Science.gov

Sample records for lanthionine synthetases reveals

  1. The Enterococcal Cytolysin Synthetase Coevolves with Substrate for Stereoselective Lanthionine Synthesis.

    PubMed

    Tang, Weixin; Thibodeaux, Gabrielle N; van der Donk, Wilfred A

    2016-09-16

    Stereochemical control is critical in natural product biosynthesis. For ribosomally synthesized and post-translationally modified peptides (RiPPs), the mechanism(s) by which stereoselectivity is achieved is still poorly understood. In this work, we focused on the stereoselective lanthionine synthesis in lanthipeptides, a major class of RiPPs formed by the addition of Cys residues to dehydroalanine (Dha) or dehydrobutyrine (Dhb). Nonenzymatic cyclization of the small subunit of a virulence lanthipeptide, the enterococcal cytolysin, resulted in the native modified peptide as the major product, suggesting that both regioselectivity and stereoselectivity are inherent to the dehydrated peptide sequence. These results support previous computational studies that a Dhx-Dhx-Xxx-Xxx-Cys motif (Dhx = Dha or Dhb; Xxx = any amino acid except Dha, Dhb, and Cys) preferentially cyclizes by attack on the Re face of Dha or Dhb. Characterization of the stereochemistry of the products formed enzymatically with substrate mutants revealed that the lanthionine synthetase actively reinforces Re face attack. These findings support the hypothesis of substrate-controlled selectivity in lanthionine synthesis but also reveal likely coevolution of substrates and lanthionine synthetases to ensure the stereoselective synthesis of lanthipeptides with defined biological activities.

  2. The Enterococcal Cytolysin Synthetase Coevolves with Substrate for Stereoselective Lanthionine Synthesis

    PubMed Central

    Tang, Weixin; Thibodeaux, Gabrielle N.; van der Donk, Wilfred A.

    2017-01-01

    Stereochemical control is critical in natural product biosynthesis. For ribosomally synthesized and post-translationally modified peptides (RiPPs), the mechanism(s) by which stereoselectivity is achieved is still poorly understood. In this work, we focused on the stereoselective lanthionine synthesis in lanthipeptides, a major class of RiPPS formed by addition of Cys residues to dehydroalanine (Dha) or dehydrobutyrine (Dhb). Non-enzymatic cyclization of the small subunit of a virulent lanthipeptide, the enterococcal cytolysin, resulted in the native modified peptide as the major product, suggesting that both regioselectivity and stereoselectivity are inherent to the dehydrated peptide sequence. These results support previous computational studies that a DhxDhxXxxXxxCys motif (Dhx = Dha or Dhb; Xxx = any amino acid except Dha, Dhb, and Cys) preferentially cyclizes by attack on the Re face of Dha or Dhb. Characterization of the stereochemistry of the products formed enzymatically with substrate mutants revealed that the lanthionine synthetase actively reinforces Re face attack. These findings support the hypothesis of substrate-controlled selectivity in lanthionine synthesis but also reveal likely coevolution of substrates and lanthionine synthetases to ensure the stereoselective synthesis of lanthipeptides with defined biological activities. PMID:27348535

  3. Lanthionine Synthetase C-like Protein 1 Interacts with and Inhibits Cystathionine β-Synthase

    PubMed Central

    Zhong, Wei-xia; Wang, Yu-bin; Peng, Lin; Ge, Xue-zhen; Zhang, Jie; Liu, Shuang-shuang; Zhang, Xiang-nan; Xu, Zheng-hao; Chen, Zhong; Luo, Jian-hong

    2012-01-01

    The finding that eukaryotic lanthionine synthetase C-like protein 1 (LanCL1) is a glutathione-binding protein prompted us to investigate the potential relationship between LanCL1 and cystathionine β-synthase (CBS). CBS is a trans-sulfuration enzyme critical for the reduced glutathione (GSH) synthesis and GSH-dependent defense against oxidative stress. In this study we found that LanCL1 bound to CBS in mouse cortex and HEK293 cells. Mapping studies revealed that the binding region in LanCL1 spans amino acids 158–169, and that in CBS contains N-terminal and C-terminal regulatory domains. Recombinant His-LanCL1 directly bound endogenous CBS from mouse cortical lysates and inhibited its activity. Overexpression of LanCL1 inhibited CBS activity in HEK293 cells. CBS activity is reported to be regulated by oxidative stress. Here we found that oxidative stress induced by H2O2 or glutamate lowered the GSH/GSSG ratio, dissociated LanCL1 from CBS, and elevated CBS activity in primary rat cortical neurons. Decreasing the GSH/GSSG ratio by adding GSSG to cellular extracts also dissociated LanCL1 from CBS. Either lentiviral knockdown of LanCL1 or specific disruption of the LanCL1-CBS interaction using the peptide Tat-LanCL1153–173 released CBS activity in neurons but occluded CBS activation in response to oxidative stress, indicating the major contribution of the LanCL1-CBS interaction to the regulation of CBS activity. Furthermore, LanCL1 knockdown or Tat-LanCL1153–173 treatment reduced H2O2 or glutamate-induced neuronal damage. This study implies potential therapeutic value in targeting the LanCL1-CBS interaction for neuronal oxidative stress-related diseases. PMID:22891245

  4. Lanthionine Synthetase C-Like 2 Modulates Immune Responses to Influenza Virus Infection

    PubMed Central

    Leber, Andrew; Bassaganya-Riera, Josep; Tubau-Juni, Nuria; Zoccoli-Rodriguez, Victoria; Lu, Pinyi; Godfrey, Victoria; Kale, Shiv; Hontecillas, Raquel

    2017-01-01

    Broad-based, host-targeted therapeutics have the potential to ameliorate viral infections without inducing antiviral resistance. We identified lanthionine synthetase C-like 2 (LANCL2) as a new therapeutic target for immunoinflammatory diseases. To examine the therapeutic efficacy of oral NSC61610 administration on influenza, we infected C57BL/6 mice with influenza A H1N1pdm virus and evaluated influenza-related mortality, lung inflammatory profiles, and pulmonary histopathology. Oral treatment with NSC61610 ameliorates influenza virus infection by down-modulating pulmonary inflammation through the downregulation of TNF-α and MCP-1 and reduction in the infiltration of neutrophils. NSC61610 treatment increases IL10-producing CD8+ T cells and macrophages in the lungs during the resolution phase of disease. The loss of LANCL2 or neutralization of IL-10 in mice infected with influenza virus abrogates the ability of NSC61610 to accelerate recovery and induce IL-10-mediated regulatory responses. These studies validate that oral treatment with NSC61610 ameliorates morbidity and mortality and accelerates recovery during influenza virus infection through a mechanism mediated by activation of LANCL2 and subsequent induction of IL-10 responses by CD8+ T cells and macrophages in the lungs. PMID:28270815

  5. Chemical synthesis of the lantibiotic lacticin 481 reveals the importance of lanthionine stereochemistry.

    PubMed

    Knerr, Patrick J; van der Donk, Wilfred A

    2013-05-15

    Lantibiotics are a family of antibacterial peptide natural products characterized by the post-translational installation of the thioether-containing amino acids lanthionine and methyllanthionine. Until recently, only a single naturally occurring stereochemical configuration for each of these cross-links was known. The discovery of lantibiotics with alternative lanthionine and methyllanthionine stereochemistry has prompted an investigation of its importance to biological activity. Here, solid-supported chemical synthesis enabled the total synthesis of the lantibiotic lacticin 481 and analogues containing cross-links with non-native stereochemical configurations. Biological evaluation revealed that these alterations abolished the antibacterial activity in all of the analogues, revealing the critical importance of the enzymatically installed stereochemistry for the biological activity of lacticin 481.

  6. Modeling the Role of Lanthionine Synthetase C-Like 2 (LANCL2) in the Modulation of Immune Responses to Helicobacter pylori Infection

    PubMed Central

    Leber, Andrew; Bassaganya-Riera, Josep; Tubau-Juni, Nuria; Zoccoli-Rodriguez, Victoria; Viladomiu, Monica; Abedi, Vida; Lu, Pinyi; Hontecillas, Raquel

    2016-01-01

    Immune responses to Helicobacter pylori are orchestrated through complex balances of host-bacterial interactions, including inflammatory and regulatory immune responses across scales that can lead to the development of the gastric disease or the promotion of beneficial systemic effects. While inflammation in response to the bacterium has been reasonably characterized, the regulatory pathways that contribute to preventing inflammatory events during H. pylori infection are incompletely understood. To aid in this effort, we have generated a computational model incorporating recent developments in the understanding of H. pylori-host interactions. Sensitivity analysis of this model reveals that a regulatory macrophage population is critical in maintaining high H. pylori colonization without the generation of an inflammatory response. To address how this myeloid cell subset arises, we developed a second model describing an intracellular signaling network for the differentiation of macrophages. Modeling studies predicted that LANCL2 is a central regulator of inflammatory and effector pathways and its activation promotes regulatory responses characterized by IL-10 production while suppressing effector responses. The predicted impairment of regulatory macrophage differentiation by the loss of LANCL2 was simulated based on multiscale linkages between the tissue-level gastric mucosa and the intracellular models. The simulated deletion of LANCL2 resulted in a greater clearance of H. pylori, but also greater IFNγ responses and damage to the epithelium. The model predictions were validated within a mouse model of H. pylori colonization in wild-type (WT), LANCL2 whole body KO and myeloid-specific LANCL2-/- (LANCL2Myeloid) mice, which displayed similar decreases in H. pylori burden, CX3CR1+ IL-10-producing macrophages, and type 1 regulatory (Tr1) T cells. This study shows the importance of LANCL2 in the induction of regulatory responses in macrophages and T cells during H. pylori

  7. Substrate Control in Stereoselective Lanthionine Biosynthesis

    PubMed Central

    Tang, Weixin; Jiménez-Osés, Gonzalo; Houk, K. N.; van der Donk, Wilfred A.

    2014-01-01

    Enzymes are typically highly stereoselective catalysts that enforce a reactive conformation on their native substrates. We report here a rare example where the substrate controls the stereoselectivity of an enzyme-catalyzed Michael-type addition during the biosynthesis of lanthipeptides. These natural products contain thioether crosslinks formed by cysteine attack on dehydrated Ser and Thr residues. We demonstrate that several lanthionine synthetases catalyze highly selective anti additions in which the substrate (and not the enzyme) determines whether the addition occurs from the Re or Si face. A single point mutation in the peptide substrate completely inverted the stereochemical outcome of the enzymatic modification. Quantum mechanical calculations reproduced the experimentally observed selectivity and suggest that conformational restraints imposed by the amino acid sequence on the transition states determine the face selectivity of the Michael-type cyclization. PMID:25515891

  8. Substrate control in stereoselective lanthionine biosynthesis

    NASA Astrophysics Data System (ADS)

    Tang, Weixin; Jiménez-Osés, Gonzalo; Houk, K. N.; van der Donk, Wilfred A.

    2015-01-01

    Enzymes are typically highly stereoselective catalysts that enforce a reactive conformation on their native substrates. We report here a rare example in which the substrate controls the stereoselectivity of an enzyme-catalysed Michael-type addition during the biosynthesis of lanthipeptides. These natural products contain thioether crosslinks formed by a cysteine attack on dehydrated Ser and Thr residues. We demonstrate that several lanthionine synthetases catalyse highly selective anti-additions in which the substrate (and not the enzyme) determines whether the addition occurs from the re or si face. A single point mutation in the peptide substrate completely inverted the stereochemical outcome of the enzymatic modification. Quantum mechanical calculations reproduced the experimentally observed selectivity and suggest that conformational restraints imposed by the amino-acid sequence on the transition states determine the face selectivity of the Michael-type cyclization.

  9. Peptidoglycan precursor from Fusobacterium nucleatum contains lanthionine

    SciTech Connect

    Fredriksen, A.; Vasstrand, E.N.; Jensen, H.B. )

    1991-01-01

    Fusobacterium nucleatum was grown in the presence of ({sup 14}C)UDP. By means of sequential precipitation and chromatographic separation of the cytoplasmic content, a peptidoglycan ({sup 14}C)UDP pentapeptide containing lanthionine was isolated. This finding indicates that lanthionine is synthesized and incorporated as such during the assembly of the peptidoglycan.

  10. Characterisation of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties

    PubMed Central

    Mertsalov, Ilya B.; Novikov, Boris N.; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M.

    2016-01-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CMP-Sia synthetases that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterised its activity in vitro. Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn2+, Fe2+, Co2+ and Mn2+, while the activity with Mg2+ was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in coordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  11. Poly specific trans-acyltransferase machinery revealed via engineered acyl-CoA synthetases.

    PubMed

    Koryakina, Irina; McArthur, John; Randall, Shan; Draelos, Matthew M; Musiol, Ewa M; Muddiman, David C; Weber, Tilmann; Williams, Gavin J

    2013-01-18

    Polyketide synthases construct polyketides with diverse structures and biological activities via the condensation of extender units and acyl thioesters. Although a growing body of evidence suggests that polyketide synthases might be tolerant to non-natural extender units, in vitro and in vivo studies aimed at probing and utilizing polyketide synthase specificity are severely limited to only a small number of extender units, owing to the lack of synthetic routes to a broad variety of acyl-CoA extender units. Here, we report the construction of promiscuous malonyl-CoA synthetase variants that can be used to synthesize a broad range of malonyl-CoA extender units substituted at the C2-position, several of which contain handles for chemoselective ligation and are not found in natural biosynthetic systems. We highlighted utility of these enzymes by probing the acyl-CoA specificity of several trans-acyltransferases, leading to the unprecedented discovery of poly specificity toward non-natural extender units, several of which are not found in naturally occurring biosynthetic pathways. These results reveal that polyketide biosynthetic machinery might be more tolerant to non-natural substrates than previously established, and that mutant synthetases are valuable tools for probing the specificity of biosynthetic machinery. Our data suggest new synthetic biology strategies for harnessing this promiscuity and enabling the regioselective modification of polyketides.

  12. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission.

  13. Structural characterization of Helicobacter pylori dethiobiotin synthetase reveals differences between family members

    SciTech Connect

    Porebski, Przemyslaw J.; Klimecka, Maria; Chruszcz, Maksymilian; Nicholls, Robert A.; Murzyn, Krzysztof; Cuff, Marianne E.; Xu, Xiaohui; Cymborowski, Marcin; Murshudov, Garib N.; Savchenko, Alexei; Edwards, Aled; Minor, Wladek

    2012-07-11

    Dethiobiotin synthetase (DTBS) is involved in the biosynthesis of biotin in bacteria, fungi, and plants. As humans lack this pathway, DTBS is a promising antimicrobial drug target. We determined structures of DTBS from Helicobacter pylori (hpDTBS) bound with cofactors and a substrate analog, and described its unique characteristics relative to other DTBS proteins. Comparison with bacterial DTBS orthologs revealed considerable structural differences in nucleotide recognition. The C-terminal region of DTBS proteins, which contains two nucleotide-recognition motifs, differs greatly among DTBS proteins from different species. The structure of hpDTBS revealed that this protein is unique and does not contain a C-terminal region containing one of the motifs. The single nucleotide-binding motif in hpDTBS is similar to its counterpart in GTPases; however, isothermal titration calorimetry binding studies showed that hpDTBS has a strong preference for ATP. The structural determinants of ATP specificity were assessed with X-ray crystallographic studies of hpDTBS-ATP and hpDTBS-GTP complexes. The unique mode of nucleotide recognition in hpDTBS makes this protein a good target for H. pylori-specific inhibitors of the biotin synthesis pathway.

  14. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor.

    PubMed

    Mirando, Adam C; Fang, Pengfei; Williams, Tamara F; Baldor, Linda C; Howe, Alan K; Ebert, Alicia M; Wilkinson, Barrie; Lounsbury, Karen M; Guo, Min; Francklyn, Christopher S

    2015-08-14

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans.

  15. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor

    PubMed Central

    Mirando, Adam C.; Fang, Pengfei; Williams, Tamara F.; Baldor, Linda C.; Howe, Alan K.; Ebert, Alicia M.; Wilkinson, Barrie; Lounsbury, Karen M.; Guo, Min; Francklyn, Christopher S.

    2015-01-01

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans. PMID:26271225

  16. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism

    PubMed Central

    You, Di; Yin, Bin-Cheng; Li, Zhi-Hai; Zhou, Ying; Yu, Wen-Bang; Zuo, Peng; Ye, Bang-Ce

    2016-01-01

    In cells of all domains of life, reversible lysine acetylation modulates the function of proteins involved in central cellular processes such as metabolism. In this study, we demonstrate that the nitrogen regulator GlnR of the actinomycete Saccharopolyspora erythraea directly regulates transcription of the acuA gene (SACE_5148), which encodes a Gcn5-type lysine acetyltransferase. We found that AcuA acetylates two glutamine synthetases (GlnA1 and GlnA4) and that this lysine acetylation inactivated GlnA4 (GSII) but had no significant effect on GlnA1 (GSI-β) activity under the conditions tested. Instead, acetylation of GlnA1 led to a gain-of-function that modulated its interaction with the GlnR regulator and enhanced GlnR–DNA binding. It was observed that this regulatory function of acetylated GSI-β enzymes is highly conserved across actinomycetes. In turn, GlnR controls the catalytic and regulatory activities (intracellular acetylation levels) of glutamine synthetases at the transcriptional and posttranslational levels, indicating an autofeedback loop that regulates nitrogen metabolism in response to environmental change. Thus, this GlnR-mediated acetylation pathway provides a signaling cascade that acts from nutrient sensing to acetylation of proteins to feedback regulation. This work presents significant new insights at the molecular level into the mechanisms underlying the regulation of protein acetylation and nitrogen metabolism in actinomycetes. PMID:27247389

  17. In vivo selection of lethal mutations reveals two functional domains in arginyl-tRNA synthetase.

    PubMed Central

    Geslain, R; Martin, F; Delagoutte, B; Cavarelli, J; Gangloff, J; Eriani, G

    2000-01-01

    Using random mutagenesis and a genetic screening in yeast, we isolated 26 mutations that inactivate Saccharomyces cerevisiae arginyl-tRNA synthetase (ArgRS). The mutations were identified and the kinetic parameters of the corresponding proteins were tested after purification of the expression products in Escherichia coli. The effects were interpreted in the light of the crystal structure of ArgRS. Eighteen functional residues were found around the arginine-binding pocket and eight others in the carboxy-terminal domain of the enzyme. Mutations of these residues all act by strongly impairing the rates of tRNA charging and arginine activation. Thus, ArgRS and tRNA(Arg) can be considered as a kind of ribonucleoprotein, where the tRNA, before being charged, is acting as a cofactor that activates the enzyme. Furthermore, by using different tRNA(Arg) isoacceptors and heterologous tRNA(Asp), we highlighted the crucial role of several residues of the carboxy-terminal domain in tRNA recognition and discrimination. PMID:10744027

  18. Physiological Studies of Glutamine Synthetases I and III from Synechococcus sp. WH7803 Reveal Differential Regulation

    PubMed Central

    Domínguez-Martín, María Agustina; Díez, Jesús; García-Fernández, José M.

    2016-01-01

    The marine picocyanobacterium Synechococcus sp. WH7803 possesses two glutamine synthetases (GSs; EC 6.3.1.2), GSI encoded by glnA and GSIII encoded by glnN. This is the first work addressing the physiological regulation of both enzymes in a marine cyanobacterial strain. The increase of GS activity upon nitrogen starvation was similar to that found in other model cyanobacteria. However, an unusual response was found when cells were grown under darkness: the GS activity was unaffected, reflecting adaptation to the environment where they thrive. On the other hand, we found that GSIII did not respond to nitrogen availability, in sharp contrast with the results observed for this enzyme in other cyanobacteria thus far studied. These features suggest that GS activities in Synechococcus sp. WH7803 represent an intermediate step in the evolution of cyanobacteria, in a process of regulatory streamlining where GSI lost the regulation by light, while GSIII lost its responsiveness to nitrogen. This is in good agreement with the phylogeny of Synechococcus sp. WH7803 in the context of the marine cyanobacterial radiation. PMID:27446010

  19. Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site.

    PubMed

    Li, Sheng; Lu, Yongcheng; Peng, Baozhen; Ding, Jianping

    2007-01-01

    PRPP (phosphoribosylpyrophosphate) is an important metabolite essential for nucleotide synthesis and PRS (PRPP synthetase) catalyses synthesis of PRPP from R5P (ribose 5-phosphate) and ATP. The enzymatic activity of PRS is regulated by phosphate ions, divalent metal cations and ADP. In the present study we report the crystal structures of recombinant human PRS1 in complexes with SO4(2-) ions alone and with ATP, Cd2+ and SO4(2-) ions respectively. The AMP moiety of ATP binds at the ATP-binding site, and a Cd2+ ion binds at the active site and in a position to interact with the beta- and gamma-phosphates of ATP. A SO4(2-) ion, an analogue of the activator phosphate, was found to bind at both the R5P-binding site and the allosteric site defined previously. In addi-tion, an extra SO4(2-) binds at a site at the dimer interface between the ATP-binding site and the allosteric site. Binding of this SO4(2-) stabilizes the conformation of the flexible loop at the active site, leading to the formation of the active, open conformation which is essential for binding of ATP and initiation of the catalytic reaction. This is the first time that structural stabilization at the active site caused by binding of an activator has been observed. Structural and biochemical data show that mutations of some residues at this site influence the binding of SO4(2-) and affect the enzymatic activity. The results in the present paper suggest that this new SO4(2-)-binding site is a second allosteric site to regulate the enzymatic activity which might also exist in other eukaryotic PRSs (except plant PRSs of class II), but not in bacterial PRSs.

  20. Investigating arsenic susceptibility from a genetic perspective in Drosophila reveals a key role for glutathione synthetase.

    PubMed

    Ortiz, Jorge G Muñiz; Opoka, Robert; Kane, Daniel; Cartwright, Iain L

    2009-02-01

    Chronic exposure to arsenic-contaminated drinking water can lead to a variety of serious pathological outcomes. However, differential responsiveness within human populations suggests that interindividual genetic variation plays an important role. We are using Drosophila to study toxic metal response pathways because of unrivalled access to varied genetic approaches and significant demonstrable overlap with many aspects of mammalian physiology and disease phenotypes. Genetic analysis (via chromosomal segregation and microsatellite marker-based recombination) of various wild-type strains exhibiting relative susceptibility or tolerance to the lethal toxic effects of arsenite identified a limited X-chromosomal region (16D-F) able to confer a differential response phenotype. Using an FRT-based recombination approach, we created lines harboring small, overlapping deficiencies within this region and found that relative arsenite sensitivity arose when the dose of the glutathione synthetase (GS) gene (located at 16F1) was reduced by half. Knockdown of GS expression by RNA interference (RNAi) in cultured S2 cells led to enhanced arsenite sensitivity, while GS RNAi applied to intact organisms dramatically reduced the concentration of food-borne arsenite compatible with successful growth and development. Our analyses, initially guided by observations on naturally occurring variants, provide genetic proof that an optimally functioning two-step glutathione (GSH) biosynthetic pathway is required in vivo for a robust defense against arsenite; the enzymatic implications of this are discussed in the context of GSH supply and demand under arsenite-induced stress. Given an identical pathway for human GSH biosynthesis, we suggest that polymorphisms in GSH biosynthetic genes may be an important contributor to differential arsenic sensitivity and exposure risk in human populations.

  1. Effect of bioengineering lacticin 3147 lanthionine bridges on specific activity and resistance to heat and proteases.

    PubMed

    Suda, Srinivas; Westerbeek, Alja; O'Connor, Paula M; Ross, R Paul; Hill, Colin; Cotter, Paul D

    2010-10-29

    Lacticin 3147 is a lantibiotic with seven lanthionine bridges across its two component peptides, Ltnα and Ltnβ. Although it has been proposed that the eponymous lanthionine and (β-methyl)lanthionine (Lan and meLan) bridges present in lantibiotics make an important contribution to protecting the peptides from thermal or proteolytic degradation, few studies have investigated this link. We have generated a bank of bioengineered derivatives of lacticin 3147, in which selected bridges were removed or converted between Lan and meLan, which were exposed to high temperature or proteolytic enzymes. Although switching Lan and meLan bridges has variable consequences, it was consistently observed that an intact N-terminal lanthionine bridge (Ring A) confers Ltnα with enhanced resistance to thermal and proteolytic degradation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. ADP-binding site of Escherichia coli succinyl-CoA synthetase revealed by x-ray crystallography.

    PubMed

    Joyce, M A; Fraser, M E; James, M N; Bridger, W A; Wolodko, W T

    2000-01-11

    Succinyl-CoA synthetase (SCS) catalyzes the following reversible reaction via a phosphorylated histidine intermediate (His 246alpha): succinyl-CoA + P(i) + NDP <--> succinate + CoA + NTP (N denotes adenosine or guanosine). To determine the structure of the enzyme with nucleotide bound, crystals of phosphorylated Escherichia coli SCS were soaked in successive experiments adopting progressive strategies. In the first experiment, 1 mM ADP (>15 x K(d)) was added; Mg(2+) ions were omitted to preclude the formation of an insoluble precipitate with the phosphate and ammonium ions. X-ray crystallography revealed that the enzyme was dephosphorylated, but the nucleotide did not remain bound to the enzyme (R(working) = 17.2%, R(free) = 22.8% for data to 2.9 A resolution). Catalysis requires Mg(2+) ions; hence, the "true" nucleotide substrate is probably an ADP-Mg(2+) complex. In the successful experiment, the phosphate buffer was exchanged with MOPS, the concentration of sulfate ions was lowered, and the concentrations of ADP and Mg(2+) ions were increased to 10.5 and 50 mM, respectively. X-ray diffraction data revealed an ADP-Mg(2+) complex bound in the ATP-grasp fold of the N-terminal domain of each beta-subunit (R(working) = 19.1%, R(free) = 24.7% for data to 3.3 A resolution). We describe the specific interactions of the nucleotide-Mg(2+) complex with SCS, compare these results with those for other proteins containing the ATP-grasp fold, and present a hypothetical model of the histidine-containing loop in the "down" position where it can interact with the nucleotide approximately 35 A from where His 246alpha is seen in both phosphorylated and dephosphorylated SCS.

  3. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture

    SciTech Connect

    Torreira, Eva; Seabra, Ana Rita; Marriott, Hazel; Zhou, Min; Llorca, Óscar; Robinson, Carol V.; Carvalho, Helena G.; Fernández-Tornero, Carlos; Pereira, Pedro José Barbosa

    2014-04-01

    The experimental models of dicotyledonous cytoplasmic and plastid-located glutamine synthetases unveil a conserved eukaryotic-type decameric architecture, with subtle structural differences in M. truncatula isoenzymes that account for their distinct herbicide resistance. The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.

  4. A binding hotspot in Trypanosoma cruzi histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens

    PubMed Central

    Koh, Cho Yeow; Kallur Siddaramaiah, Latha; Ranade, Ranae M.; Nguyen, Jasmine; Jian, Tengyue; Zhang, Zhongsheng; Gillespie, J. Robert; Buckner, Frederick S.; Verlinde, Christophe L. M. J.; Fan, Erkang; Hol, Wim G. J.

    2015-01-01

    American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallo­graphically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS. PMID:26249349

  5. A binding hotspot in Trypanosoma cruzi histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens.

    PubMed

    Koh, Cho Yeow; Siddaramaiah, Latha Kallur; Ranade, Ranae M; Nguyen, Jasmine; Jian, Tengyue; Zhang, Zhongsheng; Gillespie, J Robert; Buckner, Frederick S; Verlinde, Christophe L M J; Fan, Erkang; Hol, Wim G J

    2015-08-01

    American trypanosomiasis, commonly known as Chagas disease, is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. The chronic form of the infection often causes debilitating morbidity and mortality. However, the current treatment for the disease is typically inadequate owing to drug toxicity and poor efficacy, necessitating a continual effort to discover and develop new antiparasitic therapeutic agents. The structure of T. cruzi histidyl-tRNA synthetase (HisRS), a validated drug target, has previously been reported. Based on this structure and those of human cytosolic HisRS, opportunities for the development of specific inhibitors were identified. Here, efforts are reported to identify small molecules that bind to T. cruzi HisRS through fragment-based crystallographic screening in order to arrive at chemical starting points for the development of specific inhibitors. T. cruzi HisRS was soaked into 68 different cocktails from the Medical Structural Genomics of Pathogenic Protozoa (MSGPP) fragment library and diffraction data were collected to identify bound fragments after soaking. A total of 15 fragments were identified, all bound to the same site on the protein, revealing a fragment-binding hotspot adjacent to the ATP-binding pocket. On the basis of the initial hits, the design of reactive fragments targeting the hotspot which would be simultaneously covalently linked to a cysteine residue present only in trypanosomatid HisRS was initiated. Inhibition of T. cruzi HisRS was observed with the resultant reactive fragments and the anticipated binding mode was confirmed crystallographically. These results form a platform for the development of future generations of selective inhibitors for trypanosomatid HisRS.

  6. LanCL proteins are not Involved in Lanthionine Synthesis in Mammals

    PubMed Central

    He, Chang; Zeng, Min; Dutta, Debapriya; Koh, Tong Hee; Chen, Jie; van der Donk, Wilfred A.

    2017-01-01

    LanC-like (LanCL) proteins are mammalian homologs of bacterial LanC enzymes, which catalyze the addition of the thiol of Cys to dehydrated Ser residues during the biosynthesis of lanthipeptides, a class of natural products formed by post-translational modification of precursor peptides. The functions of LanCL proteins are currently unclear. A recent proposal suggested that LanCL1 catalyzes the addition of the Cys of glutathione to protein- or peptide-bound dehydroalanine (Dha) to form lanthionine, analogous to the reaction catalyzed by LanC in bacteria. Lanthionine has been detected in human brain as the downstream metabolite lanthionine ketimine (LK), which has been shown to have neuroprotective effects. In this study, we tested the proposal that LanCL1 is involved in lanthionine biosynthesis by constructing LanCL1 knock-out mice and measuring LK concentrations in their brains using a mass spectrometric detection method developed for this purpose. To investigate whether other LanCL proteins (LanCL2/3) may confer a compensatory effect, triple knock-out (TKO) mice were also generated and tested. Very similar concentrations of LK (0.5–2.5 nmol/g tissue) were found in LanCL1 knock-out, TKO and wild type (WT) mouse brains, suggesting that LanCL proteins are not involved in lanthionine biosynthesis. PMID:28106097

  7. LanCL proteins are not Involved in Lanthionine Synthesis in Mammals.

    PubMed

    He, Chang; Zeng, Min; Dutta, Debapriya; Koh, Tong Hee; Chen, Jie; van der Donk, Wilfred A

    2017-01-20

    LanC-like (LanCL) proteins are mammalian homologs of bacterial LanC enzymes, which catalyze the addition of the thiol of Cys to dehydrated Ser residues during the biosynthesis of lanthipeptides, a class of natural products formed by post-translational modification of precursor peptides. The functions of LanCL proteins are currently unclear. A recent proposal suggested that LanCL1 catalyzes the addition of the Cys of glutathione to protein- or peptide-bound dehydroalanine (Dha) to form lanthionine, analogous to the reaction catalyzed by LanC in bacteria. Lanthionine has been detected in human brain as the downstream metabolite lanthionine ketimine (LK), which has been shown to have neuroprotective effects. In this study, we tested the proposal that LanCL1 is involved in lanthionine biosynthesis by constructing LanCL1 knock-out mice and measuring LK concentrations in their brains using a mass spectrometric detection method developed for this purpose. To investigate whether other LanCL proteins (LanCL2/3) may confer a compensatory effect, triple knock-out (TKO) mice were also generated and tested. Very similar concentrations of LK (0.5-2.5 nmol/g tissue) were found in LanCL1 knock-out, TKO and wild type (WT) mouse brains, suggesting that LanCL proteins are not involved in lanthionine biosynthesis.

  8. Small-angle X-ray Solution Scattering Study of the Multi-aminoacyl-tRNA Synthetase Complex Reveals an Elongated and Multi-armed particle*

    PubMed Central

    Dias, José; Renault, Louis; Pérez, Javier; Mirande, Marc

    2013-01-01

    In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex. PMID:23836901

  9. Proteomic Identification of Binding Partners for the Brain Metabolite Lanthionine Ketimine (LK) and Documentation of LK Effects on Microglia and Motoneuron Cell Cultures

    PubMed Central

    Hensley, Kenneth; Christov, Alexandar; Kamat, Shekhar; Zhang, X. Cai; Jackson, Kenneth W.; Snow, Stephen; Post, Jan

    2010-01-01

    Lanthionine ketimine (LK) represents a poorly-understood class of thioethers present in mammalian central nervous system. Previous work has indicated high-affinity interaction of LK with synaptosomal membrane protein(s) but neither LK binding partners nor specific bioactivities have been reported. In this study LK was chemically synthesized and used as an affinity agent to capture binding partners from mammalian brain lysate. Liquid chromatography with electrospray ionization-mass spectrometry (LC-ESI-MS/MS) of electrophoretically-separated, LK-bound proteins identified polypeptides implicated in axon remodeling or vesicle trafficking, and diseases including Alzheimer’s disease and schizophrenia: Collapsin response mediator protein-2/dihydropyrimidinase-like protein-2 (CRMP2/DRP2/DPYSL2); myelin basic protein (MBP); and syntaxin-binding protein-1 (STXBP1/Munc-18). Also identified was the recently discovered glutathione (GSH)-binding protein, lanthionine synthetase-like protein-1 (LanCL1). Functional consequences of LK:CRMP2 interactions were probed through immunoprecipitation studies using brain lysate wherein LK was found to increase CRMP2 co-precipitation with its partner neurofibromin-1 (NF1), but decreased CRMP2 co-precipitation with β-tubulin. Functional studies of NSC-34 motor neuron-like cells indicated that a cell-permeable LK-ester, LKE, was non-toxic and protective against oxidative challenge with H2O2. LKE-treated NSC-34 cells significantly increased neurite number and length in a serum concentration-dependent fashion, consistent with a CRMP2 interaction. Finally, LKE antagonized the activation of EOC-20 microglia by inflammogens. The results are discussed with reference to possible biochemical origins, paracrine functions, neurological significance and pharmacological potential of lanthionyl compounds. PMID:20181595

  10. Stereoselective synthesis of lanthionine derivatives in aqueous solution and their incorporation into the peptidoglycan of Escherichia coli.

    PubMed

    Denoël, Thibaut; Zervosen, Astrid; Gerards, Thomas; Lemaire, Christian; Joris, Bernard; Blanot, Didier; Luxen, André

    2014-09-01

    The three diastereoisomers-(R,R), (S,S) and meso-of lanthionine were synthesized in aqueous solution with high diastereoselectivity (>99%). The (S) and (R) enantiomers of two differently protected sulfamidates were opened by nucleophilic attack of (R) or (S)-cysteine. Acidification and controlled heating liberated the free lanthionines. Using the same chemistry, an α-benzyl lanthionine was also prepared. The proposed method, which avoids the need of enrichment by recrystallization, opens the way to the labelling of these compounds with (35)S. Furthermore, in vivo bioincorporation into Escherichia coli W7 was studied. No incorporation of α-benzyl lanthionine was observed. In contrast, meso-lanthionine can effectively replace meso-diaminopimelic acid in vivo, while in the presence of (R,R)-lanthionine the initial increase of bacterial growth was followed by cell lysis. In the future, meso-[(35)S]lanthionine could be used to study the biosynthesis of peptidoglycan and its turnover in relation to cell growth and division.

  11. The Sulfur Metabolite Lanthionine: Evidence for a Role as a Novel Uremic Toxin

    PubMed Central

    Perna, Alessandra F.; Zacchia, Miriam; Trepiccione, Francesco; Ingrosso, Diego

    2017-01-01

    Lanthionine is a nonproteinogenic amino acid, composed of two alanine residues that are crosslinked on their β-carbon atoms by a thioether linkage. It is biosynthesized from the condensation of two cysteine molecules, while the related compound homolanthionine is formed from the condensation of two homocysteine molecules. The reactions can be carried out by either cystathionine-β-synthase (CBS) or cystathionine-γ-lyase (CSE) independently, in the alternate reactions of the transsulfuration pathway devoted to hydrogen sulfide biosynthesis. Low plasma total hydrogen sulfide levels, probably due to reduced CSE expression, are present in uremia, while homolanthionine and lanthionine accumulate in blood, the latter several fold. Uremic patients display a derangement of sulfur amino acid metabolism with a high prevalence of hyperhomocysteinemia. Uremia is associated with a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity, due to the accumulation of retention products. Lanthionine inhibits hydrogen sulfide production in hepatoma cells, possibly through CBS inhibition, thus providing some basis for the biochemical mechanism, which may significantly contribute to alterations of metabolism sulfur compounds in these subjects (e.g., high homocysteine and low hydrogen sulfide). We therefore suggest that lanthionine is a novel uremic toxin. PMID:28075397

  12. The Sulfur Metabolite Lanthionine: Evidence for a Role as a Novel Uremic Toxin.

    PubMed

    Perna, Alessandra F; Zacchia, Miriam; Trepiccione, Francesco; Ingrosso, Diego

    2017-01-10

    Lanthionine is a nonproteinogenic amino acid, composed of two alanine residues that are crosslinked on their β-carbon atoms by a thioether linkage. It is biosynthesized from the condensation of two cysteine molecules, while the related compound homolanthionine is formed from the condensation of two homocysteine molecules. The reactions can be carried out by either cystathionine-β-synthase (CBS) or cystathionine-γ-lyase (CSE) independently, in the alternate reactions of the transsulfuration pathway devoted to hydrogen sulfide biosynthesis. Low plasma total hydrogen sulfide levels, probably due to reduced CSE expression, are present in uremia, while homolanthionine and lanthionine accumulate in blood, the latter several fold. Uremic patients display a derangement of sulfur amino acid metabolism with a high prevalence of hyperhomocysteinemia. Uremia is associated with a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity, due to the accumulation of retention products. Lanthionine inhibits hydrogen sulfide production in hepatoma cells, possibly through CBS inhibition, thus providing some basis for the biochemical mechanism, which may significantly contribute to alterations of metabolism sulfur compounds in these subjects (e.g., high homocysteine and low hydrogen sulfide). We therefore suggest that lanthionine is a novel uremic toxin.

  13. Origin and evolution of glutamyl-prolyl tRNA synthetase WHEP domains reveal evolutionary relationships within Holozoa.

    PubMed

    Ray, Partho Sarothi; Fox, Paul L

    2014-01-01

    Repeated domains in proteins that have undergone duplication or loss, and sequence divergence, are especially informative about phylogenetic relationships. We have exploited divergent repeats of the highly structured, 50-amino acid WHEP domains that join the catalytic subunits of bifunctional glutamyl-prolyl tRNA synthetase (EPRS) as a sequence-informed repeat (SIR) to trace the origin and evolution of EPRS in holozoa. EPRS is the only fused tRNA synthetase, with two distinct aminoacylation activities, and a non-canonical translation regulatory function mediated by the WHEP domains in the linker. Investigating the duplications, deletions and divergence of WHEP domains, we traced the bifunctional EPRS to choanozoans and identified the fusion event leading to its origin at the divergence of ichthyosporea and emergence of filozoa nearly a billion years ago. Distribution of WHEP domains from a single species in two or more distinct clades suggested common descent, allowing the identification of linking organisms. The discrete assortment of choanoflagellate WHEP domains with choanozoan domains as well as with those in metazoans supported the phylogenetic position of choanoflagellates as the closest sister group to metazoans. Analysis of clustering and assortment of WHEP domains provided unexpected insights into phylogenetic relationships amongst holozoan taxa. Furthermore, observed gaps in the transition between WHEP domain groupings in distant taxa allowed the prediction of undiscovered or extinct evolutionary intermediates. Analysis based on SIR domains can provide a phylogenetic counterpart to palaentological approaches of discovering "missing links" in the tree of life.

  14. Origin and Evolution of Glutamyl-prolyl tRNA Synthetase WHEP Domains Reveal Evolutionary Relationships within Holozoa

    PubMed Central

    Ray, Partho Sarothi; Fox, Paul L.

    2014-01-01

    Repeated domains in proteins that have undergone duplication or loss, and sequence divergence, are especially informative about phylogenetic relationships. We have exploited divergent repeats of the highly structured, 50-amino acid WHEP domains that join the catalytic subunits of bifunctional glutamyl-prolyl tRNA synthetase (EPRS) as a sequence-informed repeat (SIR) to trace the origin and evolution of EPRS in holozoa. EPRS is the only fused tRNA synthetase, with two distinct aminoacylation activities, and a non-canonical translation regulatory function mediated by the WHEP domains in the linker. Investigating the duplications, deletions and divergence of WHEP domains, we traced the bifunctional EPRS to choanozoans and identified the fusion event leading to its origin at the divergence of ichthyosporea and emergence of filozoa nearly a billion years ago. Distribution of WHEP domains from a single species in two or more distinct clades suggested common descent, allowing the identification of linking organisms. The discrete assortment of choanoflagellate WHEP domains with choanozoan domains as well as with those in metazoans supported the phylogenetic position of choanoflagellates as the closest sister group to metazoans. Analysis of clustering and assortment of WHEP domains provided unexpected insights into phylogenetic relationships amongst holozoan taxa. Furthermore, observed gaps in the transition between WHEP domain groupings in distant taxa allowed the prediction of undiscovered or extinct evolutionary intermediates. Analysis based on SIR domains can provide a phylogenetic counterpart to palaentological approaches of discovering “missing links” in the tree of life. PMID:24968216

  15. Lanthionine ketimine ester provides benefit in a mouse model of multiple sclerosis.

    PubMed

    Dupree, Jeffrey L; Polak, Paul E; Hensley, Kenneth; Pelligrino, Dale; Feinstein, Douglas L

    2015-07-01

    Lanthionine ketimine (LK) is a natural sulfur amino acid metabolite which binds to collapsin response mediator protein-2 (CRMP2), an abundant brain protein that interacts with multiple partners to regulate microtubule dynamics, neurite growth and retraction, axonal transport, and neurotransmitter release. LK ethyl-ester (LKE) is a cell-permeable synthetic derivative that promotes neurogenesis, suppresses nitric oxide production from microglia, and reduces neurotoxicity of microglia-conditioned medium. These properties led us to test the effects of LKE in experimental autoimmune encephalomyelitis (EAE), a commonly used mouse model of multiple sclerosis. Female C57Bl/6 mice were immunized with myelin oligodendrocyte glycoprotein peptide 35-55 to develop a chronic disease. LKE was provided in the chow at 100 ppm, ad libitum beginning when the mice reached moderate clinical signs. Over the following 4 weeks the LKE-treated mice showed a significant reduction in clinical signs compared to vehicle-treated mice. LKE dose dependently reduced IFNγ production from splenic T cells, but had no effect on IL-17 production suggesting protective effects were mediated within the CNS. Electron microscopy revealed that, compared to sham mice, EAE mice had significant neurodegeneration in both the optic nerve and spinal cord, which was reduced in the LKE-treated mice. In contrast only minimal disruption of myelin was observed at this time point. In the optic nerve, measurements of axon caliber and myelin thickness showed little changes between sham and EAE mice, however, treatment with LKE increased the percentage of axons with thicker myelin and with larger axon calibers. In the spinal cord, only smaller effects of LKE on myelin thickness were observed. The effects of LKE were associated with a reduced relative level of phosphorylated CRMP2 to CRMP2. Together, these results demonstrate that LKE reduces neurodegeneration in a chronic EAE model of MS, which could have translation

  16. Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients.

    PubMed

    Perna, Alessandra F; Di Nunzio, Annarita; Amoresano, Angela; Pane, Francesca; Fontanarosa, Carolina; Pucci, Piero; Vigorito, Carmela; Cirillo, Giovanni; Zacchia, Miriam; Trepiccione, Francesco; Ingrosso, Diego

    2016-07-01

    Dialysis patients display a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity. Among uremic toxins, homocysteine and cysteine are both substrates of cystathionine β-synthase and cystathionine γ-lyase in hydrogen sulfide biosynthesis, leading to the formation of two sulfur metabolites, lanthionine and homolanthionine, considered stable indirect biomarkers of its production. Hydrogen sulfide is involved in the modulation of multiple pathophysiological responses. In uremia, we have demonstrated low plasma total hydrogen sulfide levels, due to reduced cystathionine γ-lyase expression. Plasma hydrogen sulfide levels were measured in hemodialysis patients and healthy controls with three different techniques in comparison, allowing to discern the different pools of this gas. The protein-bound (the one thought to be the most active) and acid-labile forms are significantly decreased, while homolanthionine, but especially lanthionine, accumulate in the blood of uremic patients. The hemodialysis regimen plays a role in determining sulfur compounds levels, and lanthionine is partially removed by a single dialysis session. Lanthionine inhibits hydrogen sulfide production in cell cultures under conditions comparable to in vivo ones. We therefore propose that lanthionine is a novel uremic toxin. The possible role of high lanthionine as a contributor to the genesis of hyperhomocysteinemia in uremia is discussed.

  17. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome

    PubMed Central

    Müller, Christina A.; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C. A.; Wellington, Elizabeth M. H.

    2015-01-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. PMID:26002894

  18. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome.

    PubMed

    Müller, Christina A; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C A; Wellington, Elizabeth M H; Berg, Gabriele

    2015-08-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications.

  19. Characterization of Two Members among the Five ADP-Forming Acyl Coenzyme A (Acyl-CoA) Synthetases Reveals the Presence of a 2-(Imidazol-4-yl)Acetyl-CoA Synthetase in Thermococcus kodakarensis

    PubMed Central

    Awano, Tomotsugu; Wilming, Anja; Tomita, Hiroya; Yokooji, Yuusuke; Fukui, Toshiaki; Imanaka, Tadayuki

    2014-01-01

    The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales. PMID:24163338

  20. Characterization of two members among the five ADP-forming acyl coenzyme A (Acyl-CoA) synthetases reveals the presence of a 2-(Imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis.

    PubMed

    Awano, Tomotsugu; Wilming, Anja; Tomita, Hiroya; Yokooji, Yuusuke; Fukui, Toshiaki; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-01-01

    The genome of Thermococcus kodakarensis, along with those of most Thermococcus and Pyrococcus species, harbors five paralogous genes encoding putative α subunits of nucleoside diphosphate (NDP)-forming acyl coenzyme A (acyl-CoA) synthetases. The substrate specificities of the protein products for three of these paralogs have been clarified through studies on the individual enzymes from Pyrococcus furiosus and T. kodakarensis. Here we have examined the biochemical properties of the remaining two acyl-CoA synthetase proteins from T. kodakarensis. The TK0944 and TK2127 genes encoding the two α subunits were each coexpressed with the β subunit-encoding TK0943 gene. In both cases, soluble proteins with an α2β2 structure were obtained and their activities toward various acids in the ADP-forming reaction were examined. The purified TK0944/TK0943 protein (ACS IIITk) accommodated a broad range of acids that corresponded to those generated in the oxidative metabolism of Ala, Val, Leu, Ile, Met, Phe, and Cys. In contrast, the TK2127/TK0943 protein exhibited relevant levels of activity only toward 2-(imidazol-4-yl)acetate, a metabolite of His degradation, and was thus designated 2-(imidazol-4-yl)acetyl-CoA synthetase (ICSTk), a novel enzyme. Kinetic analyses were performed on both proteins with their respective substrates. In T. kodakarensis, we found that the addition of histidine to the medium led to increases in intracellular ADP-forming 2-(imidazol-4-yl)acetyl-CoA synthetase activity, and 2-(imidazol-4-yl)acetate was detected in the culture medium, suggesting that ICSTk participates in histidine catabolism. The results presented here, together with those of previous studies, have clarified the substrate specificities of all five known NDP-forming acyl-CoA synthetase proteins in the Thermococcales.

  1. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  2. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  3. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  4. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation.

    PubMed

    Jobe, Timothy O; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I

    2012-06-01

    Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion

  5. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ -ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation

    PubMed Central

    Jobe, Timothy O.; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.

    2015-01-01

    Summary Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M2 seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione

  6. A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies.

    PubMed

    Harris-White, Marni E; Ferbas, Kathie G; Johnson, Ming F; Eslami, Pirooz; Poteshkina, Aleksandra; Venkova, Kalina; Christov, Alexandar; Hensley, Kenneth

    2015-12-01

    Autophagy is a fundamental cellular recycling process vulnerable to compromise in neurodegeneration. We now report that a cell-penetrating neurotrophic and neuroprotective derivative of the central nervous system (CNS) metabolite, lanthionine ketimine (LK), stimulates autophagy in RG2 glioma and SH-SY5Y neuroblastoma cells at concentrations within or below pharmacological levels reported in previous mouse studies. Autophagy stimulation was evidenced by increased lipidation of microtubule-associated protein 1 light chain 3 (LC3) both in the absence and presence of bafilomycin-A1 which discriminates between effects on autophagic flux versus blockage of autophagy clearance. LKE treatment caused changes in protein level or phosphorylation state of multiple autophagy pathway proteins including mTOR; p70S6 kinase; unc-51-like-kinase-1 (ULK1); beclin-1 and LC3 in a manner essentially identical to effects observed after rapamycin treatment. The LKE site of action was near mTOR because neither LKE nor the mTOR inhibitor rapamycin affected tuberous sclerosis complex (TSC) phosphorylation status upstream from mTOR. Confocal immunofluorescence imaging revealed that LKE specifically decreased mTOR (but not TSC2) colocalization with LAMP2(+) lysosomes in RG2 cells, a necessary event for mTORC1-mediated autophagy suppression, whereas rapamycin had no effect. Suppression of the LK-binding adaptor protein CRMP2 (collapsin response mediator protein-2) by means of shRNA resulted in diminished autophagy flux, suggesting that the LKE action on mTOR localization may occur through a novel mechanism involving CRMP2-mediated intracellular trafficking. These findings clarify the mechanism-of-action for LKE in preclinical models of CNS disease, while suggesting possible roles for natural lanthionine metabolites in regulating CNS autophagy.

  7. Expression of the plastid-located glutamine synthetase of Medicago truncatula. Accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids.

    PubMed

    Melo, Paula M; Lima, Lígia M; Santos, Isabel M; Carvalho, Helena G; Cullimore, Julie V

    2003-05-01

    In this paper, we report the cloning and characterization of the plastid-located glutamine synthetase (GS) of Medicago truncatula Gaertn (MtGS2). A cDNA was isolated encoding a GS2 precursor polypeptide of 428 amino acids composing an N-terminal transit peptide of 49 amino acids. Expression analysis, by Westerns and by northern hybridization, revealed that MtGS2 is expressed in both photosynthetic and non-photosynthetic organs. Both transcripts and proteins of MtGS2 were detected in substantial amounts in root nodules, suggesting that the enzyme might be performing some important role in this organ. Surprisingly, about 40% of the plastid GS in nodules occurred in the non-processed precursor form (preGS2). This precursor was not detected in any other organ studied and moreover was not observed in non-fixing nodules. Cellular fractionation of nodule extracts revealed that preGS2 is associated with the plastids and that it is catalytically inactive. Immunogold electron microscopy revealed a frequent coincidence of GS with the plastid envelope. Taken together, these results suggest a nodule-specific accumulation of the GS2 precursor at the surface of the plastids in nitrogen-fixing nodules. These results may reflect a regulation of GS2 activity in relation to nitrogen fixation at the level of protein import into nodule plastids.

  8. Genetic and Physiological Analysis of Germination Efficiency in Maize in Relation to Nitrogen Metabolism Reveals the Importance of Cytosolic Glutamine Synthetase

    PubMed Central

    Limami, Anis M.; Rouillon, Clothilde; Glevarec, Gaëlle; Gallais, André; Hirel, Bertrand

    2002-01-01

    We have developed an approach combining physiology and quantitative genetics to enhance our understanding of nitrogen (N) metabolism during kernel germination. The physiological study highlighted the central role of glutamine (Gln) synthetase (GS) and Gln synthesis during this developmental process because a concomitant increase of both the enzyme activity and the amino acid content was observed. This result suggests that Gln is acting either as a sink for ammonium released during both storage protein degradation and amino acid deamination or as a source for amino acid de novo synthesis by transamination. In the two parental lines used for the quantitative genetics approach, we found that the increase in Gln occurred earlier in Io compared with F2, a result consistent with its faster germinating capacity. The genetic study was carried out on 140 F6 recombinant inbred lines derived from the cross between F2 and Io. Quantitative trait locus mapping identified three quantitative trait loci (QTLs) related to germination trait (T50, time at which 50% of the kernels germinated) that explain 18.2% of the phenotypic variance; three QTLs related to a trait linked to germination performance, kernel size/weight (thousand kernels weight), that explain 17% of the phenotypic variance; two QTLs related to GS activity at early stages of germination that explain 17.7% of the phenotypic variance; and one QTL related to GS activity at late stages of germination that explains 7.3% of the phenotypic variance. Coincidences of QTL for germination efficiency and its components with genes encoding cytosolic GS (GS1) and the corresponding enzyme activity were detected, confirming the important role of the enzyme during the germination process. A triple colocalization on chromosome 4 between gln3 (a structural gene encoding GS1) and a QTL for GS activity and T50 was found; whereas on chromosome 5, a QTL for GS activity and thousand kernels weight colocalized with gln4, another structural

  9. Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase.

    PubMed

    Limami, Anis M; Rouillon, Clothilde; Glevarec, Gaëlle; Gallais, André; Hirel, Bertrand

    2002-12-01

    We have developed an approach combining physiology and quantitative genetics to enhance our understanding of nitrogen (N) metabolism during kernel germination. The physiological study highlighted the central role of glutamine (Gln) synthetase (GS) and Gln synthesis during this developmental process because a concomitant increase of both the enzyme activity and the amino acid content was observed. This result suggests that Gln is acting either as a sink for ammonium released during both storage protein degradation and amino acid deamination or as a source for amino acid de novo synthesis by transamination. In the two parental lines used for the quantitative genetics approach, we found that the increase in Gln occurred earlier in Io compared with F(2), a result consistent with its faster germinating capacity. The genetic study was carried out on 140 F6 recombinant inbred lines derived from the cross between F(2) and Io. Quantitative trait locus mapping identified three quantitative trait loci (QTLs) related to germination trait (T50, time at which 50% of the kernels germinated) that explain 18.2% of the phenotypic variance; three QTLs related to a trait linked to germination performance, kernel size/weight (thousand kernels weight), that explain 17% of the phenotypic variance; two QTLs related to GS activity at early stages of germination that explain 17.7% of the phenotypic variance; and one QTL related to GS activity at late stages of germination that explains 7.3% of the phenotypic variance. Coincidences of QTL for germination efficiency and its components with genes encoding cytosolic GS (GS1) and the corresponding enzyme activity were detected, confirming the important role of the enzyme during the germination process. A triple colocalization on chromosome 4 between gln3 (a structural gene encoding GS1) and a QTL for GS activity and T50 was found; whereas on chromosome 5, a QTL for GS activity and thousand kernels weight colocalized with gln4, another structural

  10. [Anti-synthetase syndrome].

