Model-based query language for analyzing clinical processes.
Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris
2013-01-01
Nowadays large databases of clinical process data exist in hospitals. However, these data are rarely used in full scope. In order to perform queries on hospital processes, one must either choose from the predefined queries or develop queries using MS Excel-type software system, which is not always a trivial task. In this paper we propose a new query language for analyzing clinical processes that is easily perceptible also by non-IT professionals. We develop this language based on a process modeling language which is also described in this paper. Prototypes of both languages have already been verified using real examples from hospitals.
Graphical modeling and query language for hospitals.
Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris
2013-01-01
So far there has been little evidence that implementation of the health information technologies (HIT) is leading to health care cost savings. One of the reasons for this lack of impact by the HIT likely lies in the complexity of the business process ownership in the hospitals. The goal of our research is to develop a business model-based method for hospital use which would allow doctors to retrieve directly the ad-hoc information from various hospital databases. We have developed a special domain-specific process modelling language called the MedMod. Formally, we define the MedMod language as a profile on UML Class diagrams, but we also demonstrate it on examples, where we explain the semantics of all its elements informally. Moreover, we have developed the Process Query Language (PQL) that is based on MedMod process definition language. The purpose of PQL is to allow a doctor querying (filtering) runtime data of hospital's processes described using MedMod. The MedMod language tries to overcome deficiencies in existing process modeling languages, allowing to specify the loosely-defined sequence of the steps to be performed in the clinical process. The main advantages of PQL are in two main areas - usability and efficiency. They are: 1) the view on data through "glasses" of familiar process, 2) the simple and easy-to-perceive means of setting filtering conditions require no more expertise than using spreadsheet applications, 3) the dynamic response to each step in construction of the complete query that shortens the learning curve greatly and reduces the error rate, and 4) the selected means of filtering and data retrieving allows to execute queries in O(n) time regarding the size of the dataset. We are about to continue developing this project with three further steps. First, we are planning to develop user-friendly graphical editors for the MedMod process modeling and query languages. The second step is to do evaluation of usability the proposed language and tool involving the physicians from several hospitals in Latvia and working with real data from these hospitals. Our third step is to develop an efficient implementation of the query language.
Object-Oriented Query Language For Events Detection From Images Sequences
NASA Astrophysics Data System (ADS)
Ganea, Ion Eugen
2015-09-01
In this paper is presented a method to represent the events extracted from images sequences and the query language used for events detection. Using an object oriented model the spatial and temporal relationships between salient objects and also between events are stored and queried. This works aims to unify the storing and querying phases for video events processing. The object oriented language syntax used for events processing allow the instantiation of the indexes classes in order to improve the accuracy of the query results. The experiments were performed on images sequences provided from sport domain and it shows the reliability and the robustness of the proposed language. To extend the language will be added a specific syntax for constructing the templates for abnormal events and for detection of the incidents as the final goal of the research.
A Natural Language Interface Concordant with a Knowledge Base.
Han, Yong-Jin; Park, Seong-Bae; Park, Se-Young
2016-01-01
The discordance between expressions interpretable by a natural language interface (NLI) system and those answerable by a knowledge base is a critical problem in the field of NLIs. In order to solve this discordance problem, this paper proposes a method to translate natural language questions into formal queries that can be generated from a graph-based knowledge base. The proposed method considers a subgraph of a knowledge base as a formal query. Thus, all formal queries corresponding to a concept or a predicate in the knowledge base can be generated prior to query time and all possible natural language expressions corresponding to each formal query can also be collected in advance. A natural language expression has a one-to-one mapping with a formal query. Hence, a natural language question is translated into a formal query by matching the question with the most appropriate natural language expression. If the confidence of this matching is not sufficiently high the proposed method rejects the question and does not answer it. Multipredicate queries are processed by regarding them as a set of collected expressions. The experimental results show that the proposed method thoroughly handles answerable questions from the knowledge base and rejects unanswerable ones effectively.
Generating and Executing Complex Natural Language Queries across Linked Data.
Hamon, Thierry; Mougin, Fleur; Grabar, Natalia
2015-01-01
With the recent and intensive research in the biomedical area, the knowledge accumulated is disseminated through various knowledge bases. Links between these knowledge bases are needed in order to use them jointly. Linked Data, SPARQL language, and interfaces in Natural Language question-answering provide interesting solutions for querying such knowledge bases. We propose a method for translating natural language questions in SPARQL queries. We use Natural Language Processing tools, semantic resources, and the RDF triples description. The method is designed on 50 questions over 3 biomedical knowledge bases, and evaluated on 27 questions. It achieves 0.78 F-measure on the test set. The method for translating natural language questions into SPARQL queries is implemented as Perl module available at http://search.cpan.org/ thhamon/RDF-NLP-SPARQLQuery.
Finding Relevant Data in a Sea of Languages
2016-04-26
full machine-translated text , unbiased word clouds , query-biased word clouds , and query-biased sentence...and information retrieval to automate language processing tasks so that the limited number of linguists available for analyzing text and spoken...the crime (stock market). The Cross-LAnguage Search Engine (CLASE) has already preprocessed the documents, extracting text to identify the language
Luo, Yuan; Szolovits, Peter
2016-01-01
In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen's interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen's relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions.
Luo, Yuan; Szolovits, Peter
2016-01-01
In natural language processing, stand-off annotation uses the starting and ending positions of an annotation to anchor it to the text and stores the annotation content separately from the text. We address the fundamental problem of efficiently storing stand-off annotations when applying natural language processing on narrative clinical notes in electronic medical records (EMRs) and efficiently retrieving such annotations that satisfy position constraints. Efficient storage and retrieval of stand-off annotations can facilitate tasks such as mapping unstructured text to electronic medical record ontologies. We first formulate this problem into the interval query problem, for which optimal query/update time is in general logarithm. We next perform a tight time complexity analysis on the basic interval tree query algorithm and show its nonoptimality when being applied to a collection of 13 query types from Allen’s interval algebra. We then study two closely related state-of-the-art interval query algorithms, proposed query reformulations, and augmentations to the second algorithm. Our proposed algorithm achieves logarithmic time stabbing-max query time complexity and solves the stabbing-interval query tasks on all of Allen’s relations in logarithmic time, attaining the theoretic lower bound. Updating time is kept logarithmic and the space requirement is kept linear at the same time. We also discuss interval management in external memory models and higher dimensions. PMID:27478379
Query Language for Location-Based Services: A Model Checking Approach
NASA Astrophysics Data System (ADS)
Hoareau, Christian; Satoh, Ichiro
We present a model checking approach to the rationale, implementation, and applications of a query language for location-based services. Such query mechanisms are necessary so that users, objects, and/or services can effectively benefit from the location-awareness of their surrounding environment. The underlying data model is founded on a symbolic model of space organized in a tree structure. Once extended to a semantic model for modal logic, we regard location query processing as a model checking problem, and thus define location queries as hybrid logicbased formulas. Our approach is unique to existing research because it explores the connection between location models and query processing in ubiquitous computing systems, relies on a sound theoretical basis, and provides modal logic-based query mechanisms for expressive searches over a decentralized data structure. A prototype implementation is also presented and will be discussed.
Ontological Approach to Military Knowledge Modeling and Management
2004-03-01
federated search mechanism has to reformulate user queries (expressed using the ontology) in the query languages of the different sources (e.g. SQL...ontologies as a common terminology – Unified query to perform federated search • Query processing – Ontology mapping to sources reformulate queries
Recommender System for Learning SQL Using Hints
ERIC Educational Resources Information Center
Lavbic, Dejan; Matek, Tadej; Zrnec, Aljaž
2017-01-01
Today's software industry requires individuals who are proficient in as many programming languages as possible. Structured query language (SQL), as an adopted standard, is no exception, as it is the most widely used query language to retrieve and manipulate data. However, the process of learning SQL turns out to be challenging. The need for a…
A natural language query system for Hubble Space Telescope proposal selection
NASA Technical Reports Server (NTRS)
Hornick, Thomas; Cohen, William; Miller, Glenn
1987-01-01
The proposal selection process for the Hubble Space Telescope is assisted by a robust and easy to use query program (TACOS). The system parses an English subset language sentence regardless of the order of the keyword phases, allowing the user a greater flexibility than a standard command query language. Capabilities for macro and procedure definition are also integrated. The system was designed for flexibility in both use and maintenance. In addition, TACOS can be applied to any knowledge domain that can be expressed in terms of a single reaction. The system was implemented mostly in Common LISP. The TACOS design is described in detail, with particular attention given to the implementation methods of sentence processing.
A natural language interface plug-in for cooperative query answering in biological databases.
Jamil, Hasan M
2012-06-11
One of the many unique features of biological databases is that the mere existence of a ground data item is not always a precondition for a query response. It may be argued that from a biologist's standpoint, queries are not always best posed using a structured language. By this we mean that approximate and flexible responses to natural language like queries are well suited for this domain. This is partly due to biologists' tendency to seek simpler interfaces and partly due to the fact that questions in biology involve high level concepts that are open to interpretations computed using sophisticated tools. In such highly interpretive environments, rigidly structured databases do not always perform well. In this paper, our goal is to propose a semantic correspondence plug-in to aid natural language query processing over arbitrary biological database schema with an aim to providing cooperative responses to queries tailored to users' interpretations. Natural language interfaces for databases are generally effective when they are tuned to the underlying database schema and its semantics. Therefore, changes in database schema become impossible to support, or a substantial reorganization cost must be absorbed to reflect any change. We leverage developments in natural language parsing, rule languages and ontologies, and data integration technologies to assemble a prototype query processor that is able to transform a natural language query into a semantically equivalent structured query over the database. We allow knowledge rules and their frequent modifications as part of the underlying database schema. The approach we adopt in our plug-in overcomes some of the serious limitations of many contemporary natural language interfaces, including support for schema modifications and independence from underlying database schema. The plug-in introduced in this paper is generic and facilitates connecting user selected natural language interfaces to arbitrary databases using a semantic description of the intended application. We demonstrate the feasibility of our approach with a practical example.
QATT: a Natural Language Interface for QPE. M.S. Thesis
NASA Technical Reports Server (NTRS)
White, Douglas Robert-Graham
1989-01-01
QATT, a natural language interface developed for the Qualitative Process Engine (QPE) system is presented. The major goal was to evaluate the use of a preexisting natural language understanding system designed to be tailored for query processing in multiple domains of application. The other goal of QATT is to provide a comfortable environment in which to query envisionments in order to gain insight into the qualitative behavior of physical systems. It is shown that the use of the preexisting system made possible the development of a reasonably useful interface in a few months.
Extending the Query Language of a Data Warehouse for Patient Recruitment.
Dietrich, Georg; Ertl, Maximilian; Fette, Georg; Kaspar, Mathias; Krebs, Jonathan; Mackenrodt, Daniel; Störk, Stefan; Puppe, Frank
2017-01-01
Patient recruitment for clinical trials is a laborious task, as many texts have to be screened. Usually, this work is done manually and takes a lot of time. We have developed a system that automates the screening process. Besides standard keyword queries, the query language supports extraction of numbers, time-spans and negations. In a feasibility study for patient recruitment from a stroke unit with 40 patients, we achieved encouraging extraction rates above 95% for numbers and negations and ca. 86% for time spans.
The Effectiveness of Stemming for Natural-Language Access to Slovene Textual Data.
ERIC Educational Resources Information Center
Popovic, Mirko; Willett, Peter
1992-01-01
Reports on the use of stemming for Slovene language documents and queries in free-text retrieval systems and demonstrates that an appropriate stemming algorithm results in an increase in retrieval effectiveness when compared with nonstemming processing. A comparison is made with stemming of English versions of the same documents and queries. (24…
2006-06-01
SPARQL SPARQL Protocol and RDF Query Language SQL Structured Query Language SUMO Suggested Upper Merged Ontology SW... Query optimization algorithms are implemented in the Pellet reasoner in order to ensure querying a knowledge base is efficient . These algorithms...memory as a treelike structure in order for the data to be queried . XML Query (XQuery) is the standard language used when querying XML
An XML-Based Manipulation and Query Language for Rule-Based Information
NASA Astrophysics Data System (ADS)
Mansour, Essam; Höpfner, Hagen
Rules are utilized to assist in the monitoring process that is required in activities, such as disease management and customer relationship management. These rules are specified according to the application best practices. Most of research efforts emphasize on the specification and execution of these rules. Few research efforts focus on managing these rules as one object that has a management life-cycle. This paper presents our manipulation and query language that is developed to facilitate the maintenance of this object during its life-cycle and to query the information contained in this object. This language is based on an XML-based model. Furthermore, we evaluate the model and language using a prototype system applied to a clinical case study.
A Simple Blueprint for Automatic Boolean Query Processing.
ERIC Educational Resources Information Center
Salton, G.
1988-01-01
Describes a new Boolean retrieval environment in which an extended soft Boolean logic is used to automatically construct queries from original natural language formulations provided by users. Experimental results that compare the retrieval effectiveness of this method to conventional Boolean and vector processing are discussed. (27 references)…
RDF-GL: A SPARQL-Based Graphical Query Language for RDF
NASA Astrophysics Data System (ADS)
Hogenboom, Frederik; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay
This chapter presents RDF-GL, a graphical query language (GQL) for RDF. The GQL is based on the textual query language SPARQL and mainly focuses on SPARQL SELECT queries. The advantage of a GQL over textual query languages is that complexity is hidden through the use of graphical symbols. RDF-GL is supported by a Java-based editor, SPARQLinG, which is presented as well. The editor does not only allow for RDF-GL query creation, but also converts RDF-GL queries to SPARQL queries and is able to subsequently execute these. Experiments show that using the GQL in combination with the editor makes RDF querying more accessible for end users.
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Triantafyllopoulos, Spiros
1985-01-01
A collection of presentation visuals associated with the companion report entitled KARL: A Knowledge-Assisted Retrieval Language, is presented. Information is given on data retrieval, natural language database front ends, generic design objectives, processing capababilities and the query processing cycle.
Semantic based man-machine interface for real-time communication
NASA Technical Reports Server (NTRS)
Ali, M.; Ai, C.-S.
1988-01-01
A flight expert system (FLES) was developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. To provide a communications interface between the flight crew and FLES, a natural language interface (NALI) was implemented. Input to NALI is processed by three processors: (1) the semantics parser; (2) the knowledge retriever; and (3) the response generator. First the semantic parser extracts meaningful words and phrases to generate an internal representation of the query. At this point, the semantic parser has the ability to map different input forms related to the same concept into the same internal representation. Then the knowledge retriever analyzes and stores the context of the query to aid in resolving ellipses and pronoun references. At the end of this process, a sequence of retrievel functions is created as a first step in generating the proper response. Finally, the response generator generates the natural language response to the query. The architecture of NALI was designed to process both temporal and nontemporal queries. The architecture and implementation of NALI are described.
Shuttle-Data-Tape XML Translator
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Osborne, Richard N.
2005-01-01
JSDTImport is a computer program for translating native Shuttle Data Tape (SDT) files from American Standard Code for Information Interchange (ASCII) format into databases in other formats. JSDTImport solves the problem of organizing the SDT content, affording flexibility to enable users to choose how to store the information in a database to better support client and server applications. JSDTImport can be dynamically configured by use of a simple Extensible Markup Language (XML) file. JSDTImport uses this XML file to define how each record and field will be parsed, its layout and definition, and how the resulting database will be structured. JSDTImport also includes a client application programming interface (API) layer that provides abstraction for the data-querying process. The API enables a user to specify the search criteria to apply in gathering all the data relevant to a query. The API can be used to organize the SDT content and translate into a native XML database. The XML format is structured into efficient sections, enabling excellent query performance by use of the XPath query language. Optionally, the content can be translated into a Structured Query Language (SQL) database for fast, reliable SQL queries on standard database server computers.
Selecting the Best Mobile Information Service with Natural Language User Input
NASA Astrophysics Data System (ADS)
Feng, Qiangze; Qi, Hongwei; Fukushima, Toshikazu
Information services accessed via mobile phones provide information directly relevant to subscribers’ daily lives and are an area of dynamic market growth worldwide. Although many information services are currently offered by mobile operators, many of the existing solutions require a unique gateway for each service, and it is inconvenient for users to have to remember a large number of such gateways. Furthermore, the Short Message Service (SMS) is very popular in China and Chinese users would prefer to access these services in natural language via SMS. This chapter describes a Natural Language Based Service Selection System (NL3S) for use with a large number of mobile information services. The system can accept user queries in natural language and navigate it to the required service. Since it is difficult for existing methods to achieve high accuracy and high coverage and anticipate which other services a user might want to query, the NL3S is developed based on a Multi-service Ontology (MO) and Multi-service Query Language (MQL). The MO and MQL provide semantic and linguistic knowledge, respectively, to facilitate service selection for a user query and to provide adaptive service recommendations. Experiments show that the NL3S can achieve 75-95% accuracies and 85-95% satisfactions for processing various styles of natural language queries. A trial involving navigation of 30 different mobile services shows that the NL3S can provide a viable commercial solution for mobile operators.
Applying Query Structuring in Cross-language Retrieval.
ERIC Educational Resources Information Center
Pirkola, Ari; Puolamaki, Deniz; Jarvelin, Kalervo
2003-01-01
Explores ways to apply query structuring in cross-language information retrieval. Tested were: English queries translated into Finnish using an electronic dictionary, and run in a Finnish newspaper databases; effects of compound-based structuring using a proximity operator for translation equivalents of query language compound components; and a…
A Semantic Graph Query Language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, I L
2006-10-16
Semantic graphs can be used to organize large amounts of information from a number of sources into one unified structure. A semantic query language provides a foundation for extracting information from the semantic graph. The graph query language described here provides a simple, powerful method for querying semantic graphs.
End-User Use of Data Base Query Language: Pros and Cons.
ERIC Educational Resources Information Center
Nicholes, Walter
1988-01-01
Man-machine interface, the concept of a computer "query," a review of database technology, and a description of the use of query languages at Brigham Young University are discussed. The pros and cons of end-user use of database query languages are explored. (Author/MLW)
Automatic Query Formulations in Information Retrieval.
ERIC Educational Resources Information Center
Salton, G.; And Others
1983-01-01
Introduces methods designed to reduce role of search intermediaries by generating Boolean search formulations automatically using term frequency considerations from natural language statements provided by system patrons. Experimental results are supplied and methods are described for applying automatic query formulation process in practice.…
A Big Spatial Data Processing Framework Applying to National Geographic Conditions Monitoring
NASA Astrophysics Data System (ADS)
Xiao, F.
2018-04-01
In this paper, a novel framework for spatial data processing is proposed, which apply to National Geographic Conditions Monitoring project of China. It includes 4 layers: spatial data storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on spatial RDDs, such as range query, k nearest neighbor and spatial join. The spatial query language is a user-friendly interface which provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial frameworks, it is highlighted that comprehensive technologies are referred for big spatial data processing. Extensive experiments on real datasets show that the framework achieves better performance than traditional process methods.
EquiX-A Search and Query Language for XML.
ERIC Educational Resources Information Center
Cohen, Sara; Kanza, Yaron; Kogan, Yakov; Sagiv, Yehoshua; Nutt, Werner; Serebrenik, Alexander
2002-01-01
Describes EquiX, a search language for XML that combines querying with searching to query the data and the meta-data content of Web pages. Topics include search engines; a data model for XML documents; search query syntax; search query semantics; an algorithm for evaluating a query on a document; and indexing EquiX queries. (LRW)
Information Network Model Query Processing
NASA Astrophysics Data System (ADS)
Song, Xiaopu
Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.
Design Recommendations for Query Languages
1980-09-01
DESIGN RECOMMENDATIONS FOR QUERY LANGUAGES S.L. Ehrenreich Submitted by: Stanley M. Halpin, Acting Chief HUMAN FACTORS TECHNICAL AREA Approved by: Edgar ...respond to que- ries that it recognizes as faulty. Codd (1974) states that in designing a nat- ural query language, attention must be given to dealing...impaired. Codd (1974) also regarded the user’s perception of the data base to be of critical importance in properly designing a query language system
Social media based NPL system to find and retrieve ARM data: Concept paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Giansiracusa, Michael T.; Kumar, Jitendra
Information connectivity and retrieval has a role in our daily lives. The most pervasive source of online information is databases. The amount of data is growing at rapid rate and database technology is improving and having a profound effect. Almost all online applications are storing and retrieving information from databases. One challenge in supplying the public with wider access to informational databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it may notmore » be practical to make the public aware of the structure of the database. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide more intuitive method for generating database queries and delivering responses. Social media makes it possible to interact with a wide section of the population. Through this medium, and with the help of Natural Language Processing (NLP) we can make the data of the Atmospheric Radiation Measurement Data Center (ADC) more accessible to the public. We propose an architecture for using Apache Lucene/Solr [1], OpenML [2,3], and Kafka [4] to generate an automated query/response system with inputs from Twitter5, our Cassandra DB, and our log database. Using the Twitter API and NLP we can give the public the ability to ask questions of our database and get automated responses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devarakonda, Ranjeet; Giansiracusa, Michael T.; Kumar, Jitendra
Information connectivity and retrieval has a role in our daily lives. The most pervasive source of online information is databases. The amount of data is growing at rapid rate and database technology is improving and having a profound effect. Almost all online applications are storing and retrieving information from databases. One challenge in supplying the public with wider access to informational databases is the need for knowledge of database languages like Structured Query Language (SQL). Although the SQL language has been published in many forms, not everybody is able to write SQL queries. Another challenge is that it may notmore » be practical to make the public aware of the structure of the database. There is a need for novice users to query relational databases using their natural language. To solve this problem, many natural language interfaces to structured databases have been developed. The goal is to provide more intuitive method for generating database queries and delivering responses. Social media makes it possible to interact with a wide section of the population. Through this medium, and with the help of Natural Language Processing (NLP) we can make the data of the Atmospheric Radiation Measurement Data Center (ADC) more accessible to the public. We propose an architecture for using Apache Lucene/Solr [1], OpenML [2,3], and Kafka [4] to generate an automated query/response system with inputs from Twitter5, our Cassandra DB, and our log database. Using the Twitter API and NLP we can give the public the ability to ask questions of our database and get automated responses.« less
The Use of Dynamic Segment Scoring for Language-Independent Question Answering
2001-01-01
initial window with one sentence is compared to scores corre- his/PRONOUN brother/ CONSANGUINITY like/SIMILARITY his/PRONOUN call/NOMENCLATURE he/PRONOUN...the query processing mod- ule. Using the differences between index numbers to specify phys- ical distance relationships among query keywords, we can
Query-Based Outlier Detection in Heterogeneous Information Networks.
Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei
2015-03-01
Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user's search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks.
Query-Based Outlier Detection in Heterogeneous Information Networks
Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei
2015-01-01
Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user’s search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks. PMID:27064397
NLPIR: A Theoretical Framework for Applying Natural Language Processing to Information Retrieval.
ERIC Educational Resources Information Center
Zhou, Lina; Zhang, Dongsong
2003-01-01
Proposes a theoretical framework called NLPIR that integrates natural language processing (NLP) into information retrieval (IR) based on the assumption that there exists representation distance between queries and documents. Discusses problems in traditional keyword-based IR, including relevance, and describes some existing NLP techniques.…
NASA Astrophysics Data System (ADS)
Boulicaut, Jean-Francois; Jeudy, Baptiste
Knowledge Discovery in Databases (KDD) is a complex interactive process. The promising theoretical framework of inductive databases considers this is essentially a querying process. It is enabled by a query language which can deal either with raw data or patterns which hold in the data. Mining patterns turns to be the so-called inductive query evaluation process for which constraint-based Data Mining techniques have to be designed. An inductive query specifies declaratively the desired constraints and algorithms are used to compute the patterns satisfying the constraints in the data. We survey important results of this active research domain. This chapter emphasizes a real breakthrough for hard problems concerning local pattern mining under various constraints and it points out the current directions of research as well.
Astronomical Data Processing Using SciQL, an SQL Based Query Language for Array Data
NASA Astrophysics Data System (ADS)
Zhang, Y.; Scheers, B.; Kersten, M.; Ivanova, M.; Nes, N.
2012-09-01
SciQL (pronounced as ‘cycle’) is a novel SQL-based array query language for scientific applications with both tables and arrays as first class citizens. SciQL lowers the entrance fee of adopting relational DBMS (RDBMS) in scientific domains, because it includes functionality often only found in mathematics software packages. In this paper, we demonstrate the usefulness of SciQL for astronomical data processing using examples from the Transient Key Project of the LOFAR radio telescope. In particular, how the LOFAR light-curve database of all detected sources can be constructed, by correlating sources across the spatial, frequency, time and polarisation domains.
NASA Astrophysics Data System (ADS)
Kuznetsov, Valentin; Riley, Daniel; Afaq, Anzar; Sekhri, Vijay; Guo, Yuyi; Lueking, Lee
2010-04-01
The CMS experiment has implemented a flexible and powerful system enabling users to find data within the CMS physics data catalog. The Dataset Bookkeeping Service (DBS) comprises a database and the services used to store and access metadata related to CMS physics data. To this, we have added a generalized query system in addition to the existing web and programmatic interfaces to the DBS. This query system is based on a query language that hides the complexity of the underlying database structure by discovering the join conditions between database tables. This provides a way of querying the system that is simple and straightforward for CMS data managers and physicists to use without requiring knowledge of the database tables or keys. The DBS Query Language uses the ANTLR tool to build the input query parser and tokenizer, followed by a query builder that uses a graph representation of the DBS schema to construct the SQL query sent to underlying database. We will describe the design of the query system, provide details of the language components and overview of how this component fits into the overall data discovery system architecture.
Markó, K; Schulz, S; Hahn, U
2005-01-01
We propose an interlingua-based indexing approach to account for the particular challenges that arise in the design and implementation of cross-language document retrieval systems for the medical domain. Documents, as well as queries, are mapped to a language-independent conceptual layer on which retrieval operations are performed. We contrast this approach with the direct translation of German queries to English ones which, subsequently, are matched against English documents. We evaluate both approaches, interlingua-based and direct translation, on a large medical document collection, the OHSUMED corpus. A substantial benefit for interlingua-based document retrieval using German queries on English texts is found, which amounts to 93% of the (monolingual) English baseline. Most state-of-the-art cross-language information retrieval systems translate user queries to the language(s) of the target documents. In contra-distinction to this approach, translating both documents and user queries into a language-independent, concept-like representation format is more beneficial to enhance cross-language retrieval performance.
A Priority Fuzzy Logic Extension of the XQuery Language
NASA Astrophysics Data System (ADS)
Škrbić, Srdjan; Wettayaprasit, Wiphada; Saeueng, Pannipa
2011-09-01
In recent years there have been significant research findings in flexible XML querying techniques using fuzzy set theory. Many types of fuzzy extensions to XML data model and XML query languages have been proposed. In this paper, we introduce priority fuzzy logic extensions to XQuery language. Describing these extensions we introduce a new query language. Moreover, we describe a way to implement an interpreter for this language using an existing XML native database.
Relational Algebra and SQL: Better Together
ERIC Educational Resources Information Center
McMaster, Kirby; Sambasivam, Samuel; Hadfield, Steven; Wolthuis, Stuart
2013-01-01
In this paper, we describe how database instructors can teach Relational Algebra and Structured Query Language together through programming. Students write query programs consisting of sequences of Relational Algebra operations vs. Structured Query Language SELECT statements. The query programs can then be run interactively, allowing students to…
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Liu, I-Hsiung
1985-01-01
The currently developed multi-level language interfaces of information systems are generally designed for experienced users. These interfaces commonly ignore the nature and needs of the largest user group, i.e., casual users. This research identifies the importance of natural language query system research within information storage and retrieval system development; addresses the topics of developing such a query system; and finally, proposes a framework for the development of natural language query systems in order to facilitate the communication between casual users and information storage and retrieval systems.
A Visual Interface for Querying Heterogeneous Phylogenetic Databases.
Jamil, Hasan M
2017-01-01
Despite the recent growth in the number of phylogenetic databases, access to these wealth of resources remain largely tool or form-based interface driven. It is our thesis that the flexibility afforded by declarative query languages may offer the opportunity to access these repositories in a better way, and to use such a language to pose truly powerful queries in unprecedented ways. In this paper, we propose a substantially enhanced closed visual query language, called PhyQL, that can be used to query phylogenetic databases represented in a canonical form. The canonical representation presented helps capture most phylogenetic tree formats in a convenient way, and is used as the storage model for our PhyloBase database for which PhyQL serves as the query language. We have implemented a visual interface for the end users to pose PhyQL queries using visual icons, and drag and drop operations defined over them. Once a query is posed, the interface translates the visual query into a Datalog query for execution over the canonical database. Responses are returned as hyperlinks to phylogenies that can be viewed in several formats using the tree viewers supported by PhyloBase. Results cached in PhyQL buffer allows secondary querying on the computed results making it a truly powerful querying architecture.
Spatial information semantic query based on SPARQL
NASA Astrophysics Data System (ADS)
Xiao, Zhifeng; Huang, Lei; Zhai, Xiaofang
2009-10-01
How can the efficiency of spatial information inquiries be enhanced in today's fast-growing information age? We are rich in geospatial data but poor in up-to-date geospatial information and knowledge that are ready to be accessed by public users. This paper adopts an approach for querying spatial semantic by building an Web Ontology language(OWL) format ontology and introducing SPARQL Protocol and RDF Query Language(SPARQL) to search spatial semantic relations. It is important to establish spatial semantics that support for effective spatial reasoning for performing semantic query. Compared to earlier keyword-based and information retrieval techniques that rely on syntax, we use semantic approaches in our spatial queries system. Semantic approaches need to be developed by ontology, so we use OWL to describe spatial information extracted by the large-scale map of Wuhan. Spatial information expressed by ontology with formal semantics is available to machines for processing and to people for understanding. The approach is illustrated by introducing a case study for using SPARQL to query geo-spatial ontology instances of Wuhan. The paper shows that making use of SPARQL to search OWL ontology instances can ensure the result's accuracy and applicability. The result also indicates constructing a geo-spatial semantic query system has positive efforts on forming spatial query and retrieval.
NASA Astrophysics Data System (ADS)
Merticariu, Vlad; Misev, Dimitar; Baumann, Peter
2017-04-01
While python has developed into the lingua franca in Data Science there is often a paradigm break when accessing specialized tools. In particular for one of the core data categories in science and engineering, massive multi-dimensional arrays, out-of-memory solutions typically employ their own, different models. We discuss this situation on the example of the scalable open-source array engine, rasdaman ("raster data manager") which offers access to and processing of Petascale multi-dimensional arrays through an SQL-style array query language, rasql. Such queries are executed in the server on a storage engine utilizing adaptive array partitioning and based on a processing engine implementing a "tile streaming" paradigm to allow processing of arrays massively larger than server RAM. The rasdaman QL has acted as blueprint for forthcoming ISO Array SQL and the Open Geospatial Consortium (OGC) geo analytics language, Web Coverage Processing Service, adopted in 2008. Not surprisingly, rasdaman is OGC and INSPIRE Reference Implementation for their "Big Earth Data" standards suite. Recently, rasdaman has been augmented with a python interface which allows to transparently interact with the database (credits go to Siddharth Shukla's Master Thesis at Jacobs University). Programmers do not need to know the rasdaman query language, as the operators are silently transformed, through lazy evaluation, into queries. Arrays delivered are likewise automatically transformed into their python representation. In the talk, the rasdaman concept will be illustrated with the help of large-scale real-life examples of operational satellite image and weather data services, and sample python code.
Cognitive search model and a new query paradigm
NASA Astrophysics Data System (ADS)
Xu, Zhonghui
2001-06-01
This paper proposes a cognitive model in which people begin to search pictures by using semantic content and find a right picture by judging whether its visual content is a proper visualization of the semantics desired. It is essential that human search is not just a process of matching computation on visual feature but rather a process of visualization of the semantic content known. For people to search electronic images in the way as they manually do in the model, we suggest that querying be a semantic-driven process like design. A query-by-design paradigm is prosed in the sense that what you design is what you find. Unlike query-by-example, query-by-design allows users to specify the semantic content through an iterative and incremental interaction process so that a retrieval can start with association and identification of the given semantic content and get refined while further visual cues are available. An experimental image retrieval system, Kuafu, has been under development using the query-by-design paradigm and an iconic language is adopted.
A Relational Algebra Query Language for Programming Relational Databases
ERIC Educational Resources Information Center
McMaster, Kirby; Sambasivam, Samuel; Anderson, Nicole
2011-01-01
In this paper, we describe a Relational Algebra Query Language (RAQL) and Relational Algebra Query (RAQ) software product we have developed that allows database instructors to teach relational algebra through programming. Instead of defining query operations using mathematical notation (the approach commonly taken in database textbooks), students…
On-Demand Associative Cross-Language Information Retrieval
NASA Astrophysics Data System (ADS)
Geraldo, André Pinto; Moreira, Viviane P.; Gonçalves, Marcos A.
This paper proposes the use of algorithms for mining association rules as an approach for Cross-Language Information Retrieval. These algorithms have been widely used to analyse market basket data. The idea is to map the problem of finding associations between sales items to the problem of finding term translations over a parallel corpus. The proposal was validated by means of experiments using queries in two distinct languages: Portuguese and Finnish to retrieve documents in English. The results show that the performance of our proposed approach is comparable to the performance of the monolingual baseline and to query translation via machine translation, even though these systems employ more complex Natural Language Processing techniques. The combination between machine translation and our approach yielded the best results, even outperforming the monolingual baseline.
NASA Astrophysics Data System (ADS)
Li, C.; Zhu, X.; Guo, W.; Liu, Y.; Huang, H.
2015-05-01
A method suitable for indoor complex semantic query considering the computation of indoor spatial relations is provided According to the characteristics of indoor space. This paper designs ontology model describing the space related information of humans, events and Indoor space objects (e.g. Storey and Room) as well as their relations to meet the indoor semantic query. The ontology concepts are used in IndoorSPARQL query language which extends SPARQL syntax for representing and querying indoor space. And four types specific primitives for indoor query, "Adjacent", "Opposite", "Vertical" and "Contain", are defined as query functions in IndoorSPARQL used to support quantitative spatial computations. Also a method is proposed to analysis the query language. Finally this paper adopts this method to realize indoor semantic query on the study area through constructing the ontology model for the study building. The experimental results show that the method proposed in this paper can effectively support complex indoor space semantic query.
Knowledge Query Language (KQL)
2016-02-12
Lexington Massachusetts This page intentionally left blank. iii EXECUTIVE SUMMARY Currently, queries for data ...retrieval from non-Structured Query Language (NoSQL) data stores are tightly coupled to the specific implementation of the data store implementation...independent of the storage content and format for querying NoSQL or relational data stores. This approach uses address expressions (or A-Expressions
Concept-based query language approach to enterprise information systems
NASA Astrophysics Data System (ADS)
Niemi, Timo; Junkkari, Marko; Järvelin, Kalervo
2014-01-01
In enterprise information systems (EISs) it is necessary to model, integrate and compute very diverse data. In advanced EISs the stored data often are based both on structured (e.g. relational) and semi-structured (e.g. XML) data models. In addition, the ad hoc information needs of end-users may require the manipulation of data-oriented (structural), behavioural and deductive aspects of data. Contemporary languages capable of treating this kind of diversity suit only persons with good programming skills. In this paper we present a concept-oriented query language approach to manipulate this diversity so that the programming skill requirements are considerably reduced. In our query language, the features which need technical knowledge are hidden in application-specific concepts and structures. Therefore, users need not be aware of the underlying technology. Application-specific concepts and structures are represented by the modelling primitives of the extended RDOOM (relational deductive object-oriented modelling) which contains primitives for all crucial real world relationships (is-a relationship, part-of relationship, association), XML documents and views. Our query language also supports intensional and extensional-intensional queries, in addition to conventional extensional queries. In its query formulation, the end-user combines available application-specific concepts and structures through shared variables.
Knowledge Query Language (KQL)
2016-02-01
unlimited. This page intentionally left blank. iii EXECUTIVE SUMMARY Currently, queries for data ...retrieval from non-Structured Query Language (NoSQL) data stores are tightly coupled to the specific implementation of the data store implementation, making...of the storage content and format for querying NoSQL or relational data stores. This approach uses address expressions (or A-Expressions) embedded in
Processing SPARQL queries with regular expressions in RDF databases
2011-01-01
Background As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns. PMID:21489225
Processing SPARQL queries with regular expressions in RDF databases.
Lee, Jinsoo; Pham, Minh-Duc; Lee, Jihwan; Han, Wook-Shin; Cho, Hune; Yu, Hwanjo; Lee, Jeong-Hoon
2011-03-29
As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users' requests for extracting information from the RDF data as well as the lack of users' knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.
The semantic web and computer vision: old AI meets new AI
NASA Astrophysics Data System (ADS)
Mundy, J. L.; Dong, Y.; Gilliam, A.; Wagner, R.
2018-04-01
There has been vast process in linking semantic information across the billions of web pages through the use of ontologies encoded in the Web Ontology Language (OWL) based on the Resource Description Framework (RDF). A prime example is the Wikipedia where the knowledge contained in its more than four million pages is encoded in an ontological database called DBPedia http://wiki.dbpedia.org/. Web-based query tools can retrieve semantic information from DBPedia encoded in interlinked ontologies that can be accessed using natural language. This paper will show how this vast context can be used to automate the process of querying images and other geospatial data in support of report changes in structures and activities. Computer vision algorithms are selected and provided with context based on natural language requests for monitoring and analysis. The resulting reports provide semantically linked observations from images and 3D surface models.
Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev
2017-06-01
Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.
Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G.; Khanna, Sanjeev
2017-01-01
Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings. PMID:29151821
Guiding Students to Answers: Query Recommendation
ERIC Educational Resources Information Center
Yilmazel, Ozgur
2011-01-01
This paper reports on a guided navigation system built on the textbook search engine developed at Anadolu University to support distance education students. The search engine uses Turkish Language specific language processing modules to enable searches over course material presented in Open Education Faculty textbooks. We implemented a guided…
Design of a Low-Cost Adaptive Question Answering System for Closed Domain Factoid Queries
ERIC Educational Resources Information Center
Toh, Huey Ling
2010-01-01
Closed domain question answering (QA) systems achieve precision and recall at the cost of complex language processing techniques to parse the answer corpus. We propose a "query-based" model for indexing answers in a closed domain factoid QA system. Further, we use a phrase term inference method for improving the ranking order of related questions.…
SPARQL Assist language-neutral query composer
2012-01-01
Background SPARQL query composition is difficult for the lay-person, and even the experienced bioinformatician in cases where the data model is unfamiliar. Moreover, established best-practices and internationalization concerns dictate that the identifiers for ontological terms should be opaque rather than human-readable, which further complicates the task of synthesizing queries manually. Results We present SPARQL Assist: a Web application that addresses these issues by providing context-sensitive type-ahead completion during SPARQL query construction. Ontological terms are suggested using their multi-lingual labels and descriptions, leveraging existing support for internationalization and language-neutrality. Moreover, the system utilizes the semantics embedded in ontologies, and within the query itself, to help prioritize the most likely suggestions. Conclusions To ensure success, the Semantic Web must be easily available to all users, regardless of locale, training, or preferred language. By enhancing support for internationalization, and moreover by simplifying the manual construction of SPARQL queries through the use of controlled-natural-language interfaces, we believe we have made some early steps towards simplifying access to Semantic Web resources. PMID:22373327
SPARQL assist language-neutral query composer.
McCarthy, Luke; Vandervalk, Ben; Wilkinson, Mark
2012-01-25
SPARQL query composition is difficult for the lay-person, and even the experienced bioinformatician in cases where the data model is unfamiliar. Moreover, established best-practices and internationalization concerns dictate that the identifiers for ontological terms should be opaque rather than human-readable, which further complicates the task of synthesizing queries manually. We present SPARQL Assist: a Web application that addresses these issues by providing context-sensitive type-ahead completion during SPARQL query construction. Ontological terms are suggested using their multi-lingual labels and descriptions, leveraging existing support for internationalization and language-neutrality. Moreover, the system utilizes the semantics embedded in ontologies, and within the query itself, to help prioritize the most likely suggestions. To ensure success, the Semantic Web must be easily available to all users, regardless of locale, training, or preferred language. By enhancing support for internationalization, and moreover by simplifying the manual construction of SPARQL queries through the use of controlled-natural-language interfaces, we believe we have made some early steps towards simplifying access to Semantic Web resources.
Optimizability of OGC Standards Implementations - a Case Study
NASA Astrophysics Data System (ADS)
Misev, D.; Baumann, P.
2012-04-01
Why do we shop at Amazon? Because they have a unique offering that is nowhere else available? Certainly not. Rather, Amazon offers (i) simple, yet effective search; (ii) very simple payment; (iii) extremely rapid delivery. This is how scientific services will be distinguished in future: not for their data holding (there will be manifold choice), but for their service quality. We are facing the transition from data stewardship to service stewardship. One of the OGC standards which particularly enables flexible retrieval is the Web Coverage Processing Service (WCPS). It defines a high-level query language on large, multi-dimensional raster data, such as 1D timeseries, 2D EO imagery, 3D x/y/t image time series and x/y/z geophysical data, 4D x/y/z/t climate and ocean data. We have implemented WCPS based on an Array Database Management System, rasdaman, which is available in open source. In this demonstration, we study WCPS queries on 2D, 3D, and 4D data sets. Particular emphasis is placed on the computational load queries generate in such on-demand processing and filtering. We look at different techniques and their impact on performance, such as adaptive storage partitioning, query rewriting, and just-in-time compilation. Results show that there is significant potential for effective server-side optimization once a query language is sufficiently high-level and declarative.
NASA Technical Reports Server (NTRS)
Aspinall, David; Denney, Ewen; Lueth, Christoph
2012-01-01
We motivate and introduce a query language PrQL designed for inspecting machine representations of proofs. PrQL natively supports hiproofs which express proof structure using hierarchical nested labelled trees. The core language presented in this paper is locally structured (first-order), with queries built using recursion and patterns over proof structure and rule names. We define the syntax and semantics of locally structured queries, demonstrate their power, and sketch some implementation experiments.
Querying Proofs (Work in Progress)
NASA Technical Reports Server (NTRS)
Aspinall, David; Denney, Ewen; Lueth, Christoph
2011-01-01
We motivate and introduce the basis for a query language designed for inspecting electronic representations of proofs. We argue that there is much to learn from large proofs beyond their validity, and that a dedicated query language can provide a principled way of implementing a family of useful operations.
A new XML-based query language, CSRML, has been developed for representing chemical substructures, molecules, reaction rules, and reactions. CSRML queries are capable of integrating additional forms of information beyond the simple substructure (e.g., SMARTS) or reaction transfor...
2007-12-01
1 A Brief History of Event Processing... history of event processing. The Applications section defines several application domains and use cases for event processing technology. Event...subscription” and “subscription language” will be used where some will often use “(continuous) query” or “query language.” A Brief History of
A Framework for Building and Reasoning with Adaptive and Interoperable PMESII Models
2007-11-01
Description Logic SOA Service Oriented Architecture SPARQL Simple Protocol And RDF Query Language SQL Standard Query Language SROM Stability and...another by providing a more expressive ontological structure for one of the models, e.g., semantic networks can be mapped to first- order logical...Pellet is an open-source reasoner that works with OWL-DL. It accepts the SPARQL protocol and RDF query language ( SPARQL ) and provides a Java API to
Natural language information retrieval in digital libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strzalkowski, T.; Perez-Carballo, J.; Marinescu, M.
In this paper we report on some recent developments in joint NYU and GE natural language information retrieval system. The main characteristic of this system is the use of advanced natural language processing to enhance the effectiveness of term-based document retrieval. The system is designed around a traditional statistical backbone consisting of the indexer module, which builds inverted index files from pre-processed documents, and a retrieval engine which searches and ranks the documents in response to user queries. Natural language processing is used to (1) preprocess the documents in order to extract content-carrying terms, (2) discover inter-term dependencies and buildmore » a conceptual hierarchy specific to the database domain, and (3) process user`s natural language requests into effective search queries. This system has been used in NIST-sponsored Text Retrieval Conferences (TREC), where we worked with approximately 3.3 GBytes of text articles including material from the Wall Street Journal, the Associated Press newswire, the Federal Register, Ziff Communications`s Computer Library, Department of Energy abstracts, U.S. Patents and the San Jose Mercury News, totaling more than 500 million words of English. The system have been designed to facilitate its scalability to deal with ever increasing amounts of data. In particular, a randomized index-splitting mechanism has been installed which allows the system to create a number of smaller indexes that can be independently and efficiently searched.« less
An approach for heterogeneous and loosely coupled geospatial data distributed computing
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui
2010-07-01
Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.
Usability Evaluation of NLP-PIER: A Clinical Document Search Engine for Researchers.
Hultman, Gretchen; McEwan, Reed; Pakhomov, Serguei; Lindemann, Elizabeth; Skube, Steven; Melton, Genevieve B
2017-01-01
NLP-PIER (Natural Language Processing - Patient Information Extraction for Research) is a self-service platform with a search engine for clinical researchers to perform natural language processing (NLP) queries using clinical notes. We conducted user-centered testing of NLP-PIER's usability to inform future design decisions. Quantitative and qualitative data were analyzed. Our findings will be used to improve the usability of NLP-PIER.
An Experimental Investigation of Complexity in Database Query Formulation Tasks
ERIC Educational Resources Information Center
Casterella, Gretchen Irwin; Vijayasarathy, Leo
2013-01-01
Information Technology professionals and other knowledge workers rely on their ability to extract data from organizational databases to respond to business questions and support decision making. Structured query language (SQL) is the standard programming language for querying data in relational databases, and SQL skills are in high demand and are…
SIMS: addressing the problem of heterogeneity in databases
NASA Astrophysics Data System (ADS)
Arens, Yigal
1997-02-01
The heterogeneity of remotely accessible databases -- with respect to contents, query language, semantics, organization, etc. -- presents serious obstacles to convenient querying. The SIMS (single interface to multiple sources) system addresses this global integration problem. It does so by defining a single language for describing the domain about which information is stored in the databases and using this language as the query language. Each database to which SIMS is to provide access is modeled using this language. The model describes a database's contents, organization, and other relevant features. SIMS uses these models, together with a planning system drawing on techniques from artificial intelligence, to decompose a given user's high-level query into a series of queries against the databases and other data manipulation steps. The retrieval plan is constructed so as to minimize data movement over the network and maximize parallelism to increase execution speed. SIMS can recover from network failures during plan execution by obtaining data from alternate sources, when possible. SIMS has been demonstrated in the domains of medical informatics and logistics, using real databases.
Supporting temporal queries on clinical relational databases: the S-WATCH-QL language.
Combi, C.; Missora, L.; Pinciroli, F.
1996-01-01
Due to the ubiquitous and special nature of time, specially in clinical datábases there's the need of particular temporal data and operators. In this paper we describe S-WATCH-QL (Structured Watch Query Language), a temporal extension of SQL, the widespread query language based on the relational model. S-WATCH-QL extends the well-known SQL by the addition of: a) temporal data types that allow the storage of information with different levels of granularity; b) historical relations that can store together both instantaneous valid times and intervals; c) some temporal clauses, functions and predicates allowing to define complex temporal queries. PMID:8947722
An Expressive and Efficient Language for XML Information Retrieval.
ERIC Educational Resources Information Center
Chinenyanga, Taurai Tapiwa; Kushmerick, Nicholas
2002-01-01
Discusses XML and information retrieval and describes a query language, ELIXIR (expressive and efficient language for XML information retrieval), with a textual similarity operator that can be used for similarity joins. Explains the algorithm for answering ELIXIR queries to generate intermediate relational data. (Author/LRW)
DBPQL: A view-oriented query language for the Intel Data Base Processor
NASA Technical Reports Server (NTRS)
Fishwick, P. A.
1983-01-01
An interactive query language (BDPQL) for the Intel Data Base Processor (DBP) is defined. DBPQL includes a parser generator package which permits the analyst to easily create and manipulate the query statement syntax and semantics. The prototype language, DBPQL, includes trace and performance commands to aid the analyst when implementing new commands and analyzing the execution characteristics of the DBP. The DBPQL grammar file and associated key procedures are included as an appendix to this report.
Time series patterns and language support in DBMS
NASA Astrophysics Data System (ADS)
Telnarova, Zdenka
2017-07-01
This contribution is focused on pattern type Time Series as a rich in semantics representation of data. Some example of implementation of this pattern type in traditional Data Base Management Systems is briefly presented. There are many approaches how to manipulate with patterns and query patterns. Crucial issue can be seen in systematic approach to pattern management and specific pattern query language which takes into consideration semantics of patterns. Query language SQL-TS for manipulating with patterns is shown on Time Series data.
A New Framework for Textual Information Mining over Parse Trees. CRESST Report 805
ERIC Educational Resources Information Center
Mousavi, Hamid; Kerr, Deirdre; Iseli, Markus R.
2011-01-01
Textual information mining is a challenging problem that has resulted in the creation of many different rule-based linguistic query languages. However, these languages generally are not optimized for the purpose of text mining. In other words, they usually consider queries as individuals and only return raw results for each query. Moreover they…
NASA Astrophysics Data System (ADS)
Arenas, Marcelo; Gutierrez, Claudio; Pérez, Jorge
The goal of this paper is to give an overview of the basics of the theory of RDF databases. We provide a formal definition of RDF that includes the features that distinguish this model from other graph data models. We then move into the fundamental issue of querying RDF data. We start by considering the RDF query language SPARQL, which is a W3C Recommendation since January 2008. We provide an algebraic syntax and a compositional semantics for this language, study the complexity of the evaluation problem for different fragments of SPARQL, and consider the problem of optimizing the evaluation of SPARQL queries, showing that a natural fragment of this language has some good properties in this respect. We furthermore study the expressive power of SPARQL, by comparing it with some well-known query languages such as relational algebra. We conclude by considering the issue of querying RDF data in the presence of RDFS vocabulary. In particular, we present a recently proposed extension of SPARQL with navigational capabilities.
Text Information Extraction System (TIES) | Informatics Technology for Cancer Research (ITCR)
TIES is a service based software system for acquiring, deidentifying, and processing clinical text reports using natural language processing, and also for querying, sharing and using this data to foster tissue and image based research, within and between institutions.
Towards a light-weight query engine for accessing health sensor data in a fall prevention system.
Kreiner, Karl; Gossy, Christian; Drobics, Mario
2014-01-01
Connecting various sensors in sensor networks has become popular during the last decade. An important aspect next to storing and creating data is information access by domain experts, such as researchers, caretakers and physicians. In this work we present the design and prototypic implementation of a light-weight query engine using natural language processing for accessing health-related sensor data in a fall prevention system.
EmptyHeaded: A Relational Engine for Graph Processing
Aberger, Christopher R.; Tu, Susan; Olukotun, Kunle; Ré, Christopher
2016-01-01
There are two types of high-performance graph processing engines: low- and high-level engines. Low-level engines (Galois, PowerGraph, Snap) provide optimized data structures and computation models but require users to write low-level imperative code, hence ensuring that efficiency is the burden of the user. In high-level engines, users write in query languages like datalog (SociaLite) or SQL (Grail). High-level engines are easier to use but are orders of magnitude slower than the low-level graph engines. We present EmptyHeaded, a high-level engine that supports a rich datalog-like query language and achieves performance comparable to that of low-level engines. At the core of EmptyHeaded’s design is a new class of join algorithms that satisfy strong theoretical guarantees but have thus far not achieved performance comparable to that of specialized graph processing engines. To achieve high performance, EmptyHeaded introduces a new join engine architecture, including a novel query optimizer and data layouts that leverage single-instruction multiple data (SIMD) parallelism. With this architecture, EmptyHeaded outperforms high-level approaches by up to three orders of magnitude on graph pattern queries, PageRank, and Single-Source Shortest Paths (SSSP) and is an order of magnitude faster than many low-level baselines. We validate that EmptyHeaded competes with the best-of-breed low-level engine (Galois), achieving comparable performance on PageRank and at most 3× worse performance on SSSP. PMID:28077912
Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.
Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng
2013-11-01
The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS - a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing.
