humid environment. Considering the scalability and versatility of the strategy employed here, the PVA-PMMA film polarizer prepared could replace the conventional film polarizers in a wide range of applications.

  11. Polyamines as new cationic plasticizers for pectin-based edible films.

    PubMed

    Esposito, Marilena; Di Pierro, Prospero; Regalado-Gonzales, Carlos; Mariniello, Loredana; Giosafatto, C Valeria L; Porta, Raffaele

    2016-11-20

    Zeta potential and particle size were determined on pectin aqueous solutions as a function of pH and the effects of calcium ions, putrescine and spermidine on pectin film forming solutions and derived films were studied. Ca(2+) and polyamines were found to differently influence pectin zeta potential as well as thickness and mechanical and barrier properties of pectin films prepared at pH 7.5 either in the presence or absence of the plasticizer glycerol. In particular, Ca(2+) was found to increase film tensile strength and elongation at break only in the presence of glycerol and did not affect film thickness and permeability to both water vapor and CO2. Conversely, increasing polyamine concentrations progressively reduced film tensile strength and markedly enhanced film thickness, elongation at break and permeability to water vapor and CO2, both in the presence and absence of glycerol. Our findings indicate that polyamines give rise to a structural organization of the heteropolysaccharide different from that determined by calcium ions, previously described as "egg box" model, and suggest their possible application as plasticizers to produce pectin-based "bioplastics" with different features.

  12. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation.

    PubMed

    Borreani, Giorgio; Tabacco, Ernesto

    2015-01-01

    The research was aimed at studying whether the polyethylene (PE) film currently used to cover maize silage could be replaced with bio-based biodegradable films, and at determining the effects on the fermentative and microbiological quality of the resulting silages in laboratory silo conditions. Biodegradable plastic film made in 2 different formulations, MB1 and MB2, was compared with a conventional 120-μm-thick PE film. A whole maize crop was chopped; ensiled in MB1, MB2, and PE plastic bags, 12.5kg of fresh weight per bag; and opened after 170d of conservation. At silo opening, the microbial and fermentative quality of the silage was analyzed in the uppermost layer (0 to 50mm from the surface) and in the whole mass of the silo. All the silages were well fermented with little differences in fermentative quality between the treatments, although differences in the mold count and aerobic stability were observed in trial 1 for the MB1 silage. These results have shown the possibility of successfully developing a biodegradable cover for silage for up to 6mo after ensiling. The MB2 film allowed a good silage quality to be obtained even in the uppermost part of the silage close to the plastic film up to 170d of conservation, with similar results to those obtained with the PE film. The promising results of this experiment indicate that the development of new degradable materials to cover silage till 6mo after ensiling could be possible.

  13. Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial.

    PubMed

    Chen, Meng; Fan, Fei; Shen, Si; Wang, Xianghui; Chang, Shengjiang

    2016-08-10

    The film thickness sensing based on metamaterial is investigated in the terahertz (THz) region. We fabricated the metamaterial sensor, and demonstrated its resonance by using the THz time-domain spectroscopy system. The results show that the resonant dip redshifts as the film thickness increases, which achieves reliable film sensing in the THz band. Its sensitivity is larger than 9.4 GHz/μm with a film thinner than λ/90. Meanwhile, the sensing mechanism is revealed by the simulation of near-field resonance distribution, which shows that the resonant intensity is stronger when the field is closer to the interface between the metamaterial surface and polyvinyl alcohol film. Therefore, the nonlinear type of the sensing sensitivity in our experiment can be well explained, and a higher sensitive sensing can be obtained when the film thickness is smaller. This simple and flexible method can realize the ultrathin film sensing in the THz region, and has application potential in the real-time monitoring of sample quality.

  14. Development and Evaluation of Buccal Films Based on Chitosan for the Potential Treatment of Oral Candidiasis.

    PubMed

    Tejada, G; Barrera, M G; Piccirilli, G N; Sortino, M; Frattini, A; Salomón, C J; Lamas, María C; Leonardi, Darío

    2017-01-20

    In this work, chitosan films were prepared by a casting/solvent evaporation methodology using pectin or hydroxypropylmethyl cellulose to form polymeric matrices. Miconazole nitrate, as a model drug, was loaded into such formulations. These polymeric films were characterized in terms of mechanical properties, adhesiveness, and swelling as well as drug release. Besides, the morphology of raw materials and films was investigated by scanning electron microscopy; interactions between polymers were analyzed by infrared spectroscopy and drug crystallinity studied by differential scanning calorimetry and X-ray diffraction. In addition, antifungal activity against cultures of the five most important fungal opportunistic pathogens belonging to Candida genus was investigated. Chitosan:hydroxypropylmethyl cellulose films were found to be the most appropriate formulations in terms of folding endurance, mechanical properties, and adhesiveness. Also, an improvement in the dissolution rate of miconazole nitrate from the films up to 90% compared to the non-loaded drug was observed. The in vitro antifungal activity showed a significant activity of the model drug when it is loaded into chitosan films. These findings suggest that chitosan-based films are a promising approach to deliver miconazole nitrate for the treatment of candidiasis.

  15. II-IV-V Based Thin Film Tandem Photovoltaic Cell

    SciTech Connect

    Newman, Nathan; van Schilfgaarde, Mark

    2012-10-04

    [Through a combination of theory and experiment that, absent unknown mitigating factors, a tandem cell whose (wide-gap. 1.8 eV) top layer is made of ZnSnP2 and whose (narrow gap, 1.1 eV) bottom layer consisting of ZnGeAs2 are near-ideal materials for a tandem cell. Not only are there gaps optimally adjusted to the solar spectrum, but the two compounds are lattice-matched, and their energy band structure and optical absorption are also near-ideal (they closely resemble that of GaAs). Our first major challenge is to establish that high-quality II-IV-V thin films can be synthesized. We have begun growing and characterizing films of ZnGeAs2 and ZnSnP2, initially grown on Ge substrates (the lattice constant of Ge matches these compounds) by pulsed laser ablation and sputtering. In tandem are theoretical calculations to guide the experiments. The goal is to develop methods that can be used to produce a pair of lattice-matched thin films that will be useful in tandem cells.

  16. Mimetic marine antifouling films based on fluorine-containing polymethacrylates

    NASA Astrophysics Data System (ADS)

    Sun, Qianhui; Li, Hongqi; Xian, Chunying; Yang, Yihang; Song, Yanxi; Cong, Peihong

    2015-07-01

    Novel methacrylate copolymers containing catechol and trifluoromethyl pendant side groups were synthesized by free radical polymerization of N-(3,4-dihydroxyphenyl)ethyl methacrylamide (DMA) and 2,2,2-trifluoroethyl methacrylate (TFME) with α,α‧-azobisisobutyronitrile (AIBN) as initiator. A series of copolymers with different content of TFME ranging from 3% to 95% were obtained by changing the molar ratio of DMA to TFME from 25:1 to 1:25. Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used to characterize the copolymers, which displayed a certain degree of hardness and outstanding thermostability reflected from their high glass transition temperatures. The copolymers could adhere to surfaces of glass, plastics and metals due to introduction of catechol groups as multivalent hydrogen bonding anchors. Water contact angle on the polymer films was up to 117.4°. Chemicals resistance test manifested that the polymer films possessed excellent resistance to water, salt, acid and alkali. Moreover, the polymer films displayed fair antifouling property and might be used as promising environmentally friendly marine antifouling coatings.

  17. Millisecond Photoinduced Absorption Studies of Pyridine-Based Copolymer Films

    NASA Astrophysics Data System (ADS)

    Coplin, K. A.; Clark, D. T.; Jessen, S. W.; Epstein, A. J.; Fu, D.-K.; Swager, T. M.

    1997-03-01

    We present a study of the photoexcited states in copolymers of poly(p-pyridyl vinylene) and poly(p-phenylene vinylene) (PPyVPR_iV) with sidegroups R_1=C_12H_25 or R_2=COOC_12H_25 attached at the 2 and 5 positions of the phenyl ring. Previous studies discussed the millisecond photoinduced absorption (ms PA) characteristics of PPyVPR_iV powders(S.W. Jessen et al.), Synth. Met., in press.. In particular, triplet-triplet (T-T) transitions were observed at 1.6 eV for both materials. Additional polaron signatures were also observed in both the electronic ( ~ 0.85 eV) and infrared (1100 - 1600 cm-1) regions of the photoinduced spectrum. We compare these powder results with ms PA features for film morphologies of both the copolymers. We observe a weaker ( ~ 10X) T-T^* transition for copolymer films cast from xylene solution indicating a reduction in triplet exciton production as compared to powder samples. These results are contrasted with the behavior we reported(S.W. Jessen et al.), to be published. earlier for film and powder samples of the parent polymer poly(p-pyridyl vinylene).

  18. Erasable thin-film optical diode based on a photoresponsive liquid crystal polymer

    NASA Astrophysics Data System (ADS)

    Zhang, Xinping; Zhang, Jian; Sun, Yujian; Yang, Huai; Yu, Haifeng

    2014-03-01

    We report a thin-film optical diode written into thin films of a liquid-crystalline polymer (LCP), which is based on the photoinduced LC-to-isotropic phase transition of LCPs. The interference pattern between a collimated and a focused UV laser beam is imprinted as chirped volume-phase gratings in photoresponsive LCP films and no further processing steps like development or liftoff are required for the fabrication. The resultant thin-film device not only possesses the fundamental functions of an optical lens for laser beam focusing, but also shows diode effects with the focusing/defocusing function dependent on the direction of light incidence and orientation of the device. Furthermore, this photonic thin-film lens exhibits a spatially tunable spectroscopic response, revealing a unique physics of secondary excitations of resonance modes of the single-layer LCP waveguide grating structures. This reveals the mechanisms for the focusing/defocusing of laser beams by chirped grating structures. Erasability and reconstructibility of the photoresponsive LCPs guarantee rewritability of the thin-film diode lens.We report a thin-film optical diode written into thin films of a liquid-crystalline polymer (LCP), which is based on the photoinduced LC-to-isotropic phase transition of LCPs. The interference pattern between a collimated and a focused UV laser beam is imprinted as chirped volume-phase gratings in photoresponsive LCP films and no further processing steps like development or liftoff are required for the fabrication. The resultant thin-film device not only possesses the fundamental functions of an optical lens for laser beam focusing, but also shows diode effects with the focusing/defocusing function dependent on the direction of light incidence and orientation of the device. Furthermore, this photonic thin-film lens exhibits a spatially tunable spectroscopic response, revealing a unique physics of secondary excitations of resonance modes of the single-layer LCP

  19. Near infrared reflectance spectroscopy for the fast identification of PVC-based films.

    PubMed

    Laasonen, M; Rantanen, J; Harmia-Pulkkinen, T; Michiels, E; Hiltunen, R; Räsänen, M; Vuorela, H

    2001-07-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a non-destructive and rapid qualitative method for the analysis of plastic films used by the pharmaceutical industry for blistering. Three types of films were investigated: 250 microm PVC [poly(vinyl chloride)] films, 250 microm PVC films coated with 40 g m(-2) of PVDC [poly(vinylidene dichloride)] and 250 microm PVC films coated with 5 g m(-2) of TE (Thermoelast) and 90 g m(-2) of PVDC. Three analyses were carried out using different pre-treatment options and a PLS (partial least squares) algorithm. Each analysis was aimed at identifying one type of film and rejecting all types of false sample (different thickness, colour or layer). True and false samples from four plastics manufacturers were included in the calibration sets in order to obtain robust methods that were suitable regardless of the supplier. Specificity was demonstrated by testing validation sets against the methods. The tests showed 0% of type I (false negative identification) and 1% of type II errors (false positive identification) for the PVC method, 13 and 3%, respectively, for the PVC-PVDC method and no error for the PVC-TE-PVDC method. Type II errors, mostly due to the slight sensitivity of the methods to film thickness, are easily corrected by simple thickness measurements. This study demonstrates that NIR spectroscopy is an excellent tool for the identification of PVC-based films. The three methods can be used by the pharmaceutical industry or plastics manufacturers for the quality control of films used in blister packaging.

  20. Poster — Thur Eve — 20: CTDI Measurements using a Radiochromic Film-based clinical protocol

    SciTech Connect

    Quintero, C.; Bekerat, H.; DeBlois, F.; Tomic, N.; Devic, S.; Seuntjens, J.

    2014-08-15

    The purpose of the study was evaluating accuracy and reproducibility of a radiochromic film-based protocol to measure computer tomography dose index (CTDI) as a part of annual QA on CT scanners and kV-CBCT systems attached to linear accelerators. Energy dependence of Gafchromic XR-QA2 ® film model was tested over imaging beam qualities (50 – 140 kVp). Film pieces were irradiated in air to known values of air-kerma (up to 10 cGy). Calibration curves for each beam quality were created (Film reflectance change Vs. Air-kerma in air). Film responses for same air-kerma values were compared. Film strips were placed into holes of a CTDI phantom and irradiated for several clinical scanning protocols. Film reflectance change was converted into dose to water and used to calculate CTDIvol values. Measured and tabulated CTDIvol values were compared. Average variations of ±5.2% in the mean film reflectance change were observed in the energy range of 80 to 140 keV, and 11.1% between 50 and 140 keV. Measured CTDI values were in average 10% lower than tabulated CTDI values for CT-simulators, and 44% higher for CBCT systems. Results presented a mean variation for the same machine and protocol of 2.6%. Variation of film response is within ±5% resulting in ±15% systematic error in dose estimation if a single calibration curve is used. Relatively large discrepancy between measured and tabulated CTDI values strongly support the trend towards replacing CTDI value with equilibrium dose measurement in the center of cylindrical phantom, as suggested by TG- 111.

  1. Apple peel-based edible film development using a high-pressure homogenization.

    PubMed

    Sablani, Shyam S; Dasse, Florian; Bastarrachea, Luis; Dhawan, Sumeet; Hendrix, Kathleen M; Min, Sea C

    2009-09-01

    Biopolymer films were developed from apple peels of apple process co-products and their physical properties were determined. Apple peel-based films with glycerol (23%, 33%, and 44%[w/w, dry basis]) were prepared using high-pressure homogenization (HPH) at different levels of pressure (138, 172, and 207 MPa). An evaluation of the rheological properties (elastic modulus [G'], viscous modulus [G''], and viscosity) of the film-forming solutions was performed. For the apple peel films, the water sorption isotherms, the kinetics of water absorption, the water vapor permeability (WVP), the oxygen permeability (OP), and the tensile properties were determined. The G' and viscosity of the film-forming solutions decreased significantly with increasing processing pressure (P < 0.05). However, no difference was observed in G'' values at different homogenization pressures (P > 0.05). The viscosity decreased from 644 to 468 kPa.s as the pressure increased from 138 to 207 MPa at 90 degrees C. The monolayer water content of the apple peel films decreased with increasing content of glycerol from 23% to 33%. Further increase in glycerol content did not change the monolayer water content. The water diffusion coefficient of the films was highest at the intermediate level of glycerol content. The barrier properties (WVP and OP) of the films increased with increasing level of glycerol, while processing pressure did not influence the gas barrier properties. The films prepared at 207 MPa were less stiff and strong, but more stretchable than those prepared at 138 and 172 MPa.