    PubMed

    Novak, Srdan

    2012-01-01

    Antysynthetase syndrome is considered as a group ofidiopathic inflammatory myositis with charcteristic serologic hallmark--antibodies which recognise the aminoacyl-tRNA synthetasses (ARS). Clinical picture of those patients contains myositis and/or intersticial lung disease (ILD) and/or arthritis and/or fever and/or Raynaud phenomenon and sometimes characteristic look of mechanic's hands. Myositis can be overt, sometimes even absent, while IBP is major cause of morbidity and determines the outcome of the disease. Untill now eight different any-synthetase autoantibodies are recognised, and most frequent are findings of anti-histidyl-tRNa synthetase antibodies. Patients with other ARS autoantibodies usually have severe ILD. Drug of choice are steroids in dosage of 1 mg/kg with immunosupresive agent (azatioprin or methotrexate) while in severe IBP cyclophosphamide is needed. Recently succsesful treatment with rituximab in combination with cyclophosphamide is reported.

  11. Evidence for a multimeric subtilin synthetase complex.

    PubMed Central

    Kiesau, P; Eikmanns, U; Gutowski-Eckel, Z; Weber, S; Hammelmann, M; Entian, K D

    1997-01-01

    Subtilin is a lanthionine-containing peptide antibiotic (lantibiotic) produced by Bacillus subtilis. It is ribosomally synthesized as a prepeptide and modified posttranslationally. Three proteins of the subtilin gene cluster (SpaB, SpaC, and SpaT) which are probably involved in prepeptide modification and transport have been identified genetically (C. Klein, C. Kaletta, N. Schnell, and K.-D. Entian, Appl. Environ. Microbiol. 58: 132-142, 1992). Immunoblot analysis revealed that production of SpaC is strongly regulated (Z. Gutowski-Eckel, C. Klein, K. Siegers, K. Bohm, M. Hammelmann, and K.-D. Entian, Appl. Environ. Microbiol. 60:1-11, 1994). Transcription of the SpaC protein started in the late logarithmic growth phase, reaching a maximum in the early stationary growth phase. No SpaC was detectable in the early logarithmic growth phase. Deletions within the spaR and spaK genes, which act as a two-component regulatory system, resulted in failure to express SpaB and SpaC, indicating that these two genes are the regulatory targets. Western blot analysis of vesicle preparations of B. subtilis revealed that the SpaB, SpaT, and SpaC proteins are membrane bound, although some of the protein was also detectable in cell extracts. By using the yeast two-hybrid analysis system for protein interactions, we showed that a complex of at least two each of SpaT, SpaB, and SpaC is most probably associated with the substrate SpaS. These results were also confirmed by coimmunoprecipitation experiments. In these cosedimentation experiments, SpaB and SpaC were coprecipitated by antisera against SpaC, SpaB, and SpaT, as well as by a monoclonal antibody against epitope-tagged SpaS, indicating that these four proteins are associated. PMID:9045802

  12. The C/ebp-Atf response element (CARE) location reveals two distinct Atf4-dependent, elongation-mediated mechanisms for transcriptional induction of aminoacyl-tRNA synthetase genes in response to amino acid limitation.

    PubMed

    Shan, Jixiu; Zhang, Fan; Sharkey, Jason; Tang, Tiffany A; Örd, Tönis; Kilberg, Michael S

    2016-11-16

    The response to amino acid (AA) limitation of the entire aminoacyl-tRNA synthetase (ARS) gene family revealed that 16/20 of the genes encoding cytoplasmic-localized enzymes are transcriptionally induced by activating transcription factor 4 (Atf4) via C/ebp-Atf-Response-Element (CARE) enhancers. In contrast, only 4/19 of the genes encoding mitochondrial-localized ARSs were weakly induced. Most of the activated genes have a functional CARE near the transcription start site (TSS), but for others the CARE is downstream. Regardless of the location of CARE enhancer, for all ARS genes there was constitutive association of RNA polymerase II (Pol II) and the general transcription machinery near the TSS. However, for those genes with a downstream CARE, Atf4, C/ebp-homology protein (Chop), Pol II and TATA-binding protein exhibited enhanced recruitment to the CARE during AA limitation. Increased Atf4 binding regulated the association of elongation factors at both the promoter and the enhancer regions, and inhibition of cyclin-dependent kinase 9 (CDK9), that regulates these elongation factors, blocked induction of the AA-responsive ARS genes. Protein pull-down assays indicated that Atf4 directly interacts with CDK9 and its associated protein cyclin T1. The results demonstrate that AA availability modulates the ARS gene family through modulation of transcription elongation. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. The C/ebp-Atf response element (CARE) location reveals two distinct Atf4-dependent, elongation-mediated mechanisms for transcriptional induction of aminoacyl-tRNA synthetase genes in response to amino acid limitation

    PubMed Central

    Shan, Jixiu; Zhang, Fan; Sharkey, Jason; Tang, Tiffany A.; Örd, Tönis; Kilberg, Michael S.

    2016-01-01

    The response to amino acid (AA) limitation of the entire aminoacyl-tRNA synthetase (ARS) gene family revealed that 16/20 of the genes encoding cytoplasmic-localized enzymes are transcriptionally induced by activating transcription factor 4 (Atf4) via C/ebp-Atf-Response-Element (CARE) enhancers. In contrast, only 4/19 of the genes encoding mitochondrial-localized ARSs were weakly induced. Most of the activated genes have a functional CARE near the transcription start site (TSS), but for others the CARE is downstream. Regardless of the location of CARE enhancer, for all ARS genes there was constitutive association of RNA polymerase II (Pol II) and the general transcription machinery near the TSS. However, for those genes with a downstream CARE, Atf4, C/ebp-homology protein (Chop), Pol II and TATA-binding protein exhibited enhanced recruitment to the CARE during AA limitation. Increased Atf4 binding regulated the association of elongation factors at both the promoter and the enhancer regions, and inhibition of cyclin-dependent kinase 9 (CDK9), that regulates these elongation factors, blocked induction of the AA-responsive ARS genes. Protein pull-down assays indicated that Atf4 directly interacts with CDK9 and its associated protein cyclin T1. The results demonstrate that AA availability modulates the ARS gene family through modulation of transcription elongation. PMID:27471030

  14. Characterization of the Saframycin A Gene Cluster from Streptomyces lavendulae NRRL 11002 Revealing a Nonribosomal Peptide Synthetase System for Assembling the Unusual Tetrapeptidyl Skeleton in an Iterative Manner▿†

    PubMed Central

    Li, Lei; Deng, Wei; Song, Jie; Ding, Wei; Zhao, Qun-Fei; Peng, Chao; Song, Wei-Wen; Tang, Gong-Li; Liu, Wen

    2008-01-01

    Saframycin A (SFM-A), produced by Streptomyces lavendulae NRRL 11002, belongs to the tetrahydroisoquinoline family of antibiotics, and its core is structurally similar to the core of ecteinascidin 743, which is a highly potent antitumor drug isolated from a marine tunicate. In this study, the biosynthetic gene cluster for SFM-A was cloned and localized to a 62-kb contiguous DNA region. Sequence analysis revealed 30 genes that constitute the SFM-A gene cluster, encoding an unusual nonribosomal peptide synthetase (NRPS) system and tailoring enzymes and regulatory and resistance proteins. The results of substrate prediction and in vitro characterization of the adenylation specificities of this NRPS system support the hypothesis that the last module acts in an iterative manner to form a tetrapeptidyl intermediate and that the colinearity rule does not apply. Although this mechanism is different from those proposed for the SFM-A analogs SFM-Mx1 and safracin B (SAC-B), based on the high similarity of these systems, it is likely they share a common mechanism of biosynthesis as we describe here. Construction of the biosynthetic pathway of SFM-Y3, an aminated SFM-A, was achieved in the SAC-B producer (Pseudomonas fluorescens). These findings not only shed new insight on tetrahydroisoquinoline biosynthesis but also demonstrate the feasibility of engineering microorganisms to generate structurally more complex and biologically more active analogs by combinatorial biosynthesis. PMID:17981978

  15. Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis

    PubMed Central

    Ravishankar, Sudha; Ambady, Anisha; Swetha, Rayapadi G.; Anbarasu, Anand; Ramaiah, Sudha; Sambandamurthy, Vasan K.

    2016-01-01

    Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis. PMID:26794499

  16. Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria.

    PubMed

    Zhang, Qi; Doroghazi, James R; Zhao, Xiling; Walker, Mark C; van der Donk, Wilfred A

    2015-07-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities.

  17. Expanded Natural Product Diversity Revealed by Analysis of Lanthipeptide-Like Gene Clusters in Actinobacteria

    PubMed Central

    Zhang, Qi; Doroghazi, James R.; Zhao, Xiling; Walker, Mark C.

    2015-01-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities. PMID:25888176

  18. A derivative of the brain metabolite lanthionine ketimine improves cognition and diminishes pathology in the 3 × Tg-AD mouse model of Alzheimer disease.

    PubMed

    Hensley, Kenneth; Gabbita, S Prasad; Venkova, Kalina; Hristov, Alexandar; Johnson, Ming F; Eslami, Pirooz; Harris-White, Marni E

    2013-10-01

    Lanthionine ketimine ([LK] 3,4-dihydro-2H-1,4-thiazine-3,5-dicarboxylic acid) is the archetype for a family of naturally occurring brain sulfur amino acid metabolites, the physiologic function of which is unknown. Lanthionine ketimine and its synthetic derivatives have recently demonstrated neurotrophic, neuroprotective, and antineuroinflammatory properties in vitro through a proposed mechanism involving the microtubule-associated protein collapsin response mediator protein 2. Therefore, studies were undertaken to test the effects of a bioavailable LK ester in the 3 × Tg-AD mouse model of Alzheimer disease. Lanthionine ketimine ester treatment substantially diminished cognitive decline and brain amyloid-β (Aβ) peptide deposition and phospho-Tau accumulation in 3 × Tg-AD mice and also reduced the density of Iba1-positive microglia. Furthermore, LK ester treatment altered collapsin response mediator protein 2 phosphorylation. These findings suggest that LK may not be a metabolic waste but rather a purposeful neurochemical, the synthetic derivatives of which constitute a new class of experimental therapeutics for Alzheimer disease and related entities.

  19. Retinal Vasculitis in Anti-Synthetase Syndrome.

    PubMed

    Donovan, Christopher P; Pecen, Paula E; Baynes, Kimberly; Ehlers, Justis P; Srivastava, Sunil K

    2016-09-01

    A 31-year-old woman with a history of anti-synthetase syndrome-related myositis and interstitial lung disease presented with acute-onset blurry vision and rash on her hands and feet. Visual acuity was hand motion in her right eye and 20/40 in her left eye. Dilated fundus exam showed extensive retinal vasculitis, diffuse intraretinal hemorrhages, and subretinal fluid. Optical coherence tomography revealed significant macular thickening, and fluorescein angiography revealed vascular leakage with peripheral nonperfusion. Aggressive systemic immunosuppression was initiated, with gradual resolution of her disease during 8 months of follow-up. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:874-879.].

  20. The 2.1Å Crystal Structure of an Acyl-CoA Synthetase from Methanosarcina acetivorans reveals an alternate acyl binding pocket for small branched acyl substrates†,‡

    PubMed Central

    Shah, Manish B.; Ingram-Smith, Cheryl; Cooper, Leroy L.; Qu, Jun; Meng, Yu; Smith, Kerry S.; Gulick, Andrew M.

    2009-01-01

    The acyl-AMP forming family of adenylating enzymes catalyze two-step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X-ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140° to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl-CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl-CoA synthetase and 4-chlorobenzoate:CoA ligase. Most interestingly, the acyl binding pocket of the new structure is compared with other acyl- and aryl-CoA synthetases. A comparison of the acyl-binding pocket of the acyl-CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl binding pocket. PMID:19544569

  1. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency.

    PubMed

    Signolet, Isabelle; Chenouard, Rachel; Oca, Florine; Barth, Magalie; Reynier, Pascal; Denis, Marie-Christine; Simard, Gilles

    2016-09-01

    Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA. Copyright © 2016 by the American Academy of Pediatrics.

  2. Genetics Home Reference: glutathione synthetase deficiency

    MedlinePlus

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions glutathione synthetase deficiency glutathione synthetase ...

  3. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    PubMed

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.

  4. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution

    PubMed Central

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter

    2014-01-01

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  5. Hepatocytes explanted in the spleen preferentially express carbamoylphosphate synthetase rather than glutamine synthetase.

    PubMed

    Lamers, W H; Been, W; Charles, R; Moorman, A F

    1990-10-01

    Urea cycle enzymes and glutamine synthetase are essential for NH3 detoxification and systemic pH homeostasis in mammals. Carbamoylphosphate synthetase, the first and flux-determining enzyme of the cycle, is found only in a large periportal compartment, and glutamine synthetase is found only in a small, complementary pericentral compartment. Because it is not possible to manipulate experimentally the intrahepatic distribution of carbamoylphosphate synthetase and glutamine synthetase, we looked for conditions in which explanted hepatocytes would exhibit either the carbamoylphosphate synthetase phenotype or glutamine synthetase phenotype. In the spleen hepatocytes either settle as individual cells or in small agglomerates. The dispersed cells only express the carbamoylphosphate synthetase phenotype. Within the agglomerates, sinusoids that drain on venules develop. Hepatocytes surrounding the venules stain only weakly for carbamoylphosphate synthetase but are strongly positive for glutamine synthetase. These observations were made for explanted embryonic hepatocytes (no prior expression of either carbamoylphosphate synthetase or glutamine synthetase), neonatal hepatocytes (compartments of gene expression not yet established) and adult periportal and pericentral hepatocytes.

  6. Genetics Home Reference: carbamoyl phosphate synthetase I deficiency

    MedlinePlus

    ... Health Conditions carbamoyl phosphate synthetase I deficiency carbamoyl phosphate synthetase I deficiency Printable PDF Open All Close ... to view the expand/collapse boxes. Description Carbamoyl phosphate synthetase I deficiency is an inherited disorder that ...

  7. Crystal structure of the archaeal asparagine synthetase: interrelation with aspartyl-tRNA and asparaginyl-tRNA synthetases.

    PubMed

    Blaise, Mickaël; Fréchin, Mathieu; Oliéric, Vincent; Charron, Christophe; Sauter, Claude; Lorber, Bernard; Roy, Hervé; Kern, Daniel

    2011-09-23

    Asparagine synthetase A (AsnA) catalyzes asparagine synthesis using aspartate, ATP, and ammonia as substrates. Asparagine is formed in two steps: the β-carboxylate group of aspartate is first activated by ATP to form an aminoacyl-AMP before its amidation by a nucleophilic attack with an ammonium ion. Interestingly, this mechanism of amino acid activation resembles that used by aminoacyl-tRNA synthetases, which first activate the α-carboxylate group of the amino acid to form also an aminoacyl-AMP before they transfer the activated amino acid onto the cognate tRNA. In a previous investigation, we have shown that the open reading frame of Pyrococcus abyssi annotated as asparaginyl-tRNA synthetase (AsnRS) 2 is, in fact, an archaeal asparagine synthetase A (AS-AR) that evolved from an ancestral aspartyl-tRNA synthetase (AspRS). We present here the crystal structure of this AS-AR. The fold of this protein is similar to that of bacterial AsnA and resembles the catalytic cores of AspRS and AsnRS. The high-resolution structures of AS-AR associated with its substrates and end-products help to understand the reaction mechanism of asparagine formation and release. A comparison of the catalytic core of AS-AR with those of archaeal AspRS and AsnRS and with that of bacterial AsnA reveals a strong conservation. This study uncovers how the active site of the ancestral AspRS rearranged throughout evolution to transform an enzyme activating the α-carboxylate group into an enzyme that is able to activate the β-carboxylate group of aspartate, which can react with ammonia instead of tRNA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Regulation of active site coupling in glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    LaRonde-LeBlanc, Nicole; Resto, Melissa; Gerratana, Barbara

    2009-05-21

    NAD{sup +} is an essential metabolite both as a cofactor in energy metabolism and redox homeostasis and as a regulator of cellular processes. In contrast to humans, Mycobacterium tuberculosis NAD{sup +} biosynthesis is absolutely dependent on the activity of a multifunctional glutamine-dependent NAD{sup +} synthetase, which catalyzes the ATP-dependent formation of NAD{sup +} at the synthetase domain using ammonia derived from L-glutamine in the glutaminase domain. Here we report the kinetics and structural characterization of M. tuberculosis NAD{sup +} synthetase. The kinetics data strongly suggest tightly coupled regulation of the catalytic activities. The structure, the first of a glutamine-dependent NAD{sup +} synthetase, reveals a homooctameric subunit organization suggesting a tight dependence of catalysis on the quaternary structure, a 40-{angstrom} intersubunit ammonia tunnel and structural elements that may be involved in the transfer of information between catalytic sites.

  9. Biochemical and inhibition studies of glutamine synthetase from Leishmania donovani.

    PubMed

    Kumar, Vinay; Yadav, Shailendra; Soumya, Neelagiri; Kumar, Rohit; Babu, Neerupudi Kishore; Singh, Sushma

    2017-03-25

    Leishmaniasis is a group of tropical diseases caused by protozoan parasites of the genus Leishmania. Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, a fatal disease if left untreated. Chemotherapy for leishmaniasis is problematic as the available drugs are toxic, costly and shows drug resistance, hence, there is a necessity to look out for the novel drug targets, chemical entities and vaccine. Glutamine synthetase (GS) catalyzes the synthesis of glutamine from glutamate and ammonia. In the present study, we have identified and characterized GS from L. donovani. The nucleotide sequence encoding putative glutamine synthetase like sequence from L. donovani (LdGS, LDBPK_060370) was cloned. A 43.5 kDa protein with 6X-His tag at the C-terminal end was obtained by overexpression of LdGS in Escherichia coli BL21 (DE3) strain. Expression of native LdGS in promastigotes and recombinant L. donovani glutamine synthetase (rLdGS) was confirmed by western blot analysis. An increase in expression of GS was observed at different phases of growth of the parasite. Expression of LdGS in promastigote and amastigote was confirmed by western blot analysis. Immunofluorescence studies of both the promastigote and amastigote stages of the parasite revealed the presence of LdGS in cytoplasm. GS exists as a single copy gene in parasite genome. Kinetic analysis of GS enzyme revealed Km value of 26.3 ± 0.4 mM for l- glutamate and Vmax value of 2.15 ± 0.07 U mg(-1). Present study confirms the presence of glutamine synthetase in L. donovani and provides comprehensive overview of LdGS for further validating it as a potential drug target.

  10. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae

    PubMed Central

    Chang, Yu-Fang; Carman, George M.

    2008-01-01

    CTP synthetase is a cytosolic-associated glutamine amidotransferase enzyme that catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In the yeast Saccharomyces cerevisiae, the reaction product CTP is an essential precursor of all membrane phospholipids that are synthesized via the Kennedy (CDP-choline and CDP-ethanolamine branches) and CDP-diacylglycerol pathways. The URA7 and URA8 genes encode CTP synthetase in S. cerevisiae, and the URA7 gene is responsible for the majority of CTP synthesized in vivo. The CTP synthetase enzymes are allosterically regulated by CTP product inhibition. Mutations that alleviate this regulation result in an elevated cellular level of CTP and an increase in phospholipid synthesis via the Kennedy pathway. The URA7-encoded enzyme is phosphorylated by protein kinases A and C, and these phosphorylations stimulate CTP synthetase activity and increase cellular CTP levels and the utilization of the Kennedy pathway. The CTPS1 and CTPS2 genes that encode human CTP synthetase enzymes are functionally expressed in S. cerevisiae, and rescue the lethal phenotype of the ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. The expression in yeast has revealed that the human CTPS1-encoded enzyme is also phosphorylated and regulated by protein kinases A and C. PMID:18439916

  11. Radioimmune assay of human platelet prostaglandin synthetase

    SciTech Connect

    Roth, G.J.; Machuga, E.T.

    1982-02-01

    Normal platelet function depends, in part, on platelet PG synthesis. PG synthetase (cyclo-oxygenase) catalyzes the first step in PG synthesis, the formation of PGH/sub 2/ from arachidonic acid. Inhibition of the enzyme by ASA results in an abnormality in the platelet release reaction. Patients with pparent congenital abnormalities in the enzyme have been described, and the effects have been referred to as ''aspirin-like'' defects of the platelet function. These patients lack platelet PG synthetase activity, but the actual content of PG synthetase protein in these individuals' platelets is unknown. Therefore an RIA for human platelet PG synthetase would provide new information, useful in assessing the aspirin-like defects of platelet function. An RIA for human platelet PG synthetase is described. The assay utilizes a rabbit antibody directed against the enzyme and (/sup 125/I)-labelled sheep PG synthetase as antigen. The human platelet enzyme is assayed by its ability to inhibit precipitation of the (/sup 125/I)antigen. The assay is sensitive to 1 ng of enzyme. By the immune assay, human platelets contain approximately 1200 ng of PG synethetase protein per 1.5 mg of platelet protein (approximately 10/sup 9/ platelets). This content corresponds to 10,000 enzyme molecules per platelet. The assay provides a rapid and convenient assay for the human platelet enzyme, and it can be applied to the assessment of patients with apparent platelet PG synthetase (cyclo-oxygenase) deficiency.

  12. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    PubMed

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  13. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    SciTech Connect

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  14. Overexpression of Human Fatty Acid Transport Protein 2/Very Long Chain Acyl-CoA Synthetase 1 (FATP2/Acsvl1) Reveals Distinct Patterns of Trafficking of Exogenous Fatty Acids

    PubMed Central

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2014-01-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4hr. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  15. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  16. A Rationally Engineered Misacylating Aminoacyl-Trna Synthetase

    SciTech Connect

    Bullock, T.L.; Rodriguez-Hernandez, A.; Corigliano, E.M.; Perona, J.J.

    2009-05-12

    Information transfer from nucleic acid to protein is mediated by aminoacyl-tRNA synthetases, which catalyze the specific pairings of amino acids with transfer RNAs. Despite copious sequence and structural information on the 22 tRNA synthetase families, little is known of the enzyme signatures that specify amino acid selectivities. Here, we show that transplanting a conserved arginine residue from glutamyl-tRNA synthetase (GluRS) to glutaminyl-tRNA synthetase (GlnRS) improves the K{sub M} of GlnRS for noncognate glutamate. Two crystal structures of this C229R GlnRS mutant reveal that a conserved twin-arginine GluRS amino acid identity signature cannot be incorporated into GlnRS without disrupting surrounding protein structural elements that interact with the tRNA. Consistent with these findings, we show that cumulative replacement of other primary binding site residues in GlnRS, with those of GluRS, only slightly improves the ability of the GlnRS active site to accommodate glutamate. However, introduction of 22 amino acid replacements and one deletion, including substitution of the entire primary binding site and two surface loops adjacent to the region disrupted in C229R, improves the capacity of Escherichia coli GlnRS to synthesize misacylated Glu-tRNA{sup Gln} by 16,000-fold. This hybrid enzyme recapitulates the function of misacylating GluRS enzymes found in organisms that synthesize Gln-tRNA{sup Gln} by an alternative pathway. These findings implicate the RNA component of the contemporary GlnRS-tRNA{sup Gln} complex in mediating amino acid specificity. This role for tRNA may persist as a relic of primordial cells in which the evolution of the genetic code was driven by RNA-catalyzed amino acid-RNA pairing.

  17. Genetics Home Reference: holocarboxylase synthetase deficiency

    MedlinePlus

    ... use of biotin, a B vitamin found in foods such as liver, egg yolks, and milk. Holocarboxylase synthetase attaches biotin to certain enzymes that are essential for the normal production and breakdown of proteins, fats, and carbohydrates in ...

  18. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  19. Semi-synthesis of biologically active nisin hybrids composed of the native lanthionine ABC-fragment and a cross-stapled synthetic DE-fragment.

    PubMed

    Slootweg, Jack C; Peters, Nienke; Quarles van Ufford, H Linda C; Breukink, Eefjan; Liskamp, Rob M J; Rijkers, Dirk T S

    2014-10-01

    The antimicrobial peptide nisin is a promising template for designing novel peptide-based antibiotics to improve its drug-like properties. First steps in that direction represent the synthesis of hybrid nisin derivatives that contain a native nisin ABC-part and synthesized cross-stapled DE-ring fragments and are described here. The biological activity of the newly synthesized nisin derivatives was evaluated in order to compare the bioactivity of the synthetic DE-ring containing mimic and native lanthionine-bridged DE-ring containing nisin. The native nisin ABC-ring system was obtained via chymotrypsin digestion of full-length nisin, and was subsequently functionalized at the C-terminal carboxylate with two different amino alkyne moieties. Next, nisin hybrids were successfully prepared using Cu(I)-catalyzed azide alkyne cycloaddition 'click' chemistry by chemo-selective ligation of the ABC-alkyne with the N-terminal azido functionalized dicarba-DE ring mimic. The newly synthesized compounds were active as potent lipid II binders and retained antimicrobial activity in a growth inhibition assay. However, pore formation was not observed, possibly either due to the different character of the 'staples' as compared to the parent sulfides, or due to the triazole moiety as a sub-optimal amide bond isostere. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism

    PubMed Central

    Roy, Hervé; Becker, Hubert Dominique; Reinbolt, Joseph; Kern, Daniel

    2003-01-01

    Faithful protein synthesis relies on a family of essential enzymes called aminoacyl-tRNA synthetases, assembled in a piecewise fashion. Analysis of the completed archaeal genomes reveals that all archaea that possess asparaginyl-tRNA synthetase (AsnRS) also display a second ORF encoding an AsnRS truncated from its anticodon binding-domain (AsnRS2). We show herein that Pyrococcus abyssi AsnRS2, in contrast to AsnRS, does not sustain asparaginyl-tRNAAsn synthesis but is instead capable of converting aspartic acid into asparagine. Functional analysis and complementation of an Escherichia coli asparagine auxotrophic strain show that AsnRS2 constitutes the archaeal homologue of the bacterial ammonia-dependent asparagine synthetase A (AS-A), therefore named archaeal asparagine synthetase A (AS-AR). Primary sequence- and 3D-based phylogeny shows that an archaeal AspRS ancestor originated AS-AR, which was subsequently transferred into bacteria by lateral gene transfer in which it underwent structural changes producing AS-A. This study provides evidence that a contemporary aminoacyl-tRNA synthetase can be recruited to sustain amino acid metabolism. PMID:12874385

  1. Structure of a tryptophanyl-tRNA synthetase containing an iron–sulfur cluster

    PubMed Central

    Han, Gye Won; Yang, Xiang-Lei; McMullan, Daniel; Chong, Yeeting E.; Krishna, S. Sri; Rife, Christopher L.; Weekes, Dana; Brittain, Scott M.; Abdubek, Polat; Ambing, Eileen; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Caruthers, Jonathan; Chiu, Hsiu-Ju; Clayton, Thomas; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Slawomir K.; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kumar, Abhinav; Marciano, David; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Paulsen, Jessica; Reyes, Ron; van den Bedem, Henry; White, Aprilfawn; Wolf, Guenter; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Schimmel, Paul; Wilson, Ian A.

    2010-01-01

    A novel aminoacyl-tRNA synthetase that contains an iron–sulfur cluster in the tRNA anticodon-binding region and efficiently charges tRNA with tryptophan has been found in Thermotoga maritima. The crystal structure of TmTrpRS (tryptophanyl-tRNA synthetase; TrpRS; EC 6.1.1.2) reveals an iron–sulfur [4Fe–­4S] cluster bound to the tRNA anticodon-binding (TAB) domain and an l-­tryptophan ligand in the active site. None of the other T. maritima aminoacyl-tRNA synthetases (AARSs) contain this [4Fe–4S] cluster-binding motif (C-x 22-C-x 6-C-x 2-C). It is speculated that the iron–sulfur cluster contributes to the stability of TmTrpRS and could play a role in the recognition of the anticodon. PMID:20944229

  2. Hepatocyte-specific interplay of transcription factors at the far-upstream enhancer of the carbamoylphosphate synthetase gene upon glucocorticoid induction.

    PubMed

    Hoogenkamp, Maarten; Gaemers, Ingrid C; Schoneveld, Onard J L M; Das, Atze T; Grange, Thierry; Lamers, Wouter H

    2007-01-01

    Carbamoylphosphate synthetase-I is the flux-determining enzyme of the ornithine cycle, and neutralizes toxic ammonia by converting it to urea. An 80 bp glucocorticoid response unit located 6.3 kb upstream of the transcription start site mediates hormone responsiveness and liver-specific expression of carbamoylphosphate synthetase-I. The glucocorticoid response unit consists of response elements for the glucocorticoid receptor, forkhead box A, CCAAT/enhancer-binding protein, and an unidentified protein. With only four transcription factor response elements, the carbamoylphosphate synthetase-I glucocorticoid response unit is a relatively simple unit. The relationship between carbamoylphosphate synthetase-I expression and in vivo occupancy of the response elements was examined by comparing a carbamoylphosphate synthetase-I-expressing hepatoma cell line with a carbamoylphosphate synthetase-I-negative fibroblast cell line. DNaseI hypersensitivity assays revealed an open chromatin configuration of the carbamoylphosphate synthetase-I enhancer in hepatoma cells only. In vivo footprinting assays showed that the accessory transcription factors of the glucocorticoid response unit bound to their response elements in carbamoylphosphate synthetase-I-positive cells, irrespective of whether carbamoylphosphate synthetase-I expression was induced with hormones. In contrast, the binding of glucocorticoid receptor to the carbamoylphosphate synthetase-I glucocorticoid response unit was dependent on treatment of the cells with glucocorticoids. Only forkhead box A was exclusively present in hepatoma cells, and therefore appears to be an important determinant of the observed tissue specificity of carbamoylphosphate synthetase-I expression. As the glucocorticoid receptor is the only DNA-binding protein specifically recruited to the glucocorticoid response unit upon stimulation by glucocorticoids, it is likely to be directly responsible for the transcriptional activation mediated by the

  3. Fatty Acid Synthetase of Saccharomyces cerevisiae

    PubMed Central

    Klein, Harold P.; Volkmann, Carol M.; Chao, Fu-Chuan

    1967-01-01

    A light particle fraction of Saccharomyces cerevisiae, obtained from the crude ribosomal material, and containing the fatty acid synthetase, consisted primarily of 27S and 47S components. This fraction has a protein-ribonucleic acid ratio of about 13. Electron micrographs showed particles ranging in diameter between 100 and 300 A in this material. By use of density gradient analysis, the fatty acid synthetase was found in the 47S component. This component contained particles which were predominantly 300 A in diameter and which were considerably flatter than ribosomes, and it consisted almost entirely of protein. Images PMID:6025308

  4. The glutamine synthetase gene family in Populus

    PubMed Central

    2011-01-01

    Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1) and 1 which codes for the choroplastic GS isoform (GS2). Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types. PMID:21867507

  5. Novel insights into regulation of asparagine synthetase in conifers.

    PubMed

    Canales, Javier; Rueda-López, Marina; Craven-Bartle, Blanca; Avila, Concepción; Cánovas, Francisco M

    2012-01-01

    Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1) was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed.

  6. Novel Insights into Regulation of Asparagine Synthetase in Conifers

    PubMed Central

    Canales, Javier; Rueda-López, Marina; Craven-Bartle, Blanca; Avila, Concepción; Cánovas, Francisco M.

    2012-01-01

    Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1) was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed. PMID:22654888

  7. Inactivation and covalent modification of CTP synthetase by thiourea dioxide.

    PubMed Central

    Robertson, J. G.; Sparvero, L. J.; Villafranca, J. J.

    1992-01-01

    Thiourea dioxide was used in chemical modification studies to identify functionally important amino acids in Escherichia coli CTP synthetase. Incubation at pH 8.0 in the absence of substrates led to rapid, time dependent, and irreversible inactivation of the enzyme. The second-order rate constant for inactivation was 0.18 M-1 s-1. Inactivation also occurred in the absence of oxygen and in the presence of catalase, thereby ruling out mixed-function oxidation/reduction as the mode of amino acid modification. Saturating concentrations of the substrates ATP and UTP, and the allosteric activator GTP prevented inactivation by thiourea dioxide, whereas saturating concentrations of glutamine (a substrate) did not. The concentration dependence of nucleotide protection revealed cooperative behavior with respect to individual nucleotides and with respect to various combinations of nucleotides. Mixtures of nucleotides afforded greater protection against inactivation than single nucleotides alone, and a combination of the substrates ATP and UTP provided the most protection. The Hill coefficient for nucleotide protection was approximately 2 for ATP, UTP, and GTP. In the presence of 1:1 ratios of ATP:UTP, ATP:GTP, and UTP:GTP, the Hill coefficient was approximately 4 in each case. Fluorescence and circular dichroism measurements indicated that modification by thiourea dioxide causes detectable changes in the structure of the protein. Modification with [14C]thiourea dioxide demonstrated that complete inactivation correlates with incorporation of 3 mol of [14C]thiourea dioxide per mole of CTP synthetase monomer. The specificity of thiourea dioxide for lysine residues indicates that one or more lysines are most likely involved in CTP synthetase activity. The data further indicate that nucleotide binding prevents access to these functionally important residues. PMID:1303749

  8. A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases.

    PubMed

    Ibba, M; Morgan, S; Curnow, A W; Pridmore, D R; Vothknecht, U C; Gardner, W; Lin, W; Woese, C R; Söll, D

    1997-11-07

    The sequencing of euryarchaeal genomes has suggested that the essential protein lysyl-transfer RNA (tRNA) synthetase (LysRS) is absent from such organisms. However, a single 62-kilodalton protein with canonical LysRS activity was purified from Methanococcus maripaludis, and the gene that encodes this protein was cloned. The predicted amino acid sequence of M. maripaludis LysRS is similar to open reading frames of unassigned function in both Methanobacterium thermoautotrophicum and Methanococcus jannaschii but is unrelated to canonical LysRS proteins reported in eubacteria, eukaryotes, and the crenarchaeote Sulfolobus solfataricus. The presence of amino acid motifs characteristic of the Rossmann dinucleotide-binding domain identifies M. maripaludis LysRS as a class I aminoacyl-tRNA synthetase, in contrast to the known examples of this enzyme, which are class II synthetases. These data question the concept that the classification of aminoacyl-tRNA synthetases does not vary throughout living systems.

  9. Recognizing and predicting thioether bridges formed by lanthionine and β-methyllanthionine in lantibiotics using a random forest approach with feature selection.

    PubMed

    Wang, ShaoPeng; Zhang, Yu-Hang; Zhang, Ning; Chen, Lei; Huang, Tao; Cai, Yu-Dong

    2017-03-10

    Lantibiotics, which are usually produced from Gram-positive bacteria, are regarded as one type of special bacteriocins. Lantibiotics have unsaturated amino acid residues formed by lanthionine (Lan) and β-methyllanthionine (MeLan) residues as a ring structure in the peptide. They are derived from the serine and threonine residues and are essential to preventing the growth of other similar strains. In this pioneering work, we firstly proposed a machine learning method to recognize and predict the Lan and MeLan residues in the protein sequences of lantibiotics. We adopted maximal relevance minimal redundancy (mRMR) and incremental feature selection (IFS) to select optimal features and random forest (RF) to build classifiers determining the Lan and MeLan residues. A 10-fold cross-validation test was performed on the classifiers to evaluate their predicted performances. As a result, the Matthew's correlation coefficient (MCC) values for predicting the Lan and MeLan residues were 0.813 and 0.769, respectively. Our constructed RF classifiers were shown to have a reliable ability to recognize Lan and MeLan residues from lantibiotic sequences. Furthermore, three other methods, Dagging, the nearest neighbor algorithm (NNA) and sequential minimal optimization (SMO) were also utilized to build classifiers to predict Lan and MeLan residues for comparison. Analysis was also performed on the optimal features, and the relationships between the optimal features and their biological importance were provided. We believe the selected optimal features and analysis in this work will contribute to a better understanding of the sequence and structural features around the Lan and MeLan residues. It could provide useful information and practical suggestions for experimental and computational methods toward exploring the biological features of such special residues in lantibiotics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Effect of single base substitutions at glycine-870 codon of gramicidin S synthetase 2 gene on proline activation.

    PubMed

    Tokita, K; Hori, K; Kurotsu, T; Kanda, M; Saito, Y

    1993-10-01

    The mutant gene coding for a proline-activating domain (grs2-pro) was cloned and sequenced from Bacillus brevis Nagano, BII-3 strain, which produces gramicidin S synthetase 2 defective in proline-activation. By comparison of the nucleotide sequence with the wild-type sequence, a single point mutation was found at the 2609th guanine, which was replaced with adenine, resulting in the change of the 870th glycine to glutamic acid. Homology search for the deduced amino acid sequence of grs2-pro gene revealed that the 870th glycine was conserved in adenylate-forming enzymes, and its flanking sequence was highly conserved among the aminoacyl adenylate-forming enzymes, such as antibiotic peptide synthetases: gramicidin S synthetase 1 and 2 (GS1, GS2), tyrocidine synthetase 1 (TS1), and delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS); and other aminoacyl adenylation enzymes: alpha-aminoadipate reductase (LYS2), EntF, and AngR. On the other hand, this flanking sequence was not conserved in the other adenylate-forming enzymes lacking amino acid activation, such as acetyl-CoA synthetase, long-chain acyl-CoA synthetase, luciferase, and 4-coumarate CoA ligase. Single base substitutions at the 870th GGG codon were carried out by oligonucleotide site-directed mutagenesis. Four mutagenized clones were isolated, containing grs2-pro genes which exchange 870-Gly for alanine, valine, arginine, and tryptophan. The translated products from these clones could scarcely catalyze proline-dependent ATP-32PPi exchange reaction. The coil structure of 870-Gly region was lost in the mutants. These results suggest that the 870-Gly residue of grs2-pro protein is essential for aminoacyl-adenylation in the antibiotic peptide synthetase family.

  11. Archaeal RibL: a new FAD synthetase that is air sensitive.

    PubMed

    Mashhadi, Zahra; Xu, Huimin; Grochowski, Laura L; White, Robert H

    2010-10-12

    FAD synthetases catalyze the transfer of the AMP portion of ATP to FMN to produce FAD and pyrophosphate (PP(i)). Monofunctional FAD synthetases exist in eukaryotes, while bacteria have bifunctional enzymes that catalyze both the phosphorylation of riboflavin and adenylation of FMN to produce FAD. Analyses of archaeal genomes did not reveal the presence of genes encoding either group, yet the archaea contain FAD. Our recent identification of a CTP-dependent archaeal riboflavin kinase strongly indicated the presence of a monofunctional FAD synthetase. Here we report the identification and characterization of an archaeal FAD synthetase. Methanocaldococcus jannaschii gene MJ1179 encodes a protein that is classified in the nucleotidyl transferase protein family and was previously annotated as glycerol-3-phosphate cytidylyltransferase (GCT). The MJ1179 gene was cloned and its protein product heterologously expressed in Escherichia coli. The resulting enzyme catalyzes the adenylation of FMN with ATP to produce FAD and PP(i). The MJ1179-derived protein has been designated RibL to indicate that it follows the riboflavin kinase (RibK) step in the archaeal FAD biosynthetic pathway. Aerobically isolated RibL is active only under reducing conditions. RibL was found to require divalent metals for activity, the best activity being observed with Co(2+), where the activity was 4 times greater than that with Mg(2+). Alkylation of the two conserved cysteines in the C-terminus of the protein resulted in complete inactivation. RibL was also found to catalyze cytidylation of FMN with CTP, making the modified FAD, flavin cytidine dinucleotide (FCD). Unlike other FAD synthetases, RibL does not catalyze the reverse reaction to produce FMN and ATP from FAD and PP(i). Also in contrast to other FAD synthetases, PP(i) inhibits the activity of RibL.

  12. Rhenium analogues of promising renal imaging agents with a [99mTc(CO)3]+ core bound to cysteine-derived dipeptides, including lanthionine.

    PubMed

    He, Haiyang; Lipowska, Malgorzata; Xu, Xiaolong; Taylor, Andrew T; Marzilli, Luigi G

    2007-04-16

    The coordination chemistry of lanthionine (LANH2) and cystathionine (CSTH2) dipeptides, which respectively consist of two cysteines and one cysteine and one homocysteine linked by a thioether bridge, is almost unstudied. Recently for fac-[99mTc(CO)3(LAN)]- isomers, the first small 99mTc(CO)3 agents evaluated in humans were found to give excellent renal images and to have a high specificity for renal excretion. Herein we report the synthesis and characterization of Re complexes useful for interpreting the nature of tracer 99mTc radiopharmaceuticals. Treatment of [Re(CO)3(H2O)3]OTf with commercially available LANH2 (a mixture of meso (d,l) and chiral (dd,ll) isomers) gave three HPLC peaks, 1A, 1B, and 1C, but treatment with CSTH2 (l,l isomer) gave one major product, Re(CO)3(CSTH) (2). Crystalline Re(CO)3(LANH) products were best obtained with synthetic LANH2, richer in meso or chiral isomers. X-ray crystallography showed that these dipeptides coordinate as tridentate N2S-bound ligands with two dangling carboxyls. The LANH ligand is meso in 1A and 1C and chiral in 1B. While 1A (kinetically favored) is stable at ambient temperature for days, it converted into 1C (thermodynamically favored) at 100 degrees C; after 6 h, equilibrium was reached at a 1A:1C ratio of 1:2 at pH 8. The structures provide a rationale for this behavior and for the fact that 1A and 1C have simple NMR spectra. This simplicity results from fluxional interchange between an enantiomer with both chelate rings having the same delta pucker and an enantiomer with both chelate rings having the same lambda pucker. Agents with the [99mTc(CO)3]+ core and N2S ligands show promise of becoming an important class of 99mTc radiopharmaceuticals. The chemistry of Re analogues with these ligands, such as the LAN2- complexes reported here, provides a useful background for designing new small agents and also tagged large agents because two uncoordinated carboxyl groups are available for conjugation with biological

  13. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii.

    PubMed Central

    Jetten, M S; Stams, A J; Zehnder, A J

    1989-01-01

    In Methanothrix soehngenii, acetate is activated to acetyl-coenzyme A (acetyl-CoA) by an acetyl-CoA synthetase. Cell extracts contained high activities of adenylate kinase and pyrophosphatase, but no activities of a pyrophosphate:AMP and pyrophosphate:ADP phosphotransferase, indicating that the activation of 1 acetate in Methanothrix requires 2 ATP. Acetyl-CoA synthetase was purified 22-fold in four steps to apparent homogeneity. The native molecular mass of the enzyme from M. soehngenii estimated by gel filtration was 148 kilodaltons (kDa). The enzyme was composed of two subunits with a molecular mass of 73 kDa in an alpha 2 oligomeric structure. The acetyl-CoA synthetase constituted up to 4% of the soluble cell protein. At the optimum pH of 8.5, the Vmax was 55 mumol of acetyl-CoA formed per min per mg of protein. Analysis of enzyme kinetic properties revealed a Km of 0.86 mM for acetate and 48 microM for coenzyme A. With varying amounts of ATP, weak sigmoidal kinetic was observed. The Hill plot gave a slope of 1.58 +/- 0.12, suggesting two interacting substrate sites for the ATP. The kinetic properties of the acetyl-CoA synthetase can explain the high affinity for acetate of Methanothrix soehngenii. Images PMID:2571608

  14. Erythrocyte glutathione synthetase in 5-oxoprolinuria: kinetic studies of the mutant enzyme and detection of heterozygotes.

    PubMed

    Larsson, A; Zetterström, R; Hörnell, H; Porath, U

    1976-11-15

    The primary metabolic defect in 5-oxoprolinuria is a generalized deficiency of glutathione synthetase. The activity of this enzyme was determined in cell-free extracts of erythrocytes from patients with 5-oxoprolinuria, their parents and a sibling as well as from normal control individuals. The following activities (pkat/mg of hemoglobin) for glutathione synthetase were obtained: homozygotes mean 0.10 (range 0.07-0.12), heterozygotes mean 3.1 (range 2.8-3.7) and control individuals mean 6.1 (range 5.4-6.7). These results indicate that 5-oxoprolinuria, i.e. the defective gluthione synthetase gene(s), is transmitted by autosomal recessive inheritance. Studies of the kinetics of the low remaining activity of erythrocyte glutathione synthetase in patients with 5-oxoprolinuria failed to reveal defective affinity for glycine, gamma-glutamyl-alpha-aminobutyrate, ATP and Mg2+ ions. Furthermore, the pH optimum, time curves and temperature dependence for the mutant enzyme activity did not significantly differ from the corresponding parameters observed with normal enzyme.

  15. Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases

    PubMed Central

    Bender, Carol L.; Alarcón-Chaidez, Francisco; Gross, Dennis C.

    1999-01-01

    Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents. PMID:10357851

  16. Peptide Synthetase Gene in Trichoderma virens

    PubMed Central

    Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

    2001-01-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated Nδ-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

  17. Aminoacyl-tRNA synthetases in medicine and disease

    PubMed Central

    Yao, Peng; Fox, Paul L

    2013-01-01

    Aminoacyl-tRNA synthetases (ARSs) are essential and ubiquitous ‘house-keeping’ enzymes responsible for charging amino acids to their cognate tRNAs and providing the substrates for global protein synthesis. Recent studies have revealed a role of multiple ARSs in pathology, and their potential use as pharmacological targets and therapeutic reagents. The ongoing discovery of genetic mutations in human ARSs is increasing exponentially and can be considered an important determinant of disease etiology. Several chemical compounds target bacterial, fungal and human ARSs as antibiotics or disease-targeting medicines. Remarkably, ongoing exploration of noncanonical functions of ARSs has shown important contributions to control of angiogenesis, inflammation, tumourigenesis and other important physiopathological processes. Here, we summarize the roles of ARSs in human diseases and medicine, focusing on the most recent and exciting discoveries. PMID:23427196

  18. Purification of glutathionylspermidine and trypanothione synthetases from Crithidia fasciculata.

    PubMed Central

    Smith, K.; Nadeau, K.; Bradley, M.; Walsh, C.; Fairlamb, A. H.

    1992-01-01

    Two enzymes involved in the biosynthesis of the trypanosomatid-specific dithiol trypanothione-glutathionylspermidine (Gsp) synthetase and trypanothione (TSH) synthetase--have been identified and purified individually from Crithidia fasciculata. The Gsp synthetase has been purified 93-fold and the TSH synthetase 52-fold to apparent homogeneity from a single DEAE fraction that contained both activities. This constitutes the first indication that the enzymatic conversion of two glutathione molecules and one spermidine to the N1,N8-bis(glutathionyl)spermidine (TSH) occurs in two discrete enzymatic steps. Gsp synthetase, which has a kcat of 600/min, shows no detectable TSH synthetase activity, whereas TSH synthetase does not make any detectable Gsp and has a kcat of 75/min. The 90-kDa Gsp synthetase and 82-kDa TSH synthetase are separable on phenyl Superose and remain separated on gel filtration columns in high salt (0.8 M NaCl). Active complexes can be formed under low to moderate salt conditions (0.0-0.15 M NaCl), consistent with a functional complex in vivo. PMID:1304372

  19. Structural analysis of the active site geometry of N5-carboxyaminoimidazole ribonucleotide synthetase from Escherichia coli.

    PubMed

    Thoden, James B; Holden, Hazel M; Firestine, Steven M

    2008-12-16

    N(5)-Carboxyaminoimidazole ribonucleotide synthetase (N(5)-CAIR synthetase) converts 5-aminoimidazole ribonucleotide (AIR), MgATP, and bicarbonate into N(5)-CAIR, MgADP, and P(i). The enzyme is required for de novo purine biosynthesis in microbes yet is not found in humans suggesting that it represents an ideal and unexplored target for antimicrobial drug design. Here we report the X-ray structures of N(5)-CAIR synthetase from Escherichia coli with either MgATP or MgADP/P(i) bound in the active site cleft. These structures, determined to 1.6-A resolution, provide detailed information regarding the active site geometry before and after ATP hydrolysis. In both structures, two magnesium ions are observed. Each of these is octahedrally coordinated, and the carboxylate side chain of Glu238 bridges them. For the structure of the MgADP/P(i) complex, crystals were grown in the presence of AIR and MgATP. No electron density was observed for AIR, and the electron density corresponding to the nucleotide clearly revealed the presence of ADP and P(i) rather than ATP. The bound P(i) shifts by approximately 3 A relative to the gamma-phosphoryl group of ATP and forms electrostatic interactions with the side chains of Arg242 and His244. Since the reaction mechanism of N(5)-CAIR synthetase is believed to proceed via a carboxyphosphate intermediate, we propose that the location of the inorganic phosphate represents the binding site for stabilization of this reactive species. Using the information derived from the two structures reported here, coupled with molecular modeling, we propose a catalytic mechanism for N(5)-CAIR synthetase.

  20. Site Directed Mutagenesis of Schizosaccharomyces pombe Glutathione Synthetase Produces an Enzyme with Homoglutathione Synthetase Activity

    PubMed Central

    Dworeck, Tamara; Zimmermann, Martin

    2012-01-01

    Three different His-tagged, mutant forms of the fission yeast glutathione synthetase (GSH2) were derived by site-directed mutagenesis. The mutant and wild-type enzymes were expressed in E. coli DH5α and affinity purified in a two-step procedure. Analysis of enzyme activity showed that it was possible to shift the substrate specificity of GSH2 from Gly (km 0,19; wild-type) to β-Ala or Ser. One mutation (substitution of Ile471, Cy472 to Met and Val and Ala 485 and Thr486 to Leu and Pro) increased the affinity of GSH2 for β-Ala (km 0,07) and lowered the affinity for Gly (km 0,83), which is a characteristic of the enzyme homoglutathione synthetase found in plants. Substitution of Ala485 and Thr486 to Leu and Pro only, increased instead the affinity of GSH2 for Ser (km 0,23) as a substrate, while affinity to Gly was preserved (km 0,12). This provides a new biosynthetic pathway for hydroxymethyl glutathione, which is known to be synthesized from glutathione and Ser in a reaction catalysed by carboxypeptidase Y. The reported findings provide further insight into how specific amino acids positioned in the GSH2 active site facilitate the recognition of different amino acid substrates, furthermore they support the evolutionary theory that homoglutathione synthetase evolved from glutathione synthetase by a single gene duplication event. PMID:23091597

  1. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus

    SciTech Connect

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman; Baba, Seiki; Kuroishi, Chizu; Ebihara, Akio; Shinkai, Akeo; Kuramitsu, Seiki; Shiro, Yoshitsugu; Sekar, Kanagaraj; Yokoyama, Shigeyuki

    2007-02-01

    DHNA synthetase from G. kaustophilus has been cloned, expressed, purified and crystallized. The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K{sub 2}) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 Å. The crystal diffracted to a resolution of 2.2 Å. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit.

  2. Ricinus communis contains and acyl-CoA synthetase that preferentially activates ricinoleate to its CoA thioester

    USDA-ARS?s Scientific Manuscript database

    As part of our effort to identify enzymes that are critical for producing large amounts of ricinoleate in castor oil, we have isolated three cDNAs encoding acyl-CoA synthetase (ACS) in the castor plant. Analysis of the cDNA sequences reveals that two of them, designated RcACS 2 and RcACS 4, contain...

  3. Induction of Glutamine Synthetase Activity in Nonnodulated Roots of Glycine max, Phaseolus vulgaris, and Pisum sativum1

    PubMed Central

    Hoelzle, Inger; Finer, John J.; McMullen, Michael D.; Streeter, John G.

    1992-01-01

    Nitrate or ammonium fertilization significantly increased glutamine synthetase (GS) activity in nonnodulated roots of French bean (Phaseolus vulgaris), soybean (Glycine max), and pea (Pisum sativum). Western analysis revealed substantial GS antibody-positive protein in root extracts that had minimal GS activity, indicating that an inactive form of GS may be present in nonfertilized plants. Images Figure 1 PMID:16652993

  4. In vivo modification of Azotobacter chroococcum glutamine synthetase.

    PubMed

    Muñoz-Centeno, M C; Cejudo, F J; Paneque, A

    1994-03-15

    A monospecific anti-(glutamine synthetase) antibody raised against glutamine synthetase of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 immunoreacted with glutamine synthetase from the N2-fixing heterotrophic bacterium Azotobacter chroococcum. In Western-blotting experiments this antibody recognized a single protein of a molecular mass of 59 kDa corresponding to glutamine synthetase subunit. This protein was in vivo-labelled in response to addition of ammonium, both [3H]adenine and H(3)32PO4 preincubation of the cells being equally effective. Nevertheless, the amount of glutamine synthetase present in A. chroococcum was independent of the available nitrogen source. Modified, inactive glutamine synthetase was re-activated by treatment with snake-venom phosphodiesterase but not by alkaline phosphatase. L-Methionine-DL-sulphoximine, an inhibitor of glutamine synthetase, prevented the enzyme from being covalently modified. We conclude that, in A. chroococcum, glutamine synthetase is adenylylated in response to ammonium and that for the modification to take place ammonium must be metabolized.

  5. In vivo modification of Azotobacter chroococcum glutamine synthetase.

    PubMed Central

    Muñoz-Centeno, M C; Cejudo, F J; Paneque, A

    1994-01-01

    A monospecific anti-(glutamine synthetase) antibody raised against glutamine synthetase of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 immunoreacted with glutamine synthetase from the N2-fixing heterotrophic bacterium Azotobacter chroococcum. In Western-blotting experiments this antibody recognized a single protein of a molecular mass of 59 kDa corresponding to glutamine synthetase subunit. This protein was in vivo-labelled in response to addition of ammonium, both [3H]adenine and H(3)32PO4 preincubation of the cells being equally effective. Nevertheless, the amount of glutamine synthetase present in A. chroococcum was independent of the available nitrogen source. Modified, inactive glutamine synthetase was re-activated by treatment with snake-venom phosphodiesterase but not by alkaline phosphatase. L-Methionine-DL-sulphoximine, an inhibitor of glutamine synthetase, prevented the enzyme from being covalently modified. We conclude that, in A. chroococcum, glutamine synthetase is adenylylated in response to ammonium and that for the modification to take place ammonium must be metabolized. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7908189

  6. Characterization of Cereulide Synthetase, a Toxin-Producing Macromolecular Machine

    PubMed Central

    Alonzo, Diego A.; Magarvey, Nathan A.; Schmeing, T. Martin

    2015-01-01

    Cereulide synthetase is a two-protein nonribosomal peptide synthetase system that produces a potent emetic toxin in virulent strains of Bacillus cereus. The toxin cereulide is a depsipeptide, as it consists of alternating aminoacyl and hydroxyacyl residues. The hydroxyacyl residues are derived from keto acid substrates, which cereulide synthetase selects and stereospecifically reduces with imbedded ketoreductase domains before incorporating them into the growing depsipeptide chain. We present an in vitro biochemical characterization of cereulide synthetase. We investigate the kinetics and side chain specificity of α-keto acid selection, evaluate the requirement of an MbtH-like protein for adenylation domain activity, assay the effectiveness of vinylsulfonamide inhibitors on ester-adding modules, perform NADPH turnover experiments and evaluate in vitro depsipeptide biosynthesis. This work also provides biochemical insight into depsipeptide-synthesizing nonribosomal peptide synthetases responsible for other bioactive molecules such as valinomycin, antimycin and kutzneride. PMID:26042597

  7. FRET monitoring of a nonribosomal peptide synthetase.

    PubMed

    Alfermann, Jonas; Sun, Xun; Mayerthaler, Florian; Morrell, Thomas E; Dehling, Eva; Volkmann, Gerrit; Komatsuzaki, Tamiki; Yang, Haw; Mootz, Henning D

    2017-09-01

    Nonribosomal peptide synthetases (NRPSs) are multidomain enzyme templates for the synthesis of bioactive peptides. Large-scale conformational changes during peptide assembly are obvious from crystal structures, yet their dynamics and coupling to catalysis are poorly understood. We have designed an NRPS FRET sensor to monitor, in solution and in real time, the adoption of the productive transfer conformation between phenylalanine-binding adenylation (A) and peptidyl-carrier-protein domains of gramicidin synthetase I from Aneurinibacillus migulanus. The presence of ligands, substrates or intermediates induced a distinct fluorescence resonance energy transfer (FRET) readout, which was pinpointed to the population of specific conformations or, in two cases, mixtures of conformations. A pyrophosphate switch and lysine charge sensors control the domain alternation of the A domain. The phenylalanine-thioester and phenylalanine-AMP products constitute a mechanism of product inhibition and release that is involved in ordered assembly-line peptide biosynthesis. Our results represent insights from solution measurements into the conformational dynamics of the catalytic cycle of NRPSs.