Andrenucci, Andrea
2016-01-01
Few studies have been performed within cross-language information retrieval (CLIR) in the field of psychology and psychotherapy. The aim of this paper is to to analyze and assess the quality of available query translation methods for CLIR on a health portal for psychology. A test base of 100 user queries, 50 Multi Word Units (WUs) and 50 Single WUs, was used. Swedish was the source language and English the target language. Query translation methods based on machine translation (MT) and dictionary look-up were utilized in order to submit query translations to two search engines: Google Site Search and Quick Ask. Standard IR evaluation measures and a qualitative analysis were utilized to assess the results. The lexicon extracted with word alignment of the portal's parallel corpus provided better statistical results among dictionary look-ups. Google Translate provided more linguistically correct translations overall and also delivered better retrieval results in MT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Antonio
Advanced Natural Language Processing Tools for Web Information Retrieval, Content Analysis, and Synthesis. The goal of this SBIR was to implement and evaluate several advanced Natural Language Processing (NLP) tools and techniques to enhance the precision and relevance of search results by analyzing and augmenting search queries and by helping to organize the search output obtained from heterogeneous databases and web pages containing textual information of interest to DOE and the scientific-technical user communities in general. The SBIR investigated 1) the incorporation of spelling checkers in search applications, 2) identification of significant phrases and concepts using a combination of linguisticmore » and statistical techniques, and 3) enhancement of the query interface and search retrieval results through the use of semantic resources, such as thesauri. A search program with a flexible query interface was developed to search reference databases with the objective of enhancing search results from web queries or queries of specialized search systems such as DOE's Information Bridge. The DOE ETDE/INIS Joint Thesaurus was processed to create a searchable database. Term frequencies and term co-occurrences were used to enhance the web information retrieval by providing algorithmically-derived objective criteria to organize relevant documents into clusters containing significant terms. A thesaurus provides an authoritative overview and classification of a field of knowledge. By organizing the results of a search using the thesaurus terminology, the output is more meaningful than when the results are just organized based on the terms that co-occur in the retrieved documents, some of which may not be significant. An attempt was made to take advantage of the hierarchy provided by broader and narrower terms, as well as other field-specific information in the thesauri. The search program uses linguistic morphological routines to find relevant entries regardless of whether terms are stored in singular or plural form. Implementation of additional inflectional morphology processes for verbs can enhance retrieval further, but this has to be balanced by the possibility of broadening the results too much. In addition to the DOE energy thesaurus, other sources of specialized organized knowledge such as the Medical Subject Headings (MeSH), the Unified Medical Language System (UMLS), and Wikipedia were investigated. The supporting role of the NLP thesaurus search program was enhanced by incorporating spelling aid and a part-of-speech tagger to cope with misspellings in the queries and to determine the grammatical roles of the query words and identify nouns for special processing. To improve precision, multiple modes of searching were implemented including Boolean operators, and field-specific searches. Programs to convert a thesaurus or reference file into searchable support files can be deployed easily, and the resulting files are immediately searchable to produce relevance-ranked results with builtin spelling aid, morphological processing, and advanced search logic. Demonstration systems were built for several databases, including the DOE energy thesaurus.« less
Masseroli, Marco; Kaitoua, Abdulrahman; Pinoli, Pietro; Ceri, Stefano
2016-12-01
While a huge amount of (epi)genomic data of multiple types is becoming available by using Next Generation Sequencing (NGS) technologies, the most important emerging problem is the so-called tertiary analysis, concerned with sense making, e.g., discovering how different (epi)genomic regions and their products interact and cooperate with each other. We propose a paradigm shift in tertiary analysis, based on the use of the Genomic Data Model (GDM), a simple data model which links genomic feature data to their associated experimental, biological and clinical metadata. GDM encompasses all the data formats which have been produced for feature extraction from (epi)genomic datasets. We specifically describe the mapping to GDM of SAM (Sequence Alignment/Map), VCF (Variant Call Format), NARROWPEAK (for called peaks produced by NGS ChIP-seq or DNase-seq methods), and BED (Browser Extensible Data) formats, but GDM supports as well all the formats describing experimental datasets (e.g., including copy number variations, DNA somatic mutations, or gene expressions) and annotations (e.g., regarding transcription start sites, genes, enhancers or CpG islands). We downloaded and integrated samples of all the above-mentioned data types and formats from multiple sources. The GDM is able to homogeneously describe semantically heterogeneous data and makes the ground for providing data interoperability, e.g., achieved through the GenoMetric Query Language (GMQL), a high-level, declarative query language for genomic big data. The combined use of the data model and the query language allows comprehensive processing of multiple heterogeneous data, and supports the development of domain-specific data-driven computations and bio-molecular knowledge discovery. Copyright © 2016 Elsevier Inc. All rights reserved.
Exploiting salient semantic analysis for information retrieval
NASA Astrophysics Data System (ADS)
Luo, Jing; Meng, Bo; Quan, Changqin; Tu, Xinhui
2016-11-01
Recently, many Wikipedia-based methods have been proposed to improve the performance of different natural language processing (NLP) tasks, such as semantic relatedness computation, text classification and information retrieval. Among these methods, salient semantic analysis (SSA) has been proven to be an effective way to generate conceptual representation for words or documents. However, its feasibility and effectiveness in information retrieval is mostly unknown. In this paper, we study how to efficiently use SSA to improve the information retrieval performance, and propose a SSA-based retrieval method under the language model framework. First, SSA model is adopted to build conceptual representations for documents and queries. Then, these conceptual representations and the bag-of-words (BOW) representations can be used in combination to estimate the language models of queries and documents. The proposed method is evaluated on several standard text retrieval conference (TREC) collections. Experiment results on standard TREC collections show the proposed models consistently outperform the existing Wikipedia-based retrieval methods.
Usability Evaluation of an Unstructured Clinical Document Query Tool for Researchers.
Hultman, Gretchen; McEwan, Reed; Pakhomov, Serguei; Lindemann, Elizabeth; Skube, Steven; Melton, Genevieve B
2018-01-01
Natural Language Processing - Patient Information Extraction for Researchers (NLP-PIER) was developed for clinical researchers for self-service Natural Language Processing (NLP) queries with clinical notes. This study was to conduct a user-centered analysis with clinical researchers to gain insight into NLP-PIER's usability and to gain an understanding of the needs of clinical researchers when using an application for searching clinical notes. Clinical researcher participants (n=11) completed tasks using the system's two existing search interfaces and completed a set of surveys and an exit interview. Quantitative data including time on task, task completion rate, and survey responses were collected. Interviews were analyzed qualitatively. Survey scores, time on task and task completion proportions varied widely. Qualitative analysis indicated that participants found the system to be useful and usable in specific projects. This study identified several usability challenges and our findings will guide the improvement of NLP-PIER 's interfaces.
An intelligent user interface for browsing satellite data catalogs
NASA Technical Reports Server (NTRS)
Cromp, Robert F.; Crook, Sharon
1989-01-01
A large scale domain-independent spatial data management expert system that serves as a front-end to databases containing spatial data is described. This system is unique for two reasons. First, it uses spatial search techniques to generate a list of all the primary keys that fall within a user's spatial constraints prior to invoking the database management system, thus substantially decreasing the amount of time required to answer a user's query. Second, a domain-independent query expert system uses a domain-specific rule base to preprocess the user's English query, effectively mapping a broad class of queries into a smaller subset that can be handled by a commercial natural language processing system. The methods used by the spatial search module and the query expert system are explained, and the system architecture for the spatial data management expert system is described. The system is applied to data from the International Ultraviolet Explorer (IUE) satellite, and results are given.
Internet Distribution of Spacecraft Telemetry Data
NASA Technical Reports Server (NTRS)
Specht, Ted; Noble, David
2006-01-01
Remote Access Multi-mission Processing and Analysis Ground Environment (RAMPAGE) is a Java-language server computer program that enables near-real-time display of spacecraft telemetry data on any authorized client computer that has access to the Internet and is equipped with Web-browser software. In addition to providing a variety of displays of the latest available telemetry data, RAMPAGE can deliver notification of an alarm by electronic mail. Subscribers can then use RAMPAGE displays to determine the state of the spacecraft and formulate a response to the alarm, if necessary. A user can query spacecraft mission data in either binary or comma-separated-value format by use of a Web form or a Practical Extraction and Reporting Language (PERL) script to automate the query process. RAMPAGE runs on Linux and Solaris server computers in the Ground Data System (GDS) of NASA's Jet Propulsion Laboratory and includes components designed specifically to make it compatible with legacy GDS software. The client/server architecture of RAMPAGE and the use of the Java programming language make it possible to utilize a variety of competitive server and client computers, thereby also helping to minimize costs.
The crustal dynamics intelligent user interface anthology
NASA Technical Reports Server (NTRS)
Short, Nicholas M., Jr.; Campbell, William J.; Roelofs, Larry H.; Wattawa, Scott L.
1987-01-01
The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has, as one of its components, the development of an Intelligent User Interface (IUI). The intent of the IUI is to develop a friendly and intelligent user interface service based on expert systems and natural language processing technologies. The purpose of such a service is to support the large number of potential scientific and engineering users that have need of space and land-related research and technical data, but have little or no experience in query languages or understanding of the information content or architecture of the databases of interest. This document presents the design concepts, development approach and evaluation of the performance of a prototype IUI system for the Crustal Dynamics Project Database, which was developed using a microcomputer-based expert system tool (M. 1), the natural language query processor THEMIS, and the graphics software system GSS. The IUI design is based on a multiple view representation of a database from both the user and database perspective, with intelligent processes to translate between the views.
GenoMetric Query Language: a novel approach to large-scale genomic data management.
Masseroli, Marco; Pinoli, Pietro; Venco, Francesco; Kaitoua, Abdulrahman; Jalili, Vahid; Palluzzi, Fernando; Muller, Heiko; Ceri, Stefano
2015-06-15
Improvement of sequencing technologies and data processing pipelines is rapidly providing sequencing data, with associated high-level features, of many individual genomes in multiple biological and clinical conditions. They allow for data-driven genomic, transcriptomic and epigenomic characterizations, but require state-of-the-art 'big data' computing strategies, with abstraction levels beyond available tool capabilities. We propose a high-level, declarative GenoMetric Query Language (GMQL) and a toolkit for its use. GMQL operates downstream of raw data preprocessing pipelines and supports queries over thousands of heterogeneous datasets and samples; as such it is key to genomic 'big data' analysis. GMQL leverages a simple data model that provides both abstractions of genomic region data and associated experimental, biological and clinical metadata and interoperability between many data formats. Based on Hadoop framework and Apache Pig platform, GMQL ensures high scalability, expressivity, flexibility and simplicity of use, as demonstrated by several biological query examples on ENCODE and TCGA datasets. The GMQL toolkit is freely available for non-commercial use at http://www.bioinformatics.deib.polimi.it/GMQL/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
GraQL: A Query Language for High-Performance Attributed Graph Databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Castellana, Vito G.; Morari, Alessandro
Graph databases have gained increasing interest in the last few years due to the emergence of data sources which are not easily analyzable in traditional relational models or for which a graph data model is the natural representation. In order to understand the design and implementation choices for an attributed graph database backend and query language, we have started to design our infrastructure for attributed graph databases. In this paper, we describe the design considerations of our in-memory attributed graph database system with a particular focus on the data definition and query language components.
Schuers, Matthieu; Joulakian, Mher; Kerdelhué, Gaetan; Segas, Léa; Grosjean, Julien; Darmoni, Stéfan J; Griffon, Nicolas
2017-07-03
MEDLINE is the most widely used medical bibliographic database in the world. Most of its citations are in English and this can be an obstacle for some researchers to access the information the database contains. We created a multilingual query builder to facilitate access to the PubMed subset using a language other than English. The aim of our study was to assess the impact of this multilingual query builder on the quality of PubMed queries for non-native English speaking physicians and medical researchers. A randomised controlled study was conducted among French speaking general practice residents. We designed a multi-lingual query builder to facilitate information retrieval, based on available MeSH translations and providing users with both an interface and a controlled vocabulary in their own language. Participating residents were randomly allocated either the French or the English version of the query builder. They were asked to translate 12 short medical questions into MeSH queries. The main outcome was the quality of the query. Two librarians blind to the arm independently evaluated each query, using a modified published classification that differentiated eight types of errors. Twenty residents used the French version of the query builder and 22 used the English version. 492 queries were analysed. There were significantly more perfect queries in the French group vs. the English group (respectively 37.9% vs. 17.9%; p < 0.01). It took significantly more time for the members of the English group than the members of the French group to build each query, respectively 194 sec vs. 128 sec; p < 0.01. This multi-lingual query builder is an effective tool to improve the quality of PubMed queries in particular for researchers whose first language is not English.
XGI: a graphical interface for XQuery creation.
Li, Xiang; Gennari, John H; Brinkley, James F
2007-10-11
XML has become the default standard for data exchange among heterogeneous data sources, and in January 2007 XQuery (XML Query language) was recommended by the World Wide Web Consortium as the query language for XML. However, XQuery is a complex language that is difficult for non-programmers to learn. We have therefore developed XGI (XQuery Graphical Interface), a visual interface for graphically generating XQuery. In this paper we demonstrate the functionality of XGI through its application to a biomedical XML dataset. We describe the system architecture and the features of XGI in relation to several existing querying systems, we demonstrate the system's usability through a sample query construction, and we discuss a preliminary evaluation of XGI. Finally, we describe some limitations of the system, and our plans for future improvements.
Computing health quality measures using Informatics for Integrating Biology and the Bedside.
Klann, Jeffrey G; Murphy, Shawn N
2013-04-19
The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)'s Query Health platform to move toward this goal. Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population health. However, its current form might allow complexity that is intractable for current database systems (both in terms of implementation and computation). Our translator, which supports the subset of HQMF currently expressible in i2b2-XML, may represent the beginnings of a practical compromise. It is being pilot-tested in two Query Health demonstration projects, and it can be further expanded to balance computational tractability with the advanced features needed by measure developers.
Computing Health Quality Measures Using Informatics for Integrating Biology and the Bedside
Murphy, Shawn N
2013-01-01
Background The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)’s Query Health platform to move toward this goal. Objective Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. Methods We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. Results The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. Conclusions HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population health. However, its current form might allow complexity that is intractable for current database systems (both in terms of implementation and computation). Our translator, which supports the subset of HQMF currently expressible in i2b2-XML, may represent the beginnings of a practical compromise. It is being pilot-tested in two Query Health demonstration projects, and it can be further expanded to balance computational tractability with the advanced features needed by measure developers. PMID:23603227
Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce
Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng
2016-01-01
The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS – a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing. PMID:27617325
Manchester visual query language
NASA Astrophysics Data System (ADS)
Oakley, John P.; Davis, Darryl N.; Shann, Richard T.
1993-04-01
We report a database language for visual retrieval which allows queries on image feature information which has been computed and stored along with images. The language is novel in that it provides facilities for dealing with feature data which has actually been obtained from image analysis. Each line in the Manchester Visual Query Language (MVQL) takes a set of objects as input and produces another, usually smaller, set as output. The MVQL constructs are mainly based on proven operators from the field of digital image analysis. An example is the Hough-group operator which takes as input a specification for the objects to be grouped, a specification for the relevant Hough space, and a definition of the voting rule. The output is a ranked list of high scoring bins. The query could be directed towards one particular image or an entire image database, in the latter case the bins in the output list would in general be associated with different images. We have implemented MVQL in two layers. The command interpreter is a Lisp program which maps each MVQL line to a sequence of commands which are used to control a specialized database engine. The latter is a hybrid graph/relational system which provides low-level support for inheritance and schema evolution. In the paper we outline the language and provide examples of useful queries. We also describe our solution to the engineering problems associated with the implementation of MVQL.
A New Publicly Available Chemical Query Language, CSRML ...
A new XML-based query language, CSRML, has been developed for representing chemical substructures, molecules, reaction rules, and reactions. CSRML queries are capable of integrating additional forms of information beyond the simple substructure (e.g., SMARTS) or reaction transformation (e.g., SMIRKS, reaction SMILES) queries currently in use. Chemotypes, a term used to represent advanced CSRML queries for repeated application can be encoded not only with connectivity and topology, but also with properties of atoms, bonds, electronic systems, or molecules. The CSRML language has been developed in parallel with a public set of chemotypes, i.e., the ToxPrint chemotypes, which are designed to provide excellent coverage of environmental, regulatory and commercial use chemical space, as well as to represent features and frameworks believed to be especially relevant to toxicity concerns. A software application, ChemoTyper, has also been developed and made publicly available to enable chemotype searching and fingerprinting against a target structure set. The public ChemoTyper houses the ToxPrint chemotype CSRML dictionary, as well as reference implementation so that the query specifications may be adopted by other chemical structure knowledge systems. The full specifications of the XML standard used in CSRML-based chemotypes are publicly available to facilitate and encourage the exchange of structural knowledge. Paper details specifications for a new XML-based query lan
Development of a web-based video management and application processing system
NASA Astrophysics Data System (ADS)
Chan, Shermann S.; Wu, Yi; Li, Qing; Zhuang, Yueting
2001-07-01
How to facilitate efficient video manipulation and access in a web-based environment is becoming a popular trend for video applications. In this paper, we present a web-oriented video management and application processing system, based on our previous work on multimedia database and content-based retrieval. In particular, we extend the VideoMAP architecture with specific web-oriented mechanisms, which include: (1) Concurrency control facilities for the editing of video data among different types of users, such as Video Administrator, Video Producer, Video Editor, and Video Query Client; different users are assigned various priority levels for different operations on the database. (2) Versatile video retrieval mechanism which employs a hybrid approach by integrating a query-based (database) mechanism with content- based retrieval (CBR) functions; its specific language (CAROL/ST with CBR) supports spatio-temporal semantics of video objects, and also offers an improved mechanism to describe visual content of videos by content-based analysis method. (3) Query profiling database which records the `histories' of various clients' query activities; such profiles can be used to provide the default query template when a similar query is encountered by the same kind of users. An experimental prototype system is being developed based on the existing VideoMAP prototype system, using Java and VC++ on the PC platform.
Query Expansion and Query Translation as Logical Inference.
ERIC Educational Resources Information Center
Nie, Jian-Yun
2003-01-01
Examines query expansion during query translation in cross language information retrieval and develops a general framework for inferential information retrieval in two particular contexts: using fuzzy logic and probability theory. Obtains evaluation formulas that are shown to strongly correspond to those used in other information retrieval models.…
A general natural-language text processor for clinical radiology.
Friedman, C; Alderson, P O; Austin, J H; Cimino, J J; Johnson, S B
1994-01-01
OBJECTIVE: Development of a general natural-language processor that identifies clinical information in narrative reports and maps that information into a structured representation containing clinical terms. DESIGN: The natural-language processor provides three phases of processing, all of which are driven by different knowledge sources. The first phase performs the parsing. It identifies the structure of the text through use of a grammar that defines semantic patterns and a target form. The second phase, regularization, standardizes the terms in the initial target structure via a compositional mapping of multi-word phrases. The third phase, encoding, maps the terms to a controlled vocabulary. Radiology is the test domain for the processor and the target structure is a formal model for representing clinical information in that domain. MEASUREMENTS: The impression sections of 230 radiology reports were encoded by the processor. Results of an automated query of the resultant database for the occurrences of four diseases were compared with the analysis of a panel of three physicians to determine recall and precision. RESULTS: Without training specific to the four diseases, recall and precision of the system (combined effect of the processor and query generator) were 70% and 87%. Training of the query component increased recall to 85% without changing precision. PMID:7719797
A Text Knowledge Base from the AI Handbook.
ERIC Educational Resources Information Center
Simmons, Robert F.
1987-01-01
Describes a prototype natural language text knowledge system (TKS) that was used to organize 50 pages of a handbook on artificial intelligence as an inferential knowledge base with natural language query and command capabilities. Representation of text, database navigation, query systems, discourse structuring, and future research needs are…
A Query Integrator and Manager for the Query Web
Brinkley, James F.; Detwiler, Landon T.
2012-01-01
We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions. PMID:22531831
Image databases: Problems and perspectives
NASA Technical Reports Server (NTRS)
Gudivada, V. Naidu
1989-01-01
With the increasing number of computer graphics, image processing, and pattern recognition applications, economical storage, efficient representation and manipulation, and powerful and flexible query languages for retrieval of image data are of paramount importance. These and related issues pertinent to image data bases are examined.
Path querying system on mobile devices
NASA Astrophysics Data System (ADS)
Lin, Xing; Wang, Yifei; Tian, Yuan; Wu, Lun
2006-01-01
Traditional approaches to path querying problems are not efficient and convenient under most circumstances. A more convenient and reliable approach to this problem has to be found. This paper is devoted to a path querying solution on mobile devices. By using an improved Dijkstra's shortest path algorithm and a natural language translating module, this system can help people find the shortest path between two places through their cell phones or other mobile devices. The chosen path is prompted in text of natural language, as well as a map picture. This system would be useful in solving best path querying problems and have potential to be a profitable business system.
NASA Astrophysics Data System (ADS)
Clements, O.; Siemen, S.; Wagemann, J.
2017-12-01
The EU-funded Earthserver-2 project aims to offer on-demand access to large volumes of environmental data (Earth Observation, Marine, Climate data and Planetary data) via the interface standard Web Coverage Service defined by the Open Geospatial Consortium. Providing access to data via OGC web services (e.g. WCS and WMS) has the potential to open up services to a wider audience, especially to users outside the respective communities. Especially WCS 2.0 with its processing extension Web Coverage Processing Service (WCPS) is highly beneficial to make large volumes accessible to non-expert communities. Users do not have to deal with custom community data formats, such as GRIB for the meteorological community, but can directly access the data in a format they are more familiar with, such as NetCDF, JSON or CSV. Data requests can further directly be integrated into custom processing routines and users are not required to download Gigabytes of data anymore. WCS supports trim (reduction of data extent) and slice (reduction of data dimension) operations on multi-dimensional data, providing users a very flexible on-demand access to the data. WCPS allows the user to craft queries to run on the data using a text-based query language, similar to SQL. These queries can be very powerful, e.g. condensing a three-dimensional data cube into its two-dimensional mean. However, the more processing-intensive the more complex the query. As part of the EarthServer-2 project, we developed a python library that helps users to generate complex WCPS queries with Python, a programming language they are more familiar with. The interactive presentation aims to give practical examples how users can benefit from two specific WCS services from the Marine and Climate community. Use-cases from the two communities will show different approaches to take advantage of a Web Coverage (Processing) Service. The entire content is available with Jupyter Notebooks, as they prove to be a highly beneficial tool to generate reproducible workflows for environmental data analysis.
SQL/NF Translator for the Triton Nested Relational Database System
1990-12-01
18as., Ohio .. 9~~ ~~ 1 4- AFIT/GCE/ENG/90D-05 SQL/Nk1 TRANSLATOR FOR THE TRITON NESTED RELATIONAL DATABASE SYSTEM THESIS Craig William Schnepf Captain...FOR THE TRITON NESTED RELATIONAL DATABASE SYSTEM THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technnlogy... systems . The SQL/NF query language used for the nested relationil model is an extension of the popular relational model query language SQL. The query
An advanced web query interface for biological databases
Latendresse, Mario; Karp, Peter D.
2010-01-01
Although most web-based biological databases (DBs) offer some type of web-based form to allow users to author DB queries, these query forms are quite restricted in the complexity of DB queries that they can formulate. They can typically query only one DB, and can query only a single type of object at a time (e.g. genes) with no possible interaction between the objects—that is, in SQL parlance, no joins are allowed between DB objects. Writing precise queries against biological DBs is usually left to a programmer skillful enough in complex DB query languages like SQL. We present a web interface for building precise queries for biological DBs that can construct much more precise queries than most web-based query forms, yet that is user friendly enough to be used by biologists. It supports queries containing multiple conditions, and connecting multiple object types without using the join concept, which is unintuitive to biologists. This interactive web interface is called the Structured Advanced Query Page (SAQP). Users interactively build up a wide range of query constructs. Interactive documentation within the SAQP describes the schema of the queried DBs. The SAQP is based on BioVelo, a query language based on list comprehension. The SAQP is part of the Pathway Tools software and is available as part of several bioinformatics web sites powered by Pathway Tools, including the BioCyc.org site that contains more than 500 Pathway/Genome DBs. PMID:20624715
Regular paths in SparQL: querying the NCI Thesaurus.
Detwiler, Landon T; Suciu, Dan; Brinkley, James F
2008-11-06
OWL, the Web Ontology Language, provides syntax and semantics for representing knowledge for the semantic web. Many of the constructs of OWL have a basis in the field of description logics. While the formal underpinnings of description logics have lead to a highly computable language, it has come at a cognitive cost. OWL ontologies are often unintuitive to readers lacking a strong logic background. In this work we describe GLEEN, a regular path expression library, which extends the RDF query language SparQL to support complex path expressions over OWL and other RDF-based ontologies. We illustrate the utility of GLEEN by showing how it can be used in a query-based approach to defining simpler, more intuitive views of OWL ontologies. In particular we show how relatively simple GLEEN-enhanced SparQL queries can create views of the OWL version of the NCI Thesaurus that match the views generated by the web-based NCI browser.
Ong, Edison; Xiang, Zuoshuang; Zhao, Bin; Liu, Yue; Lin, Yu; Zheng, Jie; Mungall, Chris; Courtot, Mélanie; Ruttenberg, Alan; He, Yongqun
2017-01-01
Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies. PMID:27733503
Sehnal, David; Pravda, Lukáš; Svobodová Vařeková, Radka; Ionescu, Crina-Maria; Koča, Jaroslav
2015-07-01
Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Technical Reports Server (NTRS)
Steeman, Gerald; Connell, Christopher
2000-01-01
Many librarians may feel that dynamic Web pages are out of their reach, financially and technically. Yet we are reminded in library and Web design literature that static home pages are a thing of the past. This paper describes how librarians at the Institute for Defense Analyses (IDA) library developed a database-driven, dynamic intranet site using commercial off-the-shelf applications. Administrative issues include surveying a library users group for interest and needs evaluation; outlining metadata elements; and, committing resources from managing time to populate the database and training in Microsoft FrontPage and Web-to-database design. Technical issues covered include Microsoft Access database fundamentals, lessons learned in the Web-to-database process (including setting up Database Source Names (DSNs), redesigning queries to accommodate the Web interface, and understanding Access 97 query language vs. Standard Query Language (SQL)). This paper also offers tips on editing Active Server Pages (ASP) scripting to create desired results. A how-to annotated resource list closes out the paper.
Design of an On-Line Query Language for Full Text Patent Search.
ERIC Educational Resources Information Center
Glantz, Richard S.
The design of an English-like query language and an interactive computer environment for searching the full text of the U.S. patent collection are discussed. Special attention is paid to achieving a transparent user interface, to providing extremely broad search capabilities (including nested substitution classes, Kleene star events, and domain…
Meeting medical terminology needs--the Ontology-Enhanced Medical Concept Mapper.
Leroy, G; Chen, H
2001-12-01
This paper describes the development and testing of the Medical Concept Mapper, a tool designed to facilitate access to online medical information sources by providing users with appropriate medical search terms for their personal queries. Our system is valuable for patients whose knowledge of medical vocabularies is inadequate to find the desired information, and for medical experts who search for information outside their field of expertise. The Medical Concept Mapper maps synonyms and semantically related concepts to a user's query. The system is unique because it integrates our natural language processing tool, i.e., the Arizona (AZ) Noun Phraser, with human-created ontologies, the Unified Medical Language System (UMLS) and WordNet, and our computer generated Concept Space, into one system. Our unique contribution results from combining the UMLS Semantic Net with Concept Space in our deep semantic parsing (DSP) algorithm. This algorithm establishes a medical query context based on the UMLS Semantic Net, which allows Concept Space terms to be filtered so as to isolate related terms relevant to the query. We performed two user studies in which Medical Concept Mapper terms were compared against human experts' terms. We conclude that the AZ Noun Phraser is well suited to extract medical phrases from user queries, that WordNet is not well suited to provide strictly medical synonyms, that the UMLS Metathesaurus is well suited to provide medical synonyms, and that Concept Space is well suited to provide related medical terms, especially when these terms are limited by our DSP algorithm.
Optimizing Interactive Development of Data-Intensive Applications
Interlandi, Matteo; Tetali, Sai Deep; Gulzar, Muhammad Ali; Noor, Joseph; Condie, Tyson; Kim, Miryung; Millstein, Todd
2017-01-01
Modern Data-Intensive Scalable Computing (DISC) systems are designed to process data through batch jobs that execute programs (e.g., queries) compiled from a high-level language. These programs are often developed interactively by posing ad-hoc queries over the base data until a desired result is generated. We observe that there can be significant overlap in the structure of these queries used to derive the final program. Yet, each successive execution of a slightly modified query is performed anew, which can significantly increase the development cycle. Vega is an Apache Spark framework that we have implemented for optimizing a series of similar Spark programs, likely originating from a development or exploratory data analysis session. Spark developers (e.g., data scientists) can leverage Vega to significantly reduce the amount of time it takes to re-execute a modified Spark program, reducing the overall time to market for their Big Data applications. PMID:28405637
Using a data base management system for modelling SSME test history data
NASA Technical Reports Server (NTRS)
Abernethy, K.
1985-01-01
The usefulness of a data base management system (DBMS) for modelling historical test data for the complete series of static test firings for the Space Shuttle Main Engine (SSME) was assessed. From an analysis of user data base query requirements, it became clear that a relational DMBS which included a relationally complete query language would permit a model satisfying the query requirements. Representative models and sample queries are discussed. A list of environment-particular evaluation criteria for the desired DBMS was constructed; these criteria include requirements in the areas of user-interface complexity, program independence, flexibility, modifiability, and output capability. The evaluation process included the construction of several prototype data bases for user assessement. The systems studied, representing the three major DBMS conceptual models, were: MIRADS, a hierarchical system; DMS-1100, a CODASYL-based network system; ORACLE, a relational system; and DATATRIEVE, a relational-type system.
Automatic query formulations in information retrieval.
Salton, G; Buckley, C; Fox, E A
1983-07-01
Modern information retrieval systems are designed to supply relevant information in response to requests received from the user population. In most retrieval environments the search requests consist of keywords, or index terms, interrelated by appropriate Boolean operators. Since it is difficult for untrained users to generate effective Boolean search requests, trained search intermediaries are normally used to translate original statements of user need into useful Boolean search formulations. Methods are introduced in this study which reduce the role of the search intermediaries by making it possible to generate Boolean search formulations completely automatically from natural language statements provided by the system patrons. Frequency considerations are used automatically to generate appropriate term combinations as well as Boolean connectives relating the terms. Methods are covered to produce automatic query formulations both in a standard Boolean logic system, as well as in an extended Boolean system in which the strict interpretation of the connectives is relaxed. Experimental results are supplied to evaluate the effectiveness of the automatic query formulation process, and methods are described for applying the automatic query formulation process in practice.
A Probabilistic Approach to Crosslingual Information Retrieval
2001-06-01
language expansion step can be performed before the translation process. Implemented as a call to the INQUERY function get_modified_query with one of the...database consists of American English while the dictionary is British English. Therefore, e.g. the Spanish word basura is translated to rubbish and
SP2Bench: A SPARQL Performance Benchmark
NASA Astrophysics Data System (ADS)
Schmidt, Michael; Hornung, Thomas; Meier, Michael; Pinkel, Christoph; Lausen, Georg
A meaningful analysis and comparison of both existing storage schemes for RDF data and evaluation approaches for SPARQL queries necessitates a comprehensive and universal benchmark platform. We present SP2Bench, a publicly available, language-specific performance benchmark for the SPARQL query language. SP2Bench is settled in the DBLP scenario and comprises a data generator for creating arbitrarily large DBLP-like documents and a set of carefully designed benchmark queries. The generated documents mirror vital key characteristics and social-world distributions encountered in the original DBLP data set, while the queries implement meaningful requests on top of this data, covering a variety of SPARQL operator constellations and RDF access patterns. In this chapter, we discuss requirements and desiderata for SPARQL benchmarks and present the SP2Bench framework, including its data generator, benchmark queries and performance metrics.
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Liu, I-Hsiung
1985-01-01
This Working Paper Series entry represents a collection of presentation visuals associated with the companion report entitled Natural Language Query System Design for Interactive Information Storage and Retrieval Systems, USL/DBMS NASA/RECON Working Paper Series report number DBMS.NASA/RECON-17.
ERIC Educational Resources Information Center
Piyayodilokchai, Hongsiri; Panjaburee, Patcharin; Laosinchai, Parames; Ketpichainarong, Watcharee; Ruenwongsa, Pintip
2013-01-01
With the benefit of multimedia and the learning cycle approach in promoting effective active learning, this paper proposed a learning cycle approach-based, multimedia-supplemented instructional unit for Structured Query Language (SQL) for second-year undergraduate students with the aim of enhancing their basic knowledge of SQL and ability to apply…
NASA Astrophysics Data System (ADS)
Curland, Matthew; Halpin, Terry; Stirewalt, Kurt
A conceptual schema of an information system specifies the fact structures of interest as well as related business rules that are either constraints or derivation rules. Constraints restrict the possible or permitted states or state transitions, while derivation rules enable some facts to be derived from others. Graphical languages are commonly used to specify conceptual schemas, but often need to be supplemented by more expressive textual languages to capture additional business rules, as well as conceptual queries that enable conceptual models to be queried directly. This paper describes research to provide a role calculus to underpin textual languages for Object-Role Modeling (ORM), to enable business rules and queries to be formulated in a language intelligible to business users. The role-based nature of this calculus, which exploits the attribute-free nature of ORM, appears to offer significant advantages over other proposed approaches, especially in the area of semantic stability.
StarView: The object oriented design of the ST DADS user interface
NASA Technical Reports Server (NTRS)
Williams, J. D.; Pollizzi, J. A.
1992-01-01
StarView is the user interface being developed for the Hubble Space Telescope Data Archive and Distribution Service (ST DADS). ST DADS is the data archive for HST observations and a relational database catalog describing the archived data. Users will use StarView to query the catalog and select appropriate datasets for study. StarView sends requests for archived datasets to ST DADS which processes the requests and returns the database to the user. StarView is designed to be a powerful and extensible user interface. Unique features include an internal relational database to navigate query results, a form definition language that will work with both CRT and X interfaces, a data definition language that will allow StarView to work with any relational database, and the ability to generate adhoc queries without requiring the user to understand the structure of the ST DADS catalog. Ultimately, StarView will allow the user to refine queries in the local database for improved performance and merge in data from external sources for correlation with other query results. The user will be able to create a query from single or multiple forms, merging the selected attributes into a single query. Arbitrary selection of attributes for querying is supported. The user will be able to select how query results are viewed. A standard form or table-row format may be used. Navigation capabilities are provided to aid the user in viewing query results. Object oriented analysis and design techniques were used in the design of StarView to support the mechanisms and concepts required to implement these features. One such mechanism is the Model-View-Controller (MVC) paradigm. The MVC allows the user to have multiple views of the underlying database, while providing a consistent mechanism for interaction regardless of the view. This approach supports both CRT and X interfaces while providing a common mode of user interaction. Another powerful abstraction is the concept of a Query Model. This concept allows a single query to be built form a single or multiple forms before it is submitted to ST DADS. Supporting this concept is the adhoc query generator which allows the user to select and qualify an indeterminate number attributes from the database. The user does not need any knowledge of how the joins across various tables are to be resolved. The adhoc generator calculates the joins automatically and generates the correct SQL query.
Searching for cancer information on the internet: analyzing natural language search queries.
Bader, Judith L; Theofanos, Mary Frances
2003-12-11
Searching for health information is one of the most-common tasks performed by Internet users. Many users begin searching on popular search engines rather than on prominent health information sites. We know that many visitors to our (National Cancer Institute) Web site, cancer.gov, arrive via links in search engine result. To learn more about the specific needs of our general-public users, we wanted to understand what lay users really wanted to know about cancer, how they phrased their questions, and how much detail they used. The National Cancer Institute partnered with AskJeeves, Inc to develop a methodology to capture, sample, and analyze 3 months of cancer-related queries on the Ask.com Web site, a prominent United States consumer search engine, which receives over 35 million queries per week. Using a benchmark set of 500 terms and word roots supplied by the National Cancer Institute, AskJeeves identified a test sample of cancer queries for 1 week in August 2001. From these 500 terms only 37 appeared >or= 5 times/day over the trial test week in 17208 queries. Using these 37 terms, 204165 instances of cancer queries were found in the Ask.com query logs for the actual test period of June-August 2001. Of these, 7500 individual user questions were randomly selected for detailed analysis and assigned to appropriate categories. The exact language of sample queries is presented. Considering multiples of the same questions, the sample of 7500 individual user queries represented 76077 queries (37% of the total 3-month pool). Overall 78.37% of sampled Cancer queries asked about 14 specific cancer types. Within each cancer type, queries were sorted into appropriate subcategories including at least the following: General Information, Symptoms, Diagnosis and Testing, Treatment, Statistics, Definition, and Cause/Risk/Link. The most-common specific cancer types mentioned in queries were Digestive/Gastrointestinal/Bowel (15.0%), Breast (11.7%), Skin (11.3%), and Genitourinary (10.5%). Additional subcategories of queries about specific cancer types varied, depending on user input. Queries that were not specific to a cancer type were also tracked and categorized. Natural-language searching affords users the opportunity to fully express their information needs and can aid users naïve to the content and vocabulary. The specific queries analyzed for this study reflect news and research studies reported during the study dates and would surely change with different study dates. Analyzing queries from search engines represents one way of knowing what kinds of content to provide to users of a given Web site. Users ask questions using whole sentences and keywords, often misspelling words. Providing the option for natural-language searching does not obviate the need for good information architecture, usability engineering, and user testing in order to optimize user experience.
Searching for Cancer Information on the Internet: Analyzing Natural Language Search Queries
Theofanos, Mary Frances
2003-01-01
Background Searching for health information is one of the most-common tasks performed by Internet users. Many users begin searching on popular search engines rather than on prominent health information sites. We know that many visitors to our (National Cancer Institute) Web site, cancer.gov, arrive via links in search engine result. Objective To learn more about the specific needs of our general-public users, we wanted to understand what lay users really wanted to know about cancer, how they phrased their questions, and how much detail they used. Methods The National Cancer Institute partnered with AskJeeves, Inc to develop a methodology to capture, sample, and analyze 3 months of cancer-related queries on the Ask.com Web site, a prominent United States consumer search engine, which receives over 35 million queries per week. Using a benchmark set of 500 terms and word roots supplied by the National Cancer Institute, AskJeeves identified a test sample of cancer queries for 1 week in August 2001. From these 500 terms only 37 appeared ≥ 5 times/day over the trial test week in 17208 queries. Using these 37 terms, 204165 instances of cancer queries were found in the Ask.com query logs for the actual test period of June-August 2001. Of these, 7500 individual user questions were randomly selected for detailed analysis and assigned to appropriate categories. The exact language of sample queries is presented. Results Considering multiples of the same questions, the sample of 7500 individual user queries represented 76077 queries (37% of the total 3-month pool). Overall 78.37% of sampled Cancer queries asked about 14 specific cancer types. Within each cancer type, queries were sorted into appropriate subcategories including at least the following: General Information, Symptoms, Diagnosis and Testing, Treatment, Statistics, Definition, and Cause/Risk/Link. The most-common specific cancer types mentioned in queries were Digestive/Gastrointestinal/Bowel (15.0%), Breast (11.7%), Skin (11.3%), and Genitourinary (10.5%). Additional subcategories of queries about specific cancer types varied, depending on user input. Queries that were not specific to a cancer type were also tracked and categorized. Conclusions Natural-language searching affords users the opportunity to fully express their information needs and can aid users naïve to the content and vocabulary. The specific queries analyzed for this study reflect news and research studies reported during the study dates and would surely change with different study dates. Analyzing queries from search engines represents one way of knowing what kinds of content to provide to users of a given Web site. Users ask questions using whole sentences and keywords, often misspelling words. Providing the option for natural-language searching does not obviate the need for good information architecture, usability engineering, and user testing in order to optimize user experience. PMID:14713659
NASA Astrophysics Data System (ADS)
Mueller, Wolfgang; Mueller, Henning; Marchand-Maillet, Stephane; Pun, Thierry; Squire, David M.; Pecenovic, Zoran; Giess, Christoph; de Vries, Arjen P.
2000-10-01
While in the area of relational databases interoperability is ensured by common communication protocols (e.g. ODBC/JDBC using SQL), Content Based Image Retrieval Systems (CBIRS) and other multimedia retrieval systems are lacking both a common query language and a common communication protocol. Besides its obvious short term convenience, interoperability of systems is crucial for the exchange and analysis of user data. In this paper, we present and describe an extensible XML-based query markup language, called MRML (Multimedia Retrieval markup Language). MRML is primarily designed so as to ensure interoperability between different content-based multimedia retrieval systems. Further, MRML allows researchers to preserve their freedom in extending their system as needed. MRML encapsulates multimedia queries in a way that enable multimedia (MM) query languages, MM content descriptions, MM query engines, and MM user interfaces to grow independently from each other, reaching a maximum of interoperability while ensuring a maximum of freedom for the developer. For benefitting from this, only a few simple design principles have to be respected when extending MRML for one's fprivate needs. The design of extensions withing the MRML framework will be described in detail in the paper. MRML has been implemented and tested for the CBIRS Viper, using the user interface Snake Charmer. Both are part of the GNU project and can be downloaded at our site.
A Prototype of an Intelligent System for Information Retrieval: IOTA.
ERIC Educational Resources Information Center
Chiaramella, Y.; Defude, B.
1987-01-01
Discusses expert systems and their value as components of information retrieval systems related to semantic inference, and describes IOTA, a model of an intelligent information retrieval system which emphasizes natural language query processing. Experimental results are discussed and current and future developments are highlighted. (Author/LRW)
Identifying QT prolongation from ECG impressions using a general-purpose Natural Language Processor
Denny, Joshua C.; Miller, Randolph A.; Waitman, Lemuel Russell; Arrieta, Mark; Peterson, Joshua F.
2009-01-01
Objective Typically detected via electrocardiograms (ECGs), QT interval prolongation is a known risk factor for sudden cardiac death. Since medications can promote or exacerbate the condition, detection of QT interval prolongation is important for clinical decision support. We investigated the accuracy of natural language processing (NLP) for identifying QT prolongation from cardiologist-generated, free-text ECG impressions compared to corrected QT (QTc) thresholds reported by ECG machines. Methods After integrating negation detection to a locally-developed natural language processor, the KnowledgeMap concept identifier, we evaluated NLP-based detection of QT prolongation compared to the calculated QTc on a set of 44,318 ECGs obtained from hospitalized patients. We also created a string query using regular expressions to identify QT prolongation. We calculated sensitivity and specificity of the methods using manual physician review of the cardiologist-generated reports as the gold standard. To investigate causes of “false positive” calculated QTc, we manually reviewed randomly selected ECGs with a long calculated QTc but no mention of QT prolongation. Separately, we validated the performance of the negation detection algorithm on 5,000 manually-categorized ECG phrases for any medical concept (not limited to QT prolongation) prior to developing the NLP query for QT prolongation. Results The NLP query for QT prolongation correctly identified 2,364 of 2,373 ECGs with QT prolongation with a sensitivity of 0.996 and a positive predictive value of 1.000. There were no false positives. The regular expression query had a sensitivity of 0.999 and positive predictive value of 0.982. In contrast, the positive predictive value of common QTc thresholds derived from ECG machines was 0.07–0.25 with corresponding sensitivities of 0.994–0.046. The negation detection algorithm had a recall of 0.973 and precision of 0.982 for 10,490 concepts found within ECG impressions. Conclusions NLP and regular expression queries of cardiologists’ ECG interpretations can more effectively identify QT prolongation than the automated QTc intervals reported by ECG machines. Future clinical decision support could employ NLP queries to detect QTc prolongation and other reported ECG abnormalities. PMID:18938105
Saying What You're Looking For: Linguistics Meets Video Search.
Barrett, Daniel Paul; Barbu, Andrei; Siddharth, N; Siskind, Jeffrey Mark
2016-10-01
We present an approach to searching large video corpora for clips which depict a natural-language query in the form of a sentence. Compositional semantics is used to encode subtle meaning differences lost in other approaches, such as the difference between two sentences which have identical words but entirely different meaning: The person rode the horse versus The horse rode the person. Given a sentential query and a natural-language parser, we produce a score indicating how well a video clip depicts that sentence for each clip in a corpus and return a ranked list of clips. Two fundamental problems are addressed simultaneously: detecting and tracking objects, and recognizing whether those tracks depict the query. Because both tracking and object detection are unreliable, our approach uses the sentential query to focus the tracker on the relevant participants and ensures that the resulting tracks are described by the sentential query. While most earlier work was limited to single-word queries which correspond to either verbs or nouns, we search for complex queries which contain multiple phrases, such as prepositional phrases, and modifiers, such as adverbs. We demonstrate this approach by searching for 2,627 naturally elicited sentential queries in 10 Hollywood movies.
vSPARQL: A View Definition Language for the Semantic Web
Shaw, Marianne; Detwiler, Landon T.; Noy, Natalya; Brinkley, James; Suciu, Dan
2010-01-01
Translational medicine applications would like to leverage the biological and biomedical ontologies, vocabularies, and data sets available on the semantic web. We present a general solution for RDF information set reuse inspired by database views. Our view definition language, vSPARQL, allows applications to specify the exact content that they are interested in and how that content should be restructured or modified. Applications can access relevant content by querying against these view definitions. We evaluate the expressivity of our approach by defining views for practical use cases and comparing our view definition language to existing query languages. PMID:20800106
Concepts and implementations of natural language query systems
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Liu, I-Hsiung
1984-01-01
The currently developed user language interfaces of information systems are generally intended for serious users. These interfaces commonly ignore potentially the largest user group, i.e., casual users. This project discusses the concepts and implementations of a natural query language system which satisfy the nature and information needs of casual users by allowing them to communicate with the system in the form of their native (natural) language. In addition, a framework for the development of such an interface is also introduced for the MADAM (Multics Approach to Data Access and Management) system at the University of Southwestern Louisiana.
Analysis and Development of a Web-Enabled Planning and Scheduling Database Application
2013-09-01
establishes an entity—relationship diagram for the desired process, constructs an operable database using MySQL , and provides a web- enabled interface for...development, develop, design, process, re- engineering, reengineering, MySQL , structured query language, SQL, myPHPadmin. 15. NUMBER OF PAGES 107 16...relationship diagram for the desired process, constructs an operable database using MySQL , and provides a web-enabled interface for the population of
Safari, Leila; Patrick, Jon D
2018-06-01
This paper reports on a generic framework to provide clinicians with the ability to conduct complex analyses on elaborate research topics using cascaded queries to resolve internal time-event dependencies in the research questions, as an extension to the proposed Clinical Data Analytics Language (CliniDAL). A cascaded query model is proposed to resolve internal time-event dependencies in the queries which can have up to five levels of criteria starting with a query to define subjects to be admitted into a study, followed by a query to define the time span of the experiment. Three more cascaded queries can be required to define control groups, control variables and output variables which all together simulate a real scientific experiment. According to the complexity of the research questions, the cascaded query model has the flexibility of merging some lower level queries for simple research questions or adding a nested query to each level to compose more complex queries. Three different scenarios (one of them contains two studies) are described and used for evaluation of the proposed solution. CliniDAL's complex analyses solution enables answering complex queries with time-event dependencies at most in a few hours which manually would take many days. An evaluation of results of the research studies based on the comparison between CliniDAL and SQL solutions reveals high usability and efficiency of CliniDAL's solution. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Peterson, Gabriel M.; Su, Kuichun; Ries, James E.; Sievert, Mary Ellen C.
2002-01-01
Discussion of Internet use for information searches on health-related topics focuses on a study that examined complexity and variability of natural language in using search terms that express the concept of electronic health (e-health). Highlights include precision of retrieved information; shift in terminology; and queries using the Pub Med…
ERIC Educational Resources Information Center
Bosc, P.; Lietard, L.; Pivert, O.
2003-01-01
Considers flexible querying of relational databases. Highlights include SQL languages and basic aggregate operators; Sugeno's fuzzy integral; evaluation examples; and how and under what conditions other aggregate functions could be applied to fuzzy sets in a flexible query. (Author/LRW)
Ong, Edison; Xiang, Zuoshuang; Zhao, Bin; Liu, Yue; Lin, Yu; Zheng, Jie; Mungall, Chris; Courtot, Mélanie; Ruttenberg, Alan; He, Yongqun
2017-01-04
Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Measuring Up: Implementing a Dental Quality Measure in the Electronic Health Record Context
Bhardwaj, Aarti; Ramoni, Rachel; Kalenderian, Elsbeth; Neumann, Ana; Hebballi, Nutan B; White, Joel M; McClellan, Lyle; Walji, Muhammad F
2015-01-01
Background Quality improvement requires quality measures that are validly implementable. In this work, we assessed the feasibility and performance of an automated electronic Meaningful Use dental clinical quality measure (percentage of children who received fluoride varnish). Methods We defined how to implement the automated measure queries in a dental electronic health record (EHR). Within records identified through automated query, we manually reviewed a subsample to assess the performance of the query. Results The automated query found 71.0% of patients to have had fluoride varnish compared to 77.6% found using the manual chart review. The automated quality measure performance was 90.5% sensitivity, 90.8% specificity, 96.9% positive predictive value, and 75.2% negative predictive value. Conclusions Our findings support the feasibility of automated dental quality measure queries in the context of sufficient structured data. Information noted only in the free text rather than in structured data would require natural language processing approaches to effectively query. Practical Implications To participate in self-directed quality improvement, dental clinicians must embrace the accountability era. Commitment to quality will require enhanced documentation in order to support near-term automated calculation of quality measures. PMID:26562736
Reppe, Linda Amundstuen; Spigset, Olav; Kampmann, Jens Peter; Damkier, Per; Christensen, Hanne Rolighed; Böttiger, Ylva; Schjøtt, Jan
2017-05-01
The aim of this study was to identify structure and language elements affecting the quality of responses from Scandinavian drug information centres (DICs). Six different fictitious drug-related queries were sent to each of seven Scandinavian DICs. The centres were blinded for which queries were part of the study. The responses were assessed qualitatively by six clinical pharmacologists (internal experts) and six general practitioners (GPs, external experts). In addition, linguistic aspects of the responses were evaluated by a plain language expert. The quality of responses was generally judged as satisfactory to good. Presenting specific advice and conclusions were considered to improve the quality of the responses. However, small nuances in language formulations could affect the individual judgments of the experts, e.g. on whether or not advice was given. Some experts preferred the use of primary sources to the use of secondary and tertiary sources. Both internal and external experts criticised the use of abbreviations, professional terminology and study findings that was left unexplained. The plain language expert emphasised the importance of defining and explaining pharmacological terms to ensure that enquirers understand the response as intended. In addition, more use of active voice and less compressed text structure would be desirable. This evaluation of responses to DIC queries may give some indications on how to improve written responses on drug-related queries with respect to language and text structure. Giving specific advice and precise conclusions and avoiding too compressed language and non-standard abbreviations may aid to reach this goal.
Intelligent communication assistant for databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobson, G.; Shaked, V.; Rowley, S.
1983-01-01
An intelligent communication assistant for databases, called FRED (front end for databases) is explored. FRED is designed to facilitate access to database systems by users of varying levels of experience. FRED is a second generation of natural language front-ends for databases and intends to solve two critical interface problems existing between end-users and databases: connectivity and communication problems. The authors report their experiences in developing software for natural language query processing, dialog control, and knowledge representation, as well as the direction of future work. 10 references.
2006-08-01
effective for describing taxonomic categories and properties of things, the structures found in SWRL and SPARQL are better suited to describing conditions...up the query processing time, which may occur many times and furthermore it is time critical. In order to maintain information about the...that time spent during this phase does not depend linearly on the number of concepts present in the data structure , but in the order of log of concepts
1979-12-10
Review Collection Plan File. L... _.. Table 20 (Item 18) Items 76 17, and’ 78 compared three different METHODS for recording the outcomes of a task...3-1 3.2 Background ........ n. .... .............. ...... 3-1 3.3 Method Summary...aspects of descriptions of selected tasks from Army tactical Intelli- gence processing. The results provided indications of what query methods have
Query Expansion for Noisy Legal Documents
2008-11-01
9] G. Salton (ed). The SMART retrieval system experiments in automatic document processing. 1971. [10] H. Schutze and J . Pedersen. A cooccurrence...Language Modeling and Information Retrieval. http://www.lemurproject.org. [2] J . Baron, D. Lewis, and D. Oard. TREC 2006 legal track overview. In...Retrieval, 1993. [8] J . Rocchio. Relevance feedback in information retrieval. In The SMART retrieval system experiments in automatic document processing, 1971
Query2Question: Translating Visualization Interaction into Natural Language.
Nafari, Maryam; Weaver, Chris
2015-06-01
Richly interactive visualization tools are increasingly popular for data exploration and analysis in a wide variety of domains. Existing systems and techniques for recording provenance of interaction focus either on comprehensive automated recording of low-level interaction events or on idiosyncratic manual transcription of high-level analysis activities. In this paper, we present the architecture and translation design of a query-to-question (Q2Q) system that automatically records user interactions and presents them semantically using natural language (written English). Q2Q takes advantage of domain knowledge and uses natural language generation (NLG) techniques to translate and transcribe a progression of interactive visualization states into a visual log of styled text that complements and effectively extends the functionality of visualization tools. We present Q2Q as a means to support a cross-examination process in which questions rather than interactions are the focus of analytic reasoning and action. We describe the architecture and implementation of the Q2Q system, discuss key design factors and variations that effect question generation, and present several visualizations that incorporate Q2Q for analysis in a variety of knowledge domains.