  2. Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review

    PubMed Central

    Zink, Joël; Wyrobnik, Tom; Prinz, Tobias; Schmid, Markus

    2016-01-01

    Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films. PMID:27563881

  3. Palm kernel oil-based polyurethane film: Biocompatibility and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Zulkifli, Nurul Nabilah bt; Badri, Khairiah bt Hj; Nor, Mohd Al Amin Muhamad; Amin, Khairul Anuar Mat

    2017-02-01

    In this study, polyurethane (PU) film was prepared from palm kernel oil-based polyester (PKO-p) via pre-polymerization with isocyanate/polyol group ([NCO/OH]). PU films were physically characterized to investigate the mechanical properties, thermal behavior, water uptake, water vapor transmission rates as well as biocompatibility and antibacterial activities against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). Results showed that PU 2 film exhibited optimum mechanical performance and thermal properties with the water vapor transmission rates at 267 ± 17 g m-2 d-1, comparable to commercial dressing. Biocompatibility studies revealed that PU films were non-cytotoxic to the human skin fibroblast cells (CRL2522) and exhibited bactericidal effect against both bacteria.

  4. Structural and optical investigation of Te-based chalcogenide thin films

    SciTech Connect

    Sharma, Rita Sharma, Shaveta; Thangaraj, R.; Mian, M.; Chander, Ravi; Kumar, Praveen

    2015-05-15

    We report the structural and optical properties of thermally evaporated Bi{sub 2}Te{sub 3}, In{sub 2}Te{sub 3} and InBiTe{sub 3} films by using X-ray diffraction, optical and Raman Spectroscopy techniques. The as-prepared thin films were found to be Semi-crystalline by X-ray diffraction. Particle Size and Strain has been calculated from XRD data. The optical constants, film thickness, refractive index and optical band gap (E{sub g}) has been reported for In{sub 2}Te{sub 3}, InBiTe{sub 3} films. Raman Spectroscopy was performed to investigate the effect of Bi, In, on lattice vibration and chemical bonding in Te based chalcogenide glassy alloys.

  5. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework

    SciTech Connect

    Cai, SL; Zhang, YB; Pun, AB; He, B; Yang, JH; Toma, FM; Sharp, ID; Yaghi, OM; Fan, J; Zheng, SR; Zhang, WG; Liu, Y

    2014-09-16

    Despite the high charge-carrier mobility in covalent organic frameworks (COFs), the low intrinsic conductivity and poor solution processability still impose a great challenge for their applications in flexible electronics. We report the growth of oriented thin films of a tetrathiafulvalene-based COF (TTF-COF) and its tunable doping. The porous structure of the crystalline TTF-COF thin film allows the diffusion of dopants such as I-2 and tetracyanoquinodimethane (TCNQ) for redox reactions, while the closely packed 2D grid sheets facilitate the cross-layer delocalization of thus-formed TTF radical cations to generate more conductive mixed-valence TTF species, as is verified by UV-vis-NIR and electron paramagnetic resonance spectra. Conductivity as high as 0.28 S m(-1) is observed for the doped COF thin films, which is three orders of magnitude higher than that of the pristine film and is among the highest for COF materials.

  6. Methodology for cost analysis of film-based and filmless portable chest systems

    NASA Astrophysics Data System (ADS)

    Melson, David L.; Gauvain, Karen M.; Beardslee, Brian M.; Kraitsik, Michael J.; Burton, Larry; Blaine, G. James; Brink, Gary S.

    1996-05-01

    Many studies analyzing the costs of film-based and filmless radiology have focused on multi- modality, hospital-wide solutions. Yet due to the enormous cost of converting an entire large radiology department or hospital to a filmless environment all at once, institutions often choose to eliminate film one area at a time. Narrowing the focus of cost-analysis may be useful in making such decisions. This presentation will outline a methodology for analyzing the cost per exam of film-based and filmless solutions for providing portable chest exams to Intensive Care Units (ICUs). The methodology, unlike most in the literature, is based on parallel data collection from existing filmless and film-based ICUs, and is currently being utilized at our institution. Direct costs, taken from the perspective of the hospital, for portable computed radiography chest exams in one filmless and two film-based ICUs are identified. The major cost components are labor, equipment, materials, and storage. Methods for gathering and analyzing each of the cost components are discussed, including FTE-based and time-based labor analysis, incorporation of equipment depreciation, lease, and maintenance costs, and estimation of materials costs. Extrapolation of data from three ICUs to model hypothetical, hospital-wide film-based and filmless ICU imaging systems is described. Performance of sensitivity analysis on the filmless model to assess the impact of anticipated reductions in specific labor, equipment, and archiving costs is detailed. A number of indirect costs, which are not explicitly included in the analysis, are identified and discussed.

  7. Tunable permalloy-based films for magnonic devices

    NASA Astrophysics Data System (ADS)

    Yin, Yuli; Pan, Fan; Ahlberg, Martina; Ranjbar, Mojtaba; Dürrenfeld, Philipp; Houshang, Afshin; Haidar, Mohammad; Bergqvist, Lars; Zhai, Ya; Dumas, Randy K.; Delin, Anna; Åkerman, Johan

    2015-07-01

    Using both broadband ferromagnetic resonance (FMR) spectroscopy and ab initio calculations, we study the magnetodynamic properties of permalloy (Py,Ni80Fe20) and Py100 -xMx films with M as platinum (Pt), gold (Au), or silver (Ag). From the uniform FMR mode, we extract the saturation magnetization (MS), damping (α ), and inhomogeneous broadening (Δ H0) ; from the first perpendicular standing spin-wave (PSSW) mode, we extract the exchange stiffness (A ). MS and A are found to decrease with increasing alloying, most strongly for Au and less so for Pt. On the other hand, α increases rapidly with both Pt and Au content, while being virtually independent of Ag content. The physical origins of the observed trends in α , MS, and A are analyzed and explained using density functional theory calculations in the coherent potential approximation. The calculated trends quantitatively agree with the experimental observations. The drastically different impacts of Pt, Au, and Ag on the various fundamental magnetodynamic properties will allow for significant design freedom, where different properties can be varied independently of others through careful combinations of the Pt, Au, and Ag contents of Py100 -xMx films. By empirical approximations of each property's concentration dependence, we can dial in any desired combination of magnetodynamic properties within this parameter space. As a proof-of-principle demonstration we design a set of Py100 -x -yPtxAgy films, where the saturation magnetization stays constant throughout the set and the damping can be tuned by a factor of 4.

  8. Electrochemical DNA biosensors based on thin gold films sputtered on capacitive nanoporous niobium oxide.

    PubMed

    Rho, Sangchul; Jahng, Deokjin; Lim, Jae Hoon; Choi, Jinsub; Chang, Jeong Ho; Lee, Sang Cheon; Kim, Kyung Ja

    2008-01-18

    Electrochemical DNA biosensors based on a thin gold film sputtered on anodic porous niobium oxide (Au@Nb(2)O(5)) are studied in detail here. We found that the novel DNA biosensor based on Au@Nb(2)O(5) is superior to those based on the bulk gold electrode or niobium oxide electrode. For example, the novel method does not require any time-consuming cleaning step in order to obtain reproducible results. The adhesion of gold films on the substrate is very stable during electrochemical biosensing, when the thin gold films are deposited on anodically prepared nanoporous niobium oxide. In particular, the novel biosensor shows enhanced biosensing performance with a 2.4 times higher resolution and a three times higher sensitivity. The signal enhancement is in part attributed to capacitive interface between gold films and nanoporous niobium oxide, where charges are accumulated during the anodic and cathodic scanning, and is in part ascribed to the structural stability of DNA immobilized at the sputtered gold films. The method allows for the detection of single-base mismatch DNA as well as for the discrimination of mismatch positions.

  9. Collagen-Based Films Containing Liposome-Loaded Usnic Acid as Dressing for Dermal Burn Healing

    PubMed Central

    Nunes, Paula S.; Albuquerque-Júnior, Ricardo L. C.; Cavalcante, Danielle R. R.; Dantas, Marx D. M.; Cardoso, Juliana C.; Bezerra, Marília S.; Souza, Jamille C. C.; Serafini, Mairim Russo; Quitans-Jr, Lucindo J.; Bonjardim, Leonardo R.; Araújo, Adriano A. S.

    2011-01-01

    The aim of this study was assess the effect of collagen-based films containing usnic acid as a wound dressing for dermal burn healing. Second-degree burn wounds were performed in forty-five Wistar rats, assigned into nine groups: COL—animals treated with collagen-based films; PHO—animals treated with collagen films containing empty liposomes; UAL—animals treated with collagen-based films containing usnic acid incorporated into liposomes. After 7, 14, and 21 days the animals were euthanized. On 7th day there was a moderate infiltration of neutrophils, in UAL, distributed throughout the burn wounds, whereas in COL and PHO, the severity of the reaction was slighter and still limited to the margins of the burn wounds. On the 14th day, the inflammatory reaction was less intense in UAL, with remarkable plasma cells infiltration. On the 21st day, there was reduction of the inflammation, which was predominantly composed of plasma cells in all groups, particularly in UAL. The use of the usnic acid provided more rapid substitution of type-III for type-I collagen on the 14th day, and improved the collagenization density on the 21st day. It was concluded that the use of reconstituted bovine type-I collagen-based films containing usnic acid improved burn healing process in rats. PMID:21274404

  10. Affective Realism of Animated Films in the Development of Simulation-Based Tutoring Systems

    ERIC Educational Resources Information Center

    Ekanayake, Hiran B.; Fors, Uno; Ramberg, Robert; Ziemke, Tom; Backlund, Per; Hewagamage, Kamalanath P.

    2013-01-01

    This paper presents a study focused on comparing real actors based scenarios and animated characters based scenarios with respect to their similarity in evoking psychophysiological activity for certain events by measuring galvanic skin response (GSR). In the experiment, one group (n = 11) watched the real actors' film whereas another group (n…

  11. Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing.

    PubMed

    Griffete, Nébéwia; Frederich, Hugo; Maître, Agnès; Ravaine, Serge; Chehimi, Mohamed M; Mangeney, Claire

    2012-01-10

    Inverse opal films of molecularly imprinted polymers (MIP) were elaborated using the colloidal crystal template method. The colloidal crystals of silica particles were built by the Langmuir-Blodgett technique, allowing a perfect control of the film thickness. Polymerization in the interspaces of the colloidal crystal in the presence of bisphenol A (BPA) and removal of the used template provides 3D-ordered macroporous methacrylic acid-based hydrogel films in which nanocavities derived from bisphenol A are distributed within the thin walls of the inverse opal hydrogel. The equilibrium swelling properties of the nonimprinted (NIPs) and molecularly imprinted polymers (MIPs) were studied as a function of pH and bisphenol A concentration, while the molecular structures of the bulk hydrogels were analyzed using a cross-linked network structure theory. This study showed an increase in nanopore (mesh) size in the MIPs after BPA extraction as compared to NIPs, in agreement with the presence of nanocavities left by the molecular imprints of the template molecule. The resulting inverse opals were found to display large responses to external stimuli (pH or BPA) with Bragg diffraction peak shifts depending upon the hydrogel film thickness. The film thickness was therefore shown to be a critical parameter for improving the sensing capacities of inverse opal hydrogel films deposited on a substrate.

  12. Designed supramolecular assemblies for biosensors and photoactive devices. LDRD final report

    SciTech Connect

    Song, X.Z.; Shelnutt, J.A.; Hobbs, J.D.; Cesarano, J.

    1997-02-01

    The objective of this project is the development of a new class of supramolecular assemblies for applications in biosensors and biodevices. The supramolecular assemblies are based on membranes and Langmuir-Blodgett (LB) films composed of naturally-occurring or synthetic lipids, which contain electrically and/or photochemically active components. The LB films are deposited onto electrically-active materials (metal, semiconductors). The active components film components (lipo-porphyrins) at the surface function as molecular recognition sites for sensing proteins and other biomolecules, and the porphyrins and other components (e.g., fullerenes) incorporated into the films serve as photocatalysts and vectorial electron-transport agents. Computer-aided molecular design (CAMD) methods are used to tailor the structure of these film components to optimize function. Molecular modeling is also used to predict the location, orientation, and motion of these molecular components within the films. The result is a variety of extended, self-assembled molecular structures that serve as devices for sensing proteins and biochemicals or as other bioelectronic devices.

  13. Secondary Crystal Growth on a Cracked Hydrotalcite-Based Film Synthesized by the Sol-Gel Method.

    PubMed

    Lee, Wooyoung; Lee, Chan Hyun; Lee, Ki Bong

    2016-05-02

    The sol-gel synthesis method is an attractive technology for the fabrication of ceramic films due to its preparation simplicity and ease of varying the metal composition. However, this technique presents some limitations in relation to the film thickness. Notably, when the film thickness exceeds the critical limit, large tensile stresses occur, resulting in a cracked morphology. In this study, a secondary crystal growth method was introduced as a post-treatment process for Mg/Al hydrotalcite-based films synthesized by the sol-gel method, which typically present a cracked morphology. The cracked hydrotalcite-based film was hydrothermally treated for the secondary growth of hydrotalcite crystals. In the resulting film, hydrotalcite grew with a vertical orientation, and the gaps formed during the sol-gel synthesis were filled with hydrotalcite after the crystal growth. The secondary crystal growth method provides a new solution for cracked ceramic films synthesized by the sol-gel method.

  14. Comparison of photovoltaic performance of TiO2 nanoparticles based thin films via different routes

    NASA Astrophysics Data System (ADS)

    Ji, Yajun

    2015-11-01

    Well crystallized TiO2 nanoparticles were prepared by hydrothermal and sol-gel routes, respectively. The morphologies, structures, crystallinity and optical properties of resulted TiO2 nanoparticles-based thin films via the two methods were examined by field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and reflectance spectra. In addition, comparison of photovoltaic performance of TiO2 nanoparticles-based thin films by the two methods was performed. It is found that the maximum energy conversion efficiency of 4.06% was achieved based on the obtained electrode via hydrothermal, which is much better than that of the sol-gels route. The uniform film structure with improved dye absorption capability, increased diffused reflectance property and relatively low charge recombination rates for injected electrons are believed to be responsible to the superior photoelectrochemical properties of dye-sensitized solar cells (DSSC) via hydrothermal route.