  8. Aminoacyl-tRNA synthetases database.

    PubMed

    Szymanski, M; Deniziak, M A; Barciszewski, J

    2001-01-01

    Aminoacyl-tRNA synthetases (AARSs) are at the center of the question of the origin of life. They constitute a family of enzymes integrating the two levels of cellular organization: nucleic acids and proteins. AARSs arose early in evolution and are believed to be a group of ancient proteins. They are responsible for attaching amino acid residues to their cognate tRNA molecules, which is the first step in the protein synthesis. The role they play in a living cell is essential for the precise deciphering of the genetic code. The analysis of AARSs evolutionary history was not possible for a long time due to a lack of a sufficiently large number of their amino acid sequences. The emerging picture of synthetases' evolution is a result of recent achievements in genomics [Woese,C., Olsen,G.J., Ibba,M. and Söll,D. (2000) Microbiol. Mol. Biol. Rev., 64, 202-236]. In this paper we present a short introduction to the AARSs database. The updated database contains 1047 AARS primary structures from archaebacteria, eubacteria, mitochondria, chloroplasts and eukaryotic cells. It is the compilation of amino acid sequences of all AARSs known to date, which are available as separate entries via the WWW at http://biobases.ibch.poznan.pl/aars/.

  9. The microsomal dicarboxylyl-CoA synthetase.

    PubMed Central

    Vamecq, J; de Hoffmann, E; Van Hoof, F

    1985-01-01

    Dicarboxylic acids are products of the omega-oxidation of monocarboxylic acids. We demonstrate that in rat liver dicarboxylic acids (C5-C16) can be converted into their CoA esters by a dicarboxylyl-CoA synthetase. During this activation ATP, which cannot be replaced by GTP, is converted into AMP and PPi, both acting as feedback inhibitors of the reaction. Thermolabile at 37 degrees C, and optimally active at pH 6.5, dicarboxylyl-CoA synthetase displays the highest activity on dodecanedioic acid (2 micromol/min per g of liver). Cell-fractionation studies indicate that this enzyme belongs to the hepatic microsomal fraction. Investigations about the fate of dicarboxylyl-CoA esters disclosed the existence of an oxidase, which could be measured by monitoring the production of H2O2. In our assay conditions this H2O2 production is dependent on and closely follows the CoA consumption. It appears that the chain-length specificity of the handling of dicarboxylic acids by this catabolic pathway (activation to acyl-CoA and oxidation with H2O2 production) parallels the pattern of the degradation of exogenous dicarboxylic acids in vivo. PMID:4062873

  10. Proofreading in vivo: Editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli

    SciTech Connect

    Jakubowski, H. )

    1990-06-01

    Previous in vitro studies have established a pre-transfer proofreading mechanism for editing of homocysteine by bacterial methionyl-, isoleucyl-, and valyl-tRNA synthetases. The unusual feature of the editing is the formation of a distinct compound, homocysteine thiolactone. Now, two-dimensional TLC analysis of 35S-labeled amino acids extracted from cultures of the bacterium Escherichia coli reveals that the thiolactone is also synthesized in vivo. In E. coli, the thiolactone is made from homocysteine in a reaction catalyzed by methionyl-tRNA synthetase. One molecule of homocysteine is edited as thiolactone per 109 molecules of methionine incorporated into protein in vivo. These results not only directly demonstrate that the adenylate proofreading pathway for rejection of misactivated homocysteine operates in vivo in E. coli but, in general, establish the importance of error-editing mechanisms in living cells.

  11. let-65 is cytoplasmic methionyl tRNA synthetase in C. elegans

    PubMed Central

    Alriyami, Maha Z.; Jones, Martin R.; Johnsen, Robert C.; Banerjee, Yajnavalka; Baillie, David L.

    2014-01-01

    Cytoplasmic methionyl tRNA synthetase (MetRS) is one of more than 20 cytoplasmic aminoacyl tRNA synthetase enzymes (ARS). This family of enzymes catalyzes a process fundamental for protein translation. Using a combination of genetic mapping, oligonucleotide array comparative genomic hybridization, and phenotypic correlation, we show that mutations in the essential gene, let-65, reside within the predicted Caenorhabditis elegans homologue of MetRS, which we have named mars-1. We demonstrate that the lethality associated with alleles of let-65 is fully rescued by a transgenic array that spans the mars-1 genomic region. Furthermore, sequence analysis reveals that six let-65 alleles lead to the alteration of highly conserved amino acids. PMID:25606464

  12. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli.

    PubMed Central

    Jakubowski, H

    1990-01-01

    Previous in vitro studies have established a pre-transfer proofreading mechanism for editing of homocysteine by bacterial methionyl-, isoleucyl-, and valyl-tRNA synthetases. The unusual feature of the editing is the formation of a distinct compound, homocysteine thiolactone. Now, two-dimensional TLC analysis of 35S-labeled amino acids extracted from cultures of the bacterium Escherichia coli reveals that the thiolactone is also synthesized in vivo. In E. coli, the thiolactone is made from homocysteine in a reaction catalyzed by methionyl-tRNA synthetase. One molecule of homocysteine is edited as thiolactone per 109 molecules of methionine incorporated into protein in vivo. These results not only directly demonstrate that the adenylate proofreading pathway for rejection of misactivated homocysteine operates in vivo in E. coli but, in general, establish the importance of error-editing mechanisms in living cells. Images PMID:2191291

  13. Interruption of myogenesis by transforming growth factor beta 1 or EGTA inhibits expression and activity of the myogenic-associated (2'-5') oligoadenylate synthetase and PKR.

    PubMed

    Salzberg, S; Mandelboim, M; Zalcberg, M; Shainberg, A

    1995-07-01

    Interferon-induced proteins have been previously implicated in the regulation of cell growth. In an attempt to provide evidence for the involvement of these proteins in differentiation, the effect of transforming growth factor beta 1 (TGF-beta) and EGTA on the expression and activity of (2'-5') oligoadenylate synthetase (2-5A synthetase) and double-stranded RNA activated protein kinase (PKR) during myogenesis of rat primary skeletal muscle cultures or the myogenic cell line L8 was studied. Both TGF-beta and EGTA inhibited the fusion of myoblasts and reduced significantly the level of the muscle-specific proteins, acetylcholine receptors, and creatine kinase activity in rat primary muscle cultures. Likewise, TGF-beta exhibited a similar inhibitory effect on the fusion of L8 cells and the level of creatine kinase activity in these cells. The kinetics of 2-5A synthetase activity in both types of cells during differentiation was then established. In both types, a transient increase in activity was observed followed by a decrease thereafter. However, while the peak activity in primary muscle cultures appeared after 24 h in culture, it was observed only on the third day in L8 cells grown in differentiation medium (DM). Treatment of primary cultures with either TGF-beta or EGTA reduced the amount of 1.7-kb 2-5A synthetase-specific RNA transcripts and decreased significantly the level of 2-5A synthetase activity compared to that in untreated cultures. Western blot analysis of 2-5A synthetase proteins in untreated primary muscle cultures showed that the major species synthesized in these cells was the 43-kDa isoform of the enzyme. However, the 71-kDa isoform was clearly visible after 72 h in culture. Both TGF-beta and EGTA abrogated the appearance of all forms of 2-5A synthetase. Similarly, in L8 cells grown in DM, TGF-beta down-regulated the expression of 2-5A synthetase and reduced the level of enzymatic activity. Western blot analysis revealed the presence of the 71-k

  14. Glutamine Synthetase: Role in Neurological Disorders.

    PubMed

    Jayakumar, Arumugam R; Norenberg, Michael D

    2016-01-01

    Glutamine synthetase (GS) is an ATP-dependent enzyme found in most species that synthesizes glutamine from glutamate and ammonia. In brain, GS is exclusively located in astrocytes where it serves to maintain the glutamate-glutamine cycle, as well as nitrogen metabolism. Changes in the activity of GS, as well as its gene expression, along with excitotoxicity, have been identified in a number of neurological conditions. The literature describing alterations in the activation and gene expression of GS, as well as its involvement in different neurological disorders, however, is incomplete. This review summarizes changes in GS gene expression/activity and its potential contribution to the pathogenesis of several neurological disorders, including hepatic encephalopathy, ischemia, epilepsy, Alzheimer's disease, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and astroglial neoplasms. This review also explores the possibility of targeting GS in the therapy of these conditions.

  15. Mechanistic issues in asparagine synthetase catalysis.

    PubMed

    Richards, N G; Schuster, S M

    1998-01-01

    The enzymatic synthesis of asparagine is an ATP-dependent process that utilizes the nitrogen atom derived from either glutamine or ammonia. Despite a long history of kinetic and mechanistic investigation, there is no universally accepted catalytic mechanism for this seemingly straightforward carboxyl group activating enzyme, especially as regards those steps immediately preceding amide bond formation. This chapter considers four issues dealing with the mechanism: (a) the structural organization of the active site(s) partaking in glutamine utilization and aspartate activation; (b) the relationship of asparagine synthetase to other amidotransferases; (c) the way in which ATP is used to activate the beta-carboxyl group; and (d) the detailed mechanism by which nitrogen is transferred.

  16. Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor.

    PubMed

    Fang, Pengfei; Han, Hongyan; Wang, Jing; Chen, Kaige; Chen, Xin; Guo, Min

    2015-06-18

    Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits Plasmodium falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report three crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all three structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of ATP. Three residues holding the methyltetrahydropyran moiety of cladosporin are critical for the specificity of cladosporin against LysRS over other class II tRNA synthetase families. The species-exclusive inhibition of PfLysRS is linked to a structural divergence beyond the active site that mounts a lysine-specific stabilizing response to binding cladosporin. These analyses reveal that inherent divergence of tRNA synthetase structural assembly may allow for highly specific inhibition even through the otherwise universal substrate binding pocket and highlight the potential for structure-driven drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Cloning and functional characterization of a homoglutathione synthetase from pea nodules.

    PubMed

    Iturbe-Ormaetxe, Iñaki; Heras, Begoña; Matamoros, Manuel A; Ramos, Javier; Moran, Jose F; Becana, Manuel

    2002-05-01

    The thiol tripeptide glutathione (GSH; gammaGlu-Cys-Gly) is very abundant in legume nodules where it performs multiple functions that are critical for optimal nitrogen fixation. Some legume nodules contain another tripeptide, homoglutathione (hGSH; gammaGlu-Cys-betaAla), in addition to or instead of GSH. We have isolated from a pea (Pisum sativum L.) nodule library a cDNA, GSHS2, that is expressed in nodules but not in leaves. This cDNA was overexpressed in insect cells and its protein product was identified as a highly active and specific hGSH synthetase. The enzyme, the first of this type to be completely purified, is predicted to be a homodimeric cytosolic protein. It shows a specific activity of 3400 nmol hGSH min-1 mg-1 protein with a standard substrate concentration (5 mM beta-alanine) and Km values of 1.9 mM for beta-alanine and 104 mM for glycine. The specificity constant (Vmax/Km) shows that the pure enzyme is 57.3-fold more specific for beta-alanine than for glycine. Southern blot analysis revealed that the gene is present as a single copy in the pea genome and that there are homologous genes in other legumes. We conclude that the synthesis of hGSH in pea nodules is catalysed by a specific hGSH synthetase and not by a GSH synthetase with broad substrate specificity.

  18. Reassimilation of Photorespiratory Ammonium in Lotus japonicus Plants Deficient in Plastidic Glutamine Synthetase.

    PubMed

    Pérez-Delgado, Carmen M; García-Calderón, Margarita; Márquez, Antonio J; Betti, Marco

    2015-01-01

    It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4(+) accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4(+) when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4(+). Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4(+) when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity.

  19. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones.

    PubMed

    Clemente, Maria R; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-06-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.

  20. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones

    PubMed Central

    Clemente, Maria R.; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K.; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-01-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1–48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24–48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses. PMID:22442424

  1. Reassimilation of Photorespiratory Ammonium in Lotus japonicus Plants Deficient in Plastidic Glutamine Synthetase

    PubMed Central

    Pérez-Delgado, Carmen M.; García-Calderón, Margarita; Márquez, Antonio J.; Betti, Marco

    2015-01-01

    It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4+ accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4+ when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4+. Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4+ when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity. PMID:26091523

  2. TRYPTOPHANASE-TRYPTOPHAN SYNTHETASE SYSTEMS IN ESCHERICHIA COLI III.

    PubMed Central

    Freundlich, Martin; Lichstein, Herman C.

    1962-01-01

    Freundlich, Martin (University of Minnesota, Minneapolis) and Herman C. Lichstein. Tryptophanase-tryptophan synthetase systems in Escherichia coli. III. Requirements for enzyme synthesis. J. Bacteriol. 84:996–1006. 1962.—The requirements for the formation of tryptophanase and tryptophan synthetase in Escherichia coli during repression release were studied. The kinetics of the formation of tryptophan synthetase differed in the two strains examined; this was attributed to differences in the endogenous level of tryptophan in the bacterial cells. The formation of both enzymes was inhibited by chloramphenicol, and by the absence of arginine in an arginine-requiring mutant. These results are indicative of a requirement for protein synthesis for enzyme formation. Requirements for nucleic acid synthesis were examined by use of a uracil- and thymine-requiring mutant, and with purine and pyrimidine analogues. The results obtained suggest that some type of ribonucleic acid synthesis was necessary for the formation of tryptophanase and tryptophan synthetase. PMID:13959620

  3. Purification and properties of glutamine synthetase from spinach leaves.

    PubMed

    Ericson, M C

    1985-12-01

    The chloroplastic glutamine synthetase of spinach leaves has been purified to homogeneity using affinity chromatography. This involves a tandem ;reactive blue A-agarose' and ;reactive red-A-agarose' as the final step in the procedure. This procedure results in a yield of 18 milligrams of pure glutamine synthetase per kilogram of starting material. The purity of our enzyme has been demonstrated on both one- and two-dimensional polyacrylamide gels.Purified glutamine synthetase has a molecular weight of 360,000 daltons and consists of eight 44,000 dalton subunits. The K(m) is 6.7 millimolar for glutamate, 1.8 millimolar for ATP (synthetase assay), and 37.6 millimolar for glutamine (transferase assay). The isoelectric point is 6.5 and the pH optima are 7.3 in the synthetase assay and 6.4 in the transferase assay. The irreversible, competitive inhibitors methionine sulfoxamine and phosphinothricin have K(i) values of 0.1 millimolar and 6.1 micromolar, respectively. Amino acid analysis has been carried out and the results compared with published analyses for other isoforms of glutamine synthetase.

  4. TRYPTOPHANASE-TRYPTOPHAN SYNTHETASE SYSTEMS IN ESCHERICHIA COLI I.

    PubMed Central

    Freundlich, Martin; Lichstein, Herman C.

    1962-01-01

    Freundlich, Martin (University of Minnesota, Minneapolis) and Herman C. Lichstein. Tryptophanase-tryptophan synthetase systems in Escherichia coli. I. Effect of tryptophan and related compounds. J. Bacteriol. 84:979–987. 1962.—The effect of tryptophan and related compounds on tryptophanase and tryptophan synthetase formation in Escherichia coli was determined. Several of these compounds stimulated the formation of tryptophanase while concomitantly decreasing the production of synthetase. A number of tryptophan analogues were found to inhibit growth. The possible mode of action of these substances was examined further. 5-Hydroxytryptophan greatly inhibited the formation of synthetase and also reduced growth. Its inhibitory action on growth was attributed, at least partially, to the false feedback inhibition of anthranilic acid formation. Tryptamine was found to be a potent inhibitor of the activity of synthetase, as well as of the enzyme(s) involved in the synthesis of anthranilic acid from shikimic acid. However, growth reduction was only partially reversed by tryptophan. Indole-3-acetic acid and indole-3-propionic acid decreased growth and increased the formation of synthetase six- to eightfold. The action of these compounds was ascribed to their ability to block the endogenous formation of tryptophan. PMID:13959621

  5. Evolution of aminoacyl-tRNA synthetase quaternary structure and activity: Saccharomyces cerevisiae mitochondrial phenylalanyl-tRNA synthetase.

    PubMed Central

    Sanni, A; Walter, P; Boulanger, Y; Ebel, J P; Fasiolo, F

    1991-01-01

    Phenylalanyl-tRNA synthetases [L-phenylalanine:tRNAPhe ligase (AMP-forming), EC 6.1.1.20] from Escherichia coli, yeast cytoplasm, and mammalian cytoplasm have an unusual conserved alpha 2 beta 2 quaternary structure that is shared by only one other aminoacyl-tRNA synthetase. Both subunits are required for activity. We show here that a single mitochondrial polypeptide from Saccharomyces cerevisiae is an active phenylalanyl-tRNA synthetase. This protein (the MSF1 gene product) is active as a monomer. It has all three characteristic sequence motifs of the class II aminoacyl-tRNA synthetases, and its activity may result from the recruitment of additional sequences into an alpha-subunit-like structure. Images PMID:1924298

  6. Lysyl-tRNA synthetase from Escherichia coli K12. Chromatographic heterogeneity and the lysU-gene product.

    PubMed Central

    Charlier, J; Sanchez, R

    1987-01-01

    In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5')tetraphospho(5')adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product. PMID:3325036

  7. Insights into an Unusual Nonribosomal Peptide Synthetase Biosynthesis

    PubMed Central

    Binz, Tina M.; Maffioli, Sonia I.; Sosio, Margherita; Donadio, Stefano; Müller, Rolf

    2010-01-01

    The GE81112 tetrapeptides (1–3) represent a structurally unique class of antibiotics, acting as specific inhibitors of prokaryotic protein synthesis. Here we report the cloning and sequencing of the GE81112 biosynthetic gene cluster from Streptomyces sp. L-49973 and the development of a genetic manipulation system for Streptomyces sp. L-49973. The biosynthetic gene cluster for the tetrapeptide antibiotic GE81112 (getA-N) was identified within a 61.7-kb region comprising 29 open reading frames (open reading frames), 14 of which were assigned to the biosynthetic gene cluster. Sequence analysis revealed the GE81112 cluster to consist of six nonribosomal peptide synthetase (NRPS) genes encoding incomplete di-domain NRPS modules and a single free standing NRPS domain as well as genes encoding other biosynthetic and modifying proteins. The involvement of the cloned gene cluster in GE81112 biosynthesis was confirmed by inactivating the NRPS gene getE resulting in a GE81112 production abolished mutant. In addition, we characterized the NRPS A-domains from the pathway by expression in Escherichia coli and in vitro enzymatic assays. The previously unknown stereochemistry of most chiral centers in GE81112 was established from a combined chemical and biosynthetic approach. Taken together, these findings have allowed us to propose a rational model for GE81112 biosynthesis. The results further open the door to developing new derivatives of these promising antibiotic compounds by genetic engineering. PMID:20710026

  8. Nucleotide triphosphate promiscuity in Mycobacterium tuberculosis dethiobiotin synthetase.

    PubMed

    Salaemae, Wanisa; Yap, Min Y; Wegener, Kate L; Booker, Grant W; Wilce, Matthew C J; Polyak, Steven W

    2015-05-01

    Dethiobiotin synthetase (DTBS) plays a crucial role in biotin biosynthesis in microorganisms, fungi, and plants. Due to its importance in bacterial pathogenesis, and the absence of a human homologue, DTBS is a promising target for the development of new antibacterials desperately needed to combat antibiotic resistance. Here we report the first X-ray structure of DTBS from Mycobacterium tuberculosis (MtDTBS) bound to a nucleotide triphosphate (CTP). The nucleoside base is stabilized in its pocket through hydrogen-bonding interactions with the protein backbone, rather than amino acid side chains. This resulted in the unexpected finding that MtDTBS could utilise ATP, CTP, GTP, ITP, TTP, or UTP with similar Km and kcat values, although the enzyme had the highest affinity for CTP in competitive binding and surface plasmon resonance assays. This is in contrast to other DTBS homologues that preferentially bind ATP primarily through hydrogen-bonds between the purine base and the carboxamide side chain of a key asparagine. Mutational analysis performed alongside in silico experiments revealed a gate-keeper role for Asn175 in Escherichia coli DTBS that excludes binding of other nucleotide triphosphates. Here we provide evidence to show that MtDTBS has a broad nucleotide specificity due to the absence of the gate-keeper residue.

  9. The complex evolutionary history of aminoacyl-tRNA synthetases

    PubMed Central

    Chaliotis, Anargyros; Vlastaridis, Panayotis; Mossialos, Dimitris; Ibba, Michael; Becker, Hubert D.

    2017-01-01

    Abstract Aminoacyl-tRNA synthetases (AARSs) are a superfamily of enzymes responsible for the faithful translation of the genetic code and have lately become a prominent target for synthetic biologists. Our large-scale analysis of >2500 prokaryotic genomes reveals the complex evolutionary history of these enzymes and their paralogs, in which horizontal gene transfer played an important role. These results show that a widespread belief in the evolutionary stability of this superfamily is misconceived. Although AlaRS, GlyRS, LeuRS, IleRS, ValRS are the most stable members of the family, GluRS, LysRS and CysRS often have paralogs, whereas AsnRS, GlnRS, PylRS and SepRS are often absent from many genomes. In the course of this analysis, highly conserved protein motifs and domains within each of the AARS loci were identified and used to build a web-based computational tool for the genome-wide detection of AARS coding sequences. This is based on hidden Markov models (HMMs) and is available together with a cognate database that may be used for specific analyses. The bioinformatics tools that we have developed may also help to identify new antibiotic agents and targets using these essential enzymes. These tools also may help to identify organisms with alternative pathways that are involved in maintaining the fidelity of the genetic code. PMID:28180287

  10. The enterococcal cytolysin synthetase has an unanticipated lipid kinase fold.

    PubMed

    Dong, Shi-Hui; Tang, Weixin; Lukk, Tiit; Yu, Yi; Nair, Satish K; van der Donk, Wilfred A

    2015-07-30

    The enterococcal cytolysin is a virulence factor consisting of two post-translationally modified peptides that synergistically kill human immune cells. Both peptides are made by CylM, a member of the LanM lanthipeptide synthetases. CylM catalyzes seven dehydrations of Ser and Thr residues and three cyclization reactions during the biosynthesis of the cytolysin large subunit. We present here the 2.2 Å resolution structure of CylM, the first structural information on a LanM. Unexpectedly, the structure reveals that the dehydratase domain of CylM resembles the catalytic core of eukaryotic lipid kinases, despite the absence of clear sequence homology. The kinase and phosphate elimination active sites that affect net dehydration are immediately adjacent to each other. Characterization of mutants provided insights into the mechanism of the dehydration process. The structure is also of interest because of the interactions of human homologs of lanthipeptide cyclases with kinases such as mammalian target of rapamycin.

  11. Probing the global and local dynamics of aminoacyl-tRNA synthetases using all-atom and coarse-grained simulations.

    PubMed

    Strom, Alexander M; Fehling, Samuel C; Bhattacharyya, Sudeep; Hati, Sanchita

    2014-05-01

    Coarse-grained simulations have emerged as invaluable tools for studying conformational changes in biomolecules. To evaluate the effectiveness of computationally inexpensive coarse-grained models in studying global and local dynamics of large protein systems like aminoacyl-tRNA synthetases, we have performed coarse-grained normal mode analysis, as well as principle component analysis on trajectories of all-atom and coarse-grained molecular dynamics simulations for three aminoacyl-tRNA synthetases--Escherichia coli methionyl-tRNA synthetase, Thermus thermophilus leucyl-tRNA synthetase, and Enterococcus faecium prolyl-tRNA synthetase. In the present study, comparison of predicted dynamics based on B-factor and overlap calculations revealed that coarse-grained methods are comparable to the all-atom simulations in depicting the intrinsic global dynamics of the three enzymes. However, the principal component analyses of the motions obtained from the all-atom molecular dynamics simulations provide a superior description of the local fluctuations of these enzymes. In particular, the all-atom model was able to capture the functionally relevant substrate-induced dynamical changes in prolyl-tRNA synthetase. The alteration in the coupled dynamics between the catalytically important proline-binding loop and its neighboring structural elements due to substrate binding has been characterized and reported for the first time. Taken together, the study portrays comparable and contrasting situations in studying the functional dynamics of large multi-domain aminoacyl-tRNA synthetases using coarse-grained and all-atom simulation methods.

  12. Glutamine synthetase induced spinal seizures in rats.

    PubMed

    Shin, Dong Won; Yoon, Young Sul; Matsumoto, Masato; Huang, Wencheng; Ceraulo, Phil; Young, Wise

    2003-02-01

    Glutamine synthetase (GS) is a key enzyme in the regulation of glutamate neurotransmission in the central nervous system. It is responsible for converting glutamate to glutamine, consuming one ATP and NH3 in the process. Glutamate is neurotoxic when it accumulates in extracellular fluids. We investigated the effects of GS in both a spinal cord injury (SCI) model and normal rats. 0.1-ml of low (2- micro M) and high (55- micro M) concentrations of GS were applied, intrathecally, to the spinal cord of rats under pentobarbital anesthesia. Immediately after an intrathecal injection into the L1-L3 space, the rats developed convulsive movements. These movements initially consisted of myoclonic twitches of the paravertebral muscles close to the injection site, repeated tonic and clonic contractions and extensions of the hind limbs (hind limb seizures) that spread to the fore limbs, and finally rotational axial movements of the body. An EMG of the paravertebral muscles, fore and hind limbs, showed the extent of the muscle activities. GS (2- micro M) caused spinal seizures in the rats after the SCI, and GS (6- micro M) produced seizures in the uninjured anesthetized rats. Denatured GS (70 degrees C, 1 hour) also produced spinal seizures, although higher concentrations were required. We suggest that GS may be directly blocking the release of GABA, or the receptors, in the spinal cord.

  13. Chemical modification of E. coli glutamine synthetase

    SciTech Connect

    DiIanni, C.L.; Colanduoni, J.A.; Collins, R.; Villafranca, J.J.

    1986-05-01

    Thiourea trioxide partially inactivates E. coli glutamine synthetase (GS) (approx.25%) by reacting only with lysine residues, producing homoarginine. Thiourea dioxide totally inactivates GS by reacting with both lysine and histidine residues. The K/sub m/ values for thiourea trioxide modified enzyme are 0.21 mM for ATP and 10 mM for glutamate which are about threefold higher than for native GS. Using (/sup 14/C) thiourea trioxide, 2.3 +/- 0.2 moles of reagent were incorporated per monomer. The same number of homoarginine residues were found by amino acid analysis. Modification of GS with hydroxylamine results in total inactivation resulting from reaction with histidine. Fluorescence titrations indicate that substrate binding to the modified enzyme is weaker than to the native enzyme. EPR spectra of bound Mn/sup 2 +/ indicate that metal ion binding is unaffected by hydroxylamine modification. However, metal ion binding is weaker to the modified enzyme. Protection from hydroxylamine inactivation is observed with ATP + Glutamate, AMPPNP + Glutamate, and MgCl/sub 2/.

  14. Structural Analysis of the Active Site Geometry of N[superscript 5]-Carboxyaminoimidazole Ribonucleotide Synthetase from Escherichia coli

    SciTech Connect

    Thoden, James B.; Holden, Hazel M.; Firestine, Steven M.

    2009-09-11

    N{sub 5}-Carboxyaminoimidazole ribonucleotide synthetase (N{sub 5}-CAIR synthetase) converts 5-aminoimidazole ribonucleotide (AIR), MgATP, and bicarbonate into N{sub 5}-CAIR, MgADP, and P{sub i}. The enzyme is required for de novo purine biosynthesis in microbes yet is not found in humans suggesting that it represents an ideal and unexplored target for antimicrobial drug design. Here we report the X-ray structures of N{sub 5}-CAIR synthetase from Escherichia coli with either MgATP or MgADP/P{sub i} bound in the active site cleft. These structures, determined to 1.6-{angstrom} resolution, provide detailed information regarding the active site geometry before and after ATP hydrolysis. In both structures, two magnesium ions are observed. Each of these is octahedrally coordinated, and the carboxylate side chain of Glu238 bridges them. For the structure of the MgADP/P{sub i} complex, crystals were grown in the presence of AIR and MgATP. No electron density was observed for AIR, and the electron density corresponding to the nucleotide clearly revealed the presence of ADP and P{sub i} rather than ATP. The bound P{sub i} shifts by approximately 3 {angstrom} relative to the {gamma}-phosphoryl group of ATP and forms electrostatic interactions with the side chains of Arg242 and His244. Since the reaction mechanism of N{sub 5}-CAIR synthetase is believed to proceed via a carboxyphosphate intermediate, we propose that the location of the inorganic phosphate represents the binding site for stabilization of this reactive species. Using the information derived from the two structures reported here, coupled with molecular modeling, we propose a catalytic mechanism for N{sub 5}-CAIR synthetase.

  15. Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2) defects predicts differential effects on aminoacylation.

    PubMed

    Euro, Liliya; Konovalova, Svetlana; Asin-Cayuela, Jorge; Tulinius, Már; Griffin, Helen; Horvath, Rita; Taylor, Robert W; Chinnery, Patrick F; Schara, Ulrike; Thorburn, David R; Suomalainen, Anu; Chihade, Joseph; Tyynismaa, Henna

    2015-01-01

    The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes.

  16. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    SciTech Connect

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  17. Pyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion

    PubMed Central

    Crnković, Ana; Suzuki, Tateki; Söll, Dieter; Reynolds, Noah M.

    2016-01-01

    Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel properties. Such proteins serve in sophisticated biochemical and biophysical studies both in vitro and in vivo, they may become unique biomaterials or therapeutic agents, and they afford metabolic dependence of genetically modified organisms for biocontainment purposes. In the Methanosarcinaceae the incorporation of the 22nd genetically encoded amino acid, pyrrolysine (Pyl), is facilitated by pyrrolysyl-tRNA synthetase (PylRS) and the cognate UAG-recognizing tRNAPyl. This unique aaRS•tRNA pair functions as an orthogonal translation system (OTS) in most model organisms. The facile directed evolution of the large PylRS active site to accommodate many ncAAs, and the enzyme’s anticodon-blind specific recognition of the cognate tRNAPyl make this system highly amenable for GCE purposes. The remarkable polyspecificity of PylRS has been exploited to incorporate >100 different ncAAs into proteins. Here we review the Pyl-OT system and selected GCE applications to examine the properties of an effective OTS. PMID:28239189

  18. In silico analysis of nonribosomal peptide synthetases of Xanthomonas axonopodis pv. citri: identification of putative siderophore and lipopeptide biosynthetic genes.

    PubMed

    Etchegaray, Augusto; Silva-Stenico, Maria E; Moon, David H; Tsai, Siu M

    2004-01-01

    The genomes of the plant pathogens Xanthomonas axonopodis (Xac) and Xanthomonas campestris (Xcc) were analysed with the aim of deducing their ability to produce nonribosomal peptides. Nonribosomal peptide synthetase (NRPS) genes were identified in two separate loci of Xac. While the genes of locus 1 are common to both strains, locus 2 was only found in Xac. Dissection and phylogenetic analysis of the condensation and thioesterase domains of the NRPSs of loci 1 and 2 of Xac revealed homology, respectively, with siderophore and lipopeptide synthetases. Further analysis of locus 1 revealed genes related to polyketide and polyamine biosynthesis that could be involved in the assembly of substrates for siderophore biosynthesis in both strains. In vitro production of siderophores by both Xac and Xcc was confirmed. Since bacterial siderophores and lipopeptides can be pathogenic and are typically produced nonribosomally, these results suggest that the identified genes could be involved in phytotoxin production.

  19. Aminoacyl tRNA synthetases and their connections to disease.

    PubMed

    Park, Sang Gyu; Schimmel, Paul; Kim, Sunghoon

    2008-08-12

    Aminoacylation of transfer RNAs establishes the rules of the genetic code. The reactions are catalyzed by an ancient group of 20 enzymes (one for each amino acid) known as aminoacyl tRNA synthetases (AARSs). Surprisingly, the etiology of specific diseases-including cancer, neuronal pathologies, autoimmune disorders, and disrupted metabolic conditions-is connected to specific aminoacyl tRNA synthetases. These connections include heritable mutations in the genes for tRNA synthetases that are causally linked to disease, with both dominant and recessive disease-causing mutations being annotated. Because some disease-causing mutations do not affect aminoacylation activity or apparent enzyme stability, the mutations are believed to affect functions that are distinct from aminoacylation. Examples include enzymes that are secreted as procytokines that, after activation, operate in pathways connected to the immune system or angiogenesis. In addition, within cells, synthetases form multiprotein complexes with each other or with other regulatory factors and in that way control diverse signaling pathways. Although much has been uncovered in recent years, many novel functions, disease connections, and interpathway connections of tRNA synthetases have yet to be worked out.

  20. Functional linkage between the glutaminase and synthetase domains of carbamoyl-phosphate synthetase. Role of serine 44 in carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (cad).

    PubMed

    Hewagama, A; Guy, H I; Vickrey, J F; Evans, D R

    1999-10-01

    Mammalian carbamoyl-phosphate synthetase is part of carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (CAD), a multifunctional protein that also catalyzes the second and third steps of pyrimidine biosynthesis. Carbamoyl phosphate synthesis requires the concerted action of the glutaminase (GLN) and carbamoyl-phosphate synthetase domains of CAD. There is a functional linkage between these domains such that glutamine hydrolysis on the GLN domain does not occur at a significant rate unless ATP and HCO(3)(-), the other substrates needed for carbamoyl phosphate synthesis, bind to the synthetase domain. The GLN domain consists of catalytic and attenuation subdomains. In the separately cloned GLN domain, the catalytic subdomain is down-regulated by interactions with the attenuation domain, a process thought to be part of the functional linkage. Replacement of Ser(44) in the GLN attenuation domain with alanine increases the k(cat)/K(m) for glutamine hydrolysis 680-fold. The formation of a functional hybrid between the mammalian Ser(44) GLN domain and the Escherichia coli carbamoyl-phosphate synthetase large subunit had little effect on glutamine hydrolysis. In contrast, ATP and HCO(3)(-) did not stimulate the glutaminase activity, indicating that the interdomain linkage had been disrupted. In accord with this interpretation, the rate of glutamine hydrolysis and carbamoyl phosphate synthesis were no longer coordinated. Approximately 3 times more glutamine was hydrolyzed by the Ser(44) --> Ala mutant than that needed for carbamoyl phosphate synthesis. Ser(44), the only attenuation subdomain residue that extends into the GLN active site, appears to be an integral component of the regulatory circuit that phases glutamine hydrolysis and carbamoyl phosphate synthesis.

  1. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress

    NASA Astrophysics Data System (ADS)

    Vats, P.; Mukherjee, A. K.; Kumria, M. M. L.; Singh, S. N.; Patil, S. K. B.; Rangnathan, S.; Sridharan, K.

    Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28-30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76+/-0.78 mg.g-1 wet tissue in normal unexposed rats; 15.82+/-2.30 mg.g-1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure

  2. tRNA synthetase: tRNA Aminoacylation and beyond

    PubMed Central

    Pang, Yan Ling Joy; Poruri, Kiranmai; Martinis, Susan A.

    2014-01-01

    The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases have also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases. PMID:24706556

  3. Heterogeneity of Glutamine Synthetase Polypeptides in Phaseolus vulgaris L. 1

    PubMed Central

    Lara, Miguel; Porta, Helena; Padilla, Jaime; Folch, Jorge; Sánchez, Federico

    1984-01-01

    Glutamine synthetases from roots, nodules, and leaves of Phaseolus vulgaris L. have been purified to homogeneity and their polypeptide composition determined. The leaf enzyme is composed of six polypeptides. The cytosolic fraction contains two 43,000 dalton polypeptides and the chloroplastic enzyme is formed by four 45,000 dalton polypeptides. Root glutamine synthetase consists only of the same two polypeptides of 43,000 dalton that are present in the leaf enzyme. The nodule enzyme is formed by two polypeptides of 43,000 dalton, one is common to the leaf and root enzyme but the other is specific for N2-fixing nodule tissue. The two glutamine synthetase forms of the nodule contain a different proportion of the 43,000 dalton polypeptides. Images Fig. 1 Fig. 2 Fig. 4 PMID:16663942

  4. Inhibition of Plant Glutamine Synthetases by Substituted Phosphinothricins

    PubMed Central

    Logusch, Eugene W.; Walker, Daniel M.; McDonald, John F.; Franz, John E.

    1991-01-01

    Glutamine synthetase (GS) utilizes various substituted glutamic acids as substrates. We have used this information to design herbicidal α- and γ-substituted analogs of phosphinothricin (l-2-amino-4-(hydroxymethylphosphinyl)butanoic acid, PPT), a naturally occurring GS inhibitor and a potent herbicide. The substituted phosphinothricins inhibit cytosolic sorghum GS1 and chloroplastic GS2 competitively versusl-glutamate, with Ki values in the low micromolar range. At higher concentrations, these inhibitors inactivate glutamine synthetase, while dilution restores activity through enzyme-inhibitor dissociation. Herbicidal phosphinothricins exhibit low Ki values and slow enzyme turnover, as described by reactivation characteristics. Both the GS1 and GS2 isoforms of plant glutamine synthetase are similarly inhibited by the phosphinothricins, consistent with the broad-spectrum herbicidal activity observed for PPT itself as well as other active compounds in this series. PMID:16668090

  5. Functional interactions between a glutamine synthetase promoter and MYB proteins.

    PubMed

    Gómez-Maldonado, Josefa; Avila, Concepción; Torre, Fernando; Cañas, Rafael; Cánovas, Francisco M; Campbell, Malcolm M

    2004-08-01

    In Scots pine (Pinus sylvestris), ammonium assimilation is catalysed by glutamine synthetase (GS) [EC 6.3.1.2], which is encoded by two genes, PsGS1a and PsGS1b. PsGS1b is expressed in the vascular tissue throughout the plant body, where it is believed to play a role in recycling ammonium released by various facets of metabolism. The mechanisms that may underpin the transcriptional regulation of PsGS1b were explored. The PsGS1b promoter contains a region that is enriched in previously characterized cis-acting elements, known as AC elements. Pine nuclear proteins bound these AC element-rich regions in a tissue-specific manner. As previous experiments had shown that R2R3-MYB transcription factors could interact with AC elements, the capacity of the AC elements in the PsGS1b promoter to interact with MYB proteins was examined. Two MYB proteins from loblolly pine (Pinus taeda), PtMYB1 and PtMYB4, bound to the PsGS1b promoter were able to activate transcription from this promoter in yeast, arabidopsis and pine cells. Immunolocalization experiments revealed that the two MYB proteins were most abundant in cells previously shown to accumulate PsGS1b transcripts. Immunoprecipitation analysis and supershift electrophoretic mobility shift assays implicated these same two proteins in the formation of complexes between pine nuclear extracts and the PsGS1b promoter. Given that these MYB proteins were previously shown to have the capacity to activate gene expression related to lignin biosynthesis, we hypothesize that they may function to co-regulate lignification, a process that places significant demands on nitrogen recycling, and GS, the major enzyme involved in the nitrogen recycling pathway.

  6. Comparison of histidine recognition in human and trypanosomatid histidyl-tRNA synthetases.

    PubMed

    Koh, Cho Yeow; Wetzel, Allan B; de van der Schueren, Will J; Hol, Wim G J

    2014-11-01

    As part of a project aimed at obtaining selective inhibitors and drug-like compounds targeting tRNA synthetases from trypanosomatids, we have elucidated the crystal structure of human cytosolic histidyl-tRNA synthetase (Hs-cHisRS) in complex with histidine in order to be able to compare human and parasite enzymes. The resultant structure of Hs-cHisRS•His represents the substrate-bound state (H-state) of the enzyme. It provides an interesting opportunity to compare with ligand-free and imidazole-bound structures Hs-cHisRS published recently, both of which represent the ligand-free state (F-state) of the enzyme. The H-state Hs-cHisRS undergoes conformational changes in active site residues and several conserved motif of HisRS, compared to F-state structures. The histidine forms eight hydrogen bonds with HisRS of which six engage the amino and carboxylate groups of this amino acid. The availability of published imidazole-bound structure provides a unique opportunity to dissect the structural roles of individual chemical groups of histidine. The analysis revealed the importance of the amino and carboxylate groups, of the histidine in leading to these dramatic conformational changes of the H-state. Further, comparison with previously published trypanosomatid HisRS structures reveals a pocket in the F-state of the parasite enzyme that may provide opportunities for developing specific inhibitors of Trypanosoma brucei HisRS.

  7. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles.

    PubMed

    Piel, Jörn

    2002-10-29

    Many drug candidates from marine and terrestrial invertebrates are suspected metabolites of uncultured bacterial symbionts. The antitumor polyketides of the pederin family, isolated from beetles and sponges, are an example. Drug development from such sources is commonly hampered by low yields and the difficulty of sustaining invertebrate cultures. To obtain insight into the true producer and find alternative supplies of these rare drug candidates, the putative pederin biosynthesis genes were cloned from total DNA of Paederus fuscipes beetles, which use this compound for chemical defense. Sequence analysis of the gene cluster and adjacent regions revealed the presence of ORFs with typical bacterial architecture and homologies. The ped cluster, which is present only in beetle specimens with high pederin content, is located on a 54-kb region bordered by transposase pseudogenes and encodes a mixed modular polyketide synthase/nonribosomal peptide synthetase. Notably, none of the modules contains regions with homology to acyltransferase domains, but two copies of isolated monodomain acyltransferase genes were found at the upstream end of the cluster. In line with an involvement in pederin biosynthesis, the upstream cluster region perfectly mirrors pederin structure. The unexpected presence of additional polyketide synthase/nonribosomal peptide synthetase modules reveals surprising insights into the evolutionary relationship between pederin-type pathways in beetles and sponges.

  8. Entamoeba histolytica acetyl-CoA synthetase: biomarker of acute amoebic liver abscess

    PubMed Central

    Huat, Lim Boon; Garcia, Alfonso Olivos; Ning, Tan Zi; Kin, Wong Weng; Noordin, Rahmah; Azham, Siti Shafiqah Anaqi; Jie, Lee Zhi; Ching, Guee Cher; Chong, Foo Phiaw; Dam, Pim Chau

    2014-01-01

    Objective To characterize the Entamoeba histolytica (E. histolytica) antigen(s) recognized by moribound amoebic liver abscess hamsters. Methods Crude soluble antigen of E. histolytica was probed with sera of moribund hamsters in 1D- and 2D-Western blot analyses. The antigenic protein was then sent for tandem mass spectrometry analysis. The corresponding gene was cloned and expressed in Escherichia coli BL21-AI to produce the recombinant E. histolytica ADP-forming acetyl-CoA synthetase (EhACS) protein. A customised ELISA was developed to evaluate the sensitivity and specificity of the recombinant protein. Results A ∼75 kDa protein band with a pI value of 5.91-6.5 was found to be antigenic; and not detected by sera of hamsters in the control group. Tandem mass spectrometry analysis revealed the protein to be the 77 kDa E. histolytica ADP-forming acetyl-CoA synthetase (EhACS). The customised ELISA results revealed 100% sensitivity and 100% specificity when tested against infected (n=31) and control group hamsters (n=5) serum samples, respectively. Conclusions This finding suggested the significant role of EhACS as a biomarker for moribund hamsters with acute amoebic liver abscess (ALA) infection. It is deemed pertinent that future studies explore the potential roles of EhACS in better understanding the pathogenesis of ALA; and in the development of vaccine and diagnostic tests to control ALA in human populations. PMID:25182945

  9. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles

    PubMed Central

    Piel, Jörn

    2002-01-01

    Many drug candidates from marine and terrestrial invertebrates are suspected metabolites of uncultured bacterial symbionts. The antitumor polyketides of the pederin family, isolated from beetles and sponges, are an example. Drug development from such sources is commonly hampered by low yields and the difficulty of sustaining invertebrate cultures. To obtain insight into the true producer and find alternative supplies of these rare drug candidates, the putative pederin biosynthesis genes were cloned from total DNA of Paederus fuscipes beetles, which use this compound for chemical defense. Sequence analysis of the gene cluster and adjacent regions revealed the presence of ORFs with typical bacterial architecture and homologies. The ped cluster, which is present only in beetle specimens with high pederin content, is located on a 54-kb region bordered by transposase pseudogenes and encodes a mixed modular polyketide synthase/nonribosomal peptide synthetase. Notably, none of the modules contains regions with homology to acyltransferase domains, but two copies of isolated monodomain acyltransferase genes were found at the upstream end of the cluster. In line with an involvement in pederin biosynthesis, the upstream cluster region perfectly mirrors pederin structure. The unexpected presence of additional polyketide synthase/nonribosomal peptide synthetase modules reveals surprising insights into the evolutionary relationship between pederin-type pathways in beetles and sponges. PMID:12381784

  10. Targeted disruption of nonribosomal peptide synthetase pes3 augments the virulence of Aspergillus fumigatus.

    PubMed

    O'Hanlon, Karen A; Cairns, Timothy; Stack, Deirdre; Schrettl, Markus; Bignell, Elaine M; Kavanagh, Kevin; Miggin, Sinéad M; O'Keeffe, Grainne; Larsen, Thomas O; Doyle, Sean

    2011-10-01

    Nonribosomal peptide synthesis (NRPS) is a documented virulence factor for the opportunistic pathogen Aspergillus fumigatus and other fungi. Secreted or intracellularly located NRP products include the toxic molecule gliotoxin and the iron-chelating siderophores triacetylfusarinine C and ferricrocin. No structural or immunologically relevant NRP products have been identified in the organism. We investigated the function of the largest gene in A. fumigatus, which encodes the NRP synthetase Pes3 (AFUA_5G12730), by targeted gene deletion and extensive phenotypic analysis. It was observed that in contrast to other NRP synthetases, deletion of pes3 significantly increases the virulence of A. fumigatus, whereby the pes3 deletion strain (A. fumigatus Δpes3) exhibited heightened virulence (increased killing) in invertebrate (P < 0.001) and increased fungal burden (P = 0.008) in a corticosteroid model of murine pulmonary aspergillosis. Complementation restored the wild-type phenotype in the invertebrate model. Deletion of pes3 also resulted in increased susceptibility to the antifungal, voriconazole (P < 0.01), shorter germlings, and significantly reduced surface β-glucan (P = 0.0325). Extensive metabolite profiling revealed that Pes3 does not produce a secreted or intracellularly stored NRP in A. fumigatus. Macrophage infections and histological analysis of infected murine tissue indicate that Δpes3 heightened virulence appears to be mediated by aberrant innate immune recognition of the fungus. Proteome alterations in A. fumigatus Δpes3 strongly suggest impaired germination capacity. Uniquely, our data strongly indicate a structural role for the Pes3-encoded NRP, a finding that appears to be novel for an NRP synthetase.

  11. Targeted Disruption of Nonribosomal Peptide Synthetase pes3 Augments the Virulence of Aspergillus fumigatus ▿ †

    PubMed Central

    O'Hanlon, Karen A.; Cairns, Timothy; Stack, Deirdre; Schrettl, Markus; Bignell, Elaine M.; Kavanagh, Kevin; Miggin, Sinéad M.; O'Keeffe, Grainne; Larsen, Thomas O.; Doyle, Sean

    2011-01-01

    Nonribosomal peptide synthesis (NRPS) is a documented virulence factor for the opportunistic pathogen Aspergillus fumigatus and other fungi. Secreted or intracellularly located NRP products include the toxic molecule gliotoxin and the iron-chelating siderophores triacetylfusarinine C and ferricrocin. No structural or immunologically relevant NRP products have been identified in the organism. We investigated the function of the largest gene in A. fumigatus, which encodes the NRP synthetase Pes3 (AFUA_5G12730), by targeted gene deletion and extensive phenotypic analysis. It was observed that in contrast to other NRP synthetases, deletion of pes3 significantly increases the virulence of A. fumigatus, whereby the pes3 deletion strain (A. fumigatus Δpes3) exhibited heightened virulence (increased killing) in invertebrate (P < 0.001) and increased fungal burden (P = 0.008) in a corticosteroid model of murine pulmonary aspergillosis. Complementation restored the wild-type phenotype in the invertebrate model. Deletion of pes3 also resulted in increased susceptibility to the antifungal, voriconazole (P < 0.01), shorter germlings, and significantly reduced surface β-glucan (P = 0.0325). Extensive metabolite profiling revealed that Pes3 does not produce a secreted or intracellularly stored NRP in A. fumigatus. Macrophage infections and histological analysis of infected murine tissue indicate that Δpes3 heightened virulence appears to be mediated by aberrant innate immune recognition of the fungus. Proteome alterations in A. fumigatus Δpes3 strongly suggest impaired germination capacity. Uniquely, our data strongly indicate a structural role for the Pes3-encoded NRP, a finding that appears to be novel for an NRP synthetase. PMID:21746855

  12. Investigating the mechanism of ADP-forming acetyl-CoA synthetase from the protozoan parasite Entamoeba histolytica.

    PubMed

    Jones, Cheryl P; Khan, Kirin; Ingram-Smith, Cheryl

    2017-02-01

    ADP-forming acetyl-CoA synthetase (ACD) catalyzes the interconversion of acetyl-CoA and acetate. The related succinyl-CoA synthetase follows a three-step mechanism involving a single phosphoenzyme, but a novel four-step mechanism with two phosphoenzyme intermediates was proposed for Pyrococcus ACD. Characterization of enzyme variants of Entamoeba ACD in which the two proposed phosphorylated His residues were individually altered revealed that only His252 is essential for enzymatic activity. Analysis of variants altered at two residues proposed to interact with the phosphohistidine loop that swings between distinct parts of the active site are consistent with a mechanism involving a single phosphoenzyme intermediate. Our results suggest ACDs with different subunit structures may employ slightly different mechanisms to bridge the span between active sites I and II. © 2017 Federation of European Biochemical Societies.

  13. Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-01-01

    Phosphoribosyl pyrophosphate synthetase from Escherichia coli was cloned, purified, and crystallized. Single crystals of the enzyme were grown under microgravity. The X-ray diffraction data set was collected at the Spring-8 synchrotron facility and used to determine the three-dimensional structure of the enzyme by the molecular-replacement method at 2.71 Å resolution. The active and regulatory sites in the molecule of E. coli phosphoribosyl pyrophosphate synthetase were revealed by comparison with the homologous protein from Bacillus subtilis, the structure of which was determined in a complex with functional ligands. The conformations of polypeptide-chain fragments surrounding and composing the active and regulatory sites were shown to be identical in both proteins.

  14. Neurodegenerative disease-associated mutants of a human mitochondrial aminoacyl-tRNA synthetase present individual molecular signatures

    PubMed Central

    Sauter, Claude; Lorber, Bernard; Gaudry, Agnès; Karim, Loukmane; Schwenzer, Hagen; Wien, Frank; Roblin, Pierre; Florentz, Catherine; Sissler, Marie

    2015-01-01

    Mutations in human mitochondrial aminoacyl-tRNA synthetases are associated with a variety of neurodegenerative disorders. The effects of these mutations on the structure and function of the enzymes remain to be established. Here, we investigate six mutants of the aspartyl-tRNA synthetase correlated with leukoencephalopathies. Our integrated strategy, combining an ensemble of biochemical and biophysical approaches, reveals that mutants are diversely affected with respect to their solubility in cellular extracts and stability in solution, but not in architecture. Mutations with mild effects on solubility occur in patients as allelic combinations whereas those with strong effects on solubility or on aminoacylation are necessarily associated with a partially functional allele. The fact that all mutations show individual molecular and cellular signatures and affect amino acids only conserved in mammals, points towards an alternative function besides aminoacylation. PMID:26620921

  15. Altered alpha subunits in phenylalanyl-tRNA synthetases from p-fluorophenylalanine-resistant strains of Escherichis coli.

    PubMed

    Hennecke, H; Böck, A

    1975-07-01

    Three different phenylalanyl-tRNA synthetases have been purified to near homogeneity, one from a wild-type strain of Escherichia coli and the others from two independently isolated p-fluorophenyalanine-resistant strains. The mutant enzymes were not able to use p-fluorophenylalanine as a substrate for activation and attachment to tRNA. They proved to be indistinguishable from the wild-type enzyme by several electrophoretic and immunological criteria. The alpha and beta subunits of all three enzymes have been prepared by a method described in this paper. The isolated subunits per se did not reveal any significant enzyme activity, but combined they were able to form active phenylalanyl tRNA synthetase after a defined reconstitution process. Mixed reconstitution experiments between wild-type and mutant subunits indicate that the mutant alpha subunit is responsible for p-fluorophenylalanine resistance and therefore seems to carry the phenylalanine-binding site or to participate in its formation.

  16. Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution

    SciTech Connect

    Timofeev, V. I. E-mail: tostars@mail.ru; Abramchik, Yu. A.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-01-15

    Phosphoribosyl pyrophosphate synthetase from Escherichia coli was cloned, purified, and crystallized. Single crystals of the enzyme were grown under microgravity. The X-ray diffraction data set was collected at the Spring-8 synchrotron facility and used to determine the three-dimensional structure of the enzyme by the molecular-replacement method at 2.71 Å resolution. The active and regulatory sites in the molecule of E. coli phosphoribosyl pyrophosphate synthetase were revealed by comparison with the homologous protein from Bacillus subtilis, the structure of which was determined in a complex with functional ligands. The conformations of polypeptide-chain fragments surrounding and composing the active and regulatory sites were shown to be identical in both proteins.

  17. The Puzzle of Ligand Binding to Corynebacterium ammoniagenes FAD Synthetase*

    PubMed Central

    Frago, Susana; Velázquez-Campoy, Adrián; Medina, Milagros

    2009-01-01

    In bacteria, riboflavin phosphorylation and subsequent conversion of FMN into FAD are carried out by FAD synthetase, a single bifunctional enzyme. Both reactions require ATP and Mg2+. The N-terminal domain of FAD synthetase appears to be responsible for the adenylyltransferase activity, whereas the C-terminal domain would be in charge of the kinase activity. Binding to Corynebacterium ammoniagenes FAD synthetase of its products and substrates, as well as of several analogues, is analyzed. Binding parameters for adenine nucleotides to each one of the two adenine nucleotide sites are reported. In addition, it is demonstrated for the first time that the enzyme presents two independent flavin sites, each one related with one of the enzymatic activities. The binding parameters of flavins to these sites are also provided. The presence of Mg2+ and of both adenine nucleotides and flavins cooperatively modulates the interaction parameters for the other ligands. Our data also suggest that during its double catalytic cycle FAD synthetase must suffer conformational changes induced by adenine nucleotide-Mg2+ or flavin binding. They might include not only rearrangement of the different protein loops but also alternative conformations between domains. PMID:19136717

  18. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling.