Agent-Based Computing Integration and Testing
2006-12-01
Query Language (DQL). Regrettably, DQL never became a W3C Member Submission itself, but likely had some influence on the SPARQL Protocol And RDF... Query Language ( SPARQL ) subsequently produced by the W3C Data Access Working Group (DAWG) as that working group also contained members from the DAML...Sponsored by Defense Advanced Research Projects Agency DARPA Order No. K536 APPROVED FOR PUBLIC RELEASE
Using Web Ontology Language to Integrate Heterogeneous Databases in the Neurosciences
Lam, Hugo Y.K.; Marenco, Luis; Shepherd, Gordon M.; Miller, Perry L.; Cheung, Kei-Hoi
2006-01-01
Integrative neuroscience involves the integration and analysis of diverse types of neuroscience data involving many different experimental techniques. This data will increasingly be distributed across many heterogeneous databases that are web-accessible. Currently, these databases do not expose their schemas (database structures) and their contents to web applications/agents in a standardized, machine-friendly way. This limits database interoperation. To address this problem, we describe a pilot project that illustrates how neuroscience databases can be expressed using the Web Ontology Language, which is a semantically-rich ontological language, as a common data representation language to facilitate complex cross-database queries. In this pilot project, an existing tool called “D2RQ” was used to translate two neuroscience databases (NeuronDB and CoCoDat) into OWL, and the resulting OWL ontologies were then merged. An OWL-based reasoner (Racer) was then used to provide a sophisticated query language (nRQL) to perform integrated queries across the two databases based on the merged ontology. This pilot project is one step toward exploring the use of semantic web technologies in the neurosciences. PMID:17238384
vSPARQL: a view definition language for the semantic web.
Shaw, Marianne; Detwiler, Landon T; Noy, Natalya; Brinkley, James; Suciu, Dan
2011-02-01
Translational medicine applications would like to leverage the biological and biomedical ontologies, vocabularies, and data sets available on the semantic web. We present a general solution for RDF information set reuse inspired by database views. Our view definition language, vSPARQL, allows applications to specify the exact content that they are interested in and how that content should be restructured or modified. Applications can access relevant content by querying against these view definitions. We evaluate the expressivity of our approach by defining views for practical use cases and comparing our view definition language to existing query languages. Copyright © 2010 Elsevier Inc. All rights reserved.
Query Expansion Using SNOMED-CT and Weighing Schemes
2014-11-01
For this research, we have used SNOMED-CT along with UMLS Methathesaurus as our ontology in medical domain to expand the queries. General Terms...CT along with UMLS Methathesaurus as our ontology in medical domain to expand the queries. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...University of the Basque country discuss their finding on query expansion using external sources headlined by Unified Medical Language System ( UMLS
Query Health: standards-based, cross-platform population health surveillance
Klann, Jeffrey G; Buck, Michael D; Brown, Jeffrey; Hadley, Marc; Elmore, Richard; Weber, Griffin M; Murphy, Shawn N
2014-01-01
Objective Understanding population-level health trends is essential to effectively monitor and improve public health. The Office of the National Coordinator for Health Information Technology (ONC) Query Health initiative is a collaboration to develop a national architecture for distributed, population-level health queries across diverse clinical systems with disparate data models. Here we review Query Health activities, including a standards-based methodology, an open-source reference implementation, and three pilot projects. Materials and methods Query Health defined a standards-based approach for distributed population health queries, using an ontology based on the Quality Data Model and Consolidated Clinical Document Architecture, Health Quality Measures Format (HQMF) as the query language, the Query Envelope as the secure transport layer, and the Quality Reporting Document Architecture as the result language. Results We implemented this approach using Informatics for Integrating Biology and the Bedside (i2b2) and hQuery for data analytics and PopMedNet for access control, secure query distribution, and response. We deployed the reference implementation at three pilot sites: two public health departments (New York City and Massachusetts) and one pilot designed to support Food and Drug Administration post-market safety surveillance activities. The pilots were successful, although improved cross-platform data normalization is needed. Discussions This initiative resulted in a standards-based methodology for population health queries, a reference implementation, and revision of the HQMF standard. It also informed future directions regarding interoperability and data access for ONC's Data Access Framework initiative. Conclusions Query Health was a test of the learning health system that supplied a functional methodology and reference implementation for distributed population health queries that has been validated at three sites. PMID:24699371
Query Health: standards-based, cross-platform population health surveillance.
Klann, Jeffrey G; Buck, Michael D; Brown, Jeffrey; Hadley, Marc; Elmore, Richard; Weber, Griffin M; Murphy, Shawn N
2014-01-01
Understanding population-level health trends is essential to effectively monitor and improve public health. The Office of the National Coordinator for Health Information Technology (ONC) Query Health initiative is a collaboration to develop a national architecture for distributed, population-level health queries across diverse clinical systems with disparate data models. Here we review Query Health activities, including a standards-based methodology, an open-source reference implementation, and three pilot projects. Query Health defined a standards-based approach for distributed population health queries, using an ontology based on the Quality Data Model and Consolidated Clinical Document Architecture, Health Quality Measures Format (HQMF) as the query language, the Query Envelope as the secure transport layer, and the Quality Reporting Document Architecture as the result language. We implemented this approach using Informatics for Integrating Biology and the Bedside (i2b2) and hQuery for data analytics and PopMedNet for access control, secure query distribution, and response. We deployed the reference implementation at three pilot sites: two public health departments (New York City and Massachusetts) and one pilot designed to support Food and Drug Administration post-market safety surveillance activities. The pilots were successful, although improved cross-platform data normalization is needed. This initiative resulted in a standards-based methodology for population health queries, a reference implementation, and revision of the HQMF standard. It also informed future directions regarding interoperability and data access for ONC's Data Access Framework initiative. Query Health was a test of the learning health system that supplied a functional methodology and reference implementation for distributed population health queries that has been validated at three sites. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The contribution of morphological knowledge to French MeSH mapping for information retrieval.
Zweigenbaum, P.; Darmoni, S. J.; Grabar, N.
2001-01-01
MeSH-indexed Internet health directories must provide a mapping from natural language queries to MeSH terms so that both health professionals and the general public can query their contents. We describe here the design of lexical knowledge bases for mapping French expressions to MeSH terms, and the initial evaluation of their contribution to Doc'CISMeF, the search tool of a MeSH-indexed directory of French-language medical Internet resources. The observed trend is in favor of the use of morphological knowledge as a moderate (approximately 5%) but effective factor for improving query to term mapping capabilities. PMID:11825295
A Semantic Approach for Geospatial Information Extraction from Unstructured Documents
NASA Astrophysics Data System (ADS)
Sallaberry, Christian; Gaio, Mauro; Lesbegueries, Julien; Loustau, Pierre
Local cultural heritage document collections are characterized by their content, which is strongly attached to a territory and its land history (i.e., geographical references). Our contribution aims at making the content retrieval process more efficient whenever a query includes geographic criteria. We propose a core model for a formal representation of geographic information. It takes into account characteristics of different modes of expression, such as written language, captures of drawings, maps, photographs, etc. We have developed a prototype that fully implements geographic information extraction (IE) and geographic information retrieval (IR) processes. All PIV prototype processing resources are designed as Web Services. We propose a geographic IE process based on semantic treatment as a supplement to classical IE approaches. We implement geographic IR by using intersection computing algorithms that seek out any intersection between formal geocoded representations of geographic information in a user query and similar representations in document collection indexes.
SPARK: Adapting Keyword Query to Semantic Search
NASA Astrophysics Data System (ADS)
Zhou, Qi; Wang, Chong; Xiong, Miao; Wang, Haofen; Yu, Yong
Semantic search promises to provide more accurate result than present-day keyword search. However, progress with semantic search has been delayed due to the complexity of its query languages. In this paper, we explore a novel approach of adapting keywords to querying the semantic web: the approach automatically translates keyword queries into formal logic queries so that end users can use familiar keywords to perform semantic search. A prototype system named 'SPARK' has been implemented in light of this approach. Given a keyword query, SPARK outputs a ranked list of SPARQL queries as the translation result. The translation in SPARK consists of three major steps: term mapping, query graph construction and query ranking. Specifically, a probabilistic query ranking model is proposed to select the most likely SPARQL query. In the experiment, SPARK achieved an encouraging translation result.
NASA Astrophysics Data System (ADS)
Tan, Kian Lam; Lim, Chen Kim
2017-10-01
With the explosive growth of online information such as email messages, news articles, and scientific literature, many institutions and museums are converting their cultural collections from physical data to digital format. However, this conversion resulted in the issues of inconsistency and incompleteness. Besides, the usage of inaccurate keywords also resulted in short query problem. Most of the time, the inconsistency and incompleteness are caused by the aggregation fault in annotating a document itself while the short query problem is caused by naive user who has prior knowledge and experience in cultural heritage domain. In this paper, we presented an approach to solve the problem of inconsistency, incompleteness and short query by incorporating the Term Similarity Matrix into the Language Model. Our approach is tested on the Cultural Heritage in CLEF (CHiC) collection which consists of short queries and documents. The results show that the proposed approach is effective and has improved the accuracy in retrieval time.
A Query System Implementation Case Study.
ERIC Educational Resources Information Center
Hiser, Judith N.; Neil, M. Elizabeth
1985-01-01
The Department of Administrative Programming Services of Clemson University investigated products available in user-friendly retrieval systems. The test of INTELLECT, a natural language query system written by Artifical Intelligence Corporation, is described. (Author/MLW)
A SQL-Database Based Meta-CASE System and its Query Subsystem
NASA Astrophysics Data System (ADS)
Eessaar, Erki; Sgirka, Rünno
Meta-CASE systems simplify the creation of CASE (Computer Aided System Engineering) systems. In this paper, we present a meta-CASE system that provides a web-based user interface and uses an object-relational database system (ORDBMS) as its basis. The use of ORDBMSs allows us to integrate different parts of the system and simplify the creation of meta-CASE and CASE systems. ORDBMSs provide powerful query mechanism. The proposed system allows developers to use queries to evaluate and gradually improve artifacts and calculate values of software measures. We illustrate the use of the systems by using SimpleM modeling language and discuss the use of SQL in the context of queries about artifacts. We have created a prototype of the meta-CASE system by using PostgreSQL™ ORDBMS and PHP scripting language.
EarthServer: a Summary of Achievements in Technology, Services, and Standards
NASA Astrophysics Data System (ADS)
Baumann, Peter
2015-04-01
Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data, according to ISO and OGC defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timese ries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The transatlantic EarthServer initiative, running from 2011 through 2014, has united 11 partners to establish Big Earth Data Analytics. A key ingredient has been flexibility for users to ask whatever they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level, standards-based query languages which unify data and metadata search in a simple, yet powerful way. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing cod e has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, the pioneer and leading Array DBMS built for any-size multi-dimensional raster data being extended with support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data import and, hence, duplication); the aforementioned distributed query processing. Additionally, Web clients for multi-dimensional data visualization are being established. Client/server interfaces are strictly based on OGC and W3C standards, in particular the Web Coverage Processing Service (WCPS) which defines a high-level coverage query language. Reviewers have attested EarthServer that "With no doubt the project has been shaping the Big Earth Data landscape through the standardization activities within OGC, ISO and beyond". We present the project approach, its outcomes and impact on standardization and Big Data technology, and vistas for the future.
The Limitations of Term Co-Occurrence Data for Query Expansion in Document Retrieval Systems.
ERIC Educational Resources Information Center
Peat, Helen J.; Willett, Peter
1991-01-01
Identifies limitations in the use of term co-occurrence data as a basis for automatic query expansion in natural language document retrieval systems. The use of similarity coefficients to calculate the degree of similarity between pairs of terms is explained, and frequency and discriminatory characteristics for nearest neighbors of query terms are…
A data analysis expert system for large established distributed databases
NASA Technical Reports Server (NTRS)
Gnacek, Anne-Marie; An, Y. Kim; Ryan, J. Patrick
1987-01-01
A design for a natural language database interface system, called the Deductively Augmented NASA Management Decision support System (DANMDS), is presented. The DANMDS system components have been chosen on the basis of the following considerations: maximal employment of the existing NASA IBM-PC computers and supporting software; local structuring and storing of external data via the entity-relationship model; a natural easy-to-use error-free database query language; user ability to alter query language vocabulary and data analysis heuristic; and significant artificial intelligence data analysis heuristic techniques that allow the system to become progressively and automatically more useful.
GELLO: an object-oriented query and expression language for clinical decision support.
Sordo, Margarita; Ogunyemi, Omolola; Boxwala, Aziz A; Greenes, Robert A
2003-01-01
GELLO is a purpose-specific, object-oriented (OO) query and expression language. GELLO is the result of a concerted effort of the Decision Systems Group (DSG) working with the HL7 Clinical Decision Support Technical Committee (CDSTC) to provide the HL7 community with a common format for data encoding and manipulation. GELLO will soon be submitted for ballot to the HL7 CDSTC for consideration as a standard.
Machine Translation-Supported Cross-Language Information Retrieval for a Consumer Health Resource
Rosemblat, Graciela; Gemoets, Darren; Browne, Allen C.; Tse, Tony
2003-01-01
The U.S. National Institutes of Health, through its National Library of Medicine, developed ClinicalTrials.gov to provide the public with easy access to information on clinical trials on a wide range of conditions or diseases. Only English language information retrieval is currently supported. Given the growing number of Spanish speakers in the U.S. and their increasing use of the Web, we anticipate a significant increase in Spanish-speaking users. This study compares the effectiveness of two common cross-language information retrieval methods using machine translation, query translation versus document translation, using a subset of genuine user queries from ClinicalTrials.gov. Preliminary results conducted with the ClinicalTrials.gov search engine show that in our environment, query translation is statistically significantly better than document translation. We discuss possible reasons for this result and we conclude with suggestions for future work. PMID:14728236
Heterogeneous distributed query processing: The DAVID system
NASA Technical Reports Server (NTRS)
Jacobs, Barry E.
1985-01-01
The objective of the Distributed Access View Integrated Database (DAVID) project is the development of an easy to use computer system with which NASA scientists, engineers and administrators can uniformly access distributed heterogeneous databases. Basically, DAVID will be a database management system that sits alongside already existing database and file management systems. Its function is to enable users to access the data in other languages and file systems without having to learn the data manipulation languages. Given here is an outline of a talk on the DAVID project and several charts.
Towards ontology-driven navigation of the lipid bibliosphere
Baker, Christopher JO; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R
2008-01-01
Background The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. Results We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. Conclusion As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology. PMID:18315858
Towards ontology-driven navigation of the lipid bibliosphere.
Baker, Christopher Jo; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R
2008-01-01
The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining algorithms instantiated into the ontology. The visual query paradigm assists in the adoption of this technology.
Bio-TDS: bioscience query tool discovery system.
Gnimpieba, Etienne Z; VanDiermen, Menno S; Gustafson, Shayla M; Conn, Bill; Lushbough, Carol M
2017-01-04
Bioinformatics and computational biology play a critical role in bioscience and biomedical research. As researchers design their experimental projects, one major challenge is to find the most relevant bioinformatics toolkits that will lead to new knowledge discovery from their data. The Bio-TDS (Bioscience Query Tool Discovery Systems, http://biotds.org/) has been developed to assist researchers in retrieving the most applicable analytic tools by allowing them to formulate their questions as free text. The Bio-TDS is a flexible retrieval system that affords users from multiple bioscience domains (e.g. genomic, proteomic, bio-imaging) the ability to query over 12 000 analytic tool descriptions integrated from well-established, community repositories. One of the primary components of the Bio-TDS is the ontology and natural language processing workflow for annotation, curation, query processing, and evaluation. The Bio-TDS's scientific impact was evaluated using sample questions posed by researchers retrieved from Biostars, a site focusing on BIOLOGICAL DATA ANALYSIS: The Bio-TDS was compared to five similar bioscience analytic tool retrieval systems with the Bio-TDS outperforming the others in terms of relevance and completeness. The Bio-TDS offers researchers the capacity to associate their bioscience question with the most relevant computational toolsets required for the data analysis in their knowledge discovery process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
A database de-identification framework to enable direct queries on medical data for secondary use.
Erdal, B S; Liu, J; Ding, J; Chen, J; Marsh, C B; Kamal, J; Clymer, B D
2012-01-01
To qualify the use of patient clinical records as non-human-subject for research purpose, electronic medical record data must be de-identified so there is minimum risk to protected health information exposure. This study demonstrated a robust framework for structured data de-identification that can be applied to any relational data source that needs to be de-identified. Using a real world clinical data warehouse, a pilot implementation of limited subject areas were used to demonstrate and evaluate this new de-identification process. Query results and performances are compared between source and target system to validate data accuracy and usability. The combination of hashing, pseudonyms, and session dependent randomizer provides a rigorous de-identification framework to guard against 1) source identifier exposure; 2) internal data analyst manually linking to source identifiers; and 3) identifier cross-link among different researchers or multiple query sessions by the same researcher. In addition, a query rejection option is provided to refuse queries resulting in less than preset numbers of subjects and total records to prevent users from accidental subject identification due to low volume of data. This framework does not prevent subject re-identification based on prior knowledge and sequence of events. Also, it does not deal with medical free text de-identification, although text de-identification using natural language processing can be included due its modular design. We demonstrated a framework resulting in HIPAA Compliant databases that can be directly queried by researchers. This technique can be augmented to facilitate inter-institutional research data sharing through existing middleware such as caGrid.
Bottom-Up Evaluation of Twig Join Pattern Queries in XML Document Databases
NASA Astrophysics Data System (ADS)
Chen, Yangjun
Since the extensible markup language XML emerged as a new standard for information representation and exchange on the Internet, the problem of storing, indexing, and querying XML documents has been among the major issues of database research. In this paper, we study the twig pattern matching and discuss a new algorithm for processing ordered twig pattern queries. The time complexity of the algorithmis bounded by O(|D|·|Q| + |T|·leaf Q ) and its space overhead is by O(leaf T ·leaf Q ), where T stands for a document tree, Q for a twig pattern and D is a largest data stream associated with a node q of Q, which contains the database nodes that match the node predicate at q. leaf T (leaf Q ) represents the number of the leaf nodes of T (resp. Q). In addition, the algorithm can be adapted to an indexing environment with XB-trees being used.
Cyclone: java-based querying and computing with Pathway/Genome databases.
Le Fèvre, François; Smidtas, Serge; Schächter, Vincent
2007-05-15
Cyclone aims at facilitating the use of BioCyc, a collection of Pathway/Genome Databases (PGDBs). Cyclone provides a fully extensible Java Object API to analyze and visualize these data. Cyclone can read and write PGDBs, and can write its own data in the CycloneML format. This format is automatically generated from the BioCyc ontology by Cyclone itself, ensuring continued compatibility. Cyclone objects can also be stored in a relational database CycloneDB. Queries can be written in SQL, and in an intuitive and concise object-oriented query language, Hibernate Query Language (HQL). In addition, Cyclone interfaces easily with Java software including the Eclipse IDE for HQL edition, the Jung API for graph algorithms or Cytoscape for graph visualization. Cyclone is freely available under an open source license at: http://sourceforge.net/projects/nemo-cyclone. For download and installation instructions, tutorials, use cases and examples, see http://nemo-cyclone.sourceforge.net.
A VBA Desktop Database for Proposal Processing at National Optical Astronomy Observatories
NASA Astrophysics Data System (ADS)
Brown, Christa L.
National Optical Astronomy Observatories (NOAO) has developed a relational Microsoft Windows desktop database using Microsoft Access and the Microsoft Office programming language, Visual Basic for Applications (VBA). The database is used to track data relating to observing proposals from original receipt through the review process, scheduling, observing, and final statistical reporting. The database has automated proposal processing and distribution of information. It allows NOAO to collect and archive data so as to query and analyze information about our science programs in new ways.
2007-08-01
In this domain, queries typically show a deeply nested structure, which makes the semantic parsing task rather challenging , e.g.: What states border...only 80% of the GEOQUERY queries are semantically tractable, which shows that GEOQUERY is indeed a more challenging domain than ATIS. Note that none...a particularly challenging task, because of the inherent ambiguity of natural languages on both sides. It has inspired a large body of research. In
TEQUEL: The query language of SADDLE
NASA Technical Reports Server (NTRS)
Rajan, S. D.
1984-01-01
A relational database management system is presented that is tailored for engineering applications. A wide variety of engineering data types are supported and the data definition language (DDL) and data manipulation language (DML) are extended to handle matrices. The system can be used either in the standalone mode or through a FORTRAN or PASCAL application program. The query language is of the relational calculus type and allows the user to store, retrieve, update and delete tuples from relations. The relational operations including union, intersect and differ facilitate creation of temporary relations that can be used for manipulating information in a powerful manner. Sample applications are shown to illustrate the creation of data through a FORTRAN program and data manipulation using the TEQUEL DML.
An Analysis of Application Generators.
1983-03-01
query language OUEL in the programming language C, THESEUS [20], which embeds relational operators in the language Euclid. Schmidt [21] reports some...34The Design and Implementation of INGRES," ACM-TODS, Vol. 1. No. 3, 1976,. 33 £ 20. Shopiro,J.E., " THESEUS -A Programming Language for Relational
Petaminer: Using ROOT for efficient data storage in MySQL database
NASA Astrophysics Data System (ADS)
Cranshaw, J.; Malon, D.; Vaniachine, A.; Fine, V.; Lauret, J.; Hamill, P.
2010-04-01
High Energy and Nuclear Physics (HENP) experiments store Petabytes of event data and Terabytes of calibration data in ROOT files. The Petaminer project is developing a custom MySQL storage engine to enable the MySQL query processor to directly access experimental data stored in ROOT files. Our project is addressing the problem of efficient navigation to PetaBytes of HENP experimental data described with event-level TAG metadata, which is required by data intensive physics communities such as the LHC and RHIC experiments. Physicists need to be able to compose a metadata query and rapidly retrieve the set of matching events, where improved efficiency will facilitate the discovery process by permitting rapid iterations of data evaluation and retrieval. Our custom MySQL storage engine enables the MySQL query processor to directly access TAG data stored in ROOT TTrees. As ROOT TTrees are column-oriented, reading them directly provides improved performance over traditional row-oriented TAG databases. Leveraging the flexible and powerful SQL query language to access data stored in ROOT TTrees, the Petaminer approach enables rich MySQL index-building capabilities for further performance optimization.
Hripcsak, George; Knirsch, Charles; Zhou, Li; Wilcox, Adam; Melton, Genevieve B
2007-03-01
Data mining in electronic medical records may facilitate clinical research, but much of the structured data may be miscoded, incomplete, or non-specific. The exploitation of narrative data using natural language processing may help, although nesting, varying granularity, and repetition remain challenges. In a study of community-acquired pneumonia using electronic records, these issues led to poor classification. Limiting queries to accurate, complete records led to vastly reduced, possibly biased samples. We exploited knowledge latent in the electronic records to improve classification. A similarity metric was used to cluster cases. We defined discordance as the degree to which cases within a cluster give different answers for some query that addresses a classification task of interest. Cases with higher discordance are more likely to be incorrectly classified, and can be reviewed manually to adjust the classification, improve the query, or estimate the likely accuracy of the query. In a study of pneumonia--in which the ICD9-CM coding was found to be very poor--the discordance measure was statistically significantly correlated with classification correctness (.45; 95% CI .15-.62).
NASA Astrophysics Data System (ADS)
Arenas, Marcelo; Gutierrez, Claudio; Pérez, Jorge
The Resource Description Framework (RDF) is the standard data model for representing information about World Wide Web resources. In January 2008, it was released the recommendation of the W3C for querying RDF data, a query language called SPARQL. In this chapter, we give a detailed description of the semantics of this language. We start by focusing on the definition of a formal semantics for the core part of SPARQL, and then move to the definition for the entire language, including all the features in the specification of SPARQL by the W3C such as blank nodes in graph patterns and bag semantics for solutions.
A web-based data-querying tool based on ontology-driven methodology and flowchart-based model.
Ping, Xiao-Ou; Chung, Yufang; Tseng, Yi-Ju; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei
2013-10-08
Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, "degree of liver damage," "degree of liver damage when applying a mutually exclusive setting," and "treatments for liver cancer") was 100% for all four experiments (10 patients, 100 patients, 1000 patients, and 10,000 patients). Among the three measured query phases, (1) structured query language operations, (2) criteria verification, and (3) other, the first two had the longest execution time. The ontology-driven FBDQM-based approach enriched the capabilities of the data-querying system. The adoption of the GLIF3.5 increased the potential for interoperability, shareability, and reusability of the query tasks.
Active Wiki Knowledge Repository
2012-10-01
data using SPARQL queries or RESTful web-services; ‘gardening’ tools for examining the semantically tagged content in the wiki; high-level language tool...Tagging & RDF triple-store Fusion and inferences for collaboration Tools for Consuming Data SPARQL queries or RESTful WS Inference & Gardening tools...other stores using AW SPARQL queries and rendering templates; and 4) Interactively share maps and other content using annotation tools to post notes
Advanced Query and Data Mining Capabilities for MaROS
NASA Technical Reports Server (NTRS)
Wang, Paul; Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Hy, Franklin H.
2013-01-01
The Mars Relay Operational Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay network. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. As part of MaROS, the innovators have developed and implemented a feature set that operates on several levels of the software architecture. This new feature is an advanced querying capability through either the Web-based user interface, or through a back-end REST interface to access all of the data gathered from the network. This software is not meant to replace the REST interface, but to augment and expand the range of available data. The current REST interface provides specific data that is used by the MaROS Web application to display and visualize the information; however, the returned information from the REST interface has typically been pre-processed to return only a subset of the entire information within the repository, particularly only the information that is of interest to the GUI (graphical user interface). The new, advanced query and data mining capabilities allow users to retrieve the raw data and/or to perform their own data processing. The query language used to access the repository is a restricted subset of the structured query language (SQL) that can be built safely from the Web user interface, or entered as freeform SQL by a user. The results are returned in a CSV (Comma Separated Values) format for easy exporting to third party tools and applications that can be used for data mining or user-defined visualization and interpretation. This is the first time that a service is capable of providing access to all cross-project relay data from a single Web resource. Because MaROS contains the data for a variety of missions from the Mars network, which span both NASA and ESA, the software also establishes an access control list (ACL) on each data record in the database repository to enforce user access permissions through a multilayered approach.
2011-01-01
Shotgun lipidome profiling relies on direct mass spectrometric analysis of total lipid extracts from cells, tissues or organisms and is a powerful tool to elucidate the molecular composition of lipidomes. We present a novel informatics concept of the molecular fragmentation query language implemented within the LipidXplorer open source software kit that supports accurate quantification of individual species of any ionizable lipid class in shotgun spectra acquired on any mass spectrometry platform. PMID:21247462
Cormode, Graham; Dasgupta, Anirban; Goyal, Amit; Lee, Chi Hoon
2018-01-01
Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users' queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with "vanilla" LSH, even when using the same amount of space.
Why Rules Matter in Complex Event Processing...and Vice Versa
NASA Astrophysics Data System (ADS)
Vincent, Paul
Many commercial and research CEP solutions are moving beyond simple stream query languages to more complete definitions of "process" and thence to "decisions" and "actions". And as capabilities increase in event processing capabilities, there is an increasing realization that the humble "rule" is as relevant to the event cloud as it is to specific services. Less obvious is how much event processing has to offer the process and rule execution and management technologies. Does event processing change the way we should manage businesses, processes and services, together with their embedded (and hopefully managed) rulesets?
Cross-Language Information Retrieval: An Analysis of Errors.
ERIC Educational Resources Information Center
Ruiz, Miguel E.; Srinivasan, Padmini
1998-01-01
Investigates an automatic method for Cross Language Information Retrieval (CLIR) that utilizes the multilingual Unified Medical Language System (UMLS) Metathesaurus to translate Spanish natural-language queries into English. Results indicate that for Spanish, the UMLS Metathesaurus-based CLIR method is at least equivalent to if not better than…
Visually defining and querying consistent multi-granular clinical temporal abstractions.
Combi, Carlo; Oliboni, Barbara
2012-02-01
The main goal of this work is to propose a framework for the visual specification and query of consistent multi-granular clinical temporal abstractions. We focus on the issue of querying patient clinical information by visually defining and composing temporal abstractions, i.e., high level patterns derived from several time-stamped raw data. In particular, we focus on the visual specification of consistent temporal abstractions with different granularities and on the visual composition of different temporal abstractions for querying clinical databases. Temporal abstractions on clinical data provide a concise and high-level description of temporal raw data, and a suitable way to support decision making. Granularities define partitions on the time line and allow one to represent time and, thus, temporal clinical information at different levels of detail, according to the requirements coming from the represented clinical domain. The visual representation of temporal information has been considered since several years in clinical domains. Proposed visualization techniques must be easy and quick to understand, and could benefit from visual metaphors that do not lead to ambiguous interpretations. Recently, physical metaphors such as strips, springs, weights, and wires have been proposed and evaluated on clinical users for the specification of temporal clinical abstractions. Visual approaches to boolean queries have been considered in the last years and confirmed that the visual support to the specification of complex boolean queries is both an important and difficult research topic. We propose and describe a visual language for the definition of temporal abstractions based on a set of intuitive metaphors (striped wall, plastered wall, brick wall), allowing the clinician to use different granularities. A new algorithm, underlying the visual language, allows the physician to specify only consistent abstractions, i.e., abstractions not containing contradictory conditions on the component abstractions. Moreover, we propose a visual query language where different temporal abstractions can be composed to build complex queries: temporal abstractions are visually connected through the usual logical connectives AND, OR, and NOT. The proposed visual language allows one to simply define temporal abstractions by using intuitive metaphors, and to specify temporal intervals related to abstractions by using different temporal granularities. The physician can interact with the designed and implemented tool by point-and-click selections, and can visually compose queries involving several temporal abstractions. The evaluation of the proposed granularity-related metaphors consisted in two parts: (i) solving 30 interpretation exercises by choosing the correct interpretation of a given screenshot representing a possible scenario, and (ii) solving a complex exercise, by visually specifying through the interface a scenario described only in natural language. The exercises were done by 13 subjects. The percentage of correct answers to the interpretation exercises were slightly different with respect to the considered metaphors (54.4--striped wall, 73.3--plastered wall, 61--brick wall, and 61--no wall), but post hoc statistical analysis on means confirmed that differences were not statistically significant. The result of the user's satisfaction questionnaire related to the evaluation of the proposed granularity-related metaphors ratified that there are no preferences for one of them. The evaluation of the proposed logical notation consisted in two parts: (i) solving five interpretation exercises provided by a screenshot representing a possible scenario and by three different possible interpretations, of which only one was correct, and (ii) solving five exercises, by visually defining through the interface a scenario described only in natural language. Exercises had an increasing difficulty. The evaluation involved a total of 31 subjects. Results related to this evaluation phase confirmed us about the soundness of the proposed solution even in comparison with a well known proposal based on a tabular query form (the only significant difference is that our proposal requires more time for the training phase: 21 min versus 14 min). In this work we have considered the issue of visually composing and querying temporal clinical patient data. In this context we have proposed a visual framework for the specification of consistent temporal abstractions with different granularities and for the visual composition of different temporal abstractions to build (possibly) complex queries on clinical databases. A new algorithm has been proposed to check the consistency of the specified granular abstraction. From the evaluation of the proposed metaphors and interfaces and from the comparison of the visual query language with a well known visual method for boolean queries, the soundness of the overall system has been confirmed; moreover, pros and cons and possible improvements emerged from the comparison of different visual metaphors and solutions. Copyright © 2011 Elsevier B.V. All rights reserved.
A distributed query execution engine of big attributed graphs.
Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif
2016-01-01
A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.
Bin-Hash Indexing: A Parallel Method for Fast Query Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, Edward W; Gosink, Luke J.; Wu, Kesheng
2008-06-27
This paper presents a new parallel indexing data structure for answering queries. The index, called Bin-Hash, offers extremely high levels of concurrency, and is therefore well-suited for the emerging commodity of parallel processors, such as multi-cores, cell processors, and general purpose graphics processing units (GPU). The Bin-Hash approach first bins the base data, and then partitions and separately stores the values in each bin as a perfect spatial hash table. To answer a query, we first determine whether or not a record satisfies the query conditions based on the bin boundaries. For the bins with records that can not bemore » resolved, we examine the spatial hash tables. The procedures for examining the bin numbers and the spatial hash tables offer the maximum possible level of concurrency; all records are able to be evaluated by our procedure independently in parallel. Additionally, our Bin-Hash procedures access much smaller amounts of data than similar parallel methods, such as the projection index. This smaller data footprint is critical for certain parallel processors, like GPUs, where memory resources are limited. To demonstrate the effectiveness of Bin-Hash, we implement it on a GPU using the data-parallel programming language CUDA. The concurrency offered by the Bin-Hash index allows us to fully utilize the GPU's massive parallelism in our work; over 12,000 records can be simultaneously evaluated at any one time. We show that our new query processing method is an order of magnitude faster than current state-of-the-art CPU-based indexing technologies. Additionally, we compare our performance to existing GPU-based projection index strategies.« less
Zhu, Xinjie; Zhang, Qiang; Ho, Eric Dun; Yu, Ken Hung-On; Liu, Chris; Huang, Tim H; Cheng, Alfred Sze-Lok; Kao, Ben; Lo, Eric; Yip, Kevin Y
2017-09-22
A genomic signal track is a set of genomic intervals associated with values of various types, such as measurements from high-throughput experiments. Analysis of signal tracks requires complex computational methods, which often make the analysts focus too much on the detailed computational steps rather than on their biological questions. Here we propose Signal Track Query Language (STQL) for simple analysis of signal tracks. It is a Structured Query Language (SQL)-like declarative language, which means one only specifies what computations need to be done but not how these computations are to be carried out. STQL provides a rich set of constructs for manipulating genomic intervals and their values. To run STQL queries, we have developed the Signal Track Analytical Research Tool (START, http://yiplab.cse.cuhk.edu.hk/start/ ), a system that includes a Web-based user interface and a back-end execution system. The user interface helps users select data from our database of around 10,000 commonly-used public signal tracks, manage their own tracks, and construct, store and share STQL queries. The back-end system automatically translates STQL queries into optimized low-level programs and runs them on a computer cluster in parallel. We use STQL to perform 14 representative analytical tasks. By repeating these analyses using bedtools, Galaxy and custom Python scripts, we show that the STQL solution is usually the simplest, and the parallel execution achieves significant speed-up with large data files. Finally, we describe how a biologist with minimal formal training in computer programming self-learned STQL to analyze DNA methylation data we produced from 60 pairs of hepatocellular carcinoma (HCC) samples. Overall, STQL and START provide a generic way for analyzing a large number of genomic signal tracks in parallel easily.
Towards Big Earth Data Analytics: The EarthServer Approach
NASA Astrophysics Data System (ADS)
Baumann, Peter
2013-04-01
Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data import and, hence, duplication); the aforementioned distributed query processing. Additionally, Web clients for multi-dimensional data visualization are being established. Client/server interfaces are strictly based on OGC and W3C standards, in particular the Web Coverage Processing Service (WCPS) which defines a high-level raster query language. We present the EarthServer project with its vision and approaches, relate it to the current state of standardization, and demonstrate it by way of large-scale data centers and their services using rasdaman.
Toward An Unstructured Mesh Database
NASA Astrophysics Data System (ADS)
Rezaei Mahdiraji, Alireza; Baumann, Peter Peter
2014-05-01
Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi-incidence relationships. We instrument ImG model with sets of optional and application-specific constraints which can be used to check validity of meshes for a specific class of object such as manifold, pseudo-manifold, and simplicial manifold. We conducted experiments to measure the performance of the graph database solution in processing mesh queries and compare it with GrAL mesh library and PostgreSQL database on synthetic and real mesh datasets. The experiments show that each system perform well on specific types of mesh queries, e.g., graph databases perform well on global path-intensive queries. In the future, we investigate database operations for the ImG model and design a mesh query language.
VISAGE: Interactive Visual Graph Querying.
Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng
2016-06-01
Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete , an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with "wildcard" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.
VISAGE: Interactive Visual Graph Querying
Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng
2017-01-01
Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with “wildcard” nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE’s ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries. PMID:28553670
Time-related patient data retrieval for the case studies from the pharmacogenomics research network
Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G.
2012-01-01
There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users’ own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities. PMID:23076712
Time-related patient data retrieval for the case studies from the pharmacogenomics research network.
Zhu, Qian; Tao, Cui; Ding, Ying; Chute, Christopher G
2012-11-01
There are lots of question-based data elements from the pharmacogenomics research network (PGRN) studies. Many data elements contain temporal information. To semantically represent these elements so that they can be machine processiable is a challenging problem for the following reasons: (1) the designers of these studies usually do not have the knowledge of any computer modeling and query languages, so that the original data elements usually are represented in spreadsheets in human languages; and (2) the time aspects in these data elements can be too complex to be represented faithfully in a machine-understandable way. In this paper, we introduce our efforts on representing these data elements using semantic web technologies. We have developed an ontology, CNTRO, for representing clinical events and their temporal relations in the web ontology language (OWL). Here we use CNTRO to represent the time aspects in the data elements. We have evaluated 720 time-related data elements from PGRN studies. We adapted and extended the knowledge representation requirements for EliXR-TIME to categorize our data elements. A CNTRO-based SPARQL query builder has been developed to customize users' own SPARQL queries for each knowledge representation requirement. The SPARQL query builder has been evaluated with a simulated EHR triple store to ensure its functionalities.
SPARQLGraph: a web-based platform for graphically querying biological Semantic Web databases.
Schweiger, Dominik; Trajanoski, Zlatko; Pabinger, Stephan
2014-08-15
Semantic Web has established itself as a framework for using and sharing data across applications and database boundaries. Here, we present a web-based platform for querying biological Semantic Web databases in a graphical way. SPARQLGraph offers an intuitive drag & drop query builder, which converts the visual graph into a query and executes it on a public endpoint. The tool integrates several publicly available Semantic Web databases, including the databases of the just recently released EBI RDF platform. Furthermore, it provides several predefined template queries for answering biological questions. Users can easily create and save new query graphs, which can also be shared with other researchers. This new graphical way of creating queries for biological Semantic Web databases considerably facilitates usability as it removes the requirement of knowing specific query languages and database structures. The system is freely available at http://sparqlgraph.i-med.ac.at.
EarthServer: Use of Rasdaman as a data store for use in visualisation of complex EO data
NASA Astrophysics Data System (ADS)
Clements, Oliver; Walker, Peter; Grant, Mike
2013-04-01
The European Commission FP7 project EarthServer is establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending cutting-edge Array Database technology. EarthServer is built around the Rasdaman Raster Data Manager which extends standard relational database systems with the ability to store and retrieve multi-dimensional raster data of unlimited size through an SQL style query language. Rasdaman facilitates visualisation of data by providing several Open Geospatial Consortium (OGC) standard interfaces through its web services wrapper, Petascope. These include the well established standards, Web Coverage Service (WCS) and Web Map Service (WMS) as well as the emerging standard, Web Coverage Processing Service (WCPS). The WCPS standard allows the running of ad-hoc queries on the data stored within Rasdaman, creating an infrastructure where users are not restricted by bandwidth when manipulating or querying huge datasets. Here we will show that the use of EarthServer technologies and infrastructure allows access and visualisation of massive scale data through a web client with only marginal bandwidth use as opposed to the current mechanism of copying huge amounts of data to create visualisations locally. For example if a user wanted to generate a plot of global average chlorophyll for a complete decade time series they would only have to download the result instead of Terabytes of data. Firstly we will present a brief overview of the capabilities of Rasdaman and the WCPS query language to introduce the ways in which it is used in a visualisation tool chain. We will show that there are several ways in which WCPS can be utilised to create both standard and novel web based visualisations. An example of a standard visualisation is the production of traditional 2d plots, allowing users the ability to plot data products easily. However, the query language allows the creation of novel/custom products, which can then immediately be plotted with the same system. For more complex multi-spectral data, WCPS allows the user to explore novel combinations of bands in standard band-ratio algorithms through a web browser with dynamic updating of the resultant image. To visualise very large datasets Rasdaman has the capability to dynamically scale a dataset or query result so that it can be appraised quickly for use in later unscaled queries. All of these techniques are accessible through a web based GIS interface increasing the number of potential users of the system. Lastly we will show the advances in dynamic web based 3D visualisations being explored within the EarthServer project. By utilising the emerging declarative 3D web standard X3DOM as a tool to visualise the results of WCPS queries we introduce several possible benefits, including quick appraisal of data for outliers or anomalous data points and visualisation of the uncertainty of data alongside the actual data values.
A Web-Based Data-Querying Tool Based on Ontology-Driven Methodology and Flowchart-Based Model
Ping, Xiao-Ou; Chung, Yufang; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei
2013-01-01
Background Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. Objective The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. Methods The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. Results In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, “degree of liver damage,” “degree of liver damage when applying a mutually exclusive setting,” and “treatments for liver cancer”) was 100% for all four experiments (10 patients, 100 patients, 1000 patients, and 10,000 patients). Among the three measured query phases, (1) structured query language operations, (2) criteria verification, and (3) other, the first two had the longest execution time. Conclusions The ontology-driven FBDQM-based approach enriched the capabilities of the data-querying system. The adoption of the GLIF3.5 increased the potential for interoperability, shareability, and reusability of the query tasks. PMID:25600078
Computer systems and methods for the query and visualization of multidimensional databases
Stolte, Chris; Tang, Diane L.; Hanrahan, Patrick
2006-08-08
A method and system for producing graphics. A hierarchical structure of a database is determined. A visual table, comprising a plurality of panes, is constructed by providing a specification that is in a language based on the hierarchical structure of the database. In some cases, this language can include fields that are in the database schema. The database is queried to retrieve a set of tuples in accordance with the specification. A subset of the set of tuples is associated with a pane in the plurality of panes.
Computer systems and methods for the query and visualization of multidimensional database
Stolte, Chris; Tang, Diane L.; Hanrahan, Patrick
2010-05-11
A method and system for producing graphics. A hierarchical structure of a database is determined. A visual table, comprising a plurality of panes, is constructed by providing a specification that is in a language based on the hierarchical structure of the database. In some cases, this language can include fields that are in the database schema. The database is queried to retrieve a set of tuples in accordance with the specification. A subset of the set of tuples is associated with a pane in the plurality of panes.
A database system to support image algorithm evaluation
NASA Technical Reports Server (NTRS)
Lien, Y. E.
1977-01-01
The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.
CytoscapeRPC: a plugin to create, modify and query Cytoscape networks from scripting languages.
Bot, Jan J; Reinders, Marcel J T
2011-09-01
CytoscapeRPC is a plugin for Cytoscape which allows users to create, query and modify Cytoscape networks from any programming language which supports XML-RPC. This enables them to access Cytoscape functionality and visualize their data interactively without leaving the programming environment with which they are familiar. Install through the Cytoscape plugin manager or visit the web page: http://wiki.nbic.nl/index.php/CytoscapeRPC for the user tutorial and download. j.j.bot@tudelft.nl; j.j.bot@tudelft.nl.
Engineering the ATLAS TAG Browser
NASA Astrophysics Data System (ADS)
Zhang, Qizhi; ATLAS Collaboration
2011-12-01
ELSSI is a web-based event metadata (TAG) browser and event-level selection service for ATLAS. In this paper, we describe some of the challenges encountered in the process of developing ELSSI, and the software engineering strategies adopted to address those challenges. Approaches to management of access to data, browsing, data rendering, query building, query validation, execution, connection management, and communication with auxiliary services are discussed. We also describe strategies for dealing with data that may vary over time, such as run-dependent trigger decision decoding. Along with examples, we illustrate how programming techniques in multiple languages (PHP, JAVASCRIPT, XML, AJAX, and PL/SQL) have been blended to achieve the required results. Finally, we evaluate features of the ELSSI service in terms of functionality, scalability, and performance.
2018-01-01
Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users’ queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with “vanilla” LSH, even when using the same amount of space. PMID:29346410
Natural language processing and the representation of clinical data.
Sager, N; Lyman, M; Bucknall, C; Nhan, N; Tick, L J
1994-01-01
OBJECTIVE: Develop a representation of clinical observations and actions and a method of processing free-text patient documents to facilitate applications such as quality assurance. DESIGN: The Linguistic String Project (LSP) system of New York University utilizes syntactic analysis, augmented by a sublanguage grammar and an information structure that are specific to the clinical narrative, to map free-text documents into a database for querying. MEASUREMENTS: Information precision (I-P) and information recall (I-R) were measured for queries for the presence of 13 asthma-health-care quality assurance criteria in a database generated from 59 discharge letters. RESULTS: I-P, using counts of major errors only, was 95.7% for the 28-letter training set and 98.6% for the 31-letter test set. I-R, using counts of major omissions only, was 93.9% for the training set and 92.5% for the test set. PMID:7719796
Datacube Services in Action, Using Open Source and Open Standards
NASA Astrophysics Data System (ADS)
Baumann, P.; Misev, D.
2016-12-01
Array Databases comprise novel, promising technology for massive spatio-temporal datacubes, extending the SQL paradigm of "any query, anytime" to n-D arrays. On server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. The rasdaman ("raster data manager") system, which has pioneered Array Databases, is available in open source on www.rasdaman.org. Its declarative query language extends SQL with array operators which are optimized and parallelized on server side. The rasdaman engine, which is part of OSGeo Live, is mature and in operational use databases individually holding dozens of Terabytes. Further, the rasdaman concepts have strongly impacted international Big Data standards in the field, including the forthcoming MDA ("Multi-Dimensional Array") extension to ISO SQL, the OGC Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) standards, and the forthcoming INSPIRE WCS/WCPS; in both OGC and INSPIRE, OGC is WCS Core Reference Implementation. In our talk we present concepts, architecture, operational services, and standardization impact of open-source rasdaman, as well as experiences made.
Query optimization for graph analytics on linked data using SPARQL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seokyong; Lee, Sangkeun; Lim, Seung -Hwan
2015-07-01
Triplestores that support query languages such as SPARQL are emerging as the preferred and scalable solution to represent data and meta-data as massive heterogeneous graphs using Semantic Web standards. With increasing adoption, the desire to conduct graph-theoretic mining and exploratory analysis has also increased. Addressing that desire, this paper presents a solution that is the marriage of Graph Theory and the Semantic Web. We present software that can analyze Linked Data using graph operations such as counting triangles, finding eccentricity, testing connectedness, and computing PageRank directly on triple stores via the SPARQL interface. We describe the process of optimizing performancemore » of the SPARQL-based implementation of such popular graph algorithms by reducing the space-overhead, simplifying iterative complexity and removing redundant computations by understanding query plans. Our optimized approach shows significant performance gains on triplestores hosted on stand-alone workstations as well as hardware-optimized scalable supercomputers such as the Cray XMT.« less
Agile Datacube Analytics (not just) for the Earth Sciences
NASA Astrophysics Data System (ADS)
Misev, Dimitar; Merticariu, Vlad; Baumann, Peter
2017-04-01
Metadata are considered small, smart, and queryable; data, on the other hand, are known as big, clumsy, hard to analyze. Consequently, gridded data - such as images, image timeseries, and climate datacubes - are managed separately from the metadata, and with different, restricted retrieval capabilities. One reason for this silo approach is that databases, while good at tables, XML hierarchies, RDF graphs, etc., traditionally do not support multi-dimensional arrays well. This gap is being closed by Array Databases which extend the SQL paradigm of "any query, anytime" to NoSQL arrays. They introduce semantically rich modelling combined with declarative, high-level query languages on n-D arrays. On Server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. This way, they offer new vistas in flexibility, scalability, performance, and data integration. In this respect, the forthcoming ISO SQL extension MDA ("Multi-dimensional Arrays") will be a game changer in Big Data Analytics. We introduce concepts and opportunities through the example of rasdaman ("raster data manager") which in fact has pioneered the field of Array Databases and forms the blueprint for ISO SQL/MDA and further Big Data standards, such as OGC WCPS for querying spatio-temporal Earth datacubes. With operational installations exceeding 140 TB queries have been split across more than one thousand cloud nodes, using CPUs as well as GPUs. Installations can easily be mashed up securely, enabling large-scale location-transparent query processing in federations. Federation queries have been demonstrated live at EGU 2016 spanning Europe and Australia in the context of the intercontinental EarthServer initiative, visualized through NASA WorldWind.
Agile Datacube Analytics (not just) for the Earth Sciences
NASA Astrophysics Data System (ADS)
Baumann, P.
2016-12-01
Metadata are considered small, smart, and queryable; data, on the other hand, are known as big, clumsy, hard to analyze. Consequently, gridded data - such as images, image timeseries, and climate datacubes - are managed separately from the metadata, and with different, restricted retrieval capabilities. One reason for this silo approach is that databases, while good at tables, XML hierarchies, RDF graphs, etc., traditionally do not support multi-dimensional arrays well.This gap is being closed by Array Databases which extend the SQL paradigm of "any query, anytime" to NoSQL arrays. They introduce semantically rich modelling combined with declarative, high-level query languages on n-D arrays. On Server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. This way, they offer new vistas in flexibility, scalability, performance, and data integration. In this respect, the forthcoming ISO SQL extension MDA ("Multi-dimensional Arrays") will be a game changer in Big Data Analytics.We introduce concepts and opportunities through the example of rasdaman ("raster data manager") which in fact has pioneered the field of Array Databases and forms the blueprint for ISO SQL/MDA and further Big Data standards, such as OGC WCPS for querying spatio-temporal Earth datacubes. With operational installations exceeding 140 TB queries have been split across more than one thousand cloud nodes, using CPUs as well as GPUs. Installations can easily be mashed up securely, enabling large-scale location-transparent query processing in federations. Federation queries have been demonstrated live at EGU 2016 spanning Europe and Australia in the context of the intercontinental EarthServer initiative, visualized through NASA WorldWind.
Experiments in Multi-Lingual Information Retrieval.
ERIC Educational Resources Information Center
Salton, Gerard
A comparison was made of the performance in an automatic information retrieval environment of user queries and document abstracts available in natural language form in both English and French. The results obtained indicate that the automatic indexing and retrieval techniques actually used appear equally effective in handling the query and document…
A Semantic Parsing Method for Mapping Clinical Questions to Logical Forms
Roberts, Kirk; Patra, Braja Gopal
2017-01-01
This paper presents a method for converting natural language questions about structured data in the electronic health record (EHR) into logical forms. The logical forms can then subsequently be converted to EHR-dependent structured queries. The natural language processing task, known as semantic parsing, has the potential to convert questions to logical forms with extremely high precision, resulting in a system that is usable and trusted by clinicians for real-time use in clinical settings. We propose a hybrid semantic parsing method, combining rule-based methods with a machine learning-based classifier. The overall semantic parsing precision on a set of 212 questions is 95.6%. The parser’s rules furthermore allow it to “know what it does not know”, enabling the system to indicate when unknown terms prevent it from understanding the question’s full logical structure. When combined with a module for converting a logical form into an EHR-dependent query, this high-precision approach allows for a question answering system to provide a user with a single, verifiably correct answer. PMID:29854217
Olelo: a web application for intuitive exploration of biomedical literature
Niedermeier, Julian; Jankrift, Marcel; Tietböhl, Sören; Stachewicz, Toni; Folkerts, Hendrik; Uflacker, Matthias; Neves, Mariana
2017-01-01
Abstract Researchers usually query the large biomedical literature in PubMed via keywords, logical operators and filters, none of which is very intuitive. Question answering systems are an alternative to keyword searches. They allow questions in natural language as input and results reflect the given type of question, such as short answers and summaries. Few of those systems are available online but they experience drawbacks in terms of long response times and they support a limited amount of question and result types. Additionally, user interfaces are usually restricted to only displaying the retrieved information. For our Olelo web application, we combined biomedical literature and terminologies in a fast in-memory database to enable real-time responses to researchers’ queries. Further, we extended the built-in natural language processing features of the database with question answering and summarization procedures. Combined with a new explorative approach of document filtering and a clean user interface, Olelo enables a fast and intelligent search through the ever-growing biomedical literature. Olelo is available at http://www.hpi.de/plattner/olelo. PMID:28472397
Implementation of relational data base management systems on micro-computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C.L.
1982-01-01
This dissertation describes an implementation of a Relational Data Base Management System on a microcomputer. A specific floppy disk based hardward called TERAK is being used, and high level query interface which is similar to a subset of the SEQUEL language is provided. The system contains sub-systems such as I/O, file management, virtual memory management, query system, B-tree management, scanner, command interpreter, expression compiler, garbage collection, linked list manipulation, disk space management, etc. The software has been implemented to fulfill the following goals: (1) it is highly modularized. (2) The system is physically segmented into 16 logically independent, overlayable segments,more » in a way such that a minimal amount of memory is needed at execution time. (3) Virtual memory system is simulated that provides the system with seemingly unlimited memory space. (4) A language translator is applied to recognize user requests in the query language. The code generation of this translator generates compact code for the execution of UPDATE, DELETE, and QUERY commands. (5) A complete set of basic functions needed for on-line data base manipulations is provided through the use of a friendly query interface. (6) To eliminate the dependency on the environment (both software and hardware) as much as possible, so that it would be easy to transplant the system to other computers. (7) To simulate each relation as a sequential file. It is intended to be a highly efficient, single user system suited to be used by small or medium sized organizations for, say, administrative purposes. Experiments show that quite satisfying results have indeed been achieved.« less
Measuring up: Implementing a dental quality measure in the electronic health record context.