  15. PEALD YSZ-based bilayer electrolyte for thin film-solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yu, Wonjong; Cho, Gu Young; Hong, Soonwook; Lee, Yeageun; Kim, Young Beom; An, Jihwan; Cha, Suk Won

    2016-10-01

    Yttria-stabilized zirconia (YSZ) thin film electrolyte deposited by plasma enhanced atomic layer deposition (PEALD) was investigated. PEALD YSZ-based bi-layered thin film electrolyte was employed for thin film solid oxide fuel cells on nanoporous anodic aluminum oxide substrates, whose electrochemical performance was compared to the cell with sputtered YSZ-based electrolyte. The cell with PEALD YSZ electrolyte showed higher open circuit voltage (OCV) of 1.0 V and peak power density of 182 mW cm-2 at 450 °C compared to the one with sputtered YSZ electrolyte(0.88 V(OCV), 70 mW cm-2(peak power density)). High OCV and high power density of the cell with PEALD YSZ-based electrolyte is due to the reduction in ohmic and activation losses as well as the gas and electrical current tightness.

  16. Optical waveguide spectrometer based on thin-film glass plates.

    PubMed

    Qi, Zhi-Mei; Matsuda, Naoki; Yoshida, Takamitsu; Asano, Hajime; Takatsu, Akiko; Kato, Kenji

    2002-11-15

    Commercially available thin-film glass plates have been successfully used for optical waveguide spectroscopy of chemical and biological films adsorbed upon the plates' surfaces. A 50-mum -thick glass plate was placed in contact with two parallel strips of silicone rubber supported on a slide glass. The plate area between the rubber strips served as the waveguiding region, eliminating the negative effect of the substrate on absorbance sensitivity. We coupled white light into the waveguide by focusing the light from a xenon lamp onto one end of a glass fiber and then inserting the other end into a glycerol drop overlaid upon the plate's surface. With a CCD detector, light at wavelengths as short as 360 nm was found to transmit out of the plate's end face. The propagation loss of the waveguide was measured to be

  17. Copper Oxide Thin Films through Solution Based Methods for Electrical Energy Conversion and Storage

    NASA Astrophysics Data System (ADS)

    Zhu, Changqiong

    Copper oxides (Cu2O and CuO), composed of non-toxic and earth abundant elements, are promising materials for electrical energy generation and storage devices. Solution based techniques for creating thin films of these materials, such as electrodeposition, are important to understand and develop because of their potential for realizing substantial energy savings compared to traditional fabrication methods. Cuprous oxide (Cu2O), with its direct band gap, is a p-type semiconductor that is well suited for creating solution-processed photovoltaic devices (solar cells); several key advancements made toward this application are the primary focus of this thesis. Electrodeposition of single-phase, crystalline Cu2O thin films is demonstrated using previously unexplored, acidic lactate/Cu2+ solutions, which has provided additional understanding of the impacts of growth solution chemistry on film formation. The influence of pH on the resulting Cu2O thin film properties is revealed by using the same ligand (sodium lactate) at various solution pH values. Cu2O films grown from acidic lactate solutions can exhibit a distinctive flowerlike, dendritic morphology, in contrast to the faceted, dense films obtained using alkaline lactate solutions. Relative speciation distributions of the various metal complex ions present under different growth conditions are calculated using reported equilibrium association constants and experimentally supported by UV-Visible absorption spectroscopy. Dependence of thin film morphology on the lactate/Cu2+ molar ratio and applied potential is described. Cu2O/eutectic gallium-indium Schottky junction devices are formed and devices are tested under monochromatic green LED illumination. Further surface examination of the Cu2O films using X-ray photoelectron spectroscopy (XPS) reveals the fact that films grown from acidic lactate solution with a small lactate/Cu2+ molar ratio, which exhibit improved photovoltaic performance compared to films grown from

  18. Morphogen Electrochemically Triggered Self-Construction of Polymeric Films Based on Mussel-Inspired Chemistry.

    PubMed

    Maerten, Clément; Garnier, Tony; Lupattelli, Paolo; Chau, Nguyet Trang Thanh; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia

    2015-12-15

    Inspired by the strong chemical adhesion mechanism of mussels, we designed a catechol-based electrochemically triggered self-assembly of films based on ethylene glycol molecules bearing catechol groups on both sides and denoted as bis-catechol molecules. These molecules play the role of morphogens and, in contrast to previously investigated systems, they are also one of the constituents, after reaction, of the film. Unable to interact together, commercially available poly(allylamine hydrochloride) (PAH) chains and bis-catechol molecules are mixed in an aqueous solution and brought in contact with an electrode. By application of defined potential cycles, bis-catechol molecules undergo oxidation leading to molecules bearing "reactive" quinone groups which diffuse toward the solution. In this active state, the quinones react with amino groups of PAH through Michael addition and Schiff's base condensation reaction. The application of cyclic voltammetry (CV) between 0 and 500 mV (vs Ag/AgCl, scan rate of 50 mV/s) of a PAH/bis-catechol solution results in a fast self-construction of a film that reaches a thickness of 40 nm after 60 min. The films present a spiky structure which is attributed to the use of bis-functionalized molecules as one component of the films. XPS measurements show the presence of both PAH and bis-catechol cross-linked together in a covalent way. We show that the amine/catechol ratio is an important parameter which governs the film buildup. For a given amine/catechol ratio, it does exist an optimum CV scan rate leading to a maximum of the film thickness as a function of the scan rate.

  19. Laser Based Color Film Recorder System With GaAs Microlaser

    NASA Astrophysics Data System (ADS)

    Difrancesco, David J.

    1989-07-01

    In 1984 Pixar's research and development group built and applied to the motion-picture arts at Lucasfilm's ILM facility a three color laser based film scanner/recorder system. The digital film printer is capable of reading and writing 35mm film formats on a variety of film stocks. The system has been used in award-winning special-effects work, and has been operated in a normal production environment since that time. The primary objective was to develop a full color high resolution system, free from scan artifacts, enabling traditionally photographed motion-picture film to be inter-cut with digital raster image photography. Its use is applied to the art of blue-screen traveling-matte cinematography for motion pic-ture special effects. The system was designed using the Pixar Image Computer and conventional gas laser technology as the illumination source. This paper will discuss recent experimental work in the application of GaAs microlaser technology to a digital film printing system of the future.

  20. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films.

    PubMed

    Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Kim, Yu Jin; Moon, Taehwan; Kim, Keum Do; Müller, Johannes; Kersch, Alfred; Schroeder, Uwe; Mikolajick, Thomas; Hwang, Cheol Seong

    2015-03-18

    The recent progress in ferroelectricity and antiferroelectricity in HfO2-based thin films is reported. Most ferroelectric thin film research focuses on perovskite structure materials, such as Pb(Zr,Ti)O3, BaTiO3, and SrBi2Ta2O9, which are considered to be feasible candidate materials for non-volatile semiconductor memory devices. However, these conventional ferroelectrics suffer from various problems including poor Si-compatibility, environmental issues related to Pb, large physical thickness, low resistance to hydrogen, and small bandgap. In 2011, ferroelectricity in Si-doped HfO2 thin films was first reported. Various dopants, such as Si, Zr, Al, Y, Gd, Sr, and La can induce ferro-electricity or antiferroelectricity in thin HfO2 films. They have large remanent polarization of up to 45 μC cm(-2), and their coercive field (≈1-2 MV cm(-1)) is larger than conventional ferroelectric films by approximately one order of magnitude. Furthermore, they can be extremely thin (<10 nm) and have a large bandgap (>5 eV). These differences are believed to overcome the barriers of conventional ferroelectrics in memory applications, including ferroelectric field-effect-transistors and three-dimensional capacitors. Moreover, the coupling of electric and thermal properties of the antiferroelectric thin films is expected to be useful for various applications, including energy harvesting/storage, solid-state-cooling, and infrared sensors.

  1. Erasable thin-film optical diode based on a photoresponsive liquid crystal polymer.

    PubMed

    Zhang, Xinping; Zhang, Jian; Sun, Yujian; Yang, Huai; Yu, Haifeng

    2014-04-07

    We report a thin-film optical diode written into thin films of a liquid-crystalline polymer (LCP), which is based on the photoinduced LC-to-isotropic phase transition of LCPs. The interference pattern between a collimated and a focused UV laser beam is imprinted as chirped volume-phase gratings in photoresponsive LCP films and no further processing steps like development or liftoff are required for the fabrication. The resultant thin-film device not only possesses the fundamental functions of an optical lens for laser beam focusing, but also shows diode effects with the focusing/defocusing function dependent on the direction of light incidence and orientation of the device. Furthermore, this photonic thin-film lens exhibits a spatially tunable spectroscopic response, revealing a unique physics of secondary excitations of resonance modes of the single-layer LCP waveguide grating structures. This reveals the mechanisms for the focusing/defocusing of laser beams by chirped grating structures. Erasability and reconstructibility of the photoresponsive LCPs guarantee rewritability of the thin-film diode lens.

  2. Hydrogen storage in Ti, V and their oxides-based thin films

    NASA Astrophysics Data System (ADS)

    Tarnawski, Z.; Zakrzewska, K.; Kim-Ngan, N.-T. H.; Krupska, M.; Sowa, S.; Drogowska, K.; Havela, L.; Balogh, A. G.

    2015-03-01

    We have investigated the hydrogen storage ability and the effect of hydrogenation on structure and physical properties of Ti/V and their oxides-based thin films. A series of Ti-TiO2 and VOx-TiO2 thin films with different layer structures, geometries and thicknesses have been prepared by the sputtering technique on different (Si(111), SiO2, C) substrates. For the Ti-TiO2-Ti films up to 50 at.% of hydrogen can be stored in the Ti layers, while the hydrogen can penetrate without accumulation through the TiO2 layer. A large hydrogen storage was also found in some V2O5-TiO2 films. Hydrogen could also remove the preferential orientation in the Ti films and induce a transition of V2O5 to VO2 in the films. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  3. Optical band gap tuning of Sb-Se thin films for xerographic based applications

    NASA Astrophysics Data System (ADS)

    Kaur, Ramandeep; Singh, Palwinder; Singh, Kulwinder; Kumar, Akshay; Thakur, Anup

    2016-10-01

    In the present paper we have studied the effect of Sb addition on the optical band gap tuning of thermally evaporated SbxSe100-x (x = 0, 5, 20, 50 and 60) thin films. The structural investigations revealed that all thin films were amorphous in nature. Transmission spectrum was taken in the range 400-2500 nm shows that all films are highly transparent in the near infrared region. The fundamental absorption edge shifts towards longer wavelength with Sb incorporation. The optical band gap decreases with addition of antimony in a-Se thin films. A good correlation has been drawn between experimentally estimated and theoretically calculated optical band gap. The decrease in optical band gap of thin films has been explained using chemical bond approach and density of states model. Decrease in optical band gap with Sb addition increases the concentration of electron deep traps which increases the X-ray sensitivity of Sb-Se thin films. Thus by tuning the optical band gap of Sb-Se alloy, it could be utilized for xerographic based applications.

  4. Novel composite films based on amidated pectin for cationic dye adsorption.

    PubMed

    Nesic, Aleksandra R; Velickovic, Sava J; Antonovic, Dusan G

    2014-04-01

    Pectin, with its tendency to gel in the presence of metal ions has become a widely used material for capturing the metal ions from wastewaters. Its dye-capturing properties have been much less investigated, and this paper is the first to show how films based on amidated pectin can be used for cationic dye adsorption. In the present study amidated pectin/montmorillonite composite films were synthesized by membrane casting, and they are stable in aqueous solution both below and above pectin pKa. FTIR, thermogravimetry and SEM-EDAX have confirmed the presence of montmorillonite in the cast films and the interactions between the two constituents. In order to evaluate the cationic dye adsorption of these films Basic Yellow 28 was used, showing that the films have higher adsorption capacity compared to the others reported in the literature. The results were fitted into Langmuir, Freundlich and Temkin isotherms indicating an exothermic process and setting the optimum amount of montmorillonite in the films to 30% of pectin mass. According to the Langmuir isotherm the maximum adsorption capacity is 571.4 mg/g.

  5. Optimized pH-responsive film based on a eutectic mixture-plasticized chitosan.

    PubMed

    Pereira, Pamela F; Andrade, Cristina T

    2017-06-01

    Chitosan (CS, 2g/100mL)/curcumin 1g/100mL in acetic acid aqueous solution were used to prepare films to be used as food indicator. Microcrystalline cellulose (MCC) and a eutectic mixture (DES) were incorporated as reinforcing and plasticizing agents, respectively. The MCC content (133 mas%) and DES composition (7.93 mass%), based on CS dry mass, were optimized. The properties of the DES-plasticized film were compared to those for the unplasticized and glycerol (G)-plasticized CS films. The DES-plasticized film presented initial temperature of thermal decomposition at 267.7°C, dynamic glass transition at 149.3°C, water vapor permeability of 7.21×10(-10)gs(-1)m(-1)Pa(-1), water solubility of 3.07% and stress at break of 20.1MPa. The incorporation of MCC contributed to increase the crystallinity of the composite films. Colorimetric tests, carried out in aqueous environments for the DES-plasticized film, revealed accentuated color changes, mainly at pHs higher than pH 8.

  6. Local Evolution of the Elastocaloric Effect in TiNi-Based Films

    NASA Astrophysics Data System (ADS)

    Ossmer, H.; Chluba, C.; Gueltig, M.; Quandt, E.; Kohl, M.

    2015-06-01

    Strain and temperature profiles of magnetron-sputtered ferroelastic TiNi-based films of 20 μm thickness are investigated during tensile load cycling with respect to strain, strain rate, and cycle number in order to assess their potential for elastocaloric cooling. Two different ferroelastic film specimens are considered, binary TiNi and quaternary TiNiCuCo films, which strongly differ regarding their phase transformation hysteresis and fatigue behavior. In situ digital image correlation and infrared thermography measurements reveal a correlated response of strain and temperature bands that is determined by mesoscale stress and temperature fields on the kinetics of phase transformation. In the case of binary TiNi films, this response is also strongly affected by cycling-induced fatigue causing vanishing band formation and decreasing elastocaloric effect size. In contrast, TiNiCuCo films show negligible fatigue and retain the local characteristics of the elastocaloric effect. Compared to TiNi films, they exhibit not only a reduced temperature change, but also a reduced work input for pseudoelastic cycling resulting in an improved material's coefficient of performance of 15.

  7. Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate.