    PubMed

    Bernard, Stéphanie M; Habash, Dimah Z

    2009-01-01

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  19. Decreased Red Cell Uroporphyrinogen I Synthetase Activity in Intermittent Acute Porphyria

    PubMed Central

    Strand, L. James; Meyer, Urs A.; Felsher, Bertram F.; Redeker, Allan G.; Marver, Harvey S.

    1972-01-01

    Intermittent acute porphyria has recently been distinguished biochemically from other genetic hepatic porphyrias by the observation of diminished hepatic uroporphyrinogen I synthetase activity and increased δ-aminolevulinic acid synthetase activity. Since deficient uroporphyrinogen I synthetase may be reflected in nonhepatic tissues, we have assayed this enzyme in red cell hemolysates from nonporphyric subjects and from patients with genetic hepatic porphyria. Only patients with intermittent acute porphyria had decreased erythrocyte uroporphyrinogen I synthetase activity which was approximately 50% of normal. The apparent Km of partially purified uroporphyrinogen I synthetase was 6 × 10−6m in both nonporphyrics and patients with intermittent acute porphyria. These data provide further evidence for a primary mutation affecting uroporphyrinogen I synthetase in intermittent acute porphyria. Further-more, results of assay of red cell uroporphyrinogen I synthetase activity in a large family with intermittent acute porphyria suggest that this test may be a reliable indicator of the heterozygous state. PMID:5056653

  20. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    SciTech Connect

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  1. Structure and transformation of chitin synthetase particles (chitosomes) during microfibril synthesis in vitro.

    PubMed Central

    Bracker, C E; Ruiz-Herrera, J; Bartnicki-Garcia, S

    1976-01-01

    The fine structure of isolated chitin synthetase (UDP-2-acetamido-2-deoxy-D-glucose:chitin 4-beta-acetamido-deoxyglucosyltransferase; EC 2-4-1-16) particles (chitosomes) from Mucor rouxii and the elaboration of chitin microfibrils were studied by electron microscopy. Chitosomes are spheroidal, but often polymorphic, structures, mostly 40-70 nm in diameter. Their appearance after negative staining varies. Some reveal internal granular structure enclosed by a shell measuring 6-12 nm thick; others do not show internal structure but have a pronounced depression of the external surface. In thin sections, isolated chitosomes appear as microvesicular structures with a tripartite shell 6.5-7.0 nm thick. Morphologically similar structures can be seen in intact cells of M. rouxii. Isolated chitosomes undergo a seemingly irreversible series of transformations when substrate and activators are added. The internal structure changes, and a coiled microfibril (fibroid) appears inside the chitosome. The shell of the chitosome is opened or shed, and an extended microfibril arises from the fibroid particle. During prolonged incubation, the fibroid coils become less common and extended microfibrils appear thicker. We regard the chitosome as the cytoplasmic container and conveyor of chitin synthetase en route to its destination at the cell surface. Isolated chitosomes are well suited for integrated ultrastructural-biochemical studies of microfibril biogenesis in vitro. Images PMID:1070006

  2. The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases.

    PubMed Central

    Mireau, H; Lancelin, D; Small, I D

    1996-01-01

    In plants, all aminoacyl-tRNA synthetases are nuclearly encoded, despite the fact that their activities are required in the three protein-synthesizing cell compartments (cytosol, mitochondria, and chloroplasts). To investigate targeting of these enzymes, we cloned cDNAs encoding alanyl-tRNA synthetase (AlaRS) and the corresponding nuclear gene, ALATS, from Arabidopsis by using degenerate polymerase chain reaction primers based on highly conserved regions shared between known AlaRSs from other organisms. Analysis of the transcription of the gene showed the presence of two potential translation initiation codons in some ALATS mRNAs. Translation from the upstream AUG would generate an N-terminal extension with features characteristic of mitochondrial targeting peptides. A polyclonal antibody raised against part of the Arabidopsis AlaRS revealed that the Arabidopsis cytosolic and mitochondrial AlaRSs are immunologically similar, suggesting that both isoforms are encoded by the ALATS gene. In vitro experiments confirmed that two polypeptides can be translated from AlATS transcripts, with most ribosomes initiating on the downstream AUG to give the shorter polypeptide corresponding in size to the cytosolic enzyme. The ability of the presequence encoded between the two initiation codons to direct polypeptides to mitochondria was demonstrated by expression of fusion proteins in tobacco protoplasts and in yeast. We conclude that the ALATS gene encodes both the cytosolic and the mitochondrial forms of AlaRS, depending on which of the two AUG codons is used to initiate translation. PMID:8672889

  3. The three-dimensional structure of an eukaryotic glutamine synthetase: functional implications of its oligomeric structure.

    PubMed

    Llorca, Oscar; Betti, Marco; González, José M; Valencia, Alfonso; Márquez, Antonio J; Valpuesta, José M

    2006-12-01

    The structure of the prokaryotic glutamine synthetases type I (GS-I), key enzymes in nitrogen metabolism, was determined several years ago by X-ray diffraction, and consists of a double hexameric ring. The structure of the eukaryotic GS from the plant Phaseolus vulgaris (Glutamine synthetase type II; GS-II) has now been determined at low-resolution using electron microscopy and image processing, and consists of an octamer composed of two tetramers placed back-to-back and rotated 90 degrees with respect to each other. The oligomeric structure possesses a twofold symmetry, very suggestive of each tetramer being composed of two dimers. This is reinforced by the fact that dimers are isolated as a stable albeit non-functional species during the purification procedure. Given the fact that the active site of all types of GS is formed by highly conserved residues located in the interface of two interacting monomers, the geometry of the reconstructed tetramer suggests that it only contains two functional active sites, i.e., an active site per dimer. This is supported by biochemical data, which reveal that while the octamer binds eight ATP molecules, it only binds four molecules of the transition state analogue and GS inhibitor methionine-(S)-sulfoximine-P (MetSox-P). All this suggests for the GS-II enzyme an oligomeric structure containing four active sites and four possible regulatory sites, which might point to a complex regulatory behavior.

  4. Glutamine synthetase activity and the expression of three glul paralogues in zebrafish during transport.

    PubMed

    Dhanasiri, Anusha K S; Fernandes, Jorge M O; Kiron, Viswanath

    2012-01-01

    The enzyme glutamine synthetase (GS; glutamate-ammonia ligase, EC 6.3.1.2) plays an important role in the nitrogen metabolism of fish. In this study the GS activity and the corresponding genes were examined to understand how they are regulated in zebrafish in response to hyperammonemic stress during a 72 h simulated transport. Whole body ammonia levels, the activity of the enzyme GS and the mRNA expression of the splice variants of three paralogues of glul, glutamine synthetase gene (glula, glulb and glulc) were examined in brain, liver and kidney of zebrafish. Whole body ammonia reached significantly higher levels by 48 h, while brain showed higher levels as early as 24 h, compared to the values at the start of the transport. The GS activities in brain, liver and kidney were significantly higher at the end of 72 h transport than those at the start. However, only the expression of mRNA of glulb-002 and glulb-003 were significantly upregulated during the simulated transport. In silico analysis of the putative promoter regions of glul paralogues revealed glucocorticoid receptor binding sites. However, glucocorticoid response elements of glulb were not different. The up-regulation of GS enzyme activity and hitherto unreported mRNA expression of glul paralogues during zebrafish transport indicate a physiological response of fish to ammonia.

  5. Regulation of Nodule Glutamine Synthetase by CO2 Levels in Bean (Phaseolus vulgaris L.) 1

    PubMed Central

    Ortega, José-Luis; Sánchez, Federico; Soberón, Mario; Flores, Miguel Lara

    1992-01-01

    Nodulated bean (Phaseolus vulgaris) plants were grown for 17 days after infection in normal (0.02%) CO2 and from day 8 to 17 in high (0.1%) CO2 in order to increase nitrogen fixation and define how nodule glutamine synthetase (GS) isoforms are regulated by the ammonia derived from the bacteroid. Nitrogenase activity was detected by day 10, and by day 17 activity was over twofold higher in 0.1% of CO2 compared with plants grown in 0.02% CO2 and inoculated with Rhizobium wild-type strain CE3. Likewise, plant fresh weight increased in response to increased CO2, particularly in plants inoculated with the Rhizobium phaseoli mutant strain CFN037. Glutamine synthetase specific activity increased 2.5- to 6.5-fold from day 11 to 17. However, increased CO2 did not appear to have an effect on GS specific activity. Analysis of the nodule GS polypeptide composition revealed that the γ polypeptide was significantly reduced in response to high CO2, whereas the β polypeptide was not affected. The significance of this result in relation to the regulation of GS isoforms and their role in the assimilation of ammonia in the nodule is discussed in this paper. ImagesFigure 4 PMID:16668681

  6. Does Lowering Glutamine Synthetase Activity in Nodules Modify Nitrogen Metabolism and Growth of Lotus japonicus?1

    PubMed Central

    Harrison, Judith; Pou de Crescenzo, Marie-Anne; Sené, Olivier; Hirel, Bertrand

    2003-01-01

    A cDNA encoding cytosolic glutamine synthetase (GS) from Lotus japonicus was fused in the antisense orientation relative to the nodule-specific LBC3 promoter of soybean (Glycine max) and introduced into L. japonicus via transformation with Agrobacterium tumefaciens. Among the 12 independent transformed lines into which the construct was introduced, some of them showed diminished levels of GS1 mRNA and lower levels of GS activity. Three of these lines were selected and their T1 progeny was further analyzed both for plant biomass production and carbon and nitrogen (N) metabolites content under symbiotic N-fixing conditions. Analysis of these plants revealed an increase in fresh weight in nodules, roots and shoots. The reduction in GS activity was found to correlate with an increase in amino acid content of the nodules, which was primarily due to an increase in asparagine content. Thus, this study supports the hypothesis that when GS becomes limiting, other enzymes (e.g. asparagine synthetase) that have the capacity to assimilate ammonium may be important in controlling the flux of reduced N in temperate legumes such as L. japonicus. Whether these alternative metabolic pathways are important in the control of plant biomass production still remains to be fully elucidated. PMID:12970491

  7. Identification of Bacillus subtilis men mutants which lack O-succinylbenzoyl-coenzyme A synthetase and dihydroxynaphthoate synthase.

    PubMed Central

    Meganathan, R; Bentley, R; Taber, H

    1981-01-01

    Menaquinone (vitamin K2)-deficient mutants of Bacillus subtilis, whose growth requirement is satisfied by 1,4-dihydroxy-2-naphthoic acid but not by o-succinylbenzoic acid (OSB), have been analyzed for enzymatic defects. Complementation analysis of cell-free extracts of the mutants revealed that there are two groups, as already indicated by genetic analysis. The missing enzyme in each group was identified by complementation of the cell-free extracts with o-succinylbenzoyl-coenzyme A (CoA) synthetase and dihydroxynaphthoate synthase extracted from Mycobacterium phlei. Mutants found to lack dihydroxynaphthoate synthase, and which therefore complement with dihydroxynaphthoate synthase of M. phlei, were designated as menB; those lacking o-succinylbenzoyl-CoA synthetase, and therefore complementing with o-succinylbenzoyl-CoA synthetase, were designated as menE. The menB mutants RB413 (men-325) and RB415 (men-329), when incubated with [2,3-14C2]OSB, produced only the spirodilactone form of OSB in a reaction that was CoA and adenosine 5'-triphosphate dependent. PMID:6780515

  8. Impaired protein translation in Drosophila models for Charcot–Marie–Tooth neuropathy caused by mutant tRNA synthetases

    PubMed Central

    Niehues, Sven; Bussmann, Julia; Steffes, Georg; Erdmann, Ines; Köhrer, Caroline; Sun, Litao; Wagner, Marina; Schäfer, Kerstin; Wang, Guangxia; Koerdt, Sophia N.; Stum, Morgane; RajBhandary, Uttam L.; Thomas, Ulrich; Aberle, Hermann; Burgess, Robert W.; Yang, Xiang-Lei; Dieterich, Daniela; Storkebaum, Erik

    2015-01-01

    Dominant mutations in five tRNA synthetases cause Charcot–Marie–Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. Mutant GARS proteins display normal subcellular localization but markedly reduce global protein synthesis in motor and sensory neurons, or when ubiquitously expressed in adults, as revealed by FUNCAT and BONCAT. Translational slowdown is not attributable to altered tRNAGly aminoacylation, and cannot be rescued by Drosophila Gars overexpression, indicating a gain-of-toxic-function mechanism. Expression of CMT-mutant tyrosyl-tRNA synthetase also impairs translation, suggesting a common pathogenic mechanism. Finally, genetic reduction of translation is sufficient to induce CMT-like phenotypes, indicating a causal contribution of translational slowdown to CMT. PMID:26138142

  9. The Drosophila ebony gene is closely related to microbial peptide synthetases and shows specific cuticle and nervous system expression.

    PubMed

    Hovemann, B T; Ryseck, R P; Walldorf, U; Störtkuhl, K F; Dietzel, I D; Dessen, E

    1998-10-09

    The previously detected ebony (e) locus (Caizzi et al., 1987) consists of a complex gene structure that is divided into seven exons. An open reading frame encoding the putative Ebony protein of 98.5 kDa exhibits homology to a family of peptide synthetases (Stachelhaus and Marahiel, 1995), in good correlation with the proposed function as beta-alanyl-dopamine synthetase. Multiple ebony transcripts are detected throughout development. P-factor mediated transformation of genomic DNA rescues the cuticle, electrophysiological and behavioural phenotypes. Fusion of the ebony reading frame with that of beta-galactosidase of E. coli reveals expression in cuticle and nervous system. Strong staining in the first and, to a lesser extent, in the second optic neuropile may reflect the pronounced visual defect observed in ebony mutants. In addition, weak central brain and thoracic ganglion expression is detected in flies. Conservation of a multidomain protein structure known from peptide synthetases should have functional implications on the putative reaction mechanism of peptide bond formation.

  10. Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases.

    PubMed

    Niehues, Sven; Bussmann, Julia; Steffes, Georg; Erdmann, Ines; Köhrer, Caroline; Sun, Litao; Wagner, Marina; Schäfer, Kerstin; Wang, Guangxia; Koerdt, Sophia N; Stum, Morgane; Jaiswal, Sumit; RajBhandary, Uttam L; Thomas, Ulrich; Aberle, Hermann; Burgess, Robert W; Yang, Xiang-Lei; Dieterich, Daniela; Storkebaum, Erik

    2015-07-03

    Dominant mutations in five tRNA synthetases cause Charcot-Marie-Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. Mutant GARS proteins display normal subcellular localization but markedly reduce global protein synthesis in motor and sensory neurons, or when ubiquitously expressed in adults, as revealed by FUNCAT and BONCAT. Translational slowdown is not attributable to altered tRNA(Gly) aminoacylation, and cannot be rescued by Drosophila Gars overexpression, indicating a gain-of-toxic-function mechanism. Expression of CMT-mutant tyrosyl-tRNA synthetase also impairs translation, suggesting a common pathogenic mechanism. Finally, genetic reduction of translation is sufficient to induce CMT-like phenotypes, indicating a causal contribution of translational slowdown to CMT.

  11. Clone and functional analysis of Seryl-tRNA synthetase and Tyrosyl-tRNA synthetase from silkworm, Bombyx mori.

    PubMed

    Hu, Jingsheng; Tian, Jianghai; Li, Fanchi; Xue, Bin; Hu, Jiahuan; Cheng, Xiaoyu; Li, Jinxin; Shen, Weide; Li, Bing

    2017-01-30

    Aminoacyl-tRNA synthetases are the key enzymes for protein synthesis. Glycine, alanine, serine and tyrosine are the major amino acids composing fibroin of silkworm. Among them, the genes of alanyl-tRNA synthetase (AlaRS) and glycyl-tRNA synthetase (GlyRS) have been cloned. In this study, the seryl-tRNA synthetase (SerRS) and tyrosyl-tRNA synthetase (TyrRS) genes from silkworm were cloned. Their full length are 1709 bp and 1868 bp and contain open reading frame (ORF) of 1485 bp and 1575 bp, respectively. RT-PCR examination showed that the transcription levels of SerRS, TyrRS, AlaRS and GlyRS are significantly higher in silk gland than in other tissues. In addition, their transcription levels are much higher in middle and posterior silk gland than in anterior silk gland. Moreover, treatment of silkworms with phoxim, an inhibitor of silk protein synthesis, but not TiO2 NP, an enhancer of silk protein synthesis, significantly reduced the transcription levels of aaRS and content of free amino acids in posterior silk gland, therefore affecting silk protein synthesis, which may be the mechanism of phoxim-silking disorders. Furthermore, low concentration of TiO2 NPs showed no effect on the transcription of aaRS and content of free amino acids, suggesting that TiO2 NPs promotes silk protein synthesis possibly by increasing the activity of fibroin synthase in silkworm.

  12. Clone and functional analysis of Seryl-tRNA synthetase and Tyrosyl-tRNA synthetase from silkworm, Bombyx mori

    PubMed Central

    Hu, Jingsheng; Tian, Jianghai; Li, Fanchi; Xue, Bin; Hu, Jiahuan; Cheng, Xiaoyu; Li, Jinxin; Shen, Weide; Li, Bing

    2017-01-01

    Aminoacyl-tRNA synthetases are the key enzymes for protein synthesis. Glycine, alanine, serine and tyrosine are the major amino acids composing fibroin of silkworm. Among them, the genes of alanyl-tRNA synthetase (AlaRS) and glycyl-tRNA synthetase (GlyRS) have been cloned. In this study, the seryl-tRNA synthetase (SerRS) and tyrosyl-tRNA synthetase (TyrRS) genes from silkworm were cloned. Their full length are 1709 bp and 1868 bp and contain open reading frame (ORF) of 1485 bp and 1575 bp, respectively. RT-PCR examination showed that the transcription levels of SerRS, TyrRS, AlaRS and GlyRS are significantly higher in silk gland than in other tissues. In addition, their transcription levels are much higher in middle and posterior silk gland than in anterior silk gland. Moreover, treatment of silkworms with phoxim, an inhibitor of silk protein synthesis, but not TiO2 NP, an enhancer of silk protein synthesis, significantly reduced the transcription levels of aaRS and content of free amino acids in posterior silk gland, therefore affecting silk protein synthesis, which may be the mechanism of phoxim-silking disorders. Furthermore, low concentration of TiO2 NPs showed no effect on the transcription of aaRS and content of free amino acids, suggesting that TiO2 NPs promotes silk protein synthesis possibly by increasing the activity of fibroin synthase in silkworm. PMID:28134300

  13. Nonribosomal Peptide Synthetase Genes pesL and pes1 Are Essential for Fumigaclavine C Production in Aspergillus fumigatus

    PubMed Central

    O'Hanlon, Karen A.; Gallagher, Lorna; Schrettl, Markus; Jöchl, Christoph; Kavanagh, Kevin; Larsen, Thomas O.

    2012-01-01

    The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end product of the complex ergot alkaloid (EA) pathway in A. fumigatus. Deletion of either pesL (ΔpesL) or pes1 (Δpes1) resulted in complete loss of fumigaclavine C biosynthesis, relatively increased production of fumitremorgins such as TR-2, fumitremorgin C and verruculogen, increased sensitivity to H2O2, and increased sensitivity to the antifungals, voriconazole, and amphotericin B. Deletion of pesL resulted in severely reduced virulence in an invertebrate infection model (P < 0.001). These findings indicate that NRP synthesis plays an essential role in mediating the final prenylation step of the EA pathway, despite the apparent absence of NRP synthetases in the proposed EA biosynthetic cluster for A. fumigatus. Liquid chromatography/diode array detection/mass spectrometry analysis also revealed the presence of fumiquinazolines A to F in both A. fumigatus wild-type and ΔpesL strains. This observation suggests that alternative NRP synthetases can also function in fumiquinazoline biosynthesis, since PesL has been shown to mediate fumiquinazoline biosynthesis in vitro. Furthermore, we provide here the first direct link between EA biosynthesis and virulence, in agreement with the observed toxicity associated with EA exposure. Finally, we demonstrate a possible cluster cross-talk phenomenon, a theme which is beginning to emerge in the literature. PMID:22344643

  14. Nonribosomal peptide synthetase genes pesL and pes1 are essential for Fumigaclavine C production in Aspergillus fumigatus.

    PubMed

    O'Hanlon, Karen A; Gallagher, Lorna; Schrettl, Markus; Jöchl, Christoph; Kavanagh, Kevin; Larsen, Thomas O; Doyle, Sean

    2012-05-01

    The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end product of the complex ergot alkaloid (EA) pathway in A. fumigatus. Deletion of either pesL (ΔpesL) or pes1 (Δpes1) resulted in complete loss of fumigaclavine C biosynthesis, relatively increased production of fumitremorgins such as TR-2, fumitremorgin C and verruculogen, increased sensitivity to H(2)O(2), and increased sensitivity to the antifungals, voriconazole, and amphotericin B. Deletion of pesL resulted in severely reduced virulence in an invertebrate infection model (P < 0.001). These findings indicate that NRP synthesis plays an essential role in mediating the final prenylation step of the EA pathway, despite the apparent absence of NRP synthetases in the proposed EA biosynthetic cluster for A. fumigatus. Liquid chromatography/diode array detection/mass spectrometry analysis also revealed the presence of fumiquinazolines A to F in both A. fumigatus wild-type and ΔpesL strains. This observation suggests that alternative NRP synthetases can also function in fumiquinazoline biosynthesis, since PesL has been shown to mediate fumiquinazoline biosynthesis in vitro. Furthermore, we provide here the first direct link between EA biosynthesis and virulence, in agreement with the observed toxicity associated with EA exposure. Finally, we demonstrate a possible cluster cross-talk phenomenon, a theme which is beginning to emerge in the literature.

  15. The Bacillus subtilis and Bacillus halodurans Aspartyl-tRNA Synthetases Retain Recognition of tRNA(Asn).

    PubMed

    Nair, Nilendra; Raff, Hannah; Islam, Mohammed Tarek; Feen, Melanie; Garofalo, Denise M; Sheppard, Kelly

    2016-02-13

    Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code.

  16. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-08-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia.

  17. Aminoacyl-tRNA Synthetase Complexes in Evolution

    PubMed Central

    Havrylenko, Svitlana; Mirande, Marc

    2015-01-01

    Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis. PMID:25807264

  18. Cloning and sequencing of the gltX gene, encoding the glutamyl-tRNA synthetase of Rhizobium meliloti A2.

    PubMed Central

    Laberge, S; Gagnon, Y; Bordeleau, L M; Lapointe, J

    1989-01-01

    The gltX gene, coding for the glutamyl-tRNA synthetase of Rhizobium meliloti A2, was cloned by using as probe a synthetic oligonucleotide corresponding to the amino acid sequence of a segment of the glutamyl-tRNA synthetase. The codons chosen for this 42-mer were those most frequently used in a set of R. meliloti genes. DNA sequence analysis revealed an open reading frame of 484 codons, encoding a polypeptide of Mr 54,166 containing the amino acid sequences of an NH2-terminal and various internal fragments of the enzyme. Compared with the amino acid sequence of the glutamyl-tRNA synthetase of Escherichia coli, the N-terminal third of the R. meliloti enzyme was strongly conserved (52% identity); the second third was moderately conserved (38% identity) and included a few highly conserved segments, whereas no significant similarity was found in the C-terminal third. These results suggest that the C-terminal part of the protein is probably not involved in the recognition of substrates, a feature shared with other aminoacyl-tRNA synthetases. Images PMID:2661539

  19. Functional importance of Asp56 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase. An essential residue for transferase but not for biosynthetic enzyme activity.

    PubMed

    Clemente, M T; Márquez, A J

    1999-09-01

    Replacement of Asp56 by site-directed mutagenesis of the alpha-gene from Phaseolus vulgaris glutamine synthetase heterologously expressed in Escherichia coli produces a complete loss of transferase enzyme activity, thus revealing essentiality of the residue for this particular enzyme activity. This happens independent of Asp56 being replaced by Ala or Glu, suggesting that the essentiality of this residue cannot be attributed to its negative electrical charge. However, a high level of glutamine synthetase biosynthetic specific activity (referred to glutamine synthetase protein, as determined immunologically), is present in D56A and D56E mutants, suggesting that Asp56 is an example of a residue that has a different role in the catalytic mechanism of both enzyme activities of this protein. Km for ATP, glutamate and Mg2+, as well as energy of activation, can be altered as a consequence of the performed mutations. However, the Km and catalytic efficiency for ammonium remains unaffected. Therefore, the catalytic role of Asp56 in the alpha-polypeptide of higher plant glutamine synthetase is quite different from the role proposed for its highly conserved homologue in bacteria (Asp50 in E. coli), which has been associated with binding and deprotonation of ammonium. On the other hand, we also show other results indicating that Asp56 is important in the spatial conformation of the active site and/or the protein, Asp56 being a crucial residue in the salting-out aggregation properties of the enzyme.

  20. Crystal structure of a eukaryote/archaeon-like protyl-tRNA synthetase and its complex with tRNAPro(CGG).

    PubMed

    Yaremchuk, A; Cusack, S; Tukalo, M

    2000-09-01

    Prolyl-tRNA synthetase (ProRS) is a class IIa synthetase that, according to sequence analysis, occurs in different organisms with one of two quite distinct structural architectures: prokaryote-like and eukaryote/archaeon-like. The primary sequence of ProRS from the hypothermophilic eubacterium Thermus thermophilus (ProRSTT) shows that this enzyme is surprisingly eukaryote/archaeon-like. We describe its crystal structure at 2.43 angstom resolution, which reveals a feature that is unique among class II synthetases. This is an additional zinc-containing domain after the expected class IIa anticodon-binding domain and whose C-terminal extremity, which ends in an absolutely conserved tyrosine, folds back into the active site. We also present an improved structure of ProRSTT complexed with tRNAPro(CGG) at 2.85 angstom resolution. This structure represents an initial docking state of the tRNA in which the anticodon stem-loop is engaged, particularly via the tRNAPro-specific bases G35 and G36, but the 3' end does not enter the active site. Considerable structural changes in tRNA and/or synthetase, which are probably induced by small substrates, are required to achieve the conformation active for aminoacylation.

  1. Positional isotope exchange analysis of the pantothenate synthetase reaction.

    PubMed

    Williams, LaKenya; Zheng, Renjian; Blanchard, John S; Raushel, Frank M

    2003-05-06

    Pantothenate synthetase from Mycobacterium tuberculosis catalyzes the formation of pantothenate from ATP, D-pantoate, and beta-alanine. The formation of a kinetically competent pantoyl-adenylate intermediate was established by the observation of a positional isotope exchange (PIX) reaction within (18)O-labeled ATP in the presence of d-pantoate. When [betagamma-(18)O(6)]-ATP was incubated with pantothenate synthetase in the presence of d-pantoate, an (18)O label gradually appeared in the alphabeta-bridge position from both the beta- and the gamma-nonbridge positions. The rates of these two PIX reactions were followed by (31)P NMR spectroscopy and found to be identical. These results are consistent with the formation of enzyme-bound pantoyl-adenylate and pyrophosphate upon the mixing of ATP, D-pantoate, and enzyme. In addition, these results require the complete torsional scrambling of the two phosphoryl groups of the labeled pyrophosphate product. The rate of the PIX reaction increased as the D-pantoate concentration was elevated and then decreased to zero at saturating levels of D-pantoate. These inhibition results support the ordered binding of ATP and D-pantoate to the enzyme active site. The PIX reaction was abolished with the addition of pyrophosphatase; thus, PP(i) must be free to dissociate from the active site upon formation of the pantoyl-adenylate intermediate. The PIX reaction rate diminished when the concentrations of ATP and D-pantoate were held constant and the concentration of the third substrate, beta-alanine, was increased. This observation is consistent with a kinetic mechanism that requires the binding of beta-alanine after the release of pyrophosphate from the active site of pantothenate synthetase. Positional isotope exchange reactions have therefore demonstrated that pantothenate synthetase catalyzes the formation of a pantoyl-adenylate intermediate upon the ordered addition of ATP and pantoate.

  2. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense.

    PubMed

    Van Dommelen, Anne; Spaepen, Stijn; Vanderleyden, Jozef

    2009-04-01

    Glutamine synthetase, a key enzyme in nitrogen metabolism of both prokaryotes and eukaryotes, is strictly regulated. One means of regulation is the modulation of activity through adenylylation catalyzed by adenylyltransferases. Using PCR primers based on conserved sequences in glutamine synthetase adenylyltransferases, we amplified part of the glnE gene of Azospirillum brasilense Sp7. The complete glnE sequence of A. brasilense Sp245 was retrieved from the draft genome sequence of this organism (http://genomics.ornl.gov/research/azo/). Adenylyltransferase is a bifunctional enzyme consisting of an N-terminal domain responsible for deadenylylation activity and a C-terminal domain responsible for adenylylation activity. Both domains are partially homologous to each other. Residues important for catalytic activity were present in the deduced amino acid sequence of the A. brasilense Sp245 glnE sequence. A glnE mutant was constructed in A. brasilense Sp7 by inserting a kanamycin resistance cassette between the two active domains of the enzyme. The resulting mutant was unable to adenylylate the glutamine synthetase enzyme and was impaired in growth when shifted from nitrogen-poor to nitrogen-rich medium.

  3. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-04-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover.

  4. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed Central

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-01-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover. Images PMID:6113590

  5. Mitochondrial aminoacyl-tRNA synthetases in human disease.

    PubMed

    Konovalova, Svetlana; Tyynismaa, Henna

    2013-04-01

    Mitochondrial aminoacyl-tRNA synthetases (mtARSs) are essential in the process of transferring genetic information from mitochondrial DNA to the complexes of the oxidative phosphorylation system. These synthetases perform an integral step in the initiation of mitochondrial protein synthesis by charging tRNAs with their cognate amino acids. All mtARSs are encoded by nuclear genes, nine of which have recently been described as disease genes for mitochondrial disorders. Unexpectedly, the clinical presentations of these diseases are highly specific to the affected synthetase. Encephalopathy is the most common manifestation but again with gene-specific outcomes. Other clinical presentations include myopathy with anemia, cardiomyopathy, tubulopathy and hearing loss with female ovarian dysgenesis. Here we review the described mutation types and the associated patient phenotypes. The identified mutation spectrum suggests that only mutation types that allow some residual tRNA-charging activity can result in the described mtARS diseases but the molecular mechanisms behind the selective tissue involvement are not currently understood.

  6. Expression of glutamine synthetase in balloon cells: a basis of their antiepileptic role?

    PubMed

    Buccoliero, Anna Maria; Barba, Carmen; Giordano, Flavio; Baroni, Gianna; Genitori, Lorenzo; Guerrini, Renzo; Taddei, Gian Luigi

    2015-01-01

    Glutamine synthetase is an enzyme involved in the clearance of glutamate, the most potent excitatory neurotransmitter. We studied the immunohistochemical expression of glutamine synthetase in neocortical samples from 5 children who underwent surgery for pharmacoresistant epilepsy and a histological diagnosis of focal cortical dysplasia IIb. In all cases, balloon cells, but not dysmorphic neurons, were immunopositive for glutamine synthetase. This finding suggests that balloon cells can be involved in the neutralization of glutamate and play a protective anti-seizure role.

  7. Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase

    SciTech Connect

    Bonnefond, Luc; Frugier, Magali; Touzé, Elodie; Lorber, Bernard; Florentz, Catherine; Giegé, Richard Rudinger-Thirion, Joëlle; Sauter, Claude

    2007-04-01

    Crystals of human mitochondrial tyrosyl-tRNA synthetase lacking the C-terminal S4-like domain diffract to 2.7 Å resolution and are suitable for structure determination. Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA{sup Tyr} charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4{sub 3}2{sub 1}2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 Å resolution. Complete data sets could be collected and led to structure solution by molecular replacement.

  8. ACR11 is an Activator of Plastid-Type Glutamine Synthetase GS2 in Arabidopsis thaliana.

    PubMed

    Osanai, Takashi; Kuwahara, Ayuko; Otsuki, Hitomi; Saito, Kazuki; Yokota Hirai, Masami

    2017-03-06

    Glutamine synthetase (GS) is an important enzyme for nitrogen assimilation, and GS2, encoded by GLN2, is the only plastid-type GS in Arabidopsis thaliana. A co-expression analysis suggested that the expression level of the gene encoding a uridylyltransferase-like protein, ACR11, is strongly correlated with GLN2 expression levels. Here we showed that the recombinant ACR11 protein increased GS2 activity in vitro by reducing the Km values of its substrate glutamine. A T-DNA insertion mutant of ACR11 exhibited a reduced GS activity under low nitrate conditions and reduced glutamine levels. Biochemical analyses revealed that ACR11 and GS2 interacted both in vitro and in vivo. These data demonstrate that ACR11 is an activator of GS2, giving it a mechanistic role in the nitrogen assimilation of A. thaliana.

  9. Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation

    PubMed Central

    Ballut, Lionel; Violot, Sébastien; Shivakumaraswamy, Santosh; Thota, Lakshmi Prasoona; Sathya, Manu; Kunala, Jyothirmai; Dijkstra, Bauke W.; Terreux, Raphaël; Haser, Richard; Balaram, Hemalatha; Aghajari, Nushin

    2015-01-01

    GMP synthetase (GMPS), a key enzyme in the purine biosynthetic pathway performs catalysis through a coordinated process across two catalytic pockets for which the mechanism remains unclear. Crystal structures of Plasmodium falciparum GMPS in conjunction with mutational and enzyme kinetic studies reported here provide evidence that an 85° rotation of the GATase domain is required for ammonia channelling and thus for the catalytic activity of this two-domain enzyme. We suggest that conformational changes in helix 371–375 holding catalytic residues and in loop 376–401 along the rotation trajectory trigger the different steps of catalysis, and establish the central role of Glu374 in allostery and inter-domain crosstalk. These studies reveal the mechanism of domain rotation and inter-domain communication, providing a molecular framework for the function of all single polypeptide GMPSs and form a solid basis for rational drug design targeting this therapeutically important enzyme. PMID:26592566

  10. Glutamine Synthetase in Legumes: Recent Advances in Enzyme Structure and Functional Genomics

    PubMed Central

    Betti, Marco; García-Calderón, Margarita; Pérez-Delgado, Carmen M.; Credali, Alfredo; Estivill, Guillermo; Galván, Francisco; Vega, José M.; Márquez, Antonio J.

    2012-01-01

    Glutamine synthetase (GS) is the key enzyme involved in the assimilation of ammonia derived either from nitrate reduction, N2 fixation, photorespiration or asparagine breakdown. A small gene family is encoding for different cytosolic (GS1) or plastidic (GS2) isoforms in legumes. We summarize here the recent advances carried out concerning the quaternary structure of GS, as well as the functional relationship existing between GS2 and processes such as nodulation, photorespiration and water stress, in this latter case by means of proline production. Functional genomic analysis using GS2-minus mutant reveals the key role of GS2 in the metabolic control of the plants and, more particularly, in carbon metabolism. PMID:22942686

  11. Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon.

    PubMed

    Nguyen, T Van; Lee, J Eugene; Sweredoski, Michael J; Yang, Seung-Joo; Jeon, Seung-Je; Harrison, Joseph S; Yim, Jung-Hyuk; Lee, Sang Ghil; Handa, Hiroshi; Kuhlman, Brian; Jeong, Ji-Seon; Reitsma, Justin M; Park, Chul-Seung; Hess, Sonja; Deshaies, Raymond J

    2016-03-17

    Cereblon (CRBN), a substrate receptor for the cullin-RING ubiquitin ligase 4 (CRL4) complex, is a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of CRL4(CRBN). Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by CRL4(CRBN) and degradation by the proteasome. Binding of acetylated degron peptides to CRBN depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These findings reveal a feedback loop involving CRL4(CRBN) that adjusts GS protein levels in response to glutamine and uncover a new function for lysine acetylation.

  12. Diversity of Nonribosomal Peptide Synthetase Genes in the Microbial Metagenomes of Marine Sponges

    PubMed Central

    Pimentel-Elardo, Sheila Marie; Grozdanov, Lubomir; Proksch, Sebastian; Hentschel, Ute

    2012-01-01

    Genomic mining revealed one major nonribosomal peptide synthetase (NRPS) phylogenetic cluster in 12 marine sponge species, one ascidian, an actinobacterial isolate and seawater. Phylogenetic analysis predicts its taxonomic affiliation to the actinomycetes and hydroxy-phenyl-glycine as a likely substrate. Additionally, a phylogenetically distinct NRPS gene cluster was discovered in the microbial metagenome of the sponge Aplysina aerophoba, which shows highest similarities to NRPS genes that were previously assigned, by ways of single cell genomics, to a Chloroflexi sponge symbiont. Genomic mining studies such as the one presented here for NRPS genes, contribute to on-going efforts to characterize the genomic potential of sponge-associated microbiota for secondary metabolite biosynthesis. PMID:22822366

  13. Functional expansion of human tRNA synthetases achieved by structural inventions.

    PubMed

    Guo, Min; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-21

    Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions.

  14. Ancient origin of the divergent forms of leucyl-tRNA synthetases in the Halobacteriales

    PubMed Central

    2012-01-01

    Background Horizontal gene transfer (HGT) has greatly impacted the genealogical history of many lineages, particularly for prokaryotes, with genes frequently moving in and out of a line of descent. Many genes that were acquired by a lineage in the past likely originated from ancestral relatives that have since gone extinct. During the course of evolution, HGT has played an essential role in the origin and dissemination of genetic and metabolic novelty. Results Three divergent forms of leucyl-tRNA synthetase (LeuRS) exist in the archaeal order Halobacteriales, commonly known as haloarchaea. Few haloarchaeal genomes have the typical archaeal form of this enzyme and phylogenetic analysis indicates it clusters within the Euryarchaeota as expected. The majority of sequenced halobacterial genomes possess a bacterial form of LeuRS. Phylogenetic reconstruction puts this larger group of haloarchaea at the base of the bacterial domain. The most parsimonious explanation is that an ancient transfer of LeuRS took place from an organism related to the ancestor of the bacterial domain to the haloarchaea. The bacterial form of LeuRS further underwent gene duplications and/or gene transfers within the haloarchaea, with some genomes possessing two distinct types of bacterial LeuRS. The cognate tRNALeu also reveals two distinct clusters for the haloarchaea; however, these tRNALeu clusters do not coincide with the groupings found in the LeuRS tree, revealing that LeuRS evolved independently of its cognate tRNA. Conclusions The study of leucyl-tRNA synthetase in haloarchaea illustrates the importance of gene transfer originating in lineages that went extinct since the transfer occurred. The haloarchaeal LeuRS and tRNALeu did not co-evolve. PMID:22694720

  15. Structure and Activity of an Aminoacyl-tRNA Synthetase that Charges tRNA with Nitro-Tryptophan

    SciTech Connect

    Buddha,M.; Crane, B.

    2005-01-01

    The most divergent of two tryptophanyl tRNA synthetases (TrpRS II) found in Deinococcus radiodurans interacts with a nitric oxide synthase protein that produces 4-nitro-tryptophan (4-NRP). TrpRS II efficiently charges transfer RNATrp with 4-NRP and 5-hydroxy-tryptophan (5-HRP). The crystal structures of TrpRS II bound to tryptophan and 5-HRP reveal residue substitutions that accommodate modified indoles. A class of auxiliary bacterial TrpRSs conserve this capacity to charge tRNA with nonstandard amino acids.

  16. Distinctive properties and expression profiles of glutamine synthetase from a plant symbiotic fungus.

    PubMed Central

    Montanini, Barbara; Betti, Marco; Márquez, Antonio J; Balestrini, Raffaella; Bonfante, Paola; Ottonello, Simone

    2003-01-01

    The nucleotide sequences reported in this paper have been submitted to the GenBank(R)/EBI Nucleotide Sequence Databases with accession numbers AF462037 (glutamine synthetase) and AF462032 (glutamate synthase). Nitrogen retrieval and assimilation by symbiotic ectomycorrhizal fungi is thought to play a central role in the mutualistic interaction between these organisms and their plant hosts. Here we report on the molecular characterization of the key N-assimilation enzyme glutamine synthetase from the mycorrhizal ascomycete Tuber borchii (TbGS). TbGS displayed a strong positive co-operativity ( n =1.7+/-0.29) and an unusually high S(0.5) value (54+/-16 mM; S(0.5) is the substrate concentration value at which v =(1/2) V (max)) for glutamate, and a correspondingly low sensitivity towards inhibition by the glutamate analogue herbicide phosphinothricin. The TbGS mRNA, which is encoded by a single-copy gene in the Tuber genome, was up-regulated in N-starved mycelia and returned to basal levels upon resupplementation of various forms of N, the most effective of which was nitrate. Both responses were accompanied by parallel variations of TbGS protein amount and glutamine synthetase activity, thus indicating that TbGS levels are primarily controlled at the pre-translational level. As revealed by a comparative analysis of the TbGS mRNA and of the mRNAs for the metabolically related enzymes glutamate dehydrogenase and glutamate synthase, TbGS is not only the sole messenger that positively responds to N starvation, but also the most abundant under N-limiting conditions. A similar, but even more discriminating expression pattern, with practically undetectable glutamate dehydrogenase mRNA levels, was observed in fruitbodies. The TbGS mRNA was also found to be expressed in symbiosis-engaged hyphae, with distinctively higher hybridization signals in hyphae that were penetrating among and within root cells. PMID:12683951

  17. Regulation of glutamine synthetase, aspartokinase, and total protein turnover in Klebsiella aerogenes.

    PubMed

    Fulks, R M; Stadtman, E R

    1985-12-13

    When suspensions of Klebsiella aerogenes are incubated in a nitrogen-free medium there is a gradual decrease in the levels of acid-precipitable protein and of aspartokinase III (lysine-sensitive) and aspartokinase I (threonine-sensitive) activities. In contrast, the level of glutamine synthetase increases slightly and then remains constant. Under these conditions, the glutamine synthetase and other proteins continue to be synthesized as judged by the incorporation of [14C]leucine into the acid-precipitable protein fraction and into protein precipitated by anti-glutamine synthetase antibodies, by the fact that growth-inhibiting concentrations of chloramphenicol also inhibit the incorporation of [14C]leucine into protein and into protein precipitated by anti-glutamine synthetase antibody, and by the fact that chloramphenicol leads to acceleration in the loss of aspartokinases I and III and promotes a net decrease in the level of glutamine synthetase and its cross-reactive protein. The loss of aspartokinases I and III in cell suspensions is stimulated by glucose and is inhibited by 2,4-dinitrophenol. Glucose also stimulates the loss of aspartokinases and glutamine synthetase in the presence of chloramphenicol. Cell-free extracts of K. aerogenes catalyze rapid inactivation of endogenous glutamine synthetase as well as exogenously added pure glutamine synthetase. This loss of glutamine synthetase is not associated with a loss of protein that cross-reacts with anti-glutamine synthetase antibodies. The inactivation of glutamine synthetase in extracts is not due to adenylylation. It is partially prevented by sulfhydryl reagents, Mn2+, antimycin A, 2,4-dinitrophenol, EDTA, anaerobiosis and by dialysis. Following 18 h dialysis, the capacity of extracts to catalyze inactivation of glutamine synthetase is lost but can be restored by the addition of Fe2+ (or Ni2+) together with ATP (or other nucleoside di- and triphosphates. After 40-60 h dialysis Fe3+ together with NADH (but

  18. Assignment of the cysteinyl-tRNA synthetase gene (CARS) to 11p15. 5

    SciTech Connect

    Cruzen, M.E.; Bengtsson, U.; McMahon, J.; Wasmuth, J.J.; Arfin, S.M. )

    1993-03-01

    The attachment of each of the 20 naturally occurring amino acids to their cognate tRNA isoaccepting families is catalyzed by a specific aminoacyl-tRNA synthetase. The structural genes encoding 10 of these enzymes have been assigned to specific human chromosomes. The HARS, LARS, RARS, and TARS genes, encoding histidyl-, leucyl-, arginyl-, and threonyl-tRNA synthetases, respectively, are all located on chromosome 5( 1, 5, 7, 9, 14). The MARS (methionyl-tRNA synthetase), NARS (asparaginyl-tRNA synthetase), VARS (valyl-tRNA synthetase), and WARS (tryptophanyl-tRNA synthetase) genes have been assigned to chromosomes 12, 18, 6, and 14, respectively (3, 4, 6, 8). A gene originally identified as encoding glutaminyl-tRNA synthetase was mapped to chromosome 1q32-q42 (10). However, a recent study suggests that the product of this gene is, in fact, a multifunctional enzyme with both glutamyl- and prolyl-tRNA synthetase activities (2). The fact that 4 of the 10 aminoacyl-tRNA synthetase genes already mapped are located on chromosome 5 may be fortuitous but might also indicate an evolutionary or regulatory relatedness. It is therefore, of interest to map genes encoding other aminoacyl-tRNA synthetases to determine if additional examples of synteny exist. The recent isolation of cDNA and genomic DNA clones for human cysteinyl-tRNA synthetase has now enabled us to map the CARS gene to segment p15.5 on chromosome 11 by fluorescence in situ hybridization.

  19. Characterization of FdmV as an Amide Synthetase for Fredericamycin A Biosynthesis in Streptomyces griseus ATCC 43944*

    PubMed Central

    Chen, Yihua; Wendt-Pienkowski, Evelyn; Ju, Jianhua; Lin, Shuangjun; Rajski, Scott R.; Shen, Ben

    2010-01-01

    Fredericamycin (FDM) A is a pentadecaketide natural product that features an amide linkage. Analysis of the fdm cluster from Streptomyces griseus ATCC 43944, however, failed to reveal genes encoding the types of amide synthetases commonly seen in natural product biosynthesis. Here, we report in vivo and in vitro characterizations of FdmV, an asparagine synthetase (AS) B-like protein, as an amide synthetase that catalyzes the amide bond formation in FDM A biosynthesis. This is supported by the findings that (i) inactivation of fdmV in vivo afforded the ΔfdmV mutant strain SB4027 that abolished FDM A and FDM E production but accumulated FDM C, a biosynthetic intermediate devoid of the characteristic amide linkage; (ii) FdmV in vitro catalyzes conversion of FDM C to FDM B, a known intermediate for FDM A biosynthesis (apparent Km = 162 ± 67 μm and kcat = 0.11 ± 0.02 min−1); and (iii) FdmV also catalyzes the amidation of FDM M-3, a structural analog of FDM C, to afford amide FDM M-6 in vitro, albeit at significantly reduced efficiency. Preliminary enzymatic studies revealed that, in addition to the common nitrogen sources (l-Gln and free amine) of class II glutamine amidotransferases (to which AS B belongs), FdmV can also utilize l-Asn as a nitrogen donor. The amide bond formation in FDM A biosynthesis is proposed to occur after C-8 hydroxylation but before the carbaspirocycle formation. PMID:20926388

  20. Characterization of FdmV as an amide synthetase for fredericamycin A biosynthesis in Streptomyces griseus ATCC 43944.

    PubMed

    Chen, Yihua; Wendt-Pienkowski, Evelyn; Ju, Jianhua; Lin, Shuangjun; Rajski, Scott R; Shen, Ben

    2010-12-10

    Fredericamycin (FDM) A is a pentadecaketide natural product that features an amide linkage. Analysis of the fdm cluster from Streptomyces griseus ATCC 43944, however, failed to reveal genes encoding the types of amide synthetases commonly seen in natural product biosynthesis. Here, we report in vivo and in vitro characterizations of FdmV, an asparagine synthetase (AS) B-like protein, as an amide synthetase that catalyzes the amide bond formation in FDM A biosynthesis. This is supported by the findings that (i) inactivation of fdmV in vivo afforded the ΔfdmV mutant strain SB4027 that abolished FDM A and FDM E production but accumulated FDM C, a biosynthetic intermediate devoid of the characteristic amide linkage; (ii) FdmV in vitro catalyzes conversion of FDM C to FDM B, a known intermediate for FDM A biosynthesis (apparent K(m) = 162 ± 67 μM and k(cat) = 0.11 ± 0.02 min(-1)); and (iii) FdmV also catalyzes the amidation of FDM M-3, a structural analog of FDM C, to afford amide FDM M-6 in vitro, albeit at significantly reduced efficiency. Preliminary enzymatic studies revealed that, in addition to the common nitrogen sources (L-Gln and free amine) of class II glutamine amidotransferases (to which AS B belongs), FdmV can also utilize L-Asn as a nitrogen donor. The amide bond formation in FDM A biosynthesis is proposed to occur after C-8 hydroxylation but before the carbaspirocycle formation.

  1. Mammalian long-chain acyl-CoA synthetases.

    PubMed

    Soupene, Eric; Kuypers, Frans A

    2008-05-01

    Acyl-CoA synthetase enzymes are essential for de novo lipid synthesis, fatty acid catabolism, and remodeling of membranes. Activation of fatty acids requires a two-step reaction catalyzed by these enzymes. In the first step, an acyl-AMP intermediate is formed from ATP. AMP is then exchanged with CoA to produce the activated acyl-CoA. The release of AMP in this reaction defines the superfamily of AMP-forming enzymes. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different acyl-CoA synthetases (ACS). On this basis, five sub-families of ACS have been characterized. The purpose of this review is to report on the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12 to 20 carbon atoms. Five genes and several isoforms generated by alternative splicing have been identified and limited information is available on their localization. The structure of these membrane proteins has not been solved for the mammalian ACSLs but homology to a bacterial form, whose structure has been determined, points at specific structural features that are important for these enzymes across species. The bacterial form acts as a dimer and has a conserved short motif, called the fatty acid Gate domain, that seems to determine substrate specificity. We will discuss the characterization and identification of the different spliced isoforms, draw attention to the inconsistencies and errors in their annotations, and their cellular localizations. These membrane proteins act on membrane-bound substrates probably as homo- and as heterodimer complexes but have often been expressed as single recombinant isoforms, apparently purified as monomers and tested in Triton X-100 micelles. We will argue that such studies have failed to provide an accurate assessment of the activity and of the distinct function of these enzymes in mammalian cells.

  2. Phosphinothricin Tripeptide Synthetases in Streptomyces viridochromogenes Tü494

    PubMed Central

    Schwartz, Dirk; Grammel, Nicolas; Heinzelmann, Eva; Keller, Ullrich; Wohlleben, Wolfgang

    2005-01-01

    The tripeptide backbone of phosphinothricin (PT) tripeptide (PTT), a compound with herbicidal activity from Streptomyces viridochromogenes, is assembled by three stand-alone peptide synthetase modules. The enzyme PhsA (66 kDa) recruits the PT-precursor N-acetyl-demethylphosphinothricin (N-Ac-DMPT), whereas the two alanine residues of PTT are assembled by the enzymes PhsB and PhsC (129 and 119 kDa, respectively). During or after assembly, the N-Ac-DMPT residue in the peptide is converted to PT by methylation and deacetylation. Both phsB and phsC appear to be cotranscribed together with two other genes from a single promoter and they are located at a distance of 20 kb from the gene phsA, encoding PhsA, in the PTT biosynthesis gene cluster of S. viridochromogenes. PhsB and PhsC represent single nonribosomal peptide synthetase elongation modules lacking a thioesterase domain. Gene inactivations, genetic complementations, determinations of substrate specificity of the heterologously produced proteins, and comparison of PhsC sequence with the amino terminus of the alanine-activating nonribosomal peptide synthetase PTTSII from S. viridochromogenes confirmed the role of the two genes in the bialanylation of Ac-DMPT. The lack of an integral thioesterase domain in the PTT assembly system points to product release possibly involving two type II thioesterase genes (the1 and the2) located in the PTT gene cluster alone or in conjunction with an as yet unknown mechanism of product release. PMID:16251301

  3. Glutamine versus Ammonia Utilization in the NAD Synthetase Family

    PubMed Central

    Shatalin, Konstantin; Gelfand, Mikhail S.; Osterman, Andrei L.; Sorci, Leonardo

    2012-01-01

    NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS). Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine) in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown) glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine) is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS structural

  4. Structural analysis of FAD synthetase from Corynebacterium ammoniagenes

    PubMed Central

    Frago, Susana; Martínez-Júlvez, Marta; Serrano, Ana; Medina, Milagros

    2008-01-01

    Background The prokaryotic FAD synthetase family – a group of bifunctional enzymes that catalyse riboflavin phosphorylation and FMN adenylylation within a single polypeptide chain- was analysed in terms of sequence and structure. Results Sequences of nearly 800 prokaryotic species were aligned. Those related with bifunctional FAD synthetase activities showed conservation of several consensus regions and highly conserved residues. A 3D model for the FAD synthetase from Corynebacterium ammoniagenes (CaFADS) was generated. This model confirms that the N-terminal and C-terminal domains are related to nucleotydyltransferases and riboflavin kinases, respectively. Models for the interaction of CaFADS with its substrates were also produced, allowing location of all the protein substrates in their putative binding pockets. These include two independent flavin binding sites for each CaFADS activity. Conclusion For the first time, the putative presence of a flavin binding site for the adenylylation activity, independent from that related with the phosphorylation activity, is shown. Additionally, these models suggest the functional relevance of some residues putatively involved in the catalytic processes. Their relevant roles were analysed by site-directed mutagenesis. A role was confirmed for H28, H31, S164 and T165 in the stabilisation of the P groups and the adenine moiety of ATP and, the P of FMN for the adenylylation. Similarly, T208, N210 and E268 appear critical for accommodation of the P groups of ATP and the ribityl end of RF in the active site for the phosphorylation process. Finally, the C-terminal domain was shown to catalyse the phosphorylation process on its own, but no reaction at all was observed with the individually expressed N-terminal domain. PMID:18811972

  5. Structural analysis of FAD synthetase from Corynebacterium ammoniagenes.

    PubMed

    Frago, Susana; Martínez-Júlvez, Marta; Serrano, Ana; Medina, Milagros

    2008-09-23

    The prokaryotic FAD synthetase family - a group of bifunctional enzymes that catalyse riboflavin phosphorylation and FMN adenylylation within a single polypeptide chain- was analysed in terms of sequence and structure. Sequences of nearly 800 prokaryotic species were aligned. Those related with bifunctional FAD synthetase activities showed conservation of several consensus regions and highly conserved residues. A 3D model for the FAD synthetase from Corynebacterium ammoniagenes (CaFADS) was generated. This model confirms that the N-terminal and C-terminal domains are related to nucleotydyltransferases and riboflavin kinases, respectively. Models for the interaction of CaFADS with its substrates were also produced, allowing location of all the protein substrates in their putative binding pockets. These include two independent flavin binding sites for each CaFADS activity. For the first time, the putative presence of a flavin binding site for the adenylylation activity, independent from that related with the phosphorylation activity, is shown. Additionally, these models suggest the functional relevance of some residues putatively involved in the catalytic processes. Their relevant roles were analysed by site-directed mutagenesis. A role was confirmed for H28, H31, S164 and T165 in the stabilisation of the P groups and the adenine moiety of ATP and, the P of FMN for the adenylylation. Similarly, T208, N210 and E268 appear critical for accommodation of the P groups of ATP and the ribityl end of RF in the active site for the phosphorylation process. Finally, the C-terminal domain was shown to catalyse the phosphorylation process on its own, but no reaction at all was observed with the individually expressed N-terminal domain.

  6. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase.

    PubMed

    Fraisl, Peter; Forss-Petter, Sonja; Zigman, Mihaela; Berger, Johannes

    2004-01-01

    It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely.

  7. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase.