Bhardwaj, Aarti; Ramoni, Rachel; Kalenderian, Elsbeth; Neumann, Ana; Hebballi, Nutan B; White, Joel M; McClellan, Lyle; Walji, Muhammad F
2016-01-01
Quality improvement requires using quality measures that can be implemented in a valid manner. Using guidelines set forth by the Meaningful Use portion of the Health Information Technology for Economic and Clinical Health Act, the authors assessed the feasibility and performance of an automated electronic Meaningful Use dental clinical quality measure to determine the percentage of children who received fluoride varnish. The authors defined how to implement the automated measure queries in a dental electronic health record. Within records identified through automated query, the authors manually reviewed a subsample to assess the performance of the query. The automated query results revealed that 71.0% of patients had fluoride varnish compared with the manual chart review results that indicated 77.6% of patients had fluoride varnish. The automated quality measure performance results indicated 90.5% sensitivity, 90.8% specificity, 96.9% positive predictive value, and 75.2% negative predictive value. The authors' findings support the feasibility of using automated dental quality measure queries in the context of sufficient structured data. Information noted only in free text rather than in structured data would require using natural language processing approaches to effectively query electronic health records. To participate in self-directed quality improvement, dental clinicians must embrace the accountability era. Commitment to quality will require enhanced documentation to support near-term automated calculation of quality measures. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.
Biomedical information retrieval across languages.
Daumke, Philipp; Markü, Kornél; Poprat, Michael; Schulz, Stefan; Klar, Rüdiger
2007-06-01
This work presents a new dictionary-based approach to biomedical cross-language information retrieval (CLIR) that addresses many of the general and domain-specific challenges in current CLIR research. Our method is based on a multilingual lexicon that was generated partly manually and partly automatically, and currently covers six European languages. It contains morphologically meaningful word fragments, termed subwords. Using subwords instead of entire words significantly reduces the number of lexical entries necessary to sufficiently cover a specific language and domain. Mediation between queries and documents is based on these subwords as well as on lists of word-n-grams that are generated from large monolingual corpora and constitute possible translation units. The translations are then sent to a standard Internet search engine. This process makes our approach an effective tool for searching the biomedical content of the World Wide Web in different languages. We evaluate this approach using the OHSUMED corpus, a large medical document collection, within a cross-language retrieval setting.
Getting Answers to Natural Language Questions on the Web.
ERIC Educational Resources Information Center
Radev, Dragomir R.; Libner, Kelsey; Fan, Weiguo
2002-01-01
Describes a study that investigated the use of natural language questions on Web search engines. Highlights include query languages; differences in search engine syntax; and results of logistic regression and analysis of variance that showed aspects of questions that predicted significantly different performances, including the number of words,…
On describing human white matter anatomy: the white matter query language.
Wassermann, Demian; Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik
2013-01-01
The main contribution of this work is the careful syntactical definition of major white matter tracts in the human brain based on a neuroanatomist's expert knowledge. We present a technique to formally describe white matter tracts and to automatically extract them from diffusion MRI data. The framework is based on a novel query language with a near-to-English textual syntax. This query language allows us to construct a dictionary of anatomical definitions describing white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This enables automated coherent labeling of white matter anatomy across subjects. We use our method to encode anatomical knowledge in human white matter describing 10 association and 8 projection tracts per hemisphere and 7 commissural tracts. The technique is shown to be comparable in accuracy to manual labeling. We present results applying this framework to create a white matter atlas from 77 healthy subjects, and we use this atlas in a proof-of-concept study to detect tract changes specific to schizophrenia.
Friedman, Carol; Hripcsak, George; Shagina, Lyuda; Liu, Hongfang
1999-01-01
Objective: To design a document model that provides reliable and efficient access to clinical information in patient reports for a broad range of clinical applications, and to implement an automated method using natural language processing that maps textual reports to a form consistent with the model. Methods: A document model that encodes structured clinical information in patient reports while retaining the original contents was designed using the extensible markup language (XML), and a document type definition (DTD) was created. An existing natural language processor (NLP) was modified to generate output consistent with the model. Two hundred reports were processed using the modified NLP system, and the XML output that was generated was validated using an XML validating parser. Results: The modified NLP system successfully processed all 200 reports. The output of one report was invalid, and 199 reports were valid XML forms consistent with the DTD. Conclusions: Natural language processing can be used to automatically create an enriched document that contains a structured component whose elements are linked to portions of the original textual report. This integrated document model provides a representation where documents containing specific information can be accurately and efficiently retrieved by querying the structured components. If manual review of the documents is desired, the salient information in the original reports can also be identified and highlighted. Using an XML model of tagging provides an additional benefit in that software tools that manipulate XML documents are readily available. PMID:9925230
ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics
NASA Astrophysics Data System (ADS)
Hu, F.; Yang, C. P.; Duffy, D.; Schnase, J. L.; Li, Z.
2016-12-01
Massive array-based climate data is being generated from global surveillance systems and model simulations. They are widely used to analyze the environment problems, such as climate changes, natural hazards, and public health. However, knowing the underlying information from these big climate datasets is challenging due to both data- and computing- intensive issues in data processing and analyzing. To tackle the challenges, this paper proposes ClimateSpark, an in-memory distributed computing framework to support big climate data processing. In ClimateSpark, the spatiotemporal index is developed to enable Apache Spark to treat the array-based climate data (e.g. netCDF4, HDF4) as native formats, which are stored in Hadoop Distributed File System (HDFS) without any preprocessing. Based on the index, the spatiotemporal query services are provided to retrieve dataset according to a defined geospatial and temporal bounding box. The data subsets will be read out, and a data partition strategy will be applied to equally split the queried data to each computing node, and store them in memory as climateRDDs for processing. By leveraging Spark SQL and User Defined Function (UDFs), the climate data analysis operations can be conducted by the intuitive SQL language. ClimateSpark is evaluated by two use cases using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. One use case is to conduct the spatiotemporal query and visualize the subset results in animation; the other one is to compare different climate model outputs using Taylor-diagram service. Experimental results show that ClimateSpark can significantly accelerate data query and processing, and enable the complex analysis services served in the SQL-style fashion.
An ontology-driven tool for structured data acquisition using Web forms.
Gonçalves, Rafael S; Tu, Samson W; Nyulas, Csongor I; Tierney, Michael J; Musen, Mark A
2017-08-01
Structured data acquisition is a common task that is widely performed in biomedicine. However, current solutions for this task are far from providing a means to structure data in such a way that it can be automatically employed in decision making (e.g., in our example application domain of clinical functional assessment, for determining eligibility for disability benefits) based on conclusions derived from acquired data (e.g., assessment of impaired motor function). To use data in these settings, we need it structured in a way that can be exploited by automated reasoning systems, for instance, in the Web Ontology Language (OWL); the de facto ontology language for the Web. We tackle the problem of generating Web-based assessment forms from OWL ontologies, and aggregating input gathered through these forms as an ontology of "semantically-enriched" form data that can be queried using an RDF query language, such as SPARQL. We developed an ontology-based structured data acquisition system, which we present through its specific application to the clinical functional assessment domain. We found that data gathered through our system is highly amenable to automatic analysis using queries. We demonstrated how ontologies can be used to help structuring Web-based forms and to semantically enrich the data elements of the acquired structured data. The ontologies associated with the enriched data elements enable automated inferences and provide a rich vocabulary for performing queries.
SPARQLog: SPARQL with Rules and Quantification
NASA Astrophysics Data System (ADS)
Bry, François; Furche, Tim; Marnette, Bruno; Ley, Clemens; Linse, Benedikt; Poppe, Olga
SPARQL has become the gold-standard for RDF query languages. Nevertheless, we believe there is further room for improving RDF query languages. In this chapter, we investigate the addition of rules and quantifier alternation to SPARQL. That extension, called SPARQLog, extends previous RDF query languages by arbitrary quantifier alternation: blank nodes may occur in the scope of all, some, or none of the universal variables of a rule. In addition, SPARQLog is aware of important RDF features such as the distinction between blank nodes, literals and IRIs or the RDFS vocabulary. The semantics of SPARQLog is closed (every answer is an RDF graph), but lifts RDF's restrictions on literal and blank node occurrences for intermediary data. We show how to define a sound and complete operational semantics that can be implemented using existing logic programming techniques. While SPARQLog is Turing complete, we identify a decidable (in fact, polynomial time) fragment SwARQLog ensuring polynomial data-complexity inspired from the notion of super-weak acyclicity in data exchange. Furthermore, we prove that SPARQLog with no universal quantifiers in the scope of existential ones (∀ ∃ fragment) is equivalent to full SPARQLog in presence of graph projection. Thus, the convenience of arbitrary quantifier alternation comes, in fact, for free. These results, though here presented in the context of RDF querying, apply similarly also in the more general setting of data exchange.
Database Reports Over the Internet
NASA Technical Reports Server (NTRS)
Smith, Dean Lance
2002-01-01
Most of the summer was spent developing software that would permit existing test report forms to be printed over the web on a printer that is supported by Adobe Acrobat Reader. The data is stored in a DBMS (Data Base Management System). The client asks for the information from the database using an HTML (Hyper Text Markup Language) form in a web browser. JavaScript is used with the forms to assist the user and verify the integrity of the entered data. Queries to a database are made in SQL (Sequential Query Language), a widely supported standard for making queries to databases. Java servlets, programs written in the Java programming language running under the control of network server software, interrogate the database and complete a PDF form template kept in a file. The completed report is sent to the browser requesting the report. Some errors are sent to the browser in an HTML web page, others are reported to the server. Access to the databases was restricted since the data are being transported to new DBMS software that will run on new hardware. However, the SQL queries were made to Microsoft Access, a DBMS that is available on most PCs (Personal Computers). Access does support the SQL commands that were used, and a database was created with Access that contained typical data for the report forms. Some of the problems and features are discussed below.
NASA Astrophysics Data System (ADS)
Bikakis, Nikos; Gioldasis, Nektarios; Tsinaraki, Chrisa; Christodoulakis, Stavros
SPARQL is today the standard access language for Semantic Web data. In the recent years XML databases have also acquired industrial importance due to the widespread applicability of XML in the Web. In this paper we present a framework that bridges the heterogeneity gap and creates an interoperable environment where SPARQL queries are used to access XML databases. Our approach assumes that fairly generic mappings between ontology constructs and XML Schema constructs have been automatically derived or manually specified. The mappings are used to automatically translate SPARQL queries to semantically equivalent XQuery queries which are used to access the XML databases. We present the algorithms and the implementation of SPARQL2XQuery framework, which is used for answering SPARQL queries over XML databases.
Vaccine-criticism on the internet: new insights based on French-speaking websites.
Ward, Jeremy K; Peretti-Watel, Patrick; Larson, Heidi J; Raude, Jocelyn; Verger, Pierre
2015-02-18
The internet is playing an increasingly important part in fueling vaccine related controversies and in generating vaccine hesitant behaviors. English language Antivaccination websites have been thoroughly analyzed, however, little is known of the arguments presented in other languages on the internet. This study presents three types of results: (1) Authors apply a time tested content analysis methodology to describe the information diffused by French language vaccine critical websites in comparison with English speaking websites. The contents of French language vaccine critical websites are very similar to those of English language websites except for the relative absence of moral and religious arguments. (2) Authors evaluate the likelihood that internet users will find those websites through vaccine-related queries on a variety of French-language versions of google. Queries on controversial vaccines generated many more vaccine critical websites than queries on vaccination in general. (3) Authors propose a typology of vaccine critical websites. Authors distinguish between (a) websites that criticize all vaccines ("antivaccine" websites) and websites that criticize only some vaccines ("vaccine-selective" websites), and between (b) websites that focus on vaccines ("vaccine-focused" websites) and those for which vaccines were only a secondary topic of interest ("generalist" websites). The differences in stances by groups and websites affect the likelihood that they will be believed and by whom. This study therefore helps understand the different information landscapes that may contribute to the variety of forms of vaccine hesitancy. Public authorities should have better awareness and understanding of these stances to bring appropriate answers to the different controversies about vaccination. Copyright © 2014 Elsevier Ltd. All rights reserved.
Functional Analysis of Language Interactions between Down Syndrome Children and Their Mothers.
ERIC Educational Resources Information Center
Hooshyar, Nahid T.
A 20-minute videotape sample was obtained of the language interactions between 20 Down syndrome children (ages 38 to 107 months) and their mothers during informal playtime. Linguistic utterances of mothers and children were coded according to the following language categories: query, declarative, imperative, performative, feedback, imitation,…
Taboada, María; Martínez, Diego; Pilo, Belén; Jiménez-Escrig, Adriano; Robinson, Peter N; Sobrido, María J
2012-07-31
Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research.
Named Entity Recognition in a Hungarian NL Based QA System
NASA Astrophysics Data System (ADS)
Tikkl, Domonkos; Szidarovszky, P. Ferenc; Kardkovacs, Zsolt T.; Magyar, Gábor
In WoW project our purpose is to create a complex search interface with the following features: search in the deep web content of contracted partners' databases, processing Hungarian natural language (NL) questions and transforming them to SQL queries for database access, image search supported by a visual thesaurus that describes in a structural form the visual content of images (also in Hungarian). This paper primarily focuses on a particular problem of question processing task: the entity recognition. Before going into details we give a short overview of the project's aims.
An integrated information retrieval and document management system
NASA Technical Reports Server (NTRS)
Coles, L. Stephen; Alvarez, J. Fernando; Chen, James; Chen, William; Cheung, Lai-Mei; Clancy, Susan; Wong, Alexis
1993-01-01
This paper describes the requirements and prototype development for an intelligent document management and information retrieval system that will be capable of handling millions of pages of text or other data. Technologies for scanning, Optical Character Recognition (OCR), magneto-optical storage, and multiplatform retrieval using a Standard Query Language (SQL) will be discussed. The semantic ambiguity inherent in the English language is somewhat compensated-for through the use of coefficients or weighting factors for partial synonyms. Such coefficients are used both for defining structured query trees for routine queries and for establishing long-term interest profiles that can be used on a regular basis to alert individual users to the presence of relevant documents that may have just arrived from an external source, such as a news wire service. Although this attempt at evidential reasoning is limited in comparison with the latest developments in AI Expert Systems technology, it has the advantage of being commercially available.
2017-01-01
Reusing the data from healthcare information systems can effectively facilitate clinical trials (CTs). How to select candidate patients eligible for CT recruitment criteria is a central task. Related work either depends on DBA (database administrator) to convert the recruitment criteria to native SQL queries or involves the data mapping between a standard ontology/information model and individual data source schema. This paper proposes an alternative computer-aided CT recruitment paradigm, based on syntax translation between different DSLs (domain-specific languages). In this paradigm, the CT recruitment criteria are first formally represented as production rules. The referenced rule variables are all from the underlying database schema. Then the production rule is translated to an intermediate query-oriented DSL (e.g., LINQ). Finally, the intermediate DSL is directly mapped to native database queries (e.g., SQL) automated by ORM (object-relational mapping). PMID:29065644
The EPMI Malay Basin petroleum geology database: Design philosophy and keys to success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, H.E.; Creaney, S.; Fairchild, L.H.
1994-07-01
Esso Production Malaysia Inc. (EPMI) developed and populated a database containing information collected in the areas of basic well data: stratigraphy, lithology, facies; pressure, temperature, column/contacts; geochemistry, shows and stains, migration, fluid properties; maturation; seal; structure. Paradox was used as the database engine and query language, with links to ZYCOR ZMAP+ for mapping and SAS for data analysis. Paradox has a query language that is simple enough for users. The ability to link to good analytical packages was deemed more important than having the capability in the package. Important elements of design philosophy were included: (1) information on data qualitymore » had to be rigorously recorded; (2) raw and interpreted data were kept separate and clearly identified; (3) correlations between rock and chronostratigraphic surfaces were recorded; and (4) queries across technical boundaries had to be seamless.« less
Zhang, Yinsheng; Zhang, Guoming; Shang, Qian
2017-01-01
Reusing the data from healthcare information systems can effectively facilitate clinical trials (CTs). How to select candidate patients eligible for CT recruitment criteria is a central task. Related work either depends on DBA (database administrator) to convert the recruitment criteria to native SQL queries or involves the data mapping between a standard ontology/information model and individual data source schema. This paper proposes an alternative computer-aided CT recruitment paradigm, based on syntax translation between different DSLs (domain-specific languages). In this paradigm, the CT recruitment criteria are first formally represented as production rules. The referenced rule variables are all from the underlying database schema. Then the production rule is translated to an intermediate query-oriented DSL (e.g., LINQ). Finally, the intermediate DSL is directly mapped to native database queries (e.g., SQL) automated by ORM (object-relational mapping).
A Fuzzy Query Mechanism for Human Resource Websites
NASA Astrophysics Data System (ADS)
Lai, Lien-Fu; Wu, Chao-Chin; Huang, Liang-Tsung; Kuo, Jung-Chih
Users' preferences often contain imprecision and uncertainty that are difficult for traditional human resource websites to deal with. In this paper, we apply the fuzzy logic theory to develop a fuzzy query mechanism for human resource websites. First, a storing mechanism is proposed to store fuzzy data into conventional database management systems without modifying DBMS models. Second, a fuzzy query language is proposed for users to make fuzzy queries on fuzzy databases. User's fuzzy requirement can be expressed by a fuzzy query which consists of a set of fuzzy conditions. Third, each fuzzy condition associates with a fuzzy importance to differentiate between fuzzy conditions according to their degrees of importance. Fourth, the fuzzy weighted average is utilized to aggregate all fuzzy conditions based on their degrees of importance and degrees of matching. Through the mutual compensation of all fuzzy conditions, the ordering of query results can be obtained according to user's preference.
A Semantic Basis for Proof Queries and Transformations
NASA Technical Reports Server (NTRS)
Aspinall, David; Denney, Ewen W.; Luth, Christoph
2013-01-01
We extend the query language PrQL, designed for inspecting machine representations of proofs, to also allow transformation of proofs. PrQL natively supports hiproofs which express proof structure using hierarchically nested labelled trees, which we claim is a natural way of taming the complexity of huge proofs. Query-driven transformations enable manipulation of this structure, in particular, to transform proofs produced by interactive theorem provers into forms that assist their understanding, or that could be consumed by other tools. In this paper we motivate and define basic transformation operations, using an abstract denotational semantics of hiproofs and queries. This extends our previous semantics for queries based on syntactic tree representations.We define update operations that add and remove sub-proofs, and manipulate the hierarchy to group and ungroup nodes. We show that
MIMO: an efficient tool for molecular interaction maps overlap
2013-01-01
Background Molecular pathways represent an ensemble of interactions occurring among molecules within the cell and between cells. The identification of similarities between molecular pathways across organisms and functions has a critical role in understanding complex biological processes. For the inference of such novel information, the comparison of molecular pathways requires to account for imperfect matches (flexibility) and to efficiently handle complex network topologies. To date, these characteristics are only partially available in tools designed to compare molecular interaction maps. Results Our approach MIMO (Molecular Interaction Maps Overlap) addresses the first problem by allowing the introduction of gaps and mismatches between query and template pathways and permits -when necessary- supervised queries incorporating a priori biological information. It then addresses the second issue by relying directly on the rich graph topology described in the Systems Biology Markup Language (SBML) standard, and uses multidigraphs to efficiently handle multiple queries on biological graph databases. The algorithm has been here successfully used to highlight the contact point between various human pathways in the Reactome database. Conclusions MIMO offers a flexible and efficient graph-matching tool for comparing complex biological pathways. PMID:23672344
Developing A Web-based User Interface for Semantic Information Retrieval
NASA Technical Reports Server (NTRS)
Berrios, Daniel C.; Keller, Richard M.
2003-01-01
While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.
NASA Technical Reports Server (NTRS)
Campbell, William J.
1985-01-01
Intelligent data management is the concept of interfacing a user to a database management system with a value added service that will allow a full range of data management operations at a high level of abstraction using human written language. The development of such a system will be based on expert systems and related artificial intelligence technologies, and will allow the capturing of procedural and relational knowledge about data management operations and the support of a user with such knowledge in an on-line, interactive manner. Such a system will have the following capabilities: (1) the ability to construct a model of the users view of the database, based on the query syntax; (2) the ability to transform English queries and commands into database instructions and processes; (3) the ability to use heuristic knowledge to rapidly prune the data space in search processes; and (4) the ability to use an on-line explanation system to allow the user to understand what the system is doing and why it is doing it. Additional information is given in outline form.
Composing Data Parallel Code for a SPARQL Graph Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Tumeo, Antonino; Villa, Oreste
Big data analytics process large amount of data to extract knowledge from them. Semantic databases are big data applications that adopt the Resource Description Framework (RDF) to structure metadata through a graph-based representation. The graph based representation provides several benefits, such as the possibility to perform in memory processing with large amounts of parallelism. SPARQL is a language used to perform queries on RDF-structured data through graph matching. In this paper we present a tool that automatically translates SPARQL queries to parallel graph crawling and graph matching operations. The tool also supports complex SPARQL constructs, which requires more than basicmore » graph matching for their implementation. The tool generates parallel code annotated with OpenMP pragmas for x86 Shared-memory Multiprocessors (SMPs). With respect to commercial database systems such as Virtuoso, our approach reduces memory occupation due to join operations and provides higher performance. We show the scaling of the automatically generated graph-matching code on a 48-core SMP.« less
NASA Astrophysics Data System (ADS)
Skotniczny, Zbigniew
1989-12-01
The Query by Forms (QbF) system is a user-oriented interactive tool for querying large relational database with minimal queries difinition cost. The system was worked out under the assumption that user's time and effort for defining needed queries is the most severe bottleneck. The system may be applied in any Rdb/VMS databases system and is recommended for specific information systems of any project where end-user queries cannot be foreseen. The tool is dedicated to specialist of an application domain who have to analyze data maintained in database from any needed point of view, who do not need to know commercial databases languages. The paper presents the system developed as a compromise between its functionality and usability. User-system communication via a menu-driven "tree-like" structure of screen-forms which produces a query difinition and execution is discussed in detail. Output of query results (printed reports and graphics) is also discussed. Finally the paper shows one application of QbF to a HERA-project.
PLEXIL-DL: Language and Runtime for Context-Aware Robot Behaviour
NASA Astrophysics Data System (ADS)
Moser, Herwig; Reichelt, Toni; Oswald, Norbert; Förster, Stefan
Faced with the growing complexity of application scenarios social robots are involved with, the perception of environmental circumstances and the sentient reactions are becoming more and more important abilities. Rather than regarding both abilities in isolation, the entire transformation process, from context-awareness to purposive behaviour, forms a robot’s adaptivity. While attaining context-awareness has received much attention in literature so far, translating it into appropriate actions still lacks a comprehensive approach. In this paper, we present PLEXIL-DL, an expressive language allowing complex context expressions as an integral part of constructs that define sophisticated behavioural reactions. Our approach extends NASA’s PLEXIL language by Description Logic queries, both in syntax and formal semantics. A prototypical implementation of a PLEXIL-DL interpreter shows the basic mechanisms facilitating the robot’s adaptivity through context-awareness.
2003-06-01
delivery Data Access (1980s) "What were unit sales in New England last March?" Relational databases (RDBMS), Structured Query Language ( SQL ...macros written in Visual Basic for Applications ( VBA ). 32 Iteration Two: Class Diagram Tech OASIS Export ScriptImport Filter Data ProcessingMethod 1...MS Excel * 1 VBA Macro*1 contains sends data to co nt ai ns executes * * 1 1 contains contains Figure 20. Iteration two class diagram The
Development and Utility of Automatic Language Processing Technologies. Volume 2
2014-04-01
speech for each word using the existing Treetagger program. 3. Stem the word using the revised RevP stemmer, “RussianStemmer2013. java ” (see Section...KBaselineParaphrases2013. java ,” with the paraphrase table and a LM built from the TED training data. Information from the LM was called using the new utility query_interp...GATE/ Java Annotation Patterns Engine (JAPE) interface and on transliteration of Chinese named entities. Available Linguistic Data Consortium (LDC
Geospatial Data Management Platform for Urban Groundwater
NASA Astrophysics Data System (ADS)
Gaitanaru, D.; Priceputu, A.; Gogu, C. R.
2012-04-01
Due to the large amount of civil work projects and research studies, large quantities of geo-data are produced for the urban environments. These data are usually redundant as well as they are spread in different institutions or private companies. Time consuming operations like data processing and information harmonisation represents the main reason to systematically avoid the re-use of data. The urban groundwater data shows the same complex situation. The underground structures (subway lines, deep foundations, underground parkings, and others), the urban facility networks (sewer systems, water supply networks, heating conduits, etc), the drainage systems, the surface water works and many others modify continuously. As consequence, their influence on groundwater changes systematically. However, these activities provide a large quantity of data, aquifers modelling and then behaviour prediction can be done using monitored quantitative and qualitative parameters. Due to the rapid evolution of technology in the past few years, transferring large amounts of information through internet has now become a feasible solution for sharing geoscience data. Furthermore, standard platform-independent means to do this have been developed (specific mark-up languages like: GML, GeoSciML, WaterML, GWML, CityML). They allow easily large geospatial databases updating and sharing through internet, even between different companies or between research centres that do not necessarily use the same database structures. For Bucharest City (Romania) an integrated platform for groundwater geospatial data management is developed under the framework of a national research project - "Sedimentary media modeling platform for groundwater management in urban areas" (SIMPA) financed by the National Authority for Scientific Research of Romania. The platform architecture is based on three components: a geospatial database, a desktop application (a complex set of hydrogeological and geological analysis tools) and a front-end geoportal service. The SIMPA platform makes use of mark-up transfer standards to provide a user-friendly application that can be accessed through internet to query, analyse, and visualise geospatial data related to urban groundwater. The platform holds the information within the local groundwater geospatial databases and the user is able to access this data through a geoportal service. The database architecture allows storing accurate and very detailed geological, hydrogeological, and infrastructure information that can be straightforwardly generalized and further upscaled. The geoportal service offers the possibility of querying a dataset from the spatial database. The query is coded in a standard mark-up language, and sent to the server through a standard Hyper Text Transfer Protocol (http) to be processed by the local application. After the validation of the query, the results are sent back to the user to be displayed by the geoportal application. The main advantage of the SIMPA platform is that it offers to the user the possibility to make a primary multi-criteria query, which results in a smaller set of data to be analysed afterwards. This improves both the transfer process parameters and the user's means of creating the desired query.
Foundations for Streaming Model Transformations by Complex Event Processing.
Dávid, István; Ráth, István; Varró, Dániel
2018-01-01
Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.
Ji, Yanqing; Ying, Hao; Tran, John; Dews, Peter; Massanari, R Michael
2016-07-19
Finding highly relevant articles from biomedical databases is challenging not only because it is often difficult to accurately express a user's underlying intention through keywords but also because a keyword-based query normally returns a long list of hits with many citations being unwanted by the user. This paper proposes a novel biomedical literature search system, called BiomedSearch, which supports complex queries and relevance feedback. The system employed association mining techniques to build a k-profile representing a user's relevance feedback. More specifically, we developed a weighted interest measure and an association mining algorithm to find the strength of association between a query and each concept in the article(s) selected by the user as feedback. The top concepts were utilized to form a k-profile used for the next-round search. BiomedSearch relies on Unified Medical Language System (UMLS) knowledge sources to map text files to standard biomedical concepts. It was designed to support queries with any levels of complexity. A prototype of BiomedSearch software was made and it was preliminarily evaluated using the Genomics data from TREC (Text Retrieval Conference) 2006 Genomics Track. Initial experiment results indicated that BiomedSearch increased the mean average precision (MAP) for a set of queries. With UMLS and association mining techniques, BiomedSearch can effectively utilize users' relevance feedback to improve the performance of biomedical literature search.
Improving Concept-Based Web Image Retrieval by Mixing Semantically Similar Greek Queries
ERIC Educational Resources Information Center
Lazarinis, Fotis
2008-01-01
Purpose: Image searching is a common activity for web users. Search engines offer image retrieval services based on textual queries. Previous studies have shown that web searching is more demanding when the search is not in English and does not use a Latin-based language. The aim of this paper is to explore the behaviour of the major search…
The Comparison of SQL, QBE, and DFQL as Query Languages for Relational Databases
1994-03-01
is: Dname F-mune Laame Headquarter James Borg b. Query 7: RetieMl involving explicit sets Retrieve the Social Security Numbers of employees who worked...i •••,• I• i , i I I • I 10. Ka Dispullahta MABES TNI-AL Cilangkap-Jakarta Timur Indonesia 11. Parunmungan Girsang 3 Jl. Cawang Baru 34-36 Jakarta
NVST Data Archiving System Based On FastBit NoSQL Database
NASA Astrophysics Data System (ADS)
Liu, Ying-bo; Wang, Feng; Ji, Kai-fan; Deng, Hui; Dai, Wei; Liang, Bo
2014-06-01
The New Vacuum Solar Telescope (NVST) is a 1-meter vacuum solar telescope that aims to observe the fine structures of active regions on the Sun. The main tasks of the NVST are high resolution imaging and spectral observations, including the measurements of the solar magnetic field. The NVST has been collecting more than 20 million FITS files since it began routine observations in 2012 and produces a maximum observational records of 120 thousand files in a day. Given the large amount of files, the effective archiving and retrieval of files becomes a critical and urgent problem. In this study, we implement a new data archiving system for the NVST based on the Fastbit Not Only Structured Query Language (NoSQL) database. Comparing to the relational database (i.e., MySQL; My Structured Query Language), the Fastbit database manifests distinctive advantages on indexing and querying performance. In a large scale database of 40 million records, the multi-field combined query response time of Fastbit database is about 15 times faster and fully meets the requirements of the NVST. Our study brings a new idea for massive astronomical data archiving and would contribute to the design of data management systems for other astronomical telescopes.
Improving integrative searching of systems chemical biology data using semantic annotation.
Chen, Bin; Ding, Ying; Wild, David J
2012-03-08
Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued. We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i) simplifies the process of building SPARQL queries, (ii) enables useful new kinds of queries on the data and (iii) makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology. Chem2Bio2OWL is available at http://chem2bio2rdf.org/owl. The document is available at http://chem2bio2owl.wikispaces.com.
Querying archetype-based EHRs by search ontology-based XPath engineering.
Kropf, Stefan; Uciteli, Alexandr; Schierle, Katrin; Krücken, Peter; Denecke, Kerstin; Herre, Heinrich
2018-05-11
Legacy data and new structured data can be stored in a standardized format as XML-based EHRs on XML databases. Querying documents on these databases is crucial for answering research questions. Instead of using free text searches, that lead to false positive results, the precision can be increased by constraining the search to certain parts of documents. A search ontology-based specification of queries on XML documents defines search concepts and relates them to parts in the XML document structure. Such query specification method is practically introduced and evaluated by applying concrete research questions formulated in natural language on a data collection for information retrieval purposes. The search is performed by search ontology-based XPath engineering that reuses ontologies and XML-related W3C standards. The key result is that the specification of research questions can be supported by the usage of search ontology-based XPath engineering. A deeper recognition of entities and a semantic understanding of the content is necessary for a further improvement of precision and recall. Key limitation is that the application of the introduced process requires skills in ontology and software development. In future, the time consuming ontology development could be overcome by implementing a new clinical role: the clinical ontologist. The introduced Search Ontology XML extension connects Search Terms to certain parts in XML documents and enables an ontology-based definition of queries. Search ontology-based XPath engineering can support research question answering by the specification of complex XPath expressions without deep syntax knowledge about XPaths.
CITE NLM: Natural-Language Searching in an Online Catalog.
ERIC Educational Resources Information Center
Doszkocs, Tamas E.
1983-01-01
The National Library of Medicine's Current Information Transfer in English public access online catalog offers unique subject search capabilities--natural-language query input, automatic medical subject headings display, closest match search strategy, ranked document output, dynamic end user feedback for search refinement. References, description…
Interrogation: General vs. Local.
ERIC Educational Resources Information Center
Johnson, Jeannette
This paper proposes a set of hypotheses on the nature of interrogration as a possible language universal. Examples and phrase structure rules and diagrams are given. Examining Tamazight and English, genetically unrelated languages with almost no contact, the author distinguishes two types of interrogation: (1) general, querying acceptability to…
Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entailment Regimes
NASA Astrophysics Data System (ADS)
Ianni, Giovambattista; Krennwallner, Thomas; Martello, Alessandra; Polleres, Axel
RDF Schema (RDFS) as a lightweight ontology language is gaining popularity and, consequently, tools for scalable RDFS inference and querying are needed. SPARQL has become recently a W3C standard for querying RDF data, but it mostly provides means for querying simple RDF graphs only, whereas querying with respect to RDFS or other entailment regimes is left outside the current specification. In this paper, we show that SPARQL faces certain unwanted ramifications when querying ontologies in conjunction with RDF datasets that comprise multiple named graphs, and we provide an extension for SPARQL that remedies these effects. Moreover, since RDFS inference has a close relationship with logic rules, we generalize our approach to select a custom ruleset for specifying inferences to be taken into account in a SPARQL query. We show that our extensions are technically feasible by providing benchmark results for RDFS querying in our prototype system GiaBATA, which uses Datalog coupled with a persistent Relational Database as a back-end for implementing SPARQL with dynamic rule-based inference. By employing different optimization techniques like magic set rewriting our system remains competitive with state-of-the-art RDFS querying systems.
Clinician-Oriented Access to Data - C.O.A.D.: A Natural Language Interface to a VA DHCP Database
Levy, Christine; Rogers, Elizabeth
1995-01-01
Hospitals collect enormous amounts of data related to the on-going care of patients. Unfortunately, a clinicians access to the data is limited by complexities of the database structure and/or programming skills required to access the database. The COAD project attempts to bridge the gap between the clinical user's need for specific information from the database, and the wealth of data residing in the hospital information system. The project design includes a natural language interface to data contained in a VA DHCP database. We have developed a prototype which links natural language software to certain DHCP data elements, including, patient demographics, prescriptions, diagnoses, laboratory data, and provider information. English queries can by typed onto the system, and answers to the questions are returned. Future work includes refinement of natural language/DHCP connections to enable more sophisticated queries, and optimization of the system to reduce response time to user questions.
Spanish for Business: A Journey into Employability
ERIC Educational Resources Information Center
Lallana, Amparo; Pastor-González, Victoria
2016-01-01
As language lecturers, we believe that we equip our graduates with a range of key skills that give them an edge in the employment market. But, query final year students of a Business and Languages degree on the value of language learning for employability, and they are likely to mention a small number of functional abilities such as CV writing and…
Persistent Identifiers for Improved Accessibility for Linked Data Querying
NASA Astrophysics Data System (ADS)
Shepherd, A.; Chandler, C. L.; Arko, R. A.; Fils, D.; Jones, M. B.; Krisnadhi, A.; Mecum, B.
2016-12-01
The adoption of linked open data principles within the geosciences has increased the amount of accessible information available on the Web. However, this data is difficult to consume for those who are unfamiliar with Semantic Web technologies such as Web Ontology Language (OWL), Resource Description Framework (RDF) and SPARQL - the RDF query language. Consumers would need to understand the structure of the data and how to efficiently query it. Furthermore, understanding how to query doesn't solve problems of poor precision and recall in search results. For consumers unfamiliar with the data, full-text searches are most accessible, but not ideal as they arrest the advantages of data disambiguation and co-reference resolution efforts. Conversely, URI searches across linked data can deliver improved search results, but knowledge of these exact URIs may remain difficult to obtain. The increased adoption of Persistent Identifiers (PIDs) can lead to improved linked data querying by a wide variety of consumers. Because PIDs resolve to a single entity, they are an excellent data point for disambiguating content. At the same time, PIDs are more accessible and prominent than a single data provider's linked data URI. When present in linked open datasets, PIDs provide balance between the technical and social hurdles of linked data querying as evidenced by the NSF EarthCube GeoLink project. The GeoLink project, funded by NSF's EarthCube initiative, have brought together data repositories include content from field expeditions, laboratory analyses, journal publications, conference presentations, theses/reports, and funding awards that span scientific studies from marine geology to marine ecosystems and biogeochemistry to paleoclimatology.
UMass at TREC 2002: Cross Language and Novelty Tracks
2002-01-01
resources – stemmers, dictionaries , machine translation, and an acronym database. We found that proper names were extremely important in this year’s queries...data by manually annotating 48 additional topics. 1. Cross Language Track We submitted one monolingual run and four cross-language runs. For the... monolingual run, the technology was essentially the same as the system we used for TREC 2001. For the cross-language run, we integrated some new
The Effect of Bilingual Term List Size on Dictionary-Based Cross-Language Information Retrieval
2006-01-01
The Effect of Bilingual Term List Size on Dictionary -Based Cross-Language Information Retrieval Dina Demner-Fushman Department of Computer Science... dictionary -based Cross-Language Information Retrieval (CLIR), in which the goal is to find documents written in one natural language based on queries that...in which the documents are written. In dictionary -based CLIR techniques, the princi- pal source of translation knowledge is a translation lexicon
Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance
NASA Astrophysics Data System (ADS)
Wang, Chuan; Hao, Liang; Zhao, Lian-Jie
2011-08-01
We present a modified protocol for the realization of a quantum private query process on a classical database. Using one-qubit query and CNOT operation, the query process can be realized in a two-mode database. In the query process, the data privacy is preserved as the sender would not reveal any information about the database besides her query information, and the database provider cannot retain any information about the query. We implement the quantum private query protocol in a nuclear magnetic resonance system. The density matrix of the memory registers are constructed.
2012-01-01
Background Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Methods Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. Results A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. Conclusions This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research. PMID:22849591
Design of Instant Messaging System of Multi-language E-commerce Platform
NASA Astrophysics Data System (ADS)
Yang, Heng; Chen, Xinyi; Li, Jiajia; Cao, Yaru
2017-09-01
This paper aims at researching the message system in the instant messaging system based on the multi-language e-commerce platform in order to design the instant messaging system in multi-language environment and exhibit the national characteristics based information as well as applying national languages to e-commerce. In order to develop beautiful and friendly system interface for the front end of the message system and reduce the development cost, the mature jQuery framework is adopted in this paper. The high-performance server Tomcat is adopted at the back end to process user requests, and MySQL database is adopted for data storage to persistently store user data, and meanwhile Oracle database is adopted as the message buffer for system optimization. Moreover, AJAX technology is adopted for the client to actively pull the newest data from the server at the specified time. In practical application, the system has strong reliability, good expansibility, short response time, high system throughput capacity and high user concurrency.
NASA Technical Reports Server (NTRS)
Denney, Ewen W.; Naylor, Dwight; Pai, Ganesh
2014-01-01
Querying a safety case to show how the various stakeholders' concerns about system safety are addressed has been put forth as one of the benefits of argument-based assurance (in a recent study by the Health Foundation, UK, which reviewed the use of safety cases in safety-critical industries). However, neither the literature nor current practice offer much guidance on querying mechanisms appropriate for, or available within, a safety case paradigm. This paper presents a preliminary approach that uses a formal basis for querying safety cases, specifically Goal Structuring Notation (GSN) argument structures. Our approach semantically enriches GSN arguments with domain-specific metadata that the query language leverages, along with its inherent structure, to produce views. We have implemented the approach in our toolset AdvoCATE, and illustrate it by application to a fragment of the safety argument for an Unmanned Aircraft System (UAS) being developed at NASA Ames. We also discuss the potential practical utility of our query mechanism within the context of the existing framework for UAS safety assurance.
Prolog as a Teaching Tool for Relational Database Interrogation.
ERIC Educational Resources Information Center
Collier, P. A.; Samson, W. B.
1982-01-01
The use of the Prolog programing language is promoted as the language to use by anyone teaching a course in relational databases. A short introduction to Prolog is followed by a series of examples of queries. Several references are noted for anyone wishing to gain a deeper understanding. (MP)
A Graphical Database Interface for Casual, Naive Users.
ERIC Educational Resources Information Center
Burgess, Clifford; Swigger, Kathleen
1986-01-01
Describes the design of a database interface for infrequent users of computers which consists of a graphical display of a model of a database and a natural language query language. This interface was designed for and tested with physicians at the University of Texas Health Science Center in Dallas. (LRW)
SEMCARE: Multilingual Semantic Search in Semi-Structured Clinical Data.
López-García, Pablo; Kreuzthaler, Markus; Schulz, Stefan; Scherr, Daniel; Daumke, Philipp; Markó, Kornél; Kors, Jan A; van Mulligen, Erik M; Wang, Xinkai; Gonna, Hanney; Behr, Elijah; Honrado, Ángel
2016-01-01
The vast amount of clinical data in electronic health records constitutes a great potential for secondary use. However, most of this content consists of unstructured or semi-structured texts, which is difficult to process. Several challenges are still pending: medical language idiosyncrasies in different natural languages, and the large variety of medical terminology systems. In this paper we present SEMCARE, a European initiative designed to minimize these problems by providing a multi-lingual platform (English, German, and Dutch) that allows users to express complex queries and obtain relevant search results from clinical texts. SEMCARE is based on a selection of adapted biomedical terminologies, together with Apache UIMA and Apache Solr as open source state-of-the-art natural language pipeline and indexing technologies. SEMCARE has been deployed and is currently being tested at three medical institutions in the UK, Austria, and the Netherlands, showing promising results in a cardiology use case.
Content-aware network storage system supporting metadata retrieval
NASA Astrophysics Data System (ADS)
Liu, Ke; Qin, Leihua; Zhou, Jingli; Nie, Xuejun
2008-12-01
Nowadays, content-based network storage has become the hot research spot of academy and corporation[1]. In order to solve the problem of hit rate decline causing by migration and achieve the content-based query, we exploit a new content-aware storage system which supports metadata retrieval to improve the query performance. Firstly, we extend the SCSI command descriptor block to enable system understand those self-defined query requests. Secondly, the extracted metadata is encoded by extensible markup language to improve the universality. Thirdly, according to the demand of information lifecycle management (ILM), we store those data in different storage level and use corresponding query strategy to retrieval them. Fourthly, as the file content identifier plays an important role in locating data and calculating block correlation, we use it to fetch files and sort query results through friendly user interface. Finally, the experiments indicate that the retrieval strategy and sort algorithm have enhanced the retrieval efficiency and precision.
KARL: A Knowledge-Assisted Retrieval Language. M.S. Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Triantafyllopoulos, Spiros
1985-01-01
Data classification and storage are tasks typically performed by application specialists. In contrast, information users are primarily non-computer specialists who use information in their decision-making and other activities. Interaction efficiency between such users and the computer is often reduced by machine requirements and resulting user reluctance to use the system. This thesis examines the problems associated with information retrieval for non-computer specialist users, and proposes a method for communicating in restricted English that uses knowledge of the entities involved, relationships between entities, and basic English language syntax and semantics to translate the user requests into formal queries. The proposed method includes an intelligent dictionary, syntax and semantic verifiers, and a formal query generator. In addition, the proposed system has a learning capability that can improve portability and performance. With the increasing demand for efficient human-machine communication, the significance of this thesis becomes apparent. As human resources become more valuable, software systems that will assist in improving the human-machine interface will be needed and research addressing new solutions will be of utmost importance. This thesis presents an initial design and implementation as a foundation for further research and development into the emerging field of natural language database query systems.
On application of image analysis and natural language processing for music search
NASA Astrophysics Data System (ADS)
Gwardys, Grzegorz
2013-10-01
In this paper, I investigate a problem of finding most similar music tracks using, popular in Natural Language Processing, techniques like: TF-IDF and LDA. I de ned document as music track. Each music track is transformed to spectrogram, thanks that, I can use well known techniques to get words from images. I used SURF operation to detect characteristic points and novel approach for their description. The standard kmeans was used for clusterization. Clusterization is here identical with dictionary making, so after that I can transform spectrograms to text documents and perform TF-IDF and LDA. At the final, I can make a query in an obtained vector space. The research was done on 16 music tracks for training and 336 for testing, that are splitted in four categories: Hiphop, Jazz, Metal and Pop. Although used technique is completely unsupervised, results are satisfactory and encouraging to further research.
Ingredients for an Integrated Dinner: Parsley, Sage, Rosemary and Thyme
NASA Astrophysics Data System (ADS)
Baumann, Peter
2013-04-01
In 1966, Simon and Garfunkel combined the English traditional "Scarborough Fair" with a counter melody. This is one of the manifold techniques of the Kontrapunktik described by Bach around 1745 in "The Art of the Fugue": combining completely different and seemingly independent melodies (or motifs) into a coherent piece of music, pleasant for the audience. This achievement, transposed into Computer Science, could be of great benefit for geo services as we look at the currently disparate situation: On the one hand, we have metadata - traditionally, they are understood as being small in volume, but rich in content and semantics, and flexibly queryable through the rich body of technologies established over several decades of database research, centering around query languages like SQL. On the other hand, we have data themselves, such as remote sensing and other measured and observed data sets - they are considered difficult to interpret, semantic-poor, and only for clumsy download, as they are the main constituent of what we today call Big Data. The traditional advantages of databases, such as information integration, query flexibility, and scalability seem to be unavailable. These are the melodies that require a kontrapunctic harmonization, leading to a Holy Grail where different information categories enjoy individually tailored support, while an overall integrating framework allows seamless and convenient access and processing by the user. Most of the data categories to be integrated are well known in fact: ontologies, geospatial meshes, spatiotemporal arrays, and free text constitute major ingredients in this orchestration. For many of them, isolated solutions have been presented, and for some of them (like ontologies and text) integration has been achieved already; a complete harmonic integration, though, is still lacking as of today. In our talk, we detail our vision on such integration through query models and languages which merge established concepts and novel paradigms in a harmonic way. We present the EarthServer initiative which has set out to demonstrate flexible ad-hoc processing and filtering on massive Earth data sets.
An Information Retrieval and Recommendation System for Astronomical Observatories
NASA Astrophysics Data System (ADS)
Mukund, Nikhil; Thakur, Saurabh; Abraham, Sheelu; Aniyan, A. K.; Mitra, Sanjit; Sajeeth Philip, Ninan; Vaghmare, Kaustubh; Acharjya, D. P.
2018-03-01
We present a machine-learning-based information retrieval system for astronomical observatories that tries to address user-defined queries related to an instrument. In the modern instrumentation scenario where heterogeneous systems and talents are simultaneously at work, the ability to supply people with the right information helps speed up the tasks for detector operation, maintenance, and upgradation. The proposed method analyzes existing documented efforts at the site to intelligently group related information to a query and to present it online to the user. The user in response can probe the suggested content and explore previously developed solutions or probable ways to address the present situation optimally. We demonstrate natural language-processing-backed knowledge rediscovery by making use of the open source logbook data from the Laser Interferometric Gravitational Observatory (LIGO). We implement and test a web application that incorporates the above idea for LIGO Livingston, LIGO Hanford, and Virgo observatories.
Designing integrated computational biology pipelines visually.
Jamil, Hasan M
2013-01-01
The long-term cost of developing and maintaining a computational pipeline that depends upon data integration and sophisticated workflow logic is too high to even contemplate "what if" or ad hoc type queries. In this paper, we introduce a novel application building interface for computational biology research, called VizBuilder, by leveraging a recent query language called BioFlow for life sciences databases. Using VizBuilder, it is now possible to develop ad hoc complex computational biology applications at throw away costs. The underlying query language supports data integration and workflow construction almost transparently and fully automatically, using a best effort approach. Users express their application by drawing it with VizBuilder icons and connecting them in a meaningful way. Completed applications are compiled and translated as BioFlow queries for execution by the data management system LifeDB, for which VizBuilder serves as a front end. We discuss VizBuilder features and functionalities in the context of a real life application after we briefly introduce BioFlow. The architecture and design principles of VizBuilder are also discussed. Finally, we outline future extensions of VizBuilder. To our knowledge, VizBuilder is a unique system that allows visually designing computational biology pipelines involving distributed and heterogeneous resources in an ad hoc manner.
A Framework for WWW Query Processing
NASA Technical Reports Server (NTRS)
Wu, Binghui Helen; Wharton, Stephen (Technical Monitor)
2000-01-01
Query processing is the most common operation in a DBMS. Sophisticated query processing has been mainly targeted at a single enterprise environment providing centralized control over data and metadata. Submitting queries by anonymous users on the web is different in such a way that load balancing or DBMS' accessing control becomes the key issue. This paper provides a solution by introducing a framework for WWW query processing. The success of this framework lies in the utilization of query optimization techniques and the ontological approach. This methodology has proved to be cost effective at the NASA Goddard Space Flight Center Distributed Active Archive Center (GDAAC).
A knowledge base browser using hypermedia
NASA Technical Reports Server (NTRS)
Pocklington, Tony; Wang, Lui
1990-01-01
A hypermedia system is being developed to browse CLIPS (C Language Integrated Production System) knowledge bases. This system will be used to help train flight controllers for the Mission Control Center. Browsing this knowledge base will be accomplished either by having navigating through the various collection nodes that have already been defined, or through the query languages.
A Tutorial in Creating Web-Enabled Databases with Inmagic DB/TextWorks through ODBC.
ERIC Educational Resources Information Center
Breeding, Marshall
2000-01-01
Explains how to create Web-enabled databases. Highlights include Inmagic's DB/Text WebPublisher product called DB/TextWorks; ODBC (Open Database Connectivity) drivers; Perl programming language; HTML coding; Structured Query Language (SQL); Common Gateway Interface (CGI) programming; and examples of HTML pages and Perl scripts. (LRW)
Uptake in Incidental Focus on Form in Meaning-Focused ESL Lessons
ERIC Educational Resources Information Center
Loewen, Shawn
2004-01-01
Uptake is a term used to describe learners' responses to the provision of feedback after either an erroneous utterance or a query about a linguistic item within the context of meaning-focused language activities. Some researchers argue that uptake may contribute to second language acquisition by facilitating noticing and pushing learners to…
Sense & Meaning: A Second Order Analysis of Language
ERIC Educational Resources Information Center
Singh, Amrendra Kumar; Mishra, Nirbhay
2012-01-01
What we know through language is whether the way things are or the ways the things are constructed through anthropological tradition and socio cultural shaping. Actually at the very outset, it is not very clear the settling point of this query. However, we can very well understand the point why a critical understanding of…
Student Query Trend Assessment with Semantical Annotation and Artificial Intelligent Multi-Agents
ERIC Educational Resources Information Center
Malik, Kaleem Razzaq; Mir, Rizwan Riaz; Farhan, Muhammad; Rafiq, Tariq; Aslam, Muhammad
2017-01-01
Research in era of data representation to contribute and improve key data policy involving the assessment of learning, training and English language competency. Students are required to communicate in English with high level impact using language and influence. The electronic technology works to assess students' questions positively enabling…
BioSWR – Semantic Web Services Registry for Bioinformatics
Repchevsky, Dmitry; Gelpi, Josep Ll.
2014-01-01
Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license. PMID:25233118
BioSWR--semantic web services registry for bioinformatics.
Repchevsky, Dmitry; Gelpi, Josep Ll
2014-01-01
Despite of the variety of available Web services registries specially aimed at Life Sciences, their scope is usually restricted to a limited set of well-defined types of services. While dedicated registries are generally tied to a particular format, general-purpose ones are more adherent to standards and usually rely on Web Service Definition Language (WSDL). Although WSDL is quite flexible to support common Web services types, its lack of semantic expressiveness led to various initiatives to describe Web services via ontology languages. Nevertheless, WSDL 2.0 descriptions gained a standard representation based on Web Ontology Language (OWL). BioSWR is a novel Web services registry that provides standard Resource Description Framework (RDF) based Web services descriptions along with the traditional WSDL based ones. The registry provides Web-based interface for Web services registration, querying and annotation, and is also accessible programmatically via Representational State Transfer (REST) API or using a SPARQL Protocol and RDF Query Language. BioSWR server is located at http://inb.bsc.es/BioSWR/and its code is available at https://sourceforge.net/projects/bioswr/under the LGPL license.
Epstein, Richard H; Dexter, Franklin
2017-07-01
Comorbidity adjustment is often performed during outcomes and health care resource utilization research. Our goal was to develop an efficient algorithm in structured query language (SQL) to determine the Elixhauser comorbidity index. We wrote an SQL algorithm to calculate the Elixhauser comorbidities from Diagnosis Related Group and International Classification of Diseases (ICD) codes. Validation was by comparison to expected comorbidities from combinations of these codes and to the 2013 Nationwide Readmissions Database (NRD). The SQL algorithm matched perfectly with expected comorbidities for all combinations of ICD-9 or ICD-10, and Diagnosis Related Groups. Of 13 585 859 evaluable NRD records, the algorithm matched 100% of the listed comorbidities. Processing time was ∼0.05 ms/record. The SQL Elixhauser code was efficient and computationally identical to the SAS algorithm used for the NRD. This algorithm may be useful where preprocessing of large datasets in a relational database environment and comorbidity determination is desired before statistical analysis. A validated SQL procedure to calculate Elixhauser comorbidities and the van Walraven index from ICD-9 or ICD-10 discharge diagnosis codes has been published. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Using background knowledge for picture organization and retrieval
NASA Astrophysics Data System (ADS)
Quintana, Yuri
1997-01-01
A picture knowledge base management system is described that is used to represent, organize and retrieve pictures from a frame knowledge base. Experiments with human test subjects were conducted to obtain further descriptions of pictures from news magazines. These descriptions were used to represent the semantic content of pictures in frame representations. A conceptual clustering algorithm is described which organizes pictures not only on the observable features, but also on implicit properties derived from the frame representations. The algorithm uses inheritance reasoning to take into account background knowledge in the clustering. The algorithm creates clusters of pictures using a group similarity function that is based on the gestalt theory of picture perception. For each cluster created, a frame is generated which describes the semantic content of pictures in the cluster. Clustering and retrieval experiments were conducted with and without background knowledge. The paper shows how the use of background knowledge and semantic similarity heuristics improves the speed, precision, and recall of queries processed. The paper concludes with a discussion of how natural language processing of can be used to assist in the development of knowledge bases and the processing of user queries.