    PubMed

    Rahmanian, Reza; Mozaffari, Sayed Ahmad; Abedi, Mohammad

    2015-12-01

    In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO-PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO2 conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO-PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO-PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE-SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV-Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0-110.0mg dL(-1) with the limit of detection as 5.0mg dL(-1).

  8. Development of flexible antimicrobial packaging materials against Campylobacter jejuni by incorporation of gallic acid into zein-based films.

    PubMed

    Alkan, Derya; Aydemir, Levent Y; Arcan, Iskender; Yavuzdurmaz, Hatice; Atabay, Halil I; Ceylan, Cagatay; Yemenicioğlu, Ahmet

    2011-10-26

    In this study, antimicrobial films were developed against Campylobacter jejuni by incorporation of gallic acid (GA) into zein-based films. The zein and zein-wax composite films containing GA between 2.5 and 10 mg/cm(2) were effective on different C. jejuni strains in a concentration-dependent manner. Zein and zein-wax composite films showed different release profiles in distilled water but quite similar release profiles at solid agar medium. Depending on incorporated GA concentration, 60-80% of GA released from the films, while the remaining GA was bound or trapped by film matrix. The GA at 2.5 and 5 mg/cm(2) caused a considerable increase in elongation (57-280%) of all zein films and eliminated their classical flexibility problems. The zein-wax composite films were less flexible than zein films, but the films showed similar tensile strengths and Young's modulus. Scanning electron microscopy indicated different morphologies of zein and zein-wax composite films. This study clearly showed the good potential of zein and GA to develop flexible antimicrobial films against C. jejuni.

  9. Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin.

    PubMed

    Hosseini, Seyed Fakhreddin; Javidi, Zahra; Rezaei, Masoud

    2016-11-01

    Multi-layer film structures of poly(lactic acid) (PLA) and fish gelatin (FG), prepared using the solvent casting technique, were studied in an effort to produce bio-based films with low oxygen (OP) and water vapor permeability (WVP). The scanning electron microscopy (SEM) images of triple-layer film showed that the outer PLA layers are being closely attached to the inner FG layer to make continuous film. The OP of multi-layer film (5.02cm(3)/m(2)daybar) decreased more than 8-fold compared with that of the PLA film, and the WVP of multi-layer film (0.125gmm/kPah m(2)) also decreased 11-fold compared with that of the FG film. Lamination with PLA profoundly increased the water resistance of the bare gelatin film. Meanwhile, the tensile strength of the triple-layer film (25±2.13MPa) was greater than that of FG film (7.48±1.70MPa). At the same time, the resulting film maintains high optical clarity. Differential scanning calorimetry (DSC) analysis also revealed that the materials were compatible showing only one Tg which decreased with FG deposition. This material exhibits an environmental-friendliness potential and a high versatility in food packaging.

  10. Fabrication and characterization of highly transparent and conductive indium tin oxide films made with different solution-based methods

    NASA Astrophysics Data System (ADS)

    Xia, N.; Gerhardt, R. A.

    2016-11-01

    Solution-based fabrication methods can greatly reduce the cost and broaden the applications of transparent conducting oxides films, such as indium tin oxide (ITO) films. In this paper, we report on ITO films fabricated by spin coating methods on glass substrates with two different ITO sources: (1) a commercial ITO nanopowder water dispersion and (2) a sol-gel ITO solution. A simple and fast air annealing process was used to treat as-coated ITO films on a controlled temperature hot plate. Thermogravimetric analysis and x-ray diffraction showed that highly crystalline ITO films were formed after the annealing steps. The final ITO films had a good combination of optical properties and electrical properties, especially for films made from five layers of sol-gel ITO (92.66% transmittance and 8.7 × 10-3 Ω cm resistivity). The surface morphology and conducting network on the ITO films were characterized by non-contact and current atomic force microscopy. It was found that conducting paths were only partially connected for the nanoparticle ITO dispersion films, whereas the sol-gel ITO films had a more uniformly distributed conducting network on the surface. We also used the sol-gel ITO films to fabricate a simple liquid crystal display (LCD) device to demonstrate the excellent properties of our films.

  11. Electrodeposition of Zn based nanostructure thin films for photovoltaic applications

    SciTech Connect

    Al-Bat’hi, S. A. M.

    2015-03-30

    We present here a systematic study on the synthesis thin films of various ZnO, CdO, Zn{sub x}Cd{sub 1-x} (O) and ZnTe nanostructures by electrodeposition technique with ZnCl{sub 2,} CdCl{sub 2} and ZnSO{sub 4} solution as starting reactant. Several reaction parameters were examined to develop an optimal procedure for controlling the size, shape, and surface morphology of the nanostructure. The results showed that the morphology of the products can be carefully controlled through adjusting the concentration of the electrolyte. The products present well shaped Nanorods arrays at specific concentration and temperature. UV-VIS spectroscopy and X-ray diffraction results show that the product presents good crystallinity. A possible formation process has been proposed.

  12. CO Responses of Sensors Based on Cerium Oxide Thick Films Prepared from Clustered Spherical Nanoparticles

    PubMed Central

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors. PMID:23529123

  13. CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles.

    PubMed

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-03-08

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors.

  14. Photosensitive field-effect transistor based on a composite film of polyvinylcarbazole with nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.; Shcherbakov, I. P.; Fedichkin, F. S.

    2012-08-01

    The electronic and optoelectronic properties of field-effect transistor structures with an active layer based on composite films of a semiconducting polymer, namely, polyvinylcarbazole (PVC), with nickel nanoparticles have been investigated. It has been shown that these structures at low nickel concentrations (5-10 wt %) possess current-voltage characteristics that indicate an ambipolar transport. For the field-effect transistor structures based on PVC: Ni (Ni ˜ 5 wt %) films, the mobilities of electrons and holes are found to be ˜1.3 and ˜1.9 cm2/V s, respectively. It has been established that the photosensitivity observed in these structures is associated with the specific features of transport in the film of the polymer with nickel nanoparticles. The mechanism of this transport is determined by the modulation of electrical conductivity of the working channel of the field-effect transistor by applying a combination of incident light and gate voltages.

  15. Tunneling-enabled spectrally selective thermal emitter based on flat metallic films

    SciTech Connect

    Wang, Zhu; Luk, Ting S.; Tan, Yixuan; Ji, Dengxin; Zhou, Ming; Gan, Qiaoqiang; Yu, Zongfu

    2015-03-11

    Infrared thermal emission from metals has important energy applications in thermophotovoltaics, radiative cooling, and lighting. The emissivity of flat metal films is close to zero because the screening effect prevents metals' fluctuating currents from emitting to the far field. As a result, metal films are often used as reflecting mirrors instead of thermal emitters. Recently, nanostructured metals, such as metamaterials, have emerged as an interesting way to enhance and to spectrally control thermal emission based on plasmonic resonant effects. However, they require sophisticated lithography. Here, we proposed and experimentally demonstrated a completely different mechanism to achieve spectrally selective metallic emitters based on atunneling effect. Furthermore, this effect allows a simple flat metal film to achieve a near-unity emissivity with controlled spectral selectivity for efficient heat-to-light energy conversion.

  16. Tunneling-enabled spectrally selective thermal emitter based on flat metallic films

    SciTech Connect

    Wang, Zhu; Tan, Yixuan; Zhou, Ming; Yu, Zongfu; Luk, Ting Shan; Ji, Dengxin; Gan, Qiaoqiang

    2015-03-09

    Infrared thermal emission from metals has important energy applications in thermophotovoltaics, radiative cooling, and lighting. Unfortunately, the emissivity of flat metal films is close to zero because the screening effect prevents metals' fluctuating currents from emitting to the far field. As a result, metal films are often used as reflecting mirrors instead of thermal emitters. Recently, nanostructured metals, such as metamaterials, have emerged as an interesting way to enhance and to spectrally control thermal emission based on plasmonic resonant effects. However, they require sophisticated lithography. Here, we proposed and experimentally demonstrated a completely different mechanism to achieve spectrally selective metallic emitters based on a tunneling effect. This effect allows a simple flat metal film to achieve a near-unity emissivity with controlled spectral selectivity for efficient heat-to-light energy conversion.

  17. Elaboration of ammonia gas sensors based on electrodeposited polypyrrole--cobalt phthalocyanine hybrid films.

    PubMed

    Patois, Tilia; Sanchez, Jean-Baptiste; Berger, Franck; Fievet, Patrick; Segut, Olivier; Moutarlier, Virginie; Bouvet, Marcel; Lakard, Boris

    2013-12-15

    The electrochemical incorporation of a sulfonated cobalt phthalocyanine (sCoPc) in conducting polypyrrole (PPy) was done, in the presence or absence of LiClO4, in order to use the resulting hybrid material for the sensing of ammonia. After electrochemical deposition, the morphological features and structural properties of polypyrrole/phthalocyanine hybrid films were investigated and compared to those of polypyrrole films. A gas sensor consisting in platinum microelectrodes arrays was fabricated using silicon microtechnologies, and the polypyrrole and polypyrrole/phthalocyanine films were electrochemically deposited on the platinum microelectrodes arrays of this gas sensor. When exposed to ammonia, polymer-based gas sensors exhibited a decrease in conductance due to the electron exchange between ammonia and sensitive polymer-based layer. The characteristics of the gas sensors (response time, response amplitude, reversibility) were studied for ammonia concentrations varying from 1 ppm to 100 ppm. Polypyrrole/phthalocyanine films exhibited a high sensitivity and low detection limit to ammonia as well as a fast and reproducible response at room temperature. The response to ammonia exposition of polypyrrole films was found to be strongly enhanced thanks to the incorporation of the phthalocyanine in the polypyrrole matrix.

  18. MAPLE-based method to obtain biodegradable hybrid polymeric thin films with embedded antitumoral agents.

    PubMed

    Dinca, Valentina; Florian, Paula E; Sima, Livia E; Rusen, Laurentiu; Constantinescu, Catalin; Evans, Robert W; Dinescu, Maria; Roseanu, Anca

    2014-02-01

    In this work, antitumor compounds, lactoferrin [recombinant iron-free (Apo-rLf)], cisplatin (Cis) or their combination were embedded within a biodegradable polycaprolactone (PCL) polymer thin film, by a modified approach of a laser-based technique, matrix-assisted pulsed laser evaporation (MAPLE). The structural and morphological properties of the deposited hybrid films were analyzed by Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The in vitro effect on the cells' morphology and proliferation of murine melanoma B16-F10 cells was investigated and correlated with the films' surface chemistry and topography. Biological assays revealed decreased viability and proliferation, lower adherence, and morphological modifications in the case of melanoma cells cultured on both Apo-rLf and Cis thin films. The antitumor effect was enhanced by deposition of Apo-rLf with Cis within the same film. The unique capability of the new approach, based on MAPLE, to embed antitumor active factors within a biodegradable matrix for obtaining novel biodegradable hybrid platform with increased antitumor efficiency has been demonstrated.

  19. Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for Potential Wound Dressing

    PubMed Central

    Dragostin, Oana Maria; Samal, Sangram Keshari; Lupascu, Florentina; Pânzariu, Andreea; Dubruel, Peter; Lupascu, Dan; Tuchilus, Cristina; Vasile, Cornelia; Profire, Lenuta

    2015-01-01

    The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol) in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic properties, which are very important features for their use as a wound dressing. The film based on chitosan-sulfisoxazol (CS-S6) showed the highest swelling ratio (197%) and the highest biodegradation rate (63.04%) in comparison to chitosan film for which the swelling ratio was 190% and biodegradation rate was only 10%. Referring to the antioxidant effects the most active was chitosan-sulfamerazine (CS-S5) which was 8.3 times more active than chitosan related to DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability. This compound showed also a good ferric reducing power and improved total antioxidant capacity. PMID:26694354

  20. Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for Potential Wound Dressing.

    PubMed

    Dragostin, Oana Maria; Samal, Sangram Keshari; Lupascu, Florentina; Pânzariu, Andreea; Dubruel, Peter; Lupascu, Dan; Tuchilus, Cristina; Vasile, Cornelia; Profire, Lenuta

    2015-12-15

    The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol) in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic properties, which are very important features for their use as a wound dressing. The film based on chitosan-sulfisoxazol (CS-S6) showed the highest swelling ratio (197%) and the highest biodegradation rate (63.04%) in comparison to chitosan film for which the swelling ratio was 190% and biodegradation rate was only 10%. Referring to the antioxidant effects the most active was chitosan-sulfamerazine (CS-S5) which was 8.3 times more active than chitosan related to DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability. This compound showed also a good ferric reducing power and improved total antioxidant capacity.

  1. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  2. SU-E-CAMPUS-T-06: Radiochromic Film Analysis Based On Principal Components

    SciTech Connect

    Wendt, R

    2014-06-15

    Purpose: An algorithm to convert the color image of scanned EBT2 radiochromic film [Ashland, Covington KY] into a dose map was developed based upon a principal component analysis. The sensitive layer of the EBT2 film is colored so that the background streaks arising from variations in thickness and scanning imperfections may be distinguished by color from the dose in the exposed film. Methods: Doses of 0, 0.94, 1.9, 3.8, 7.8, 16, 32 and 64 Gy were delivered to radiochromic films by contact with a calibrated Sr-90/Y-90 source. They were digitized by a transparency scanner. Optical density images were calculated and analyzed by the method of principal components. The eigenimages of the 0.94 Gy film contained predominantly noise, predominantly background streaking, and background streaking plus the source, respectively, in order from the smallest to the largest eigenvalue. Weighting the second and third eigenimages by −0.574 and 0.819 respectively and summing them plus the constant 0.012 yielded a processed optical density image with negligible background streaking. This same weighted sum was transformed to the red, green and blue space of the scanned images and applied to all of the doses. The curve of processed density in the middle of the source versus applied dose was fit by a twophase association curve. A film was sandwiched between two polystyrene blocks and exposed edge-on to a different Y-90 source. This measurement was modeled with the GATE simulation toolkit [Version 6.2, OpenGATE Collaboration], and the on-axis depth-dose curves were compared. Results: The transformation defined using the principal component analysis of the 0.94 Gy film minimized streaking in the backgrounds of all of the films. The depth-dose curves from the film measurement and simulation are indistinguishable. Conclusion: This algorithm accurately converts EBT2 film images to dose images while reducing noise and minimizing background streaking. Supported by a sponsored research

  3. Advances in OLED-based oxygen sensors with structurally integrated OLED, sensor film, and thin-film Si photodetector

    NASA Astrophysics Data System (ADS)

    Ghosh, Debju; Shinar, Ruth; Cai, Yuankun; Zhou, Zhaoqun; Dalal, Vikram L.; Shinar, Joseph

    2007-09-01

    Steps towards the improvement of a compact photoluminescence (PL)-based sensor array that is fully structurally integrated are described. The approach is demonstrated for oxygen sensing, which can be monitored via its effect on the PL intensity I or decay time τ of oxygen-sensitive dyes such as Pt octaethylporphryn (PtOEP) and its Pd analog (PdOEP). The integrated components include (1) an organic light emitting device (OLED) excitation source, which is an array of coumarin-doped tris(quinolinolate) Al (Alq 3) pixels, (2) the sensor film, i.e., PdOEP embedded in polystyrene, and (3) the photodetector (PD), which is a plasma-enhanced CVD-grown p-i-n or n-i-p structure, based on amorphous or nanocrystalline (Si,Ge):H. These components are fabricated on common or separate substrates that are attached back-to-back, resulting in sensors with a thickness largely determined by that of the substrates. The fully integrated oxygen sensor is demonstrated first by fabricating each of the three components on a separate substrate. The PD was placed in front of a flow cell containing the sensor film, while the OLED array was "behind" the sensor film. This design showed the expected trend in monitoring different concentration of O II via their effect on I, with improved detection sensitivity achieved by shielding the electromagnetic noise synchronous with the pulsed OLED. The detection sensitivity using the I monitoring mode is expected to further increase by reducing the OLED tail emission. The issue of the OLED background can be eliminated by monitoring the oxygen concentration via its effect on τ, where the OLED is pulsed and τ is measured while the OLED is off. Steps therefore focused also on shortening the response time of the PDs, and understanding the factors affecting their speed. Development of a sensor array, where the PD pixels are fabricated between the OLED pixels on the same side of a common substrate, is also discussed.