    PubMed Central

    Fraisl, Peter; Forss-Petter, Sonja; Zigman, Mihaela; Berger, Johannes

    2004-01-01

    It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely. PMID:14516277

  8. Molecular dynamics perspective on the protein thermal stability: a case study using SAICAR synthetase.

    PubMed

    Manjunath, Kavyashree; Sekar, Kanagaraj

    2013-09-23

    The enzyme SAICAR synthetase ligates aspartate with CAIR (5'-phosphoribosyl-4-carboxy-5-aminoimidazole) forming SAICAR (5-amino-4-imidazole-N-succinocarboxamide ribonucleotide) in the presence of ATP. In continuation with our previous study on the thermostability of this enzyme in hyper-/thermophiles based on the structural aspects, here, we present the dynamic aspects that differentiate the mesophilic (E. coli, E. chaffeensis), thermophilic (G. kaustophilus), and hyperthermophilic (M. jannaschii, P. horikoshii) SAICAR synthetases by carrying out a total of 11 simulations. The five functional dimers from the above organisms were simulated using molecular dynamics for a period of 50 ns each at 300 K, 363 K, and an additional simulation at 333 K for the thermophilic protein. The basic features like root-mean-square deviations, root-mean-square fluctuations, surface accessibility, and radius of gyration revealed the instability of mesophiles at 363 K. Mean square displacements establish the reduced flexibility of hyper-/thermophiles at all temperatures. At the simulations time scale considered here, the long-distance networks are considerably affected in mesophilic structures at 363 K. In mesophiles, a comparatively higher number of short-lived (having less percent existence time) Cα, hydrogen bonds, hydrophobic interactions are formed, and long-lived (with higher percentage existence time) contacts are lost. The number of time-averaged salt-bridges is at least 2-fold higher in hyperthermophiles at 363 K. The change in surface accessibility of salt-bridges at 363 K from 300 K is nearly doubled in mesophilic protein compared to proteins from other temperature classes.

  9. Isolation of an acetyl-CoA synthetase gene (ZbACS2) from Zygosaccharomyces bailii.

    PubMed

    Rodrigues, Fernando; Zeeman, Anne-Marie; Cardoso, Helena; Sousa, Maria João; Steensma, H Yde; Côrte-Real, Manuela; Leão, Cecília

    2004-03-01

    A gene homologous to Saccharomyces cerevisiae ACS genes, coding for acetyl-CoA synthetase, has been cloned from the yeast Zygosaccharomyces bailii ISA 1307, by using reverse genetic approaches. A probe obtained by PCR amplification from Z. bailii DNA, using primers derived from two conserved regions of yeast ACS proteins, RIGAIHSVVF (ScAcs1p; 210-219) and RVDDVVNVSG (ScAcs1p; 574-583), was used for screening a Z. bailii genomic library. Nine clones with partially overlapping inserts were isolated. The sequenced DNA fragment contains a complete ORF of 2027 bp (ZbACS2) and the deduced polypeptide shares significant homologies with the products of ACS2 genes from S. cerevisiae and Kluyveromyces lactis (81% and 82% identity and 84% and 89% similarity, respectively). Phylogenetic analysis shows that the sequence of Zbacs2 is more closely related to the sequences from Acs2 than to those from Acs1 proteins. Moreover, this analysis revealed that the gene duplication producing Acs1 and Acs2 proteins has occurred in the common ancestor of S. cerevisiae, K. lactis, Candida albicans, C. glabrata and Debaryomyces hansenii lineages. Additionally, the cloned gene allowed growth of S. cerevisiae Scacs2 null mutant, in medium containing glucose as the only carbon and energy source, indicating that it encodes a functional acetyl-CoA synthetase. Also, S. cerevisiae cells expressing ZbACS2 have a shorter lag time, in medium containing glucose (2%, w/v) plus acetic acid (0.1-0.35%, v/v). No differences in cell response to acetic acid stress were detected both by specific growth and death rates. The mode of regulation of ZbACS2 appears to be different from ScACS2 and KlACS2, being subject to repression by a glucose pulse in acetic acid-grown cells.

  10. Stability of Rat Brain Glutamine Synthetase to Oxygen Toxicity (Oxygen at High Pressure).

    DTIC Science & Technology

    1983-07-01

    Enzyme assays using the gamma-glutamyl transferase method provided estimates of glutamine synthetase activity in rat brain homogenates subjected to a...supports the lack of any connection between convulsions caused by in vivo inhibition of glutamine synthetase and convulsions caused by oxygen toxicity (oxygen at high pressure). (Author)

  11. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason [Cambridge, GB; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [Lancaster, PA; Pastrnak, Miro [San Diego, CA; Santoro, Steven William [Cambridge, MA; Zhang, Zhiwen [San Diego, CA

    2008-04-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  12. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason [Cambridge, GB; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [Lancaster, PA; Pastrnak, Miro [San Diego, CA; Santoro, Steven William [Cambridge, MA; Zhang, Zhiwen [San Diego, CA

    2012-05-22

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  13. Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason W [San Diego, CA; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [San Diego, CA; Pastrnak, Miro [San Diego, CA; Santoro, Stephen William [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2011-09-06

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  14. Cloning and characterization of a putative human holocytochrome c-type synthetase gene (HCCS) isolated from the critical region for microphthalmia with linear skin defects (MLS)

    SciTech Connect

    Schaefer, L.; Ballabio, A.; Zoghbi, H.Y.

    1996-06-01

    Microphthalmia with linear skin defects syndrome (MLS) is an X-linked male-lethal disorder associated with X chromosomal rearrangements resulting in monosomy from Xpter to Xp22. Features include microphthalmia, sclerocornea, linear skin defects, and agenesis of the corpus callosum. Using a cross-species conservation strategy, an expressed sequence from the 450- to the 550-kb MLS critical region on Xp22 was identified by screening a human embryo cDNA library. Northern analysis revealed a transcript of {approx}2.6 kb in all tissues examined, with weaker expression of {approx}1.2- and {approx}5.2-kb transcripts. The strongest expression was observed in heart and skeletal muscle. Sequence analysis of a 3-kb cDNA contig revealed an 807-bp open reading frame encoding a putative 268-amino-acid-protein. Comparison of the sequence with sequences in the databases revealed homology with holocytochrome c-type synthetases, which catalyze the covalent addition of a heme group onto c-type cytochromes in the mitochondria. The c-type cytochromes are required for proper functioning of the electron transport pathway. The human gene (HGMW-approved symbol HCCS) and the corresponding murine gene characterized in this paper are the first mammalian holocytochrome c-type synthetases to be described in the literature. Because of the lack of a neuromuscular phenotype in MLS, it is uncertain whether the deletion of a mitochondrial holocytochrome synthetase would contribute to the phenotype seen in MLS. The expression pattern of this gene and knowledge about the function of holocytochrome synthetases, however, suggest that it is a good candidate for X-linked encephalomyopathies typically associated with mitochondrial dysfunction. 25 refs., 4 figs.

  15. Peptide Mapping of Aminoacyl-tRNA Synthetases: Evidence for Internal Sequence Homology in Escherichia coli Leucyl-tRNA Synthetase

    PubMed Central

    Waterson, Robert M.; Konigsberg, William H.

    1974-01-01

    Most aminoacyl-tRNA synthetases contain polypeptide chains of about either 50,000 or 100,000 daltons. Peptide mapping of tryptic, chymotryptic, or Staphylococcus aureus acid protease digests of seryl-tRNA synthetase (100,000, dimer) and leucyl-tRNA synthetase (100,000, monomer) from E. coli was done after selective modification of lysine residues with [14C]succinic anhydride or of methionine residues with [14C]iodoacetate. By use of thin-layer electrophoresis and chromatography on silicagel or cellulose plates followed by radioautography it was possible, depending upon the specific activity of the reagent used, to detect radioactive peptides obtained from as little as l μg of protein. Seryl-tRNA synthetase gave the correct number of tryptic peptides expected for a dimer of identical subunits. Leucyl-tRNA synthetase, on the other hand, gave roughly half the number of radioactive tryptic, chymotryptic, and acid protease peptides expected from the lysine, arginine, and methionine content of the 100,000 monomer. We have interpreted these results as indicating that extensive internal homology exists among lysine- and methionine-containing peptides within the leucyl-tRNA synthetase. The simplest conclusion that can be drawn from these observations is that the NH2- and COOH-terminal halves of leucyl-tRNA synthetase and perhaps other synthetases of 100,000 molecular weight may have evolved through a process of gene duplication and fusion, followed by limited diversification by way of amino-acid substitutions accumulating during evolution. Images PMID:4592690

  16. Circumstantial evidence for a role of glutamine-synthetase in suicide.

    PubMed

    Kalkman, Hans O

    2011-06-01

    Suicide occurs during depression, schizophrenia, diabetes and epilepsy. A common denominator of these disorders is the presence of inflammation. Inflammatory cytokines affect function and expression of the glial enzyme glutamine synthetase and post mortem studies indicate that brain glutamine synthetase function is suppressed in mood disorders and epilepsy. In a study of schizophrenia brains, the expression of glutamine synthetase was reduced in those cases where the cause of death was suicide. The glycogen synthase kinase 3 (GSK3) inhibitor, lithium, which has a proven efficacy against suicide, increased in an animal experiment the expression of glutamine synthetase. Based on these data one could reason that suicide may be prevented by centrally acting GSK3 inhibitors. However, since inhibition of glutamine synthetase may lead to a deficit in glutamine and as consequence a GABA and glutamate deficit, even simple food supplementation with glutamine might help to reduce suicide.

  17. Myocardial aminoacyl-transfer-ribonucleic acid synthetase and aminoacyl-transferring enzyme activity

    PubMed Central

    Gibson, K.; Harris, P.

    1972-01-01

    The properties of cytoplasmic aminoacyl-tRNA synthetase and aminoacyl-transferring enzymes in the myocardium were examined and methods for the assay of the activity of these enzyme systems were developed. Aminoacyl-tRNA synthetase activity was measured from the rate of incorporation of 14C-labelled amino acid into aminoacyl-tRNA. Transferase activity was measured from the rate of incorporation of amino[14C]acyl-tRNA into protein in the presence of a standard preparation of hepatic ribosomes. Aminoacyl-tRNA synthetase activity is labile once the heart has been homogenized, whereas transferase activity is stable. The source of energy for synthetase activity is ATP; that for transferase is GTP. Transferase activity was inhibited by puromycin and stimulated by dithiothreitol, whereas synthetase activity was unaffected. PMID:5071178

  18. Inhibition of rabbit gastric glucosamine synthetase activity by Cu2+, Zn2+ and Se4+.

    PubMed

    Fujita, T; Sakuma, S; Takahashi, K; Bohtani, Y; Nishida, H; Fujimoto, Y

    1997-05-01

    The effects of Fe2+, Cu2+, Zn2+ and Se4+ on the activity of glucosamine synthetase, the rate-limiting enzyme of mucus synthesis, in rabbit gastric corporal mucosa were examined. Cu2+, Zn2+ and Se4+ inhibited the glucosamine synthetase activity at concentrations ranging from 1 to 10 microM (Cu2+, 8-98% inhibition; Zn2+, 10-99% inhibition; Se4+, 32-89% inhibition). The inhibitory effects of these three ions were much stronger than that of UDP-N-acetylglúcosamine known as a representative inhibitor of the glucosamine synthetase activity (10 microM, 52% inhibition). Fe2+ had no significant effect on the glucosamine synthetase activity up to 100 microM. These results suggest that Cu2+, Zn2+ and Se4+ can be potent inhibitors of gastric glucosamine synthetase activity.

  19. The evolution of Class II Aminoacyl-tRNA synthetases and the first code.

    PubMed

    Smith, Temple F; Hartman, Hyman

    2015-11-30

    Class II Aminoacyl-tRNA synthetases are a set of very ancient multi domain proteins. The evolution of the catalytic domain of Class II synthetases can be reconstructed from three peptidyl-hairpins. Further evolution from this primordial catalytic core leads to a split of the Class II synthetases into two divisions potentially associated with the operational code. The earliest form of this code likely coded predominantly Glycine (Gly), Proline (Pro), Alanine (Ala) and "Lysine"/Aspartic acid (Lys/Asp). There is a paradox in these synthetases beginning with a hairpin structure before the Genetic Code existed. A resolution is found in the suggestion that the primordial Aminoacyl synthetases formed in a transition from a Thioester world to a Phosphate ester world. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Replacement of the folC gene, encoding folylpolyglutamate synthetase-dihydrofolate synthetase in Escherichia coli, with genes mutagenized in vitro.

    PubMed Central

    Pyne, C; Bognar, A L

    1992-01-01

    The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products. Images PMID:1548226

  1. Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver.

    PubMed

    Cabrero, C; Puerta, J; Alemany, S

    1987-12-30

    Only two S-adenosyl-L-methionine synthetase forms exist in rat liver: high-Mr S-adenosyl-L-methionine synthetase and low-Mr S-adenosyl-L-methionine synthetase, which have been purified to apparent homogeneity as judged by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. High-Mr S-adenosyl-L-methionine synthetase had an apparent molecular mass, determined by gel filtration, of 210 kDa and was a tetramer constituted by 48.5-kDa subunits, estimated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The apparent molecular mass of low-Mr S-adenosyl-L-methionine synthetase, as estimated by gel filtration, was 110 kDa and was constituted by two subunits of 47 kDa. An antiserum against low-Mr S-adenosyl-L-methionine synthetase cross-reacted with the two forms. Reverse-phase HPLC runs of tryptic digestions of high-Mr and low-Mr S-adenosyl-L-methionine synthetase showed that the peptide maps of the two forms were very similar, if not identical. High-Mr S-adenosyl-L-methionine synthetase activity was inhibited by S-adenosyl-L-methionine and pyrophosphate. Depending on the dose used, S-adenosyl-L-methionine activated or inhibited low-Mr S-adenosyl-L-methionine synthetase and pyrophosphate had no effect on this form. The two synthetases showed a different specific activity at the physiological concentration of methionine. This report shows that even though the two forms are constructed of the same polypeptide chains, they are regulated in a different manner by methionine and by the products of the reaction.

  2. Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase

    PubMed Central

    Alderwick, Luke J; Lloyd, Georgina S; Lloyd, Adrian J; Lovering, Andrew L; Eggeling, Lothar; Besra, Gurdyal S

    2011-01-01

    Mycobacterium tuberculosis arabinogalactan (AG) is an essential cell wall component. It provides a molecular framework serving to connect peptidoglycan to the outer mycolic acid layer. The biosynthesis of the arabinan domains of AG and lipoarabinomannan (LAM) occurs via a combination of membrane bound arabinofuranosyltransferases, all of which utilize decaprenol-1-monophosphorabinose as a substrate. The source of arabinose ultimately destined for deposition into cell wall AG or LAM originates exclusively from phosphoribosyl-1-pyrophosphate (pRpp), a central metabolite which is also required for other essential metabolic processes, such as de novo purine and pyrimidine biosyntheses. In M. tuberculosis, a single pRpp synthetase enzyme (Mt-PrsA) is solely responsible for the generation of pRpp, by catalyzing the transfer of pyrophosphate from ATP to the C1 hydroxyl position of ribose-5-phosphate. Here, we report a detailed biochemical and biophysical study of Mt-PrsA, which exhibits the most rapid enzyme kinetics reported for a pRpp synthetase. PMID:21045009

  3. Mammalian folylpoly-. gamma. -glutamate synthetase. 3. Specificity for folate analogues

    SciTech Connect

    George, S.; Cichowicz, D.J.; Shane, B.

    1987-01-27

    A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folypolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the ..gamma..-carboxyl of the terminal glutamate in the correct position for catalysis. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates. Other folate derivatives with tetrahedral chemistry replacing the peptide bond, such as pteroyl-..gamma..-glutamyl-(psi,CH/sub 2/-NH)-glutamate, retain affinity for the protein but are considerably less effective inhibitors than the ornithine derivatives. Enzyme activity was assayed using (/sup 14/C)glutamate.

  4. MANAGEMENT OF A PATIENT WITH HOLOCARBOXYLASE SYNTHETASE DEFICIENCY

    PubMed Central

    Van Hove, Johan LK; Josefsberg, Sagi; Freehauf, Cynthia; Thomas, Janet A.; Thuy, Le Phuc; Barshop, Bruce A.; Woontner, Michael; Mock, Donald M; Chiang, Pei-Wen; Spector, Elaine; Meneses-Morales, Iván; Cervantes-Roldán, Rafael; León-Del-Río, Alfonso

    2009-01-01

    We investigated in a patient with holocarboxylase synthetase deficiency, the relation between the biochemical and genetic factors of the mutant protein with the pharmacokinetic factors of successful biotin treatment. A girl exhibited abnormal skin at birth, and developed in the first days of life neonatal respiratory distress syndrome and metabolic abnormalities diagnostic of multiple carboxylase deficiency. Enzyme assays showed low carboxylase activities. Fibroblast analysis showed poor incorporation of biotin into the carboxylases, and low transfer of biotin by the holocarboxylase synthetase enzyme. Kinetic studies identified an increased Km but a preserved Vmax. Mutation analysis showed the child to be a compound heterozygote for a new nonsense mutation Q379X and for a novel missense mutation Y663H. This mutation affects a conserved amino acid, which is located the most 3′ of all recorded missense mutations thus far described, and extends the region of functional biotin interaction. Treatment with biotin 100 mg/day gradually improved the biochemical abnormalities in blood and in cerebrospinal fluid, corrected the carboxylase enzyme activities, and provided clinical stability and a normal neurodevelopmental outcome. Plasma concentrations of biotin were increased to more than 500 nM, thus exceeding the increased Km of the mutant enzyme. At these pharmacological concentrations, the CSF biotin concentration was half the concentration in blood. Measuring these pharmacokinetic variables can aid in optimizing treatment, as individual tailoring of dosing to the needs of the mutation may be required. PMID:18974016

  5. Management of a patient with holocarboxylase synthetase deficiency.

    PubMed

    Van Hove, Johan L K; Josefsberg, Sagi; Freehauf, Cynthia; Thomas, Janet A; Thuy, Le Phuc; Barshop, Bruce A; Woontner, Michael; Mock, Donald M; Chiang, Pei-Wen; Spector, Elaine; Meneses-Morales, Iván; Cervantes-Roldán, Rafael; León-Del-Río, Alfonso

    2008-12-01

    We investigated in a patient with holocarboxylase synthetase deficiency, the relation between the biochemical and genetic factors of the mutant protein with the pharmacokinetic factors of successful biotin treatment. A girl exhibited abnormal skin at birth, and developed in the first days of life neonatal respiratory distress syndrome and metabolic abnormalities diagnostic of multiple carboxylase deficiency. Enzyme assays showed low carboxylase activities. Fibroblast analysis showed poor incorporation of biotin into the carboxylases, and low transfer of biotin by the holocarboxylase synthetase enzyme. Kinetic studies identified an increased Km but a preserved Vmax. Mutation analysis showed the child to be a compound heterozygote for a new nonsense mutation Q379X and for a novel missense mutation Y663H. This mutation affects a conserved amino acid, which is located the most 3' of all recorded missense mutations thus far described, and extends the region of functional biotin interaction. Treatment with biotin 100mg/day gradually improved the biochemical abnormalities in blood and in cerebrospinal fluid (CSF), corrected the carboxylase enzyme activities, and provided clinical stability and a normal neurodevelopmental outcome. Plasma concentrations of biotin were increased to more than 500 nM, thus exceeding the increased Km of the mutant enzyme. At these pharmacological concentrations, the CSF biotin concentration was half the concentration in blood. Measuring these pharmacokinetic variables can aid in optimizing treatment, as individual tailoring of dosing to the needs of the mutation may be required.

  6. Purification and properties of the dihydrofolate synthetase from Serratia indica.

    PubMed

    Ikeda, M; Kazuo, I

    1976-01-01

    The dihydrofolate synthetase (EC 6.3.2.12) responsible for catalyzing the synthesis of dihydrofolic acid from dihydropteroic acid and L-glutamic acid was purified about 130-fold from extracts of Serratia indica IFO 3759 by ammonium sulfate fractionation, DEAE-Sephadex column chromatography, Sephadex G-200 gel filtration, and DEAE-cellulose column chromatography. The enzyme preparation obtained was shown to be homogeneous by DEAE-cellulose column chromatography and ultracentrifugal analysis. The sedimentation coefficient of this enzyme was 3.9 S, and the molecular weight was determined to be about 47,000 by Sephadex G-100. The optimum pH for the reaction was 9.0. The enzymatic reaction required dihydropteroate, L-glutamate and ATP as substrates, and Mg2+ and K+ as cofactors. gamma-L-Glutamyl-L-glutamic acid cannot replace L-glutamic acid as the substrate. Neither pteroic acid nor tetrahydropteroic acid can be used as the substrate. ATP was partially replaced by ITP or GTP. The enzyme reaction was inhibited by the addition of AD, but not by AMP. One mole of dihydrofolate, 1 mole of ADP and 1 mole of orthophosphate were produced from each 1 mole of dihydropteroic acid, L-glutamic acid, and ATP by the following equation: 7,8-Dihydropteroic acid ml-Glutamic acid matp Mg2+, K+ leads to Dihydrofolic acid + ADP + Pi. These results suggest that the systematic name for the dihydrofolate synthetase is 7,8-dihydropteroate: L-glutamate ligase (ADP).

  7. Use of Genomics To Identify Bacterial Undecaprenyl Pyrophosphate Synthetase: Cloning, Expression, and Characterization of the Essential uppS Gene

    PubMed Central

    Apfel, Christian M.; Takács, Béla; Fountoulakis, Michael; Stieger, Martin; Keck, Wolfgang

    1999-01-01

    The prenyltransferase undecaprenyl pyrophosphate synthetase (di-trans,poly-cis-decaprenylcistransferase; EC 2.5.1.31) was purified from the soluble fraction of Escherichia coli by TSK-DEAE, ceramic hydroxyapatite, TSK-ether, Superdex 200, and heparin-Actigel chromatography. The protein was labeled with the photolabile analogue of the farnesyl pyrophosphate analogue (E,E)-[1-3H]-(2-diazo-3-trifluoropropionyloxy)geranyl diphos-phate and was detected on a sodium dodecyl sulfate-polyacrylamide gel as a protein with an apparent molecular mass of 29 kDa. This protein band was cut out from the gel, trypsin digested, and subjected to matrix-assisted laser desorption ionization mass spectrometric analysis. Comparison of the experimental data with computer-simulated trypsin digest data for all E. coli proteins yielded a single match with a protein of unassigned function (SWISS-PROT Q47675; YAES_ECOLI). Sequences with strong similarity indicative of homology to this protein were identified in 25 bacterial species, in Saccharomyces cerevisiae, and in Caenorhabditis elegans. The homologous genes (uppS) were cloned from E. coli, Haemophilus influenzae, and Streptococcus pneumoniae, expressed in E. coli as amino-terminal His-tagged fusion proteins, and purified over a Ni2+ affinity column. An untagged version of the E. coli uppS gene was also cloned and expressed, and the protein purified in two chromatographic steps. We were able to detect Upp synthetase activity for all purified enzymes. Further, biochemical characterization revealed no differences between the recombinant untagged E. coli Upp synthetase and the three His-tagged fusion proteins. All enzymes were absolutely Triton X-100 and MgCl2 dependent. With the use of a regulatable gene disruption system, we demonstrated that uppS is essential for growth in S. pneumoniae R6. PMID:9882662

  8. Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene.

    PubMed

    Apfel, C M; Takács, B; Fountoulakis, M; Stieger, M; Keck, W

    1999-01-01

    The prenyltransferase undecaprenyl pyrophosphate synthetase (di-trans,poly-cis-decaprenylcistransferase; EC 2.5.1.31) was purified from the soluble fraction of Escherichia coli by TSK-DEAE, ceramic hydroxyapatite, TSK-ether, Superdex 200, and heparin-Actigel chromatography. The protein was labeled with the photolabile analogue of the farnesyl pyrophosphate analogue (E, E)-[1-3H]-(2-diazo-3-trifluoropropionyloxy)geranyl diphosphate and was detected on a sodium dodecyl sulfate-polyacrylamide gel as a protein with an apparent molecular mass of 29 kDa. This protein band was cut out from the gel, trypsin digested, and subjected to matrix-assisted laser desorption ionization mass spectrometric analysis. Comparison of the experimental data with computer-simulated trypsin digest data for all E. coli proteins yielded a single match with a protein of unassigned function (SWISS-PROT Q47675; YAES_ECOLI). Sequences with strong similarity indicative of homology to this protein were identified in 25 bacterial species, in Saccharomyces cerevisiae, and in Caenorhabditis elegans. The homologous genes (uppS) were cloned from E. coli, Haemophilus influenzae, and Streptococcus pneumoniae, expressed in E. coli as amino-terminal His-tagged fusion proteins, and purified over a Ni2+ affinity column. An untagged version of the E. coli uppS gene was also cloned and expressed, and the protein purified in two chromatographic steps. We were able to detect Upp synthetase activity for all purified enzymes. Further, biochemical characterization revealed no differences between the recombinant untagged E. coli Upp synthetase and the three His-tagged fusion proteins. All enzymes were absolutely Triton X-100 and MgCl2 dependent. With the use of a regulatable gene disruption system, we demonstrated that uppS is essential for growth in S. pneumoniae R6.

  9. The RNA sequence context defines the mechanistic routes by which yeast arginyl-tRNA synthetase charges tRNA.

    PubMed Central

    Sissler, M; Giegé, R; Florentz, C

    1998-01-01

    Arginylation of tRNA transcripts by yeast arginyl-tRNA synthetase can be triggered by two alternate recognition sets in anticodon loops: C35 and U36 or G36 in tRNA(Arg) and C36 and G37 in tRNA(Asp) (Sissler M, Giegé R, Florentz C, 1996, EMBO J 15:5069-5076). Kinetic studies on tRNA variants were done to explore the mechanisms by which these sets are expressed. Although the synthetase interacts in a similar manner with tRNA(Arg) and tRNA(Asp), the details of the interaction patterns are idiosyncratic, especially in anticodon loops (Sissler M, Eriani G, Martin F, Giegé R, Florentz C, 1997, Nucleic Acids Res 25:4899-4906). Exchange of individual recognition elements between arginine and aspartate tRNA frameworks strongly blocks arginylation of the mutated tRNAs, whereas full exchange of the recognition sets leads to efficient arginine acceptance of the transplanted tRNAs. Unpredictably, the similar catalytic efficiencies of native and transplanted tRNAs originate from different k(cat) and Km combinations. A closer analysis reveals that efficient arginylation results from strong anticooperative effects between individual recognition elements. Nonrecognition nucleotides as well as the tRNA architecture are additional factors that tune efficiency. Altogether, arginyl-tRNA synthetase is able to utilize different context-dependent mechanistic routes to be activated. This confers biological advantages to the arginine aminoacylation system and sheds light on its evolutionary relationship with the aspartate system. PMID:9622124

  10. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea.

    PubMed

    Ostrowski, Maciej; Mierek-Adamska, Agnieszka; Porowińska, Dorota; Goc, Anna; Jakubowska, Anna

    2016-10-01

    Phytohormone conjugation is one of the mechanisms that maintains a proper hormonal homeostasis and that is necessary for the realization of physiological responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases convert indole-3-acetic acid (IAA) to IAA-amino acid conjugates by ATP-dependent reactions. IAA-aspartate (IAA-Asp) exists as a predominant amide conjugate of auxin in pea tissues and acts as an intermediate during IAA catabolism. Here we report a novel recombinant indole-3-acetic acid-amido synthetase in Pisum sativum. In silico analysis shows that amino acid sequence of PsGH3 has the highest homology to Medicago truncatula GH3.3. The recombinant His-tag-PsGH3 fusion protein has been obtained in E. coli cells and is a soluble monomeric polypeptide with molecular mass of 69.18 kDa. The PsGH3 was purified using Ni(2+)-affinity chromatography and native PAGE. Kinetic analysis indicates that the enzyme strongly prefers IAA and L-aspartate as substrates for conjugation revealing Km(ATP) = 0.49 mM, Km(L-Asp) = 2.2 mM, and Km(IAA) = 0.28 mM. Diadenosine pentaphosphate (Ap5A) competes with ATP for catalytic site and diminishes the PsGH3 affinity toward ATP approximately 1.11-fold indicating Ki = 8.5 μM. L-Tryptophan acts as an inhibitor of IAA-amido synthesizing activity by competition with L-aspartate. Inorganic pyrophosphatase (PPase) hydrolyzing pyrophosphate to two phosphate ions, potentiates IAA-Asp synthetase activity of PsGH3. Our results demonstrate that PsGH3 is a novel enzyme that is involved in auxin metabolism in pea seeds. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Drosophila as a platform to predict the pathogenicity of novel aminoacyl-tRNA synthetase mutations in CMT.

    PubMed

    Leitão-Gonçalves, Ricardo; Ermanoska, Biljana; Jacobs, An; De Vriendt, Els; Timmerman, Vincent; Lupski, James R; Callaerts, Patrick; Jordanova, Albena

    2012-05-01

    Charcot-Marie-Tooth disease (CMT) is the major form of inherited peripheral neuropathy in humans. CMT is clinically and genetically heterogeneous and four aminoacyl-tRNA synthetases have been implicated in disease etiology. Mutations in the YARS gene encoding a tyrosyl-tRNA synthetase (TyrRS) lead to Dominant Intermediate CMT type C (DI-CMTC). Three dominant YARS mutations were so far associated with DI-CMTC. To further expand the spectrum of CMT causing genetic defects in this tRNA synthetase, we performed DNA sequencing of YARS coding regions in a cohort of 181 patients with various types of peripheral neuropathy. We identified a novel K265N substitution that in contrast to all previously described mutations is located at the anticodon recognition domain of the enzyme. Further genetic analysis revealed that this variant represents a benign substitution. Using our recently developed DI-CMTC Drosophila model, we tested in vivo the pathogenicity of this new YARS variant. We demonstrated that the developmental and behavioral defects induced by all DI-CMTC causing mutations were not present upon ubiquitous or panneuronal TyrRS K265N expression. Thus, in line with our genetic studies, functional analysis confirmed that the K265N substitution does not induce toxicity signs in Drosophila. The consistency observed throughout this work underscores the robustness of our DI-CMTC animal model and identifies Drosophila as a valid read-out platform to ascertain the pathogenicity of novel mutations to be identified in the future.

  12. Effect of Liver Damage and Hyperbaric Oxygenation on Glutamine Synthetase of Hepatocytes.

    PubMed

    Savilov, P N; Yakovlev, V N

    2016-01-01

    Activity of glutamine synthetase in the hepatocytes of healthy animals and animals with chronic CCl4-induced hepatitis was studied on white mature female rats after liver resection (15-20% of organ weight) and hyperbaric oxygenation (3 atm, 50 min, 3 times). Surgically operated left and non-operated middle lobes of the liver were analyzed on day 3 after liver resection and exposure to hyperbaric oxygenation. On day 65 of CCl4 poisoning, activity of glutamine synthetase decreased in both lobes and did not recover on day 3 after toxin cessation. Liver resection under conditions of CCl4-induced hepatitis restored reduced activity of glutamine synthetase in both liver lobes to the normal level. In healthy rats, the increase in glutamine synthetase activity after liver resection was found only in the middle lobe of the liver. Hyperbaric oxygenation enhanced the stimulatory effect of liver resection on glutamine synthetase activity in hepatocytes during chronic CCl4-induced hepatitis. In healthy animals with liver resection, activity of glutamine synthetase did not change after hyperbaric oxygenation, while normally oxygenation inhibited glutamine synthetase activity.

  13. Encapsulation of glutamine synthetase in mouse erythrocytes: a new procedure for ammonia detoxification.

    PubMed

    Kosenko, Elena A; Venediktova, Natalia I; Kudryavtsev, Andrey A; Ataullakhanov, Fazoil I; Kaminsky, Yury G; Felipo, Vicente; Montoliu, Carmina

    2008-12-01

    There are a number of pathological situations in which ammonia levels increase leading to hyperammonemia, which may cause neurological alterations and can lead to coma and death. Currently, there are no efficient treatments allowing rapid and sustained decrease of ammonia levels in these situations. A way to increase ammonia detoxification would be to increase its incorporation in glutamine by glutamine synthetase. The aim of this work was to develop a procedure to encapsulate glutamine synthetase in mouse erythrocytes and to assess whether administration of these erythrocytes containing glutamine synthetase (GS) reduce ammonia levels in hyperammonemic mice. The procedure developed allowed the encapsulation of 3 +/- 0.25 IU of GS / mL of erythrocytes with a 70% cell recovery. Most metabolites, including ATP, remained unaltered in glutamine synthetase-loaded erythrocytes (named ammocytes by us) compared with native erythrocytes. The glutamine synthetase-loaded ammocytes injected in mice survived and retained essentially all of their glutamine synthetase activity for at least 48 h in vivo. Injection of these ammocytes into hyperammonemic mice reduced ammonia levels in the blood by about 50%. The results reported indicate that ammocytes are able to keep their integrity, normal energy metabolism, the inserted glutamine synthetase activity, and can be useful to reduce ammonia levels in hyperammonemic situations.

  14. Molecular structure of the human argininosuccinate synthetase gene: Occurrence of alternative mRNA splicing

    SciTech Connect

    Freytag, S.O.; Beaudet, A.L.; Bock, H.G.O.; O'Brien, W.E.

    1984-10-01

    The human genome contains one expressed argininosuccinate synthetase gene and ca. 14 pseudogenes that are dispersed to at least 11 human chromosomes. Eleven clones isolated from a human genomic DNA library were characterized extensively by restriction mapping, Southern blotting, and nucleotide sequencing. These 11 clones represent the entire expressed argininosuccinate synthetase gene that spans 63 kilobases and contains at least 13 exons. The expressed gene codes for two mRNAs that differ in their 5' untranslated sequences and arise by alternative splicing involving the inclusion or deletion of an entire exon. In normal human liver and cultured fibroblasts, the predominant mature argininosuccinate synthetase mRNA lacks sequences encoded by exon 2 in the expressed gene. In contrast, the predominant argininosuccinate synthetase mRNA in baboon liver contains exon 2 sequences. A transformed canavanine-resistant human cell line in which argininosuccinate synthetase activity is 180-fold higher than that in wild-type cells contains abundant amounts of both forms of the argininosuccinate synthetase mRNA. The mRNA lacking exon 2 sequences is the more abundant mRNA species in the canavanine-resistant cells. These observations show that splicing of the argininosuccinate synthetase mRNA is species specific in primates and varies among different human cell types.

  15. Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke.

    PubMed

    Jeitner, Thomas M; Battaile, Kevin; Cooper, Arthur J L

    2015-12-01

    The following article addresses some seemingly paradoxical observations concerning cerebral glutamine synthetase in ischemia-reperfusion injury. In the brain, this enzyme is predominantly found in astrocytes and catalyzes part of the glutamine-glutamate cycle. Glutamine synthetase is also thought to be especially sensitive to inactivation by the oxygen- and nitrogen-centered radicals generated during strokes. Despite this apparent sensitivity, glutamine synthetase specific activity is elevated in the affected tissues during reperfusion. Given the central role of the glutamine-glutamate cycle in the brain, we sought to resolve these conflicting observations with the view of providing an alternative perspective for therapeutic intervention in stroke.

  16. Isolation of a cDNA clone for human threonyl-tRNA synthetase

    SciTech Connect

    Kontis, K.J.; Arfin, S.M.

    1989-05-01

    A cDNA for threonyl-tRNA synthetase was isolated from a human placental cDNA /lambda/gt11 expression library by immunological screening, and its identity was confirmed by hybrid-selected mRNA translation. With this cDNA used as a hybridization probe, borrelidin-resistant Chinese hamster ovary cells that overproduced threonyl-tRNA synthetase were shown to have increased levels of threonyl-tRNA synthetase mRNA and gene sequences. Amplification of the gene did not appear to have been accompanied by any major structural reorganizations.

  17. Organizing pneumonia as the first manifestation of anti-synthetase syndrome.

    PubMed

    Priyangika, S M Thanuja Nilushi; Karunarathna, W G S G; Liyanage, Isurujith; Gunawardana, Methsala; Udumalgala, Sumeda; Rosa, Chamith; Kulatunga, Aruna

    2016-06-02

    Anti-synthetase syndrome associated interstitial lung disease can occur either simultaneously, before, or after the development of polymyositis/dermatomyositis. Histology of interstitial lung disease can be nonspecific interstitial pneumonia, usual interstitial pneumonia, diffuse alveolar damage, organizing pneumonia. Organizing pneumonia associated anti-synthetase syndrome is a rare finding especially as the first manifestation. We report a 41 year old male patient who presented with organizing pneumonia and 2 years following the onset, developed polymyositis with anti-JO-1 antibody positivity. It is important to screen patients with organizing pneumonia for anti-synthetase syndrome which can be manifested later.

  18. The MTCY428.08 Gene of Mycobacterium tuberculosis Codes for NAD+ Synthetase

    PubMed Central

    Cantoni, Rita; Branzoni, Manuela; Labò, Monica; Rizzi, Menico; Riccardi, Giovanna

    1998-01-01

    The product of the MTCY428.08 gene of Mycobacterium tuberculosis shows sequence homology with several NAD+ synthetases. The MTCY428.08 gene was cloned into the expression vectors pGEX-4T-1 and pET-15b. Expression in Escherichia coli led to overproduction of glutathione S-transferase fused and His6-tagged gene products, which were enzymatically assayed for NAD synthetase activity. Our results demonstrate that the MTCY428.08 gene of M. tuberculosis is the structural gene for NAD+ synthetase. PMID:9620974

  19. Heterogeneity of holocarboxylase synthetase in patients with biotin-responsive multiple carboxylase deficiency.

    PubMed Central

    Burri, B J; Sweetman, L; Nyhan, W L

    1985-01-01

    Holocarboxylase synthetase activity has been determined in fibroblasts of seven patients with the neonatal form of biotin-responsive multiple carboxylase deficiency. The normal Km for biotin was 15 +/- 3 nmol/l, while in the patients the values ranged from 48 to 1,062 nmol/l. The mean maximum velocity was 27% of normal. Differences among the values obtained for the Km for biotin and the heat stability of holocarboxylase synthetase suggested that the patients studied represented at least four distinct variants at the holocarboxylase synthetase locus. PMID:3920902

  20. Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family.

    PubMed

    Mashek, Douglas G; Bornfeldt, Karin E; Coleman, Rosalind A; Berger, Johannes; Bernlohr, David A; Black, Paul; DiRusso, Concetta C; Farber, Steven A; Guo, Wen; Hashimoto, Naohiro; Khodiyar, Varsha; Kuypers, Frans A; Maltais, Lois J; Nebert, Daniel W; Renieri, Alessandra; Schaffer, Jean E; Stahl, Andreas; Watkins, Paul A; Vasiliou, Vasilis; Yamamoto, Tokuo T

    2004-10-01

    By consensus, the acyl-CoA synthetase (ACS) community, with the advice of the human and mouse genome nomenclature committees, has revised the nomenclature for the mammalian long-chain acyl-CoA synthetases. ACS is the family root name, and the human and mouse genes for the long-chain ACSs are termed ACSL1,3-6 and Acsl1,3-6, respectively. Splice variants of ACSL3, -4, -5, and -6 are cataloged. Suggestions for naming other family members and for the nonmammalian acyl-CoA synthetases are made.

  1. Molecular evolution of aminoacyl tRNA synthetase proteins in the early history of life.

    PubMed

    Fournier, Gregory P; Andam, Cheryl P; Alm, Eric J; Gogarten, J Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  2. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    NASA Astrophysics Data System (ADS)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  3. Visualization of Leucyl-tRNA synthetase in lysosome depending on leucine sensor.

    PubMed

    Choi, Hyosun; Son, Jung Bae; Kang, Jooyoun; Kwon, Jiwoong; Kim, Jong Hyun; Jung, Minkyo; Kim, Seong Keun; Kim, Sunghoon; Mun, Ji Young

    2017-09-04

    Leucyl-tRNA synthetase (LRS) plays major roles in providing leucine-tRNA and activating mechanistic target of rapamycin complex 1 (mTORC1) through intracellular leucine sensing. mTORC1 activated by amino acids affects the influence on physiology functions including cell proliferation, protein synthesis and autophagy in various organisms. Biochemical results demonstrating leucine sensing have been published, but visual results are lacking. Therefore, we observed the location of LRS with and without leucine using stimulated emission depletion (STED) microscopy one of the super-resolution microscopy and transmission electron microscopy (TEM). This revealed that LRS was translocated to the lysosome on addition of leucine. The translocation was inhibited by treatment with compound BC-LI-0186, disrupting the interaction between RagD and LRS. Immuno-TEM revealed a clear decrease in LRS translocation to the lysosome on addition of the inhibitor. This direct visualization of leucine sensing and LRS translocation to the lysosome was related to mTORC1 activation. To study the relationship between mTORC1 activation and LRS translocation, we monitored the change in autophagy for each condition using TEM and CLSM. The results showed a decrease in autophagy on addition of leucine, demonstrating crosstalk between leucine sensing, LRS translocation, RagD interaction, and mTORC1 activation. Copyright © 2017. Published by Elsevier Inc.

  4. Impaired novelty acquisition and synaptic plasticity in congenital hyperammonemia caused by hepatic glutamine synthetase deficiency

    PubMed Central

    Chepkova, Aisa N.; Sergeeva, Olga A.; Görg, Boris; Haas, Helmut L.; Klöcker, Nikolaj; Häussinger, Dieter

    2017-01-01

    Genetic defects in ammonia metabolism can produce irreversible damage of the developing CNS causing an impairment of cognitive and motor functions. We investigated alterations in behavior, synaptic plasticity and gene expression in the hippocampus and dorsal striatum of transgenic mice with systemic hyperammonemia resulting from conditional knockout of hepatic glutamine synthetase (LGS-ko). These mice showed reduced exploratory activity and delayed habituation to a novel environment. Field potential recordings from LGS-ko brain slices revealed significantly reduced magnitude of electrically-induced long-term potentiation (LTP) in both CA3-CA1 hippocampal and corticostriatal synaptic transmission. Corticostriatal but not hippocampal slices from LGS-ko brains demonstrated also significant alterations in long-lasting effects evoked by pharmacological activation of glutamate receptors. Real-time RT-PCR revealed distinct patterns of dysregulated gene expression in the hippocampus and striatum of LGS-ko mice: LGS-ko hippocampus showed significantly modified expression of mRNAs for mGluR1, GluN2B subunit of NMDAR, and A1 adenosine receptors while altered expression of mRNAs for D1 dopamine receptors, the M1 cholinoreceptor and the acetylcholine-synthetizing enzyme choline-acetyltransferase was observed in LGS-ko striatum. Thus, inborn systemic hyperammonemia resulted in significant deficits in novelty acquisition and disturbed synaptic plasticity in corticostriatal and hippocampal pathways involved in learning and goal-directed behavior. PMID:28067279

  5. Drosophila Ebony: a novel type of nonribosomal peptide synthetase related enzyme with unusually fast peptide bond formation kinetics.

    PubMed

    Hartwig, Silvia; Dovengerds, Christine; Herrmann, Christian; Hovemann, Bernhard T

    2014-11-01

    Drosophila Ebony is a β-alanyl biogenic amine synthetase with proven function in cuticle and in glia of the nervous system. It is closely related to nonribosomal peptide synthetases (NRPSs), which typically consist of at least an adenylation, a peptidyl carrier protein and a peptide bond forming condensation domain. Besides its role in cuticle formation, Ebony is in most glia of the brain thought to convert biogenic amines to β-alanyl conjugates. If the metabolization of the neurotransmitter histamine to β-alanyl histamine requires a fast reaction in visual signal transduction, Ebony must be able to fulfill this requirement. Since NRPSs are in general slowly acting multi-modular protein machineries, the enigma of how Ebony quickly facilitates this inactivation remains a key question for understanding its role in vision. To quantitatively analyze the reaction kinetics, we used phosphopantetheinylated holo-Ebony prepared from Baculovirus infected Sf9 cells. Kinetic parameters for the loading reaction, e.g. the formation of β-alanyl-Ebony thioester, complied with those of slow NRPSs. In contrast, single-turnover analysis of the last reaction step, peptide bond formation between pre-activated β-alanyl Ebony thioester and histamine, revealed a very rapid conjugation reaction. This biphasic nature of activity identifies Ebony as a novel type of NRPS related molecule that combines a slow amino acid activation phase with a very fast product formation step.

  6. Structure of Trypanosoma brucei glutathione synthetase: Domain and loop alterations in the catalytic cycle of a highly conserved enzyme

    PubMed Central

    Fyfe, Paul K.; Alphey, Magnus S.; Hunter, William N.

    2010-01-01

    Glutathione synthetase catalyses the synthesis of the low molecular mass thiol glutathione from l-γ-glutamyl-l-cysteine and glycine. We report the crystal structure of the dimeric enzyme from Trypanosoma brucei in complex with the product glutathione. The enzyme belongs to the ATP-grasp family, a group of enzymes known to undergo conformational changes upon ligand binding. The T. brucei enzyme crystal structure presents two dimers in the asymmetric unit. The structure reveals variability in the order and position of a small domain, which forms a lid for the active site and serves to capture conformations likely to exist during the catalytic cycle. Comparisons with orthologous enzymes, in particular from Homo sapiens and Saccharomyces cerevisae, indicate a high degree of sequence and structure conservation in part of the active site. Structural differences that are observed between the orthologous enzymes are assigned to different ligand binding states since key residues are conserved. This suggests that the molecular determinants of ligand recognition and reactivity are highly conserved across species. We conclude that it would be difficult to target the parasite enzyme in preference to the host enzyme and therefore glutathione synthetase may not be a suitable target for antiparasitic drug discovery. PMID:20045436

  7. Structure of Prolyl-tRNA Synthetase-Halofuginone Complex Provides Basis for Development of Drugs against Malaria and Toxoplasmosis.

    PubMed

    Jain, Vitul; Yogavel, Manickam; Oshima, Yoshiteru; Kikuchi, Haruhisa; Touquet, Bastien; Hakimi, Mohamed-Ali; Sharma, Amit

    2015-05-05

    The Chinese herb Dichroa febrifuga has traditionally treated malaria-associated fever. Its active component febrifugine (FF) and derivatives such as halofuginone (HF) are potent anti-malarials. Here, we show that FF-based derivatives arrest parasite growth by direct interaction with and inhibition of the protein translation enzyme prolyl-tRNA synthetase (PRS). Dual administration of inhibitors that target different tRNA synthetases suggests high utility of these drug targets. We reveal the ternary complex structure of PRS-HF and adenosine 5'-(β,γ-imido)triphosphate where the latter facilitates HF integration into the PRS active site. Structural analyses also highlight spaces within the PRS architecture for HF derivatization of its quinazolinone, but not piperidine, moiety. We also show a remarkable ability of HF to kill the related human parasite Toxoplasma gondii, suggesting wider HF efficacy against parasitic PRSs. Hence, our cell-, enzyme-, and structure-based data on FF-based inhibitors strengthen the case for their inclusion in anti-malarial and anti-toxoplasmosis drug development efforts.

  8. R-loop induced stress response by second (p)ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence.

    PubMed

    Krishnan, Sushma; Petchiappan, Anushya; Singh, Albel; Bhatt, Apoorva; Chatterji, Dipankar

    2016-10-01

    Persistent R-loops lead to replicative stress due to RNA polymerase stalling and DNA damage. RNase H enzymes facilitate the organisms to survive in the hostile condition by removing these R-loops. MS_RHII-RSD was previously identified to be the second (p)ppGpp synthetase in Mycobacterium smegmatis. The unique presence of an additional RNase HII domain raises an important question regarding the significance of this bifunctional protein. In this report, we demonstrate its ability to hydrolyze R-loops in Escherichia coli exposed to UV stress. MS_RHII-RSD gene expression was upregulated under UV stress, and this gene deleted strain showed increased R-loop accumulation as compared to the wild type. The domains in isolation are known to be inactive, and the full length protein is required for its function. Domain interdependence studies using active site mutants reveal the necessity of a hexamer form with high alpha helical content. In previous studies, bacterial RNase type HI has been mainly implicated in R-loop hydrolysis, but in this study, the RNase HII domain containing protein showed the activity. The prospective of this differential RNase HII activity is discussed. This is the first report to implicate a (p)ppGpp synthetase protein in R-loop-induced stress response. © 2016 John Wiley & Sons Ltd.

  9. Oligomeric state in the crystal structure of modular FAD synthetase provides insights into its sequential catalysis in prokaryotes.

    PubMed

    Herguedas, Beatriz; Martínez-Júlvez, Marta; Frago, Susana; Medina, Milagros; Hermoso, Juan A

    2010-07-09

    The crystal structure of the modular flavin adenine dinucleotide (FAD) synthetase from Corynebacterium ammoniagenes has been solved at 1.95 A resolution. The structure of C. ammoniagenes FAD synthetase presents two catalytic modules-a C-terminus with ATP-riboflavin kinase activity and an N-terminus with ATP-flavin mononucleotide (FMN) adenylyltransferase activity-that are responsible for the synthesis of FAD from riboflavin in two sequential steps. In the monomeric structure, the active sites from both modules are placed 40 A away, preventing the direct transfer of the product from the first reaction (FMN) to the second catalytic site, where it acts as substrate. Crystallographic and biophysical studies revealed a hexameric assembly formed by the interaction of two trimers. Each trimer presents a head-tail configuration, with FMN adenylyltransferase and riboflavin kinase modules from different protomers approaching the active sites and allowing the direct transfer of FMN. Experimental results provide molecular-level evidences of the mechanism of the synthesis of FMN and FAD in prokaryotes in which the oligomeric state could be involved in the regulation of the catalytic efficiency of the modular enzyme. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Inhibition of Protein Synthesis and Malaria Parasite Development by Drug Targeting of Methionyl-tRNA Synthetases

    PubMed Central

    Hussain, Tahir; Yogavel, Manickam

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRScyt and PfMRSapi. Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRScyt) or proteobacteria/primitive bacteria (PfMRSapi). We show that PfMRScyt localizes in parasite cytoplasm, while PfMRSapi localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several “hit” compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with 35S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs. PMID:25583729

  11. Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases.

    PubMed

    Hussain, Tahir; Yogavel, Manickam; Sharma, Amit

    2015-04-01

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRS(cyt) and PfMRS(api). Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRS(cyt)) or proteobacteria/primitive bacteria (PfMRS(api)). We show that PfMRS(cyt) localizes in parasite cytoplasm, while PfMRS(api) localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several "hit" compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with (35)S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase.

    PubMed Central

    Stoughton, D M; Zapata, G; Picone, R; Vann, W F

    1999-01-01

    Escherichia coli K1 CMP-sialic acid synthetase catalyses the synthesis of CMP-sialic acid from CTP and sialic acid. The active site of the 418 amino acid E. coli enzyme was localized to its N-terminal half. The bacterial CMP-sialic acid synthetase enzymes have a conserved motif, IAIIPARXXSKGLXXKN, at their N-termini. Several basic residues have been identified at or near the active site of the E. coli enzyme by chemical modification and site-directed mutagenesis. Only one of the lysines in the N-terminal motif, Lys-21, appears to be essential for activity. Mutation of Lys-21 in the N-terminal motif results in an inactive enzyme. Furthermore, Arg-12 of the N-terminal motif appears to be an active-site residue, based on the following evidence. Substituting Arg-12 with glycine or alanine resulted in inactive enzymes, indicating that this residue is required for enzymic activity. The Arg-12-->Lys mutant was partially active, demonstrating that a positive charge is required at this site. Steady-state kinetic analysis reveals changes in k(cat), K(m) and K(s) for CTP, which implicates Arg-12 in catalysis and substrate binding. PMID:10510306

  13. Regulation of Angiogenesis by Aminoacyl-tRNA Synthetases

    PubMed Central

    Mirando, Adam C.; Francklyn, Christopher S.; Lounsbury, Karen M.

    2014-01-01

    In addition to their canonical roles in translation the aminoacyl-tRNA synthetases (ARSs) have developed secondary functions over the course of evolution. Many of these activities are associated with cellular survival and nutritional stress responses essential for homeostatic processes in higher eukaryotes. In particular, six ARSs and one associated factor have documented functions in angiogenesis. However, despite their connection to this process, the ARSs are mechanistically distinct and exhibit a range of positive or negative effects on aspects of endothelial cell migration, proliferation, and survival. This variability is achieved through the appearance of appended domains and interplay with inflammatory pathways not found in prokaryotic systems. Complete knowledge of the non-canonical functions of ARSs is necessary to understand the mechanisms underlying the physiological regulation of angiogenesis. PMID:25535072

  14. Biochemical and structural investigations on phosphoribosylpyrophosphate synthetase from Mycobacterium smegmatis

    PubMed Central

    Donini, Stefano; Garavaglia, Silvia; Ferraris, Davide M.; Miggiano, Riccardo; Mori, Shigetarou; Shibayama, Keigo

    2017-01-01

    Mycobacterium smegmatis represents one model for studying the biology of its pathogenic relative Mycobacterium tuberculosis. The structural characterization of a M. tuberculosis ortholog protein can serve as a valid tool for the development of molecules active against the M. tuberculosis target. In this context, we report the biochemical and structural characterization of M. smegmatis phosphoribosylpyrophosphate synthetase (PrsA), the ortholog of M. tuberculosis PrsA, the unique enzyme responsible for the synthesis of phosphoribosylpyrophosphate (PRPP). PRPP is a key metabolite involved in several biosynthetic pathways including those for histidine, tryptophan, nucleotides and decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Since M. tuberculosis PrsA has been validated as a drug target for the development of antitubercular agents, the data presented here will add to the knowledge of the mycobacterial enzyme and could contribute to the development of M. tuberculosis PrsA inhibitors of potential pharmacological interest. PMID:28419153

  15. Redesigning the stereospecificity of tyrosyl-tRNA synthetase.

    PubMed

    Simonson, Thomas; Ye-Lehmann, Shixin; Palmai, Zoltan; Amara, Najette; Wydau-Dematteis, Sandra; Bigan, Erwan; Druart, Karen; Moch, Clara; Plateau, Pierre

    2016-02-01

    D-Amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Unnatural amino acids have been introduced into proteins using engineered aminoacyl-tRNA synthetases (aaRSs), and this strategy might be applicable to D-amino acids. Several aaRSs can aminoacylate their tRNA with a D-amino acid; of these, tyrosyl-tRNA synthetase (TyrRS) has the weakest stereospecificity. We use computational protein design to suggest active site mutations in Escherichia coli TyrRS that could increase its D-Tyr binding further, relative to L-Tyr. The mutations selected all modify one or more sidechain charges in the Tyr binding pocket. We test their effect by probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments. We also perform extensive alchemical free energy simulations to obtain L-Tyr/D-Tyr binding free energy differences. Agreement with experiment is good, validating the structural models and detailed thermodynamic predictions the simulations provide. The TyrRS stereospecificity proves hard to engineer through charge-altering mutations in the first and second coordination shells of the Tyr ammonium group. Of six mutants tested, two are active towards D-Tyr; one of these has an inverted stereospecificity, with a large preference for D-Tyr. However, its activity is low. Evidently, the TyrRS stereospecificity is robust towards charge rearrangements near the ligand. Future design may have to consider more distant and/or electrically neutral target mutations, and possibly design for binding of the transition state, whose structure however can only be modeled.

  16. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    SciTech Connect

    Rubin, Edward M.

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  17. Activity of formylphosphate in the reaction catalyzed by formyltetrahydrofolate synthetase

    SciTech Connect

    Jahansouz, H.; Kofron, J.L.; Smithers, G.W.; Himes, R.H.; Reed, G.H.