Kreimeyer, Kory; Foster, Matthew; Pandey, Abhishek; Arya, Nina; Halford, Gwendolyn; Jones, Sandra F; Forshee, Richard; Walderhaug, Mark; Botsis, Taxiarchis
2017-09-01
We followed a systematic approach based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify existing clinical natural language processing (NLP) systems that generate structured information from unstructured free text. Seven literature databases were searched with a query combining the concepts of natural language processing and structured data capture. Two reviewers screened all records for relevance during two screening phases, and information about clinical NLP systems was collected from the final set of papers. A total of 7149 records (after removing duplicates) were retrieved and screened, and 86 were determined to fit the review criteria. These papers contained information about 71 different clinical NLP systems, which were then analyzed. The NLP systems address a wide variety of important clinical and research tasks. Certain tasks are well addressed by the existing systems, while others remain as open challenges that only a small number of systems attempt, such as extraction of temporal information or normalization of concepts to standard terminologies. This review has identified many NLP systems capable of processing clinical free text and generating structured output, and the information collected and evaluated here will be important for prioritizing development of new approaches for clinical NLP. Copyright © 2017 Elsevier Inc. All rights reserved.
Distributed query plan generation using multiobjective genetic algorithm.
Panicker, Shina; Kumar, T V Vijay
2014-01-01
A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability.
Distributed Query Plan Generation Using Multiobjective Genetic Algorithm
Panicker, Shina; Vijay Kumar, T. V.
2014-01-01
A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madduri, Kamesh; Wu, Kesheng
The Resource Description Framework (RDF) is a popular data model for representing linked data sets arising from the web, as well as large scienti c data repositories such as UniProt. RDF data intrinsically represents a labeled and directed multi-graph. SPARQL is a query language for RDF that expresses subgraph pattern- nding queries on this implicit multigraph in a SQL- like syntax. SPARQL queries generate complex intermediate join queries; to compute these joins e ciently, we propose a new strategy based on bitmap indexes. We store the RDF data in column-oriented structures as compressed bitmaps along with two dictionaries. This papermore » makes three new contributions. (i) We present an e cient parallel strategy for parsing the raw RDF data, building dictionaries of unique entities, and creating compressed bitmap indexes of the data. (ii) We utilize the constructed bitmap indexes to e ciently answer SPARQL queries, simplifying the join evaluations. (iii) To quantify the performance impact of using bitmap indexes, we compare our approach to the state-of-the-art triple-store RDF-3X. We nd that our bitmap index-based approach to answering queries is up to an order of magnitude faster for a variety of SPARQL queries, on gigascale RDF data sets.« less
HodDB: Design and Analysis of a Query Processor for Brick.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fierro, Gabriel; Culler, David
Brick is a recently proposed metadata schema and ontology for describing building components and the relationships between them. It represents buildings as directed labeled graphs using the RDF data model. Using the SPARQL query language, building-agnostic applications query a Brick graph to discover the set of resources and relationships they require to operate. Latency-sensitive applications, such as user interfaces, demand response and modelpredictive control, require fast queries — conventionally less than 100ms. We benchmark a set of popular open-source and commercial SPARQL databases against three real Brick models using seven application queries and find that none of them meet thismore » performance target. This lack of performance can be attributed to design decisions that optimize for queries over large graphs consisting of billions of triples, but give poor spatial locality and join performance on the small dense graphs typical of Brick. We present the design and evaluation of HodDB, a RDF/SPARQL database for Brick built over a node-based index structure. HodDB performs Brick queries 3-700x faster than leading SPARQL databases and consistently meets the 100ms threshold, enabling the portability of important latency-sensitive building applications.« less
NASA Astrophysics Data System (ADS)
Kase, Sue E.; Vanni, Michelle; Knight, Joanne A.; Su, Yu; Yan, Xifeng
2016-05-01
Within operational environments decisions must be made quickly based on the information available. Identifying an appropriate knowledge base and accurately formulating a search query are critical tasks for decision-making effectiveness in dynamic situations. The spreading of graph data management tools to access large graph databases is a rapidly emerging research area of potential benefit to the intelligence community. A graph representation provides a natural way of modeling data in a wide variety of domains. Graph structures use nodes, edges, and properties to represent and store data. This research investigates the advantages of information search by graph query initiated by the analyst and interactively refined within the contextual dimensions of the answer space toward a solution. The paper introduces SLQ, a user-friendly graph querying system enabling the visual formulation of schemaless and structureless graph queries. SLQ is demonstrated with an intelligence analyst information search scenario focused on identifying individuals responsible for manufacturing a mosquito-hosted deadly virus. The scenario highlights the interactive construction of graph queries without prior training in complex query languages or graph databases, intuitive navigation through the problem space, and visualization of results in graphical format.
Comparative study on the customization of natural language interfaces to databases.
Pazos R, Rodolfo A; Aguirre L, Marco A; González B, Juan J; Martínez F, José A; Pérez O, Joaquín; Verástegui O, Andrés A
2016-01-01
In the last decades the popularity of natural language interfaces to databases (NLIDBs) has increased, because in many cases information obtained from them is used for making important business decisions. Unfortunately, the complexity of their customization by database administrators make them difficult to use. In order for a NLIDB to obtain a high percentage of correctly translated queries, it is necessary that it is correctly customized for the database to be queried. In most cases the performance reported in NLIDB literature is the highest possible; i.e., the performance obtained when the interfaces were customized by the implementers. However, for end users it is more important the performance that the interface can yield when the NLIDB is customized by someone different from the implementers. Unfortunately, there exist very few articles that report NLIDB performance when the NLIDBs are not customized by the implementers. This article presents a semantically-enriched data dictionary (which permits solving many of the problems that occur when translating from natural language to SQL) and an experiment in which two groups of undergraduate students customized our NLIDB and English language frontend (ELF), considered one of the best available commercial NLIDBs. The experimental results show that, when customized by the first group, our NLIDB obtained a 44.69 % of correctly answered queries and ELF 11.83 % for the ATIS database, and when customized by the second group, our NLIDB attained 77.05 % and ELF 13.48 %. The performance attained by our NLIDB, when customized by ourselves was 90 %.
Evaluation methodology for query-based scene understanding systems
NASA Astrophysics Data System (ADS)
Huster, Todd P.; Ross, Timothy D.; Culbertson, Jared L.
2015-05-01
In this paper, we are proposing a method for the principled evaluation of scene understanding systems in a query-based framework. We can think of a query-based scene understanding system as a generalization of typical sensor exploitation systems where instead of performing a narrowly defined task (e.g., detect, track, classify, etc.), the system can perform general user-defined tasks specified in a query language. Examples of this type of system have been developed as part of DARPA's Mathematics of Sensing, Exploitation, and Execution (MSEE) program. There is a body of literature on the evaluation of typical sensor exploitation systems, but the open-ended nature of the query interface introduces new aspects to the evaluation problem that have not been widely considered before. In this paper, we state the evaluation problem and propose an approach to efficiently learn about the quality of the system under test. We consider the objective of the evaluation to be to build a performance model of the system under test, and we rely on the principles of Bayesian experiment design to help construct and select optimal queries for learning about the parameters of that model.
SPANG: a SPARQL client supporting generation and reuse of queries for distributed RDF databases.
Chiba, Hirokazu; Uchiyama, Ikuo
2017-02-08
Toward improved interoperability of distributed biological databases, an increasing number of datasets have been published in the standardized Resource Description Framework (RDF). Although the powerful SPARQL Protocol and RDF Query Language (SPARQL) provides a basis for exploiting RDF databases, writing SPARQL code is burdensome for users including bioinformaticians. Thus, an easy-to-use interface is necessary. We developed SPANG, a SPARQL client that has unique features for querying RDF datasets. SPANG dynamically generates typical SPARQL queries according to specified arguments. It can also call SPARQL template libraries constructed in a local system or published on the Web. Further, it enables combinatorial execution of multiple queries, each with a distinct target database. These features facilitate easy and effective access to RDF datasets and integrative analysis of distributed data. SPANG helps users to exploit RDF datasets by generation and reuse of SPARQL queries through a simple interface. This client will enhance integrative exploitation of biological RDF datasets distributed across the Web. This software package is freely available at http://purl.org/net/spang .
A new relational database structure and online interface for the HITRAN database
NASA Astrophysics Data System (ADS)
Hill, Christian; Gordon, Iouli E.; Rothman, Laurence S.; Tennyson, Jonathan
2013-11-01
A new format for the HITRAN database is proposed. By storing the line-transition data in a number of linked tables described by a relational database schema, it is possible to overcome the limitations of the existing format, which have become increasingly apparent over the last few years as new and more varied data are being used by radiative-transfer models. Although the database in the new format can be searched using the well-established Structured Query Language (SQL), a web service, HITRANonline, has been deployed to allow users to make most common queries of the database using a graphical user interface in a web page. The advantages of the relational form of the database to ensuring data integrity and consistency are explored, and the compatibility of the online interface with the emerging standards of the Virtual Atomic and Molecular Data Centre (VAMDC) project is discussed. In particular, the ability to access HITRAN data using a standard query language from other websites, command line tools and from within computer programs is described.
Astronomical Data Integration Beyond the Virtual Observatory
NASA Astrophysics Data System (ADS)
Lemson, G.; Laurino, O.
2015-09-01
"Data integration" generally refers to the process of combining data from different source data bases into a unified view. Much work has been devoted in this area by the International Virtual Observatory Alliance (IVOA), allowing users to discover and access databases through standard protocols. However, different archives present their data through their own schemas and users must still select, filter, and combine data for each archive individually. An important reason for this is that the creation of common data models that satisfy all sub-disciplines is fraught with difficulties. Furthermore it requires a substantial amount of work for data providers to present their data according to some standard representation. We will argue that existing standards allow us to build a data integration framework that works around these problems. The particular framework requires the implementation of the IVOA Table Access Protocol (TAP) only. It uses the newly developed VO data modelling language (VO-DML) specification, which allows one to define extensible object-oriented data models using a subset of UML concepts through a simple XML serialization language. A rich mapping language allows one to describe how instances of VO-DML data models are represented by the TAP service, bridging the possible mismatch between a local archive's schema and some agreed-upon representation of the astronomical domain. In this so called local-as-view approach to data integration, “mediators" use the mapping prescriptions to translate queries phrased in terms of the common schema to the underlying TAP service. This mapping language has a graphical representation, which we expose through a web based graphical “drag-and-drop-and-connect" interface. This service allows any user to map the holdings of any TAP service to the data model(s) of choice. The mappings are defined and stored outside of the data sources themselves, which allows the interface to be used in a kind of crowd-sourcing effort to annotate any remote database of interest. This reduces the burden of publishing one's data and allows a great flexibility in the definition of the views through which particular communities might wish to access remote archives. At the same time, the framework easies the user's effort to select, filter, and combine data from many different archives, so as to build knowledge bases for their analysis. We will present the framework and demonstrate a prototype implementation. We will discuss ideas for producing the missing elements, in particular the query language and the implementation of mediator tools to translate object queries to ADQL
ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining.
Huan, Tianxiao; Sivachenko, Andrey Y; Harrison, Scott H; Chen, Jake Y
2008-08-12
New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies.
The white matter query language: a novel approach for describing human white matter anatomy
Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik
2016-01-01
We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI volumes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroanatomist’s expert knowledge. The framework is based on a novel query language with a near-to-English textual syntax. This query language makes it possible to construct a dictionary of anatomical definitions that describe white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This novel method makes it possible to automatically label white matter anatomy across subjects. After describing this method, we provide an example of its implementation where we encode anatomical knowledge in human white matter for ten association and 15 projection tracts per hemisphere, along with seven commissural tracts. Importantly, this novel method is comparable in accuracy to manual labeling. Finally, we present results applying this method to create a white matter atlas from 77 healthy subjects, and we use this atlas in a small proof-of-concept study to detect changes in association tracts that characterize schizophrenia. PMID:26754839
The white matter query language: a novel approach for describing human white matter anatomy.
Wassermann, Demian; Makris, Nikos; Rathi, Yogesh; Shenton, Martha; Kikinis, Ron; Kubicki, Marek; Westin, Carl-Fredrik
2016-12-01
We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI volumes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroanatomist's expert knowledge. The framework is based on a novel query language with a near-to-English textual syntax. This query language makes it possible to construct a dictionary of anatomical definitions that describe white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This novel method makes it possible to automatically label white matter anatomy across subjects. After describing this method, we provide an example of its implementation where we encode anatomical knowledge in human white matter for ten association and 15 projection tracts per hemisphere, along with seven commissural tracts. Importantly, this novel method is comparable in accuracy to manual labeling. Finally, we present results applying this method to create a white matter atlas from 77 healthy subjects, and we use this atlas in a small proof-of-concept study to detect changes in association tracts that characterize schizophrenia.
Conflict and Accommodation in Classroom Codeswitching in Taiwan
ERIC Educational Resources Information Center
Tien, Ching-yi
2009-01-01
The concept of "English only" as the best teaching-learning method in English as a foreign language classrooms has been promoted in Taiwan over the last decade. During that time, the concept has been queried and debated. Teachers and learners have come to realise that for beginners and slow language learners, the use of codeswitching in…
SGML and Related Standards: New Directions as the Second Decade Begins.
ERIC Educational Resources Information Center
Mason, James David
1997-01-01
ISO--International Organization for Standards highlights the activities of WG8 (Working Group 8 of ISO) in the alignment of standards for a common tree model and common query languages. Examines the how Document Style Semantics and Specification Language (DSSSL) and HyTime make documents easier to work with and more powerful in their ability to…
BROWSER: An Automatic Indexing On-Line Text Retrieval System. Annual Progress Report.
ERIC Educational Resources Information Center
Williams, J. H., Jr.
The development and testing of the Browsing On-line With Selective Retrieval (BROWSER) text retrieval system allowing a natural language query statement and providing on-line browsing capabilities through an IBM 2260 display terminal is described. The prototype system contains data bases of 25,000 German language patent abstracts, 9,000 English…
Designing a Syntax-Based Retrieval System for Supporting Language Learning
ERIC Educational Resources Information Center
Tsao, Nai-Lung; Kuo, Chin-Hwa; Wible, David; Hung, Tsung-Fu
2009-01-01
In this paper, we propose a syntax-based text retrieval system for on-line language learning and use a fast regular expression search engine as its main component. Regular expression searches provide more scalable querying and search results than keyword-based searches. However, without a well-designed index scheme, the execution time of regular…
Graph Mining Meets the Semantic Web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkeun; Sukumar, Sreenivas R; Lim, Seung-Hwan
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluatemore » the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.« less
Interaction and Communication of Agents in Networks and Language Complexity Estimates
NASA Technical Reports Server (NTRS)
Smid, Jan; Obitko, Marek; Fisher, David; Truszkowski, Walt
2004-01-01
Knowledge acquisition and sharing are arguably the most critical activities of communicating agents. We report about our on-going project featuring knowledge acquisition and sharing among communicating agents embedded in a network. The applications we target range from hardware robots to virtual entities such as internet agents. Agent experiments can be simulated using a convenient simulation language. We analyzed the complexity of communicating agent simulations using Java and Easel. Scenarios we have studied are listed below. The communication among agents can range from declarative queries to sub-natural language queries. 1) A set of agents monitoring an object are asked to build activity profiles based on exchanging elementary observations; 2) A set of car drivers form a line, where every car is following its predecessor. An unsafe distance cm create a strong wave in the line. Individual agents are asked to incorporate and apply directions how to avoid the wave. 3) A set of micro-vehicles form a grid and are asked to propagate information and concepts to a central server.
Selected Topics from LVCSR Research for Asian Languages at Tokyo Tech
NASA Astrophysics Data System (ADS)
Furui, Sadaoki
This paper presents our recent work in regard to building Large Vocabulary Continuous Speech Recognition (LVCSR) systems for the Thai, Indonesian, and Chinese languages. For Thai, since there is no word boundary in the written form, we have proposed a new method for automatically creating word-like units from a text corpus, and applied topic and speaking style adaptation to the language model to recognize spoken-style utterances. For Indonesian, we have applied proper noun-specific adaptation to acoustic modeling, and rule-based English-to-Indonesian phoneme mapping to solve the problem of large variation in proper noun and English word pronunciation in a spoken-query information retrieval system. In spoken Chinese, long organization names are frequently abbreviated, and abbreviated utterances cannot be recognized if the abbreviations are not included in the dictionary. We have proposed a new method for automatically generating Chinese abbreviations, and by expanding the vocabulary using the generated abbreviations, we have significantly improved the performance of spoken query-based search.
Connecting Provenance with Semantic Descriptions in the NASA Earth Exchange (NEX)
NASA Astrophysics Data System (ADS)
Votava, P.; Michaelis, A.; Nemani, R. R.
2012-12-01
NASA Earth Exchange (NEX) is a data, modeling and knowledge collaboratory that houses NASA satellite data, climate data and ancillary data where a focused community may come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform. Some of the main goals of NEX are transparency and repeatability and to that extent we have been adding components that enable tracking of provenance of both scientific processes and datasets produced by these processes. As scientific processes become more complex, they are often developed collaboratively and it becomes increasingly important for the research team to be able to track the development of the process and the datasets that are produced along the way. Additionally, we want to be able to link the processes and the datasets developed on NEX to an existing information and knowledge, so that the users can query and compare the provenance of any dataset or process with regard to the component-specific attributes such as data quality, geographic location, related publications, user comments and annotations etc. We have developed several ontologies that describe datasets and workflow components available on NEX using the OWL ontology language as well as a simple ontology that provides linking mechanism to the collected provenance information. The provenance is captured in two ways - we utilize existing provenance infrastructure of VisTrails, which is used as a workflow engine on NEX, and we extend the captured provenance using the PROV data model expressed through the PROV-O ontology. We do this in order to link and query the provenance easier in the context of the existing NEX information and knowledge. The captured provenance graph is processed and stored using RDFlib with MySQL backend that can be queried using either RDFLib or SPARQL. As a concrete example, we show how this information is captured during anomaly detection process in large satellite datasets.
A Query Language for Handling Big Observation Data Sets in the Sensor Web
NASA Astrophysics Data System (ADS)
Autermann, Christian; Stasch, Christoph; Jirka, Simon; Koppe, Roland
2017-04-01
The Sensor Web provides a framework for the standardized Web-based sharing of environmental observations and sensor metadata. While the issue of varying data formats and protocols is addressed by these standards, the fast growing size of observational data is imposing new challenges for the application of these standards. Most solutions for handling big observational datasets currently focus on remote sensing applications, while big in-situ datasets relying on vector features still lack a solid approach. Conventional Sensor Web technologies may not be adequate, as the sheer size of the data transmitted and the amount of metadata accumulated may render traditional OGC Sensor Observation Services (SOS) unusable. Besides novel approaches to store and process observation data in place, e.g. by harnessing big data technologies from mainstream IT, the access layer has to be amended to utilize and integrate these large observational data archives into applications and to enable analysis. For this, an extension to the SOS will be discussed that establishes a query language to dynamically process and filter observations at storage level, similar to the OGC Web Coverage Service (WCS) and it's Web Coverage Processing Service (WCPS) extension. This will enable applications to request e.g. spatial or temporal aggregated data sets in a resolution it is able to display or it requires. The approach will be developed and implemented in cooperation with the The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research whose catalogue of data compromises marine observations of physical, chemical and biological phenomena from a wide variety of sensors, including mobile (like research vessels, aircrafts or underwater vehicles) and stationary (like buoys or research stations). Observations are made with a high temporal resolution and the resulting time series may span multiple decades.
Acquaintance: Language-Independent Document Categorization by N-Grams
1995-11-01
the topics. A typical topic (number 32) read “Cual es la importancia de las Naciones Unidas (NU) para Mexico?” To overcome this, the topic...from the query rather than adding anything substantive to it. The rendering of the above query became “ importancia de las Naciones Unidas (NU) para...individual tracks will be discussed below, the same software and basic procedure were used in each track. For the work in TREC-4, a generic, unoptimized
Group Centric Information Sharing Using Hierarchical Models
2011-01-01
enable people to create data using RDF, build vocabularies using web ontology language (OWL), write rules and query data stores using SPARQL [8...a strict joined and the document was added with a strict add. In order to represent the fact that an action is allowed (or not), we have created a...greatly improve the system’s readiness to handle any number of access decision queries . a. The pair is tested against the gSIS Join and Add semantics
Declarative Programming with Temporal Constraints, in the Language CG.
Negreanu, Lorina
2015-01-01
Specifying and interpreting temporal constraints are key elements of knowledge representation and reasoning, with applications in temporal databases, agent programming, and ambient intelligence. We present and formally characterize the language CG, which tackles this issue. In CG, users are able to develop time-dependent programs, in a flexible and straightforward manner. Such programs can, in turn, be coupled with evolving environments, thus empowering users to control the environment's evolution. CG relies on a structure for storing temporal information, together with a dedicated query mechanism. Hence, we explore the computational complexity of our query satisfaction problem. We discuss previous implementation attempts of CG and introduce a novel prototype which relies on logic programming. Finally, we address the issue of consistency and correctness of CG program execution, using the Event-B modeling approach.
p3d--Python module for structural bioinformatics.
Fufezan, Christian; Specht, Michael
2009-08-21
High-throughput bioinformatic analysis tools are needed to mine the large amount of structural data via knowledge based approaches. The development of such tools requires a robust interface to access the structural data in an easy way. For this the Python scripting language is the optimal choice since its philosophy is to write an understandable source code. p3d is an object oriented Python module that adds a simple yet powerful interface to the Python interpreter to process and analyse three dimensional protein structure files (PDB files). p3d's strength arises from the combination of a) very fast spatial access to the structural data due to the implementation of a binary space partitioning (BSP) tree, b) set theory and c) functions that allow to combine a and b and that use human readable language in the search queries rather than complex computer language. All these factors combined facilitate the rapid development of bioinformatic tools that can perform quick and complex analyses of protein structures. p3d is the perfect tool to quickly develop tools for structural bioinformatics using the Python scripting language.
Towards Hybrid Online On-Demand Querying of Realtime Data with Stateful Complex Event Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor K.
Emerging Big Data applications in areas like e-commerce and energy industry require both online and on-demand queries to be performed over vast and fast data arriving as streams. These present novel challenges to Big Data management systems. Complex Event Processing (CEP) is recognized as a high performance online query scheme which in particular deals with the velocity aspect of the 3-V’s of Big Data. However, traditional CEP systems do not consider data variety and lack the capability to embed ad hoc queries over the volume of data streams. In this paper, we propose H2O, a stateful complex event processing framework,more » to support hybrid online and on-demand queries over realtime data. We propose a semantically enriched event and query model to address data variety. A formal query algebra is developed to precisely capture the stateful and containment semantics of online and on-demand queries. We describe techniques to achieve the interactive query processing over realtime data featured by efficient online querying, dynamic stream data persistence and on-demand access. The system architecture is presented and the current implementation status reported.« less
Managing and Querying Image Annotation and Markup in XML.
Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel
2010-01-01
Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid.
Managing and Querying Image Annotation and Markup in XML
Wang, Fusheng; Pan, Tony; Sharma, Ashish; Saltz, Joel
2010-01-01
Proprietary approaches for representing annotations and image markup are serious barriers for researchers to share image data and knowledge. The Annotation and Image Markup (AIM) project is developing a standard based information model for image annotation and markup in health care and clinical trial environments. The complex hierarchical structures of AIM data model pose new challenges for managing such data in terms of performance and support of complex queries. In this paper, we present our work on managing AIM data through a native XML approach, and supporting complex image and annotation queries through native extension of XQuery language. Through integration with xService, AIM databases can now be conveniently shared through caGrid. PMID:21218167
A Modular Framework for Transforming Structured Data into HTML with Machine-Readable Annotations
NASA Astrophysics Data System (ADS)
Patton, E. W.; West, P.; Rozell, E.; Zheng, J.
2010-12-01
There is a plethora of web-based Content Management Systems (CMS) available for maintaining projects and data, i.a. However, each system varies in its capabilities and often content is stored separately and accessed via non-uniform web interfaces. Moving from one CMS to another (e.g., MediaWiki to Drupal) can be cumbersome, especially if a large quantity of data must be adapted to the new system. To standardize the creation, display, management, and sharing of project information, we have assembled a framework that uses existing web technologies to transform data provided by any service that supports the SPARQL Protocol and RDF Query Language (SPARQL) queries into HTML fragments, allowing it to be embedded in any existing website. The framework utilizes a two-tier XML Stylesheet Transformation (XSLT) that uses existing ontologies (e.g., Friend-of-a-Friend, Dublin Core) to interpret query results and render them as HTML documents. These ontologies can be used in conjunction with custom ontologies suited to individual needs (e.g., domain-specific ontologies for describing data records). Furthermore, this transformation process encodes machine-readable annotations, namely, the Resource Description Framework in attributes (RDFa), into the resulting HTML, so that capable parsers and search engines can extract the relationships between entities (e.g, people, organizations, datasets). To facilitate editing of content, the framework provides a web-based form system, mapping each query to a dynamically generated form that can be used to modify and create entities, while keeping the native data store up-to-date. This open framework makes it easy to duplicate data across many different sites, allowing researchers to distribute their data in many different online forums. In this presentation we will outline the structure of queries and the stylesheets used to transform them, followed by a brief walkthrough that follows the data from storage to human- and machine-accessible web page. We conclude with a discussion on content caching and steps toward performing queries across multiple domains.
A Response to Jordan's (2004) "Explanatory Adequacy and Theories of Second Language Acquisition"
ERIC Educational Resources Information Center
Gregg, Kevin R.
2005-01-01
In a recent paper (Jordan, Geoff Jordan takes issue with some of my claims about second language acquisition (SLA) theory. Specifically, he queries the necessity of a property theory, and he finds my discussion of explanation unsatisfactory. In this brief reply, I try to answer his criticisms. In a brief but interesting paper, Geoff Jordan (2004:…
ERIC Educational Resources Information Center
St. James-Roberts, Ian; Alston, Enid
2006-01-01
Background: WILSTAAR comprises a programme for identifying and treating 8-10-month-old infants who are at risk of language and cognitive difficulties. It has been adopted by health trusts, and included in Sure Start intervention schemes, throughout the UK. This study addresses one of the main queries raised by critics of the programme, by…
English-Chinese Cross-Language IR Using Bilingual Dictionaries
2006-01-01
specialized dictionaries together contain about two million entries [6]. 4 Monolingual Experiment The Chinese documents and the Chinese translations of... monolingual performance. The main performance-limiting factor is the limited coverage of the dictionary used in query translation. Some of the key con...English-Chinese Cross-Language IR using Bilingual Dictionaries Aitao Chen , Hailing Jiang , and Fredric Gey School of Information Management
The EuroGEOSS Advanced Operating Capacity
NASA Astrophysics Data System (ADS)
Nativi, S.; Vaccari, L.; Stock, K.; Diaz, L.; Santoro, M.
2012-04-01
The concept of multidisciplinary interoperability for managing societal issues is a major challenge presently faced by the Earth and Space Science Informatics community. With this in mind, EuroGEOSS project was launched on May 1st 2009 for a three year period aiming to demonstrate the added value to the scientific community and society of providing existing earth observing systems and applications in an interoperable manner and used within the GEOSS and INSPIRE frameworks. In the first period, the project built an Initial Operating Capability (IOC) in the three strategic areas of Drought, Forestry and Biodiversity; this was then enhanced into an Advanced Operating Capacity (AOC) for multidisciplinary interoperability. Finally, the project extended the infrastructure to other scientific domains (geology, hydrology, etc.). The EuroGEOSS multidisciplinary AOC is based on the Brokering Approach. This approach aims to achieve multidisciplinary interoperability by developing an extended SOA (Service Oriented Architecture) where a new type of "expert" components is introduced: the Broker. These implement all mediation and distribution functionalities needed to interconnect the distributed and heterogeneous resources characterizing a System of Systems (SoS) environment. The EuroGEOSS AOC is comprised of the following components: • EuroGEOSS Discovery Broker: providing harmonized discovery functionalities by mediating and distributing user queries against tens of heterogeneous services; • EuroGEOSS Access Broker: enabling users to seamlessly access and use heterogeneous remote resources via a unique and standard service; • EuroGEOSS Web 2.0 Broker: enhancing the capabilities of the Discovery Broker with queries towards the new Web 2.0 services; • EuroGEOSS Semantic Discovery Broker: enhancing the capabilities of the Discovery Broker with semantic query-expansion; • EuroGEOSS Natural Language Search Component: providing users with the possibilities to search for resources using natural language queries; • Service Composition Broker: allowing users to compose and execute complex Business Processes, based on the technology developed by the FP7 UncertWeb project. Recently, the EuroGEOSS Brokering framework was presented at the GEO-VIII Plenary and Exhibition in Istanbul and introduced into the GEOSS Common Infrastructure.
Bengali-English Relevant Cross Lingual Information Access Using Finite Automata
NASA Astrophysics Data System (ADS)
Banerjee, Avishek; Bhattacharyya, Swapan; Hazra, Simanta; Mondal, Shatabdi
2010-10-01
CLIR techniques searches unrestricted texts and typically extract term and relationships from bilingual electronic dictionaries or bilingual text collections and use them to translate query and/or document representations into a compatible set of representations with a common feature set. In this paper, we focus on dictionary-based approach by using a bilingual data dictionary with a combination to statistics-based methods to avoid the problem of ambiguity also the development of human computer interface aspects of NLP (Natural Language processing) is the approach of this paper. The intelligent web search with regional language like Bengali is depending upon two major aspect that is CLIA (Cross language information access) and NLP. In our previous work with IIT, KGP we already developed content based CLIA where content based searching in trained on Bengali Corpora with the help of Bengali data dictionary. Here we want to introduce intelligent search because to recognize the sense of meaning of a sentence and it has a better real life approach towards human computer interactions.
Reactome graph database: Efficient access to complex pathway data
Korninger, Florian; Viteri, Guilherme; Marin-Garcia, Pablo; Ping, Peipei; Wu, Guanming; Stein, Lincoln; D’Eustachio, Peter
2018-01-01
Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. One of its main priorities is to provide easy and efficient access to its high quality curated data. At present, biological pathway databases typically store their contents in relational databases. This limits access efficiency because there are performance issues associated with queries traversing highly interconnected data. The same data in a graph database can be queried more efficiently. Here we present the rationale behind the adoption of a graph database (Neo4j) as well as the new ContentService (REST API) that provides access to these data. The Neo4j graph database and its query language, Cypher, provide efficient access to the complex Reactome data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%. The web service built on top of the graph database provides programmatic access to Reactome data by object oriented queries, but also supports more complex queries that take advantage of the new underlying graph-based data storage. By adopting graph database technology we are providing a high performance pathway data resource to the community. The Reactome graph database use case shows the power of NoSQL database engines for complex biological data types. PMID:29377902
Reactome graph database: Efficient access to complex pathway data.
Fabregat, Antonio; Korninger, Florian; Viteri, Guilherme; Sidiropoulos, Konstantinos; Marin-Garcia, Pablo; Ping, Peipei; Wu, Guanming; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning
2018-01-01
Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. One of its main priorities is to provide easy and efficient access to its high quality curated data. At present, biological pathway databases typically store their contents in relational databases. This limits access efficiency because there are performance issues associated with queries traversing highly interconnected data. The same data in a graph database can be queried more efficiently. Here we present the rationale behind the adoption of a graph database (Neo4j) as well as the new ContentService (REST API) that provides access to these data. The Neo4j graph database and its query language, Cypher, provide efficient access to the complex Reactome data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%. The web service built on top of the graph database provides programmatic access to Reactome data by object oriented queries, but also supports more complex queries that take advantage of the new underlying graph-based data storage. By adopting graph database technology we are providing a high performance pathway data resource to the community. The Reactome graph database use case shows the power of NoSQL database engines for complex biological data types.
NASA Astrophysics Data System (ADS)
Vaucouleur, Sebastien
2011-02-01
We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.
1989-09-30
parses, in a second experiment. This procedure used PUNDIT’s Selection Pattern Query and Response ( SPQR ) component JLang19881. We first used SPQR in...messages pattern. SPQR continues the analysis of the ISR. from each domain, and the resulting output is and the parsing of the sentence is allowed to...UNISYS P. 0. Box 517, Paoli, PA 19301 ABSTRACT knowledge. This paper presents SPQR (Selectional Pat- One obvious benefit of acquiring domain- tern Queries
The Design and Implementation of the Ariel Active Database Rule System
1991-10-01
but only as a main-memory prototype. The POSTGRES rule system (PRS) [SHP88, SRH90] and the Starburst rule system (SRS) [WCL91, HCL+90] have been...query language of POSTGRES for specifying data definition commands, queries and updates [SRH90]. POSTQUEL commands retrieve, append, delete, and replace...placed on an arbitrary attribute (e.g., one without an index) ( POSTGRES rule system [SHP88, SHP89, SR1I90], HiPAC [C+891, DIPS [SLR89], Alert [SPAM91
Crowley, Rebecca S; Castine, Melissa; Mitchell, Kevin; Chavan, Girish; McSherry, Tara; Feldman, Michael
2010-01-01
The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.
A search engine to access PubMed monolingual subsets: proof of concept and evaluation in French.
Griffon, Nicolas; Schuers, Matthieu; Soualmia, Lina Fatima; Grosjean, Julien; Kerdelhué, Gaétan; Kergourlay, Ivan; Dahamna, Badisse; Darmoni, Stéfan Jacques
2014-12-01
PubMed contains numerous articles in languages other than English. However, existing solutions to access these articles in the language in which they were written remain unconvincing. The aim of this study was to propose a practical search engine, called Multilingual PubMed, which will permit access to a PubMed subset in 1 language and to evaluate the precision and coverage for the French version (Multilingual PubMed-French). To create this tool, translations of MeSH were enriched (eg, adding synonyms and translations in French) and integrated into a terminology portal. PubMed subsets in several European languages were also added to our database using a dedicated parser. The response time for the generic semantic search engine was evaluated for simple queries. BabelMeSH, Multilingual PubMed-French, and 3 different PubMed strategies were compared by searching for literature in French. Precision and coverage were measured for 20 randomly selected queries. The results were evaluated as relevant to title and abstract, the evaluator being blind to search strategy. More than 650,000 PubMed citations in French were integrated into the Multilingual PubMed-French information system. The response times were all below the threshold defined for usability (2 seconds). Two search strategies (Multilingual PubMed-French and 1 PubMed strategy) showed high precision (0.93 and 0.97, respectively), but coverage was 4 times higher for Multilingual PubMed-French. It is now possible to freely access biomedical literature using a practical search tool in French. This tool will be of particular interest for health professionals and other end users who do not read or query sufficiently in English. The information system is theoretically well suited to expand the approach to other European languages, such as German, Spanish, Norwegian, and Portuguese.
A Search Engine to Access PubMed Monolingual Subsets: Proof of Concept and Evaluation in French
Schuers, Matthieu; Soualmia, Lina Fatima; Grosjean, Julien; Kerdelhué, Gaétan; Kergourlay, Ivan; Dahamna, Badisse; Darmoni, Stéfan Jacques
2014-01-01
Background PubMed contains numerous articles in languages other than English. However, existing solutions to access these articles in the language in which they were written remain unconvincing. Objective The aim of this study was to propose a practical search engine, called Multilingual PubMed, which will permit access to a PubMed subset in 1 language and to evaluate the precision and coverage for the French version (Multilingual PubMed-French). Methods To create this tool, translations of MeSH were enriched (eg, adding synonyms and translations in French) and integrated into a terminology portal. PubMed subsets in several European languages were also added to our database using a dedicated parser. The response time for the generic semantic search engine was evaluated for simple queries. BabelMeSH, Multilingual PubMed-French, and 3 different PubMed strategies were compared by searching for literature in French. Precision and coverage were measured for 20 randomly selected queries. The results were evaluated as relevant to title and abstract, the evaluator being blind to search strategy. Results More than 650,000 PubMed citations in French were integrated into the Multilingual PubMed-French information system. The response times were all below the threshold defined for usability (2 seconds). Two search strategies (Multilingual PubMed-French and 1 PubMed strategy) showed high precision (0.93 and 0.97, respectively), but coverage was 4 times higher for Multilingual PubMed-French. Conclusions It is now possible to freely access biomedical literature using a practical search tool in French. This tool will be of particular interest for health professionals and other end users who do not read or query sufficiently in English. The information system is theoretically well suited to expand the approach to other European languages, such as German, Spanish, Norwegian, and Portuguese. PMID:25448528
Guhlin, Joseph; Silverstein, Kevin A T; Zhou, Peng; Tiffin, Peter; Young, Nevin D
2017-08-10
Rapid generation of omics data in recent years have resulted in vast amounts of disconnected datasets without systemic integration and knowledge building, while individual groups have made customized, annotated datasets available on the web with few ways to link them to in-lab datasets. With so many research groups generating their own data, the ability to relate it to the larger genomic and comparative genomic context is becoming increasingly crucial to make full use of the data. The Omics Database Generator (ODG) allows users to create customized databases that utilize published genomics data integrated with experimental data which can be queried using a flexible graph database. When provided with omics and experimental data, ODG will create a comparative, multi-dimensional graph database. ODG can import definitions and annotations from other sources such as InterProScan, the Gene Ontology, ENZYME, UniPathway, and others. This annotation data can be especially useful for studying new or understudied species for which transcripts have only been predicted, and rapidly give additional layers of annotation to predicted genes. In better studied species, ODG can perform syntenic annotation translations or rapidly identify characteristics of a set of genes or nucleotide locations, such as hits from an association study. ODG provides a web-based user-interface for configuring the data import and for querying the database. Queries can also be run from the command-line and the database can be queried directly through programming language hooks available for most languages. ODG supports most common genomic formats as well as generic, easy to use tab-separated value format for user-provided annotations. ODG is a user-friendly database generation and query tool that adapts to the supplied data to produce a comparative genomic database or multi-layered annotation database. ODG provides rapid comparative genomic annotation and is therefore particularly useful for non-model or understudied species. For species for which more data are available, ODG can be used to conduct complex multi-omics, pattern-matching queries.
Sánchez-de-Madariaga, Ricardo; Muñoz, Adolfo; Castro, Antonio L; Moreno, Oscar; Pascual, Mario
2018-01-01
This research shows a protocol to assess the computational complexity of querying relational and non-relational (NoSQL (not only Structured Query Language)) standardized electronic health record (EHR) medical information database systems (DBMS). It uses a set of three doubling-sized databases, i.e. databases storing 5000, 10,000 and 20,000 realistic standardized EHR extracts, in three different database management systems (DBMS): relational MySQL object-relational mapping (ORM), document-based NoSQL MongoDB, and native extensible markup language (XML) NoSQL eXist. The average response times to six complexity-increasing queries were computed, and the results showed a linear behavior in the NoSQL cases. In the NoSQL field, MongoDB presents a much flatter linear slope than eXist. NoSQL systems may also be more appropriate to maintain standardized medical information systems due to the special nature of the updating policies of medical information, which should not affect the consistency and efficiency of the data stored in NoSQL databases. One limitation of this protocol is the lack of direct results of improved relational systems such as archetype relational mapping (ARM) with the same data. However, the interpolation of doubling-size database results to those presented in the literature and other published results suggests that NoSQL systems might be more appropriate in many specific scenarios and problems to be solved. For example, NoSQL may be appropriate for document-based tasks such as EHR extracts used in clinical practice, or edition and visualization, or situations where the aim is not only to query medical information, but also to restore the EHR in exactly its original form. PMID:29608174
Sánchez-de-Madariaga, Ricardo; Muñoz, Adolfo; Castro, Antonio L; Moreno, Oscar; Pascual, Mario
2018-03-19
This research shows a protocol to assess the computational complexity of querying relational and non-relational (NoSQL (not only Structured Query Language)) standardized electronic health record (EHR) medical information database systems (DBMS). It uses a set of three doubling-sized databases, i.e. databases storing 5000, 10,000 and 20,000 realistic standardized EHR extracts, in three different database management systems (DBMS): relational MySQL object-relational mapping (ORM), document-based NoSQL MongoDB, and native extensible markup language (XML) NoSQL eXist. The average response times to six complexity-increasing queries were computed, and the results showed a linear behavior in the NoSQL cases. In the NoSQL field, MongoDB presents a much flatter linear slope than eXist. NoSQL systems may also be more appropriate to maintain standardized medical information systems due to the special nature of the updating policies of medical information, which should not affect the consistency and efficiency of the data stored in NoSQL databases. One limitation of this protocol is the lack of direct results of improved relational systems such as archetype relational mapping (ARM) with the same data. However, the interpolation of doubling-size database results to those presented in the literature and other published results suggests that NoSQL systems might be more appropriate in many specific scenarios and problems to be solved. For example, NoSQL may be appropriate for document-based tasks such as EHR extracts used in clinical practice, or edition and visualization, or situations where the aim is not only to query medical information, but also to restore the EHR in exactly its original form.
Cooperative answers in database systems
NASA Technical Reports Server (NTRS)
Gaasterland, Terry; Godfrey, Parke; Minker, Jack; Novik, Lev
1993-01-01
A major concern of researchers who seek to improve human-computer communication involves how to move beyond literal interpretations of queries to a level of responsiveness that takes the user's misconceptions, expectations, desires, and interests into consideration. At Maryland, we are investigating how to better meet a user's needs within the framework of the cooperative answering system of Gal and Minker. We have been exploring how to use semantic information about the database to formulate coherent and informative answers. The work has two main thrusts: (1) the construction of a logic formula which embodies the content of a cooperative answer; and (2) the presentation of the logic formula to the user in a natural language form. The information that is available in a deductive database system for building cooperative answers includes integrity constraints, user constraints, the search tree for answers to the query, and false presuppositions that are present in the query. The basic cooperative answering theory of Gal and Minker forms the foundation of a cooperative answering system that integrates the new construction and presentation methods. This paper provides an overview of the cooperative answering strategies used in the CARMIN cooperative answering system, an ongoing research effort at Maryland. Section 2 gives some useful background definitions. Section 3 describes techniques for collecting cooperative logical formulae. Section 4 discusses which natural language generation techniques are useful for presenting the logic formula in natural language text. Section 5 presents a diagram of the system.
Nittrouer, Susan; Caldwell, Amanda; Holloman, Christopher
2012-01-01
Objective To evaluate how well various language measures typically used with very young children after they receive cochlear implants predict language and literacy skills as they enter school. Methods Subjects were 50 children who had just completed kindergarten and were 6 or 7 years of age. All had previously participated in a longitudinal study from 12 to 48 months of age. 27 children had severe-to-profound hearing loss and wore cochlear implants, 8 had moderate hearing loss and wore hearing aids, and 15 had normal hearing. A latent variable of language/literacy skill was constructed from scores on six kinds of measures: (1) language comprehension; (2) expressive vocabulary; (3) phonological awareness; (4) literacy; (5) narrative skill; and (6) processing speed. Five kinds of language measures obtained at six-month intervals from 12 to 48 months of age were used as predictor variables in correlational analyses: (1) language comprehension; (2) expressive vocabulary; (3) syntactic structure of productive speech; (4) form and (5) function of language used in language samples. Results Outcomes quantified how much variance in kindergarten language/literacy performance was explained by each predictor variable, at each earlier age of testing. Comprehension measures consistently predicted roughly 25 to 50 percent of the variance in kindergarten language/literacy performance, and were the only effective predictors before 24 months of age. Vocabulary and syntactic complexity were strong predictors after roughly 36 months of age. Amount of speech produced in language samples and number of answers to parental queries explained moderate amounts of variance in performance after 24 months of age. Number of manual gestures and nonspeech vocalizations produced in language samples explained little to no variance before 24 months of age, and after that were negatively correlated with kindergarten performance. The number of imitations produced in language samples at 24 months of age explained about 10 percent of variance in kindergarten performance, but was otherwise not correlated or negatively correlated with kindergarten outcomes. Conclusions Before 24 months of age, the best predictor of later language success is language comprehension. In general, measures that index a child’s cognitive processing of language are the most sensitive predictors of school-age language abilities. PMID:22648088
Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile
NASA Astrophysics Data System (ADS)
Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco
2014-05-01
The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.
XML at the ADC: Steps to a Next Generation Data Archive
NASA Astrophysics Data System (ADS)
Shaya, E.; Blackwell, J.; Gass, J.; Oliversen, N.; Schneider, G.; Thomas, B.; Cheung, C.; White, R. A.
1999-05-01
The eXtensible Markup Language (XML) is a document markup language that allows users to specify their own tags, to create hierarchical structures to qualify their data, and to support automatic checking of documents for structural validity. It is being intensively supported by nearly every major corporate software developer. Under the funds of a NASA AISRP proposal, the Astronomical Data Center (ADC, http://adc.gsfc.nasa.gov) is developing an infrastructure for importation, enhancement, and distribution of data and metadata using XML as the document markup language. We discuss the preliminary Document Type Definition (DTD, at http://adc.gsfc.nasa.gov/xml) which specifies the elements and their attributes in our metadata documents. This attempts to define both the metadata of an astronomical catalog and the `header' information of an astronomical table. In addition, we give an overview of the planned flow of data through automated pipelines from authors and journal presses into our XML archive and retrieval through the web via the XML-QL Query Language and eXtensible Style Language (XSL) scripts. When completed, the catalogs and journal tables at the ADC will be tightly hyperlinked to enhance data discovery. In addition one will be able to search on fragmentary information. For instance, one could query for a table by entering that the second author is so-and-so or that the third author is at such-and-such institution.
Design, Development and Utilization Perspectives on Database Management Systems
ERIC Educational Resources Information Center
Shneiderman, Ben
1977-01-01
This paper reviews the historical development of integrated data base management systems and examines competing approaches. Topics include management and utilization, implementation and design, query languages, security, integrity, privacy and concurrency. (Author/KP)
Semantic e-Science: From Microformats to Models
NASA Astrophysics Data System (ADS)
Lumb, L. I.; Freemantle, J. R.; Aldridge, K. D.
2009-05-01
A platform has been developed to transform semi-structured ASCII data into a representation based on the eXtensible Markup Language (XML). A subsequent transformation allows the XML-based representation to be rendered in the Resource Description Format (RDF). Editorial metadata, expressed as external annotations (via XML Pointer Language), also survives this transformation process (e.g., Lumb et al., http://dx.doi.org/10.1016/j.cageo.2008.03.009). Because the XML-to-RDF transformation uses XSLT (eXtensible Stylesheet Language Transformations), semantic microformats ultimately encode the scientific data (Lumb & Aldridge, http://dx.doi.org/10.1109/HPCS.2006.26). In building the relationship-centric representation in RDF, a Semantic Model of the scientific data is extracted. The systematic enhancement in the expressivity and richness of the scientific data results in representations of knowledge that are readily understood and manipulated by intelligent software agents. Thus scientists are able to draw upon various resources within and beyond their discipline to use in their scientific applications. Since the resulting Semantic Models are independent conceptualizations of the science itself, the representation of scientific knowledge and interaction with the same can stimulate insight from different perspectives. Using the Global Geodynamics Project (GGP) for the purpose of illustration, the introduction of GGP microformats enable a Semantic Model for the GGP that can be semantically queried (e.g., via SPARQL, http://www.w3.org/TR/rdf-sparql-query). Although the present implementation uses the Open Source Redland RDF Libraries (http://librdf.org/), the approach is generalizable to other platforms and to projects other than the GGP (e.g., Baker et al., Informatics and the 2007-2008 Electronic Geophysical Year, Eos Trans. Am. Geophys. Un., 89(48), 485-486, 2008).
RiPPAS: A Ring-Based Privacy-Preserving Aggregation Scheme in Wireless Sensor Networks
Zhang, Kejia; Han, Qilong; Cai, Zhipeng; Yin, Guisheng
2017-01-01
Recently, data privacy in wireless sensor networks (WSNs) has been paid increased attention. The characteristics of WSNs determine that users’ queries are mainly aggregation queries. In this paper, the problem of processing aggregation queries in WSNs with data privacy preservation is investigated. A Ring-based Privacy-Preserving Aggregation Scheme (RiPPAS) is proposed. RiPPAS adopts ring structure to perform aggregation. It uses pseudonym mechanism for anonymous communication and uses homomorphic encryption technique to add noise to the data easily to be disclosed. RiPPAS can handle both sum() queries and min()/max() queries, while the existing privacy-preserving aggregation methods can only deal with sum() queries. For processing sum() queries, compared with the existing methods, RiPPAS has advantages in the aspects of privacy preservation and communication efficiency, which can be proved by theoretical analysis and simulation results. For processing min()/max() queries, RiPPAS provides effective privacy preservation and has low communication overhead. PMID:28178197
DISPAQ: Distributed Profitable-Area Query from Big Taxi Trip Data.
Putri, Fadhilah Kurnia; Song, Giltae; Kwon, Joonho; Rao, Praveen
2017-09-25
One of the crucial problems for taxi drivers is to efficiently locate passengers in order to increase profits. The rapid advancement and ubiquitous penetration of Internet of Things (IoT) technology into transportation industries enables us to provide taxi drivers with locations that have more potential passengers (more profitable areas) by analyzing and querying taxi trip data. In this paper, we propose a query processing system, called Distributed Profitable-Area Query ( DISPAQ ) which efficiently identifies profitable areas by exploiting the Apache Software Foundation's Spark framework and a MongoDB database. DISPAQ first maintains a profitable-area query index (PQ-index) by extracting area summaries and route summaries from raw taxi trip data. It then identifies candidate profitable areas by searching the PQ-index during query processing. Then, it exploits a Z-Skyline algorithm, which is an extension of skyline processing with a Z-order space filling curve, to quickly refine the candidate profitable areas. To improve the performance of distributed query processing, we also propose local Z-Skyline optimization, which reduces the number of dominant tests by distributing killer profitable areas to each cluster node. Through extensive evaluation with real datasets, we demonstrate that our DISPAQ system provides a scalable and efficient solution for processing profitable-area queries from huge amounts of big taxi trip data.
DISPAQ: Distributed Profitable-Area Query from Big Taxi Trip Data †
Putri, Fadhilah Kurnia; Song, Giltae; Rao, Praveen
2017-01-01
One of the crucial problems for taxi drivers is to efficiently locate passengers in order to increase profits. The rapid advancement and ubiquitous penetration of Internet of Things (IoT) technology into transportation industries enables us to provide taxi drivers with locations that have more potential passengers (more profitable areas) by analyzing and querying taxi trip data. In this paper, we propose a query processing system, called Distributed Profitable-Area Query (DISPAQ) which efficiently identifies profitable areas by exploiting the Apache Software Foundation’s Spark framework and a MongoDB database. DISPAQ first maintains a profitable-area query index (PQ-index) by extracting area summaries and route summaries from raw taxi trip data. It then identifies candidate profitable areas by searching the PQ-index during query processing. Then, it exploits a Z-Skyline algorithm, which is an extension of skyline processing with a Z-order space filling curve, to quickly refine the candidate profitable areas. To improve the performance of distributed query processing, we also propose local Z-Skyline optimization, which reduces the number of dominant tests by distributing killer profitable areas to each cluster node. Through extensive evaluation with real datasets, we demonstrate that our DISPAQ system provides a scalable and efficient solution for processing profitable-area queries from huge amounts of big taxi trip data. PMID:28946679
Natural Language Processing Technologies in Radiology Research and Clinical Applications.
Cai, Tianrun; Giannopoulos, Andreas A; Yu, Sheng; Kelil, Tatiana; Ripley, Beth; Kumamaru, Kanako K; Rybicki, Frank J; Mitsouras, Dimitrios
2016-01-01
The migration of imaging reports to electronic medical record systems holds great potential in terms of advancing radiology research and practice by leveraging the large volume of data continuously being updated, integrated, and shared. However, there are significant challenges as well, largely due to the heterogeneity of how these data are formatted. Indeed, although there is movement toward structured reporting in radiology (ie, hierarchically itemized reporting with use of standardized terminology), the majority of radiology reports remain unstructured and use free-form language. To effectively "mine" these large datasets for hypothesis testing, a robust strategy for extracting the necessary information is needed. Manual extraction of information is a time-consuming and often unmanageable task. "Intelligent" search engines that instead rely on natural language processing (NLP), a computer-based approach to analyzing free-form text or speech, can be used to automate this data mining task. The overall goal of NLP is to translate natural human language into a structured format (ie, a fixed collection of elements), each with a standardized set of choices for its value, that is easily manipulated by computer programs to (among other things) order into subcategories or query for the presence or absence of a finding. The authors review the fundamentals of NLP and describe various techniques that constitute NLP in radiology, along with some key applications. ©RSNA, 2016.
Conversion of Radiology Reporting Templates to the MRRT Standard.
Kahn, Charles E; Genereaux, Brad; Langlotz, Curtis P
2015-10-01
In 2013, the Integrating the Healthcare Enterprise (IHE) Radiology workgroup developed the Management of Radiology Report Templates (MRRT) profile, which defines both the format of radiology reporting templates using an extension of Hypertext Markup Language version 5 (HTML5), and the transportation mechanism to query, retrieve, and store these templates. Of 200 English-language report templates published by the Radiological Society of North America (RSNA), initially encoded as text and in an XML schema language, 168 have been converted successfully into MRRT using a combination of automated processes and manual editing; conversion of the remaining 32 templates is in progress. The automated conversion process applied Extensible Stylesheet Language Transformation (XSLT) scripts, an XML parsing engine, and a Java servlet. The templates were validated for proper HTML5 and MRRT syntax using web-based services. The MRRT templates allow radiologists to share best-practice templates across organizations and have been uploaded to the template library to supersede the prior XML-format templates. By using MRRT transactions and MRRT-format templates, radiologists will be able to directly import and apply templates from the RSNA Report Template Library in their own MRRT-compatible vendor systems. The availability of MRRT-format reporting templates will stimulate adoption of the MRRT standard and is expected to advance the sharing and use of templates to improve the quality of radiology reports.