  4. Poly(vinyl alcohol)-based film potentially suitable for antimicrobial packaging applications.

    PubMed

    Musetti, Alessandro; Paderni, Katia; Fabbri, Paola; Pulvirenti, Andrea; Al-Moghazy, Marwa; Fava, Patrizia

    2014-04-01

    This work aimed at developing a thin and water-resistant food-grade poly(vinyl alcohol) (PVOH)-based matrix able to swell when in contact with high moisture content food products without rupturing to release antimicrobial agents onto the food surface. This film was prepared by blending PVOH and 7.20% (wt/wt of PVOH) of poly(ethylene glycol) (PEG) with citric acid as crosslinking agent. The film-forming solution was then casted onto a flat surface and the obtained film was 60 μm in thickness and showed a good transparency (close to T = 100%) in the visible region (400 to 700 nm). After immersion in water for 72 h at room temperature, the crosslinked matrix loses only 19.2% of its original weight (the percentage includes the amount of unreacted crosslinking agent, antimicrobial in itself). Water content, degree of swelling, and crosslinking density of the film prove that the presence of PEG diminishes the hydrophilic behavior of the material. Also the mechanical properties of the wet and dry film were assessed. Alongside this, 2.5% (wt/wt of dry film) of grapefruit seed extract (GSE), an antimicrobial agent, was added to the film-forming solution just before casting and the ability of the plastic matrix to release the additive was then evaluated in vitro against 2 GSE-susceptible microorganisms, Salmonella enteritidis and Listeria innocua. The results indicate that the developed matrix may be a promising food-grade material for the incorporation of active substances.

  5. Across-plane thermal characterization of films based on amplitude-frequency profile in photothermal technique

    SciTech Connect

    Xu, Shen; Wang, Xinwei

    2014-10-15

    This work develops an amplitude method for the photothermal (PT) technique to analyze the amplitude of the thermal radiation signal from the surface of a multilayered film sample. The thermal conductivity of any individual layer in the sample can be thereby determined. Chemical vapor deposited SiC film samples (sample 1 to 3: 2.5 to 3.5 μm thickness) with different ratios of Si to C and thermally oxidized SiO{sub 2} film (500 nm thickness) on silicon substrates are studied using the amplitude method. The determined thermal conductivity based on the amplitude method is 3.58, 3.59, and 2.59 W/m⋅K for sample 1 to 3 with ±10% uncertainty. These results are verified by the phase shift method, and sound agreement is obtained. The measured thermal conductivity (k) of SiC is much lower than the value of bulk SiC. The large k reduction is caused by the structure difference revealed by Raman spectroscopy. For the SiO{sub 2} film, the thermal conductivity is measured to be 1.68 ± 0.17 W/m⋅K, a little higher than that obtained by the phase shift method: 1.31 ± 0.06 W/m⋅K. Sensitivity analysis of thermal conductivity and interfacial resistance is conducted for the amplitude method. Its weak-sensitivity to the thermal contact resistance, enables the amplitude method to determine the thermal conductivity of a film sample with little effect from the interface thermal resistance between the film and substrate. The normalized amplitude ratio at a high frequency to that at a low frequency provides a reliable way to evaluate the effusivity ratio of the film to that of the substrate.

  6. Across-plane thermal characterization of films based on amplitude-frequency profile in photothermal technique

    NASA Astrophysics Data System (ADS)

    Xu, Shen; Wang, Xinwei

    2014-10-01

    This work develops an amplitude method for the photothermal (PT) technique to analyze the amplitude of the thermal radiation signal from the surface of a multilayered film sample. The thermal conductivity of any individual layer in the sample can be thereby determined. Chemical vapor deposited SiC film samples (sample 1 to 3: 2.5 to 3.5 μm thickness) with different ratios of Si to C and thermally oxidized SiO2 film (500 nm thickness) on silicon substrates are studied using the amplitude method. The determined thermal conductivity based on the amplitude method is 3.58, 3.59, and 2.59 W/mṡK for sample 1 to 3 with ±10% uncertainty. These results are verified by the phase shift method, and sound agreement is obtained. The measured thermal conductivity (k) of SiC is much lower than the value of bulk SiC. The large k reduction is caused by the structure difference revealed by Raman spectroscopy. For the SiO2 film, the thermal conductivity is measured to be 1.68 ± 0.17 W/mṡK, a little higher than that obtained by the phase shift method: 1.31 ± 0.06 W/mṡK. Sensitivity analysis of thermal conductivity and interfacial resistance is conducted for the amplitude method. Its weak-sensitivity to the thermal contact resistance, enables the amplitude method to determine the thermal conductivity of a film sample with little effect from the interface thermal resistance between the film and substrate. The normalized amplitude ratio at a high frequency to that at a low frequency provides a reliable way to evaluate the effusivity ratio of the film to that of the substrate.

  7. Composite edible films based on hydroxypropyl methyl cellulose reinforced with microcrystalline cellulose nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of th...

  8. Vibrational Spectroscopy in Ion-Irradiated Carbon-Based Thin Films

    NASA Astrophysics Data System (ADS)

    Compagnini, Giuseppe; Puglisi, Orazio; Baratta, Giuseppe A.; Strazzulla, Giovanni

    In this work we present and discuss some selected experiments on ion-irradiated carbon-based thin films. Vibrational spectroscopy is used to investigate the materials structure and to explore the mechanisms of ion beam-induced modifications in many carbon solids such as crystalline carbon and carbon alloys, hydrocarbon molecules and exotic carbon species.

  9. Effects of nanoclay type on the physical and antimicrobial properties of PVOH-based nanocomposite films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyvinyl alcohols-based nanocomposite films were fabricated with four types of montmorillonite (MMT) nanoclay, including 18-amino stearic acid (I.24TL), methyl, bis hydroxyethyl, octadecyl ammonium (I.34TCN), di-methyl, di-hydrogenated tallow ammonium/siloxane (I.44PSS) organically modified MMT, an...

  10. Inverted nanocone-based thin film photovoltaics with omnidirectionally enhanced performance.

    PubMed

    Lin, Qingfeng; Leung, Siu-Fung; Lu, Linfeng; Chen, Xiaoyuan; Chen, Zhuo; Tang, Haoning; Su, Wenjun; Li, Dongdong; Fan, Zhiyong

    2014-06-24

    Thin film photovoltaic (PV) technologies are highly attractive for low-cost solar energy conversion and possess a wide range of potential applications from building-integrated PV generation to portable power sources. Inverted nanocones (i-cones) have been demonstrated as a promising structure for practical thin film PV devices/modules, owning to their antireflection effect, self-cleaning function, superior mechanical robustness, and so forth. In this work, we have demonstrated a low-cost and scalable approach to achieve perfectly ordered i-cone arrays. Thereafter, thin film amorphous silicon (a-Si:H) solar cells have been fabricated based on various i-cone substrates with different aspect ratios and pitches to investigate the impact of geometry of i-cone nanostructures on the performance of the as-obtained PV devices. Intriguingly, the optical property investigations and device performance characterizations demonstrated that the 0.5-aspect-ratio i-cone-based device performed the best on both light absorption capability and energy conversion efficiency, which is 34% higher than that of the flat counterpart. Moreover, the i-cone-based device enhanced the light absorption and device performance over the flat reference device omnidirectionally. These results demonstrate a viable and convenient route toward scalable fabrication of nanostructures for high-performance thin film PV devices based on a broad range of materials.

  11. The investigation of an amidine-based additive in the perovskite films and solar cells

    NASA Astrophysics Data System (ADS)

    Zheng, Guanhaojie; Li, Liang; Wang, Ligang; Gao, Xingyu; Zhou, Huanping

    2017-01-01

    Here, we introduced acetamidine (C2H3N2H3, Aa)-based salt as an additive in the fabrication of perovskite (CH3NH3PbI3) layer for perovskite solar cells. It was found that as an amidine-based salt, this additive successfully enhanced the crystallinity of CH3NH3PbI3 and helped to form smooth and uniform films with comparable grain size and full coverage. Besides, perovskite film with additive showed a much longer carrier lifetime and an obviously enhanced open-circuit voltage in the corresponding devices, indicating that the acetamidine-based salt can reduce the carrier recombination in both the film and device. We further demonstrate a promising perovskite device based on acetamidine salt by using a configuration of ITO/TiO2/Perovskite/Spiro-OMeTAD/Au under < 150 °C fabrication condition. A power conversion efficiency (PCE) of 16.54% was achieved, which is much higher than the control device without acetamidine salt. These results present a simple method for film quality optimization of perovskite to further improve photovoltaic performances of perovskite solar cells, which may also benefit the exploration of A cation in perovskite materials. Project supported by Young Talent Thousand Program and ENN Group.

  12. Tuning the modulus of nanostructured ionomer films of core-shell nanoparticles based on poly(n-butyl acrylate).

    PubMed

    Musa, Muhamad S; Milani, Amir H; Shaw, Peter; Simpson, Gareth; Lovell, Peter A; Eaves, Elizabeth; Hodson, Nigel; Saunders, Brian R

    2016-10-04

    In this study we investigate the structure-mechanical property relationships for nanostructured ionomer films containing ionically crosslinked core-shell polymer nanoparticles based on poly(n-butyl acrylate) (PBA). Whilst nanostructured ionomer films of core-shell nanoparticles have been previously shown to have good ductility [Soft Matter, 2014, 10, 4725], the modulus values were modest. Here, we used BA as the primary monomer to construct core-shell nanoparticles that provided films containing nanostructured polymers with much higher glass transition temperature (Tg) values. The core-shell nanoparticles were synthesised using BA, acrylonitrile (AN), methacrylic acid (MAA) and 1,4-butanediol diacrylate (BDDA). Nanostructured ionomer films were prepared by casting aqueous core-shell nanoparticle dispersions in which the shell -COOH groups were neutralised with KOH and ZnO. The film mechanical properties were studied using dynamic mechanical analysis and tensile stress-strain measurements. The use of BA-based nanoparticles increased the Tg values to close to room temperature which caused a strong dependence of the film mechanical properties on the AN content and extent of neutralisation of the -COOH groups. The Young's modulus values for the films ranged from 1.0 to 86.0 MPa. The latter is the highest modulus reported for cast films of nanostructured ionomer films prepared from core-shell nanoparticles. The films had good ductility with strain-at-break values of at least 200%. The mechanical properties of the films were successfully modelled using the isostrain model. From comparison with an earlier butadiene-based system this study demonstrates that the nature of the primary monomer used to construct the nanoparticles can profoundly change the film mechanical properties. The aqueous nanoparticle dispersion approach used here provides a simple and versatile method to prepare high modulus elastomer films with tuneable mechanical properties.

  13. High Temperature - Thin Film Strain Gages Based on Alloys of Indium Tin Oxide

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J.; Cooke, James D.; Bienkiewicz, Joseph M.

    1998-01-01

    A stable, high temperature strain gage based on reactively sputtered indium tin oxide (ITO) was demonstrated at temperatures up to 1050 C. These strain sensors exhibited relatively large, negative gage factors at room temperature and their piezoresistive response was both linear and reproducible when strained up to 700 micro-in/in. When cycled between compression and tension, these sensors also showed very little hysteresis, indicating excellent mechanical stability. Thin film strain gages based on selected ITO alloys withstood more than 50,000 strain cycles of +/- 500 micro-in/in during 180 hours of testing in air at 1000 C, with minimal drift at temperature. Drift rates as low as 0.0009%/hr at 1000 C were observed for ITO films that were annealed in nitrogen at 700 C prior to strain testing. These results compare favorably with state of the art 10 micro-m thick PdCr films deposited by NASA, where drift rates of 0.047%/hr at 1050 C were observed. Nitrogen annealing not only produced the lowest drift rates to date, but also produce the largest dynamic gage factors (G = 23.5). These wide bandgap, semiconductor strain sensors also exhibited moderately low temperature coefficients of resistance (TCR) at temperatures up to 1100 C, when tested in a nitrogen ambient. A TCR of +230 ppm/C over the temperature range 200 C < T < 500 C and a TCR of -469 ppm/C over the temperature range 600 C < T < 1100 C was observed for the films tested in nitrogen. However, the resistivity behavior changed considerably when the same films were tested in oxygen ambients. A TCR of -1560 ppm/C was obtained over the temperature range of 200 C < T < 1100 C. When similar films were protected with an overcoat or when ITO films were prepared with higher oxygen contents in the plasma, two distinct TCR's were observed. At T < 800 C, a linear TCR of -210 ppm/C was observed and at T > 800 C, a linear TCR of -2170 DDm/C was observed. The combination of a moderately low TCR and a relatively large gage

  14. Chemical and biological sensors based on organic thin-film transistors.

    PubMed

    Mabeck, Jeffrey T; Malliaras, George G

    2006-01-01

    The application of organic thin-film transistors (OTFTs) to chemical and biological sensing is reviewed. This review covers transistors that are based on the modulation of current through thin organic semiconducting films, and includes both field-effect and electrochemical transistors. The advantages of using OTFTs as sensors (including high sensitivity and selectivity) are described, and results are presented for sensing analytes in both gaseous and aqueous environments. The primary emphasis is on the major developments in the field of OTFT sensing over the last 5-10 years, but some earlier work is discussed briefly to provide a foundation.