    1986-05-01

    Formylphosphate (FP), a putative enzyme-bound intermediate in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase, was synthesized from formylfluoride and Pi. Measurement of hydrolysis rates by /sup 31/P NMR showed that FP is very unstable with a half-life of 48 min at 20/sup 0/C and pH 7. At pH 7 hydrolysis occurs with O-P bond cleavage as shown by /sup 18/O incorporation from /sup 18/O-H/sub 2/O into Pi. The substrate activity of FP was tested in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase isolated from Clostridium cylindrosporum. MgATP + H/sub 4/folate + HCOO/sup -/ in equilibrium MgADP + Pi +N/sup 10/-formylH/sub 4/folate FP supports the reaction in both the forward and reverse directions. Thus, N/sup 10/-formylH/sub 4/folate is produced from H/sub 4/-folate and FP but only if ADP is present, and ATP is produced from FP and ADP but only if H/sub 4/folate is present. The requirements for H/sub 4/folate in the synthesis of ATP from ADP and FP and for ADP in the synthesis of N/sup 10/-formylH/sub 4/folate from FP and H/sub 4/folate, are consistent with past kinetic and isotope exchange studies which showed that the reaction proceeds by a sequential mechanism and that all three substrates must be present for any reaction to occur.

  18. Identification of pantoate kinase and phosphopantothenate synthetase from Methanospirillum hungatei.

    PubMed

    Katoh, Hiroki; Tamaki, Hideyuki; Tokutake, Yuka; Hanada, Satoshi; Chohnan, Shigeru

    2013-04-01

    Pantothenate synthetase (PanC) and pantothenate kinase which function in the canonical coenzyme A (CoA) biosynthetic pathway cannot be found in most archaea. COG1829 and COG1701 intrinsic to archaea were proposed as the candidate proteins for producing 4'-phosphopantothenate instead, and the COG1701 protein from Methanosarcina mazei was assigned as PanC. Meanwhile, the Thermococcus kodakarensis COG1829 and COG1701 proteins were biochemically identified as novel enzymes, i.e., pantoate kinase (PoK) and phosphopantothenate synthetase (PPS). In this study, the functions of Mhun_0831 (COG1829) and Mhun_0832 (COG1701) from Methanospirillum hungatei were identified, and the recombinant enzymes were partially characterized. Plasmids simultaneously possessing the two genes encoding Mhun_0831 and Mhun_0832 complemented the poor growth of the temperature-sensitive Escherichia coli pantothenate kinase mutant ts9. The recombinant Mhun_0831 and Mhun_0832 expressed in E. coli cells exhibited PoK and PPS activities, respectively, being in accord with the functions of T. kodakarensis proteins. The PoK activity was most active at pH 8.5 and 40°C, and accepted ATP and UTP as a phosphate donor. Although CoA did not affect the PoK activity, the end product considerably accelerated the PPS activity. The homologs of both proteins are widely conserved in most archaeal genomes. Taken together, our findings indicate that archaea can synthesize CoA through the unique pathway involving PoK and PPS, in addition to the canonical one that the order Thermoplasmatales employs.

  19. Identification and functional characterization of a novel bacterial type asparagine synthetase A: a tRNA synthetase paralog from Leishmania donovani.

    PubMed

    Manhas, Reetika; Tripathi, Pankaj; Khan, Sameena; Sethu Lakshmi, Bhavana; Lal, Shambhu Krishan; Gowri, Venkatraman Subramanian; Sharma, Amit; Madhubala, Rentala

    2014-04-25

    Asparagine is formed by two structurally distinct asparagine synthetases in prokaryotes. One is the ammonia-utilizing asparagine synthetase A (AsnA), and the other is asparagine synthetase B (AsnB) that uses glutamine or ammonia as a nitrogen source. In a previous investigation using sequence-based analysis, we had shown that Leishmania spp. possess asparagine-tRNA synthetase paralog asparagine synthetase A (LdASNA) that is ammonia-dependent. Here, we report the cloning, expression, and kinetic analysis of ASNA from Leishmania donovani. Interestingly, LdASNA was both ammonia- and glutamine-dependent. To study the physiological role of ASNA in Leishmania, gene deletion mutations were attempted via targeted gene replacement. Gene deletion of LdASNA showed a growth delay in mutants. However, chromosomal null mutants of LdASNA could not be obtained as the double transfectant mutants showed aneuploidy. These data suggest that LdASNA is essential for survival of the Leishmania parasite. LdASNA enzyme was recalcitrant toward crystallization so we instead crystallized and solved the atomic structure of its close homolog from Trypanosoma brucei (TbASNA) at 2.2 Å. A very significant conservation in active site residues is observed between TbASNA and Escherichia coli AsnA. It is evident that the absence of an LdASNA homolog from humans and its essentiality for the parasites make LdASNA a novel drug target.

  20. Characterization of an L-phosphinothricin resistant glutamine synthetase from Exiguobacterium sp. and its improvement.

    PubMed

    Zhang, Shaowei; Han, Yingkun; Kumar, Ashok; Gao, Haofeng; Liu, Ziduo; Hu, Nan

    2017-02-07

    A glutamine synthetase (GS; 1341 bp) gene with potent L-phosphinothricin (PPT) resistance was isolated and characterized from a marine bacterium Exiguobacterium sp. Molecular docking analysis indicated that the substitution of residues Glu60 and Arg64 may lead to significant changes in binding pocket. To enhance the enzymatic property of GS, variants E60A and R64G were obtained by site-directed mutagenesis. The results revealed a noteworthy change in the thermostability and activity in comparison to the wild type (WT). WT exhibited optimum activity at 35 °C, while E60A and R64G exhibited optimum activity at 45 and 40 °C, respectively. The mutant R64G was 4.3 times more stable at 70 °C in comparison to WT, while E60A was 5.7 times more stable. Kinetic analysis revealed that the k cat value of R64G mutant was 8.10-, 7.25- and 7.63-fold that of WT for ADP, glutamine and hydroxylamine, respectively. The kinetic inhibition (K i, 4.91 ± 0.42 mM) of R64G was 2.02-fold that of WT (2.43 ± 0.14 mM) for L-phosphinothricin. The analysis of structure and function relationship showed that the binding pocket underwent dramatic changes when Arg site of 64 was substituted by Gly, thus promoting the rapid capture of substrates and leading to increase in activity and PPT-resistance of mutant R64G. The rearrangements of the residues at the molecular level formed new hydrogen bonds around the active site, which contributed to the increase of thermostability of enzymes. This study provides new insights into substrate binding mechanism of glutamine synthetase and the improved GS gene also has a potential for application in transgenic crops with L-phosphinothricin tolerance.

  1. Assignment of the human MARS gene, encoding methioninyl-tRNA synthetase, to chromosome 12 using human X Chinese hamster cell hybrids.

    PubMed

    Cirullo, R E; Wasmuth, J J

    1984-05-01

    We have isolated interspecific somatic cell hybrids between a temperature-sensitive Chinese hamster ovary (CHO) cell methioninyl -tRNA synthetase mutant and human peripheral leukocytes. The hybrids were selected at 39 degrees C which requires the retention and expression of the human gene, MARS , which complements the defective CHO gene. In vitro heat-inactivation experiments on the methioninyl -tRNA synthetase activity in cell-free extracts from heat-resistant hybrids indicate that the human form of this enzyme and, therefore, the human MARS gene is present in hybrid cells. Cytogenetic analysis of three independent temperature-resistant hybrids revealed the presence of a single human chromosome, number 12. Two other independent hybrids examined contained human chromosome 12 as well as a second human chromosome. Electrophoretic analysis of extracts from hybrid cell lines for a human chromosome 12 marker isozyme, LDH-B, showed a pattern of heterotetrameric bands consistent with the presence of the human form of this enzyme in these cells. The correlation between the presence of the human form of methioninyl -tRNA synthetase and human chromosome 12 in temperature-resistant hybrids indicates that the human MARS locus is located on this chromosome.

  2. Nucleotide sequence and functional analysis of the luxE gene encoding acyl-protein synthetase of the lux operon from Photobacterium leiognathi.

    PubMed

    Lin, J W; Chao, Y F; Weng, S F

    1996-11-21

    Nucleotide sequence of the luxE gene GenBank Accession No. U66407 from Photobacterium leiognathi PL741 has been determined, and the amino acid sequence of acyl-protein synthetase encoded by the luxE gene is deduced. Nucleotide sequence reveals that the luxE gene encodes acyl-protein synthetase, which is a component of the fatty acid reductase complex that is responsible for converting fatty acid to aldehyde as substrate in the luciferase-catalyzed bioluminescence reaction. The acyl-protein synthetase encoded by the luxE gene has a calculated M, 43,128 and comprises 373 amino acid residues. Alignment and comparison of acyl-protein synthetases from P. leiognathi, P. phosphoreum, Vibrio fischeri, V. harveyi and Xenorhabdus luminescens shows that they are homologous; there is 75.5% homologous (44.2% identity and 31.3% similarity) among these species. Functional analysis illustrates that the specific segment sequence lying before or in the luxE gene might from potential loops omega o omega e1, omega e2 as mRNA stability loop and/or for sub-regulation by alternative modulation in the lux operon. The gene order of the luxE gene in the lux and the lum operons is<--ter-lumQ-lumP-R&R-luxC-luxD-luxA-luxB -luxN-luxE-->(R&R: regulatory region; ter; transcriptional terminator), whereas the R&R is the regulatory region for the lum and the lux operons, and ter is the transcriptional terminator for the lum operon.

  3. Purification and determination of glutamine synthetase by high-performance immunoaffinity chromatography.

    PubMed

    Alhama, J; López-Barea, J; Toribio, F; Roldán, J M

    1992-01-10

    High-performance immunoaffinity chromatography (HPIAC) with anti-glutamine synthetase polyclonal antibodies bound to epoxy-activated silica was used to purify and determine this enzyme from the cyanobacterium Synechocystis. A single-step HPIAC procedure with cell-free extracts yielded electroporetically homogeneous glutamine synthetase. In the determination of glutamine synthetase by HPIAC a linear response in the range 10-60 micrograms of enzyme was observed. Recoveries of 70% of the loaded enzymatic activity and 100% of protein were obtained. The determination of glutamine synthetase protein by HPIAC was compared with that obtained by rocket immunoelectrophoresis. The chromatographic method is proposed as a possible alternative to other immunochemical quantitative techniques, particularly when non-limiting amounts of samples are available.

  4. Preparation and cross-reactivity of anti-avian glutamine synthetase antibody.

    PubMed

    Smith, D D; Vorhaben, J E; Campbell, J W

    1983-04-01

    Rabbit antibody to chicken liver mitochondrial glutamine synthetase was purified by immunoaffinity chromatography for analysis of the immunological relatedness of vertebrate glutamine synthetases. The antibody cross-reacted with enzymes from representatives of all five vertebrate classes, indicating a high degree of evolutionary conservatism in the structure of the enzymes. A unique aspect of the immunological similarity of these enzymes is that it exists between cytosolic and mitochondrial enzymes which are, in general, immunologically distinct. The antibody did not cross-react with two insect glutamine synthetases. Compositional difference indices, calculated from the amino acid compositions of glutamine synthetases from several species, gave a mean estimate of over 80% sequence homology for the vertebrate enzymes. The avian mitochondrial enzyme gave a mean 78% homology with the mammalian cytosolic enzyme.

  5. Evidence for two immunologically distinct acetyl-coenzyme A synthetases in yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Mandel, A. D.; Klein, H. P.

    1974-01-01

    Evidence is presented that clearly establishes the presence of two acetyl-CoA synthetases in Saccharomyces cerevisiae, one elaborated under 'aerobic' conditions, the other under 'nonaerobic' conditions. The antibody produced by each enzyme is immunologically specific.

  6. Severe holocarboxylase synthetase deficiency with incomplete biotin responsiveness resulting in antenatal insult in samoan neonates.

    PubMed

    Wilson, Callum J; Myer, Michael; Darlow, Brian A; Stanley, Thorsten; Thomson, Glen; Baumgartner, E Regula; Kirby, Denise M; Thorburn, David R

    2005-07-01

    We describe 7 Polynesian babies with a unique severe form of holocarboxylase synthetase deficiency characterized by antenatal growth retardation, subependymal cysts, only partial response to biotin, and a poor outcome.

  7. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.

    PubMed Central

    Jakubowski, H; Fersht, A R

    1981-01-01

    Evidence is presented that the editing mechanisms of aminoacyl-tRNA synthetase operate by two alternative pathways: pre-transfer, by hydrolysis of the non-cognate aminoacyl adenylate; post-transfer, by hydrolysis of the mischarged tRNA. The methionyl-tRNA synthetases from Escherichia coli and Bacillus stearothermophilus and isoleucyl-tRNA synthetase from E. coli, for example, are shown to reject misactivated homocysteine rapidly by the pre-transfer route. A novel feature of this reaction is that homocysteine thiolactone is formed by the facile cyclisation of the homocysteinyl adenylate. Valyl-tRNA synthetases, on the other hand, reject the more readily activated non-cognate amino acids by primarily the post-transfer route. The features governing the choice of pathway are discussed. PMID:7024910

  8. Functional expansion of human tRNA synthetases achieved by structural inventions

    PubMed Central

    Guo, Min; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-01

    Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions. PMID:19932696

  9. Evidence for two immunologically distinct acetyl-coenzyme A synthetases in yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Mandel, A. D.; Klein, H. P.

    1974-01-01

    Evidence is presented that clearly establishes the presence of two acetyl-CoA synthetases in Saccharomyces cerevisiae, one elaborated under 'aerobic' conditions, the other under 'nonaerobic' conditions. The antibody produced by each enzyme is immunologically specific.

  10. Diffuse glutamine synthetase overexpression restricted to areas of peliosis in a β-catenin-activated hepatocellular adenoma: a potential pitfall in glutamine synthetase interpretation.

    PubMed

    Berry, Ryan S; Gullapalli, Rama R; Wu, Jin; Morris, Katherine; Hanson, Joshua A

    2014-08-01

    Hepatocellular adenomas have recently been classified into four subtypes based on molecular findings: hepatocyte nuclear factor 1α (HNF1α) inactivated, inflammatory/telangiectatic, β-catenin activated, and unclassifiable. β-catenin-activated adenomas have the potential for malignant transformation and are thus important to recognize. Diffuse glutamine synthetase immunohistochemical positivity has been shown to be a reliable surrogate marker for β-catenin activation, though variations in staining patterns may be difficult to interpret. We report a case of a peliotic adenoma that was morphologically consistent with a β-catenin wild-type hepatocellular adenoma but harbored a β-catenin mutation by molecular analysis. The tumor lacked nuclear β-catenin positivity and demonstrated a hitherto undescribed pattern of glutamine synthetase overexpression restricted to areas of peliosis with mostly negative staining in non-peliotic areas. This pattern was initially interpreted as physiologic and may represent a potential pitfall in glutamine synthetase interpretation.

  11. Lack of protective effect of thromboxane synthetase inhibitor (CGS-13080) on single dose radiated canine intestine.

    PubMed

    Barter, J F; Marlow, D; Kamath, R K; Harbert, J; Torrisi, J R; Barnes, W A; Potkul, R K; Newsome, J T; Delgado, G

    1991-03-01

    The effect of a thromboxane A2 synthetase inhibitor (CGS-13080) on canine intestine was studied using a single dose of radiation, and radioactive microspheres were used to determine resultant blood flow. Thromboxane A2 causes vasospasm and platelet aggregation and may play a dominant role in radiation injury. However, there was no effect on the intestinal blood flow diminution occurring after radiation in this laboratory model using this thromboxane A2 synthetase inhibitor.

  12. Lack of protective effect of thromboxane synthetase inhibitor (CGS-13080) on single dose radiated canine intestine

    SciTech Connect

    Barter, J.F.; Marlow, D.; Kamath, R.K.; Harbert, J.; Torrisi, J.R.; Barnes, W.A.; Potkul, R.K.; Newsome, J.T.; Delgado, G. )

    1991-03-01

    The effect of a thromboxane A2 synthetase inhibitor (CGS-13080) on canine intestine was studied using a single dose of radiation, and radioactive microspheres were used to determine resultant blood flow. Thromboxane A2 causes vasospasm and platelet aggregation and may play a dominant role in radiation injury. However, there was no effect on the intestinal blood flow diminution occurring after radiation in this laboratory model using this thromboxane A2 synthetase inhibitor.

  13. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence.

    PubMed

    Avila-Ospina, Liliana; Marmagne, Anne; Talbotec, Joël; Krupinska, Karin; Masclaux-Daubresse, Céline

    2015-04-01

    Glutamine synthetase and asparagine synthetase are two master enzymes involved in ammonium assimilation in plants. Their roles in nitrogen remobilization and nitrogen use efficiency have been proposed. In this report, the genes coding for the cytosolic glutamine synthetases (HvGS1) and asparagine synthetases (HvASN) in barley were identified. In addition to the three HvGS1 and two HvASN sequences previously reported, two prokaryotic-like HvGS1 and three HvASN cDNA sequences were identified. Gene structures were then characterized, obtaining full genomic sequences. The response of the five HvGS1 and five HvASN genes to leaf senescence was then studied. Developmental senescence was studied using primary and flag leaves. Dark-exposure or low-nitrate conditions were also used to trigger stress-induced senescence. Well-known senescence markers such as the chlorophyll and Rubisco contents were monitored in order to characterize senescence levels in the different leaves. The three eukaryotic-like HvGS1_1, HvGS1_2, and HvGS1_3 sequences showed the typical senescence-induced reduction in gene expression described in many plant species. By contrast, the two prokaryotic-like HvGS1_4 and HvGS1_5 sequences were repressed by leaf senescence, similar to the HvGS2 gene, which encodes the chloroplast glutamine synthetase isoenzyme. There was a greater contrast in the responses of the five HvASN and this suggested that these genes are needed for N remobilization in senescing leaves only when plants are well fertilized with nitrate. Responses of the HvASN sequences to dark-induced senescence showed that there are two categories of asparagine synthetases, one induced in the dark and the other repressed by the same conditions.

  14. Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats.

    PubMed

    Eid, Tore; Ghosh, Arko; Wang, Yue; Beckström, Henning; Zaveri, Hitten P; Lee, Tih-Shih W; Lai, James C K; Malthankar-Phatak, Gauri H; de Lanerolle, Nihal C

    2008-08-01

    An excess of extracellular glutamate in the hippocampus has been linked to the generation of recurrent seizures and brain pathology in patients with medically intractable mesial temporal lobe epilepsy (MTLE). However, the mechanism which results in glutamate excess in MTLE remains unknown. We recently reported that the glutamate-metabolizing enzyme glutamine synthetase is deficient in the hippocampus in patients with MTLE, and we postulated that this deficiency is critically involved in the pathophysiology of the disease. To further explore the role of glutamine synthetase in MTLE we created a novel animal model of hippocampal glutamine synthetase deficiency by continuous (approximately 28 days) microinfusion of methionine sulfoximine (MSO: 0.625 to 2.5 microg/h) unilaterally into the hippocampus in rats. This treatment led to a deficiency in hippocampal glutamine synthetase activity by 82-97% versus saline. The majority (>95%) of the MSO-treated animals exhibited recurrent seizures that continued for several weeks. Some of the MSO-treated animals exhibited neuropathological features that were similar to mesial temporal sclerosis, such as hippocampal atrophy and patterned loss of hippocampal neurons. However, many MSO-treated animals displayed only minimal injury to the hippocampus, with no clear evidence of mesial temporal sclerosis. These findings support the hypothesis that a deficiency in hippocampal glutamine synthetase causes recurrent seizures, even in the absence of classical mesial temporal sclerosis, and that restoration of glutamine synthetase may represent a novel approach to therapeutic intervention in this disease.

  15. Gain-Of-Function Mutational Activation of Human TRNA Synthetase Procytokine

    SciTech Connect

    Yang, X.L.; Kapoor, M.; Otero, F.J.; Slike, B.M.; Tsuruta, H.; Frausto, R.; Bates, A.; Ewalt, K.L.; Cheresh, D.A.; Schimmel, P.; /Scripps Res. Inst. /SLAC, SSRL

    2009-04-30

    Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain of function. Native tRNA synthetases, such as tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis, we hypothesized that a steric block of a critical Glu-Leu-Arg (ELR) motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small-angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases.

  16. Lincosamide Synthetase—A Unique Condensation System Combining Elements of Nonribosomal Peptide Synthetase and Mycothiol Metabolism

    PubMed Central

    Janata, Jiri; Kadlcik, Stanislav; Koberska, Marketa; Ulanova, Dana; Kamenik, Zdenek; Novak, Petr; Kopecky, Jan; Novotna, Jitka; Radojevic, Bojana; Plhackova, Kamila; Gazak, Radek; Najmanova, Lucie

    2015-01-01

    In the biosynthesis of lincosamide antibiotics lincomycin and celesticetin, the amino acid and amino sugar units are linked by an amide bond. The respective condensing enzyme lincosamide synthetase (LS) is expected to be an unusual system combining nonribosomal peptide synthetase (NRPS) components with so far unknown amino sugar related activities. The biosynthetic gene cluster of celesticetin was sequenced and compared to the lincomycin one revealing putative LS coding ORFs shared in both clusters. Based on a bioassay and production profiles of S. lincolnensis strains with individually deleted putative LS coding genes, the proteins LmbC, D, E, F and V were assigned to LS function. Moreover, the newly recognized N-terminal domain of LmbN (LmbN-CP) was also assigned to LS as a NRPS carrier protein (CP). Surprisingly, the homologous CP coding sequence in celesticetin cluster is part of ccbZ gene adjacent to ccbN, the counterpart of lmbN, suggesting the gene rearrangement, evident also from still active internal translation start in lmbN, and indicating the direction of lincosamide biosynthesis evolution. The in vitro test with LmbN-CP, LmbC and the newly identified S. lincolnensis phosphopantetheinyl transferase Slp, confirmed the cooperation of the previously characterized NRPS A-domain LmbC with a holo-LmbN-CP in activation of a 4-propyl-L-proline precursor of lincomycin. This result completed the functional characterization of LS subunits resembling NRPS initiation module. Two of the four remaining putative LS subunits, LmbE/CcbE and LmbV/CcbV, exhibit low but significant homology to enzymes from the metabolism of mycothiol, the NRPS-independent system processing the amino sugar and amino acid units. The functions of particular LS subunits as well as cooperation of both NRPS-based and NRPS-independent LS blocks are discussed. The described condensing enzyme represents a unique hybrid system with overall composition quite dissimilar to any other known enzyme system

  17. The role of glutamine synthetase in energy production and glutamine metabolism during oxidative stress.

    PubMed

    Aldarini, Nohaiah; Alhasawi, Azhar A; Thomas, Sean C; Appanna, Vasu D

    2017-01-17

    Oxidative stress is known to severely impede aerobic adenosine triphosphate (ATP) synthesis. However, the metabolically-versatile Pseudomonas fluorescens survives this challenge by invoking alternative ATP-generating networks. When grown in a medium with glutamine as the sole organic nutrient in the presence of H2O2, the microbe utilizes glutamine synthetase (GS) to modulate its energy budget. The activity of this enzyme that mediates the release of energy stored in glutamine was sharply increased in the stressed cells compared to the controls. The enhanced activities of such enzymes as acetate kinase, adenylate kinase and nucleotide diphosphate kinase ensured the efficacy of this ATP producing-machine by transferring the high energy phosphate. The elevated amounts of phosphoenol pyruvate carboxylase and pyruvate orthophosphate dikinase recorded in the H2O2 exposed cells provided another route to ATP independent of the reduction of O2. This is the first demonstration of a metabolic pathway involving GS dedicated to ATP synthesis. The phospho-transfer network that is pivotal to the survival of the microorganism under oxidative stress may reveal therapeutic targets against infectious microbes reliant on glutamine for their proliferation.

  18. Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants

    SciTech Connect

    Tsai, Fongying; Coruzzi, G. )

    1991-10-01

    Asparagine synthetase (AS) mRNA in Pisum sativum accumulates preferentially in plants grown in the dark. Nuclear run-on experiments demonstrate that expression of both the AS1 and AS2 genes is negatively regulated by light at the level of transcription. A decrease in the transcriptional rate of the AS1 gene can be detected as early as 20 min after exposure to light. Time course experiments reveal that the levels of AS mRNA fluctuate dramatically during a normal light/dark cycle. This is due to a direct effect of light and not to changes associated with circadian rhythm. A novel finding is that the light-repressed expression of the AS1 gene is as dramatic nonphotosynthetic organs such as roots as it is in leaves. Experiments demonstrate that the small amount of light which passes through the soil is sufficient to repress AS1 expression in roots, indicating that light has a direct effect on AS1 gene expression in roots. The negative regulation of AS gene expression by light was shown to be a general phenomenon in plants which also occurs in nonlegumes such as Nicotiana plumbaginifolia and Nicotiana tabacum. Thus, the AS genes can serve as a model with which to dissect the molecular basis for light-regulated transcriptional repression in plants.

  19. Discovery of potent anti-tuberculosis agents targeting leucyl-tRNA synthetase.

    PubMed

    Gudzera, Olga I; Golub, Andriy G; Bdzhola, Volodymyr G; Volynets, Galyna P; Lukashov, Sergiy S; Kovalenko, Oksana P; Kriklivyi, Ivan A; Yaremchuk, Anna D; Starosyla, Sergiy A; Yarmoluk, Sergiy M; Tukalo, Michail A

    2016-03-01

    Tuberculosis is a serious infectious disease caused by human pathogen bacteria Mycobacterium tuberculosis. Bacterial drug resistance is a very significant medical problem nowadays and development of novel antibiotics with different mechanisms of action is an important goal of modern medical science. Leucyl-tRNA synthetase (LeuRS) has been recently clinically validated as antimicrobial target. Here we report the discovery of small-molecule inhibitors of M. tuberculosis LeuRS. Using receptor-based virtual screening we have identified six inhibitors of M. tuberculosis LeuRS from two different chemical classes. The most active compound 4-{[4-(4-Bromo-phenyl)-thiazol-2-yl]hydrazonomethyl}-2-methoxy-6-nitro-phenol (1) inhibits LeuRS with IC50 of 6μM. A series of derivatives has been synthesized and evaluated in vitro toward M. tuberculosis LeuRS. It was revealed that the most active compound 2,6-Dibromo-4-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol inhibits LeuRS with IC50 of 2.27μM. All active compounds were tested for antimicrobial effect against M. tuberculosis H37Rv. The compound 1 seems to have the best cell permeability and inhibits growth of pathogenic bacteria with IC50=10.01μM and IC90=13.53μM.

  20. Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication.

    PubMed

    Goodrich, Andrew C; Meyers, David J; Frueh, Dominique P

    2017-06-16

    Nonribosomal peptide synthesis involves the interplay between covalent protein modifications, conformational fluctuations, catalysis, and transient protein-protein interactions. Delineating the mechanisms involved in orchestrating these various processes will deepen our understanding of domain-domain communication in nonribosomal peptide synthetases (NRPSs) and lay the groundwork for the rational reengineering of NRPSs by swapping domains handling different substrates to generate novel natural products. Although many structural and biochemical studies of NRPSs exist, few studies have focused on the energetics and dynamics governing the interactions in these systems. Here, we present detailed binding studies of an adenylation domain and its partner carrier protein in apo-, holo-, and substrate-loaded forms. Results from fluorescence anisotropy, isothermal titration calorimetry, and NMR titrations indicated that covalent modifications to a carrier protein modulate domain communication, suggesting that chemical modifications to carrier proteins during NRPS synthesis may impart directionality to sequential NRPS domain interactions. Comparison of the structure and dynamics of an apo-aryl carrier protein with those of its modified forms revealed structural fluctuations induced by post-translational modifications and mediated by modulations of protein dynamics. The results provide a comprehensive molecular description of a carrier protein throughout its life cycle and demonstrate how a network of dynamic residues can propagate the molecular impact of chemical modifications throughout a protein and influence its affinity toward partner domains. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Dark-induced and organ-specific expression of two asparagine synthetase genes in Pisum sativum.

    PubMed Central

    Tsai, F Y; Coruzzi, G M

    1990-01-01

    Nucleotide sequence analysis of cDNAs for asparagine synthetase (AS) of Pisum sativum has uncovered two distinct AS mRNAs (AS1 and AS2) encoding polypeptides that are highly homologous to the human AS enzyme. The amino-terminal residues of both AS1 and AS2 polypeptides are identical to the glutamine-binding domain of the human AS enzyme, indicating that the full-length AS1 and AS2 cDNAs encode glutamine-dependent AS enzymes. Analysis of nuclear DNA shows that AS1 and AS2 are each encoded by single genes in P.sativum. Gene-specific Northern blot analysis reveals that dark treatment induces high-level accumulation of AS1 mRNA in leaves, while light treatment represses this effect as much as 30-fold. Moreover, the dark-induced accumulation of AS1 mRNA was shown to be a phytochrome-mediated response. Both AS1 and AS2 mRNAs also accumulate to high levels in cotyledons of germinating seedlings and in nitrogen-fixing root nodules. These patterns of AS gene expression correlate well with the physiological role of asparagine as a nitrogen transport amino acid during plant development. Images Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1968003

  2. Cloning, expression, and nutritional regulation of the glutamine synthetase gene in Ctenopharyngodon idellus.

    PubMed

    Hu, Rong; Qu, Fufa; Tang, Jianzhou; Zhao, Qiong; Yan, Jinpeng; Zhou, Zhigang; Zhou, Yi; Liu, Zhen

    2017-10-01

    Glutamine synthetase (GS) is considered a master enzyme that catalyzes ATP-dependent biosynthesis of glutamine from glutamate. In the present study, the GS gene was cloned from the intestine of grass carp (Ctenopharyngodon idellus). The full-length cDNA sequence of GS encodes a 371-amino-acid polypetide. Phylogenetic analysis of the C. idellus GS sequence reveals common carp (Cyprinus carpio) as its closest neighbor. GS mRNA was differentially expressed in different tissues, with high to low gradient expression the intestine, brain, muscle, heart, gill, liver, pituitary gland, and spleen. Additionally, GS exhibited a dynamic pattern of expression during embryonic development, reaching maximal and minimal levels in the organ and hatching stages, respectively, and constant low levels from 7 to 28days post-hatching. We also assessed dietary protein levels and feed sources in diet-regulated fish, and the results suggested that low crude protein (CP) and fish meal stimulate GS gene expression. Furthermore, intestinal GS mRNA expression was significantly increased by 0.2, 0.4, 0.6, 0.8mM concentrations of glutamine dipeptide in vitro. This study provides valuable knowledge about the regulation of GS expression in teleosts. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Reduced half-life of holocarboxylase synthetase from patients with severe multiple carboxylase deficiency.

    PubMed

    Bailey, Lisa M; Ivanov, Ruby A; Jitrapakdee, Sarawut; Wilson, Callum J; Wallace, John C; Polyak, Steven W

    2008-06-01

    Multiple carboxylase deficiency is a clinical condition caused by defects in the enzymes involved in biotin metabolism, holocarboxylase synthetase (HLCS) or biotinidase. HLCS deficiency is a potentially fatal condition if left untreated, although the majority of patients respond to oral supplementation of 10-20 mg/day of biotin. Patients who display incomplete responsiveness to this therapy have a poor long-term prognosis. Here we investigated cell lines from two such HLCS-deficient patients homozygous for the c.647T>G p.L216R allele. Growth of the patients' fibroblasts was compromised compared with normal fibroblasts. Also the patient cells were not sensitive to biotin-depletion from the media, and growth rates could not be restored by re-administration of biotin. The molecular basis for the HLCS deficiency was further investigated by characterisation of the p.L216R protein. The HLCS mRNA was detected in MCD and normal cell lines. However, protein and enzyme activity could not be detected in the patients' cells. In vitro kinetic analysis revealed that enzyme activity was severely compromised for recombinantly expressed p.L216R and could not be increased by additional biotin. Furthermore, the turn-over rate for the mutant protein was double that of wildtype HLCS. These results help provide a molecular explanation for the incomplete biotin-responsiveness of this p.L216R form of HLCS. (c) 2008 Wiley-Liss, Inc.

  4. The mitochondrial folylpolyglutamate synthetase gene is required for nitrogen utilization during early seedling development in arabidopsis.

    PubMed

    Jiang, Ling; Liu, Yanyan; Sun, Hong; Han, Yueting; Li, Jinglai; Li, Changkun; Guo, Wenzhu; Meng, Hongyan; Li, Sha; Fan, Yunliu; Zhang, Chunyi

    2013-02-01

    Investigations into the biochemical processes and regulatory mechanisms of nitrogen (N) utilization can aid in understanding how N is used efficiently in plants. This report describes a deficiency in N utilization in an Arabidopsis (Arabidopsis thaliana) transfer DNA insertion mutant of the mitochondrial folylpolyglutamate synthetase gene DFC, which catalyzes the conjugation of glutamate residues to the tetrahydrofolate during folate synthesis. The mutant seedlings displayed several metabolic changes that are typical of plant responses to low-N stress, including increased levels of starch and anthocyanin synthesis as well as decreased levels of soluble protein and free amino acid, as compared with those in wild-type seedlings when external N was sufficient. More striking changes were observed when dfc seedlings were grown under N-limited conditions, including shorter primary roots, fewer lateral roots, higher levels of glycine and carbon-N ratios, and lower N content than those in wild-type seedlings. Gene expression studies in mutant seedlings revealed altered transcript levels of several genes involved in folate biosynthesis and N metabolism. The biochemical and metabolic changes also suggested that N assimilation is drastically perturbed due to a loss of DFC function. The observation that elevated CO(2) partly rescued the dfc phenotypes suggests that the alterations in N metabolism in dfc may be mainly due to a defect in photorespiration. These results indicate that DFC is required for N utilization in Arabidopsis and provide new insight into a potential interaction between folate and N metabolism.

  5. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum.

    PubMed

    Rydzak, Thomas; Garcia, David; Stevenson, David M; Sladek, Margaret; Klingeman, Dawn M; Holwerda, Evert K; Amador-Noguez, Daniel; Brown, Steven D; Guss, Adam M

    2017-04-08

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.

  6. A dispensable peptide from Acidithiobacillus ferrooxidans tryptophanyl-tRNA synthetase affects tRNA binding.

    PubMed

    Zúñiga, Roberto; Salazar, Juan; Canales, Mauricio; Orellana, Omar

    2002-12-18

    The activation domain of class I aminoacyl-tRNA synthetases, which contains the Rossmann fold and the signature sequences HIGH and KMSKS, is generally split into two halves by the connective peptides (CP1, CP2) whose amino acid sequences are idiosyncratic. CP1 has been shown to participate in the binding of tRNA as well as the editing of the reaction intermediate aminoacyl-AMP or the aminoacyl-tRNA. No function has been assigned to CP2. The amino acid sequence of Acidithiobacillus ferrooxidans TrpRS was predicted from the genome sequence. Protein sequence alignments revealed that A. ferrooxidans TrpRS contains a 70 amino acids long CP2 that is not found in any other bacterial TrpRS. However, a CP2 in the same relative position was found in the predicted sequence of several archaeal TrpRSs. A. ferrooxidans TrpRS is functional in vivo in Escherichia coli. A deletion mutant of A. ferrooxidans trpS lacking the coding region of CP2 was constructed. The in vivo activity of the mutant TrpRS in E. coli, as well as the kinetic parameters of the in vitro activation of tryptophan by ATP, were not altered by the deletion. However, the K(m) value for tRNA was seven-fold higher upon deletion, reducing the efficiency of aminoacylation. Structural modeling suggests that CP2 binds to the inner corner of the L shape of tRNA.

  7. Pivotal role of glutamine synthetase in ammonia detoxification.

    PubMed

    Hakvoort, Theodorus B M; He, Youji; Kulik, Wim; Vermeulen, Jacqueline L M; Duijst, Suzanne; Ruijter, Jan M; Runge, Jurgen H; Deutz, Nicolaas E P; Koehler, S Eleonore; Lamers, Wouter H

    2017-01-01

    Glutamine synthetase (GS) catalyzes condensation of ammonia with glutamate to glutamine. Glutamine serves, with alanine, as a major nontoxic interorgan ammonia carrier. Elimination of hepatic GS expression in mice causes only mild hyperammonemia and hypoglutaminemia but a pronounced decrease in the whole-body muscle-to-fat ratio with increased myostatin expression in muscle. Using GS-knockout/liver and control mice and stepwise increments of enterally infused ammonia, we show that ∼35% of this ammonia is detoxified by hepatic GS and ∼35% by urea-cycle enzymes, while ∼30% is not cleared by the liver, independent of portal ammonia concentrations ≤2 mmol/L. Using both genetic (GS-knockout/liver and GS-knockout/muscle) and pharmacological (methionine sulfoximine and dexamethasone) approaches to modulate GS activity, we further show that detoxification of stepwise increments of intravenously (jugular vein) infused ammonia is almost totally dependent on GS activity. Maximal ammonia-detoxifying capacity through either the enteral or the intravenous route is ∼160 μmol/hour in control mice. Using stable isotopes, we show that disposal of glutamine-bound ammonia to urea (through mitochondrial glutaminase and carbamoylphosphate synthetase) depends on the rate of glutamine synthesis and increases from ∼7% in methionine sulfoximine-treated mice to ∼500% in dexamethasone-treated mice (control mice, 100%), without difference in total urea synthesis. Hepatic GS contributes to both enteral and systemic ammonia detoxification. Glutamine synthesis in the periphery (including that in pericentral hepatocytes) and glutamine catabolism in (periportal) hepatocytes represents the high-affinity ammonia-detoxifying system of the body. The dependence of glutamine-bound ammonia disposal to urea on the rate of glutamine synthesis suggests that enhancing peripheral glutamine synthesis is a promising strategy to treat hyperammonemia. Because total urea synthesis does not depend on

  8. Spectrophotometric studies of acyl-coenzyme A synthetases of rat liver mitochondria

    PubMed Central

    Garland, P. B.; Yates, D. W.; Haddock, B. A.

    1970-01-01

    1. Deca-2,4,6,8-tetraenoic acid is a substrate for both ATP-specific (EC 6.2.1.2 or 3) and GTP-specific (EC 6.2.1.–) acyl-CoA synthetases of rat liver mitochondria. The enzymic synthesis of decatetraenoyl-CoA results in new spectral characteristics. The difference spectrum for the acyl-CoA minus free acid has a maximum at 376nm with εmM 34. Isosbestic points are at 345nm and 440nm. 2. The acylation of CoA by decatetraenoate in mitochondrial suspensions can be continuously measured with a dual-wavelength spectrophotometer. 3. By using this technique, three distinct types of acyl-CoA synthetase activity were demonstrated in rat liver mitochondria. One of these utilized added CoA and ATP, required added Mg2+ and corresponded to a previously described `external' acyl-CoA synthetase. The other two acyl-CoA synthetase activities utilized intramitochondrial CoA and did not require added Mg2+. Of these two `internal' acyl-CoA synthetases, one was insensitive to uncoupling agents, was inhibited by phosphate or arsenate, and corresponded to the GTP-specific enzyme. The other corresponded to the ATP-specific enzyme. 4. Atractylate inhibited the activity of the two internal acyl-CoA synthetases only when the energy source was added ATP. 5. The amount of intramitochondrial CoA acylated by decatetraenoate was independent of whether the internal ATP-specific or GTP-specific acyl-CoA synthetase was active. It is concluded that these two internal acyl-CoA synthetases have access to the same intramitochondrial pool of CoA. 6. The amount of intramitochondrial CoA that could be acylated with decatetraenoate was decreased by the addition of palmitoyl-dl-carnitine, 2-oxoglutarate, or pyruvate. These observations indicated that pyruvate dehydrogenase (EC 1.2.4.1), oxoglutarate dehydrogenase (EC 1.2.4.2), carnitine palmitoyltransferase (EC 2.3.1.–), citrate synthase (EC 4.1.3.7), and succinyl-CoA synthetase (EC 6.2.1.4) all have access to the same intramitochondrial pool of CoA as do

  9. A case of anti-aminoacyl tRNA synthetase antibody syndrome complicated by hemophagocytic syndrome.

    PubMed

    Azuma, Kota; Tamura, Masao; Kurajoh, Masafumi; Hosono, Yuji; Nakajima, Ran; Tsuboi, Kazuyuki; Abe, Takeo; Ogita, Chie; Yokoyama, Yuichi; Furukawa, Tetsuya; Yoshikawa, Takahiro; Saito, Atsushi; Nishioka, Aki; Sekiguchi, Masahiro; Azuma, Naoto; Kitano, Masayasu; Tsunoda, Shinichiro; Omura, Koichiro; Koyama, Hidenori; Matsui, Kiyoshi; Mimori, Tsuneyo; Sano, Hajime

    2016-01-01

      A 48-year-old woman had suffered from a fever and general fatigue, and visited the other hospital for fever elevation in November 2013, at which time interstitial lung disease was revealed. In January 2014, she experienced an eruption in the hand and developed peripheral blood flow damage. Under a diagnosis of adult Still's disease, the patient was administered 0.5 mg of betamethasone as well as cyclosporin at 75 mg/day. In November 2014, general fatigue, fever, and headache were noted, while MRI revealed an enlarged hypophysis and laboratory findings were positive for the anti-pituitary cell antibody, thus a diagnosis of autoimmune hypophysitis was made. Although disease activity was low, she requested hospitalization and was admitted by the Division of Endocrinology and Metabolism at our hospital in May 2015, though only observed. Fever developed again, along with interstitial lung disease, Raynaud's phenomenon, and pain in the crural area again, and we considered the possibility of another disease. After stopping administration of betamethasone and cyclosporin, we made a diagnosis of anti-aminoacyl tRNA synthetase antibody syndrome, and administered methylprednisolone at 500 mg for 3 days as well as prednisolone at 35 mg/day following steroid pulse therapy. Although her condition soon improved, fever, muscle pain, and pancytopenia returned after 3 days. Bone marrow findings revealed the existence of hemophagocytosis, for which we again gave methylprednisolone at 500 mg for 3 days and cyclosporin at 125 mg/day. Thereafter, the patient recovered and was discharged from the hospital.

  10. Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress

    PubMed Central

    Schug, Zachary T.; Peck, Barrie; Jones, Dylan T.; Zhang, Qifeng; Grosskurth, Shaun; Alam, Israt S.; Goodwin, Louise M.; Smethurst, Elizabeth; Mason, Susan; Blyth, Karen; McGarry, Lynn; James, Daniel; Shanks, Emma; Kalna, Gabriela; Saunders, Rebecca E.; Jiang, Ming; Howell, Michael; Lassailly, Francois; Thin, May Zaw; Spencer-Dene, Bradley; Stamp, Gordon; van den Broek, Niels J.F.; Mackay, Gillian; Bulusu, Vinay; Kamphorst, Jurre J.; Tardito, Saverio; Strachan, David; Harris, Adrian L.; Aboagye, Eric O.; Critchlow, Susan E.; Wakelam, Michael J.O.; Schulze, Almut; Gottlieb, Eyal

    2015-01-01

    Summary A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment. PMID:25584894

  11. Elaborate uORF/IRES features control expression and localization of human glycyl-tRNA synthetase

    PubMed Central

    Alexandrova, Jana; Paulus, Caroline; Rudinger-Thirion, Joëlle; Jossinet, Fabrice; Frugier, Magali

    2015-01-01

    The canonical activity of glycyl-tRNA synthetase (GARS) is to charge glycine onto its cognate tRNAs. However, outside translation, GARS also participates in many other functions. A single gene encodes both the cytosolic and mitochondrial forms of GARS but 2 mRNA isoforms were identified. Using immunolocalization assays, in vitro translation assays and bicistronic constructs we provide experimental evidence that one of these mRNAs tightly controls expression and localization of human GARS. An intricate regulatory domain was found in its 5′-UTR which displays a functional Internal Ribosome Entry Site and an upstream Open Reading Frame. Together, these elements hinder the synthesis of the mitochondrial GARS and target the translation of the cytosolic enzyme to ER-bound ribosomes. This finding reveals a complex picture of GARS translation and localization in mammals. In this context, we discuss how human GARS expression could influence its moonlighting activities and its involvement in diseases. PMID:26327585

  12. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia.

    PubMed

    Verlander, Jill W; Chu, Diana; Lee, Hyun-Wook; Handlogten, Mary E; Weiner, I David

    2013-09-01

    Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+ -free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism.

  13. Homology modeling and molecular docking studies of Bacillomycin and Iturin synthetases with novel ligands for the production of therapeutic lipopeptides.

    PubMed

    Eswari, Jujjavarapu Satya; Dhagat, Swasti; Kaser, Shubham; Tiwari, Anoop

    2017-08-15

    Lipopeptide synthetases play an important role in the production of lipopeptides. Lipopeptides are molecules made up of peptides and fatty acid moieties and have shown to have a broad range of antimicrobial activity. As infectious diseases have caused severe health problems mainly resulting from the development of antibiotic resistant strains of disease causing microorganisms there is a need of alternatives to antibiotics. The lipopeptide synthetase of the corresponding lipopeptides can be used as templates to design these as drugs using computational techniques. The objective of this study was homology modeling and molecular docking of two lipopeptide synthetases, bacillomycin D synthetase and iturin A synthetase, with their ligands as a means of drug design. Schrödinger software was used for homology modeling and molecular docking. After the identification of ligands, molecular docking of these ligands with the lipopeptide (bacillomycin and iturin) synthetases was performed. The docking was tested on the parameters of docking score and glide energy. 5 out of 21 ligands were found to dock with bacillomycin D synthetase whereas 8 out of 20 ligands docked with the iturin A synthetase. The knowledge of the docking sites and docking characteristics of the lipopeptide synthetases mentioned in the paper with the ligands can provide advantages of high speed and reliability, reduced costs on chemicals and experiments and the ethical issues concerned with the use of animal models for screening of drug toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia

    PubMed Central

    Chu, Diana; Lee, Hyun-Wook; Handlogten, Mary E.; Weiner, I. David

    2013-01-01

    Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+-free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism. PMID:23804452

  15. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform.

    PubMed

    Theron, A; Roth, R L; Hoppe, H; Parkinson, C; van der Westhuyzen, C W; Stoychev, S; Wiid, I; Pietersen, R D; Baker, B; Kenyon, C P

    2017-01-01

    Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay.

  16. The gene encoding human glutathione synthetase (GSS) maps to the long arm of chromosome 20 at band 11.2

    SciTech Connect

    Webb, G.C.; Vaska, V.L.; Ford, J.H.

    1995-12-10

    Two forms of glutathione synthetase deficiency have been described. While one form is mild, causing hemolytic anemia, the other more severe form causes 5-oxoprolinuria with secondary neurological involvement. Despite the existence of two deficiency phenotypes, Southern blots hybridized with a glutathione synthetase cDNA suggest that there is a single glutathione synthetase gene in the human genome. Analysis of somatic cell hybrids showed the human glutathione synthetase gene (GSS) to be located on chromosome 20, and this assignment has been refined to subband 20q11.2 using in situ hybridization. 16 refs., 2 figs.

  17. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes.

    PubMed Central

    Bender, R A; Janssen, K A; Resnick, A D; Blumenberg, M; Foor, F; Magasanik, B

    1977-01-01

    The glutamine synthetase (GS) from Klebsiella aerogenes is similar to that from Escherichia coli in several respects: (i) it is repressed by high levels of ammonia in the growth medium; (ii) its biosynthetic activity is greatly reduced by adenylylation; and (iii) adenylylation lowers the pH optimum and alters the response of the enzymes to various inhibitors in the gamma-glutamyl transferase (gammaGT) assay. There are, however, several important differences: (i) the isoactivity point for the adenylylated and non-adenylylated forms in the gammaGT assay occurs at pH 7.55 in K. aerogenes and at pH 7.15 in E. coli; (ii) the non-adenylylated form of the GS from K. aerogenes is stimulated by 60 mM MgCl2 in the gammaGT assay at pH 7.15. A biosynthetic reaction assay that correlates well with number of non-adenylylated enzyme subunits, as determined by the method of Mg2+ inhibition of the gammaGT assay, is described. Finally, we have found that it is necessary to use special methods to harvest growing cells to prevent changes in the adenylylation state of GS from occurring during harvesting. PMID:14104

  18. Novel acyl-CoA synthetase in adrenoleukodystrophy target tissues.

    PubMed

    Moriya-Sato, A; Hida, A; Inagawa-Ogashiwa, M; Wada, M R; Sugiyama, K; Shimizu, J; Yabuki, T; Seyama, Y; Hashimoto, N

    2000-12-09

    X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by demyelination of white matter. The X-ALD gene product adrenoleukodystrophy protein (ALDP) is expressed broadly among various tissues. However, deficiency of functional ALDP exclusively impairs brain, adrenal gland, and testis. Thus, loss of ALDP function is assumed to involve inactivation of a putative mediating factor that functions in a tissue-specific manner. Here we cloned a mouse cDNA encoding a novel protein, Lipidosin, that possesses long-chain acyl-CoA synthetase (LCAS) activity. Lipidosin is expressed exclusively in mouse brain, adrenal gland, and testis, which are affected by X-ALD. LCAS activity of Lipidosin was diminished by mutation of conserved amino acids within the AMP-binding domain. Mutation of the Drosophila homologue of Lipidosin has been reported to cause neuronal degeneration. Thus, Lipidosin may mediate the link between ALDP dysfunction and the impairment of fatty acid metabolism in X-ALD. Copyright 2000 Academic Press.

  19. Structural Biology of Non-Ribosomal Peptide Synthetases

    PubMed Central

    Miller, Bradley R.; Gulick, Andrew M.

    2016-01-01

    Summary The non-ribosomal peptide synthetases are modular enzymes that catalyze synthesis of important peptide products from a variety of standard and non-proteinogenic amino acid substrates. Within a single module are multiple catalytic domains that are responsible for incorporation of a single residue. After the amino acid is activated and covalently attached to an integrated carrier protein domain, the substrates and intermediates are delivered to neighboring catalytic domains for peptide bond formation or, in some modules, chemical modification. In the final module, the peptide is delivered to a terminal thioesterase domain that catalyzes release of the peptide product. This multi-domain modular architecture raises questions about the structural features that enable this assembly line synthesis in an efficient manner. The structures of the core component domains have been determined and demonstrate insights into the catalytic activity. More recently, multi-domain structures have been determined and are providing clues to the features of these enzyme systems that govern the functional interaction between multiple domains. This chapter describes the structures of NRPS proteins and the strategies that are being used to assist structural studies of these dynamic proteins, including careful consideration of domain boundaries for generation of truncated proteins and the use of mechanism-based inhibitors that trap interactions between the catalytic and carrier protein domains. PMID:26831698

  20. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  1. In situ autoradiographic detection of folylpolyglutamate synthetase activity

    SciTech Connect

    Sussman, D.J.; Milman, G.; Osborne, C.; Shane, B.

    1986-11-01

    The enzyme folylpolyglutamate synthetase (FPGS) catalyzes the conversion of folate (pteroylmonoglutamate) to the polyglutamate forms (pteroylpolyglutamates) that are required for folate retention by mammalian cells. A rapid in situ autoradiographic assay for FPGS was developed which is based on the folate cofactor requirement of thymidylate synthase. Chinese hamster AUX B1 mutant cells lack FPGS activity and are unable to accumulate folate. As a result, the conversion of (6-/sup 3/H)deoxyuridine to thymidine via the thymidylate synthase reaction is impaired in AUX B1 cells and no detectable label is incorporated into DNA. In contrast, FPGS in wild-type Chinese hamster CHO cells causes folate retention and enables the incorporation of (6-/sup 3/H)deoxyuridine into DNA. Incorporation may be detected by autoradiography of monolayer cultures or of colonies replica plated onto polyester discs. Introduction of Escherichia coli FPGS into AUX B1 cells restores the activity of the thymidylate synthase pathway and demonstrates that the E. coli FPGS enzyme can provide pteroylpolyglutamates which functions in mammalian cells.

  2. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    SciTech Connect

    Das, S.; Gillin, F.D.

    1987-05-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of /sup 3/H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei.

  3. The aminoacyl-tRNA synthetases of Drosophila melanogaster

    PubMed Central

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  4. Cloning, expression, and purification of glutamine synthetase from Clostridum acetobutylicum

    SciTech Connect

    Usdin, K.P.; Zappe, H.; Jones, D.T.; Woods, D.R.

    1986-09-01

    A glutamine synthetase (GS) gene, glnA, from the gram-positive obligate anaerobe Clostridium acetobutylicum was cloned on recombinant plasmid pHZ200 and enabled Escherichia coli glnA deletion mutants to utilize (NH/sub 4/)/sub 2/ as a sole source of nitrogen. The cloned C. acetobutylicum gene was expressed from a regulatory region contained within the cloned DNA fragment. glnA expression was subject to nitrogen regulation in E. coli. This cloned glnA DNA did not enable an E. coli glnA ntrB ntrC deletion mutant to utilize arginine or low levels of glutamine as sole nitrogen sources, and failed to activate histidase activity in this strain which contained the Klebsiella aerogenes hut operon. The GS produced by pHZ200 was purified and had an apparent subunit molecular weight of approximately 59,000. There was no DNA or protein homology between the cloned C. acetobutylicum glnA gene and GS and the corresponding gene and GS from E. coli. The C. acetobutylicum GS was inhibited by Mg/sup 2 +/ in the ..gamma..-glutamyl transferase assay, but there was no evidence that the GS was adenylylated.

  5. Versatility of acyl-acyl carrier protein synthetases

    DOE PAGES

    Beld, Joris; Finzel, Kara; Burkart, Michael D.

    2014-10-09

    The acyl carrier protein (ACP) requires posttranslational modification with a 4'-phosphopantetheine arm for activity, and this thiol-terminated modification carries cargo between enzymes in ACP-dependent metabolic pathways. In this paper, we show that acyl-ACP synthetases (AasSs) from different organisms are able to load even, odd, and unnatural fatty acids onto E. coli ACP in vitro. Vibrio harveyi AasS not only shows promiscuity for the acid substrate, but also is active upon various alternate carrier proteins. AasS activity also extends to functional activation in living organisms. We show that exogenously supplied carboxylic acids are loaded onto ACP and extended by the E.more » coli fatty acid synthase, including unnatural fatty acid analogs. These analogs are further integrated into cellular lipids. Finally, in vitro characterization of four different adenylate-forming enzymes allowed us to disambiguate CoA-ligases and AasSs, and further in vivo studies show the potential for functional application in other organisms.« less

  6. Regulation of Acetyl Coenzyme A Synthetase in Escherichia coli

    PubMed Central

    Kumari, Suman; Beatty, Christine M.; Browning, Douglas F.; Busby, Stephen J. W.; Simel, Erica J.; Hovel-Miner, Galadriel; Wolfe, Alan J.