Natural Language Processing Technologies in Radiology Research and Clinical Applications
Cai, Tianrun; Giannopoulos, Andreas A.; Yu, Sheng; Kelil, Tatiana; Ripley, Beth; Kumamaru, Kanako K.; Rybicki, Frank J.
2016-01-01
The migration of imaging reports to electronic medical record systems holds great potential in terms of advancing radiology research and practice by leveraging the large volume of data continuously being updated, integrated, and shared. However, there are significant challenges as well, largely due to the heterogeneity of how these data are formatted. Indeed, although there is movement toward structured reporting in radiology (ie, hierarchically itemized reporting with use of standardized terminology), the majority of radiology reports remain unstructured and use free-form language. To effectively “mine” these large datasets for hypothesis testing, a robust strategy for extracting the necessary information is needed. Manual extraction of information is a time-consuming and often unmanageable task. “Intelligent” search engines that instead rely on natural language processing (NLP), a computer-based approach to analyzing free-form text or speech, can be used to automate this data mining task. The overall goal of NLP is to translate natural human language into a structured format (ie, a fixed collection of elements), each with a standardized set of choices for its value, that is easily manipulated by computer programs to (among other things) order into subcategories or query for the presence or absence of a finding. The authors review the fundamentals of NLP and describe various techniques that constitute NLP in radiology, along with some key applications. ©RSNA, 2016 PMID:26761536
An index-based algorithm for fast on-line query processing of latent semantic analysis
Li, Pohan; Wang, Wei
2017-01-01
Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is similar to the query of keywords. Although LSA yield promising similar results, the existing LSA algorithms involve lots of unnecessary operations in similarity computation and candidate check during on-line query processing, which is expensive in terms of time cost and cannot efficiently response the query request especially when the dataset becomes large. In this paper, we study the efficiency problem of on-line query processing for LSA towards efficiently searching the similar documents to a given query. We rewrite the similarity equation of LSA combined with an intermediate value called partial similarity that is stored in a designed index called partial index. For reducing the searching space, we give an approximate form of similarity equation, and then develop an efficient algorithm for building partial index, which skips the partial similarities lower than a given threshold θ. Based on partial index, we develop an efficient algorithm called ILSA for supporting fast on-line query processing. The given query is transformed into a pseudo document vector, and the similarities between query and candidate documents are computed by accumulating the partial similarities obtained from the index nodes corresponds to non-zero entries in the pseudo document vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query processing by pruning the candidate documents that are not promising and skipping the operations that make little contribution to similarity scores. Extensive experiments through comparison with LSA have been done, which demonstrate the efficiency and effectiveness of our proposed algorithm. PMID:28520747
An index-based algorithm for fast on-line query processing of latent semantic analysis.
Zhang, Mingxi; Li, Pohan; Wang, Wei
2017-01-01
Latent Semantic Analysis (LSA) is widely used for finding the documents whose semantic is similar to the query of keywords. Although LSA yield promising similar results, the existing LSA algorithms involve lots of unnecessary operations in similarity computation and candidate check during on-line query processing, which is expensive in terms of time cost and cannot efficiently response the query request especially when the dataset becomes large. In this paper, we study the efficiency problem of on-line query processing for LSA towards efficiently searching the similar documents to a given query. We rewrite the similarity equation of LSA combined with an intermediate value called partial similarity that is stored in a designed index called partial index. For reducing the searching space, we give an approximate form of similarity equation, and then develop an efficient algorithm for building partial index, which skips the partial similarities lower than a given threshold θ. Based on partial index, we develop an efficient algorithm called ILSA for supporting fast on-line query processing. The given query is transformed into a pseudo document vector, and the similarities between query and candidate documents are computed by accumulating the partial similarities obtained from the index nodes corresponds to non-zero entries in the pseudo document vector. Compared to the LSA algorithm, ILSA reduces the time cost of on-line query processing by pruning the candidate documents that are not promising and skipping the operations that make little contribution to similarity scores. Extensive experiments through comparison with LSA have been done, which demonstrate the efficiency and effectiveness of our proposed algorithm.
In-database processing of a large collection of remote sensing data: applications and implementation
NASA Astrophysics Data System (ADS)
Kikhtenko, Vladimir; Mamash, Elena; Chubarov, Dmitri; Voronina, Polina
2016-04-01
Large archives of remote sensing data are now available to scientists, yet the need to work with individual satellite scenes or product files constrains studies that span a wide temporal range or spatial extent. The resources (storage capacity, computing power and network bandwidth) required for such studies are often beyond the capabilities of individual geoscientists. This problem has been tackled before in remote sensing research and inspired several information systems. Some of them such as NASA Giovanni [1] and Google Earth Engine have already proved their utility for science. Analysis tasks involving large volumes of numerical data are not unique to Earth Sciences. Recent advances in data science are enabled by the development of in-database processing engines that bring processing closer to storage, use declarative query languages to facilitate parallel scalability and provide high-level abstraction of the whole dataset. We build on the idea of bridging the gap between file archives containing remote sensing data and databases by integrating files into relational database as foreign data sources and performing analytical processing inside the database engine. Thereby higher level query language can efficiently address problems of arbitrary size: from accessing the data associated with a specific pixel or a grid cell to complex aggregation over spatial or temporal extents over a large number of individual data files. This approach was implemented using PostgreSQL for a Siberian regional archive of satellite data products holding hundreds of terabytes of measurements from multiple sensors and missions taken over a decade-long span. While preserving the original storage layout and therefore compatibility with existing applications the in-database processing engine provides a toolkit for provisioning remote sensing data in scientific workflows and applications. The use of SQL - a widely used higher level declarative query language - simplifies interoperability between desktop GIS, web applications and geographic web services and interactive scientific applications (MATLAB, IPython). The system is also automatically ingesting direct readout data from meteorological and research satellites in near-real time with distributed acquisition workflows managed by Taverna workflow engine [2]. The system has demonstrated its utility in performing non-trivial analytic processing such as the computation of the Robust Satellite Technique (RST) indices [3]. It had been useful in different tasks such as studying urban heat islands, analyzing patterns in the distribution of wildfire occurrences, detecting phenomena related to seismic and earthquake activity. Initial experience has highlighted several limitations of the proposed approach yet it has demonstrated ability to facilitate the use of large archives of remote sensing data by geoscientists. 1. J.G. Acker, G. Leptoukh, Online analysis enhances use of NASA Earth science data. EOS Trans. AGU, 2007, 88(2), P. 14-17. 2. D. Hull, K. Wolsfencroft, R. Stevens, C. Goble, M.R. Pocock, P. Li and T. Oinn, Taverna: a tool for building and running workflows of services. Nucleic Acids Research. 2006. V. 34. P. W729-W732. 3. V. Tramutoli, G. Di Bello, N. Pergola, S. Piscitelli, Robust satellite techniques for remote sensing of seismically active areas // Annals of Geophysics. 2001. no. 44(2). P. 295-312.
TOMML: A Rule Language for Structured Data
NASA Astrophysics Data System (ADS)
Cirstea, Horatiu; Moreau, Pierre-Etienne; Reilles, Antoine
We present the TOM language that extends JAVA with the purpose of providing high level constructs inspired by the rewriting community. TOM bridges thus the gap between a general purpose language and high level specifications based on rewriting. This approach was motivated by the promotion of rule based techniques and their integration in large scale applications. Powerful matching capabilities along with a rich strategy language are among TOM's strong features that make it easy to use and competitive with respect to other rule based languages. TOM is thus a natural choice for querying and transforming structured data and in particular XML documents [1]. We present here its main XML oriented features and illustrate its use on several examples.
Conceptual Modeling via Logic Programming
1990-01-01
Define User Interface and Query Language L i1W= Ltl k.l 4. Define Procedures for Specifying Output S . Select Logic Programming Language 6. Develop ...baseline s change model. sessions and baselines. It was changed 6. Develop Methodology for C 31 Users. considerably with the advent of the window This...Model Development : Implica- for Conceptual Modeling Via Logic tions for Communications of a Cognitive Programming. Marina del Rey, Calif.: Analysis of
Catalogue of HI PArameters (CHIPA)
NASA Astrophysics Data System (ADS)
Saponara, J.; Benaglia, P.; Koribalski, B.; Andruchow, I.
2015-08-01
The catalogue of HI parameters of galaxies HI (CHIPA) is the natural continuation of the compilation by M.C. Martin in 1998. CHIPA provides the most important parameters of nearby galaxies derived from observations of the neutral Hydrogen line. The catalogue contains information of 1400 galaxies across the sky and different morphological types. Parameters like the optical diameter of the galaxy, the blue magnitude, the distance, morphological type, HI extension are listed among others. Maps of the HI distribution, velocity and velocity dispersion can also be display for some cases. The main objective of this catalogue is to facilitate the bibliographic queries, through searching in a database accessible from the internet that will be available in 2015 (the website is under construction). The database was built using the open source `` mysql (SQL, Structured Query Language, management system relational database) '', while the website was built with ''HTML (Hypertext Markup Language)'' and ''PHP (Hypertext Preprocessor)''.
Intelligent search in Big Data
NASA Astrophysics Data System (ADS)
Birialtsev, E.; Bukharaev, N.; Gusenkov, A.
2017-10-01
An approach to data integration, aimed on the ontology-based intelligent search in Big Data, is considered in the case when information objects are represented in the form of relational databases (RDB), structurally marked by their schemes. The source of information for constructing an ontology and, later on, the organization of the search are texts in natural language, treated as semi-structured data. For the RDBs, these are comments on the names of tables and their attributes. Formal definition of RDBs integration model in terms of ontologies is given. Within framework of the model universal RDB representation ontology, oil production subject domain ontology and linguistic thesaurus of subject domain language are built. Technique of automatic SQL queries generation for subject domain specialists is proposed. On the base of it, information system for TATNEFT oil-producing company RDBs was implemented. Exploitation of the system showed good relevance with majority of queries.
Ontology-based geospatial data query and integration
Zhao, T.; Zhang, C.; Wei, M.; Peng, Z.-R.
2008-01-01
Geospatial data sharing is an increasingly important subject as large amount of data is produced by a variety of sources, stored in incompatible formats, and accessible through different GIS applications. Past efforts to enable sharing have produced standardized data format such as GML and data access protocols such as Web Feature Service (WFS). While these standards help enabling client applications to gain access to heterogeneous data stored in different formats from diverse sources, the usability of the access is limited due to the lack of data semantics encoded in the WFS feature types. Past research has used ontology languages to describe the semantics of geospatial data but ontology-based queries cannot be applied directly to legacy data stored in databases or shapefiles, or to feature data in WFS services. This paper presents a method to enable ontology query on spatial data available from WFS services and on data stored in databases. We do not create ontology instances explicitly and thus avoid the problems of data replication. Instead, user queries are rewritten to WFS getFeature requests and SQL queries to database. The method also has the benefits of being able to utilize existing tools of databases, WFS, and GML while enabling query based on ontology semantics. ?? 2008 Springer-Verlag Berlin Heidelberg.
NASA Astrophysics Data System (ADS)
Liao, S.; Chen, L.; Li, J.; Xiong, W.; Wu, Q.
2015-07-01
Existing spatiotemporal database supports spatiotemporal aggregation query over massive moving objects datasets. Due to the large amounts of data and single-thread processing method, the query speed cannot meet the application requirements. On the other hand, the query efficiency is more sensitive to spatial variation then temporal variation. In this paper, we proposed a spatiotemporal aggregation query method using multi-thread parallel technique based on regional divison and implemented it on the server. Concretely, we divided the spatiotemporal domain into several spatiotemporal cubes, computed spatiotemporal aggregation on all cubes using the technique of multi-thread parallel processing, and then integrated the query results. By testing and analyzing on the real datasets, this method has improved the query speed significantly.
a Novel Approach of Indexing and Retrieving Spatial Polygons for Efficient Spatial Region Queries
NASA Astrophysics Data System (ADS)
Zhao, J. H.; Wang, X. Z.; Wang, F. Y.; Shen, Z. H.; Zhou, Y. C.; Wang, Y. L.
2017-10-01
Spatial region queries are more and more widely used in web-based applications. Mechanisms to provide efficient query processing over geospatial data are essential. However, due to the massive geospatial data volume, heavy geometric computation, and high access concurrency, it is difficult to get response in real time. Spatial indexes are usually used in this situation. In this paper, based on k-d tree, we introduce a distributed KD-Tree (DKD-Tree) suitbable for polygon data, and a two-step query algorithm. The spatial index construction is recursive and iterative, and the query is an in memory process. Both the index and query methods can be processed in parallel, and are implemented based on HDFS, Spark and Redis. Experiments on a large volume of Remote Sensing images metadata have been carried out, and the advantages of our method are investigated by comparing with spatial region queries executed on PostgreSQL and PostGIS. Results show that our approach not only greatly improves the efficiency of spatial region query, but also has good scalability, Moreover, the two-step spatial range query algorithm can also save cluster resources to support a large number of concurrent queries. Therefore, this method is very useful when building large geographic information systems.
DAS: A Data Management System for Instrument Tests and Operations
NASA Astrophysics Data System (ADS)
Frailis, M.; Sartor, S.; Zacchei, A.; Lodi, M.; Cirami, R.; Pasian, F.; Trifoglio, M.; Bulgarelli, A.; Gianotti, F.; Franceschi, E.; Nicastro, L.; Conforti, V.; Zoli, A.; Smart, R.; Morbidelli, R.; Dadina, M.
2014-05-01
The Data Access System (DAS) is a and data management software system, providing a reusable solution for the storage of data acquired both from telescopes and auxiliary data sources during the instrument development phases and operations. It is part of the Customizable Instrument WorkStation system (CIWS-FW), a framework for the storage, processing and quick-look at the data acquired from scientific instruments. The DAS provides a data access layer mainly targeted to software applications: quick-look displays, pre-processing pipelines and scientific workflows. It is logically organized in three main components: an intuitive and compact Data Definition Language (DAS DDL) in XML format, aimed for user-defined data types; an Application Programming Interface (DAS API), automatically adding classes and methods supporting the DDL data types, and providing an object-oriented query language; a data management component, which maps the metadata of the DDL data types in a relational Data Base Management System (DBMS), and stores the data in a shared (network) file system. With the DAS DDL, developers define the data model for a particular project, specifying for each data type the metadata attributes, the data format and layout (if applicable), and named references to related or aggregated data types. Together with the DDL user-defined data types, the DAS API acts as the only interface to store, query and retrieve the metadata and data in the DAS system, providing both an abstract interface and a data model specific one in C, C++ and Python. The mapping of metadata in the back-end database is automatic and supports several relational DBMSs, including MySQL, Oracle and PostgreSQL.
Shuttle Data Center File-Processing Tool in Java
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Miller, Walter H.
2006-01-01
A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform-neutrality of Java in implementing several features that are important for analysis of large sets of time-series data. The program supports regular expression queries of SDC archive files, reads the files, interleaves the time-stamped samples according to a chosen output, then transforms the results into that format. A user can choose among a variety of output file formats that are useful for diverse purposes, including plotting, Markov modeling, multivariate density estimation, and wavelet multiresolution analysis, as well as for playback of data in support of simulation and testing.
NASA Astrophysics Data System (ADS)
Areces, Carlos; Hoffmann, Guillaume; Denis, Alexandre
We present a modal language that includes explicit operators to count the number of elements that a model might include in the extension of a formula, and we discuss how this logic has been previously investigated under different guises. We show that the language is related to graded modalities and to hybrid logics. We illustrate a possible application of the language to the treatment of plural objects and queries in natural language. We investigate the expressive power of this logic via bisimulations, discuss the complexity of its satisfiability problem, define a new reasoning task that retrieves the cardinality bound of the extension of a given input formula, and provide an algorithm to solve it.
Heterogeneous database integration in biomedicine.
Sujansky, W
2001-08-01
The rapid expansion of biomedical knowledge, reduction in computing costs, and spread of internet access have created an ocean of electronic data. The decentralized nature of our scientific community and healthcare system, however, has resulted in a patchwork of diverse, or heterogeneous, database implementations, making access to and aggregation of data across databases very difficult. The database heterogeneity problem applies equally to clinical data describing individual patients and biological data characterizing our genome. Specifically, databases are highly heterogeneous with respect to the data models they employ, the data schemas they specify, the query languages they support, and the terminologies they recognize. Heterogeneous database systems attempt to unify disparate databases by providing uniform conceptual schemas that resolve representational heterogeneities, and by providing querying capabilities that aggregate and integrate distributed data. Research in this area has applied a variety of database and knowledge-based techniques, including semantic data modeling, ontology definition, query translation, query optimization, and terminology mapping. Existing systems have addressed heterogeneous database integration in the realms of molecular biology, hospital information systems, and application portability.
An Automated Approach to Reasoning Under Multiple Perspectives
NASA Technical Reports Server (NTRS)
deBessonet, Cary
2004-01-01
This is the final report with emphasis on research during the last term. The context for the research has been the development of an automated reasoning technology for use in SMS (symbolic Manipulation System), a system used to build and query knowledge bases (KBs) using a special knowledge representation language SL (Symbolic Language). SMS interpreters assertive SL input and enters the results as components of its universe. The system operates in two basic models: 1) constructive mode (for building KBs); and 2) query/search mode (for querying KBs). Query satisfaction consists of matching query components with KB components. The system allows "penumbral matches," that is, matches that do not exactly meet the specifications of the query, but which are deemed relevant for the conversational context. If the user wants to know whether SMS has information that holds, say, for "any chow," the scope of relevancy might be set so that the system would respond based on a finding that it has information that holds for "most dogs," although this is not exactly what was called for by the query. The response would be qualified accordingly, as would normally be the case in ordinary human conversation. The general goal of the research was to develop an approach by which assertive content could be interpreted from multiple perspectives so that reasoning operations could be successfully conducted over the results. The interpretation of an SL statement such as, "{person believes [captain (asserted (perhaps)) (astronaut saw (comet (bright)))]}," which in English would amount to asserting something to the effect that, "Some person believes that a captain perhaps asserted that an astronaut saw a bright comet," would require the recognition of multiple perspectives, including some that are: a) epistemically-based (focusing on "believes"); b) assertion-based (focusing on "asserted"); c) perception-based (focusing on "saw"); d) adjectivally-based (focusing on "bight"); and e) modally-based (focusing on "perhaps"). Any conclusion reached under a line of reasoning that employs such an assertion or its associated implications should somehow reflect the employed perspectives. The investigators made significant progress in developing an approach that would enable a system to conduct reasoning operations over assertions of this kind while maintaining consistency in its knowledge bases. Significant accomplishments were made in the areas of: 1) integration and inferencing; 2) generation of perspectives, including wholistic ad composite views; and 3) consistency maintenance.
A high performance, ad-hoc, fuzzy query processing system for relational databases
NASA Technical Reports Server (NTRS)
Mansfield, William H., Jr.; Fleischman, Robert M.
1992-01-01
Database queries involving imprecise or fuzzy predicates are currently an evolving area of academic and industrial research. Such queries place severe stress on the indexing and I/O subsystems of conventional database environments since they involve the search of large numbers of records. The Datacycle architecture and research prototype is a database environment that uses filtering technology to perform an efficient, exhaustive search of an entire database. It has recently been modified to include fuzzy predicates in its query processing. The approach obviates the need for complex index structures, provides unlimited query throughput, permits the use of ad-hoc fuzzy membership functions, and provides a deterministic response time largely independent of query complexity and load. This paper describes the Datacycle prototype implementation of fuzzy queries and some recent performance results.
Standard Port-Visit Cost Forecasting Model for U.S. Navy Husbanding Contracts
2009-12-01
Protocol (HTTP) server.35 2. MySQL . An open-source database.36 3. PHP . A common scripting language used for Web development.37 E. IMPLEMENTATION OF...Inc. (2009). MySQL Community Server (Version 5.1) [Software]. Available from http://dev.mysql.com/downloads/ 37 The PHP Group (2009). PHP (Version...Logistics Services MySQL My Structured Query Language NAVSUP Navy Supply Systems Command NC Non-Contract Items NPS Naval Postgraduate
Managing Objects in a Relational Framework
1989-01-01
Database Week, San Jose CA, May.1983, pp.107-113. [Stonebraker 85] Stonebraker,M. and Rowe,L.: "The Design of POSTGRES " Tech.Report UC Berkeley, Nov...latter is equivalent to the definition of an attribute in a POSTGRES relation using the generic Quel facility. Recently, recursive query languages have...utilize rewrite rules. OSQL [Lynl 88] provides a language for associative access. 2. The POSTGRES model [Sto 86] allows Quel and C-procedures as the
Advanced SPARQL querying in small molecule databases.
Galgonek, Jakub; Hurt, Tomáš; Michlíková, Vendula; Onderka, Petr; Schwarz, Jan; Vondrášek, Jiří
2016-01-01
In recent years, the Resource Description Framework (RDF) and the SPARQL query language have become more widely used in the area of cheminformatics and bioinformatics databases. These technologies allow better interoperability of various data sources and powerful searching facilities. However, we identified several deficiencies that make usage of such RDF databases restrictive or challenging for common users. We extended a SPARQL engine to be able to use special procedures inside SPARQL queries. This allows the user to work with data that cannot be simply precomputed and thus cannot be directly stored in the database. We designed an algorithm that checks a query against data ontology to identify possible user errors. This greatly improves query debugging. We also introduced an approach to visualize retrieved data in a user-friendly way, based on templates describing visualizations of resource classes. To integrate all of our approaches, we developed a simple web application. Our system was implemented successfully, and we demonstrated its usability on the ChEBI database transformed into RDF form. To demonstrate procedure call functions, we employed compound similarity searching based on OrChem. The application is publicly available at https://bioinfo.uochb.cas.cz/projects/chemRDF.
BioCarian: search engine for exploratory searches in heterogeneous biological databases.
Zaki, Nazar; Tennakoon, Chandana
2017-10-02
There are a large number of biological databases publicly available for scientists in the web. Also, there are many private databases generated in the course of research projects. These databases are in a wide variety of formats. Web standards have evolved in the recent times and semantic web technologies are now available to interconnect diverse and heterogeneous sources of data. Therefore, integration and querying of biological databases can be facilitated by techniques used in semantic web. Heterogeneous databases can be converted into Resource Description Format (RDF) and queried using SPARQL language. Searching for exact queries in these databases is trivial. However, exploratory searches need customized solutions, especially when multiple databases are involved. This process is cumbersome and time consuming for those without a sufficient background in computer science. In this context, a search engine facilitating exploratory searches of databases would be of great help to the scientific community. We present BioCarian, an efficient and user-friendly search engine for performing exploratory searches on biological databases. The search engine is an interface for SPARQL queries over RDF databases. We note that many of the databases can be converted to tabular form. We first convert the tabular databases to RDF. The search engine provides a graphical interface based on facets to explore the converted databases. The facet interface is more advanced than conventional facets. It allows complex queries to be constructed, and have additional features like ranking of facet values based on several criteria, visually indicating the relevance of a facet value and presenting the most important facet values when a large number of choices are available. For the advanced users, SPARQL queries can be run directly on the databases. Using this feature, users will be able to incorporate federated searches of SPARQL endpoints. We used the search engine to do an exploratory search on previously published viral integration data and were able to deduce the main conclusions of the original publication. BioCarian is accessible via http://www.biocarian.com . We have developed a search engine to explore RDF databases that can be used by both novice and advanced users.
Automated population of an i2b2 clinical data warehouse from an openEHR-based data repository.
Haarbrandt, Birger; Tute, Erik; Marschollek, Michael
2016-10-01
Detailed Clinical Model (DCM) approaches have recently seen wider adoption. More specifically, openEHR-based application systems are now used in production in several countries, serving diverse fields of application such as health information exchange, clinical registries and electronic medical record systems. However, approaches to efficiently provide openEHR data to researchers for secondary use have not yet been investigated or established. We developed an approach to automatically load openEHR data instances into the open source clinical data warehouse i2b2. We evaluated query capabilities and the performance of this approach in the context of the Hanover Medical School Translational Research Framework (HaMSTR), an openEHR-based data repository. Automated creation of i2b2 ontologies from archetypes and templates and the integration of openEHR data instances from 903 patients of a paediatric intensive care unit has been achieved. In total, it took an average of ∼2527s to create 2.311.624 facts from 141.917 XML documents. Using the imported data, we conducted sample queries to compare the performance with two openEHR systems and to investigate if this representation of data is feasible to support cohort identification and record level data extraction. We found the automated population of an i2b2 clinical data warehouse to be a feasible approach to make openEHR data instances available for secondary use. Such an approach can facilitate timely provision of clinical data to researchers. It complements analytics based on the Archetype Query Language by allowing querying on both, legacy clinical data sources and openEHR data instances at the same time and by providing an easy-to-use query interface. However, due to different levels of expressiveness in the data models, not all semantics could be preserved during the ETL process. Copyright © 2016 Elsevier Inc. All rights reserved.
Hybrid ontology for semantic information retrieval model using keyword matching indexing system.
Uthayan, K R; Mala, G S Anandha
2015-01-01
Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.
Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System
Uthayan, K. R.; Anandha Mala, G. S.
2015-01-01
Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology. PMID:25922851
Archetype-based data warehouse environment to enable the reuse of electronic health record data.
Marco-Ruiz, Luis; Moner, David; Maldonado, José A; Kolstrup, Nils; Bellika, Johan G
2015-09-01
The reuse of data captured during health care delivery is essential to satisfy the demands of clinical research and clinical decision support systems. A main barrier for the reuse is the existence of legacy formats of data and the high granularity of it when stored in an electronic health record (EHR) system. Thus, we need mechanisms to standardize, aggregate, and query data concealed in the EHRs, to allow their reuse whenever they are needed. To create a data warehouse infrastructure using archetype-based technologies, standards and query languages to enable the interoperability needed for data reuse. The work presented makes use of best of breed archetype-based data transformation and storage technologies to create a workflow for the modeling, extraction, transformation and load of EHR proprietary data into standardized data repositories. We converted legacy data and performed patient-centered aggregations via archetype-based transformations. Later, specific purpose aggregations were performed at a query level for particular use cases. Laboratory test results of a population of 230,000 patients belonging to Troms and Finnmark counties in Norway requested between January 2013 and November 2014 have been standardized. Test records normalization has been performed by defining transformation and aggregation functions between the laboratory records and an archetype. These mappings were used to automatically generate open EHR compliant data. These data were loaded into an archetype-based data warehouse. Once loaded, we defined indicators linked to the data in the warehouse to monitor test activity of Salmonella and Pertussis using the archetype query language. Archetype-based standards and technologies can be used to create a data warehouse environment that enables data from EHR systems to be reused in clinical research and decision support systems. With this approach, existing EHR data becomes available in a standardized and interoperable format, thus opening a world of possibilities toward semantic or concept-based reuse, query and communication of clinical data. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Array Databases: Agile Analytics (not just) for the Earth Sciences
NASA Astrophysics Data System (ADS)
Baumann, P.; Misev, D.
2015-12-01
Gridded data, such as images, image timeseries, and climate datacubes, today are managed separately from the metadata, and with different, restricted retrieval capabilities. While databases are good at metadata modelled in tables, XML hierarchies, or RDF graphs, they traditionally do not support multi-dimensional arrays.This gap is being closed by Array Databases, pioneered by the scalable rasdaman ("raster data manager") array engine. Its declarative query language, rasql, extends SQL with array operators which are optimized and parallelized on server side. Installations can easily be mashed up securely, thereby enabling large-scale location-transparent query processing in federations. Domain experts value the integration with their commonly used tools leading to a quick learning curve.Earth, Space, and Life sciences, but also Social sciences as well as business have massive amounts of data and complex analysis challenges that are answered by rasdaman. As of today, rasdaman is mature and in operational use on hundreds of Terabytes of timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Additionally, its concepts have shaped international Big Data standards in the field, including the forthcoming array extension to ISO SQL, many of which are supported by both open-source and commercial systems meantime. In the geo field, rasdaman is reference implementation for the Open Geospatial Consortium (OGC) Big Data standard, WCS, now also under adoption by ISO. Further, rasdaman is in the final stage of OSGeo incubation.In this contribution we present array queries a la rasdaman, describe the architecture and novel optimization and parallelization techniques introduced in 2015, and put this in context of the intercontinental EarthServer initiative which utilizes rasdaman for enabling agile analytics on Petascale datacubes.
Framing Electronic Medical Records as Polylingual Documents in Query Expansion
Huang, Edward W; Wang, Sheng; Lee, Doris Jung-Lin; Zhang, Runshun; Liu, Baoyan; Zhou, Xuezhong; Zhai, ChengXiang
2017-01-01
We present a study of electronic medical record (EMR) retrieval that emulates situations in which a doctor treats a new patient. Given a query consisting of a new patient’s symptoms, the retrieval system returns the set of most relevant records of previously treated patients. However, due to semantic, functional, and treatment synonyms in medical terminology, queries are often incomplete and thus require enhancement. In this paper, we present a topic model that frames symptoms and treatments as separate languages. Our experimental results show that this method improves retrieval performance over several baselines with statistical significance. These baselines include methods used in prior studies as well as state-of-the-art embedding techniques. Finally, we show that our proposed topic model discovers all three types of synonyms to improve medical record retrieval. PMID:29854161
Peute, Linda W P; de Keizer, Nicolette F; Jaspers, Monique W M
2015-06-01
To compare the performance of the Concurrent (CTA) and Retrospective (RTA) Think Aloud method and to assess their value in a formative usability evaluation of an Intensive Care Registry-physician data query tool designed to support ICU quality improvement processes. Sixteen representative intensive care physicians participated in the usability evaluation study. Subjects were allocated to either the CTA or RTA method by a matched randomized design. Each subject performed six usability-testing tasks of varying complexity in the query tool in a real-working context. Methods were compared with regard to number and type of problems detected. Verbal protocols of CTA and RTA were analyzed in depth to assess differences in verbal output. Standardized measures were applied to assess thoroughness in usability problem detection weighted per problem severity level and method overall effectiveness in detecting usability problems with regard to the time subjects spent per method. The usability evaluation of the data query tool revealed a total of 43 unique usability problems that the intensive care physicians encountered. CTA detected unique usability problems with regard to graphics/symbols, navigation issues, error messages, and the organization of information on the query tool's screens. RTA detected unique issues concerning system match with subjects' language and applied terminology. The in-depth verbal protocol analysis of CTA provided information on intensive care physicians' query design strategies. Overall, CTA performed significantly better than RTA in detecting usability problems. CTA usability problem detection effectiveness was 0.80 vs. 0.62 (p<0.05) respectively, with an average difference of 42% less time spent per subject compared to RTA. In addition, CTA was more thorough in detecting usability problems of a moderate (0.85 vs. 0.7) and severe nature (0.71 vs. 0.57). In this study, the CTA is more effective in usability-problem detection and provided clarification of intensive care physician query design strategies to inform redesign of the query tool. However, CTA does not outperform RTA. The RTA additionally elucidated unique usability problems and new user requirements. Based on the results of this study, we recommend the use of CTA in formative usability evaluation studies of health information technology. However, we recommend further research on the application of RTA in usability studies with regard to user expertise and experience when focusing on user profile customized (re)design. Copyright © 2015 Elsevier Inc. All rights reserved.
Behavioral Issues in the Use of Interactive Systems
1976-12-14
communication. American Psychologist, 1971, 26, 949-961. Codd , E. F . Seven steps to rendezvous with the casual user. IBM Research Report, RI 1333. 1974. Conrad...Approved for public releasel distribution unlimited. F LL(I j i’ This ~Research wavs spotdi pr yteEnierons~ao _ 1Repr o seionrin who Zur ichati emte...natural language ( Codd , 1974). Behavioral work has shown that non-programmers could learn to use a laboratory query language in about 3 hours (Thomas
2014-01-01
model. We combinatorially replaced tokens with words from our vocabulary to score the relationships be- tween concepts. The second-order queries (not...is the action, y3 is an object, and y4 is the scene. Language Potentials: We captialize on state-of-the-art natural language models to score the rela...model estimated on billions of web-pages [4, 10] to form each L(·). Scoring Function: Given the image x, we score a possible labeling configuration y of
Voice-enabled Knowledge Engine using Flood Ontology and Natural Language Processing
NASA Astrophysics Data System (ADS)
Sermet, M. Y.; Demir, I.; Krajewski, W. F.
2015-12-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts, flood-related data, information and interactive visualizations for communities in Iowa. The IFIS is designed for use by general public, often people with no domain knowledge and limited general science background. To improve effective communication with such audience, we have introduced a voice-enabled knowledge engine on flood related issues in IFIS. Instead of navigating within many features and interfaces of the information system and web-based sources, the system provides dynamic computations based on a collection of built-in data, analysis, and methods. The IFIS Knowledge Engine connects to real-time stream gauges, in-house data sources, analysis and visualization tools to answer natural language questions. Our goal is the systematization of data and modeling results on flood related issues in Iowa, and to provide an interface for definitive answers to factual queries. The goal of the knowledge engine is to make all flood related knowledge in Iowa easily accessible to everyone, and support voice-enabled natural language input. We aim to integrate and curate all flood related data, implement analytical and visualization tools, and make it possible to compute answers from questions. The IFIS explicitly implements analytical methods and models, as algorithms, and curates all flood related data and resources so that all these resources are computable. The IFIS Knowledge Engine computes the answer by deriving it from its computational knowledge base. The knowledge engine processes the statement, access data warehouse, run complex database queries on the server-side and return outputs in various formats. This presentation provides an overview of IFIS Knowledge Engine, its unique information interface and functionality as an educational tool, and discusses the future plans for providing knowledge on flood related issues and resources. IFIS Knowledge Engine provides an alternative access method to these comprehensive set of tools and data resources available in IFIS. Current implementation of the system accepts free-form input and voice recognition capabilities within browser and mobile applications.
CE-SAM: a conversational interface for ISR mission support
NASA Astrophysics Data System (ADS)
Pizzocaro, Diego; Parizas, Christos; Preece, Alun; Braines, Dave; Mott, David; Bakdash, Jonathan Z.
2013-05-01
There is considerable interest in natural language conversational interfaces. These allow for complex user interactions with systems, such as fulfilling information requirements in dynamic environments, without requiring extensive training or a technical background (e.g. in formal query languages or schemas). To leverage the advantages of conversational interactions we propose CE-SAM (Controlled English Sensor Assignment to Missions), a system that guides users through refining and satisfying their information needs in the context of Intelligence, Surveillance, and Reconnaissance (ISR) operations. The rapidly-increasing availability of sensing assets and other information sources poses substantial challenges to effective ISR resource management. In a coalition context, the problem is even more complex, because assets may be "owned" by different partners. We show how CE-SAM allows a user to refine and relate their ISR information needs to pre-existing concepts in an ISR knowledge base, via conversational interaction implemented on a tablet device. The knowledge base is represented using Controlled English (CE) - a form of controlled natural language that is both human-readable and machine processable (i.e. can be used to implement automated reasoning). Users interact with the CE-SAM conversational interface using natural language, which the system converts to CE for feeding-back to the user for confirmation (e.g. to reduce misunderstanding). We show that this process not only allows users to access the assets that can support their mission needs, but also assists them in extending the CE knowledge base with new concepts.
The implementation of POSTGRES
NASA Technical Reports Server (NTRS)
Stonebraker, Michael; Rowe, Lawrence A.; Hirohama, Michael
1990-01-01
The design and implementation decisions made for the three-dimensional data manager POSTGRES are discussed. Attention is restricted to the DBMS backend functions. The POSTGRES data model and query language, the rules system, the storage system, the POSTGRES implementation, and the current status and performance are discussed.
Remote file inquiry (RFI) system
NASA Technical Reports Server (NTRS)
1975-01-01
System interrogates and maintains user-definable data files from remote terminals, using English-like, free-form query language easily learned by persons not proficient in computer programming. System operates in asynchronous mode, allowing any number of inquiries within limitation of available core to be active concurrently.
Knowledge-Based Information Retrieval.
ERIC Educational Resources Information Center
Ford, Nigel
1991-01-01
Discussion of information retrieval focuses on theoretical and empirical advances in knowledge-based information retrieval. Topics discussed include the use of natural language for queries; the use of expert systems; intelligent tutoring systems; user modeling; the need for evaluation of system effectiveness; and examples of systems, including…
Secure Skyline Queries on Cloud Platform.
Liu, Jinfei; Yang, Juncheng; Xiong, Li; Pei, Jian
2017-04-01
Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions.
On the structure of Bayesian network for Indonesian text document paraphrase identification
NASA Astrophysics Data System (ADS)
Prayogo, Ario Harry; Syahrul Mubarok, Mohamad; Adiwijaya
2018-03-01
Paraphrase identification is an important process within natural language processing. The idea is to automatically recognize phrases that have different forms but contain same meanings. For examples if we input query “causing fire hazard”, then the computer has to recognize this query that this query has same meaning as “the cause of fire hazard. Paraphrasing is an activity that reveals the meaning of an expression, writing, or speech using different words or forms, especially to achieve greater clarity. In this research we will focus on classifying two Indonesian sentences whether it is a paraphrase to each other or not. There are four steps in this research, first is preprocessing, second is feature extraction, third is classifier building, and the last is performance evaluation. Preprocessing consists of tokenization, non-alphanumerical removal, and stemming. After preprocessing we will conduct feature extraction in order to build new features from given dataset. There are two kinds of features in the research, syntactic features and semantic features. Syntactic features consist of normalized levenshtein distance feature, term-frequency based cosine similarity feature, and LCS (Longest Common Subsequence) feature. Semantic features consist of Wu and Palmer feature and Shortest Path Feature. We use Bayesian Networks as the method of training the classifier. Parameter estimation that we use is called MAP (Maximum A Posteriori). For structure learning of Bayesian Networks DAG (Directed Acyclic Graph), we use BDeu (Bayesian Dirichlet equivalent uniform) scoring function and for finding DAG with the best BDeu score, we use K2 algorithm. In evaluation step we perform cross-validation. The average result that we get from testing the classifier as follows: Precision 75.2%, Recall 76.5%, F1-Measure 75.8% and Accuracy 75.6%.
Enriching text with images and colored light
NASA Astrophysics Data System (ADS)
Sekulovski, Dragan; Geleijnse, Gijs; Kater, Bram; Korst, Jan; Pauws, Steffen; Clout, Ramon
2008-01-01
We present an unsupervised method to enrich textual applications with relevant images and colors. The images are collected by querying large image repositories and subsequently the colors are computed using image processing. A prototype system based on this method is presented where the method is applied to song lyrics. In combination with a lyrics synchronization algorithm the system produces a rich multimedia experience. In order to identify terms within the text that may be associated with images and colors, we select noun phrases using a part of speech tagger. Large image repositories are queried with these terms. Per term representative colors are extracted using the collected images. Hereto, we either use a histogram-based or a mean shift-based algorithm. The representative color extraction uses the non-uniform distribution of the colors found in the large repositories. The images that are ranked best by the search engine are displayed on a screen, while the extracted representative colors are rendered on controllable lighting devices in the living room. We evaluate our method by comparing the computed colors to standard color representations of a set of English color terms. A second evaluation focuses on the distance in color between a queried term in English and its translation in a foreign language. Based on results from three sets of terms, a measure of suitability of a term for color extraction based on KL Divergence is proposed. Finally, we compare the performance of the algorithm using either the automatically indexed repository of Google Images and the manually annotated Flickr.com. Based on the results of these experiments, we conclude that using the presented method we can compute the relevant color for a term using a large image repository and image processing.
An approach in building a chemical compound search engine in oracle database.
Wang, H; Volarath, P; Harrison, R
2005-01-01
A searching or identifying of chemical compounds is an important process in drug design and in chemistry research. An efficient search engine involves a close coupling of the search algorithm and database implementation. The database must process chemical structures, which demands the approaches to represent, store, and retrieve structures in a database system. In this paper, a general database framework for working as a chemical compound search engine in Oracle database is described. The framework is devoted to eliminate data type constrains for potential search algorithms, which is a crucial step toward building a domain specific query language on top of SQL. A search engine implementation based on the database framework is also demonstrated. The convenience of the implementation emphasizes the efficiency and simplicity of the framework.
An SQL query generator for CLIPS
NASA Technical Reports Server (NTRS)
Snyder, James; Chirica, Laurian
1990-01-01
As expert systems become more widely used, their access to large amounts of external information becomes increasingly important. This information exists in several forms such as statistical, tabular data, knowledge gained by experts and large databases of information maintained by companies. Because many expert systems, including CLIPS, do not provide access to this external information, much of the usefulness of expert systems is left untapped. The scope of this paper is to describe a database extension for the CLIPS expert system shell. The current industry standard database language is SQL. Due to SQL standardization, large amounts of information stored on various computers, potentially at different locations, will be more easily accessible. Expert systems should be able to directly access these existing databases rather than requiring information to be re-entered into the expert system environment. The ORACLE relational database management system (RDBMS) was used to provide a database connection within the CLIPS environment. To facilitate relational database access a query generation system was developed as a CLIPS user function. The queries are entered in a CLlPS-like syntax and are passed to the query generator, which constructs and submits for execution, an SQL query to the ORACLE RDBMS. The query results are asserted as CLIPS facts. The query generator was developed primarily for use within the ICADS project (Intelligent Computer Aided Design System) currently being developed by the CAD Research Unit in the California Polytechnic State University (Cal Poly). In ICADS, there are several parallel or distributed expert systems accessing a common knowledge base of facts. Expert system has a narrow domain of interest and therefore needs only certain portions of the information. The query generator provides a common method of accessing this information and allows the expert system to specify what data is needed without specifying how to retrieve it.
VPipe: Virtual Pipelining for Scheduling of DAG Stream Query Plans
NASA Astrophysics Data System (ADS)
Wang, Song; Gupta, Chetan; Mehta, Abhay
There are data streams all around us that can be harnessed for tremendous business and personal advantage. For an enterprise-level stream processing system such as CHAOS [1] (Continuous, Heterogeneous Analytic Over Streams), handling of complex query plans with resource constraints is challenging. While several scheduling strategies exist for stream processing, efficient scheduling of complex DAG query plans is still largely unsolved. In this paper, we propose a novel execution scheme for scheduling complex directed acyclic graph (DAG) query plans with meta-data enriched stream tuples. Our solution, called Virtual Pipelined Chain (or VPipe Chain for short), effectively extends the "Chain" pipelining scheduling approach to complex DAG query plans.
SAFOD Brittle Microstructure and Mechanics Knowledge Base (BM2KB)
NASA Astrophysics Data System (ADS)
Babaie, Hassan A.; Broda Cindi, M.; Hadizadeh, Jafar; Kumar, Anuj
2013-07-01
Scientific drilling near Parkfield, California has established the San Andreas Fault Observatory at Depth (SAFOD), which provides the solid earth community with short range geophysical and fault zone material data. The BM2KB ontology was developed in order to formalize the knowledge about brittle microstructures in the fault rocks sampled from the SAFOD cores. A knowledge base, instantiated from this domain ontology, stores and presents the observed microstructural and analytical data with respect to implications for brittle deformation and mechanics of faulting. These data can be searched on the knowledge base‧s Web interface by selecting a set of terms (classes, properties) from different drop-down lists that are dynamically populated from the ontology. In addition to this general search, a query can also be conducted to view data contributed by a specific investigator. A search by sample is done using the EarthScope SAFOD Core Viewer that allows a user to locate samples on high resolution images of core sections belonging to different runs and holes. The class hierarchy of the BM2KB ontology was initially designed using the Unified Modeling Language (UML), which was used as a visual guide to develop the ontology in OWL applying the Protégé ontology editor. Various Semantic Web technologies such as the RDF, RDFS, and OWL ontology languages, SPARQL query language, and Pellet reasoning engine, were used to develop the ontology. An interactive Web application interface was developed through Jena, a java based framework, with AJAX technology, jsp pages, and java servlets, and deployed via an Apache tomcat server. The interface allows the registered user to submit data related to their research on a sample of the SAFOD core. The submitted data, after initial review by the knowledge base administrator, are added to the extensible knowledge base and become available in subsequent queries to all types of users. The interface facilitates inference capabilities in the ontology, supports SPARQL queries, allows for modifications based on successive discoveries, and provides an accessible knowledge base on the Web.
Advanced Query Formulation in Deductive Databases.
ERIC Educational Resources Information Center
Niemi, Timo; Jarvelin, Kalervo
1992-01-01
Discusses deductive databases and database management systems (DBMS) and introduces a framework for advanced query formulation for end users. Recursive processing is described, a sample extensional database is presented, query types are explained, and criteria for advanced query formulation from the end user's viewpoint are examined. (31…
NASA Technical Reports Server (NTRS)
Barry, Matthew R.
2006-01-01
The X-Windows Process Validation Table (PVT) Widget Class ( Class is used here in the object-oriented-programming sense of the word) was devised to simplify the task of implementing network registration services for Information Sharing Protocol (ISP) graphical-user-interface (GUI) computer programs. Heretofore, ISP PVT programming tasks have required many method calls to identify, query, and interpret the connections and messages exchanged between a client and a PVT server. Normally, programmers have utilized direct access to UNIX socket libraries to implement the PVT protocol queries, necessitating the use of many lines of source code to perform frequent tasks. Now, the X-Windows PVT Widget Class encapsulates ISP client server network registration management tasks within the framework of an X Windows widget. Use of the widget framework enables an X Windows GUI program to interact with PVT services in an abstract way and in the same manner as that of other graphical widgets, making it easier to program PVT clients. Wrapping the PVT services inside the widget framework enables a programmer to treat a PVT server interface as though it were a GUI. Moreover, an alternate subclass could implement another service in a widget of the same type. This program was written by Matthew R. Barry of United Space Alliance for Johnson Space Center. For further information, contact the Johnson Technology Transfer Office at (281) 483-3809. MSC-23582 Shuttle Data Center File- Processing Tool in Java A Java-language computer program has been written to facilitate mining of data in files in the Shuttle Data Center (SDC) archives. This program can be executed on a variety of workstations or via Web-browser programs. This program is partly similar to prior C-language programs used for the same purpose, while differing from those programs in that it exploits the platform-neutrality of Java in implementing several features that are important for analysis of large sets of time-series data. The program supports regular expression queries of SDC archive files, reads the files, interleaves the time-stamped samples according to a chosen output, then transforms the results into that format. A user can choose among a variety of output file formats that are useful for diverse purposes, including plotting, Markov modeling, multivariate density estimation, and wavelet multiresolution analysis, as well as for playback of data in support of simulation and testing.
Albin, Aaron; Ji, Xiaonan; Borlawsky, Tara B; Ye, Zhan; Lin, Simon; Payne, Philip Ro; Huang, Kun; Xiang, Yang
2014-10-07
The Unified Medical Language System (UMLS) contains many important ontologies in which terms are connected by semantic relations. For many studies on the relationships between biomedical concepts, the use of transitively associated information from ontologies and the UMLS has been shown to be effective. Although there are a few tools and methods available for extracting transitive relationships from the UMLS, they usually have major restrictions on the length of transitive relations or on the number of data sources. Our goal was to design an efficient online platform that enables efficient studies on the conceptual relationships between any medical terms. To overcome the restrictions of available methods and to facilitate studies on the conceptual relationships between medical terms, we developed a Web platform, onGrid, that supports efficient transitive queries and conceptual relationship studies using the UMLS. This framework uses the latest technique in converting natural language queries into UMLS concepts, performs efficient transitive queries, and visualizes the result paths. It also dynamically builds a relationship matrix for two sets of input biomedical terms. We are thus able to perform effective studies on conceptual relationships between medical terms based on their relationship matrix. The advantage of onGrid is that it can be applied to study any two sets of biomedical concept relations and the relations within one set of biomedical concepts. We use onGrid to study the disease-disease relationships in the Online Mendelian Inheritance in Man (OMIM). By crossvalidating our results with an external database, the Comparative Toxicogenomics Database (CTD), we demonstrated that onGrid is effective for the study of conceptual relationships between medical terms. onGrid is an efficient tool for querying the UMLS for transitive relations, studying the relationship between medical terms, and generating hypotheses.
HBVPathDB: a database of HBV infection-related molecular interaction network.
Zhang, Yi; Bo, Xiao-Chen; Yang, Jing; Wang, Sheng-Qi
2005-03-21
To describe molecules or genes interaction between hepatitis B viruses (HBV) and host, for understanding how virus' and host's genes and molecules are networked to form a biological system and for perceiving mechanism of HBV infection. The knowledge of HBV infection-related reactions was organized into various kinds of pathways with carefully drawn graphs in HBVPathDB. Pathway information is stored with relational database management system (DBMS), which is currently the most efficient way to manage large amounts of data and query is implemented with powerful Structured Query Language (SQL). The search engine is written using Personal Home Page (PHP) with SQL embedded and web retrieval interface is developed for searching with Hypertext Markup Language (HTML). We present the first version of HBVPathDB, which is a HBV infection-related molecular interaction network database composed of 306 pathways with 1 050 molecules involved. With carefully drawn graphs, pathway information stored in HBVPathDB can be browsed in an intuitive way. We develop an easy-to-use interface for flexible accesses to the details of database. Convenient software is implemented to query and browse the pathway information of HBVPathDB. Four search page layout options-category search, gene search, description search, unitized search-are supported by the search engine of the database. The database is freely available at http://www.bio-inf.net/HBVPathDB/HBV/. The conventional perspective HBVPathDB have already contained a considerable amount of pathway information with HBV infection related, which is suitable for in-depth analysis of molecular interaction network of virus and host. HBVPathDB integrates pathway data-sets with convenient software for query, browsing, visualization, that provides users more opportunity to identify regulatory key molecules as potential drug targets and to explore the possible mechanism of HBV infection based on gene expression datasets.
Parallel Index and Query for Large Scale Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Jerry; Wu, Kesheng; Ruebel, Oliver
2011-07-18
Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing ofmore » a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.« less
A Survey in Indexing and Searching XML Documents.
ERIC Educational Resources Information Center
Luk, Robert W. P.; Leong, H. V.; Dillon, Tharam S.; Chan, Alvin T. S.; Croft, W. Bruce; Allan, James
2002-01-01
Discussion of XML focuses on indexing techniques for XML documents, grouping them into flat-file, semistructured, and structured indexing paradigms. Highlights include searching techniques, including full text search and multistage search; search result presentations; database and information retrieval system integration; XML query languages; and…
Constructing a Graph Database for Semantic Literature-Based Discovery.
Hristovski, Dimitar; Kastrin, Andrej; Dinevski, Dejan; Rindflesch, Thomas C
2015-01-01
Literature-based discovery (LBD) generates discoveries, or hypotheses, by combining what is already known in the literature. Potential discoveries have the form of relations between biomedical concepts; for example, a drug may be determined to treat a disease other than the one for which it was intended. LBD views the knowledge in a domain as a network; a set of concepts along with the relations between them. As a starting point, we used SemMedDB, a database of semantic relations between biomedical concepts extracted with SemRep from Medline. SemMedDB is distributed as a MySQL relational database, which has some problems when dealing with network data. We transformed and uploaded SemMedDB into the Neo4j graph database, and implemented the basic LBD discovery algorithms with the Cypher query language. We conclude that storing the data needed for semantic LBD is more natural in a graph database. Also, implementing LBD discovery algorithms is conceptually simpler with a graph query language when compared with standard SQL.
Influenza-like illness surveillance on Twitter through automated learning of naïve language.
Gesualdo, Francesco; Stilo, Giovanni; Agricola, Eleonora; Gonfiantini, Michaela V; Pandolfi, Elisabetta; Velardi, Paola; Tozzi, Alberto E
2013-01-01
Twitter has the potential to be a timely and cost-effective source of data for syndromic surveillance. When speaking of an illness, Twitter users often report a combination of symptoms, rather than a suspected or final diagnosis, using naïve, everyday language. We developed a minimally trained algorithm that exploits the abundance of health-related web pages to identify all jargon expressions related to a specific technical term. We then translated an influenza case definition into a Boolean query, each symptom being described by a technical term and all related jargon expressions, as identified by the algorithm. Subsequently, we monitored all tweets that reported a combination of symptoms satisfying the case definition query. In order to geolocalize messages, we defined 3 localization strategies based on codes associated with each tweet. We found a high correlation coefficient between the trend of our influenza-positive tweets and ILI trends identified by US traditional surveillance systems.
Influenza-Like Illness Surveillance on Twitter through Automated Learning of Naïve Language
Gesualdo, Francesco; Stilo, Giovanni; Agricola, Eleonora; Gonfiantini, Michaela V.; Pandolfi, Elisabetta; Velardi, Paola; Tozzi, Alberto E.