  15. Tunable Bloch surface waves in anisotropic photonic crystals based on lithium niobate thin films.

    PubMed

    Kovalevich, Tatiana; Ndao, Abdoulaye; Suarez, Miguel; Tumenas, Saulius; Balevicius, Zigmas; Ramanavicius, Arunas; Baleviciute, Ieva; Häyrinen, Markus; Roussey, Matthieu; Kuittinen, Markku; Grosjean, Thierry; Bernal, Maria-Pilar

    2016-12-01

    We present an original type of one-dimensional photonic crystal that includes one anisotropic layer made of a lithium niobate thin film. We demonstrate the versatility of such a device sustaining different Bloch surface waves (BSWs), depending on the orientation of the incident wave. By varying the orientation of the illumination of the multilayer, we measured an angle variation of 7° between the BSWs corresponding to the extraordinary and the ordinary index of the lithium niobate thin film. The potential of such a platform opens the way to novel tunable and active planar optics based on the electro- and thermo-optical properties of lithium niobate.

  16. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  17. Magnetic Sensor for Detection of Ground Vehicles Based on Microwave Spin Wave Generation in Ferrite Films

    DTIC Science & Technology

    2006-11-01

    kPMHHkHf 042, ππ γ += , 2 where γ/2π = 2.8 MHz/Oe is the gyromagnetic ratio, M0 is the saturation magnetization of the ferromagnetic material, and...measured by the frequency meter. Using typical values for high-quality magnetic films of yttrium-iron garnet ( YIG ) 4πM0 = 1750 Oe, H0 = 100 Oe... MAGNETIC SENSOR FOR DETECTION OF GROUND VEHICLES BASED ON MICROWAVE SPIN WAVE GENERATION IN FERRITE FILMS A. Slavin*, and V. Tiberkevich

  18. In-plane magnetized YIG substrates self-biased by SmCo based sputtered film coatings

    NASA Astrophysics Data System (ADS)

    Cadieu, F. J.; Hegde, H.; Schloemann, E.; van Hook, H. J.

    1994-11-01

    Highly anisotropic SmCo based films with the TbCu7-type structure have been sputter deposited directly onto YIG substrates. The SmCo crystallites have the c axes approximately randomly splayed about the substrate plane such that the easy direction of magnetization of the SmCo film is in the film plane. The in-plane static energy product of the SmCo film layers was about 16 MG Oe. In-plane vibrating sample magnetometer hysteresis loops of the SmCo film and YIG substrate exhibit a composite form with the YIG field reversal shifted into the first quadrant by the looping field from the SmCo film layer. Approximately 4x4 sq mm pieces of YIG substrate have been measured to determine the YIG bias field and field required for reverse saturation of the YIG as a function of the SmCo based film layer thickness to YIG substrate thickness. It is observed that for SmCo to YIG thickness ratios greater than 0.22, the looping field from the SmCo film layer is sufficient to saturate the YIG magnetization in the reverse direction. SmCo film thicknesses in the range from 80 to 120 microns have been used in these studies. Special boundary layers have been used to promote thick film adhesion to the YIG substrates.

  19. TiNi-based films for elastocaloric microcooling— Fatigue life and device performance

    NASA Astrophysics Data System (ADS)

    Ossmer, H.; Chluba, C.; Kauffmann-Weiss, S.; Quandt, E.; Kohl, M.

    2016-06-01

    The global trend of miniaturization and concomitant increase of functionality in microelectronics, microoptics, and various other fields in microtechnology leads to an emerging demand for temperature control at small scales. In this realm, elastocaloric cooling is an interesting alternative to thermoelectrics due to the large latent heat and good down-scaling behavior. Here, we investigate the elastocaloric effect due to a stress-induced phase transformation in binary TiNi and quaternary TiNiCuCo films of 20 μm thickness produced by DC magnetron sputtering. The mesoscale mechanical and thermal performance, as well as the fatigue behavior are studied by uniaxial tensile tests combined with infrared thermography and digital image correlation measurements. Binary films exhibit strong features of fatigue, involving a transition from Lüders-like to homogeneous transformation behavior within three superelastic cycles. Quaternary films, in contrast, show stable Lüders-like transformation without any signs of degradation. The elastocaloric temperature change under adiabatic conditions is -15 K and -12 K for TiNi and TiNiCuCo films, respectively. First-of-its-kind heat pump demonstrators are developed that make use of out-of-plane deflection of film bridges. Owing to their large surface-to-volume ratio, the demonstrators reveal rapid heat transfer. The TiNiCuCo-based devices, for instance, generate a temperature difference of 3.5 K within 13 s. The coefficients of performance of the demonstrators are about 3.

  20. Transglutaminase crosslinked pectin- and chitosan-based edible films: a review.

    PubMed

    Porta, Raffaele; Mariniello, Loredana; Di Pierro, Prospero; Sorrentino, Angela; Giosafatto, Concetta Valeria L

    2011-03-01

    The production of biodegradable and edible films with desired mechanical characteristics and gas barrier properties represents one of the most advanced challenges in the field of food wrapping and coating. New edible films can serve not only to provide food with physical protection but also to reduce loss of their moisture, to restrict absorption of oxygen, to lessen migration of lipids, to improve their mechanical handling features, and as materials, to apply in direct contact with internal food to realize a multilayer food packaging. Polymers derived from natural products, like carbohydrates and proteins, offer the greatest opportunities as component of edible films since their biodegradability and environmental compatibility are assured and they can also supplement the nutritional value of specific foods. However, excessive water solubility and poor water vapor barrier properties, and often poor mechanical resistance, have their application limited until the present time. Numerous studies have been carried out to improve their properties by preparing composite and multi-component films or by physically and chemically crosslinking their natural components. In the present review we summarize the main results obtained by crosslinking with the enzyme transglutaminase different proteins contained in multi-component pectin- and chitosan-based edible films, having the aim to create environmentally-friendly "bioplastics" with mechanical and permeability properties similar to the ones exhibited by plastics of petrochemical origin.

  1. ZrO2 thin-film-based sapphire fiber temperature sensor.

    PubMed

    Wang, Jiajun; Lally, Evan M; Wang, Xiaoping; Gong, Jianmin; Pickrell, Gary; Wang, Anbo

    2012-04-20

    A submicrometer-thick zirconium dioxide film was deposited on the tip of a polished C-plane sapphire fiber to fabricate a temperature sensor that can work to an extended temperature range. Zirconium dioxide was selected as the thin film material to fabricate the temperature sensor because it has relatively close thermal expansion to that of sapphire, but more importantly it does not react appreciably with sapphire up to 1800 °C. In order to study the properties of the deposited thin film, ZrO2 was also deposited on C-plane sapphire substrates and characterized by x-ray diffraction for phase analysis as well as by atomic force microscopy for analysis of surface morphology. Using low-coherence optical interferometry, the fabricated thin-film-based sapphire fiber sensor was tested in the lab up to 1200 °C and calibrated from 200° to 1000 °C. The temperature resolution is determined to be 5.8 °C when using an Ocean Optics USB4000 spectrometer to detect the reflection spectra from the ZrO2 thin-film temperature sensor.

  2. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels

    PubMed Central

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. PMID:26491304

  3. Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals.

    PubMed

    Pereda, Mariana; Dufresne, Alain; Aranguren, Mirta I; Marcovich, Norma E

    2014-01-30

    Composite films designed as potentially edible food packaging were prepared by casting film-forming emulsions based on chitosan/glycerol/olive oil containing dispersed cellulose nanocrystals (CNs). The combined use of cellulose nanoparticles and olive oil proved to be an efficient method to reduce the inherently high water vapor permeability of plasticized chitosan films, improving at the same time their tensile behavior. At the same time, it was found that the water solubility slightly decreased as the cellulose content increased, and further decreased with oil addition. Unexpectedly, opacity decreased as cellulose content increased, which balanced the reduced transparency due to lipid addition. Contact angle decreased with CN addition, but increased when olive oil was incorporated. Results from dynamic mechanical tests revealed that all films present two main relaxations that could be ascribed to the glycerol- and chitosan-rich phases, respectively. The response of plasticized chitosan-nanocellulose films (without lipid addition) was also investigated, in order to facilitate the understanding of the effect of both additives.

  4. Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose.

    PubMed

    Chaichi, Maryam; Hashemi, Maryam; Badii, Fojan; Mohammadi, Abdorreza

    2017-02-10

    In this study, for the first time, the edible pectin film was reinforced by crystalline nanocelullose (CNC). The incorporation of three levels of CNC (2, 5 and 7% w/w) on mechanical, thermal and water vapor barrier properties of pectin-based biodegradable film were investigated using solution casting evaporation method for film preparation. The optimum result was obtained through the nanocomposite film with 5% CNC in terms of mechanical and water vapor properties as the tensile strength increased up to 84% and water vapor permeability decreased by 40%. However, analysis of thermal properties indicated no significant effect of CNC on glass transition temperature. X-ray diffraction (XRD) studies illustrated a positive correlation between the degree of crystallinity and the CNC level. Moreover, AFM images presented good dispersion of CNC in the pectin matrix suggesting appropriate interaction between the filler and matrix, which is in agreement with mechanical consequences. According to the overall results, the reinforcement of pectin film with 5% CNC compared to other strengthening strategies had a higher effect and therefore it could be introduced as a good candidate for the development of strong, completely biodegradable and renewable food packaging material.

  5. Nondestructive pigment size detection method of mineral paint film based on image texture

    NASA Astrophysics Data System (ADS)

    Zhu, Wenfeng; Wan, Xiaoxia; Li, Junfeng; Li, Chan; Jin, Guonian; Liu, Qiang

    2017-01-01

    The existing methods-such as sieving, microscope, light scattering, sedimentation, and electrical induction for pigment size detection-require sampling or scattering the mineral pigments, which will inevitably cause damage to the films painted by mineral pigments. A new detection method based on run length texture analysis is proposed to nondestructively detect the pigment size in the mineral paint film. The films painted by mineral pigments with preknown pigment sizes are contactlessly captured by CCD microscope under diffused light. Gray transform, histogram equalization, and median filtering are implemented to preprocess the captured images, and then the run length texture parameters are extracted from the preprocessed images. A parametric relationship between the extracted parameters and the preknown size is established to predict the pigment size in mineral paint film nondestructively. Burnt carnelian is selected as the sample to verify the feasibility of the proposed method. Results show that the max detection error of the proposed method is 5.548 μm and can be applied to the size detection of the mineral pigments used in mineral paint film.

  6. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.

    PubMed

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature.

  7. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch.

    PubMed

    Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M

    2017-05-01

    Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films.

  8. Antifouling coatings based on covalently cross-linked agarose film via thermal azide-alkyne cycloaddition.

    PubMed

    Xu, Li Qun; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Fu, Guo Dong

    2016-05-01

    Coatings based on thin films of agarose-poly(ethylene glycol) (Agr-PEG) cross-linked systems are developed as environmentally-friendly and fouling-resistant marine coatings. The Agr-PEG cross-linked systems were prepared via thermal azide-alkyne cycloaddition (AAC) using azido-functionalized Agr (AgrAz) and activated alkynyl-containing poly(2-propiolamidoethyl methacrylate-co-poly(ethylene glycol)methyl ether methacrylate) P(PEMA-co-PEGMEMA) random copolymers as the precursors. The Agr-PEG cross-linked systems were further deposited onto a SS surface, pre-functionalized with an alkynyl-containing biomimetic anchor, dopamine propiolamide, to form a thin film after thermal treatment. The thin film-coated SS surfaces can effectively reduce the adhesion of marine algae and the settlement of barnacle cyprids. Upon covalent cross-linking, the covalently cross-linked Agr-PEG films coated SS surfaces exhibit good stability in flowing artificial seawater, and enhanced resistance to the settlement of barnacle cyprids, in comparison to that of the surfaces coated with physically cross-linked AgrAz films.

  9. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    SciTech Connect

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-14

    In{sub x}Ga{sub 1−x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18 }cm{sup −3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  10. Preparation of nano cellulose fibers and its application in kappa-carrageenan based film.

    PubMed

    Savadekar, N R; Karande, V S; Vigneshwaran, N; Bharimalla, A K; Mhaske, S T

    2012-12-01

    Bio-based nanocomposite films were successfully developed using nanofibrillated cellulose (NFC) as the reinforcing phase and kappa-carrageenan (KCRG) as the matrix. NFC was successfully synthesis from short stable cotton fibers by chemo-mechanical process. The bionanocomposites were prepared by incorporating 0.1, 0.2, 0.3, 0.4, 0.5, and 1wt% of the NFC into a KCRG matrix using a solution casting method there characterization was done in terms of thermal properties (DSC), morphology (SEM), water vapor transmission rate (WVTR), oxygen transmission rate (OTR), X-ray diffractograms (XRD), and tensile properties. The main conclusion arising from the analysis of the result is that the bionanocomposites containing 0.4wt% of NFC exhibited the highest enhancement in tensile strength it is almost 44% improvement. WVTR and OTR results showed improvement of all nanocomposite film compare to control KCRG film.

  11. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    SciTech Connect

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-27

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 {mu}A mM{sup -1} cm{sup -2} and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  12. Cheap color evaluation of dye-based pressure sensitive films for plantar studies

    NASA Astrophysics Data System (ADS)

    Yeong, W. K.; Ng, Tuck Wah

    2005-04-01

    Dye-based pressure sensitive films are advantageous in plantar pressure studies due to their of ease of use, costeffectiveness, and ability to produce measurements within the shoe. To circumvent the use of proprietary equipment and software to relate the dye stained film to load, an alternative approach of using a conventional flatbed scanner and generic image processing software is attempted here instead. The technique revealed high linear increasing and decreasing trends for the respective red and blue normalized intensities (correlation coefficient > 0.95) and low standard deviation in all readings (< 0.06) overall. By subtracting the blue from the red normalized intensity, it was discovered that the measurement sensitivity could be doubled. The results here confirm the viability of using a conventional flatbed scanner and generic image processing software to relate the dye stained pressure films to load. The adoption of this approach promises substantial cost savings.

  13. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    PubMed Central

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ∼150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at −6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging. PMID:25991874

  14. (100)-Textured KNN-based thick film with enhanced piezoelectric property for intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Benpeng; Zhang, Zhiqiang; Ma, Teng; Yang, Xiaofei; Li, Yongxiang; Shung, K. Kirk; Zhou, Qifa

    2015-04-01

    Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ˜150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at -6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging.

  15. Airflow energy harvesters of metal-based PZT thin films by self-excited vibration

    NASA Astrophysics Data System (ADS)

    Suwa, E.; Tsujiura, Y.; Kurokawa, F.; Hida, H.; Kanno, I.