    2000-01-01

    Cells of Escherichia coli growing on sugars that result in catabolite repression or amino acids that feed into glycolysis undergo a metabolic switch associated with the production and utilization of acetate. As they divide exponentially, these cells excrete acetate via the phosphotransacetylase-acetate kinase pathway. As they begin the transition to stationary phase, they instead resorb acetate, activate it to acetyl coenzyme A (acetyl-CoA) by means of the enzyme acetyl-CoA synthetase (Acs) and utilize it to generate energy and biosynthetic components via the tricarboxylic acid cycle and the glyoxylate shunt, respectively. Here, we present evidence that this switch occurs primarily through the induction of acs and that the timing and magnitude of this induction depend, in part, on the direct action of the carbon regulator cyclic AMP receptor protein (CRP) and the oxygen regulator FNR. It also depends, probably indirectly, upon the glyoxylate shunt repressor IclR, its activator FadR, and many enzymes involved in acetate metabolism. On the basis of these results, we propose that cells induce acs, and thus their ability to assimilate acetate, in response to rising cyclic AMP levels, falling oxygen partial pressure, and the flux of carbon through acetate-associated pathways. PMID:10894724

  7. Small Alarmone Synthetases as novel bacterial RNA-binding proteins.

    PubMed

    Hauryliuk, Vasili; Atkinson, Gemma C

    2017-08-18

    The alarmone nucleotides guanosine pentaphosphate (pppGpp) and tetraphosphate (ppGpp), collectively referred to as (p)ppGpp, are key regulators of bacterial growth, stress adaptation, antibiotic tolerance and pathogenicity. We have recently shown that the Small Alarmone Synthetase (SAS) RelQ from the Gram-positive pathogen Enterococcus faecalis has an RNA-binding activity (Beljantseva et al. 2017). RelQ's activities as an enzyme and as a RNA-binding protein are mutually incompatible: binding of single-stranded RNA potently inhibits (p)ppGpp synthesis in a sequence-specific manner, and RelQ's enzymatic activity destabilizes the RNA:RelQ complex. RelQ's allosteric regulator, pppGpp, destabilizes RNA binding and activates RelQ's enzymatic activity. Since SAS enzymes are widely distributed in bacteria, and, as it has been discovered recently, are also mobilized by phages (Dedrick et al. 2017), RNA binding to SAS is could be a wide-spread mechanism. The initial discovery raises numerous questions regarding RNA-binding function of the SAS enzymes: What is the molecular mechanism underlying the incompatibility of RNA:SAS complex formation with pppGpp binding and (p)ppGpp synthesis? What are the RNA targets in living cells? What is the regulatory output of the system - (p)ppGpp synthesis, modulation of RNA structure and function, or both?

  8. Holocarboxylase synthetase: correlation of protein localisation with biological function.

    PubMed

    Bailey, L M; Wallace, J C; Polyak, S W

    2010-04-01

    Holocarboxylase synthetase (HCS) governs the cellular fate of the essential micronutrient biotin (Vitamin H or B7). HCS is responsible for attaching biotin onto the biotin-dependent enzymes that reside in the cytoplasm and mitochondria. Evidence for an alternative role, viz the regulation of gene expression, has also been reported. Recent immunohistochemical studies reported HCS is primarily nuclear, inconsistent with the location of HCS activity. Improved understanding of biotin biology demands greater knowledge about HCS. Here, we investigated the localisation of HCS and its isoforms. Three variants were observed that differ at the N-terminus. All HCS isoforms were predominantly non-nuclear, consistent with the distribution of biotin protein ligase activity. Unlike the longer constructs, the Met(58) isoform was also detected in the nucleus--a novel observation suggesting shuttling activity between nucleus and cytoplasm. We resolved that the previous controversies in the literature are due to specificity and detection limitations that arise when using partially purified antibodies. 2010. Published by Elsevier Inc. All rights reserved.

  9. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.

    PubMed

    Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes

    2015-11-01

    Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.

  10. The plastidial folylpolyglutamate synthetase and root apical meristem maintenance

    PubMed Central

    Srivastava, Avinash C; Tang, Yuhong; Díaz de la Garza, Rocío I

    2011-01-01

    Folylpolyglutamate synthetase (FPGS) catalyzes the attachment of glutamate residues to the folate molecule in plants. Three isoforms of FPGS have been identified in Arabidopsis and these are localized in the plastid (AtDFB), mitochondria (AtDFC) and cytosol (AtDFD). We recently determined that mutants in the AtDFB (At5G05980) gene disrupt primary root development in Arabidopsis thaliana seedlings. Transient expression of AtDFB-green fluorescent protein (GFP) fusion under the control of the native AtDFB promoter in Nicotiana tabacum leaf epidermal cells verified the plastid localization of AtDFB. Furthermore, low concentrations of methotrexate (MTX), a compound commonly used as a folate antagonist in plant and mammalian cells induced primary root defects in wild type seedlings that were similar to atdfb. In addition, atdfb seedlings were more sensitive to MTX when compared to wild type. Quantitative (q) RT-PCR showed lower transcript levels of the mitochondrial and cytosolic FPGS in roots of 7-day-old atdfb seedling suggesting feedback regulation of AtDFB on the expression of other FPGS isoforms during early seedling development. The primary root defects of atdfb, which can be traced in part to altered quiescent center (QC) identity, pave the way for future studies that could link cell type specific folate and FPGS isoform requirements to whole organ development. PMID:21502816

  11. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment

    SciTech Connect

    Ling, Jiqiang; Peterson, Kaitlyn M.; Simonovic, Ivana; Cho, Chris; Soll, Dieter; Simonovic, Miljan

    2014-03-12

    Aminoacyl-tRNA synthetases (aaRSs) ensure faithful translation of mRNA into protein by coupling an amino acid to a set of tRNAs with conserved anticodon sequences. Here, we show that in mitochondria of Saccharomyces cerevisiae, a single aaRS (MST1) recognizes and aminoacylates two natural tRNAs that contain anticodon loops of different size and sequence. Besides a regular ?? with a threonine (Thr) anticodon, MST1 also recognizes an unusual ??, which contains an enlarged anticodon loop and an anticodon triplet that reassigns the CUN codons from leucine to threonine. Our data show that MST1 recognizes the anticodon loop in both tRNAs, but employs distinct recognition mechanisms. The size but not the sequence of the anticodon loop is critical for ?? recognition, whereas the anticodon sequence is essential for aminoacylation of ??. The crystal structure of MST1 reveals that, while lacking the N-terminal editing domain, the enzyme closely resembles the bacterial threonyl-tRNA synthetase (ThrRS). A detailed structural comparison with Escherichia coli ThrRS, which is unable to aminoacylate ??, reveals differences in the anticodon-binding domain that probably allow recognition of the distinct anticodon loops. Finally, our mutational and modeling analyses identify the structural elements in MST1 (e.g., helix {alpha}11) that define tRNA selectivity. Thus, MTS1 exemplifies that a single aaRS can recognize completely divergent anticodon loops of natural isoacceptor tRNAs and that in doing so it facilitates the reassignment of the genetic code in yeast mitochondria.

  12. Novel K540N mutation in Plasmodium falciparum dihydropteroate synthetase confers a lower level of sulfa drug resistance than does a K540E mutation.

    PubMed

    Lumb, Vanshika; Sharma, Yagya D

    2011-05-01

    Sulfadoxine (SDX) and sulfamethoxazole (SMX) each inhibit the Plasmodium falciparum dihydropteroate synthetase (PfDHPS), and certain point mutations in this enzyme yield the drug-resistant parasite. Using a simple Escherichia coli model system, we describe here the effect of the recently reported novel K540N mutation in PfDHPS on the level of SDX/SMX resistance. The survival rate of the transformed E. coli (DHPS-deficient strain) under different SDX or SMX concentrations revealed that the K540N mutation confers a lower level of drug resistance than its contemporary K540E mutation. Further, SMX was more effective than SDX in the E. coli system.

  13. Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism.

    PubMed

    Phillips, Darci; Aponte, Angel M; French, Stephanie A; Chess, David J; Balaban, Robert S

    2009-08-04

    Succinyl-CoA synthetase (SCS) is the only mitochondrial enzyme capable of ATP production via substrate level phosphorylation in the absence of oxygen, but it also plays a key role in the citric acid cycle, ketone metabolism, and heme synthesis. Inorganic phosphate (P(i)) is a signaling molecule capable of activating oxidative phosphorylation at several sites, including NADH generation and as a substrate for ATP formation. In this study, it was shown that P(i) binds the porcine heart SCS alpha-subunit (SCSalpha) in a noncovalent manner and enhances its enzymatic activity, thereby providing a new target for P(i) activation in mitochondria. Coupling 32P labeling of intact mitochondria with SDS gel electrophoresis revealed that 32P labeling of SCSalpha was enhanced in substrate-depleted mitochondria. Using mitochondrial extracts and purified bacterial SCS (BSCS), we showed that this enhanced 32P labeling resulted from a simple binding of 32P, not covalent protein phosphorylation. The ability of SCSalpha to retain its 32P throughout the SDS denaturing gel process was unique over the entire mitochondrial proteome. In vitro studies also revealed a P(i)-induced activation of SCS activity by more than 2-fold when mitochondrial extracts and purified BSCS were incubated with millimolar concentrations of P(i). Since the level of 32P binding to SCSalpha was increased in substrate-depleted mitochondria, where the matrix P(i) concentration is increased, we conclude that SCS activation by P(i) binding represents another mitochondrial target for the P(i)-induced activation of oxidative phosphorylation and anaerobic ATP production in energy-limited mitochondria.

  14. Elucidation of the active conformation of the APS-kinase domain of human PAPS synthetase 1.

    PubMed

    Sekulic, Nikolina; Dietrich, Kristen; Paarmann, Ingo; Ort, Stephan; Konrad, Manfred; Lavie, Arnon

    2007-03-23

    Bifunctional human PAPS synthetase (PAPSS) catalyzes, in a two-step process, the formation of the activated sulfate carrier 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The first reaction involves the formation of the 5'-adenosine phosphosulfate (APS) intermediate from ATP and inorganic sulfate. APS is then further phosphorylated on its 3'-hydroxyl group by an additional ATP molecule to generate PAPS. The former reaction is catalyzed by the ATP-sulfurylase domain and the latter by the APS-kinase domain. Here, we report the structure of the APS-kinase domain of PAPSS isoform 1 (PAPSS1) representing the Michaelis complex with the products ADP-Mg and PAPS. This structure provides a rare glimpse of the active conformation of an enzyme catalyzing phosphoryl transfer without resorting to substrate analogs, inactivating mutations, or catalytically non-competent conditions. Our structure shows the interactions involved in the binding of the magnesium ion and PAPS, thereby revealing residues critical for catalysis. The essential magnesium ion is observed bridging the phosphate groups of the products. This function of the metal ion is made possible by the DGDN-loop changing its conformation from that previously reported, and identifies these loop residues unambiguously as a Walker B motif. Furthermore, the second aspartate residue of this motif is the likely candidate for initiating nucleophilic attack on the ATP gamma-phosphate group by abstracting the proton from the 3'-hydroxyl group of the substrate APS. We report the structure of the APS-kinase domain of human PAPSS1 in complex with two APS molecules, demonstrating the ability of the ATP/ADP-binding site to bind APS. Both structures reveal extended N termini that approach the active site of the neighboring monomer. Together, these results significantly increase our understandings of how catalysis is achieved by APS-kinase.

  15. Glutamine Synthetase in Muscle Is Required for Glutamine Production during Fasting and Extrahepatic Ammonia Detoxification*

    PubMed Central

    He, Youji; Hakvoort, Theodorus B. M.; Köhler, S. Eleonore; Vermeulen, Jacqueline L. M.; de Waart, D. Rudi; de Theije, Chiel; ten Have, Gabrie A. M.; van Eijk, Hans M. H.; Kunne, Cindy; Labruyere, Wilhelmina T.; Houten, Sander M.; Sokolovic, Milka; Ruijter, Jan M.; Deutz, Nicolaas E. P.; Lamers, Wouter H.

    2010-01-01

    The main endogenous source of glutamine is de novo synthesis in striated muscle via the enzyme glutamine synthetase (GS). The mice in which GS is selectively but completely eliminated from striated muscle with the Cre-loxP strategy (GS-KO/M mice) are, nevertheless, healthy and fertile. Compared with controls, the circulating concentration and net production of glutamine across the hindquarter were not different in fed GS-KO/M mice. Only a ∼3-fold higher escape of ammonia revealed the absence of GS in muscle. However, after 20 h of fasting, GS-KO/M mice were not able to mount the ∼4-fold increase in glutamine production across the hindquarter that was observed in control mice. Instead, muscle ammonia production was ∼5-fold higher than in control mice. The fasting-induced metabolic changes were transient and had returned to fed levels at 36 h of fasting. Glucose consumption and lactate and ketone-body production were similar in GS-KO/M and control mice. Challenging GS-KO/M and control mice with intravenous ammonia in stepwise increments revealed that normal muscle can detoxify ∼2.5 μmol ammonia/g muscle·h in a muscle GS-dependent manner, with simultaneous accumulation of urea, whereas GS-KO/M mice responded with accumulation of glutamine and other amino acids but not urea. These findings demonstrate that GS in muscle is dispensable in fed mice but plays a key role in mounting the adaptive response to fasting by transiently facilitating the production of glutamine. Furthermore, muscle GS contributes to ammonia detoxification and urea synthesis. These functions are apparently not vital as long as other organs function normally. PMID:20064933

  16. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum

    PubMed Central

    2009-01-01

    Background Plasmodium parasites are causative agents of malaria which affects >500 million people and claims ~2 million lives annually. The completion of Plasmodium genome sequencing and availability of PlasmoDB database has provided a platform for systematic study of parasite genome. Aminoacyl-tRNA synthetases (aaRSs) are pivotal enzymes for protein translation and other vital cellular processes. We report an extensive analysis of the Plasmodium falciparum genome to identify and classify aaRSs in this organism. Results Using various computational and bioinformatics tools, we have identified 37 aaRSs in P. falciparum. Our key observations are: (i) fraction of proteome dedicated to aaRSs in P. falciparum is very high compared to many other organisms; (ii) 23 out of 37 Pf-aaRS sequences contain signal peptides possibly directing them to different cellular organelles; (iii) expression profiles of Pf-aaRSs vary considerably at various life cycle stages of the parasite; (iv) several PfaaRSs posses very unusual domain architectures; (v) phylogenetic analyses reveal evolutionary relatedness of several parasite aaRSs to bacterial and plants aaRSs; (vi) three dimensional structural modelling has provided insights which could be exploited in inhibitor discovery against parasite aaRSs. Conclusion We have identified 37 Pf-aaRSs based on our bioinformatics analysis. Our data reveal several unique attributes in this protein family. We have annotated all 37 Pf-aaRSs based on predicted localization, phylogenetics, domain architectures and their overall protein expression profiles. The sets of distinct features elaborated in this work will provide a platform for experimental dissection of this family of enzymes, possibly for the discovery of novel drugs against malaria. PMID:20042123

  17. Characterization of a microcystin and detection of microcystin synthetase genes from a Brazilian isolate of Nostoc.

    PubMed

    Genuário, Diego Bonaldo; Silva-Stenico, Maria Estela; Welker, Martin; Beraldo Moraes, Luiz Alberto; Fiore, Marli Fátima

    2010-04-01

    A nostocalean nitrogen-fixing cyanobacterium isolated from an eutrophic freshwater reservoir located in Piracicaba, São Paulo, Brazil, was evaluated for the production of hepatotoxic cyclic heptapeptides, microcystins. Morphologically this new cyanobacterium strain appears closest to Nostoc, however, in the phylogenetic analysis of 16S rRNA gene it falls into a highly stable cluster distantly only related to the typical Nostoc cluster. Extracts of Nostoc sp. CENA88 cultured cells, investigated using ELISA assay, gave positive results and the microcystin profile revealed by ESI-Q-TOF/MS/MS analysis confirmed the production of [Dha(7)]MCYST-YR. Further, Nostoc sp. CENA88 genomic DNA was analyzed by PCR for sequences of mcyD, mcyE and mcyG genes of microcystin synthetase (mcy) cluster. The result revealed the presence of mcyD, mcyE and mcyG genes with similarities to those from mcy of Nostoc sp. strains 152 and IO-102-I and other cyanobacterial genera. The phylogenetic tree based on concatenated McyG, McyD and McyE amino acids clustered the sequences according to cyanobacterial genera, with exception of the Nostoc sp. CENA88 sequence, which was placed in a clade distantly related from other Nostoc strains, as previously observed also in the 16S rRNA phylogenetic analysis. The present study describes for the first time a Brazilian Nostoc microcystin producer and also the occurrence of demethyl MCYST-YR variant in this genus. The sequenced Nostoc genes involved in the microcystin synthesis can contribute to a better understanding of the toxigenicity and evolution of this cyanotoxin. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms

    PubMed Central

    Pateman, J. A.

    1969-01-01

    1. Aspergillus nidulans, Neurospora crassa and Escherichia coli were grown on media containing a range of concentrations of nitrate, or ammonia, or urea, or l-glutamate, or l-glutamine as the sole source of nitrogen and the glutamate dehydrogenate and glutamine synthetase of the cells measured. 2. Aspergillus, Neurospora and Escherichia coli cells, grown on l-glutamate or on high concentrations of ammonia or on high concentrations of urea, possessed low glutamate dehydrogenase activity compared with cells grown on other nitrogen sources. 3. Aspergillus, Neurospora and Escherichia coli cells grown on l-glutamate possessed high glutamine synthetase activity compared with cells grown on other nitrogen sources. 4. The hypothesis is proposed that in Aspergillus, Neurospora and Escherichia coli l-glutamate represses the synthesis of glutamate dehydrogenase and l-glutamine represses the synthesis of glutamine synthetase. 5. A comparison of the glutamine-synthesizing activity and the γ-glutamyltransferase activity of glutamine synthetase in Aspergillus and Neurospora gave no indication that these fungi produce different forms of glutamine synthetase when grown on ammonia or l-glutamate as nitrogen sources. PMID:4901826

  19. Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms.

    PubMed

    Pateman, J A

    1969-12-01

    1. Aspergillus nidulans, Neurospora crassa and Escherichia coli were grown on media containing a range of concentrations of nitrate, or ammonia, or urea, or l-glutamate, or l-glutamine as the sole source of nitrogen and the glutamate dehydrogenate and glutamine synthetase of the cells measured. 2. Aspergillus, Neurospora and Escherichia coli cells, grown on l-glutamate or on high concentrations of ammonia or on high concentrations of urea, possessed low glutamate dehydrogenase activity compared with cells grown on other nitrogen sources. 3. Aspergillus, Neurospora and Escherichia coli cells grown on l-glutamate possessed high glutamine synthetase activity compared with cells grown on other nitrogen sources. 4. The hypothesis is proposed that in Aspergillus, Neurospora and Escherichia colil-glutamate represses the synthesis of glutamate dehydrogenase and l-glutamine represses the synthesis of glutamine synthetase. 5. A comparison of the glutamine-synthesizing activity and the gamma-glutamyltransferase activity of glutamine synthetase in Aspergillus and Neurospora gave no indication that these fungi produce different forms of glutamine synthetase when grown on ammonia or l-glutamate as nitrogen sources.

  20. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases.

    PubMed

    Chatton, B; Walter, P; Ebel, J P; Lacroute, F; Fasiolo, F

    1988-01-05

    S1 mapping on the VAS1 structural gene indicates the existence of two classes of transcripts initiating at distinct in-frame translation start codons. The longer class of VAS1 transcripts initiates upstream of both ATG codons located 138 base pairs away and the shorter class downstream of the first ATG. A mutation that destroys the first AUG on the long message results in respiratory deficiency but does not affect viability. Mutation of the ATG at position 139 leads to lethality because the initiating methionine codon of the essential cytoplasmic valyl-tRNA synthetase has been destroyed. N-terminal protein sequence data further confirm translation initiation at ATG-139 for the cytoplasmic valyl-tRNA synthetase. From these results, we conclude that the VAS1 single gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. The presequence of the mitochondrial valyl-tRNA synthetase shows amino acid composition but not the amphiphilic character of imported mitochondrial proteins. From mutagenesis of the ATG-139 we conclude that the presequence specifically targets the cytoplasmically synthesized mitochondrial valyl-tRNA synthetase to the mitochondrial outer membrane and prevents binding of the enzyme core to cytoplasmic tRNAVal.

  1. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    SciTech Connect

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A.

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  2. Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases.

    PubMed

    Chen, Wei-Hung; Li, Kunhua; Guntaka, Naga Sandhya; Bruner, Steven D

    2016-08-19

    Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain-domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules.

  3. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511

    PubMed Central

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P.; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed. PMID:26270653

  4. Cysteinyl-tRNA synthetase is not essential for viability of the archaeon Methanococcus maripaludis

    PubMed Central

    Stathopoulos, Constantinos; Kim, Wonduck; Li, Tong; Anderson, Iain; Deutsch, Britta; Palioura, Sotiria; Whitman, William; Söll, Dieter

    2001-01-01

    The methanogenic archaea Methanocaldococcus jannaschii and Methanothermobacter thermautotrophicus contain a dual-specificity prolyl-tRNA synthetase (ProCysRS) that accurately forms both prolyl-tRNA (Pro-tRNA) and cysteinyl-tRNA (Cys-tRNA) suitable for in vivo translation. This intriguing enzyme may even perform its dual role in organisms that possess a canonical single-specificity cysteinyl-tRNA synthetase (CysRS), raising the question as to whether this latter aminoacyl-tRNA synthetase is indeed required for cell viability. To test the postulate that all synthetase genes are essential, we disrupted the cysS gene (encoding CysRS) of Methanococcus maripaludis. The knockout strain was viable under normal growth conditions. Biochemical analysis showed that the pure M. maripaludis ProCysRS was capable of forming Cys-tRNA, implying that the dual-specificity enzyme compensates in vivo for the loss of CysRS. The canonical CysRS has a higher affinity for cysteine than ProCysRS, a reason why M. maripaludis may have acquired cysS by a late lateral gene transfer. These data challenge the notion that all twenty aminoacyl-tRNA synthetases are essential for the viability of a cell. PMID:11717392

  5. Glutamine Synthetase Sensitivity to Oxidative Modification during Nutrient Starvation in Prochlorococcus marinus PCC 9511.

    PubMed

    Gómez-Baena, Guadalupe; Domínguez-Martín, María Agustina; Donaldson, Robert P; García-Fernández, José Manuel; Diez, Jesús

    2015-01-01

    Glutamine synthetase plays a key role in nitrogen metabolism, thus the fine regulation of this enzyme in Prochlorococcus, which is especially important in the oligotrophic oceans where this marine cyanobacterium thrives. In this work, we studied the metal-catalyzed oxidation of glutamine synthetase in cultures of Prochlorococcus marinus strain PCC 9511 subjected to nutrient limitation. Nitrogen deprivation caused glutamine synthetase to be more sensitive to metal-catalyzed oxidation (a 36% increase compared to control, non starved samples). Nutrient starvation induced also a clear increase (three-fold in the case of nitrogen) in the concentration of carbonyl derivatives in cell extracts, which was also higher (22%) upon addition of the inhibitor of electron transport, DCMU, to cultures. Our results indicate that nutrient limitations, representative of the natural conditions in the Prochlorococcus habitat, affect the response of glutamine synthetase to oxidative inactivating systems. Implications of these results on the regulation of glutamine synthetase by oxidative alteration prior to degradation of the enzyme in Prochlorococcus are discussed.

  6. Glutamate-Dependent Translational Control of Glutamine Synthetase in Bergmann Glia Cells.

    PubMed

    Tiburcio-Félix, Reynaldo; Escalante-López, Miguel; López-Bayghen, Bruno; Martínez, Daniel; Hernández-Kelly, Luisa C; Zinker, Samuel; Hernández-Melchor, Dinorah; López-Bayghen, Esther; Olivares-Bañuelos, Tatiana N; Ortega, Arturo

    2017-09-05

    Glutamate is the major excitatory transmitter of the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed both in neurons and in glial cells. Recent evidence has shown that glutamate uptake systems, particularly enriched in glia cells, trigger biochemical cascades in a similar fashion as receptors. A tight regulation of glutamate extracellular levels prevents neuronal overstimulation and cell death, and it is critically involved in glutamate turnover. Glial glutamate transporters are responsible of the majority of the brain glutamate uptake activity. Once internalized, this excitatory amino acid is rapidly metabolized to glutamine via the astrocyte-enriched enzyme glutamine synthetase. A coupling between glutamate uptake and glutamine synthesis and release has been commonly known as the glutamate/glutamine shuttle. Taking advantage of the established model of cultured Bergmann glia cells, in this contribution, we explored the gene expression regulation of glutamine synthetase. A time- and dose-dependent regulation of glutamine synthetase protein and activity levels was found. Moreover, glutamate exposure resulted in the transient shift of glutamine synthetase mRNA from the monosomal to the polysomal fraction. These results demonstrate a novel mode of glutamate-dependent glutamine synthetase regulation and strengthen the notion of an exquisite glia neuronal interaction in glutamatergic synapses.

  7. GH3 expression and IAA-amide synthetase activity in pea (Pisum sativum L.) seedlings are regulated by light, plant hormones and auxinic herbicides.

    PubMed

    Ostrowski, Maciej; Jakubowska, Anna

    2013-03-01

    The formation of auxin conjugates is one of the important regulatory mechanisms for modulating IAA action. Several auxin-responsive GH3 genes encode IAA-amide synthetases that are involved in the maintenance of hormonal homeostasis by conjugating excess IAA to amino acids. Recently, the data have revealed novel regulatory functions of several GH3 proteins in plant growth, organ development, fruit ripening, light signaling, abiotic stress tolerance and plant defense responses. Indole-3-acetyl-aspartate (IAA-Asp) synthetase catalyzing IAA conjugation to aspartic acid in immature seeds of pea (Pisum sativum L.) was purified and characterized during our previous investigations. In this study, we examined the effect of auxin and other plant hormones (ABA, GA, kinetin, JA, MeJA, SA), different light conditions (red, far-red, blue, white light), and auxinic herbicides (2,4-D, Dicamba, Picloram) on the expression of a putative GH3 gene and IAA-amide synthesizing activity in 10-d-old pea seedlings. Quantitative RT-PCR analysis indicated that the PsGH3-5 gene, weakly expressed in control sample, was visibly induced in response to all plant hormones, different light wavelengths and the auxinic herbicides tested. Protein A immunoprecipitation/gel blot analysis using anti-AtGH3.5 antibodies revealed a similar pattern of changes on the protein levels in response to all treatments. IAA-amide synthetase activity determined with aspartate as a substrate, not detectable in control seedlings, was positively affected by a majority of treatments. Based on these results, we suggest that PsGH3-5 may control the growth and development of pea plants in a way similar to the known GH3 genes from other plant species. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Functional Analysis of Leishmania Cyclopropane Fatty Acid Synthetase

    PubMed Central

    Oyola, Samuel O.; Evans, Krystal J.; Smith, Terry K.; Smith, Barbara A.; Hilley, James D.; Mottram, Jeremy C.; Kaye, Paul M.; Smith, Deborah F.

    2012-01-01

    The single gene encoding cyclopropane fatty acid synthetase (CFAS) is present in Leishmania infantum, L. mexicana and L. braziliensis but absent from L. major, a causative agent of cutaneous leishmaniasis. In L. infantum, usually causative agent of visceral leishmaniasis, the CFAS gene is transcribed in both insect (extracellular) and host (intracellular) stages of the parasite life cycle. Tagged CFAS protein is stably detected in intracellular L. infantum but only during the early log phase of extracellular growth, when it shows partial localisation to the endoplasmic reticulum. Lipid analyses of L. infantum wild type, CFAS null and complemented parasites detect a low abundance CFAS-dependent C19Δ fatty acid, characteristic of a cyclopropanated species, in wild type and add-back cells. Sub-cellular fractionation studies locate the C19Δ fatty acid to both ER and plasma membrane-enriched fractions. This fatty acid is not detectable in wild type L. major, although expression of the L. infantum CFAS gene in L. major generates cyclopropanated fatty acids, indicating that the substrate for this modification is present in L. major, despite the absence of the modifying enzyme. Loss of the L. infantum CFAS gene does not affect extracellular parasite growth, phagocytosis or early survival in macrophages. However, while endocytosis is also unaffected in the extracellular CFAS nulls, membrane transporter activity is defective and the null parasites are more resistant to oxidative stress. Following infection in vivo, L. infantum CFAS nulls exhibit lower parasite burdens in both the liver and spleen of susceptible hosts but it has not been possible to complement this phenotype, suggesting that loss of C19Δ fatty acid may lead to irreversible changes in cell physiology that cannot be rescued by re-expression. Aberrant cyclopropanation in L. major decreases parasite virulence but does not influence parasite tissue tropism. PMID:23251490

  9. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase

    PubMed Central

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S.; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M. R. K.; Freund, Yvonne R.; DeRisi, Joseph; Cusack, Stephen

    2016-01-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum. Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [14C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS. PMID:27270277

  10. Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens.

    PubMed

    Gulick, Andrew M

    2017-08-02

    Covering: up to 2017.Natural products are important secondary metabolites produced by bacterial and fungal species that play important roles in cellular growth and signaling, nutrient acquisition, intra- and interspecies communication, and virulence. A subset of natural products is produced by nonribosomal peptide synthetases (NRPSs), a family of large, modular enzymes that function in an assembly line fashion. Because of the pharmaceutical activity of many NRPS products, much effort has gone into the exploration of their biosynthetic pathways and the diverse products they make. Many interesting NRPS pathways have been identified and characterized from both terrestrial and marine bacterial sources. Recently, several NRPS pathways in human commensal bacterial species have been identified that produce molecules with antibiotic activity, suggesting another source of interesting NRPS pathways may be the commensal and pathogenic bacteria that live on the human body. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been identified as a significant cause of human bacterial infections that are frequently multidrug resistant. The emerging resistance profile of these organisms has prompted calls from multiple international agencies to identify novel antibacterial targets and develop new approaches to treat infections from ESKAPE pathogens. Each of these species contains several NRPS biosynthetic gene clusters. While some have been well characterized and produce known natural products with important biological roles in microbial physiology, others have yet to be investigated. This review catalogs the NRPS pathways of ESKAPE pathogens. The exploration of novel NRPS products may lead to a better understanding of the chemical communication used by human pathogens and potentially to the discovery of novel therapeutic approaches.

  11. [2'-5' olygoadenylate synthetase activity in peripheral facial paralysis].

    PubMed

    Nakazato, H; Ikeda, M

    1995-03-01

    Interferons are produced in response to viral infection and play an important part in defense by their antiviral effects. An interferon-induced enzyme, 2'-5' oligoadenylate synthetase (2-5AS) also takes an important part of the system of defense against viral infections, and its activity elevates in nonspecific viral infections. This study was designed to evaluate the usefulness of examining serum 2-5AS activity and peripheral blood WBC 2-5AS (WBC 2-5AS) as diagnostic aids of viral infections that cause facial paralysis. Samples were obtained from 83 patients with Bell's palsy, 20 with Ramsay Hunt syndrome, 74 healthy individuals, and a total of 177 subjects. In 177, we measured serum 2-5AS level in 123 subjects, WBC 2-5AS level in 57, and both in 25. Serum 2-5AS levels in Bell's palsy (60 cases) ranged from 20 to 146 pmol/dl (average: 38.5). The range in Ramsay Hunt syndrome (13) was 20-333 (average: 59.0), and in healthy controls (50), it was 20-128 (average: 41.4). WBC 2-5AS level ranged from 20 to 5900 pmol/dl (average: 733.2) in Bell's palsy (23 cases), from 20-4540 (average: 1371.4) in Ramsay Hunt syndrome (7), and from 20-903 (average: 294.5) in healthy individuals (24). There were no statistically significant differences in serum 2-5AS activities. Otherwise, there was significant difference (p < 0.01) between healthy individuals and Patients with Ramsay Hunt syndrome in WBC 2-5AS activity. In Bell's palsy, 3 cases (13.0%) with markedly high WBC 2-5AS levels existed.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. How does glutamine synthetase activity determine plant tolerance to ammonium?

    PubMed

    Cruz, C; Bio, A F M; Domínguez-Valdivia, M D; Aparicio-Tejo, P M; Lamsfus, C; Martins-Loução, M A

    2006-04-01

    The wide range of plant responses to ammonium nutrition can be used to study the way ammonium interferes with plant metabolism and to assess some characteristics related with ammonium tolerance by plants. In this work we investigated the hypothesis of plant tolerance to ammonium being related with the plants' capacity to maintain high levels of inorganic nitrogen assimilation in the roots. Plants of several species (Spinacia oleracea L., Lycopersicon esculentum L., Lactuca sativa L., Pisum sativum L. and Lupinus albus L.) were grown in the presence of distinct concentrations (0.5, 1.5, 3 and 6 mM) of nitrate and ammonium. The relative contributions of the activity of the key enzymes glutamine synthetase (GS; under light and dark conditions) and glutamate dehydrogenase (GDH) were determined. The main plant organs of nitrogen assimilation (root or shoot) to plant tolerance to ammonium were assessed. The results show that only plants that are able to maintain high levels of GS activity in the dark (either in leaves or in roots) and high root GDH activities accumulate equal amounts of biomass independently of the nitrogen source available to the root medium and thus are ammonium tolerant. Plant species with high GS activities in the dark coincide with those displaying a high capacity for nitrogen metabolism in the roots. Therefore, the main location of nitrogen metabolism (shoots or roots) and the levels of GS activity in the dark are an important strategy for plant ammonium tolerance. The relative contribution of each of these parameters to species tolerance to ammonium is assessed. The efficient sequestration of ammonium in roots, presumably in the vacuoles, is considered as an additional mechanism contributing to plant tolerance to ammonium nutrition.

  13. Blockade of Glutamine Synthetase Enhances Inflammatory Response in Microglial Cells

    PubMed Central

    Palmieri, Erika M.; Menga, Alessio; Lebrun, Aurore; Hooper, Douglas C.; Butterfield, D. Allan

    2017-01-01

    Abstract Aims: Microglial cells are brain-resident macrophages engaged in surveillance and maintained in a constant state of relative inactivity. However, their involvement in autoimmune diseases indicates that in pathological conditions microglia gain an inflammatory phenotype. The mechanisms underlying this change in the microglial phenotype are still unclear. Since metabolism is an important modulator of immune cell function, we focused our attention on glutamine synthetase (GS), a modulator of the response to lipopolysaccharide (LPS) activation in other cell types, which is expressed by microglia. Results: GS inhibition enhances release of inflammatory mediators of LPS-activated microglia in vitro, leading to perturbation of the redox balance and decreased viability of cocultured neurons. GS inhibition also decreases insulin-mediated glucose uptake in microglia. In vivo, microglia-specific GS ablation enhances expression of inflammatory markers upon LPS treatment. In the spinal cords from experimental autoimmune encephalomyelitis (EAE), GS expression levels and glutamine/glutamate ratios are reduced. Innovation: Recently, metabolism has been highlighted as mediator of immune cell function through the discovery of mechanisms that (behind these metabolic changes) modulate the inflammatory response. The present study shows for the first time a metabolic mechanism mediating microglial response to a proinflammatory stimulus, pointing to GS activity as a master modulator of immune cell function and thus unraveling a potential therapeutic target. Conclusions: Our study highlights a new role of GS in modulating immune response in microglia, providing insights into the pathogenic mechanisms associated with inflammation and new strategies of therapeutic intervention. Antioxid. Redox Signal. 26, 351–363. PMID:27758118

  14. A Human Disease-causing Point Mutation in Mitochondrial Threonyl-tRNA Synthetase Induces Both Structural and Functional Defects*

    PubMed Central

    Wang, Yong; Zhou, Xiao-Long; Ruan, Zhi-Rong; Liu, Ru-Juan; Eriani, Gilbert; Wang, En-Duo

    2016-01-01

    Mitochondria require all translational components, including aminoacyl-tRNA synthetases (aaRSs), to complete organelle protein synthesis. Some aaRS mutations cause mitochondrial disorders, including human mitochondrial threonyl-tRNA synthetase (hmtThrRS) (encoded by TARS2), the P282L mutation of which causes mitochondrial encephalomyopathies. However, its catalytic and structural consequences remain unclear. Herein, we cloned TARS2 and purified the wild-type and P282L mutant hmtThrRS. hmtThrRS misactivates non-cognate Ser and uses post-transfer editing to clear erroneously synthesized products. In vitro and in vivo analyses revealed that the mutation induces a decrease in Thr activation, aminoacylation, and proofreading activities and a change in the protein structure and/or stability, which might cause reduced catalytic efficiency. We also identified a splicing variant of TARS2 mRNA lacking exons 8 and 9, the protein product of which is targeted into mitochondria. In HEK293T cells, the variant does not dimerize and cannot complement the ThrRS knock-out strain in yeast, suggesting that the truncated protein is inactive and might have a non-canonical function, as observed for other aaRS fragments. The present study describes the aminoacylation and editing properties of hmtThrRS, clarifies the molecular consequences of the P282L mutation, and shows that the yeast ThrRS-deletion model is suitable to test pathology-associated point mutations or alternative splicing variants of mammalian aaRS mRNAs. PMID:26811336

  15. Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate.

    PubMed

    Larson, Eric T; Kim, Jessica E; Zucker, Frank H; Kelley, Angela; Mueller, Natascha; Napuli, Alberto J; Verlinde, Christophe L M J; Fan, Erkang; Buckner, Frederick S; Van Voorhis, Wesley C; Merritt, Ethan A; Hol, Wim G J

    2011-03-01

    Leishmania parasites cause two million new cases of leishmaniasis each year with several hundreds of millions of people at risk. Due to the paucity and shortcomings of available drugs, we have undertaken the crystal structure determination of a key enzyme from Leishmania major in hopes of creating a platform for the rational design of new therapeutics. Crystals of the catalytic core of methionyl-tRNA synthetase from L. major (LmMetRS) were obtained with the substrates MgATP and methionine present in the crystallization medium. These crystals yielded the 2.0 Å resolution structure of LmMetRS in complex with two products, methionyladenylate and pyrophosphate, along with a Mg(2+) ion that bridges them. This is the first class I aminoacyl-tRNA synthetase (aaRS) structure with pyrophosphate bound. The residues of the class I aaRS signature sequence motifs, KISKS and HIGH, make numerous contacts with the pyrophosphate. Substantial differences between the LmMetRS structure and previously reported complexes of Escherichia coli MetRS (EcMetRS) with analogs of the methionyladenylate intermediate product are observed, even though one of these analogs only differs by one atom from the intermediate. The source of these structural differences is attributed to the presence of the product pyrophosphate in LmMetRS. Analysis of the LmMetRS structure in light of the Aquifex aeolicus MetRS-tRNA(Met) complex shows that major rearrangements of multiple structural elements of enzyme and/or tRNA are required to allow the CCA acceptor triplet to reach the methionyladenylate intermediate in the active site. Comparison with sequences of human cytosolic and mitochondrial MetRS reveals interesting differences near the ATP- and methionine-binding regions of LmMetRS, suggesting that it should be possible to obtain compounds that selectively inhibit the parasite enzyme.

  16. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro

    PubMed Central

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Dong, Bin; Shende, Vikram Ravindra; Liu, Jingwen

    2017-01-01

    The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals. Examination of transcriptional activators of the ACSL family revealed an increased hepatic expression of PPARδ but not PPARα in HCHFD fed hamsters. To explore a role of PPARδ in dietary cholesterol-mediated upregulation of ACSL4, we administered a PPARδ specific agonist L165041 to normolipidemic and dyslipidemic hamsters. We observed significant increases of hepatic ACSL4 mRNA and protein levels in all L165041-treated hamsters as compared to control animals. The induction of ACSL4 expression by L165041 in liver tissue in vivo was recapitulated in human primary hepatocytes and hepatocytes isolated from hamster and mouse. Moreover, employing the approach of adenovirus-mediated gene knockdown, we showed that depletion of PPARδ in hamster hepatocytes specifically reduced ACSL4 expression. Finally, utilizing HepG2 as a model system, we demonstrate that PPARδ activation leads to increased ACSL4 promoter activity, mRNA and protein expression, and consequently higher arachidonoyl-CoA synthetase activity. Taken together, we have discovered a novel PPARδ-mediated regulatory mechanism for ACSL4 expression in liver tissue and cultured hepatic cells. PMID:25645621

  17. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro.

    PubMed

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Dong, Bin; Shende, Vikram Ravindra; Liu, Jingwen

    2015-05-01

    The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals. Examination of transcriptional activators of the ACSL family revealed an increased hepatic expression of PPARδ but not PPARα in HCHFD fed hamsters. To explore a role of PPARδ in dietary cholesterol-mediated upregulation of ACSL4, we administered a PPARδ specific agonist L165041 to normolipidemic and dyslipidemic hamsters. We observed significant increases of hepatic ACSL4 mRNA and protein levels in all L165041-treated hamsters as compared to control animals. The induction of ACSL4 expression by L165041 in liver tissue in vivo was recapitulated in human primary hepatocytes and hepatocytes isolated from hamster and mouse. Moreover, employing the approach of adenovirus-mediated gene knockdown, we showed that depletion of PPARδ in hamster hepatocytes specifically reduced ACSL4 expression. Finally, utilizing HepG2 as a model system, we demonstrate that PPARδ activation leads to increased ACSL4 promoter activity, mRNA and protein expression, and consequently higher arachidonoyl-CoA synthetase activity. Taken together, we have discovered a novel PPARδ-mediated regulatory mechanism for ACSL4 expression in liver tissue and cultured hepatic cells.

  18. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2015-10-20

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  19. Effects of polyamine biosynthesis inhibitors on S-adenosylmethionine synthetase and S-adenosylmethionine decarboxylase activities in carrot cell cultures

    Treesearch

    S.C. Minocha; R. Minocha; A. Komamine

    1991-01-01

    Changes in the activites of S-adcnosylmethionine (SAM) synthetase (methionine adenosyltransferase, EC 2.5.1.6.) and SAM decarboxylase (EC 4.1.1.50) were studied in carrot (Daucus carota) cell cultures in response to 2,4-dichlorophenoxyacetic acid (2,4-D) and several inhibitors of polyamine biosynthesis. Activity of SAM synthetase increased...

  20. Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason W [San Diego, CA; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [San Diego, CA; Pastrnak, Miro [San Diego, CA; Santoro, Stephen William [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2012-05-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  1. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    SciTech Connect

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2006-08-01

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  2. Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis.

    PubMed

    Fedorova, Ksenia; Kayumov, Airat; Woyda, Kathrin; Ilinskaja, Olga; Forchhammer, Karl

    2013-05-02

    The Bacillus subtilis glutamine synthetase (GS) plays a dual role in cell metabolism by functioning as catalyst and regulator. GS catalyses the ATP-dependent synthesis of glutamine from glutamate and ammonium. Under nitrogen-rich conditions, GS becomes feedback-inhibited by high intracellular glutamine levels and then binds transcription factors GlnR and TnrA, which control the genes of nitrogen assimilation. While GS-bound TnrA is no longer able to interact with DNA, GlnR-DNA binding is shown to be stimulated by GS complex formation. In this paper we show a new physiological feature of the interaction between glutamine synthetase and TnrA. The transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in vivo and in vitro, while the GlnR protein does not affect the activity of the enzyme.

  3. Cloning and characterization of the C. elegans histidyl-tRNA synthetase gene.

    PubMed Central

    Amaar, Y G; Baillie, D L

    1993-01-01

    In this paper, we report the cloning and sequencing of the C. elegans histidyl-tRNA synthetase gene. The complete genomic sequence, and most of the cDNA sequence, of this gene is now determined. The gene size including flanking and coding regions is 2230 nucleotides long. Three small introns (45-50 bp long) are found to interrupt the open reading frame. The open reading frame translates to 523 amino acids. This putative protein sequence shows extensive homology with the human and yeast histidyl-tRNA the histidyl-tRNA synthetase gene is a single copy gene. Hence, it is very likely that it encodes both the cytoplasmic and the mitochondrial histidyl-tRNA synthetases. It is likely to be trans-spliced since it contains a trans-splice site in its 5' untranslated region. PMID:8414990

  4. SOLUBLE HEPATIC δ-AMINOLEVULINIC ACID SYNTHETASE: END-PRODUCT INHIBITION OF THE PARTIALLY PURIFIED ENZYME*

    PubMed Central

    Scholnick, Perry L.; Hammaker, Lydia E.; Marver, Harvey S.

    1969-01-01

    The present study confirms the existence of hepatic δ-aminolevulinic acid synthetase in the cytosol of the liver, suggests that this enzyme may be in transit to the mitochondria, and defines some of the characteristics of the partially purified enzyme. The substrate and cofactor requirements are similar to those of mitochondrial δ-aminolevulinic acid synthetase. Heme strongly inhibits the partially purified enzyme. A number of proteins that bind heme block this inhibition, which explains previous failures to demonstrate heme inhibition in crude systems. End-product inhibition of δ-aminolevulinic acid synthetase in the mitochondria may play an important role in the regulation of heme biosynthesis in eukaryotic cells. PMID:5257968

  5. Pyrrolysyl-tRNA Synthetase: an ordinary enzyme but an outstanding genetic code expansion tool

    PubMed Central

    Wan, Wei; Tharp, Jeffery M.; Liu, Wenshe R.

    2014-01-01

    The genetic incorporation of the 22nd proteinogenic amino acid, pyrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNAPyl. Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNAPyl. These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs. PMID:24631543

  6. In vitro reactivation of in vivo ammonium-inactivated glutamine synthetase from Synechocystis sp. PCC 6803.

    PubMed

    Mérida, A; Candau, P; Florencio, F J

    1991-12-16

    Glutamine synthetase from Synechocystis sp. strain PCC 6803 is inactivated by ammonium addition to cells growing with nitrate as the nitrogen source. The enzyme can be reactivated in vitro by different methods such as alkaline phosphatase treatment, but not phosphodiesterase, by raising the pH of the crude extract to values higher than 8, by increasing the ionic strength of the cell-free extract, or by preincubation with organic solvents, such as 2-propanol and ethanol. These results suggest that the loss of glutamine synthetase activity promoted by ammonium involves the non-covalent binding of a phosphorylated compound to the enzyme and support previous results that rule out the existence of an adenylylation/deadenylylation system functioning in the regulation of cyanobacterial glutamine synthetase.

  7. Is hydrogen peroxide involved in the benzyl viologen-mediated in-vivo inactivation of rat liver glutamine synthetase?

    PubMed Central

    Muriana, F. J.; Ruiz-Gutierrez, V.; Relimpio, A. M.

    1993-01-01

    After benzyl viologen administration to rats, a decrease in the rat liver glutamine synthetase activity was observed. An increase in the rat liver catalase activity was found concomitantly. In combination with the catalase inhibitor aminotriazole, benzyl viologen again diminished, but markedly, the rat liver glutamine synthetase activity. Moreover, partially purified glutamine synthetase from rat liver underwent rapid inactivation upon aerobic incubation with NAD(P)H and benzyl viologen. This inactivation was prevented by catalase, which suggests that the NAD(P)H/BV2+/O2-dependent system has a role in H2O2 production. Our results suggest that H2O2 is involved in the benzyl viologen-mediated in-vivo inactivation of the rat liver glutamine synthetase. In contrast, benzyl viologen alone or in combination with aminotriazole produced a significant increase of brain glutamine synthetase. PMID:8098954

  8. Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE.

    PubMed

    Jonsson, Anders; Nordlund, Stefan; Teixeira, Pedro Filipe

    2009-10-01

    In the nitrogen-fixing bacterium Rhodospirillum rubrum, the GlnE adenylyltransferase (encoded by glnE) catalyzes reversible adenylylation of glutamine synthetase, thereby regulating nitrogen assimilation. We have generated glnE mutant strains that are unable to adenylylate glutamine synthetase (GS). Surprisingly, the activity of GS was lower in the mutants than in the wild type, even when grown in nitrogen-fixing conditions. Our results support the proposal that R. rubrum can only cope with the absence of an adenylylation system in the presence of lowered GS expression or activity. In general terms, this report also provides further support for the central role of GS in bacterial metabolism.

  9. The binding of tyrosinyl-5'-AMP to tyrosyl-tRNA synthetase (E.coli).

    PubMed Central

    Grosse, F; Krauss, G; Kownatzki, R; Maass, G

    1979-01-01

    The binding between tyrosyl-tRNA synthetase (E.coli) and the alkylanalogue of the aminoacyladenylate, tyrosinyl-5'-AMP, has been investigated by fluorescence titrations and rapid mixing experiments. Tyrosyl-tRNA synthetase has two equivalent and independent binding sites for tyrosinyl-5'-AMP. The intrinsic binding constant is 4 x 10(7)M-1. The binding sites for tRNATyr and tyrosinyl-5'-AMP are independent of each other, the anticooperative mode of tRNA binding being preserved in the presence of tyrosinyl-5-AMP. PMID:377229

  10. Time course of the uridylylation and adenylylation states in the glutamine synthetase bicyclic cascade.

    PubMed Central

    Varón-Castellanos, R; Havsteen, B H; García-Moreno, M; Valero-Ruiz, E; Molina-Alarcón, M; García-Cánovas, F

    1993-01-01

    A kinetic analysis of the glutamine synthetase bicyclic cascade is presented. It includes the dependence on time from the onset of the reaction of both the uridylylation of Shapiro's regulatory protein and the adenylylation of the glutamine synthetase. The transient phase equations obtained allow an estimation of the time elapsed until the states of uridylylation and adenylylation reach their steady-states, and therefore an evaluation of the effective sensitivity of the system. The contribution of the uridylylation cycle to the adenylylation cycle has been studied, and an equation relating the state of adenylylation at any time to the state of uridylylation at the same instant has been derived. PMID:8104399

  11. A Survey of Glutamine Synthetase Activities in Tissues from Three Classes of Fish.

    DTIC Science & Technology

    1980-09-01

    USA-TR-88-1 NL jj 1-5II!11111112.° MCROCOPY RESOLUTION TEST CHART NATIONAL HIJ|AL) OF STANPARL AL 61 A - USAFA-TR-4O A SURVEY OF GLUTAMINE SYNTHETASE...glutamine synthetase activity is defined as the production of one pmole of y-glutamyl hydroxamate per min at 25°C. Protein was determined by the biuret method...content. P. is listed as at progein per g tissue ( biuret method); nm ± standard deviation.’ Number of specimens examined is listed in parenthesis. 3 body

  12. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.).

    PubMed

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; Ma, Xinming; Theg, Steven M

    2015-11-01

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.

  13. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis.

    PubMed

    Hauf, Ksenia; Kayumov, Airat; Gloge, Felix; Forchhammer, Karl

    2016-02-12

    TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated L-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA.

  14. Metabolic indicators of drought stress tolerance in wheat: glutamine synthetase isoenzymes and Rubisco.

    PubMed

    Nagy, Zoltán; Németh, Edit; Guóth, Adrienn; Bona, Lajos; Wodala, Barnabás; Pécsváradi, Attila

    2013-06-01

    Drought stress has a considerable impact on the ecosystem and agriculture. Continuous water deficit induces early leaf senescence in plants. During this process, chloroplasts are degraded and photosynthesis drastically drops. The objective of this investigation was to look into the regulation of nitrogen and carbon metabolism during water deficit. Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39) and the total protein contents inform us of the sink-source relation in plants. Glutamine synthetase (GS, EC 6.3.1.2) isoenzymes are good markers of plastid status (GS2) and the nitrogen metabolism (GS1). Tolerant and sensitive wheat (Triticum aestivum L.) genotypes were tested, which are widely used in agriculture. The amount of protein, Rubisco and GS isoforms in leaves were measured during the grain filling period, as indicative traits that ultimately determine the onset and stage of senescence. The symptoms of senescence first appeared on the oldest and finally on the youngest leaves. Drought stress disrupted the sequentiality of senescence in the sensitive varieties. An untimely senescence appeared in flag leaves, earlier than in the older leaves. Total protein and Rubisco contents decreased and the GS2 isoenzyme declined considerably in the youngest leaves. In the tolerant varieties, however, these physiological parameters did not change under drought, only the sequential senescence of leaf levels accelerated in some cases compared to the control, well-watered plants. Our results revealed that GS is a good indicator of drought stress, which can be applied for the characterization of wheat cultivars in terms of drought stress tolerance.

  15. A second glutamine synthetase gene with expression in the gills of the gulf toadfish (opsanus beta)

    SciTech Connect

    Walsh, Patrick J.; Mayer, Gregory D.; Medina, Monica; Bernstein, Matthew L.; Barimo, John F.; Mommsen, Thomas P.

    2003-05-08

    Enzyme and molecular biology approaches were used to more completely characterize the expression of the nitrogen metabolism enzyme glutamine synthetase [GSase; L-glutamate: ammonia ligase (ADP-forming), E.C. 6.3.1.2] in a variety of tissues of the gulf toadfish (Opsanus beta) subjected to unconfined (ammonotelic) and confined (ureotelic) conditions. Enzymological results demonstrate that while weight-specific GSase activities rank in the order of brain > liver > stomach {approx} kidney > intestine > gill> heart/spleen > muscle, when tissue mass is used to calculate a glutamine synthetic potential, the liver has the greatest, followed by muscle > stomach and intestine with minor contributions from the remaining tissues. Additionally, during confinement stress, GSase activity only increases significantly in liver (5-fold) and muscle (2-fold), tissues which previously showed significant expression of the other enzymes of urea synthesis. RT PCR and RACE PCR revealed the presence of a second GSas e cDNA from gill tissue that appears to share relatively low nucleotide and amino acid sequence similarity ({approx}73 percent) with the original GSase cloned from liver, and furthermore lacks a mitochondrial leader targeting sequence. RT PCR and restriction digestion experiments demonstrated that mRNA from the original ''liver'' GSase is expressed in all tissues examined (liver, gill, stomach, intestine, kidney, brain and muscle), whereas the new ''gill'' form shows expression primarily in the gill. Enzyme activities of gill GSase also exhibit a different subcellular compartmentation with apparent exclusive expression in the soluble compartment, whereas other tissues expressing the ''liver'' form show both cytoplasmic and mitochondrial activities. Finally, phylogenetic analysis of a number of GSases demonstrates that the toadfish gill GSase has a greater affinity for a clade that includes the Xenopus GSase genes and one of two Fugu GSase genes, than it has for a clade

  16. Arabidopsis Plastidial Folylpolyglutamate Synthetase Is Required for Seed Reserve Accumulation and Seedling Establishment in Darkness

    PubMed Central

    Meng, Hongyan; Jiang, Ling; Xu, Bosi; Guo, Wenzhu; Li, Jinglai; Zhu, Xiuqing; Qi, Xiaoquan; Duan, Lixin; Meng, Xianbin; Fan, Yunliu; Zhang, Chunyi

    2014-01-01

    Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3−. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3− conditions, and further enhanced under NO3− limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3− during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3− as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis. PMID:25000295

  17. Arabidopsis plastidial folylpolyglutamate synthetase is required for seed reserve accumulation and seedling establishment in darkness.

    PubMed

    Meng, Hongyan; Jiang, Ling; Xu, Bosi; Guo, Wenzhu; Li, Jinglai; Zhu, Xiuqing; Qi, Xiaoquan; Duan, Lixin; Meng, Xianbin; Fan, Yunliu; Zhang, Chunyi

    2014-01-01

    Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3-. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3- conditions, and further enhanced under NO3- limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3- during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3- as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis.

  18. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.)

    DOE PAGES

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; ...

    2015-08-24

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII andmore » GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Lastly, our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.« less

  19. Molecular Mechanisms of Glutamine Synthetase Mutations that Lead to Clinically Relevant Pathologies

    PubMed Central

    Frieg, Benedikt; Görg, Boris; Homeyer, Nadine; Keitel, Verena; Häussinger, Dieter; Gohlke, Holger

    2016-01-01

    Glutamine synthetase (GS) catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C) were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S) was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically. PMID:26836257

  20. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis*

    PubMed Central

    Hauf, Ksenia; Kayumov, Airat; Gloge, Felix; Forchhammer, Karl

    2016-01-01

    TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated l-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA. PMID:26635369

  1. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum

    DOE PAGES

    Rydzak, Thomas; Garcia, David; Stevenson, David M.; ...