2013-01-01
Twitter has the potential to be a timely and cost-effective source of data for syndromic surveillance. When speaking of an illness, Twitter users often report a combination of symptoms, rather than a suspected or final diagnosis, using naïve, everyday language. We developed a minimally trained algorithm that exploits the abundance of health-related web pages to identify all jargon expressions related to a specific technical term. We then translated an influenza case definition into a Boolean query, each symptom being described by a technical term and all related jargon expressions, as identified by the algorithm. Subsequently, we monitored all tweets that reported a combination of symptoms satisfying the case definition query. In order to geolocalize messages, we defined 3 localization strategies based on codes associated with each tweet. We found a high correlation coefficient between the trend of our influenza-positive tweets and ILI trends identified by US traditional surveillance systems. PMID:24324799
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-08-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-01-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650
AiGERM: A logic programming front end for GERM
NASA Technical Reports Server (NTRS)
Hashim, Safaa H.
1990-01-01
AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.
EAGLE: 'EAGLE'Is an' Algorithmic Graph Library for Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-01-16
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. Today there is no tools to conduct "graph mining" on RDF standard data sets. We address that need through implementation of popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, degree distribution,more » diversity degree, PageRank, etc.). We implement these algorithms as SPARQL queries, wrapped within Python scripts and call our software tool as EAGLE. In RDF style, EAGLE stands for "EAGLE 'Is an' algorithmic graph library for exploration. EAGLE is like 'MATLAB' for 'Linked Data.'« less
Biotea: semantics for Pubmed Central.
Garcia, Alexander; Lopez, Federico; Garcia, Leyla; Giraldo, Olga; Bucheli, Victor; Dumontier, Michel
2018-01-01
A significant portion of biomedical literature is represented in a manner that makes it difficult for consumers to find or aggregate content through a computational query. One approach to facilitate reuse of the scientific literature is to structure this information as linked data using standardized web technologies. In this paper we present the second version of Biotea, a semantic, linked data version of the open-access subset of PubMed Central that has been enhanced with specialized annotation pipelines that uses existing infrastructure from the National Center for Biomedical Ontology. We expose our models, services, software and datasets. Our infrastructure enables manual and semi-automatic annotation, resulting data are represented as RDF-based linked data and can be readily queried using the SPARQL query language. We illustrate the utility of our system with several use cases. Our datasets, methods and techniques are available at http://biotea.github.io.
Development of a replicated database of DHCP data for evaluation of drug use.
Graber, S E; Seneker, J A; Stahl, A A; Franklin, K O; Neel, T E; Miller, R A
1996-01-01
This case report describes development and testing of a method to extract clinical information stored in the Veterans Affairs (VA) Decentralized Hospital Computer System (DHCP) for the purpose of analyzing data about groups of patients. The authors used a microcomputer-based, structured query language (SQL)-compatible, relational database system to replicate a subset of the Nashville VA Hospital's DHCP patient database. This replicated database contained the complete current Nashville DHCP prescription, provider, patient, and drug data sets, and a subset of the laboratory data. A pilot project employed this replicated database to answer questions that might arise in drug-use evaluation, such as identification of cases of polypharmacy, suboptimal drug regimens, and inadequate laboratory monitoring of drug therapy. These database queries included as candidates for review all prescriptions for all outpatients. The queries demonstrated that specific drug-use events could be identified for any time interval represented in the replicated database. PMID:8653451
Development of a replicated database of DHCP data for evaluation of drug use.
Graber, S E; Seneker, J A; Stahl, A A; Franklin, K O; Neel, T E; Miller, R A
1996-01-01
This case report describes development and testing of a method to extract clinical information stored in the Veterans Affairs (VA) Decentralized Hospital Computer System (DHCP) for the purpose of analyzing data about groups of patients. The authors used a microcomputer-based, structured query language (SQL)-compatible, relational database system to replicate a subset of the Nashville VA Hospital's DHCP patient database. This replicated database contained the complete current Nashville DHCP prescription, provider, patient, and drug data sets, and a subset of the laboratory data. A pilot project employed this replicated database to answer questions that might arise in drug-use evaluation, such as identification of cases of polypharmacy, suboptimal drug regimens, and inadequate laboratory monitoring of drug therapy. These database queries included as candidates for review all prescriptions for all outpatients. The queries demonstrated that specific drug-use events could be identified for any time interval represented in the replicated database.
Spatial Knowledge Infrastructures - Creating Value for Policy Makers and Benefits the Community
NASA Astrophysics Data System (ADS)
Arnold, L. M.
2016-12-01
The spatial data infrastructure is arguably one of the most significant advancements in the spatial sector. It's been a game changer for governments, providing for the coordination and sharing of spatial data across organisations and the provision of accessible information to the broader community of users. Today however, end-users such as policy-makers require far more from these spatial data infrastructures. They want more than just data; they want the knowledge that can be extracted from data and they don't want to have to download, manipulate and process data in order to get the knowledge they seek. It's time for the spatial sector to reduce its focus on data in spatial data infrastructures and take a more proactive step in emphasising and delivering the knowledge value. Nowadays, decision-makers want to be able to query at will the data to meet their immediate need for knowledge. This is a new value proposal for the decision-making consumer and will require a shift in thinking. This paper presents a model for a Spatial Knowledge Infrastructure and underpinning methods that will realise a new real-time approach to delivering knowledge. The methods embrace the new capabilities afforded through the sematic web, domain and process ontologies and natural query language processing. Semantic Web technologies today have the potential to transform the spatial industry into more than just a distribution channel for data. The Semantic Web RDF (Resource Description Framework) enables meaning to be drawn from data automatically. While pushing data out to end-users will remain a central role for data producers, the power of the semantic web is that end-users have the ability to marshal a broad range of spatial resources via a query to extract knowledge from available data. This can be done without actually having to configure systems specifically for the end-user. All data producers need do is make data accessible in RDF and the spatial analytics does the rest.
Cognitive issues in searching images with visual queries
NASA Astrophysics Data System (ADS)
Yu, ByungGu; Evens, Martha W.
1999-01-01
In this paper, we propose our image indexing technique and visual query processing technique. Our mental images are different from the actual retinal images and many things, such as personal interests, personal experiences, perceptual context, the characteristics of spatial objects, and so on, affect our spatial perception. These private differences are propagated into our mental images and so our visual queries become different from the real images that we want to find. This is a hard problem and few people have tried to work on it. In this paper, we survey the human mental imagery system, the human spatial perception, and discuss several kinds of visual queries. Also, we propose our own approach to visual query interpretation and processing.
Component Models for Semantic Web Languages
NASA Astrophysics Data System (ADS)
Henriksson, Jakob; Aßmann, Uwe
Intelligent applications and agents on the Semantic Web typically need to be specified with, or interact with specifications written in, many different kinds of formal languages. Such languages include ontology languages, data and metadata query languages, as well as transformation languages. As learnt from years of experience in development of complex software systems, languages need to support some form of component-based development. Components enable higher software quality, better understanding and reusability of already developed artifacts. Any component approach contains an underlying component model, a description detailing what valid components are and how components can interact. With the multitude of languages developed for the Semantic Web, what are their underlying component models? Do we need to develop one for each language, or is a more general and reusable approach achievable? We present a language-driven component model specification approach. This means that a component model can be (automatically) generated from a given base language (actually, its specification, e.g. its grammar). As a consequence, we can provide components for different languages and simplify the development of software artifacts used on the Semantic Web.
Secure Skyline Queries on Cloud Platform
Liu, Jinfei; Yang, Juncheng; Xiong, Li; Pei, Jian
2017-01-01
Outsourcing data and computation to cloud server provides a cost-effective way to support large scale data storage and query processing. However, due to security and privacy concerns, sensitive data (e.g., medical records) need to be protected from the cloud server and other unauthorized users. One approach is to outsource encrypted data to the cloud server and have the cloud server perform query processing on the encrypted data only. It remains a challenging task to support various queries over encrypted data in a secure and efficient way such that the cloud server does not gain any knowledge about the data, query, and query result. In this paper, we study the problem of secure skyline queries over encrypted data. The skyline query is particularly important for multi-criteria decision making but also presents significant challenges due to its complex computations. We propose a fully secure skyline query protocol on data encrypted using semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, which can be also used as a building block for other queries. Finally, we provide both serial and parallelized implementations and empirically study the protocols in terms of efficiency and scalability under different parameter settings, verifying the feasibility of our proposed solutions. PMID:28883710
Cluster-Based Query Expansion Using Language Modeling for Biomedical Literature Retrieval
ERIC Educational Resources Information Center
Xu, Xuheng
2011-01-01
The tremendously huge volume of biomedical literature, scientists' specific information needs, long terms of multiples words, and fundamental problems of synonym and polysemy have been challenging issues facing the biomedical information retrieval community researchers. Search engines have significantly improved the efficiency and effectiveness of…
NASA Astrophysics Data System (ADS)
Huanqin, Wu; Yasheng, Jin; Yugang, Dai
2017-06-01
Under the current situation where Internet technology develops rapidly, mobile E-commerce technology has brought great convenience to our life. Now, the graphical user interface (GUI) of most E-commerce platforms only supports Chinese. Thus, the development of Android client of E-commerce that supports ethnic languages owns a great prospect. The principle that combines front end design and database technology is adopted in this paper to construct the Android client system of E-commerce platforms that supports ethnic languages, which realizes the displaying, browsing, querying, searching, trading and other functions of ethnic characteristic agricultural products on android platforms.
Hewitt, Robin; Gobbi, Alberto; Lee, Man-Ling
2005-01-01
Relational databases are the current standard for storing and retrieving data in the pharmaceutical and biotech industries. However, retrieving data from a relational database requires specialized knowledge of the database schema and of the SQL query language. At Anadys, we have developed an easy-to-use system for searching and reporting data in a relational database to support our drug discovery project teams. This system is fast and flexible and allows users to access all data without having to write SQL queries. This paper presents the hierarchical, graph-based metadata representation and SQL-construction methods that, together, are the basis of this system's capabilities.
Health consumer-oriented information retrieval.
Claveau, Vincent; Hamon, Thierry; Le Maguer, Sébastien; Grabar, Natalia
2015-01-01
While patients can freely access their Electronic Health Records or online health information, they may not be able to correctly understand the content of these documents. One of the challenges is related to the difference between expert and non-expert languages. We propose to investigate this issue within the Information Retrieval field. The patient queries have to be associated with the corresponding expert documents, that provide trustworthy information. Our approach relies on a state-of-the-art IR system called Indri and on semantic resources. Different query expansion strategies are explored. Our system shows up to 0.6740 P@10, up to 0.7610 R@10, and up to 0.6793 NDCG@10.
Geographic Video 3d Data Model And Retrieval
NASA Astrophysics Data System (ADS)
Han, Z.; Cui, C.; Kong, Y.; Wu, H.
2014-04-01
Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.
EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith
Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less
EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases
Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith; ...
2017-11-06
Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less
High-performance analysis of filtered semantic graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluc, Aydin; Fox, Armando; Gilbert, John R.
2012-01-01
High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry "attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices and edges of interest. The filtered approach is superior due to its generality, ease of use, and memory efficiency, but may carry amore » performance cost. In the Knowledge Discovery Toolbox (KDT), a Python library for parallel graph computations, the user writes filters in a high-level language, but those filters result in relatively low performance due to the bottleneck of having to call into the Python interpreter for each edge. In this work, we use the Selective Embedded JIT Specialization (SEJITS) approach to automatically translate filters defined by programmers into a lower-level efficiency language, bypassing the upcall into Python. We evaluate our approach by comparing it with the high-performance C++ /MPI Combinatorial BLAS engine, and show that the productivity gained by using a high-level filtering language comes without sacrificing performance.« less
A new programming metaphor for image processing procedures
NASA Technical Reports Server (NTRS)
Smirnov, O. M.; Piskunov, N. E.
1992-01-01
Most image processing systems, besides an Application Program Interface (API) which lets users write their own image processing programs, also feature a higher level of programmability. Traditionally, this is a command or macro language, which can be used to build large procedures (scripts) out of simple programs or commands. This approach, a legacy of the teletypewriter has serious drawbacks. A command language is clumsy when (and if! it attempts to utilize the capabilities of a multitasking or multiprocessor environment, it is but adequate for real-time data acquisition and processing, it has a fairly steep learning curve, and the user interface is very inefficient,. especially when compared to a graphical user interface (GUI) that systems running under Xll or Windows should otherwise be able to provide. ll these difficulties stem from one basic problem: a command language is not a natural metaphor for an image processing procedure. A more natural metaphor - an image processing factory is described in detail. A factory is a set of programs (applications) that execute separate operations on images, connected by pipes that carry data (images and parameters) between them. The programs function concurrently, processing images as they arrive along pipes, and querying the user for whatever other input they need. From the user's point of view, programming (constructing) factories is a lot like playing with LEGO blocks - much more intuitive than writing scripts. Focus is on some of the difficulties of implementing factory support, most notably the design of an appropriate API. It also shows that factories retain all the functionality of a command language (including loops and conditional branches), while suffering from none of the drawbacks outlined above. Other benefits of factory programming include self-tuning factories and the process of encapsulation, which lets a factory take the shape of a standard application both from the system and the user's point of view, and thus be used as a component of other factories. A bare-bones prototype of factory programming was implemented under the PcIPS image processing system, and a complete version (on a multitasking platform) is under development.
Searching and Filtering Tweets: CSIRO at the TREC 2012 Microblog Track
2012-11-01
stages. We first evaluate the effect of tweet corpus pre- processing in vanilla runs (no query expansion), and then assess the effect of query expansion...Effect of a vanilla run on D4 index (both realtime and non-real-time), and query expansion methods based on the submitted runs for two sets of queries
Automated Assistance in the Formulation of Search Statements for Bibliographic Databases.
ERIC Educational Resources Information Center
Oakes, Michael P.; Taylor, Malcolm J.
1998-01-01
Reports on the design of an automated query system to help pharmacologists access the Derwent Drug File (DDF). Topics include knowledge types; knowledge representation; role of the search intermediary; vocabulary selection, thesaurus, and user input in natural language; browsing; evaluation methods; and search statement generation for the World…
ERIC Educational Resources Information Center
Golden, Cynthia; Eisenberger, Dorit
1990-01-01
Carnegie Mellon University's decision to standardize its administrative system development efforts on relational database technology and structured query language is discussed and its impact is examined in one of its larger, more widely used applications, the university information system. Advantages, new responsibilities, and challenges of the…
A Gene Ontology Tutorial in Python.
Vesztrocy, Alex Warwick; Dessimoz, Christophe
2017-01-01
This chapter is a tutorial on using Gene Ontology resources in the Python programming language. This entails querying the Gene Ontology graph, retrieving Gene Ontology annotations, performing gene enrichment analyses, and computing basic semantic similarity between GO terms. An interactive version of the tutorial, including solutions, is available at http://gohandbook.org .
ADVICE--Educational System for Teaching Database Courses
ERIC Educational Resources Information Center
Cvetanovic, M.; Radivojevic, Z.; Blagojevic, V.; Bojovic, M.
2011-01-01
This paper presents a Web-based educational system, ADVICE, that helps students to bridge the gap between database management system (DBMS) theory and practice. The usage of ADVICE is presented through a set of laboratory exercises developed to teach students conceptual and logical modeling, SQL, formal query languages, and normalization. While…
E = Mc(super 2) for the Chemist: When is Mass Conserved?
ERIC Educational Resources Information Center
Treptow. Richard S.
2005-01-01
An equation derived by Albert Einstein in 1905 that expresses a relationship between mass and energy, formulated as E = mc(super 2) is discussed with reference to the extent mass is conserved. This query can be used to challenge students and develop their language and critical thinking skills.
Kawano, Shin; Watanabe, Tsutomu; Mizuguchi, Sohei; Araki, Norie; Katayama, Toshiaki; Yamaguchi, Atsuko
2014-07-01
TogoTable (http://togotable.dbcls.jp/) is a web tool that adds user-specified annotations to a table that a user uploads. Annotations are drawn from several biological databases that use the Resource Description Framework (RDF) data model. TogoTable uses database identifiers (IDs) in the table as a query key for searching. RDF data, which form a network called Linked Open Data (LOD), can be searched from SPARQL endpoints using a SPARQL query language. Because TogoTable uses RDF, it can integrate annotations from not only the reference database to which the IDs originally belong, but also externally linked databases via the LOD network. For example, annotations in the Protein Data Bank can be retrieved using GeneID through links provided by the UniProt RDF. Because RDF has been standardized by the World Wide Web Consortium, any database with annotations based on the RDF data model can be easily incorporated into this tool. We believe that TogoTable is a valuable Web tool, particularly for experimental biologists who need to process huge amounts of data such as high-throughput experimental output. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Using an image-extended relational database to support content-based image retrieval in a PACS.
Traina, Caetano; Traina, Agma J M; Araújo, Myrian R B; Bueno, Josiane M; Chino, Fabio J T; Razente, Humberto; Azevedo-Marques, Paulo M
2005-12-01
This paper presents a new Picture Archiving and Communication System (PACS), called cbPACS, which has content-based image retrieval capabilities. The cbPACS answers range and k-nearest- neighbor similarity queries, employing a relational database manager extended to support images. The images are compared through their features, which are extracted by an image-processing module and stored in the extended relational database. The database extensions were developed aiming at efficiently answering similarity queries by taking advantage of specialized indexing methods. The main concept supporting the extensions is the definition, inside the relational manager, of distance functions based on features extracted from the images. An extension to the SQL language enables the construction of an interpreter that intercepts the extended commands and translates them to standard SQL, allowing any relational database server to be used. By now, the system implemented works on features based on color distribution of the images through normalized histograms as well as metric histograms. Metric histograms are invariant regarding scale, translation and rotation of images and also to brightness transformations. The cbPACS is prepared to integrate new image features, based on texture and shape of the main objects in the image.
Earth-Base: A Free And Open Source, RESTful Earth Sciences Platform
NASA Astrophysics Data System (ADS)
Kishor, P.; Heim, N. A.; Peters, S. E.; McClennen, M.
2012-12-01
This presentation describes the motivation, concept, and architecture behind Earth-Base, a web-based, RESTful data-management, analysis and visualization platform for earth sciences data. Traditionally web applications have been built directly accessing data from a database using a scripting language. While such applications are great at bring results to a wide audience, they are limited in scope to the imagination and capabilities of the application developer. Earth-Base decouples the data store from the web application by introducing an intermediate "data application" tier. The data application's job is to query the data store using self-documented, RESTful URIs, and send the results back formatted as JavaScript Object Notation (JSON). Decoupling the data store from the application allows virtually limitless flexibility in developing applications, both web-based for human consumption or programmatic for machine consumption. It also allows outside developers to use the data in their own applications, potentially creating applications that the original data creator and app developer may not have even thought of. Standardized specifications for URI-based querying and JSON-formatted results make querying and developing applications easy. URI-based querying also allows utilizing distributed datasets easily. Companion mechanisms for querying data snapshots aka time-travel, usage tracking and license management, and verification of semantic equivalence of data are also described. The latter promotes the "What You Expect Is What You Get" (WYEIWYG) principle that can aid in data citation and verification.
Virtual Observatory Interfaces to the Chandra Data Archive
NASA Astrophysics Data System (ADS)
Tibbetts, M.; Harbo, P.; Van Stone, D.; Zografou, P.
2014-05-01
The Chandra Data Archive (CDA) plays a central role in the operation of the Chandra X-ray Center (CXC) by providing access to Chandra data. Proprietary interfaces have been the backbone of the CDA throughout the Chandra mission. While these interfaces continue to provide the depth and breadth of mission specific access Chandra users expect, the CXC has been adding Virtual Observatory (VO) interfaces to the Chandra proposal catalog and observation catalog. VO interfaces provide standards-based access to Chandra data through simple positional queries or more complex queries using the Astronomical Data Query Language. Recent development at the CDA has generalized our existing VO services to create a suite of services that can be configured to provide VO interfaces to any dataset. This approach uses a thin web service layer for the individual VO interfaces, a middle-tier query component which is shared among the VO interfaces for parsing, scheduling, and executing queries, and existing web services for file and data access. The CXC VO services provide Simple Cone Search (SCS), Simple Image Access (SIA), and Table Access Protocol (TAP) implementations for both the Chandra proposal and observation catalogs within the existing archive architecture. Our work with the Chandra proposal and observation catalogs, as well as additional datasets beyond the CDA, illustrates how we can provide configurable VO services to extend core archive functionality.
Semantator: semantic annotator for converting biomedical text to linked data.
Tao, Cui; Song, Dezhao; Sharma, Deepak; Chute, Christopher G
2013-10-01
More than 80% of biomedical data is embedded in plain text. The unstructured nature of these text-based documents makes it challenging to easily browse and query the data of interest in them. One approach to facilitate browsing and querying biomedical text is to convert the plain text to a linked web of data, i.e., converting data originally in free text to structured formats with defined meta-level semantics. In this paper, we introduce Semantator (Semantic Annotator), a semantic-web-based environment for annotating data of interest in biomedical documents, browsing and querying the annotated data, and interactively refining annotation results if needed. Through Semantator, information of interest can be either annotated manually or semi-automatically using plug-in information extraction tools. The annotated results will be stored in RDF and can be queried using the SPARQL query language. In addition, semantic reasoners can be directly applied to the annotated data for consistency checking and knowledge inference. Semantator has been released online and was used by the biomedical ontology community who provided positive feedbacks. Our evaluation results indicated that (1) Semantator can perform the annotation functionalities as designed; (2) Semantator can be adopted in real applications in clinical and transactional research; and (3) the annotated results using Semantator can be easily used in Semantic-web-based reasoning tools for further inference. Copyright © 2013 Elsevier Inc. All rights reserved.
An adaptable architecture for patient cohort identification from diverse data sources.
Bache, Richard; Miles, Simon; Taweel, Adel
2013-12-01
We define and validate an architecture for systems that identify patient cohorts for clinical trials from multiple heterogeneous data sources. This architecture has an explicit query model capable of supporting temporal reasoning and expressing eligibility criteria independently of the representation of the data used to evaluate them. The architecture has the key feature that queries defined according to the query model are both pre and post-processed and this is used to address both structural and semantic heterogeneity. The process of extracting the relevant clinical facts is separated from the process of reasoning about them. A specific instance of the query model is then defined and implemented. We show that the specific instance of the query model has wide applicability. We then describe how it is used to access three diverse data warehouses to determine patient counts. Although the proposed architecture requires greater effort to implement the query model than would be the case for using just SQL and accessing a data-based management system directly, this effort is justified because it supports both temporal reasoning and heterogeneous data sources. The query model only needs to be implemented once no matter how many data sources are accessed. Each additional source requires only the implementation of a lightweight adaptor. The architecture has been used to implement a specific query model that can express complex eligibility criteria and access three diverse data warehouses thus demonstrating the feasibility of this approach in dealing with temporal reasoning and data heterogeneity.
Marian, Viorica; Bartolotti, James; Chabal, Sarah; Shook, Anthony
2012-01-01
Past research has demonstrated cross-linguistic, cross-modal, and task-dependent differences in neighborhood density effects, indicating a need to control for neighborhood variables when developing and interpreting research on language processing. The goals of the present paper are two-fold: (1) to introduce CLEARPOND (Cross-Linguistic Easy-Access Resource for Phonological and Orthographic Neighborhood Densities), a centralized database of phonological and orthographic neighborhood information, both within and between languages, for five commonly-studied languages: Dutch, English, French, German, and Spanish; and (2) to show how CLEARPOND can be used to compare general properties of phonological and orthographic neighborhoods across languages. CLEARPOND allows researchers to input a word or list of words and obtain phonological and orthographic neighbors, neighborhood densities, mean neighborhood frequencies, word lengths by number of phonemes and graphemes, and spoken-word frequencies. Neighbors can be defined by substitution, deletion, and/or addition, and the database can be queried separately along each metric or summed across all three. Neighborhood values can be obtained both within and across languages, and outputs can optionally be restricted to neighbors of higher frequency. To enable researchers to more quickly and easily develop stimuli, CLEARPOND can also be searched by features, generating lists of words that meet precise criteria, such as a specific range of neighborhood sizes, lexical frequencies, and/or word lengths. CLEARPOND is freely-available to researchers and the public as a searchable, online database and for download at http://clearpond.northwestern.edu. PMID:22916227
IJA: an efficient algorithm for query processing in sensor networks.
Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa
2011-01-01
One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm.
IJA: An Efficient Algorithm for Query Processing in Sensor Networks
Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa
2011-01-01
One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm. PMID:22319375
NASA Technical Reports Server (NTRS)
McGlynn, T.; Santisteban, M.
2007-01-01
This chapter provides a very brief introduction to the Structured Query Language (SQL) for getting information from relational databases. We make no pretense that this is a complete or comprehensive discussion of SQL. There are many aspects of the language the will be completely ignored in the presentation. The goal here is to provide enough background so that users understand the basic concepts involved in building and using relational databases. We also go through the steps involved in building a particular astronomical database used in some of the other presentations in this volume.
Translation lexicon acquisition from bilingual dictionaries
NASA Astrophysics Data System (ADS)
Doermann, David S.; Ma, Huanfeng; Karagol-Ayan, Burcu; Oard, Douglas W.
2001-12-01
Bilingual dictionaries hold great potential as a source of lexical resources for training automated systems for optical character recognition, machine translation and cross-language information retrieval. In this work we describe a system for extracting term lexicons from printed copies of bilingual dictionaries. We describe our approach to page and definition segmentation and entry parsing. We have used the approach to parse a number of dictionaries and demonstrate the results for retrieval using a French-English Dictionary to generate a translation lexicon and a corpus of English queries applied to French documents to evaluation cross-language IR.
HC StratoMineR: A Web-Based Tool for the Rapid Analysis of High-Content Datasets.
Omta, Wienand A; van Heesbeen, Roy G; Pagliero, Romina J; van der Velden, Lieke M; Lelieveld, Daphne; Nellen, Mehdi; Kramer, Maik; Yeong, Marley; Saeidi, Amir M; Medema, Rene H; Spruit, Marco; Brinkkemper, Sjaak; Klumperman, Judith; Egan, David A
2016-10-01
High-content screening (HCS) can generate large multidimensional datasets and when aligned with the appropriate data mining tools, it can yield valuable insights into the mechanism of action of bioactive molecules. However, easy-to-use data mining tools are not widely available, with the result that these datasets are frequently underutilized. Here, we present HC StratoMineR, a web-based tool for high-content data analysis. It is a decision-supportive platform that guides even non-expert users through a high-content data analysis workflow. HC StratoMineR is built by using My Structured Query Language for storage and querying, PHP: Hypertext Preprocessor as the main programming language, and jQuery for additional user interface functionality. R is used for statistical calculations, logic and data visualizations. Furthermore, C++ and graphical processor unit power is diffusely embedded in R by using the rcpp and rpud libraries for operations that are computationally highly intensive. We show that we can use HC StratoMineR for the analysis of multivariate data from a high-content siRNA knock-down screen and a small-molecule screen. It can be used to rapidly filter out undesirable data; to select relevant data; and to perform quality control, data reduction, data exploration, morphological hit picking, and data clustering. Our results demonstrate that HC StratoMineR can be used to functionally categorize HCS hits and, thus, provide valuable information for hit prioritization.
Aggregating Queries Against Large Inventories of Remotely Accessible Data
NASA Astrophysics Data System (ADS)
Gallagher, J. H. R.; Fulker, D. W.
2016-12-01
Those seeking to discover data for a specific purpose often encounter search results that are so large as to be useless without computing assistance. This situation arises, with increasing frequency, in part because repositories contain ever greater numbers of granules, and their granularities may well be poorly aligned or even orthogonal to the data-selection needs of the user. This presentation describes a recently developed service for simultaneously querying large lists of OPeNDAP-accessible granules to extract specified data. The specifications include a richly expressive set of data-selection criteria—applicable to content as well as metadata—and the service has been tested successfully against lists naming hundreds of thousands of granules. Querying such numbers of local files (i.e., granules) on a desktop or laptop computer is practical (by using a scripting language, e.g.), but this practicality is diminished when the data are remote and thus best accessed through a Web-services interface. In these cases, which are increasingly common, scripted queries can take many hours because of inherent network latencies. Furthermore, communication dropouts can add fragility to such scripts, yielding gaps in the acquired results. In contrast, OPeNDAP's new aggregated-query services enable data discovery in the context of very large inventory sizes. These capabilities have been developed for use with OPeNDAP's Hyrax server, which is an open-source realization of DAP (for "Data Access Protocol," a specification widely used in NASA, NOAA and other data-intensive contexts). These aggregated-query services exhibit good response times (on the order of seconds, not hours) even for inventories that list hundreds of thousands of source granules.
Challenges facing the development of the Arabic chatbot
NASA Astrophysics Data System (ADS)
AlHagbani, Eman Saad; Khan, Muhammad Badruddin
2016-07-01
The future information systems are expected to be more intelligent and will take human queries in natural language as input and answer them promptly. To develop a chatbot or a computer program that can chat with humans in realistic manner to extent that human get impressions that he/she is talking with other human is a challenging task. To make such chatbots, different technologies will work together ranging from artificial intelligence to development of semantic resources. Sophisticated chatbots are developed to perform conversation in number of languages. Arabic chatbots can be helpful in automating many operations and serve people who only know Arabic language. However, the technology for Arabic language is still in its infancy stage due to some challenges surrounding the Arabic language. This paper offers an overview of the chatbot application and the several obstacles and challenges that need to be resolved to develop an effective Arabic chatbot.
2014-11-01
for 6 months. Median performance for this topic was relatively low, despite being an easy diagnosis of hypothyroidism for a medical expert. However... hypothyroidism was ranked 3rd in the retrieval results. Without boosting, the highest-ranked article on hypothyroidism was ranked 16th. In contrast, this
ERIC Educational Resources Information Center
Horn, Marguerite E.
2002-01-01
Discusses the difference in subject access in OPACs (online public access catalogs) between subject searching (authority, alphabetic, or controlled vocabulary) versus keyword searching (uncontrolled, free text, natural language vocabulary). Compares a query on the term "garbage" in two online catalogs and discusses results. (Author/LRW)
Alaska High School Seniors Survey Report, 1979-80.
ERIC Educational Resources Information Center
Alaska State Commission on Postsecondary Education, Juneau.
Public and private high school seniors from Alaska were surveyed in an effort to document the pattern of postsecondary education outside the state and to understand the underlying motivations of the "brain drain." For 1979-1980, 3,295 seniors responded (57 percent) to queries on their sex, race, primary home language, family income,…
Adaptation of machine translation for multilingual information retrieval in the medical domain.
Pecina, Pavel; Dušek, Ondřej; Goeuriot, Lorraine; Hajič, Jan; Hlaváčová, Jaroslava; Jones, Gareth J F; Kelly, Liadh; Leveling, Johannes; Mareček, David; Novák, Michal; Popel, Martin; Rosa, Rudolf; Tamchyna, Aleš; Urešová, Zdeňka
2014-07-01
We investigate machine translation (MT) of user search queries in the context of cross-lingual information retrieval (IR) in the medical domain. The main focus is on techniques to adapt MT to increase translation quality; however, we also explore MT adaptation to improve effectiveness of cross-lingual IR. Our MT system is Moses, a state-of-the-art phrase-based statistical machine translation system. The IR system is based on the BM25 retrieval model implemented in the Lucene search engine. The MT techniques employed in this work include in-domain training and tuning, intelligent training data selection, optimization of phrase table configuration, compound splitting, and exploiting synonyms as translation variants. The IR methods include morphological normalization and using multiple translation variants for query expansion. The experiments are performed and thoroughly evaluated on three language pairs: Czech-English, German-English, and French-English. MT quality is evaluated on data sets created within the Khresmoi project and IR effectiveness is tested on the CLEF eHealth 2013 data sets. The search query translation results achieved in our experiments are outstanding - our systems outperform not only our strong baselines, but also Google Translate and Microsoft Bing Translator in direct comparison carried out on all the language pairs. The baseline BLEU scores increased from 26.59 to 41.45 for Czech-English, from 23.03 to 40.82 for German-English, and from 32.67 to 40.82 for French-English. This is a 55% improvement on average. In terms of the IR performance on this particular test collection, a significant improvement over the baseline is achieved only for French-English. For Czech-English and German-English, the increased MT quality does not lead to better IR results. Most of the MT techniques employed in our experiments improve MT of medical search queries. Especially the intelligent training data selection proves to be very successful for domain adaptation of MT. Certain improvements are also obtained from German compound splitting on the source language side. Translation quality, however, does not appear to correlate with the IR performance - better translation does not necessarily yield better retrieval. We discuss in detail the contribution of the individual techniques and state-of-the-art features and provide future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.
Voet, T; Devolder, P; Pynoo, B; Vercruysse, J; Duyck, P
2007-11-01
This paper hopes to share the insights we experienced during designing, building, and running an indexing solution for a large set of radiological reports and images in a production environment for more than 3 years. Several technical challenges were encountered and solved in the course of this project. One hundred four million words in 1.8 million radiological reports from 1989 to the present were indexed and became instantaneously searchable in a user-friendly fashion; the median query duration is only 31 ms. Currently, our highly tuned index holds 332,088 unique words in four languages. The indexing system is feature-rich and language-independent and allows for making complex queries. For research and training purposes it certainly is a valuable and convenient addition to our radiology informatics toolbox. Extended use of open-source technology dramatically reduced both implementation time and cost. All software we developed related to the indexing project has been made available to the open-source community covered by an unrestricted Berkeley Software Distribution-style license.
Morrison, James J; Hostetter, Jason; Wang, Kenneth; Siegel, Eliot L
2015-02-01
Real-time mining of large research trial datasets enables development of case-based clinical decision support tools. Several applicable research datasets exist including the National Lung Screening Trial (NLST), a dataset unparalleled in size and scope for studying population-based lung cancer screening. Using these data, a clinical decision support tool was developed which matches patient demographics and lung nodule characteristics to a cohort of similar patients. The NLST dataset was converted into Structured Query Language (SQL) tables hosted on a web server, and a web-based JavaScript application was developed which performs real-time queries. JavaScript is used for both the server-side and client-side language, allowing for rapid development of a robust client interface and server-side data layer. Real-time data mining of user-specified patient cohorts achieved a rapid return of cohort cancer statistics and lung nodule distribution information. This system demonstrates the potential of individualized real-time data mining using large high-quality clinical trial datasets to drive evidence-based clinical decision-making.
NASA Astrophysics Data System (ADS)
Sorce, Salvatore; Malizia, Alessio; Jiang, Pingfei; Atherton, Mark; Harrison, David
2018-04-01
One of the main time and money consuming tasks in the design of industrial devices and parts is the checking of possible patent infringements. Indeed, the great number of documents to be mined and the wide variety of technical language used to describe inventions are reasons why considerable amounts of time may be needed. On the other hand, the early detection of a possible patent conflict, in addition to reducing the risk of legal disputes, could stimulate a designers’ creativity to overcome similarities in overlapping patents. For this reason, there are a lot of existing patent analysis systems, each with its own features and access modes. We have designed a visual interface providing an intuitive access to such systems, freeing the designers from the specific knowledge of querying languages and providing them with visual clues. We tested the interface on a framework aimed at representing mechanical engineering patents; the framework is based on a semantic database and provides patent conflict analysis for early-stage designs. The interface supports a visual query composition to obtain a list of potentially overlapping designs.
PIML: the Pathogen Information Markup Language.
He, Yongqun; Vines, Richard R; Wattam, Alice R; Abramochkin, Georgiy V; Dickerman, Allan W; Eckart, J Dana; Sobral, Bruno W S
2005-01-01
A vast amount of information about human, animal and plant pathogens has been acquired, stored and displayed in varied formats through different resources, both electronically and otherwise. However, there is no community standard format for organizing this information or agreement on machine-readable format(s) for data exchange, thereby hampering interoperation efforts across information systems harboring such infectious disease data. The Pathogen Information Markup Language (PIML) is a free, open, XML-based format for representing pathogen information. XSLT-based visual presentations of valid PIML documents were developed and can be accessed through the PathInfo website or as part of the interoperable web services federation known as ToolBus/PathPort. Currently, detailed PIML documents are available for 21 pathogens deemed of high priority with regard to public health and national biological defense. A dynamic query system allows simple queries as well as comparisons among these pathogens. Continuing efforts are being taken to include other groups' supporting PIML and to develop more PIML documents. All the PIML-related information is accessible from http://www.vbi.vt.edu/pathport/pathinfo/
SCDU Testbed Automated In-Situ Alignment, Data Acquisition and Analysis
NASA Technical Reports Server (NTRS)
Werne, Thomas A.; Wehmeier, Udo J.; Wu, Janet P.; An, Xin; Goullioud, Renaud; Nemati, Bijan; Shao, Michael; Shen, Tsae-Pyng J.; Wang, Xu; Weilert, Mark A.;
2010-01-01
In the course of fulfilling its mandate, the Spectral Calibration Development Unit (SCDU) testbed for SIM-Lite produces copious amounts of raw data. To effectively spend time attempting to understand the science driving the data, the team devised computerized automations to limit the time spent bringing the testbed to a healthy state and commanding it, and instead focus on analyzing the processed results. We developed a multi-layered scripting language that emphasized the scientific experiments we conducted, which drastically shortened our experiment scripts, improved their readability, and all-but-eliminated testbed operator errors. In addition to scientific experiment functions, we also developed a set of automated alignments that bring the testbed up to a well-aligned state with little more than the push of a button. These scripts were written in the scripting language, and in Matlab via an interface library, allowing all members of the team to augment the existing scripting language with complex analysis scripts. To keep track of these results, we created an easily-parseable state log in which we logged both the state of the testbed and relevant metadata. Finally, we designed a distributed processing system that allowed us to farm lengthy analyses to a collection of client computers which reported their results in a central log. Since these logs were parseable, we wrote query scripts that gave us an effortless way to compare results collected under different conditions. This paper serves as a case-study, detailing the motivating requirements for the decisions we made and explaining the implementation process.
Development of a medical module for disaster information systems.
Calik, Elif; Atilla, Rıdvan; Kaya, Hilal; Aribaş, Alirıza; Cengiz, Hakan; Dicle, Oğuz
2014-01-01
This study aims to improve a medical module which provides a real-time medical information flow about pre-hospital processes that gives health care in disasters; transferring, storing and processing the records that are in electronic media and over internet as a part of disaster information systems. In this study which is handled within the frame of providing information flow among professionals in a disaster case, to supply the coordination of healthcare team and transferring complete information to specified people at real time, Microsoft Access database and SQL query language were used to inform database applications. System was prepared on Microsoft .Net platform using C# language. Disaster information system-medical module was designed to be used in disaster area, field hospital, nearby hospitals, temporary inhabiting areas like tent city, vehicles that are used for dispatch, and providing information flow between medical officials and data centres. For fast recording of the disaster victim data, accessing to database which was used by health care professionals was provided (or granted) among analysing process steps and creating minimal datasets. Database fields were created in the manner of giving opportunity to enter new data and search old data which is recorded before disaster. Web application which provides access such as data entry to the database and searching towards the designed interfaces according to the login credentials access level. In this study, homepage and users' interfaces which were built on database in consequence of system analyses were provided with www.afmedinfo.com web site to the user access. With this study, a recommendation was made about how to use disaster-based information systems in the field of health. Awareness has been developed about the fact that disaster information system should not be perceived only as an early warning system. Contents and the differences of the health care practices of disaster information systems were revealed. A web application was developed supplying a link between the user and the database to make date entry and data query practices by the help of the developed interfaces.
Knowledge-based engineering of a PLC controlled telescope
NASA Astrophysics Data System (ADS)
Pessemier, Wim; Raskin, Gert; Saey, Philippe; Van Winckel, Hans; Deconinck, Geert
2016-08-01
As the new control system of the Mercator Telescope is being finalized, we can review some technologies and design methodologies that are advantageous, despite their relative uncommonness in astronomical instrumentation. Particular for the Mercator Telescope is that it is controlled by a single high-end soft-PLC (Programmable Logic Controller). Using off-the-shelf components only, our distributed embedded system controls all subsystems of the telescope such as the pneumatic primary mirror support, the hydrostatic bearing, the telescope axes, the dome, the safety system, and so on. We show how real-time application logic can be written conveniently in typical PLC languages (IEC 61131-3) and in C++ (to implement the pointing kernel) using the commercial TwinCAT 3 programming environment. This software processes the inputs and outputs of the distributed system in real-time via an observatory-wide EtherCAT network, which is synchronized with high precision to an IEEE 1588 (PTP, Precision Time Protocol) time reference clock. Taking full advantage of the ability of soft-PLCs to run both real-time and non real-time software, the same device also hosts the most important user interfaces (HMIs or Human Machine Interfaces) and communication servers (OPC UA for process data, FTP for XML configuration data, and VNC for remote control). To manage the complexity of the system and to streamline the development process, we show how most of the software, electronics and systems engineering aspects of the control system have been modeled as a set of scripts written in a Domain Specific Language (DSL). When executed, these scripts populate a Knowledge Base (KB) which can be queried to retrieve specific information. By feeding the results of those queries to a template system, we were able to generate very detailed "browsable" web-based documentation about the system, but also PLC software code, Python client code, model verification reports, etc. The aim of this paper is to demonstrate the added value that technologies such as soft-PLCs and DSL-scripts and design methodologies such as knowledge-based engineering can bring to astronomical instrumentation.
Bratsas, Charalampos; Koutkias, Vassilis; Kaimakamis, Evangelos; Bamidis, Panagiotis; Maglaveras, Nicos
2007-01-01
Medical Computational Problem (MCP) solving is related to medical problems and their computerized algorithmic solutions. In this paper, an extension of an ontology-based model to fuzzy logic is presented, as a means to enhance the information retrieval (IR) procedure in semantic management of MCPs. We present herein the methodology followed for the fuzzy expansion of the ontology model, the fuzzy query expansion procedure, as well as an appropriate ontology-based Vector Space Model (VSM) that was constructed for efficient mapping of user-defined MCP search criteria and MCP acquired knowledge. The relevant fuzzy thesaurus is constructed by calculating the simultaneous occurrences of terms and the term-to-term similarities derived from the ontology that utilizes UMLS (Unified Medical Language System) concepts by using Concept Unique Identifiers (CUI), synonyms, semantic types, and broader-narrower relationships for fuzzy query expansion. The current approach constitutes a sophisticated advance for effective, semantics-based MCP-related IR.
A similarity-based data warehousing environment for medical images.
Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar
2015-11-01
A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Semantic Technologies for Re-Use of Clinical Routine Data.
Kreuzthaler, Markus; Martínez-Costa, Catalina; Kaiser, Peter; Schulz, Stefan
2017-01-01
Routine patient data in electronic patient records are only partly structured, and an even smaller segment is coded, mainly for administrative purposes. Large parts are only available as free text. Transforming this content into a structured and semantically explicit form is a prerequisite for querying and information extraction. The core of the system architecture presented in this paper is based on SAP HANA in-memory database technology using the SAP Connected Health platform for data integration as well as for clinical data warehousing. A natural language processing pipeline analyses unstructured content and maps it to a standardized vocabulary within a well-defined information model. The resulting semantically standardized patient profiles are used for a broad range of clinical and research application scenarios.
Targeted exploration and analysis of large cross-platform human transcriptomic compendia
Zhu, Qian; Wong, Aaron K; Krishnan, Arjun; Aure, Miriam R; Tadych, Alicja; Zhang, Ran; Corney, David C; Greene, Casey S; Bongo, Lars A; Kristensen, Vessela N; Charikar, Moses; Li, Kai; Troyanskaya, Olga G.
2016-01-01
We present SEEK (http://seek.princeton.edu), a query-based search engine across very large transcriptomic data collections, including thousands of human data sets from almost 50 microarray and next-generation sequencing platforms. SEEK uses a novel query-level cross-validation-based algorithm to automatically prioritize data sets relevant to the query and a robust search approach to identify query-coregulated genes, pathways, and processes. SEEK provides cross-platform handling, multi-gene query search, iterative metadata-based search refinement, and extensive visualization-based analysis options. PMID:25581801
Federated ontology-based queries over cancer data
2012-01-01
Background Personalised medicine provides patients with treatments that are specific to their genetic profiles. It requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology, where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques (microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms - or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult. Results Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain metadata. The domain metadata consists of ontology-based annotations associated with the structural information of each data source. However, caGrid's current querying functionality is given at the structural metadata level, without capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target query language, where join conditions between multiple data sources are found by exploiting the semantic annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is applicable to other model-driven architectures. A graphical user interface has been developed, supporting ontology-based queries over caGrid data sources. An extensive evaluation of the query reformulation technique is included. Conclusions To support personalised medicine in oncology, it is crucial to retrieve and integrate molecular, pathology, radiology and clinical data in an efficient manner. The semantic heterogeneity of the data makes this a challenging task. Ontologies provide a formal framework to support querying and integration. This paper provides an ontology-based solution for querying distributed databases over service-oriented, model-driven infrastructures. PMID:22373043
An adaptable architecture for patient cohort identification from diverse data sources
Bache, Richard; Miles, Simon; Taweel, Adel
2013-01-01
Objective We define and validate an architecture for systems that identify patient cohorts for clinical trials from multiple heterogeneous data sources. This architecture has an explicit query model capable of supporting temporal reasoning and expressing eligibility criteria independently of the representation of the data used to evaluate them. Method The architecture has the key feature that queries defined according to the query model are both pre and post-processed and this is used to address both structural and semantic heterogeneity. The process of extracting the relevant clinical facts is separated from the process of reasoning about them. A specific instance of the query model is then defined and implemented. Results We show that the specific instance of the query model has wide applicability. We then describe how it is used to access three diverse data warehouses to determine patient counts. Discussion Although the proposed architecture requires greater effort to implement the query model than would be the case for using just SQL and accessing a data-based management system directly, this effort is justified because it supports both temporal reasoning and heterogeneous data sources. The query model only needs to be implemented once no matter how many data sources are accessed. Each additional source requires only the implementation of a lightweight adaptor. Conclusions The architecture has been used to implement a specific query model that can express complex eligibility criteria and access three diverse data warehouses thus demonstrating the feasibility of this approach in dealing with temporal reasoning and data heterogeneity. PMID:24064442
I must have missed that: Alpha-band oscillations track attention to spoken language.
Boudewyn, M A; Carter, C S
2018-05-26
Attention is critical to the construction of mental representations of language context during comprehension. We investigated the consequences of momentary lapses in attention during listening comprehension on neural activity and behavior. Participants listened to two full-length stories while EEG was recorded, and afterwards completed multiple choice comprehension questions. Listening was periodically interrupted by attention probes, in which participants were asked whether their attention immediately preceding the probe's appearance was focused on the story. The results showed that (1) participants spent a substantial amount of time off-task, endorsing attention lapses on over 30% of probes; (2) for probes on which an attention lapse was endorsed, later accuracy on comprehension questions querying pre-probe information was decreased; (3) the pre-probe period just before the endorsement of an attention lapse was characterized by a greater percentage of above-threshold oscillations in the alpha-band (8-12 Hz) compared to just prior to the endorsement of on-task or split-attention listening; and (4) when participants made "I have no idea" responses to comprehension questions, their EEG record revealed a greater percentage of above-threshold alpha oscillations during the original presentation of the information queried by the comprehension questions, compared to correct responses or incorrect guesses. These results connect changes in neural activity in the alpha band to episodes of mind-wandering during listening comprehension, and in turn to decreased comprehension accuracy. This demonstrates how alpha can be used to track attentional engagement during language comprehension, and illustrates the dependence of successful language comprehension on attention. Copyright © 2018 Elsevier Ltd. All rights reserved.
Matching health information seekers' queries to medical terms
2012-01-01
Background The Internet is a major source of health information but most seekers are not familiar with medical vocabularies. Hence, their searches fail due to bad query formulation. Several methods have been proposed to improve information retrieval: query expansion, syntactic and semantic techniques or knowledge-based methods. However, it would be useful to clean those queries which are misspelled. In this paper, we propose a simple yet efficient method in order to correct misspellings of queries submitted by health information seekers to a medical online search tool. Methods In addition to query normalizations and exact phonetic term matching, we tested two approximate string comparators: the similarity score function of Stoilos and the normalized Levenshtein edit distance. We propose here to combine them to increase the number of matched medical terms in French. We first took a sample of query logs to determine the thresholds and processing times. In the second run, at a greater scale we tested different combinations of query normalizations before or after misspelling correction with the retained thresholds in the first run. Results According to the total number of suggestions (around 163, the number of the first sample of queries), at a threshold comparator score of 0.3, the normalized Levenshtein edit distance gave the highest F-Measure (88.15%) and at a threshold comparator score of 0.7, the Stoilos function gave the highest F-Measure (84.31%). By combining Levenshtein and Stoilos, the highest F-Measure (80.28%) is obtained with 0.2 and 0.7 thresholds respectively. However, queries are composed by several terms that may be combination of medical terms. The process of query normalization and segmentation is thus required. The highest F-Measure (64.18%) is obtained when this process is realized before spelling-correction. Conclusions Despite the widely known high performance of the normalized edit distance of Levenshtein, we show in this paper that its combination with the Stoilos algorithm improved the results for misspelling correction of user queries. Accuracy is improved by combining spelling, phoneme-based information and string normalizations and segmentations into medical terms. These encouraging results have enabled the integration of this method into two projects funded by the French National Research Agency-Technologies for Health Care. The first aims to facilitate the coding process of clinical free texts contained in Electronic Health Records and discharge summaries, whereas the second aims at improving information retrieval through Electronic Health Records. PMID:23095521
Extending TOPS: Ontology-driven Anomaly Detection and Analysis System
NASA Astrophysics Data System (ADS)
Votava, P.; Nemani, R. R.; Michaelis, A.
2010-12-01
Terrestrial Observation and Prediction System (TOPS) is a flexible modeling software system that integrates ecosystem models with frequent satellite and surface weather observations to produce ecosystem nowcasts (assessments of current conditions) and forecasts useful in natural resources management, public health and disaster management. We have been extending the Terrestrial Observation and Prediction System (TOPS) to include a capability for automated anomaly detection and analysis of both on-line (streaming) and off-line data. In order to best capture the knowledge about data hierarchies, Earth science models and implied dependencies between anomalies and occurrences of observable events such as urbanization, deforestation, or fires, we have developed an ontology to serve as a knowledge base. We can query the knowledge base and answer questions about dataset compatibilities, similarities and dependencies so that we can, for example, automatically analyze similar datasets in order to verify a given anomaly occurrence in multiple data sources. We are further extending the system to go beyond anomaly detection towards reasoning about possible causes of anomalies that are also encoded in the knowledge base as either learned or implied knowledge. This enables us to scale up the analysis by eliminating a large number of anomalies early on during the processing by either failure to verify them from other sources, or matching them directly with other observable events without having to perform an extensive and time-consuming exploration and analysis. The knowledge is captured using OWL ontology language, where connections are defined in a schema that is later extended by including specific instances of datasets and models. The information is stored using Sesame server and is accessible through both Java API and web services using SeRQL and SPARQL query languages. Inference is provided using OWLIM component integrated with Sesame.
Ratanawongsa, Neda; Quan, Judy; Handley, Margaret A; Sarkar, Urmimala; Schillinger, Dean
2018-04-06
Clinicians have difficulty accurately assessing medication non-adherence within chronic disease care settings. Health information technology (HIT) could offer novel tools to assess medication adherence in diverse populations outside of usual health care settings. In a multilingual urban safety net population, we examined the validity of assessing adherence using automated telephone self-management (ATSM) queries, when compared with non-adherence using continuous medication gap (CMG) on pharmacy claims. We hypothesized that patients reporting greater days of missed pills to ATSM queries would have higher rates of non-adherence as measured by CMG, and that ATSM adherence assessments would perform as well as structured interview assessments. As part of an ATSM-facilitated diabetes self-management program, low-income health plan members typed numeric responses to rotating weekly ATSM queries: "In the last 7 days, how many days did you MISS taking your …" diabetes, blood pressure, or cholesterol pill. Research assistants asked similar questions in computer-assisted structured telephone interviews. We measured continuous medication gap (CMG) by claims over 12 preceding months. To evaluate convergent validity, we compared rates of optimal adherence (CMG ≤ 20%) across respondents reporting 0, 1, and ≥ 2 missed pill days on ATSM and on structured interview. Among 210 participants, 46% had limited health literacy, 57% spoke Cantonese, and 19% Spanish. ATSM respondents reported ≥1 missed day for diabetes (33%), blood pressure (19%), and cholesterol (36%) pills. Interview respondents reported ≥1 missed day for diabetes (28%), blood pressure (21%), and cholesterol (26%) pills. Optimal adherence rates by CMG were lower among ATSM respondents reporting more missed days for blood pressure (p = 0.02) and cholesterol (p < 0.01); by interview, differences were significant for cholesterol (p = 0.01). Language-concordant ATSM demonstrated modest potential for assessing adherence. Studies should evaluate HIT assessments of medication beliefs and concerns in diverse populations. NCT00683020 , registered May 21, 2008.
NASA Technical Reports Server (NTRS)
Srivastava, Sadanand; deLamadrid, James
1998-01-01
The User System Interface Agent (USIA) is a special type of software agent which acts as the "middle man" between a human user and an information processing environment. USIA consists of a group of cooperating agents which are responsible for assisting users in obtaining information processing services intuitively and efficiently. Some of the main features of USIA include: (1) multiple interaction modes and (2) user-specific and stereotype modeling and adaptation. This prototype system provides us with a development platform towards the realization of an operational information ecology. In the first phase of this project we focus on the design and implementation of prototype system of the User-System Interface Agent (USIA). The second face of USIA allows user interaction via a restricted query language as well as through a taxonomy of windows. In third phase the USIA system architecture was revised.