    2014-11-01

    We developed self-excited vibration energy harvesters of Pb(Zr,Ti)O3 (PZT) thin films using airflow. To enhance the self-excited vibration, we used 30-μm-thick stainless steel (SS304) foils as base cantilevers on which PZT thin films were deposited by rf-magnetron sputtering. To compensate for the initial bending of PZT/SS304 unimorph cantilever due to the thermal stress, we deposited counter PZT thin films on the back of the SS304 cantilever. We evaluated power-generation performance and vibration mode of the energy harvester in the airflow. When the angle of attack (AOA) was 20° to 30°, large vibration was generated at wind speeds over 8 m/s. By FFT analysis, we confirmed that stable self-excited vibration was generated. At the AOA of 30°, the output power reached 19 μW at wind speeds of 12 m/s.

  16. Bio-inspired colorimetric film based on hygroscopic coloration of longhorn beetles (Tmesisternus isabellae)

    PubMed Central

    Seo, Han-bok; Lee, Seung-Yop

    2017-01-01

    Structure-dependent colour is caused by the interaction of light with photonic crystal structures rather than pigments. The elytra of longhorn beetles Tmesisternus isabellae appear to be iridescent green in a dry state and turn to red when exposed to humidity. Based on the hygroscopic colouration of the longhorn beetle, we have developed centimeter-scale colorimetric opal films using a novel self-assembly method. The micro-channel assisted assembly technique adopts both natural evaporation and rotational forced drying, enhancing the surface binding of silica particles and the packing density by reducing the lattice constant and structural defects. The fabricated large-scale photonic film changes its structural colour from green to red when exposed to water vapour, similarly to the colorimetric feature of the longhorn beetle. The humidity-dependent colour change of the opal film is shown to be reversible and durable over five-hundred cycles of wetting and drying. PMID:28322307

  17. Selective hydrogen gas sensor using CuFe2O4 nanoparticle based thin film

    NASA Astrophysics Data System (ADS)

    Haija, Mohammad Abu; Ayesh, Ahmad I.; Ahmed, Sadiqa; Katsiotis, Marios S.

    2016-04-01

    Hydrogen gas sensors based on CuFe2O4 nanoparticle thin films are presented in this work. Each gas sensor was prepared by depositing CuFe2O4 thin film on a glass substrate by dc sputtering inside a high vacuum chamber. Argon inert gas was used to sputter the material from a composite sputtering target. Interdigitated metal electrodes were deposited on top of the thin films by thermal evaporation and shadow masking. The produced sensors were tested against hydrogen, hydrogen sulfide, and ethylene gases where they were found to be selective for hydrogen. The sensitivity of the produced sensors was maximum for hydrogen gas at 50 °C. In addition, the produced sensors exhibit linear response signal for hydrogen gas with concentrations up to 5%. Those sensors have potential to be used for industrial applications because of their low power requirement, functionality at low temperatures, and low production cost.

  18. Enhancement of second harmonic generation in nanocrystalline SiC films based natural microcavities

    NASA Astrophysics Data System (ADS)

    Semenov, A. V.; Skorik, S. N.; Jedryka, J.; Ozga, K.; Kityk, I. V.

    2017-01-01

    We explore second harmonic generation (SHG) features of nanocrystalline SiC films based natural microcavities (MC) with resonance modes in the vicinity of the fundamental radiation at 1064 nm wavelength for nanocrystalline films of 24R, 27R polytypes characterized by high radiation doubling frequency coefficients. The natural walls of the SiC NC serve a role of cavities. To learn the nonlinear resonance features of the MC near the fundamental wavelength 1064 nm three series of the nc-SiC films indicated as 7495, 7517 and 7522 with thicknesses varying within 250-600 nm were fabricated. The role of the coherent and non-coherent contributions with taking into an account of cavity resonance modes is discussed. The giant increase of the SHG was achieved which may be used for further fabrication of the frequency transducers and nonlinear optical triggers.

  19. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase.

    PubMed

    Li, Xinyu; Zhou, Yunlong; Zheng, Zhaozhu; Yue, Xiuli; Dai, Zhifei; Liu, Shaoqin; Tang, Zhiyong

    2009-06-02

    A blood glucose sensor has been developed based on the multilayer films of CdTe semiconductor quantum dots (QDs) and glucose oxidase (GOD) by using the layer-by-layer assembly technique. When the composite films were contacted with glucose solution, the photoluminescence of QDs in the films was quickly quenched because the enzyme-catalyzed reaction product (H2O2) of GOD and glucose gave rise to the formation of surface defects on QDs. The quenching rate was a function of the concentration of glucose. The linear range and sensitivity for glucose determination could be adjusted by controlling the layers of QDs and GOD. The biosensor was used to successfully determine the concentration of blood glucose in real serum samples without sample pretreatment and exhibited satisfactory reproducibility and accuracy.

  20. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-05

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials.

  1. Reactive ion etching of indium-tin oxide films by CCl4-based Inductivity Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Poletayev, Sergey D.; Fomchenkov, Sergey; Khonina, Svetlana N.; Skidanov, Roman V.; Kazanskiy, Nikolay L.

    2016-08-01

    Indium tin oxide (ITO) films have been a subject of extensive studies in fabrication of micro-electronic devices for opto-electronic applications ranging from anti-reflection coatings to transparent contacts in photovoltaic devices. In this paper, a new and effective way of reactive ion etching of a conducting indium-tin oxide (ITO) film with Carbon tetrachloride (CCl4) has been investigated. CCl4 plasma containing an addition of gases mixture of dissociated argon and oxygen were used. Oxygen is added to increase the etchant percentage whereas argon was used for stabilization of plasma. The etching characteristics obtained with these gaseous mixtures were explained based on plasma etch chemistry and etching regime of ITO films. An etch rate as high as ∼20 nm/min can be achieved with a controlled process parameter such as power density, total flow rate, composition of reactive gases gas and pressure. Our Investigation represents some of the extensive work in this area.

  2. Semiconducting properties of amorphous GaZnSnO thin film based on combinatorial electronic structures

    SciTech Connect

    Kim, B. K.; Park, J. S.; Kim, D. H.; Chung, K. B.

    2014-05-05

    Semiconducting properties and electronic structures of amorphous GaZnSnO (GZTO) thin films are investigated with respect to metal cationic composition. An increase of the cationic Sn ratio resulted in an increase of the carrier concentration and a decrease of the mobility of the films. Combinatorial analysis revealed that the electrical characteristics of GZTO films are strongly correlated to changes in electronic structure. The increase in carrier concentration is related to the generation of vacancies by the changes of oxygen coordination around the cationic metal and the shallow band edge state below the conduction band. On the other hand, the decrease of mobility can be explained by the deep band edge state, and the difference between the experimental conduction band and simulated conduction band by the combinatorial electronic structure based on the chemical composition.

  3. Bio-inspired colorimetric film based on hygroscopic coloration of longhorn beetles (Tmesisternus isabellae)

    NASA Astrophysics Data System (ADS)

    Seo, Han-Bok; Lee, Seung-Yop

    2017-03-01

    Structure-dependent colour is caused by the interaction of light with photonic crystal structures rather than pigments. The elytra of longhorn beetles Tmesisternus isabellae appear to be iridescent green in a dry state and turn to red when exposed to humidity. Based on the hygroscopic colouration of the longhorn beetle, we have developed centimeter-scale colorimetric opal films using a novel self-assembly method. The micro-channel assisted assembly technique adopts both natural evaporation and rotational forced drying, enhancing the surface binding of silica particles and the packing density by reducing the lattice constant and structural defects. The fabricated large-scale photonic film changes its structural colour from green to red when exposed to water vapour, similarly to the colorimetric feature of the longhorn beetle. The humidity-dependent colour change of the opal film is shown to be reversible and durable over five-hundred cycles of wetting and drying.

  4. A Facile Reduction Method for Roll-to-Roll Production of High Performance Graphene-Based Transparent Conductive Films.

    PubMed

    Ning, Jing; Hao, Long; Jin, Meihua; Qiu, Xiongying; Shen, Yudi; Liang, Jiaxu; Zhang, Xinghao; Wang, Bin; Li, Xianglong; Zhi, Linjie

    2017-03-01

    A facile roll-to-roll method is developed for fabricating reduced graphene oxide (rGO)-based flexible transparent conductive films. A Sn(2+) /ethanol reduction system and a rationally designed fast coating-drying-washing technique are proven to be highly efficient for low-cost continuous production of large-area rGO films and patterned rGO films, extremely beneficial toward the manufacture of flexible photoelectronic devices.

  5. Novel chitosan-based films cross-linked by genipin with improved physical properties.

    PubMed

    Jin, J; Song, M; Hourston, D J

    2004-01-01

    Novel cross-linked chitosan-based films were prepared using the solution casting technique. A naturally occurring and nontoxic cross-linking agent, genipin, was used to form the chitosan and chitosan/poly(ethylene oxide) (PEO) blend networks, where two types of PEO were used, one with a molecular weight of 20 000 g/mol (HPEO) and the other of 600 g/mol (LPEO). Genipin is used in traditional Chinese medicine and extracted from gardenia fruit. Importantly, it overcomes the problem of physiological toxicity inherent in the use of some common synthetic chemicals as cross-linking agents. The mechanical properties and the stability in water of cross-linked and un-crosslinked chitosan and chitosan/PEO blend films were investigated. It was shown that, compared to the transparent yellow, un-cross-linked chitosan/PEO blend films, the genipin-cross-linked chitosan-based film, blue in color, was more elastic, was more stable, and had better mechanical properties. Genipin-cross-linking produced chitosan networks that were insoluble in acidic and alkaline solutions but were able to swell in these aqueous media. The swelling characteristics of the films exhibit sensitivity to the environmental pH and temperature. The surface properties of the films were also examined by contact angle measurements using water and mixtures of water/ethanol. The results showed that, with the one exception of cross-linked pure chitosan in 100% water, the cross-linked chitosan and chitosan/PEO blends were more hydrophobic than un-crosslinked ones.

  6. Color-encoded microcarriers based on nano-silicon dioxide film for multiplexed immunoassays.

    PubMed

    Li, Qiang; Zhang, Kaihuan; Wang, Tongzhou; Zhou, Xinying; Wang, Jia; Wang, Chen; Lin, Haixiao; Li, Xin; Lu, Ying; Huang, Guoliang

    2012-08-21

    Multiplexed analysis allows researchers to obtain high-density information with minimal assay time, sample volume and cost. Currently, microcarrier or particle-based approaches for multiplexed analysis involve complicated or expensive encoding and decoding processes. In this paper, a novel optical encoding technique based on nano-silicon dioxide film is presented. Microcarriers composed of thermally grown silicon dioxide (SiO(2)) film and monocrystalline silicon (Si) substrate were fabricated. The nano-silicon dioxide film exhibited unique surface color by low-coherence interference. Hence the colors can be used for encoding at least 100 microcarriers loaded with films of different thickness. We demonstrated that color-encoded microcarriers loaded with antigens could be used for multiplexed immunoassays to detect goat anti-human IgG, goat anti-mouse IgG and goat anti-rabbit IgG, with fluorescent detection as the interrogating approach. This microcarrier-based method also exhibited improved analytical performance compared with a microarray technique. This approach will provide new opportunities for multiplexed target assay development.

  7. Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.; Deadmore, Daniel L.

    1988-01-01

    Thin silver films, 250 to 3500 A thick, were sputtered onto PS200, a plasma sprayed, chromium carbide based solid lubricant coating, to reduce run-in wear and improve tribological properties. The coating contains bonded chromium carbide as the wear resistant base stock with silver and barium fluoride/calcium fluoride eutectic added as low and high temperature lubricants, respectively. Potential applications for the PS200 coating are cylinder wall/piston ring lubrication for Stirling engines and foil bearing journal lubrication. In this preliminary program, the silver film overlay thickness was optimized based on tests using a pin-on-disk tribometer. The friction and wear studies were performed in a helium atmosphere at temperatures from 25 to 760 C with a sliding velocity of 2.7 m/s under a 4.9 N load. Films between 1000 and 1500 A provide the best lubrication of the counterface material. The films enrich the sliding surface with lubricant and reduce the initial abrasiveness of the as ground, plasma-sprayed coating surface, thus reducing wear.

  8. Sputtered silver films to improve chromium carbide based solid lubricant coatings for use to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.; Deadmore, Daniel L.

    1988-01-01

    Thin silver films, 250 to 3500 A thick, were sputtered onto PS200, a plasma sprayed, chromium carbide based solid lubricant coating, to reduce run-in wear and improve tribological properties. The coating contains bonded chromium carbide as the wear resistant base stock with silver and barium fluoride/calcium fluoride eutectic added as low and high temperature lubricants respectively. Potential applications for the PS200 coating are cylinder wall/piston ring lubrication for Stirling engines and foil bearing journal lubrication. In this preliminary program, the silver film overlay thickness was optimized based on tests using a pin-on-disk tribometer. The friction and wear studies were performed in a helium atmosphere at temperatures from 25 to 760 C with a sliding velocity of 2.7 m/s under a 4.9 N load. Films between 1000 and 1500 A provide the best lubrication of the counterface material. The films enrich the sliding surface with lubricant and reduce the initial abrasiveness of the as ground, plasma-sprayed coating surface, thus reducing wear.

  9. Inorganic Resists Based On Photo-Doped As-S Films

    NASA Astrophysics Data System (ADS)

    Firth, A. P.; Ewen, P. J.; Owen, A. E.; Huntley, C. M.

    1985-04-01

    In recent years there has been considerable interest in inorganic resist systems based on the photo-doping of amorphous chalcogenide films, the majority of the research being devoted to Ge-Se films. This paper presents a detailed investigation of inorganic resists based on the photo-doping of Ag into As-S films. It is shown that high resolution patterns can be produced in such resists using holography or optical lithography and that they are compatible with wet-chemical or plasma etching. Structural studies using Raman spectro-scopy indicate that for best resolution the composition of the As-S film should be close to AS33S67 since on photo-doping it will yield a single-phase homogeneous material. A possible mechanism for the photo-doping process is described based on a tarnishing-type photo-chemical reaction. It is shown that the actinic radiation initiating the photo-dissolution effect is absorbed primarily in the photo-doped layer, close to the interface with the undoped As-S region.

  10. Lonophore-based lithium ion film optode realizing multiple color variations utilizing digital color analysis.

    PubMed

    Suzuki, Koji; Hirayama, Etsuko; Sugiyama, Tsunemi; Yasuda, Keiko; Okabe, Hiroaki; Citterio, Daniel

    2002-11-15

    Digital color analysis (DCA), utilizing colors themselves or digital information of colors, can not only be applied to various quantitative analysis using chromaticity coordinates but can also be used to develop suitable sensors for visual colorimetry based on the characteristics of human visual perception by virtual simulations based on digital color information. To achieve a clear visual color variation for lithium ion determination, we designed and prepared a color-changeable film sensor (film optode) by the use of two kinds of lipophilic dyes, KD-C4 and KD-M11, whose colors and pKa values are different. This film sensor is a plasticized PVC membrane containing the mixture of two kinds of dyes with the lithium ionophore TTD14C4 and the lipophilic anionic additive tetrakis-[3,5-bis(trisfluoromethyl)phenyl]borate sodium salt dihydrate. The simulation of the color variation using the mixed dyes was evaluated by plotting the values on a uniform chromaticity scale diagram in a*b* coordinates, after converting the tristimulus values of each dye into its L*a*b* values. When the lithium ion concentration was actually determined by the PVC film optode containing the mixed dyes whose molecular ratio of KD-C4/KD-Ml 1 was 3:1, the hues of red --> orange --> yellow --> green --> blue could be realized in the range of 10(-6)-1 M. This observed color variation was similar to the result of the virtual simulation based on DCA.

  11. SU-F-18C-10: Clinical Implementation of Radiochromic Film Based CTDI Measurements

    SciTech Connect

    Quintero, C; Seuntjens, J; Devic, S; Tomic, N; DeBlois, F

    2014-06-15

    Purpose: To evaluate accuracy and reproducibility of a radiochromic film-based protocol to measure computer tomography dose index (CTDI) as a part of annual QA on CT scanners and kV CBCT systems attached to linear accelerators. Methods: Energy dependence of Gafchromic XR-QA2(R) film model was tested over imaging beam qualities (50 – 140 kVp). Film pieces were irradiated in air to known values of air kerma in air (up to 10 cGy). Change in film reflectance was determined with an in-house written code using images produced by a flatbed document scanner. Calibration curves for each beam quality were created, and film responses for same air-kerma values were compared.Sets of film strips were placed into holes of a CTDI phantom and irradiated for several clinical scanning protocols on CT-simulators and CBCT systems. Film reflectance change was converted into dose to water and used to calculate CTDIvol values. Measured CTDIvol values were compared to tabulated CTDIvol values. Results: Average variations of ±5.2% in the mean film reflectance change were observed in the energy range of 80 to 140 keV, and 11.1% between 50 and 140 keV. The averaged measured CTDI values presented a mean variation for the same machine and protocol of 2.6%. However, measured CTDI values were in average 10% lower than tabulated CTDI values for CT-simulators, and 44% higher for CBCT systems. Conclusion: We found that in relatively broad range of beam qualities used in diagnostic radiology variation of film response is within ±5% resulting in ±15% systematic error in dose estimates if a single calibration curve is used. Relatively large discrepancy between measured and tabulated CTDI values for different protocols and imaging systems used within radiotherapy department strongly support the trend towards replacing CTDI value with equilibrium dose measurement in the center of cylindrical phantom as suggested by TG-111. This work was supported by the Natural Sciences and Engineering Research

  12. Design optimization of thin-film/wafer-based tandem junction solar cells using analytical modeling

    NASA Astrophysics Data System (ADS)

    Davidson, Lauren; Toor, Fatima

    2016-03-01

    Several research groups are developing solar cells of varying designs and materials that are high efficiency as well as cost competitive with the single junction silicon (Si) solar cells commercially produced today. One of these solar cell designs is a tandem junction solar cell comprised of perovskite (CH3NH3PbI3) and silicon (Si). Loper et al.1 was able to create a 13.4% efficient tandem cell using a perovskite top cell and a Si bottom cell, and researchers are confident that the perovskite/Si tandem cell can be optimized in order to reach higher efficiencies without introducing expensive manufacturing processes. However, there are currently no commercially available software capable of modeling a tandem cell that is based on a thin-film based bottom cell and a wafer-based top cell. While PC1D2 and SCAPS3 are able to model tandem cells comprised solely of thin-film absorbers or solely of wafer-based absorbers, they result in convergence errors if a thin-film/wafer-based tandem cell, such as the perovskite/ Si cell, is modeled. The Matlab-based analytical model presented in this work is capable of modeling a thin-film/wafer-based tandem solar cell. The model allows a user to adjust the top and bottom cell parameters, such as reflectivity, material bandgaps, donor and acceptor densities, and material thicknesses, in order to optimize the short circuit current, open circuit voltage, and quantum efficiency of the tandem solar cell. Using the Matlab-based analytical model, we were able optimize a perovskite/Si tandem cell with an efficiency greater than 30%.

  13. Wound healing efficacy of a chitosan-based film-forming gel containing tyrothricin in various rat wound models.

    PubMed

    Kim, Ju-Young; Jun, Joon-Ho; Kim, Sang-Joon; Hwang, Kyu-Mok; Choi, Sung Rak; Han, Sang Duk; Son, Mi-Won; Park, Eun-Seok

    2015-02-01

    The objective of this study was to evaluate the healing effects of a chitosan-based, film-forming gel containing tyrothricin (TYR) in various rat wound models, including burn, abrasion, incision, and excision models. After solidification, the chitosan film layer successfully covered and protected a variety of wounds. Wound size was measured at predetermined timepoints after wound induction, and the effects of the film-forming gel were compared with negative (no treatment) and positive control groups (commercially available sodium fusidate ointment and TYR gel). In burn, abrasion and excision wound models, the film-forming gel enabled significantly better healing from 1 to 6 days after wound induction, compared with the negative control. Importantly, the film-forming gel also enabled significantly better healing compared with the positive control treatments. In the incision wound model, the breaking strength of wound strips from the group treated with the film-forming gel was significantly increased compared with both the negative and positive control groups. Histological studies revealed advanced granulation tissue formation and epithelialization in wounds treated with the film-forming gel. We hypothesize that the superior healing effects of the film-forming gel are due to wound occlusion, conferred by the chitosan film. Our data suggest that this film-forming gel may be useful in treating various wounds, including burn, abrasion, incision and excision wounds.

  14. A back-illuminated heterojunctions ultraviolet photodetector based on ZnO film

    NASA Astrophysics Data System (ADS)

    Jiang, Xiandong; Li, Dawei; Yang, Wenjun; Wang, Jiming; Lin, Xu; Huang, Ziqiang

    2010-10-01

    In this paper, we present the investigation of a back-illuminated heterojunctions ultraviolet detector, which were fabricated by depositing Ag-doped ZnO based (ZnO-TiO2) thin film on transparent conductive layer of ITO coated quartz substrate though the reactive radio-frequency (RF) magnetron sputtering at higher oxygen pressure. The p-n junction characteristic is confirmed by current-voltage (I-V) measurements. The turn-on voltage was 6 V, with a low leakage current under reverse bias (-5 V), corresponding values was just 0.2 nA . It is clearly showed the rectifying characteristics of typical p-n junction's rectifier behaviors. The structural, component and UV (365 nm, 1400 μW/cm2) photoresponse properties were explored by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), X-ray energy dispersive spectrometer (EDS) and Tektronix oscilloscope. The results showed that: Ag in substitution form in the ZnO lattice, Ag doping concentration is low, the sample is highly c-axis preferred orientation, With the increase in doped Ag volume, ZnO film of 002 peaks no longer appear. The surface of the Ag doped ZnO based film exhibits a smooth surface and very dense structure, no visible pores and defects over the film were observed.The ultraviolet response time measurements showed rise and fall time are several seconds Level.

  15. Starch-based Antimicrobial Films Incorporated with Lauric Acid and Chitosan

    NASA Astrophysics Data System (ADS)

    Salleh, E.; Muhamad, I. I.

    2010-03-01

    Antimicrobial (AM) packaging is one of the most promising active packaging systems. Starch-based film is considered an economical material for antimicrobial packaging. This study aimed at the development of food packaging based on wheat starch incorporated with lauric acid and chitosan as antimicrobial agents. The purpose is to restrain or inhibit the growth of spoilage and/or pathogenic microorganisms that are contaminating foods. The antimicrobial effect was tested on B. substilis and E. coli. Inhibition of bacterial growth was examined using two methods, i.e. zone of inhibition test on solid media and liquid culture test (optical density measurements). The control and AM films (incorporated with chitosan and lauric acid) were produced by casting method. From the observations, AM films exhibited inhibitory zones. Interestingly, a wide clear zone on solid media was observed for B. substilis growth inhibition whereas inhibition for E. coli was not as effective as B. substilis. From the liquid culture test, the AM films clearly demonstrated a better inhibition against B. substilis than E. coli.

  16. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing.

    PubMed

    Thu, Hnin-Ei; Zulfakar, Mohd Hanif; Ng, Shiow-Fern

    2012-09-15

    The aims of this research were to develop a novel bilayer hydrocolloid film based on alginate and to investigate its potential as slow-release wound healing vehicle. The bilayer is composed of an upper layer impregnated with model drug (ibuprofen) and a drug-free lower layer, which acted as a rate-controlling membrane. The thickness uniformity, solvent loss, moisture vapour transmission rate (MVTR), hydration rate, morphology, rheology, mechanical properties, in vitro drug release and in vivo wound healing profiles were investigated. A smooth bilayer film with two homogenous distinct layers was produced. The characterisation results showed that bilayer has superior mechanical and rheological properties than the single layer films. The bilayers also showed low MVTR, slower hydration rate and lower drug flux in vitro compared to single layer inferring that bilayer may be useful for treating low suppurating wounds and suitable for slow release application on wound surfaces. The bilayers also provided a significant higher healing rate in vivo, with well-formed epidermis with faster granulation tissue formation when compared to the controls. In conclusions, a novel alginate-based bilayer hydrocolloid film was developed and results suggested that they can be exploited as slow-release wound dressings.

  17. Thin-film encapsulation of the air-sensitive organic-based ferrimagnet vanadium tetracyanoethylene

    SciTech Connect

    Froning, I. H.; Harberts, M.; Yu, H.; Johnston-Halperin, E.; Lu, Y.; Epstein, A. J.

    2015-03-23

    The organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]{sub x∼2}) has demonstrated potential for use in both microwave electronics and spintronics due to the combination of high temperature magnetic ordering (T{sub C} > 600 K), extremely sharp ferromagnetic resonance (peak to peak linewidth of 1 G), and low-temperature conformal deposition via chemical vapor deposition (deposition temperature of 50 °C). However, air-sensitivity leads to the complete degradation of the films within 2 h under ambient conditions, with noticeable degradation occurring within 30 min. Here, we demonstrate encapsulation of V[TCNE]{sub x∼2} thin films using a UV-cured epoxy that increases film lifetime to over 710 h (30 days) as measured by the remanent magnetization. The saturation magnetization and Curie temperature decay more slowly than the remanence, and the coercivity is unchanged after 340 h (14 days) of air exposure. Fourier transform infrared spectroscopy indicates that the epoxy does not react with the film, and magnetometry measurements show that the presence of the epoxy does not degrade the magnetic properties. This encapsulation strategy directly enables a host of experimental protocols and investigations not previously feasible for air-sensitive samples and lays the foundation for the development of practical applications for this promising organic-based magnetic material.

  18. Relaxation Kinetic Study of Eudragit® NM30D Film Based on Complex Modulus Formalism.

    PubMed

    Penumetcha, Sai Sumana; Byrn, Stephen R; Morris, Kenneth R

    2015-10-01

    This study is aimed at resolving and characterizing the primary (α) and secondary relaxations (β) in Eudragit® NM30D film based on apparent activation energies derived from complex modulus formalism using dielectric analysis (DEA). The glass transition (T g) of the film was determined using differential scanning calorimetry (DSC). The α relaxation corresponding to T g and the β relaxations occurring below T g were probed using DEA. The occurrence of α and β relaxations in Eudragit® NM30D film was elucidated using the complex modulus of the dielectric response employing loss modulus and permittivity data. Activation energies of these relaxations and the fundamental frequency so determined support the assignment of the relaxation pattern in the Eudragit® NM30D film. DEA methodology of the complex modulus formalism is a useful tool for differentiating the α and β relaxation kinetics in Eudragits® not easily studied using traditional thermal methods such as DSC. The kinetics associated with α and β relaxations so determined will provide formulation design support for solid orals that incorporate Eudragit® polymers. As mobility changes can affect stability and diffusion, the dipolar α and β relaxations revealed through DEA analysis may enable a better correlation to functionality of Eudragit® based pharmaceutical dosage forms.

  19. Thin and Thick Films Materials Based Interconnection Technology for 500 C Operation

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.

    2000-01-01

    Precious metal based thick-film material was used for printed wires, wire bond pads, test lead-attach, and conductive die-attach for high temperature (up to 500 C and beyond) chip level packaging. A SiC Shottky diode with a thin-film coated backside was attached to a ceramic substrate using precious metal based thick-film material as the electrically conductive bonding layer. After a 500-hour soak test in atmospheric oxygen, these basic interconnection elements, including attached test diode survived both electrically and mechanically. The electrical resistance of these interconnections (including thick-film printed wire/pad, bonded wire, and test lead attach) were low and stable at both room and elevated temperatures. The electrical resistance of the die-attach interface estimated by I-V characterization of the attached diode, during and after high temperature heat treatment, remained desirably low over the course of a 500-hour anneal. Further durability testing of this high temperature interconnection technology is also discussed.

  20. Solution-based electrical doping of semiconducting polymer films over a limited depth.

    PubMed

    Kolesov, Vladimir A; Fuentes-Hernandez, Canek; Chou, Wen-Fang; Aizawa, Naoya; Larrain, Felipe A; Wang, Ming; Perrotta, Alberto; Choi, Sangmoo; Graham, Samuel; Bazan, Guillermo C; Nguyen, Thuc-Quyen; Marder, Seth R; Kippelen, Bernard

    2017-04-01

    Solution-based electrical doping protocols may allow more versatility in the design of organic electronic devices; yet, controlling the diffusion of dopants in organic semiconductors and their stability has proven challenging. Here we present a solution-based approach for electrical p-doping of films of donor conjugated organic semiconductors and their blends with acceptors over a limited depth with a decay constant of 10-20 nm by post-process immersion into a polyoxometalate solution (phosphomolybdic acid, PMA) in nitromethane. PMA-doped films show increased electrical conductivity and work function, reduced solubility in the processing solvent, and improved photo-oxidative stability in air. This approach is applicable to a variety of organic semiconductors used in photovoltaics and field-effect transistors. PMA doping over a limited depth of bulk heterojunction polymeric films, in which amine-containing polymers were mixed in the solution used for film formation, enables single-layer organic photovoltaic devices, processed at room temperature, with power conversion efficiencies up to 5.9 ± 0.2% and stable performance on shelf-lifetime studies at 60 °C for at least 280 h.