Generating Concise Rules for Human Motion Retrieval
NASA Astrophysics Data System (ADS)
Mukai, Tomohiko; Wakisaka, Ken-Ichi; Kuriyama, Shigeru
This paper proposes a method for retrieving human motion data with concise retrieval rules based on the spatio-temporal features of motion appearance. Our method first converts motion clip into a form of clausal language that represents geometrical relations between body parts and their temporal relationship. A retrieval rule is then learned from the set of manually classified examples using inductive logic programming (ILP). ILP automatically discovers the essential rule in the same clausal form with a user-defined hypothesis-testing procedure. All motions are indexed using this clausal language, and the desired clips are retrieved by subsequence matching using the rule. Such rule-based retrieval offers reasonable performance and the rule can be intuitively edited in the same language form. Consequently, our method enables efficient and flexible search from a large dataset with simple query language.
Content-based retrieval of historical Ottoman documents stored as textual images.
Saykol, Ediz; Sinop, Ali Kemal; Güdükbay, Ugur; Ulusoy, Ozgür; Cetin, A Enis
2004-03-01
There is an accelerating demand to access the visual content of documents stored in historical and cultural archives. Availability of electronic imaging tools and effective image processing techniques makes it feasible to process the multimedia data in large databases. In this paper, a framework for content-based retrieval of historical documents in the Ottoman Empire archives is presented. The documents are stored as textual images, which are compressed by constructing a library of symbols occurring in a document, and the symbols in the original image are then replaced with pointers into the codebook to obtain a compressed representation of the image. The features in wavelet and spatial domain based on angular and distance span of shapes are used to extract the symbols. In order to make content-based retrieval in historical archives, a query is specified as a rectangular region in an input image and the same symbol-extraction process is applied to the query region. The queries are processed on the codebook of documents and the query images are identified in the resulting documents using the pointers in textual images. The querying process does not require decompression of images. The new content-based retrieval framework is also applicable to many other document archives using different scripts.
Xiao, Fuyuan; Aritsugi, Masayoshi; Wang, Qing; Zhang, Rong
2016-09-01
For efficient and sophisticated analysis of complex event patterns that appear in streams of big data from health care information systems and support for decision-making, a triaxial hierarchical model is proposed in this paper. Our triaxial hierarchical model is developed by focusing on hierarchies among nested event pattern queries with an event concept hierarchy, thereby allowing us to identify the relationships among the expressions and sub-expressions of the queries extensively. We devise a cost-based heuristic by means of the triaxial hierarchical model to find an optimised query execution plan in terms of the costs of both the operators and the communications between them. According to the triaxial hierarchical model, we can also calculate how to reuse the results of the common sub-expressions in multiple queries. By integrating the optimised query execution plan with the reuse schemes, a multi-query optimisation strategy is developed to accomplish efficient processing of multiple nested event pattern queries. We present empirical studies in which the performance of multi-query optimisation strategy was examined under various stream input rates and workloads. Specifically, the workloads of pattern queries can be used for supporting monitoring patients' conditions. On the other hand, experiments with varying input rates of streams can correspond to changes of the numbers of patients that a system should manage, whereas burst input rates can correspond to changes of rushes of patients to be taken care of. The experimental results have shown that, in Workload 1, our proposal can improve about 4 and 2 times throughput comparing with the relative works, respectively; in Workload 2, our proposal can improve about 3 and 2 times throughput comparing with the relative works, respectively; in Workload 3, our proposal can improve about 6 times throughput comparing with the relative work. The experimental results demonstrated that our proposal was able to process complex queries efficiently which can support health information systems and further decision-making. Copyright © 2016 Elsevier B.V. All rights reserved.
Macfarlane, Donald
2016-07-01
Medical records often contain free text created by harried clinicians. Free text often contains errors which make it an unsuitable target for computerized data extraction. The cost of healthcare can be reduced by creating medical records that are fully computerized at their inception. We examine hypotheses that enable us to construct such records. We regard the text of the medical record as being an ordered collection of meaningful fragments. The intellectual content (or "lexeme") of each text fragment in the record is considered separately from the language that used to express it. We further consider that each lexeme exists as a combination of a lexeme query (defining the issue being addressed) and a lexeme response to that query. The medical record can then be perceived as a stream of these responses. The responses can be expressed in any style or language, including computer code. Examining medical records in this light gives rise to a number of observations and hypotheses. The physical location and nature of the medical episode (which we term "context") determines the general layout of the record. The order that lexeme-queries are addressed in within the record is highly consistent ("coherence"). Issues are only addressed if they are logically called-for by the context or by a previously-selected lexeme response ("predicance"), and only to a needed depth of detail ("level"). We hypothesize that all of the lexeme queries required to write any clinical notes can be stored in a large database ("lexicon") in coherence order, wherein each lexeme query is associated with its own collection of lexeme responses. We hypothesize that the issue a note-writer will need to address next is identifiable purely by using the rules of coherence, level and predicance. We have tested these hypotheses with a computer program which repeatedly offers the user a menu of lexeme responses with associated text. On selection, the program issues the text fragment, and its corresponding computer code, to output files. The program then uses coherence, predicance and level to navigate to the next appropriate lexeme query for presentation to the user. The net result is that the user creates a grammatically correct and completely computerized note at the time of its inception. The value of this approach and its practical implementation to create medical records are discussed. In our work so far, the hypotheses appear not to be false, but further testing is needed using a larger lexicon to establish their robustness in actual clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kawazoe, Yoshimasa; Imai, Takeshi; Ohe, Kazuhiko
2016-04-05
Health level seven version 2.5 (HL7 v2.5) is a widespread messaging standard for information exchange between clinical information systems. By applying Semantic Web technologies for handling HL7 v2.5 messages, it is possible to integrate large-scale clinical data with life science knowledge resources. Showing feasibility of a querying method over large-scale resource description framework (RDF)-ized HL7 v2.5 messages using publicly available drug databases. We developed a method to convert HL7 v2.5 messages into the RDF. We also converted five kinds of drug databases into RDF and provided explicit links between the corresponding items among them. With those linked drug data, we then developed a method for query expansion to search the clinical data using semantic information on drug classes along with four types of temporal patterns. For evaluation purpose, medication orders and laboratory test results for a 3-year period at the University of Tokyo Hospital were used, and the query execution times were measured. Approximately 650 million RDF triples for medication orders and 790 million RDF triples for laboratory test results were converted. Taking three types of query in use cases for detecting adverse events of drugs as an example, we confirmed these queries were represented in SPARQL Protocol and RDF Query Language (SPARQL) using our methods and comparison with conventional query expressions were performed. The measurement results confirm that the query time is feasible and increases logarithmically or linearly with the amount of data and without diverging. The proposed methods enabled query expressions that separate knowledge resources and clinical data, thereby suggesting the feasibility for improving the usability of clinical data by enhancing the knowledge resources. We also demonstrate that when HL7 v2.5 messages are automatically converted into RDF, searches are still possible through SPARQL without modifying the structure. As such, the proposed method benefits not only our hospitals, but also numerous hospitals that handle HL7 v2.5 messages. Our approach highlights a potential of large-scale data federation techniques to retrieve clinical information, which could be applied as applications of clinical intelligence to improve clinical practices, such as adverse drug event monitoring and cohort selection for a clinical study as well as discovering new knowledge from clinical information.
Producing approximate answers to database queries
NASA Technical Reports Server (NTRS)
Vrbsky, Susan V.; Liu, Jane W. S.
1993-01-01
We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.
2015-09-01
Detectability ...............................................................................................37 Figure 20. Excel VBA Codes for Checker...National Vulnerability Database OS Operating System SQL Structured Query Language VC Verification Condition VBA Visual Basic for Applications...checks each of these assertions for detectability by Daikon. The checker is an Excel Visual Basic for Applications ( VBA ) script that checks the
Query Enhancement with Topic Detection and Disambiguation for Robust Retrieval
ERIC Educational Resources Information Center
Zhang, Hui
2013-01-01
With the rapid increase in the amount of available information, people nowadays rely heavily on information retrieval (IR) systems such as web search engine to fulfill their information needs. However, due to the lack of domain knowledge and the limitation of natural language such as synonyms and polysemes, many system users cannot formulate their…
ERIC Educational Resources Information Center
Lansdale, Mark W.; Oliff, Lynda; Baguley, Thom S.
2005-01-01
The authors investigated whether memory for object locations in pictures could be exploited to address known difficulties of designing query languages for picture databases. M. W. Lansdale's (1998) model of location memory was adapted to 4 experiments observing memory for everyday pictures. These experiments showed that location memory is…
ERIC Educational Resources Information Center
Mills, Robert J.; Dupin-Bryant, Pamela A.; Johnson, John D.; Beaulieu, Tanya Y.
2015-01-01
The demand for Information Systems (IS) graduates with expertise in Structured Query Language (SQL) and database management is vast and projected to increase as "big data" becomes ubiquitous. To prepare students to solve complex problems in a data-driven world, educators must explore instructional strategies to help link prior knowledge…
Exposing the cancer genome atlas as a SPARQL endpoint
Deus, Helena F.; Veiga, Diogo F.; Freire, Pablo R.; Weinstein, John N.; Mills, Gordon B.; Almeida, Jonas S.
2011-01-01
The Cancer Genome Atlas (TCGA) is a multidisciplinary, multi-institutional effort to characterize several types of cancer. Datasets from biomedical domains such as TCGA present a particularly challenging task for those interested in dynamically aggregating its results because the data sources are typically both heterogeneous and distributed. The Linked Data best practices offer a solution to integrate and discover data with those characteristics, namely through exposure of data as Web services supporting SPARQL, the Resource Description Framework query language. Most SPARQL endpoints, however, cannot easily be queried by data experts. Furthermore, exposing experimental data as SPARQL endpoints remains a challenging task because, in most cases, data must first be converted to Resource Description Framework triples. In line with those requirements, we have developed an infrastructure to expose clinical, demographic and molecular data elements generated by TCGA as a SPARQL endpoint by assigning elements to entities of the Simple Sloppy Semantic Database (S3DB) management model. All components of the infrastructure are available as independent Representational State Transfer (REST) Web services to encourage reusability, and a simple interface was developed to automatically assemble SPARQL queries by navigating a representation of the TCGA domain. A key feature of the proposed solution that greatly facilitates assembly of SPARQL queries is the distinction between the TCGA domain descriptors and data elements. Furthermore, the use of the S3DB management model as a mediator enables queries to both public and protected data without the need for prior submission to a single data source. PMID:20851208
Explorative visual analytics on interval-based genomic data and their metadata.
Jalili, Vahid; Matteucci, Matteo; Masseroli, Marco; Ceri, Stefano
2017-12-04
With the wide-spreading of public repositories of NGS processed data, the availability of user-friendly and effective tools for data exploration, analysis and visualization is becoming very relevant. These tools enable interactive analytics, an exploratory approach for the seamless "sense-making" of data through on-the-fly integration of analysis and visualization phases, suggested not only for evaluating processing results, but also for designing and adapting NGS data analysis pipelines. This paper presents abstractions for supporting the early analysis of NGS processed data and their implementation in an associated tool, named GenoMetric Space Explorer (GeMSE). This tool serves the needs of the GenoMetric Query Language, an innovative cloud-based system for computing complex queries over heterogeneous processed data. It can also be used starting from any text files in standard BED, BroadPeak, NarrowPeak, GTF, or general tab-delimited format, containing numerical features of genomic regions; metadata can be provided as text files in tab-delimited attribute-value format. GeMSE allows interactive analytics, consisting of on-the-fly cycling among steps of data exploration, analysis and visualization that help biologists and bioinformaticians in making sense of heterogeneous genomic datasets. By means of an explorative interaction support, users can trace past activities and quickly recover their results, seamlessly going backward and forward in the analysis steps and comparative visualizations of heatmaps. GeMSE effective application and practical usefulness is demonstrated through significant use cases of biological interest. GeMSE is available at http://www.bioinformatics.deib.polimi.it/GeMSE/ , and its source code is available at https://github.com/Genometric/GeMSE under GPLv3 open-source license.
Almutairy, Meznah; Torng, Eric
2018-01-01
Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method.
Torng, Eric
2018-01-01
Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method. PMID:29389989
Dugan, J M; Berrios, D C; Liu, X; Kim, D K; Kaizer, H; Fagan, L M
1999-01-01
Our group has built an information retrieval system based on a complex semantic markup of medical textbooks. We describe the construction of a set of web-based knowledge-acquisition tools that expedites the collection and maintenance of the concepts required for text markup and the search interface required for information retrieval from the marked text. In the text markup system, domain experts (DEs) identify sections of text that contain one or more elements from a finite set of concepts. End users can then query the text using a predefined set of questions, each of which identifies a subset of complementary concepts. The search process matches that subset of concepts to relevant points in the text. The current process requires that the DE invest significant time to generate the required concepts and questions. We propose a new system--called ACQUIRE (Acquisition of Concepts and Queries in an Integrated Retrieval Environment)--that assists a DE in two essential tasks in the text-markup process. First, it helps her to develop, edit, and maintain the concept model: the set of concepts with which she marks the text. Second, ACQUIRE helps her to develop a query model: the set of specific questions that end users can later use to search the marked text. The DE incorporates concepts from the concept model when she creates the questions in the query model. The major benefit of the ACQUIRE system is a reduction in the time and effort required for the text-markup process. We compared the process of concept- and query-model creation using ACQUIRE to the process used in previous work by rebuilding two existing models that we previously constructed manually. We observed a significant decrease in the time required to build and maintain the concept and query models.
Grid-based platform for training in Earth Observation
NASA Astrophysics Data System (ADS)
Petcu, Dana; Zaharie, Daniela; Panica, Silviu; Frincu, Marc; Neagul, Marian; Gorgan, Dorian; Stefanut, Teodor
2010-05-01
GiSHEO platform [1] providing on-demand services for training and high education in Earth Observation is developed, in the frame of an ESA funded project through its PECS programme, to respond to the needs of powerful education resources in remote sensing field. It intends to be a Grid-based platform of which potential for experimentation and extensibility are the key benefits compared with a desktop software solution. Near-real time applications requiring simultaneous multiple short-time-response data-intensive tasks, as in the case of a short time training event, are the ones that are proved to be ideal for this platform. The platform is based on Globus Toolkit 4 facilities for security and process management, and on the clusters of four academic institutions involved in the project. The authorization uses a VOMS service. The main public services are the followings: the EO processing services (represented through special WSRF-type services); the workflow service exposing a particular workflow engine; the data indexing and discovery service for accessing the data management mechanisms; the processing services, a collection allowing easy access to the processing platform. The WSRF-type services for basic satellite image processing are reusing free image processing tools, OpenCV and GDAL. New algorithms and workflows were develop to tackle with challenging problems like detecting the underground remains of old fortifications, walls or houses. More details can be found in [2]. Composed services can be specified through workflows and are easy to be deployed. The workflow engine, OSyRIS (Orchestration System using a Rule based Inference Solution), is based on DROOLS, and a new rule-based workflow language, SILK (SImple Language for worKflow), has been built. Workflow creation in SILK can be done with or without a visual designing tools. The basics of SILK are the tasks and relations (rules) between them. It is similar with the SCUFL language, but not relying on XML in order to allow the introduction of more workflow specific issues. Moreover, an event-condition-action (ECA) approach allows a greater flexibility when expressing data and task dependencies, as well as the creation of adaptive workflows which can react to changes in the configuration of the Grid or in the workflow itself. Changes inside the grid are handled by creating specific rules which allow resource selection based on various task scheduling criteria. Modifications of the workflow are usually accomplished either by inserting or retracting at runtime rules belonging to it or by modifying the executor of the task in case a better one is found. The former implies changes in its structure while the latter does not necessarily mean changes of the resource but more precisely changes of the algorithm used for solving the task. More details can be found in [3]. Another important platform component is the data indexing and storage service, GDIS, providing features for data storage, indexing data using a specialized RDBMS, finding data by various conditions, querying external services and keeping track of temporary data generated by other components. The data storage component part of GDIS is responsible for storing the data by using available storage backends such as local disk file systems (ext3), local cluster storage (GFS) or distributed file systems (HDFS). A front-end GridFTP service is capable of interacting with the storage domains on behalf of the clients and in a uniform way and also enforces the security restrictions provided by other specialized services and related with data access. The data indexing is performed by PostGIS. An advanced and flexible interface for searching the project's geographical repository is built around a custom query language (LLQL - Lisp Like Query Language) designed to provide fine grained access to the data in the repository and to query external services (e.g. for exploiting the connection with GENESI-DR catalog). More details can be found in [4]. The Workload Management System (WMS) provides two types of resource managers. The first one will be based on Condor HTC and use Condor as a job manager for task dispatching and working nodes (for development purposes) while the second one will use GT4 GRAM (for production purposes). The WMS main component, the Grid Task Dispatcher (GTD), is responsible for the interaction with other internal services as the composition engine in order to facilitate access to the processing platform. Its main responsibilities are to receive tasks from the workflow engine or directly from user interface, to use a task description language (the ClassAd meta language in case of Condor HTC) for job units, to submit and check the status of jobs inside the workload management system and to retrieve job logs for debugging purposes. More details can be found in [4]. A particular component of the platform is eGLE, the eLearning environment. It provides the functionalities necessary to create the visual appearance of the lessons through the usage of visual containers like tools, patterns and templates. The teacher uses the platform for testing the already created lessons, as well as for developing new lesson resources, such as new images and workflows describing graph-based processing. The students execute the lessons or describe and experiment with new workflows or different data. The eGLE database includes several workflow-based lesson descriptions, teaching materials and lesson resources, selected satellite and spatial data. More details can be found in [5]. A first training event of using the platform was organized in September 2009 during 11th SYNASC symposium (links to the demos, testing interface, and exercises are available on project site [1]). The eGLE component was presented at 4th GPC conference in May 2009. Moreover, the functionality of the platform will be presented as demo in April 2010 at 5th EGEE User forum. References: [1] GiSHEO consortium, Project site, http://gisheo.info.uvt.ro [2] D. Petcu, D. Zaharie, M. Neagul, S. Panica, M. Frincu, D. Gorgan, T. Stefanut, V. Bacu, Remote Sensed Image Processing on Grids for Training in Earth Observation. In Image Processing, V. Kordic (ed.), In-Tech, January 2010. [3] M. Neagul, S. Panica, D. Petcu, D. Zaharie, D. Gorgan, Web and Grid Services for Training in Earth Observation, IDAACS 2009, IEEE Computer Press, 241-246 [4] M. Frincu, S. Panica, M. Neagul, D. Petcu, Gisheo: On Demand Grid Service Based Platform for EO Data Processing. HiperGrid 2009, Politehnica Press, 415-422. [5] D. Gorgan, T. Stefanut, V. Bacu, Grid Based Training Environment for Earth Observation, GPC 2009, LNCS 5529, 98-109
Spatial aggregation query in dynamic geosensor networks
NASA Astrophysics Data System (ADS)
Yi, Baolin; Feng, Dayang; Xiao, Shisong; Zhao, Erdun
2007-11-01
Wireless sensor networks have been widely used for civilian and military applications, such as environmental monitoring and vehicle tracking. In many of these applications, the researches mainly aim at building sensor network based systems to leverage the sensed data to applications. However, the existing works seldom exploited spatial aggregation query considering the dynamic characteristics of sensor networks. In this paper, we investigate how to process spatial aggregation query over dynamic geosensor networks where both the sink node and sensor nodes are mobile and propose several novel improvements on enabling techniques. The mobility of sensors makes the existing routing protocol based on information of fixed framework or the neighborhood infeasible. We present an improved location-based stateless implicit geographic forwarding (IGF) protocol for routing a query toward the area specified by query window, a diameter-based window aggregation query (DWAQ) algorithm for query propagation and data aggregation in the query window, finally considering the location changing of the sink node, we present two schemes to forward the result to the sink node. Simulation results show that the proposed algorithms can improve query latency and query accuracy.
Don’t Like RDF Reification? Making Statements about Statements Using Singleton Property
Nguyen, Vinh; Bodenreider, Olivier; Sheth, Amit
2015-01-01
Statements about RDF statements, or meta triples, provide additional information about individual triples, such as the source, the occurring time or place, or the certainty. Integrating such meta triples into semantic knowledge bases would enable the querying and reasoning mechanisms to be aware of provenance, time, location, or certainty of triples. However, an efficient RDF representation for such meta knowledge of triples remains challenging. The existing standard reification approach allows such meta knowledge of RDF triples to be expressed using RDF by two steps. The first step is representing the triple by a Statement instance which has subject, predicate, and object indicated separately in three different triples. The second step is creating assertions about that instance as if it is a statement. While reification is simple and intuitive, this approach does not have formal semantics and is not commonly used in practice as described in the RDF Primer. In this paper, we propose a novel approach called Singleton Property for representing statements about statements and provide a formal semantics for it. We explain how this singleton property approach fits well with the existing syntax and formal semantics of RDF, and the syntax of SPARQL query language. We also demonstrate the use of singleton property in the representation and querying of meta knowledge in two examples of Semantic Web knowledge bases: YAGO2 and BKR. Our experiments on the BKR show that the singleton property approach gives a decent performance in terms of number of triples, query length and query execution time compared to existing approaches. This approach, which is also simple and intuitive, can be easily adopted for representing and querying statements about statements in other knowledge bases. PMID:25750938
Federated Space-Time Query for Earth Science Data Using OpenSearch Conventions
NASA Astrophysics Data System (ADS)
Lynnes, C.; Beaumont, B.; Duerr, R. E.; Hua, H.
2009-12-01
The past decade has seen a burgeoning of remote sensing and Earth science data providers, as evidenced in the growth of the Earth Science Information Partner (ESIP) federation. At the same time, the need to combine diverse data sets to enable understanding of the Earth as a system has also grown. While the expansion of data providers is in general a boon to such studies, the diversity presents a challenge to finding useful data for a given study. Locating all the data files with aerosol information for a particular volcanic eruption, for example, may involve learning and using several different search tools to execute the requisite space-time queries. To address this issue, the ESIP federation is developing a federated space-time query framework, based on the OpenSearch convention (www.opensearch.org), with Geo and Time extensions. In this framework, data providers publish OpenSearch Description Documents that describe in a machine-readable form how to execute queries against the provider. The novelty of OpenSearch is that the space-time query interface becomes both machine callable and easy enough to integrate into the web browser's search box. This flexibility, together with a simple REST (HTTP-get) interface, should allow a variety of data providers to participate in the federated search framework, from large institutional data centers to individual scientists. The simple interface enables trivial querying of multiple data sources and participation in recursive-like federated searches--all using the same common OpenSearch interface. This simplicity also makes the construction of clients easy, as does existing OpenSearch client libraries in a variety of languages. Moreover, a number of clients and aggregation services already exist and OpenSearch is already supported by a number of web browsers such as Firefox and Internet Explorer.
An RDF/OWL knowledge base for query answering and decision support in clinical pharmacogenetics.
Samwald, Matthias; Freimuth, Robert; Luciano, Joanne S; Lin, Simon; Powers, Robert L; Marshall, M Scott; Adlassnig, Klaus-Peter; Dumontier, Michel; Boyce, Richard D
2013-01-01
Genetic testing for personalizing pharmacotherapy is bound to become an important part of clinical routine. To address associated issues with data management and quality, we are creating a semantic knowledge base for clinical pharmacogenetics. The knowledge base is made up of three components: an expressive ontology formalized in the Web Ontology Language (OWL 2 DL), a Resource Description Framework (RDF) model for capturing detailed results of manual annotation of pharmacogenomic information in drug product labels, and an RDF conversion of relevant biomedical datasets. Our work goes beyond the state of the art in that it makes both automated reasoning as well as query answering as simple as possible, and the reasoning capabilities go beyond the capabilities of previously described ontologies.
A Toolkit for Active Object-Oriented Databases with Application to Interoperability
NASA Technical Reports Server (NTRS)
King, Roger
1996-01-01
In our original proposal we stated that our research would 'develop a novel technology that provides a foundation for collaborative information processing.' The essential ingredient of this technology is the notion of 'deltas,' which are first-class values representing collections of proposed updates to a database. The Heraclitus framework provides a variety of algebraic operators for building up, combining, inspecting, and comparing deltas. Deltas can be directly applied to the database to yield a new state, or used 'hypothetically' in queries against the state that would arise if the delta were applied. The central point here is that the step of elevating deltas to 'first-class' citizens in database programming languages will yield tremendous leverage on the problem of supporting updates in collaborative information processing. In short, our original intention was to develop the theoretical and practical foundation for a technology based on deltas in an object-oriented database context, develop a toolkit for active object-oriented databases, and apply this toward collaborative information processing.
A Toolkit for Active Object-Oriented Databases with Application to Interoperability
NASA Technical Reports Server (NTRS)
King, Roger
1996-01-01
In our original proposal we stated that our research would 'develop a novel technology that provides a foundation for collaborative information processing.' The essential ingredient of this technology is the notion of 'deltas,' which are first-class values representing collections of proposed updates to a database. The Heraclitus framework provides a variety of algebraic operators for building up, combining, inspecting, and comparing deltas. Deltas can be directly applied to the database to yield a new state, or used 'hypothetically' in queries against the state that would arise if the delta were applied. The central point here is that the step of elevating deltas to 'first-class' citizens in database programming languages will yield tremendous leverage on the problem of supporting updates in collaborative information processing. In short, our original intention was to develop the theoretical and practical foundation for a technology based on deltas in an object- oriented database context, develop a toolkit for active object-oriented databases, and apply this toward collaborative information processing.
A new reference implementation of the PSICQUIC web service.
del-Toro, Noemi; Dumousseau, Marine; Orchard, Sandra; Jimenez, Rafael C; Galeota, Eugenia; Launay, Guillaume; Goll, Johannes; Breuer, Karin; Ono, Keiichiro; Salwinski, Lukasz; Hermjakob, Henning
2013-07-01
The Proteomics Standard Initiative Common QUery InterfaCe (PSICQUIC) specification was created by the Human Proteome Organization Proteomics Standards Initiative (HUPO-PSI) to enable computational access to molecular-interaction data resources by means of a standard Web Service and query language. Currently providing >150 million binary interaction evidences from 28 servers globally, the PSICQUIC interface allows the concurrent search of multiple molecular-interaction information resources using a single query. Here, we present an extension of the PSICQUIC specification (version 1.3), which has been released to be compliant with the enhanced standards in molecular interactions. The new release also includes a new reference implementation of the PSICQUIC server available to the data providers. It offers augmented web service capabilities and improves the user experience. PSICQUIC has been running for almost 5 years, with a user base growing from only 4 data providers to 28 (April 2013) allowing access to 151 310 109 binary interactions. The power of this web service is shown in PSICQUIC View web application, an example of how to simultaneously query, browse and download results from the different PSICQUIC servers. This application is free and open to all users with no login requirement (http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml).
Optimizing a Query by Transformation and Expansion.
Glocker, Katrin; Knurr, Alexander; Dieter, Julia; Dominick, Friederike; Forche, Melanie; Koch, Christian; Pascoe Pérez, Analie; Roth, Benjamin; Ückert, Frank
2017-01-01
In the biomedical sector not only the amount of information produced and uploaded into the web is enormous, but also the number of sources where these data can be found. Clinicians and researchers spend huge amounts of time on trying to access this information and to filter the most important answers to a given question. As the formulation of these queries is crucial, automated query expansion is an effective tool to optimize a query and receive the best possible results. In this paper we introduce the concept of a workflow for an optimization of queries in the medical and biological sector by using a series of tools for expansion and transformation of the query. After the definition of attributes by the user, the query string is compared to previous queries in order to add semantic co-occurring terms to the query. Additionally, the query is enlarged by an inclusion of synonyms. The translation into database specific ontologies ensures the optimal query formulation for the chosen database(s). As this process can be performed in various databases at once, the results are ranked and normalized in order to achieve a comparable list of answers for a question.
Employing computers for the recruitment into clinical trials: a comprehensive systematic review.
Köpcke, Felix; Prokosch, Hans-Ulrich
2014-07-01
Medical progress depends on the evaluation of new diagnostic and therapeutic interventions within clinical trials. Clinical trial recruitment support systems (CTRSS) aim to improve the recruitment process in terms of effectiveness and efficiency. The goals were to (1) create an overview of all CTRSS reported until the end of 2013, (2) find and describe similarities in design, (3) theorize on the reasons for different approaches, and (4) examine whether projects were able to illustrate the impact of CTRSS. We searched PubMed titles, abstracts, and keywords for terms related to CTRSS research. Query results were classified according to clinical context, workflow integration, knowledge and data sources, reasoning algorithm, and outcome. A total of 101 papers on 79 different systems were found. Most lacked details in one or more categories. There were 3 different CTRSS that dominated: (1) systems for the retrospective identification of trial participants based on existing clinical data, typically through Structured Query Language (SQL) queries on relational databases, (2) systems that monitored the appearance of a key event of an existing health information technology component in which the occurrence of the event caused a comprehensive eligibility test for a patient or was directly communicated to the researcher, and (3) independent systems that required a user to enter patient data into an interface to trigger an eligibility assessment. Although the treating physician was required to act for the patient in older systems, it is now becoming increasingly popular to offer this possibility directly to the patient. Many CTRSS are designed to fit the existing infrastructure of a clinical care provider or the particularities of a trial. We conclude that the success of a CTRSS depends more on its successful workflow integration than on sophisticated reasoning and data processing algorithms. Furthermore, some of the most recent literature suggest that an increase in recruited patients and improvements in recruitment efficiency can be expected, although the former will depend on the error rate of the recruitment process being replaced. Finally, to increase the quality of future CTRSS reports, we propose a checklist of items that should be included.
Distributed XQuery-Based Integration and Visualization of Multimodality Brain Mapping Data
Detwiler, Landon T.; Suciu, Dan; Franklin, Joshua D.; Moore, Eider B.; Poliakov, Andrew V.; Lee, Eunjung S.; Corina, David P.; Ojemann, George A.; Brinkley, James F.
2008-01-01
This paper addresses the need for relatively small groups of collaborating investigators to integrate distributed and heterogeneous data about the brain. Although various national efforts facilitate large-scale data sharing, these approaches are generally too “heavyweight” for individual or small groups of investigators, with the result that most data sharing among collaborators continues to be ad hoc. Our approach to this problem is to create a “lightweight” distributed query architecture, in which data sources are accessible via web services that accept arbitrary query languages but return XML results. A Distributed XQuery Processor (DXQP) accepts distributed XQueries in which subqueries are shipped to the remote data sources to be executed, with the resulting XML integrated by DXQP. A web-based application called DXBrain accesses DXQP, allowing a user to create, save and execute distributed XQueries, and to view the results in various formats including a 3-D brain visualization. Example results are presented using distributed brain mapping data sources obtained in studies of language organization in the brain, but any other XML source could be included. The advantage of this approach is that it is very easy to add and query a new source, the tradeoff being that the user needs to understand XQuery and the schemata of the underlying sources. For small numbers of known sources this burden is not onerous for a knowledgeable user, leading to the conclusion that the system helps to fill the gap between ad hoc local methods and large scale but complex national data sharing efforts. PMID:19198662
NASA Technical Reports Server (NTRS)
Campbell, William J.; Roelofs, Larry H.; Short, Nicholas M., Jr.
1987-01-01
The National Space Science Data Center (NSSDC) has initiated an Intelligent Data Management (IDM) research effort which has as one of its components the development of an Intelligent User Interface (IUI).The intent of the latter is to develop a friendly and intelligent user interface service that is based on expert systems and natural language processing technologies. The purpose is to support the large number of potential scientific and engineering users presently having need of space and land related research and technical data but who have little or no experience in query languages or understanding of the information content or architecture of the databases involved. This technical memorandum presents prototype Intelligent User Interface Subsystem (IUIS) using the Crustal Dynamics Project Database as a test bed for the implementation of the CRUDDES (Crustal Dynamics Expert System). The knowledge base has more than 200 rules and represents a single application view and the architectural view. Operational performance using CRUDDES has allowed nondatabase users to obtain useful information from the database previously accessible only to an expert database user or the database designer.
Language Preferences on Websites and in Google Searches for Human Health and Food Information
Singh, Punam Mony; Wight, Carly A; Sercinoglu, Olcan; Wilson, David C; Boytsov, Artem
2007-01-01
Background While it is known that the majority of pages on the World Wide Web are in English, little is known about the preferred language of users searching for health information online. Objectives (1) To help global and domestic publishers, for example health and food agencies, to determine the need for translation of online information from English into local languages. (2) To help these agencies determine which language(s) they should select when publishing information online in target nations and for target subpopulations within nations. Methods To estimate the percentage of Web publishers that translate their health and food websites, we measured the frequency at which domain names retrieved by Google overlap for language translations of the same health-related search term. To quantify language choice of searchers from different countries, Google provided estimates of the rate at which its search engine was queried in six languages relative to English for the terms “avian flu,” “tuberculosis,” “schizophrenia,” and “maize” (corn) from January 2004 to April 2006. The estimate was based on a 20% sample of all Google queries from 227 nations. Results We estimate that 80%-90% of health- and food-related institutions do not translate their websites into multiple languages, even when the information concerns pandemic disease such as avian influenza. Although Internet users are often well-educated, there was a strong preference for searching for health and food information in the local language, rather than English. For “avian flu,” we found that only 1% of searches in non-English-speaking nations were in English, whereas for “tuberculosis” or “schizophrenia,” about 4%-40% of searches in non-English countries employed English. A subset of searches for health information presumably originating from immigrants occurred in their native tongue, not the language of the adopted country. However, Spanish-language online searches for “avian flu,” “schizophrenia,” and “maize/corn” in the United States occurred at only <1% of the English search rate, although the US online Hispanic population constitutes 12% of the total US online population. Sub-Saharan Africa and Bangladesh searches for health information occurred in unexpected languages, perhaps reflecting the presence of aid workers and the global migration of Internet users, respectively. In Latin America, indigenous-language search terms were often used rather than Spanish. Conclusions (1) Based on the strong preference for searching the Internet for health information in the local language, indigenous language, or immigrant language of origin, global and domestic health and food agencies should continue their efforts to translate their institutional websites into more languages. (2) We have provided linguistic online search pattern data to help health and food agencies better select languages for targeted website publishing. PMID:17613488
Merging OLTP and OLAP - Back to the Future
NASA Astrophysics Data System (ADS)
Lehner, Wolfgang
When the terms "Data Warehousing" and "Online Analytical Processing" were coined in the 1990s by Kimball, Codd, and others, there was an obvious need for separating data and workload for operational transactional-style processing and decision-making implying complex analytical queries over large and historic data sets. Large data warehouse infrastructures have been set up to cope with the special requirements of analytical query answering for multiple reasons: For example, analytical thinking heavily relies on predefined navigation paths to guide the user through the data set and to provide different views on different aggregation levels.Multi-dimensional queries exploiting hierarchically structured dimensions lead to complex star queries at a relational backend, which could hardly be handled by classical relational systems.
Concept-Based Retrieval from Critical Incident Reports.
Denecke, Kerstin
2017-01-01
Critical incident reporting systems (CIRS) are used as a means to collect anonymously entered information of incidents that occurred for example in a hospital. Analyzing this information helps to identify among others problems in the workflow, in the infrastructure or in processes. The entire potential of these sources of experiential knowledge remains often unconsidered since retrieval of relevant reports and their analysis is difficult and time-consuming, and the reporting systems often do not provide support for these tasks. The objective of this work is to develop a method for retrieving reports from the CIRS related to a specific user query. atural language processing (NLP) and information retrieval (IR) methods are exploited for realizing the retrieval. We compare standard retrieval methods that rely upon frequency of words with an approach that includes a semantic mapping of natural language to concepts of a medical ontology. By an evaluation, we demonstrate the feasibility of semantic document enrichment to improve recall in incident reporting retrieval. It is shown that a combination of standard keyword-based retrieval with semantic search results in highly satisfactory recall values. In future work, the evaluation should be repeated on a larger data set and real-time user evaluation need to be performed to assess user satisfactory with the system and results.
Linking genes to diseases with a SNPedia-Gene Wiki mashup
2012-01-01
Background A variety of topic-focused wikis are used in the biomedical sciences to enable the mass-collaborative synthesis and distribution of diverse bodies of knowledge. To address complex problems such as defining the relationships between genes and disease, it is important to bring the knowledge from many different domains together. Here we show how advances in wiki technology and natural language processing can be used to automatically assemble ‘meta-wikis’ that present integrated views over the data collaboratively created in multiple source wikis. Results We produced a semantic meta-wiki called the Gene Wiki+ that automatically mirrors and integrates data from the Gene Wiki and SNPedia. The Gene Wiki+, available at (http://genewikiplus.org/), captures 8,047 distinct gene-disease relationships. SNPedia accounts for 4,149 of the gene-disease pairs, the Gene Wiki provides 4,377 and only 479 appear independently in both sources. All of this content is available to query and browse and is provided as linked open data. Conclusions Wikis contain increasing amounts of diverse, biological information useful for elucidating the connections between genes and disease. The Gene Wiki+ shows how wiki technology can be used in concert with natural language processing to provide integrated views over diverse underlying data sources. PMID:22541597
Network-Capable Application Process and Wireless Intelligent Sensors for ISHM
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Morris, Jon; Turowski, Mark; Wang, Ray
2011-01-01
Intelligent sensor technology and systems are increasingly becoming attractive means to serve as frameworks for intelligent rocket test facilities with embedded intelligent sensor elements, distributed data acquisition elements, and onboard data acquisition elements. Networked intelligent processors enable users and systems integrators to automatically configure their measurement automation systems for analog sensors. NASA and leading sensor vendors are working together to apply the IEEE 1451 standard for adding plug-and-play capabilities for wireless analog transducers through the use of a Transducer Electronic Data Sheet (TEDS) in order to simplify sensor setup, use, and maintenance, to automatically obtain calibration data, and to eliminate manual data entry and error. A TEDS contains the critical information needed by an instrument or measurement system to identify, characterize, interface, and properly use the signal from an analog sensor. A TEDS is deployed for a sensor in one of two ways. First, the TEDS can reside in embedded, nonvolatile memory (typically flash memory) within the intelligent processor. Second, a virtual TEDS can exist as a separate file, downloadable from the Internet. This concept of virtual TEDS extends the benefits of the standardized TEDS to legacy sensors and applications where the embedded memory is not available. An HTML-based user interface provides a visual tool to interface with those distributed sensors that a TEDS is associated with, to automate the sensor management process. Implementing and deploying the IEEE 1451.1-based Network-Capable Application Process (NCAP) can achieve support for intelligent process in Integrated Systems Health Management (ISHM) for the purpose of monitoring, detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, mitigation to maintain operability, and integrated awareness of system health by the operator. It can also support local data collection and storage. This invention enables wide-area sensing and employs numerous globally distributed sensing devices that observe the physical world through the existing sensor network. This innovation enables distributed storage, distributed processing, distributed intelligence, and the availability of DiaK (Data, Information, and Knowledge) to any element as needed. It also enables the simultaneous execution of multiple processes, and represents models that contribute to the determination of the condition and health of each element in the system. The NCAP (intelligent process) can configure data-collection and filtering processes in reaction to sensed data, allowing it to decide when and how to adapt collection and processing with regard to sophisticated analysis of data derived from multiple sensors. The user will be able to view the sensing device network as a single unit that supports a high-level query language. Each query would be able to operate over data collected from across the global sensor network just as a search query encompasses millions of Web pages. The sensor web can preserve ubiquitous information access between the querier and the queried data. Pervasive monitoring of the physical world raises significant data and privacy concerns. This innovation enables different authorities to control portions of the sensing infrastructure, and sensor service authors may wish to compose services across authority boundaries.
Semantic Web repositories for genomics data using the eXframe platform.
Merrill, Emily; Corlosquet, Stéphane; Ciccarese, Paolo; Clark, Tim; Das, Sudeshna
2014-01-01
With the advent of inexpensive assay technologies, there has been an unprecedented growth in genomics data as well as the number of databases in which it is stored. In these databases, sample annotation using ontologies and controlled vocabularies is becoming more common. However, the annotation is rarely available as Linked Data, in a machine-readable format, or for standardized queries using SPARQL. This makes large-scale reuse, or integration with other knowledge bases very difficult. To address this challenge, we have developed the second generation of our eXframe platform, a reusable framework for creating online repositories of genomics experiments. This second generation model now publishes Semantic Web data. To accomplish this, we created an experiment model that covers provenance, citations, external links, assays, biomaterials used in the experiment, and the data collected during the process. The elements of our model are mapped to classes and properties from various established biomedical ontologies. Resource Description Framework (RDF) data is automatically produced using these mappings and indexed in an RDF store with a built-in Sparql Protocol and RDF Query Language (SPARQL) endpoint. Using the open-source eXframe software, institutions and laboratories can create Semantic Web repositories of their experiments, integrate it with heterogeneous resources and make it interoperable with the vast Semantic Web of biomedical knowledge.
High-Performance Data Analytics Beyond the Relational and Graph Data Models with GEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Minutoli, Marco; Bhatt, Shreyansh
Graphs represent an increasingly popular data model for data-analytics, since they can naturally represent relationships and interactions between entities. Relational databases and their pure table-based data model are not well suitable to store and process sparse data. Consequently, graph databases have gained interest in the last few years and the Resource Description Framework (RDF) became the standard data model for graph data. Nevertheless, while RDF is well suited to analyze the relationships between the entities, it is not efficient in representing their attributes and properties. In this work we propose the adoption of a new hybrid data model, based onmore » attributed graphs, that aims at overcoming the limitations of the pure relational and graph data models. We present how we have re-designed the GEMS data-analytics framework to fully take advantage of the proposed hybrid data model. To improve analysts productivity, in addition to a C++ API for applications development, we adopt GraQL as input query language. We validate our approach implementing a set of queries on net-flow data and we compare our framework performance against Neo4j. Experimental results show significant performance improvement over Neo4j, up to several orders of magnitude when increasing the size of the input data.« less
Evolution of Query Optimization Methods
NASA Astrophysics Data System (ADS)
Hameurlain, Abdelkader; Morvan, Franck
Query optimization is the most critical phase in query processing. In this paper, we try to describe synthetically the evolution of query optimization methods from uniprocessor relational database systems to data Grid systems through parallel, distributed and data integration systems. We point out a set of parameters to characterize and compare query optimization methods, mainly: (i) size of the search space, (ii) type of method (static or dynamic), (iii) modification types of execution plans (re-optimization or re-scheduling), (iv) level of modification (intra-operator and/or inter-operator), (v) type of event (estimation errors, delay, user preferences), and (vi) nature of decision-making (centralized or decentralized control).
ERIC Educational Resources Information Center
Dyehouse, Jeremiah; Manke, Krysten
2017-01-01
Can John Dewey's experiments at the University of Chicago's Laboratory School teach contemporary inquirers about "learning by making?" This article warrants an affirmative answer to this query. Unlike intellectual historians who trace the source of Dewey's and his colleagues' 1890s pedagogies to their cultural biases, we contend that…
ERIC Educational Resources Information Center
Ainsa, Patricia
2015-01-01
E-texts have become a main venue but research has not provided much guidance for practical adaptation, yet. This research query started in the spring of 2014 when an e-text was adopted for an undergraduate distance learning class. The change created some unexpected influence in the students' experiences. It was necessary to assess their…
The Armed Forces Casualty Assistance Readiness Enhancement System (CARES): Design for Flexibility
2006-06-01
Special Form SQL Structured Query Language SSA Social Security Administration U USMA United States Military Academy V VB Visual Basic VBA Visual Basic for...of Abbreviations ................................................................... 26 Appendix B: Key VBA Macros and MS Excel Coding...internet portal, CARES Version 1.0 is a MS Excel spreadsheet application that contains a considerable number of Visual Basic for Applications ( VBA
Arabic Information Retrieval at UMass in TREC-10
2006-01-01
electronic bilingual dictionaries , and stemmers, and our unfamiliarity with Arabic, we had our hands full carrying out some standard approaches to... monolingual and cross-lan- guage Arabic retrieval, and did not submit any runs based on novel approaches. We submitted three monolingual runs and one... dictionary construction, expanded Arabic queries, improved estimation and smoothing in language models, and added combination of evidence, increasing
Zaman, Babar; Khandekar, Rajiv; Al Shahwan, Sami; Song, Jonathan; Al Jadaan, Ibrahim; Al Jiasim, Leyla; Owaydha, Ohood; Asghar, Nasira; Hijazi, Amar; Edward, Deepak P.
2014-01-01
In this brief communication, we present the steps used to establish a web-based congenital glaucoma registry at our institution. The contents of a case report form (CRF) were developed by a group of glaucoma subspecialists. Information Technology (IT) specialists used Lime Survey softwareTM to create an electronic CRF. A MY Structured Query Language (MySQL) server was used as a database with a virtual machine operating system. Two ophthalmologists and 2 IT specialists worked for 7 hours, and a biostatistician and a data registrar worked for 24 hours each to establish the electronic CRF. Using the CRF which was transferred to the Lime survey tool, and the MYSQL server application, data could be directly stored in spreadsheet programs that included Microsoft Excel, SPSS, and R-Language and queried in real-time. In a pilot test, clinical data from 80 patients with congenital glaucoma were entered into the registry and successful descriptive analysis and data entry validation was performed. A web-based disease registry was established in a short period of time in a cost-efficient manner using available resources and a team-based approach. PMID:24791112
Zaman, Babar; Khandekar, Rajiv; Al Shahwan, Sami; Song, Jonathan; Al Jadaan, Ibrahim; Al Jiasim, Leyla; Owaydha, Ohood; Asghar, Nasira; Hijazi, Amar; Edward, Deepak P
2014-01-01
In this brief communication, we present the steps used to establish a web-based congenital glaucoma registry at our institution. The contents of a case report form (CRF) were developed by a group of glaucoma subspecialists. Information Technology (IT) specialists used Lime Survey softwareTM to create an electronic CRF. A MY Structured Query Language (MySQL) server was used as a database with a virtual machine operating system. Two ophthalmologists and 2 IT specialists worked for 7 hours, and a biostatistician and a data registrar worked for 24 hours each to establish the electronic CRF. Using the CRF which was transferred to the Lime survey tool, and the MYSQL server application, data could be directly stored in spreadsheet programs that included Microsoft Excel, SPSS, and R-Language and queried in real-time. In a pilot test, clinical data from 80 patients with congenital glaucoma were entered into the registry and successful descriptive analysis and data entry validation was performed. A web-based disease registry was established in a short period of time in a cost-efficient manner using available resources and a team-based approach.
Bulen, Andrew; Carter, Jonathan J.; Varanka, Dalia E.
2011-01-01
To expand data functionality and capabilities for users of The National Map of the U.S. Geological Survey, data sets for six watersheds and three urban areas were converted from the Best Practices vector data model formats to Semantic Web data formats. This report describes and documents the conver-sion process. The report begins with an introduction to basic Semantic Web standards and the background of The National Map. Data were converted from a proprietary format to Geog-raphy Markup Language to capture the geometric footprint of topographic data features. Configuration files were designed to eliminate redundancy and make the conversion more efficient. A SPARQL endpoint was established for data validation and queries. The report concludes by describing the results of the conversion.
Querying and Extracting Timeline Information from Road Traffic Sensor Data
Imawan, Ardi; Indikawati, Fitri Indra; Kwon, Joonho; Rao, Praveen
2016-01-01
The escalation of traffic congestion in urban cities has urged many countries to use intelligent transportation system (ITS) centers to collect historical traffic sensor data from multiple heterogeneous sources. By analyzing historical traffic data, we can obtain valuable insights into traffic behavior. Many existing applications have been proposed with limited analysis results because of the inability to cope with several types of analytical queries. In this paper, we propose the QET (querying and extracting timeline information) system—a novel analytical query processing method based on a timeline model for road traffic sensor data. To address query performance, we build a TQ-index (timeline query-index) that exploits spatio-temporal features of timeline modeling. We also propose an intuitive timeline visualization method to display congestion events obtained from specified query parameters. In addition, we demonstrate the benefit of our system through a performance evaluation using a Busan ITS dataset and a Seattle freeway dataset. PMID:27563900
BioModels.net Web Services, a free and integrated toolkit for computational modelling software.
Li, Chen; Courtot, Mélanie; Le Novère, Nicolas; Laibe, Camille
2010-05-01
Exchanging and sharing scientific results are essential for researchers in the field of computational modelling. BioModels.net defines agreed-upon standards for model curation. A fundamental one, MIRIAM (Minimum Information Requested in the Annotation of Models), standardises the annotation and curation process of quantitative models in biology. To support this standard, MIRIAM Resources maintains a set of standard data types for annotating models, and provides services for manipulating these annotations. Furthermore, BioModels.net creates controlled vocabularies, such as SBO (Systems Biology Ontology) which strictly indexes, defines and links terms used in Systems Biology. Finally, BioModels Database provides a free, centralised, publicly accessible database for storing, searching and retrieving curated and annotated computational models. Each resource provides a web interface to submit, search, retrieve and display its data. In addition, the BioModels.net team provides a set of Web Services which allows the community to programmatically access the resources. A user is then able to perform remote queries, such as retrieving a model and resolving all its MIRIAM Annotations, as well as getting the details about the associated SBO terms. These web services use established standards. Communications rely on SOAP (Simple Object Access Protocol) messages and the available queries are described in a WSDL (Web Services Description Language) file. Several libraries are provided in order to simplify the development of client software. BioModels.net Web Services make one step further for the researchers to simulate and understand the entirety of a biological system, by allowing them to retrieve biological models in their own tool, combine queries in workflows and efficiently analyse models.
Database technology and the management of multimedia data in the Mirror project
NASA Astrophysics Data System (ADS)
de Vries, Arjen P.; Blanken, H. M.
1998-10-01
Multimedia digital libraries require an open distributed architecture instead of a monolithic database system. In the Mirror project, we use the Monet extensible database kernel to manage different representation of multimedia objects. To maintain independence between content, meta-data, and the creation of meta-data, we allow distribution of data and operations using CORBA. This open architecture introduces new problems for data access. From an end user's perspective, the problem is how to search the available representations to fulfill an actual information need; the conceptual gap between human perceptual processes and the meta-data is too large. From a system's perspective, several representations of the data may semantically overlap or be irrelevant. We address these problems with an iterative query process and active user participating through relevance feedback. A retrieval model based on inference networks assists the user with query formulation. The integration of this model into the database design has two advantages. First, the user can query both the logical and the content structure of multimedia objects. Second, the use of different data models in the logical and the physical database design provides data independence and allows algebraic query optimization. We illustrate query processing with a music retrieval application.
Towards a Consistent and Scientifically Accurate Drug Ontology.
Hogan, William R; Hanna, Josh; Joseph, Eric; Brochhausen, Mathias
2013-01-01
Our use case for comparative effectiveness research requires an ontology of drugs that enables querying National Drug Codes (NDCs) by active ingredient, mechanism of action, physiological effect, and therapeutic class of the drug products they represent. We conducted an ontological analysis of drugs from the realist perspective, and evaluated existing drug terminology, ontology, and database artifacts from (1) the technical perspective, (2) the perspective of pharmacology and medical science (3) the perspective of description logic semantics (if they were available in Web Ontology Language or OWL), and (4) the perspective of our realism-based analysis of the domain. No existing resource was sufficient. Therefore, we built the Drug Ontology (DrOn) in OWL, which we populated with NDCs and other classes from RxNorm using only content created by the National Library of Medicine. We also built an application that uses DrOn to query for NDCs as outlined above, available at: http://ingarden.uams.edu/ingredients. The application uses an OWL-based description logic reasoner to execute end-user queries. DrOn is available at http://code.google.com/p/dr-on.
KBGIS-II: A knowledge-based geographic information system
NASA Technical Reports Server (NTRS)
Smith, Terence; Peuquet, Donna; Menon, Sudhakar; Agarwal, Pankaj
1986-01-01
The architecture and working of a recently implemented Knowledge-Based Geographic Information System (KBGIS-II), designed to satisfy several general criteria for the GIS, is described. The system has four major functions including query-answering, learning and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial object language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is performing all its designated tasks successfully. Future reports will relate performance characteristics of the system.
DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases
NASA Astrophysics Data System (ADS)
Bröcheler, Matthias; Pugliese, Andrea; Subrahmanian, V. S.
RDF is an increasingly important paradigm for the representation of information on the Web. As RDF databases increase in size to approach tens of millions of triples, and as sophisticated graph matching queries expressible in languages like SPARQL become increasingly important, scalability becomes an issue. To date, there is no graph-based indexing method for RDF data where the index was designed in a way that makes it disk-resident. There is therefore a growing need for indexes that can operate efficiently when the index itself resides on disk. In this paper, we first propose the DOGMA index for fast subgraph matching on disk and then develop a basic algorithm to answer queries over this index. This algorithm is then significantly sped up via an optimized algorithm that uses efficient (but correct) pruning strategies when combined with two different extensions of the index. We have implemented a preliminary system and tested it against four existing RDF database systems developed by others. Our experiments show that our algorithm performs very well compared to these systems, with orders of magnitude improvements for complex graph queries.
Standard biological parts knowledgebase.
Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H
2011-02-24
We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.