    2017-05-01

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. And while recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in C. thermocellum. Deletion of glnA reduced levels of secreted valinemore » and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine and α-ketoglutarate levels indicative of nitrogen-rich conditions. Here, we propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine/α-ketoglutarate levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.« less

  2. A Sensing Role of the Glutamine Synthetase in the Nitrogen Regulation Network in Fusarium fujikuroi

    PubMed Central

    Huß, Kathleen; Brandt, Ulrike; Fleißner, André; Tudzynski, Bettina

    2013-01-01

    In the plant pathogenic ascomycete Fusarium fujikuroi the synthesis of several economically important secondary metabolites (SM) depends on the nitrogen status of the cells. Of these SMs, gibberellin and bikaverin synthesis is subject to nitrogen catabolite repression (NCR) and is therefore only executed under nitrogen starvation conditions. How the signal of available nitrogen quantity and quality is sensed and transmitted to transcription factors is largely unknown. Earlier work revealed an essential regulatory role of the glutamine synthetase (GS) in the nitrogen regulation network and secondary metabolism as its deletion resulted in total loss of SM gene expression. Here we present extensive gene regulation studies of the wild type, the Δgln1 mutant and complementation strains of the gln1 deletion mutant expressing heterologous GS-encoding genes of prokaryotic and eukaryotic origin or 14 different F. fujikuroi gln1 copies with site-directed mutations. All strains were grown under different nitrogen conditions and characterized regarding growth, expression of NCR-responsive genes and biosynthesis of SM. We provide evidence for distinct roles of the GS in sensing and transducing the signals to NCR-responsive genes. Three site directed mutations partially restored secondary metabolism and GS-dependent gene expression, but not glutamine formation, demonstrating for the first time that the catalytic and regulatory roles of GS can be separated. The distinct mutant phenotypes show that the GS (1) participates in NH4+-sensing and transducing the signal towards NCR-responsive transcription factors and their subsequent target genes; (2) affects carbon catabolism and (3) activates the expression of a distinct set of non-NCR GS-dependent genes. These novel insights into the regulatory role of the GS provide fascinating perspectives for elucidating regulatory roles of GS proteins of different organism in general. PMID:24260467

  3. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; Ma, Xinming; Theg, Steven M.

    2015-01-01

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development. PMID:26307137

  4. Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process

    PubMed Central

    Woese, Carl R.; Olsen, Gary J.; Ibba, Michael; Söll, Dieter

    2000-01-01

    The aminoacyl-tRNA synthetases (AARSs) and their relationship to the genetic code are examined from the evolutionary perspective. Despite a loose correlation between codon assignments and AARS evolutionary relationships, the code is far too highly structured to have been ordered merely through the evolutionary wanderings of these enzymes. Nevertheless, the AARSs are very informative about the evolutionary process. Examination of the phylogenetic trees for each of the AARSs reveals the following. (i) Their evolutionary relationships mostly conform to established organismal phylogeny: a strong distinction exists between bacterial- and archaeal-type AARSs. (ii) Although the evolutionary profiles of the individual AARSs might be expected to be similar in general respects, they are not. It is argued that these differences in profiles reflect the stages in the evolutionary process when the taxonomic distributions of the individual AARSs became fixed, not the nature of the individual enzymes. (iii) Horizontal transfer of AARS genes between Bacteria and Archaea is asymmetric: transfer of archaeal AARSs to the Bacteria is more prevalent than the reverse, which is seen only for the “gemini group.” (iv) The most far-ranging transfers of AARS genes have tended to occur in the distant evolutionary past, before or during formation of the primary organismal domains. These findings are also used to refine the theory that at the evolutionary stage represented by the root of the universal phylogenetic tree, cells were far more primitive than their modern counterparts and thus exchanged genetic material in far less restricted ways, in effect evolving in a communal sense. PMID:10704480

  5. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process.

    PubMed

    Woese, C R; Olsen, G J; Ibba, M; Söll, D

    2000-03-01

    The aminoacyl-tRNA synthetases (AARSs) and their relationship to the genetic code are examined from the evolutionary perspective. Despite a loose correlation between codon assignments and AARS evolutionary relationships, the code is far too highly structured to have been ordered merely through the evolutionary wanderings of these enzymes. Nevertheless, the AARSs are very informative about the evolutionary process. Examination of the phylogenetic trees for each of the AARSs reveals the following. (i) Their evolutionary relationships mostly conform to established organismal phylogeny: a strong distinction exists between bacterial- and archaeal-type AARSs. (ii) Although the evolutionary profiles of the individual AARSs might be expected to be similar in general respects, they are not. It is argued that these differences in profiles reflect the stages in the evolutionary process when the taxonomic distributions of the individual AARSs became fixed, not the nature of the individual enzymes. (iii) Horizontal transfer of AARS genes between Bacteria and Archaea is asymmetric: transfer of archaeal AARSs to the Bacteria is more prevalent than the reverse, which is seen only for the "gemini group. " (iv) The most far-ranging transfers of AARS genes have tended to occur in the distant evolutionary past, before or during formation of the primary organismal domains. These findings are also used to refine the theory that at the evolutionary stage represented by the root of the universal phylogenetic tree, cells were far more primitive than their modern counterparts and thus exchanged genetic material in far less restricted ways, in effect evolving in a communal sense.

  6. Catalytic pathway, substrate binding and stability in SAICAR synthetase: A structure and molecular dynamics study.

    PubMed

    Manjunath, Kavyashree; Jeyakanthan, Jeyaraman; Sekar, Kanagaraj

    2015-07-01

    The de novo purine biosynthesis is one of the highly conserved pathways among all organisms and is essential for the cell viability. A clear understanding of the enzymes in this pathway would pave way for the development of antimicrobial and anticancer drugs. Phosphoribosylaminoimidazole-succinocarboxamide (SAICAR) synthetase is one of the enzymes in this pathway that catalyzes ATP dependent ligation of carboxyaminoimidazole ribotide (CAIR) with l-aspartate (ASP). Here, we describe eight crystal structures of this enzyme, in C2221 and H3 space groups, bound to various substrates and substrate mimics from a hyperthermophilic archaea Pyrococcus horikoshii along with molecular dynamics simulations of the structures with substrates. Complexes exhibit minimal deviation from its apo structure. The CAIR binding site displays a preference for pyrimidine nucleotides. In the ADP·TMP·ASP complex, the ASP binds at a position equivalent to that found in Saccharomyces cerevisiae structure (PDB: 2CNU) and thus, clears the ambiguity regarding ASP's position. A possible mode for the inhibition of the enzyme by CTP and UTP, observed earlier in the yeast enzyme, is clearly illustrated in the structures bound to CMP and UMP. The ADP.Mg(2+)·PO4·CD/MP complex having a phosphate ion between the ATP and CAIR sites strengthens one of the two probable pathways (proposed in Escherichia coli study) of catalytic mechanism and suggests the possibility of a phosphorylation taking place before the ASP's attack on CAIR. Molecular dynamic simulations of this enzyme along with its substrates at 90°C reveal the relative strengths of substrate binding, possible antagonism and the role of Mg(2+) ions. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Identification and expression analyses of cytosolic glutamine synthetase genes in barley (Hordeum vulgare L.).

    PubMed

    Goodall, Andrew J; Kumar, Pankaj; Tobin, Alyson K

    2013-04-01

    Glutamine synthetase (GS) is a key enzyme in nitrogen (N) assimilation, particularly during seed development. Three cytosolic GS isoforms (HvGS1) were identified in barley (Hordeum vulgare L. cv Golden Promise). Quantitation of gene expression, localization and response to N supply revealed that each gene plays a non-redundant role in different tissues and during development. Localization of HvGS1_1 in vascular cells of different tissues, combined with its abundance in the stem and its response to changes in N supply, indicate that it is important in N transport and remobilization. HvGS1_1 is located on chromosome 6H at 72.54 cM, close to the marker HVM074 which is associated with a major quantitative trait locus (QTL) for grain protein content (GPC). HvGS1_1 may be a potential candidate gene to manipulate barley GPC. HvGS1_2 mRNA was localized to the leaf mesophyll cells, in the cortex and pericycle of roots, and was the dominant HvGS1 isoform in these tissues. HvGS1_2 expression increased in leaves with an increasing supply of N, suggesting its role in the primary assimilation of N. HvGS1_3 was specifically and predominantly localized in the grain, being highly expressed throughout grain development. HvGS1_3 expression increased specifically in the roots of plants grown on high NH(+)4, suggesting that it has a primary role in grain N assimilation and also in the protection against ammonium toxicity in roots. The expression of HvGS1 genes is directly correlated with protein and enzymatic activity, indicating that transcriptional regulation is of prime importance in the control of GS activity in barley.

  8. N114S mutation causes loss of ATP-induced aggregation of human phosphoribosylpyrophosphate synthetase 1

    SciTech Connect

    Liu Honglin; Peng, Xiaohui; Zhao Fang; Zhang Guobin; Tao Ye; Luo Zhaofeng; Li Yang; Teng Maikun; Li Xu Wei Shiqiang

    2009-02-20

    This study examined recombinant wild-type human phosphoribosylpyrophosphate synthetase 1 (wt-PRS1, EC 2.7.6.1) and the point mutant Asn114Ser PRS1 (N114S-Mutant) in cells of a patient with primary gout. Dynamic light-scattering and sedimentation velocity experiments indicated that the monomeric wt-PRS1 in solution was assembled into hexamers after adding the substrate ATP. However, this ATP-induced aggregation effect was not observed with N114S-Mutant, which has a 50% higher enzymatic activity than that of wt-PRS1. Synchrotron radiation circular dichroism spectroscopy revealed that the point mutation causes an increase of {alpha}-helix content and a decrease of turn content. Examination of the crystal structure of wt-PRS1 indicated that 12 hydrogen bonds formed by 6 pairs of N114 and D139 have an important role in stabilizing the hexamer. We suggest that the substitution of S114 for N114 in N114S-Mutant leads to the rupture of 12 hydrogen bonds and breakage of the PO{sub 4}{sup 3-} allosteric site where PO{sub 4}{sup 3-} functions as a fixer of the ATP-binding loop. Therefore, we consider that formation of the hexamer as the structural basis of the ADP allosteric inhibition is greatly weakened by the N114S mutation, and that alteration of the ATP-binding loop conformation is the key factor in the increased activity of N114S-Mutant. These two factors could be responsible for the high level of activity of N114S-Mutant in this patient.

  9. Correlation of exon 3 β-catenin mutations with glutamine synthetase staining patterns in hepatocellular adenoma and hepatocellular carcinoma.

    PubMed

    Hale, Gillian; Liu, Xinxin; Hu, Junjie; Xu, Zhong; Che, Li; Solomon, David; Tsokos, Christos; Shafizadeh, Nafis; Chen, Xin; Gill, Ryan; Kakar, Sanjay

    2016-11-01

    The current clinical practice is based on the assumption of strong correlation between diffuse glutamine synthetase expression and β-catenin activation in hepatocellular adenoma and hepatocellular carcinoma. This high correlation is based on limited data and may represent an oversimplification as glutamine synthetase staining patterns show wide variability in clinical practice. Standardized criteria for interpreting diverse glutamine synthetase patterns, and the association between each pattern and β-catenin mutations is not clearly established. This study examines the correlation between glutamine synthetase staining patterns and β-catenin mutations in 15 typical hepatocellular adenomas, 5 atypical hepatocellular neoplasms and 60 hepatocellular carcinomas. Glutamine synthetase staining was classified into one of the three patterns: (a) diffuse homogeneous: moderate-to-strong cytoplasmic staining in >90% of lesional cells, without a map-like pattern, (b) diffuse heterogeneous: moderate-to-strong staining in 50-90% of lesional cells, without a map-like pattern, and (c) patchy: moderate-to-strong staining in <50% of lesional cells (often perivascular), or weak staining irrespective of the extent, and all other staining patterns (including negative cases). Sanger sequencing of CTNNB1 exon 3 was performed in all cases. Of hepatocellular tumors with diffuse glutamine synthetase staining (homogeneous or heterogeneous), an exon 3 β-catenin mutation was detected in 33% (2/6) of typical hepatocellular adenoma, 75% (3/4) of atypical hepatocellular neoplasm and 17% (8/47) of hepatocellular carcinomas. An exon 3 mutation was also observed in 15% (2/13) of hepatocellular carcinomas with patchy glutamine synthetase staining. The results show a modest correlation between diffuse glutamine synthetase immunostaining and exon 3 β-catenin mutations in hepatocellular adenoma and hepatocellular carcinoma with discrepancy rates >50% in both hepatocellular adenoma and hepatocellular

  10. Correlation of Exon 3 β-catenin Mutations with Glutamine Synthetase Staining Patterns in Hepatocellular Adenoma and Hepatocellular Carcinoma

    PubMed Central

    Hale, Gillian; Liu, Xinxin; Hu, Junjie; Xu, Zhong; Che, Li; Solomon, David; Tsokos, Christos; Shafizadeh, Nafis; Chen, Xin; Gill, Ryan; Kakar, Sanjay

    2016-01-01

    The current clinical practice is based on the assumption of strong correlation between diffuse glutamine synthetase expression and β-catenin activation in hepatocellular adenoma and hepatocellular carcinoma. This high correlation is based on limited data, and may represent an oversimplification as glutamine synthetase staining patterns show wide variability in clinical practice. Standardized criteria for interpreting diverse glutamine synthetase patterns, and the association between each pattern and β-catenin mutations is not clearly established. This study examines the correlation between glutamine synthetase staining patterns and β-catenin mutations in 15 typical hepatocellular adenomas, 5 atypical hepatocellular neoplasms and 60 hepatocellular carcinomas. Glutamine synthetase staining was classified into one of three patterns: (a) diffuse homogeneous: moderate to strong cytoplasmic staining in more than 90% of lesional cells, without a map-like pattern, (b) diffuse heterogeneous: moderate to strong staining in 50–90% of lesional cells, without a map-like pattern, and (c) patchy: moderate to strong staining in <50% of lesional cells (often perivascular), or weak staining irrespective of extent, and all other staining patterns (including negative cases). Sanger sequencing of CTNNB1 exon 3 was performed in all cases. Of hepatocellular tumors with diffuse glutamine synthetase staining (homogeneous or heterogeneous), an exon 3 β-catenin mutation was detected in 33% (2/6) of typical hepatocellular adenoma, 75% (3/4) of atypical hepatocellular neoplasm and 17% (8/47) of hepatocellular carcinomas. An exon 3 mutation was also observed in 15% (2/13) of hepatocellular carcinomas with patchy glutamine synthetase staining. The results show a modest correlation between diffuse glutamine synthetase immunostaining and exon 3 β-catenin mutations in hepatocellular adenoma and hepatocellular carcinoma with discrepancy rates exceeding 50% in both hepatocellular adenoma and

  11. The adenylation domain of tyrocidine synthetase 1--structural and functional role of the interdomain linker region and the (S/T)GT(T/S)GXPKG core sequence.

    PubMed

    Dieckmann, R; Pavela-Vrancic, M; Pfeifer, E; von Döhren, H; Kleinkauf, H

    1997-08-01

    Sequence analysis of peptide synthetases revealed extensive structure similarity with firefly luciferase, whose crystal structure has recently become available, providing evidence for the localization of the active site at the interface between two subdomains separated by a distorted linker region [Conti, E., Franks, N. P. & Brick, P. (1996) Structure 4, 287-298]. The functional importance of two flexible loops, corresponding to the linker region of firefly luciferase and the highly conserved (S/T)GT(T/S)GXPKG core sequence, has been studied in view of the proposed conformational changes by the use of mutant analysis, limited proteolysis and chemical modification of tyrocidine synthetase 1. Substitution of the highly conserved Arg416, residing in the loop separating the subdomains of the adenylation domain, resulted in profound loss of activity. Limited proteolysis of the mutant suggested significant structural changes as manifested by lack of protection to degradation in the presence of substrates, revealing a probable disturbance of the induced-fit mechanism regulating the transformation from an open to a closed conformation. Mutants, obtained by replacement of the conserved Lys186 from the (S/T)GT(T/S)GXPKG core sequence, displayed only minor differences in substrate-binding affinity despite significant reduction of catalytic efficiency. Residue Lys186 appears to play an important role in either stabilization of the bound substrate through charge-charge-interactions, and/or fixing of the loop for maintainance of the active-site conformation.

  12. The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases.

    PubMed Central

    Smith, D J; Earl, A J; Turner, G

    1990-01-01

    The nucleotide sequence of the Penicillium chrysogenum Oli13 acvA gene encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase, which performs the first step in penicillin biosynthesis, has been determined. The acvA gene contains an open reading frame of 11,238 bp encoding a protein of 3746 amino acids with a predicted mol. wt of 421,073 dalton. Three domains within the protein of approximately 570 amino acids have between 38% and 43% identity with each other and share similarity with two antibiotic peptide synthetases from Bacillus brevis as well as two other enzymes capable of performing ATP-pyrophosphate exchange reactions. The acvA gene is located close to the pcbC gene encoding isopenicillin N synthetase, the enzyme for the second step of beta-lactam biosynthesis, and is transcribed in the opposite orientation to it. The intergenic region of 1107 bp from which the acvA and pcbC genes are divergently transcribed has also been sequenced. PMID:2118102

  13. A new mechanism of post-transfer editing by aminoacyl-tRNA synthetases: catalysis of hydrolytic reaction by bacterial-type prolyl-tRNA synthetase.

    PubMed

    Boyarshin, Konstantin S; Priss, Anastasia E; Rayevskiy, Alexsey V; Ilchenko, Mykola M; Dubey, Igor Ya; Kriklivyi, Ivan A; Yaremchuk, Anna D; Tukalo, Michael A

    2017-02-01

    Aminoacyl tRNA synthetases are enzymes that specifically attach amino acids to cognate tRNAs for use in the ribosomal stage of translation. For many aminoacyl tRNA synthetases, the required level of amino acid specificity is achieved either by specific hydrolysis of misactivated aminoacyl-adenylate intermediate (pre-transfer editing) or by hydrolysis of the mischarged aminoacyl-tRNA (post-transfer editing). To investigate the mechanism of post-transfer editing of alanine by prolyl-tRNA synthetase from the pathogenic bacteria Enterococcus faecalis, we used molecular modeling, molecular dynamic simulations, quantum mechanical (QM) calculations, site-directed mutagenesis of the enzyme, and tRNA modification. The results support a new tRNA-assisted mechanism of hydrolysis of misacylated Ala-tRNA(Pro). The most important functional element of this catalytic mechanism is the 2'-OH group of the terminal adenosine 76 of Ala-tRNA(Pro), which forms an intramolecular hydrogen bond with the carbonyl group of the alanine residue, strongly facilitating hydrolysis. Hydrolysis was shown by QM methods to proceed via a general acid-base catalysis mechanism involving two functionally distinct water molecules. The transition state of the reaction was identified. Amino acid residues of the editing active site participate in the coordination of substrate and both attacking and assisting water molecules, performing the proton transfer to the 3'-O atom of A76.

  14. Leucyl-tRNA synthetase: double duty in amino acid sensing.

    PubMed

    Durán, Raúl V; Hall, Michael N

    2012-08-01

    The cellular response to amino acids is controlled at the molecular level by TORC1. While many of the elements that participate in TORC1 signaling are known, we still have no clear idea how cells sense amino acids. Two recent studies found that leucyl-tRNA synthetase (LRS) is a leucine sensor for TORC1, in both yeast and mammalian cells.

  15. Assembly of Multi-tRNA Synthetase Complex via Heterotetrameric Glutathione Transferase-homology Domains*

    PubMed Central

    Cho, Ha Yeon; Maeng, Seo Jin; Cho, Hyo Je; Choi, Yoon Seo; Chung, Jeong Min; Lee, Sangmin; Kim, Hoi Kyoung; Kim, Jong Hyun; Eom, Chi-Yong; Kim, Yeon-Gil; Guo, Min; Jung, Hyun Suk; Kang, Beom Sik; Kim, Sunghoon

    2015-01-01

    Many multicomponent protein complexes mediating diverse cellular processes are assembled through scaffolds with specialized protein interaction modules. The multi-tRNA synthetase complex (MSC), consisting of nine different aminoacyl-tRNA synthetases and three non-enzymatic factors (AIMP1–3), serves as a hub for many signaling pathways in addition to its role in protein synthesis. However, the assembly process and structural arrangement of the MSC components are not well understood. Here we show the heterotetrameric complex structure of the glutathione transferase (GST) domains shared among the four MSC components, methionyl-tRNA synthetase (MRS), glutaminyl-prolyl-tRNA synthetase (EPRS), AIMP2 and AIMP3. The MRS-AIMP3 and EPRS-AIMP2 using interface 1 are bridged via interface 2 of AIMP3 and EPRS to generate a unique linear complex of MRS-AIMP3:EPRS-AIMP2 at the molar ratio of (1:1):(1:1). Interestingly, the affinity at interface 2 of AIMP3:EPRS can be varied depending on the occupancy of interface 1, suggesting the dynamic nature of the linear GST tetramer. The four components are optimally arranged for maximal accommodation of additional domains and proteins. These characteristics suggest the GST tetramer as a unique and dynamic structural platform from which the MSC components are assembled. Considering prevalence of the GST-like domains, this tetramer can also provide a tool for the communication of the MSC with other GST-containing cellular factors. PMID:26472928

  16. Sponge OAS has a distinct genomic structure within the 2-5A synthetase family.

    PubMed

    Reintamm, Tõnu; Kuusksalu, Anne; Metsis, Madis; Päri, Mailis; Vallmann, Kerli; Lopp, Annika; Justesen, Just; Kelve, Merike

    2008-11-01

    2',5'-Oligoadenylate synthetases (2-5A synthetases, OAS) are enzymes that play an important role in the interferon-induced antiviral defense mechanisms in mammals. Sponges, the evolutionarily lowest multicellular animals, also possess OAS; however, their function is presently unclear. Low homology between primary structures of 2-5A synthetases from vertebrates and sponges renders their evolutionary relationship obscure. The genomic structure of vertebrate OASs has been thoroughly examined, making it possible to elucidate molecular evolution and expansion of this gene family. Until now, no OAS gene structure was available from sponges to compare it with the corresponding genes from higher organisms. In the present work, we determined the exon/intron structure of the OAS gene from the marine sponge Geodia cydonium and found it to be completely different from the strictly conserved exon/intron pattern of the OAS genes from vertebrates. This finding was corroborated by the analysis of OAS genes from another sponge, Amphimedon queenslandica, whose genome was recently sequenced. Our data suggest that vertebrate and sponge OAS genes have no direct common intron-containing ancestor and two (sub)types of OAS may be discriminated. This study opens new perspectives for understanding the phylogenesis and evolution of 2-5A synthetases as well as functional aspects of this multigene family.

  17. A decrease in S-adenosylmethionine synthetase activity increases the probability of spontaneous sporulation.

    PubMed Central

    Ochi, K; Freese, E

    1982-01-01

    Starting with a relaxed (relA) strain, mutants with reduced activity of adenosine triphosphate:L-methionine S-adenosyl transferase (EC 2.5.1.6; SAM synthetase) were isolated in Bacillus subtilis. One such mutant (gene symbol metE1) had only 3% of the normal SAM synthetase activity but grew almost as well as the parent strain. Another mutant was isolated (gene symbol spdC1) as being able to sporulate continually at a high frequency; it had one-half the normal SAM synthetase activity at 33 degrees C. Both mutants continually and spontaneously entered spore development at a higher frequency than the parent strain in a medium containing excess glucose, ammonium ions, and phosphate. Sporulation was prevented by a high concentration of SAM (1 mM or more) or by the combination of adenosine and methionine (0.5 mM or more each), both of which are precursors of SAM. In contrast to this continual increase in the spore titer, addition of decoyinine, an inhibitor of GMP synthetase, rapidly initiated massive sporulation. Various amino acid analogs also induced sporulation in the relA strain, the methionine analogs ethionine and selenomethionine being most effective. PMID:6811558

  18. Activation of chitin synthetase in permeabilized cells of a Saccharomyces cerevisiae mutant lacking proteinase B.

    PubMed Central

    Fernandez, M P; Correa, J U; Cabib, E

    1982-01-01

    Digitonin treatment at 30 degrees C of a Saccharomyces cerevisiae mutant lacking proteinase B permeabilized the cells and caused rapid and extensive activation of chitin synthetase in situ. The same result was obtained with a mutant generally defective in vacuolar proteases. By lowering the temperature and using different permeabilization procedures, we showed that increases in permeability and activation are distinct processes. Activation was inhibited by the protease inhibitors antipain and leupeptin, but by pepstatin or chymostatin. Metal chelators were also inhibitory, and their effect was reversed by the addition of Ca2+ but not by Mg2+. Antipain added together with Ca2+ after incubation of the cells in the presence of a chelating agent prevented reversal of inhibition, a result that was interpreted as indicating that antipain acts either on the same step affected by Ca2+ or on a subsequent step. Efforts to obtain activation in cell-free extracts were unsuccessful, but it was possible to extract the synthetase, once activated, by breaking permeabilized cells with glass beads. Treatment of the cell-free extracts with trypsin led not only to increased activity of chitin synthetase, but also to a change in the pH-activity curve and a diminished requirement by the enzyme for free N-acetylglucosamine. These observations suggest that the modification undergone by the synthetase during endogenous activation is different from that brought about by trypsin treatment. Images PMID:6216245

  19. A novel therapeutic target for peripheral nerve injury-related diseases: aminoacyl-tRNA synthetases

    PubMed Central

    Park, Byung Sun; Yeo, Seung Geun; Jung, Junyang; Jeong, Na Young

    2015-01-01

    Aminoacyl-tRNA synthetases (AminoARSs) are essential enzymes that perform the first step of protein synthesis. Beyond their original roles, AminoARSs possess non-canonical functions, such as cell cycle regulation and signal transduction. Therefore, AminoARSs represent a powerful pharmaceutical target if their non-canonical functions can be controlled. Using AminoARSs-specific primers, we screened mRNA expression in the spinal cord dorsal horn of rats with peripheral nerve injury created by sciatic nerve axotomy. Of 20 AminoARSs, we found that phenylalanyl-tRNA synthetase beta chain (FARSB), isoleucyl-tRNA synthetase (IARS) and methionyl-tRNA synthetase (MARS) mRNA expression was increased in spinal dorsal horn neurons on the injured side, but not in glial cells. These findings suggest the possibility that FARSB, IARS and MARS, as a neurotransmitter, may transfer abnormal sensory signals after peripheral nerve damage and become a new target for drug treatment. PMID:26692865

  20. Ammonia Fixation via Glutamine Synthetase and Glutamate Synthase in the CAM Plant Cissus quadrangularis L. 1

    PubMed Central

    Berger, Michael G.; Sprengart, Michael L.; Kusnan, Misri; Fock, Heinrich P.

    1986-01-01

    Succulent stems of Cissus quadrangularis L. (Vitaceae) contain glutamine synthetase, glutamate synthase, and glutamate dehydrogenase. The CO2 and water gas exchanges of detached internodes were typical for Crassulacean acid metabolism plants. During three physiological phases, e.g. in the dark, in the early illumination period after stomata closure, and during the late light phase with the stomata wide open, 15NH4Cl was injected into the central pith of stem sections. The kinetics of 15N labeling in glutamate and glutamine suggested that glutamine synthetase was involved in the initial ammonia fixation. In the presence of methionine sulfoximine, an inhibitor of glutamine synthetase, the incorporation of 15N derived from 15NH4Cl was almost completely inhibited. Injections of amido-15N glutamine demonstrated a potential for 15N transfer from the amido group of glutamine into glutamate which was suppressed by the glutamate synthase inhibitor, azaserine. The evidence indicates that glutamine synthetase and glutamate synthase could assimilate ammonia and cycle nitrogen during all phases of Crassulacean acid metabolism. PMID:16664820

  1. Ammonia Fixation via Glutamine Synthetase and Glutamate Synthase in the CAM Plant Cissus quadrangularis L.

    PubMed

    Berger, M G; Sprengart, M L; Kusnan, M; Fock, H P

    1986-06-01

    Succulent stems of Cissus quadrangularis L. (Vitaceae) contain glutamine synthetase, glutamate synthase, and glutamate dehydrogenase. The CO(2) and water gas exchanges of detached internodes were typical for Crassulacean acid metabolism plants. During three physiological phases, e.g. in the dark, in the early illumination period after stomata closure, and during the late light phase with the stomata wide open, (15)NH(4)Cl was injected into the central pith of stem sections. The kinetics of (15)N labeling in glutamate and glutamine suggested that glutamine synthetase was involved in the initial ammonia fixation. In the presence of methionine sulfoximine, an inhibitor of glutamine synthetase, the incorporation of (15)N derived from (15)NH(4)Cl was almost completely inhibited. Injections of amido-(15)N glutamine demonstrated a potential for (15)N transfer from the amido group of glutamine into glutamate which was suppressed by the glutamate synthase inhibitor, azaserine. The evidence indicates that glutamine synthetase and glutamate synthase could assimilate ammonia and cycle nitrogen during all phases of Crassulacean acid metabolism.

  2. Nucleotide synthetase ribozymes may have emerged first in the RNA world

    PubMed Central

    Ma, Wentao; Yu, Chunwu; Zhang, Wentao; Hu, Jiming

    2007-01-01

    Though the “RNA world” hypothesis has gained a central role in ideas concerning the origin of life, the scenario concerning its emergence remains uncertain. It has been speculated that the first scene may have been the emergence of a template-dependent RNA synthetase ribozyme, which catalyzed its own replication: thus, “RNA replicase.” However, the speculation remains uncertain, primarily because of the large sequence length requirement of such a replicase and the lack of a convincing mechanism to ensure its self-favoring features. Instead, we propose a nucleotide synthetase ribozyme as an alternative candidate, especially considering recent experimental evidence suggesting the possibility of effective nonenzymatic template-directed synthesis of RNA. A computer simulation was conducted to support our proposal. The conditions for the emergence of the nucleotide synthetase ribozyme are discussed, based on dynamic analysis on a computer. We suggest the template-dependent RNA synthetase ribozyme emerged later, perhaps after the emergence of protocells. PMID:17878321

  3. Acetyl-CoA synthetase is a conserved regulator of autophagy and lifespan

    PubMed Central

    Mirzaei, Hamed; Longo, Valter D.

    2014-01-01

    Autophagy is essential for the maintenance of cellular homeostasis during periods of stress. Eisenberg and colleagues (Eisenberg et al., 2014) now describe the central and conserved role for acetyl-CoA synthetase in regulating lifespan in yeast and flies by a mechanism involving autophagy. PMID:24703691

  4. CDC64 Encodes Cytoplasmic Alanyl-tRNA Synthetase, Ala1p, of Saccharomyces cerevisiae

    PubMed Central

    Wrobel, Carolyn; Schmidt, Emmett V.; Polymenis, Michael

    1999-01-01

    The cdc64-1 mutation causes G1 arrest in Saccharomyces cerevisiae corresponding to a type II Start phenotype. We report that CDC64 encodes Ala1p, an alanyl-tRNA synthetase. Thus, cdc64-1 might affect charging of tRNAAla and thereby initiation of cell division. PMID:10601222

  5. Aminoacyl tRNA Synthetase Deficiency Promotes Angiogenesis via the Unfolded Protein Response Pathway

    PubMed Central

    Castranova, Daniel; Davis, Andrew E.; Lo, Brigid D.; Miller, Mayumi F.; Paukstelis, Paul J.; Swift, Matthew R.; Pham, Van N.; Torres-Vázquez, Jesús; Bell, Kameha; Shaw, Kenna M.; Kamei, Makoto; Weinstein, Brant M.

    2016-01-01

    Objective Understanding the mechanisms regulating normal and pathologic angiogenesis is of great scientific and clinical interest. In this report, we show that mutations in two different aminoacyl tRNA synthetases, threonyl tRNA synthetase (tarsy58) or isoleucyl tRNA synthetase (iarsy68), lead to similar increased branching angiogenesis in developing zebrafish. Approach and Results The Unfolded Protein Response (UPR) pathway is activated by aminoacyl tRNA synthetase deficiencies, and we show that UPR genes atf4, atf6, and xbp1, as well as the key pro-angiogenic ligand vascular endothelial growth factor (vegfaa), are all up-regulated in tarsy58 and iarsy68 mutants. Finally, we show that the PERK-ATF4 arm of the UPR pathway is necessary for both the elevated vegfaa levels and increased angiogenesis observed in tarsy58 mutants. Conclusions Our results suggest that endoplasmic reticulum (ER) stress acts as a pro-angiogenic signal via UPR pathway-dependent up-regulation of vegfaa. PMID:26821951

  6. S-Adenosylmethionine synthetase 3 is important for pollen tube growth

    USDA-ARS?s Scientific Manuscript database

    S-Adenosylmethionine is widely used in a variety of biological reactions and participates in the methionine (Met) metabolic pathway. In Arabidopsis (Arabidopsis thaliana), one of the four S-adenosylmethionine synthetase genes, METHIONINE ADENOSYLTRANSFERASE3 (MAT3), is highly expressed in pollen. He...

  7. Ligand co-crystallization of aminoacyl-tRNA synthetases from infectious disease organisms.

    PubMed

    Moen, Spencer O; Edwards, Thomas E; Dranow, David M; Clifton, Matthew C; Sankaran, Banumathi; Van Voorhis, Wesley C; Sharma, Amit; Manoil, Colin; Staker, Bart L; Myler, Peter J; Lorimer, Donald D

    2017-03-16

    Aminoacyl-tRNA synthetases (aaRSs) charge tRNAs with their cognate amino acid, an essential precursor step to loading of charged tRNAs onto the ribosome and addition of the amino acid to the growing polypeptide chain during protein synthesis. Because of this important biological function, aminoacyl-tRNA synthetases have been the focus of anti-infective drug development efforts and two aaRS inhibitors have been approved as drugs. Several researchers in the scientific community requested aminoacyl-tRNA synthetases to be targeted in the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure determination pipeline. Here we investigate thirty-one aminoacyl-tRNA synthetases from infectious disease organisms by co-crystallization in the presence of their cognate amino acid, ATP, and/or inhibitors. Crystal structures were determined for a CysRS from Borrelia burgdorferi bound to AMP, GluRS from Borrelia burgdorferi and Burkholderia thailandensis bound to glutamic acid, a TrpRS from the eukaryotic pathogen Encephalitozoon cuniculi bound to tryptophan, a HisRS from Burkholderia thailandensis bound to histidine, and a LysRS from Burkholderia thailandensis bound to lysine. Thus, the presence of ligands may promote aaRS crystallization and structure determination. Comparison with homologous structures shows conformational flexibility that appears to be a recurring theme with this enzyme class.

  8. Positive newborn screen in the biochemically normal infant of a mother with treated holocarboxylase synthetase deficiency.

    PubMed

    Nyhan, W L; Willis, M; Barshop, B A; Gangoiti, J

    2009-12-01

    Expanded programmes of newborn screening permit early diagnosis in time to prevent serious complications. These programmes have begun to detect patients who might otherwise remain asymptomatic. An additional confounding variable is the positive screen that results from maternal rather than neonatal disease. This was the case in an infant in whom elevated hydroxyisovalerylcarnitine (C(5)OH) in his newborn screen was the result of placental transfer from his mother, whose holocarboxylase synthetase deficiency was being successfully treated with biotin. The mother had been diagnosed and treated with biotin prenatally. She had no phenotypic feature of holocarboxylase synthetase deficiency, most importantly no episodes ever of acute metabolic acidosis. In the infant a repeat screen was also positive. On day 28 the infant's plasma C(5)OH carnitine was 0.05 mumol/L (normal) and urinary organic acids on day 39 were normal. The mother's excretion of 3-hydroxyisovaleric acid was 109 mmol/mol creatinine. These observations indicate that holocarboxylase synthetase deficiency is one more maternal metabolic disease which may lead to a positive screen in her unaffected newborn infant. They also make the point that holocarboxylase synthetase deficiency in an infant should be detectable in programmes of neonatal screening, which was not clear previously.

  9. Brain and Liver Glutamine Synthetase of Rana catesbeiana and Rana cancrivora.

    DTIC Science & Technology

    1983-07-01

    glutamine synthetase in the liver is clear for most groups. The lungfishes (Dipnoids) do not retain urea except to avoid ammonia toxicity during...York. 11. Janssens, P.A. and Cohen, P.P. 1968. Nitrogen meta- bolism in the African lungfish . Comp. Biochem. Physiol. 24, 879-886. 9 12. Pickford, G.E

  10. Salmonella typhimurium nit Is nadE: Defective Nitrogen Utilization and Ammonia-Dependent NAD Synthetase

    PubMed Central

    Schneider, Barbara L.; Reitzer, Lawrence J.

    1998-01-01

    S. typhimurium nit mutants are defective in nitrogen assimilation, despite having normal levels of assimilatory enzymes. Complementation, enzyme assays, and genetic mapping show that nit is nadE. We present evidence that ammonia, not glutamine, is the physiological substrate for eubacterial NAD synthetases and that low activity completely accounts for the mutant phenotype. PMID:9721319

  11. Aminoacylation of tRNA in the evolution of an aminoacyl-tRNA synthetase

    PubMed Central

    Lipman, Richard S. A.; Hou, Ya-Ming

    1998-01-01

    Aminoacyl-tRNA synthetases catalyze aminoacylation of tRNAs by joining an amino acid to its cognate tRNA. The selection of the cognate tRNA is jointly determined by separate structural domains that examine different regions of the tRNA. The cysteine-tRNA synthetase of Escherichia coli has domains that select for tRNAs containing U73, the GCA anticodon, and a specific tertiary structure at the corner of the tRNA L shape. The E. coli enzyme does not efficiently recognize the yeast or human tRNACys, indicating the evolution of determinants for tRNA aminoacylation from E. coli to yeast to human and the coevolution of synthetase domains that interact with these determinants. By successively modifying the yeast and human tRNACys to ones that are efficiently aminoacylated by the E. coli enzyme, we have identified determinants of the tRNA that are important for aminoacylation but that have diverged in the course of evolution. These determinants provide clues to the divergence of synthetase domains. We propose that the domain for selecting U73 is conserved in evolution. In contrast, we propose that the domain for selecting the corner of the tRNA L shape diverged early, after the separation between E. coli and yeast, while that for selecting the GCA-containing anticodon loop diverged late, after the separation between yeast and human. PMID:9811828

  12. A NONSTEADY STATE MODEL FOR THE TIGHT-BINDING INHIBITION OF THYMIDYLATE SYNTHETASE BY 5-FLUOROURACIL

    EPA Science Inventory

    5-Fluorouracil (5_FU) is a widely used chemotherapeutic drug and tratogen that was chosen as a prototypic toxicant to contruct a biologically based dose-resonse (BBDR) model (Setzer et. al., 2001). Part of the BBDR model simulates the inhibition of thymidylate synthetase (TS), a...

  13. The effect of portacaval anastomosis on the expression of glutamine synthetase and ornithine aminotransferase in perivenous hepatocytes.

    PubMed

    da Silva, Robin; Levillain, Oliver; Brosnan, John T; Araneda, Silvia; Brosnan, Margaret E

    2013-05-01

    There is functional zonation of metabolism across the liver acinus, with glutamine synthetase restricted to a narrow band of cells around the terminal hepatic venules. Portacaval anastomosis, where there is a major rerouting of portal blood flow from the portal vein directly to the vena cava bypassing the liver, has been reported to result in a marked decrease in the activity of glutamine synthetase. It is not known whether this represents a loss of perivenous hepatocytes or whether there is a specific loss of glutamine synthetase. To answer this question, we have determined the activity of glutamine synthetase and another enzyme from the perivenous compartment, ornithine aminotransferase, as well as the immunochemical localization of both glutamine synthetase and ornithine aminotransferase in rats with a portacaval shunt. The portacaval shunt caused a marked decrease in glutamine synthetase activity and an increase in ornithine aminotransferase activity. Immunohistochemical analysis showed that the glutamine synthetase and ornithine aminotransferase proteins maintained their location in the perivenous cells. These results indicate that there is no generalized loss of perivenous hepatocytes, but rather, there is a significant alteration in the expression of these proteins and hence metabolism in this cell population.

  14. Phosphorylation of Human CTP Synthetase 1 by Protein Kinase A: IDENTIFICATION OF Thr455 AS A MAJOR SITE OF PHOSPHORYLATION*

    PubMed Central

    Choi, Mal-Gi; Carman, George M.

    2007-01-01

    CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr455 was a substrate for protein kinase A. A Thr455 to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Δ ura8Δ mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation, and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine. PMID:17189248

  15. The effect of glial glutamine synthetase inhibition on recognition and temporal memories in the rat.

    PubMed

    Kant, Deepika; Tripathi, Shweta; Qureshi, Munazah F; Tripathi, Shweta; Pandey, Swati; Singh, Gunjan; Kumar, Tankesh; Mir, Fayaz A; Jha, Sushil K

    2014-02-07

    The glutamate neurotransmitter is intrinsically involved in learning and memory. Glial glutamine synthetase enzyme synthesizes glutamine, which helps maintain the optimal neuronal glutamate level. However, the role of glutamine synthetase in learning and memory remains unclear. Using associative trace learning task, we investigated the effects of methionine sulfoximine (MSO) (glutamine synthetase inhibitor) on recognition and temporal memories. MSO and vehicle were injected (i.p.) three hours before training in separate groups of male Wistar rats (n=11). Animals were trained to obtain fruit juice after following a set of sequential events. Initially, house-light was presented for 15s followed by 5s trace interval. Thereafter, juice was given for 20s followed by 20s inter-presentation interval. A total of 75 presentations were made over five sessions during the training and testing periods. The average number of head entries to obtain juice per session and during individual phases at different time intervals was accounted as an outcome measure of recognition and temporal memories. The total head entries in MSO and vehicle treated animals were comparable on training and testing days. However, it was 174.90% (p=0.08), 270.61% (p<0.05), 143.20% (p<0.05) more on training day and 270.33% (p<0.05), 157.94% (p<0.05), 170.42% (p<0.05) more on testing day, during the house-light, trace-interval and inter-presentation interval phases in MSO animals. Glutamine synthetase inhibition did not induce recognition memory deficit, while temporal memory was altered, suggesting that glutamine synthetase modulates some aspects of mnemonic processes.

  16. Molecular cloning and characterization of glutamine synthetase, a tegumental protein from Schistosoma japonicum.

    PubMed

    Qiu, Chunhui; Hong, Yang; Cao, Yan; Wang, Fei; Fu, Zhiqiang; Shi, Yaojun; Wei, Meimei; Liu, Shengfa; Lin, Jiaojiao

    2012-12-01

    Glutamine synthetase catalyzes the synthesis of glutamine, providing nitrogen for the production of purines, pyrimidines, amino acids, and other compounds required in many pivotal cellular events. Herein, a full-length cDNA encoding Schistosoma japonicum glutamine synthetase (SjGS) was isolated from 21-day schistosomes. The entire open reading frame of SjGS contains a 1,095-bp coding region corresponding to 364 amino acids with a calculated molecular weight of 40.7 kDa. NCBIP blast shows that the putative amino acid of SjGS contains a classic β-grasp domain and a catalytic domain of glutamine synthetase. The relative mRNA expression of SjGS was evaluated in 7-, 13-, 21-, 28-, 35-, and 42-day worms of S. japonicum in the final host and higher expression at day 21, and 42 worms were observed. This protein was also detected in worm extracts using Western blot. Immunofluorescence studies indicated that the SjGS protein was mainly distributed on tegument and parenchyma in 28-day adult worms. The recombinant glutamine synthetase with a molecular weight of 45 kDa was expressed in Escherichia coli and purified in its active form. The enzyme activity of the recombinant protein was 3.30 ± 0.67 U.μg-1. The enzyme activity was highly stable over a wide range of pH (6-9) and temperature (25-40 °C) under physiological conditions. The transcription of SjGS was upregulated in praziquantel-treated worms at 2-, 4-, and 24-h posttreatment compared with the untreated control. As a first step towards the clarification of the role of glutamine synthetase in schistosome species, we have cloned and characterized cDNAs encoding SjGS in S. japonicum, and the data presented suggest that SjGS is an important molecule in the development of the schistosome.

  17. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara

    2012-08-31

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

  18. Dual targeting to mitochondria and chloroplasts: characterization of Thr-tRNA synthetase targeting peptide.

    PubMed

    Berglund, Anna-Karin; Spånning, Erika; Biverståhl, Henrik; Maddalo, Gianluca; Tellgren-Roth, Christian; Mäler, Lena; Glaser, Elzbieta

    2009-11-01

    There is a group of proteins that are encoded by a single gene, expressed as a single precursor protein and dually targeted to both mitochondria and chloroplasts using an ambiguous targeting peptide. Sequence analysis of 43 dual targeted proteins in comparison with 385 mitochondrial proteins and 567 chloroplast proteins of Arabidopsis thaliana revealed an overall significant increase in phenylalanines, leucines, and serines and a decrease in acidic amino acids and glycine in dual targeting peptides (dTPs). The N-terminal portion of dTPs has significantly more serines than mTPs. The number of arginines is similar to those in mTPs, but almost twice as high as those in cTPs. We have investigated targeting determinants of the dual targeting peptide of Thr-tRNA synthetase (ThrRS-dTP) studying organellar import of N- and C-terminal deletion constructs of ThrRS-dTP coupled to GFP. These results show that the 23 amino acid long N-terminal portion of ThrRS-dTP is crucial but not sufficient for the organellar import. The C-terminal deletions revealed that the shortest peptide that was capable of conferring dual targeting was 60 amino acids long. We have purified the ThrRS-dTP(2-60) to homogeneity after its expression as a fusion construct with GST followed by CNBr cleavage and ion exchange chromatography. The purified ThrRS-dTP(2-60) inhibited import of pF1beta into mitochondria and of pSSU into chloroplasts at microM concentrations showing that dual and organelle-specific proteins use the same organellar import pathways. Furthermore, the CD spectra of ThrRS-dTP(2-60) indicated that the peptide has the propensity for forming alpha-helical structure in membrane mimetic environments; however, the membrane charge was not important for the amount of induced helical structure. This is the first study in which a dual targeting peptide has been purified and investigated by biochemical and biophysical means.

  19. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase.

    PubMed

    Yoon, Cheol-Yong; Shim, Young-Jun; Kim, Eun-Ho; Lee, Ju-Han; Won, Nam-Hee; Kim, Jeong-Hun; Park, In-Sun; Yoon, Duck-Ki; Min, Bon-Hong

    2007-02-15

    Recently, pegylated arginine deiminase (ADI; EC 3.5.3.6) has been used to treat the patients with hepatocellular carcinoma or melanoma, in which the level of argininosuccinate synthetase (ASS) activity is low or undetectable. The efficacy of its antitumor activity largely depends on the level of intracellular ASS, which enables tumor cells to recycle citrulline to arginine. Thus, we examined the expression levels of ASS in various cancer cells and found that it is low in renal cell carcinoma (RCC) cells, rendering the cells highly sensitive to arginine deprivation by ADI treatment. Immunohistochemical analysis revealed that in biopsy specimens from RCC patients (n = 98), the expression of ASS is highly demonstrated in the epithelium of normal proximal tubule but not seen in tumor cells. Furthermore, RCC cells treated with ADI showed remarkable growth retardation in a dose dependent manner. ADI also exerted in vivo antiproliferative effect on the allografted renal cell carcinoma (RENCA) tumor cells and prolonged the survival of tumor-bearing mice. Histological examination of the tumors revealed that tumor angiogenesis and vascular endothelial growth factor (VEGF) expression were significantly diminished by ADI administration. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of RCC in ways of inhibitions of arginine availability and neovascularization.

  20. A point mutation and a RNA processing mutation in a carbamyl phosphate synthetase I (CPSI) deficient patient

    SciTech Connect

    Hall, L.; Summer, M.; Sierra-Rivera, E.; Freeman, M.

    1994-09-01

    Deficiency of carbamyl phosphate synthetase I (CPSID) results in a life-threatening disease due to hyperammonemia. A better understanding of the molecular basis of CPSID was achieved by studying the genetic defects in a CPSID patient. CPSI message was analyzed from hepatic tissue through Northern blot analysis, reverse transcription of liver mRNA followed by polymerase chain reaction amplification (RT-PCR), dideoxy fingerprinting, and direct DNA sequencing. Northern blot analysis of the patient revealed a diminished amount of normal sized CPSI message and multiple other bands not detected in controls. Analysis of the amplified coding region revealed a single point mutation leading to an asparagine to lysine substitution at codon 715. The patient`s cDNA was homozygous and genomic DNA heterozygous for the point mutation which was not found in ten unrelated CPSID patients. The point mutation causes a change from a highly-conserved neutral amino acid to a polar basic residue within a nucleotide/bicarbonate binding domain which points to its importance in normal CPSI function. The other allele which was absent in RT-PCR fragements presumably leads to the multi-form poly-A message detected by Northern blot analysis and allows the point mutation to become the dominant expressed allele. These mutations represent the second reported molecular defect in CPSI and the first to involve a mutation in a functional domain and in RNA processing.

  1. Carbamoyl Phosphate Synthetase Subunit MoCpa2 Affects Development and Pathogenicity by Modulating Arginine Biosynthesis in Magnaporthe oryzae

    PubMed Central

    Liu, Xinyu; Cai, Yongchao; Zhang, Xi; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2016-01-01

    Arginine is a semi-essential amino acid that affects physiological and biochemical functions. The CPA2 gene in yeast encodes a large subunit of arginine-specific carbamoyl phosphate synthetase (CPS) and is involved in arginine biosynthesis. Here, an ortholog of yeast CPA2 was identified in the rice blast fungus Magnaporthe oryzae, and was named MoCPA2. MoCpa2 is an 1180-amino acid protein which contains an ATP grasp domain and two CPSase domains. Targeted deletion of MoCPA2 supported its role in de novo arginine biosynthesis in M. oryzae as mutant phenotypes were complemented by arginine but not ornithine. The ΔMocpa2 mutant exhibited defects in asexual development and pathogenicity but not appressorium formation. Further examination revealed that the invasive hyphae of the ΔMocpa2 mutant were restricted mainly to the primary infected cells. In addition, the ΔMocpa2 mutant was unable to induce a plant defense response and had the ability to scavenge ROS during pathogen-plant interactions. Structure analysis revealed that the ATP grasp domain and each CPS domain were indispensable for the proper localization and full function of MoCpa2. In summary, our results indicate that MoCpa2 plays an important role in arginine biosynthesis, and affects growth, conidiogenesis, and pathogenicity. These results suggest that research into metabolism and processes that mediate amino acid synthesis are valuable for understanding M. oryzae pathogenesis. PMID:28066349

  2. Two siblings with homozygous pathogenic splice-site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2).

    PubMed

    Vanlander, Arnaud V; Menten, Björn; Smet, Joél; De Meirleir, Linda; Sante, Tom; De Paepe, Boel; Seneca, Sara; Pearce, Sarah F; Powell, Christopher A; Vergult, Sarah; Michotte, Alex; De Latter, Elien; Vantomme, Lies; Minczuk, Michal; Van Coster, Rudy

    2015-02-01

    A homozygous missense mutation (c.822G>C) was found in the gene encoding the mitochondrial asparaginyl-tRNA synthetase (NARS2) in two siblings born to consanguineous parents. These siblings presented with different phenotypes: one had mild intellectual disability and epilepsy in childhood, whereas the other had severe myopathy. Biochemical analysis of the oxidative phosphorylation (OXPHOS) complexes in both siblings revealed a combined complex I and IV deficiency in skeletal muscle. In-gel activity staining after blue native-polyacrylamide gel electrophoresis confirmed the decreased activity of complex I and IV, and, in addition, showed the presence of complex V subcomplexes. Considering the consanguineous descent, homozygosity mapping and whole-exome sequencing were combined revealing the presence of one single missense mutation in the shared homozygous region. The c.822G>C variant affects the 3' splice site of exon 7, leading to skipping of the whole exon 7 and a part of exon 8 in the NARS2 mRNA. In EBV-transformed lymphoblasts, a specific decrease in the amount of charged mt-tRNA(Asn) was demonstrated as compared with controls. This confirmed the pathogenic nature of the variant. To conclude, the reported variant in NARS2 results in a combined OXPHOS complex deficiency involving complex I and IV, making NARS2 a new member of disease-associated aaRS2.

  3. Protein Translation Enzyme lysyl-tRNA Synthetase Presents a New Target for Drug Development against Causative Agents of Loiasis and Schistosomiasis

    PubMed Central

    Yogavel, Manickam; Sharma, Amit

    2016-01-01

    Helminth parasites are an assemblage of two major phyla of nematodes (also known as roundworms) and platyhelminths (also called flatworms). These parasites are a major human health burden, and infections caused by helminths are considered under neglected tropical diseases (NTDs). These infections are typified by limited clinical treatment options and threat of drug resistance. Aminoacyl-tRNA synthetases (aaRSs) are vital enzymes that decode genetic information and enable protein translation. The specific inhibition of pathogen aaRSs bores well for development of next generation anti-parasitics. Here, we have identified and annotated aaRSs and accessory proteins from Loa loa (nematode) and Schistosoma mansoni (flatworm) to provide a glimpse of these protein translation enzymes within these parasites. Using purified parasitic lysyl-tRNA synthetases (KRSs), we developed series of assays that address KRS enzymatic activity, oligomeric states, crystal structure and inhibition profiles. We show that L. loa and S. mansoni KRSs are potently inhibited by the fungal metabolite cladosporin. Our co-crystal structure of Loa loa KRS-cladosporin complex reveals key interacting residues and provides a platform for structure-based drug development. This work hence provides a new direction for both novel target discovery and inhibitor development against eukaryotic pathogens that include L. loa and S. mansoni. PMID:27806050

  4. Hydroxamate-based colorimetric assay to assess amide bond formation by adenylation domain of nonribosomal peptide synthetases.

    PubMed

    Hara, Ryotaro; Suzuki, Ryohei; Kino, Kuniki

    2015-05-15

    We demonstrated the usefulness of a hydroxamate-based colorimetric assay for predicting amide bond formation (through an aminoacyl-AMP intermediate) by the adenylation domain of nonribosomal peptide synthetases. By using a typical adenylation domain of tyrocidine synthetase (involved in tyrocidine biosynthesis), we confirmed the correlation between the absorbance at 490 nm of the l-Trp-hydroxamate-Fe(3+) complex and the formation of l-Trp-l-Pro, where l-Pro was used instead of hydroxylamine. Furthermore, this assay was adapted to the adenylation domains of surfactin synthetase (involved in surfactin biosynthesis) and bacitracin synthetase (involved in bacitracin biosynthesis). Consequently, the formation of various aminoacyl l-Pro formations was observed.

  5. Molecular cloning and regulation of expression of the genes for initiation factor 3 and two aminoacyl-tRNA synthetases.

    PubMed Central

    Elseviers, D; Gallagher, P; Hoffman, A; Weinberg, B; Schwartz, I

    1982-01-01

    A 22-kilobase fragment of the Escherichia coli chromosome which contains the genes for translation initiation factor 3, phenylalanyl-tRNA synthetase, and threonyl-tRNA synthetase was cloned into plasmid pACYC184. The hybrid plasmid (designated pID1) complements a temperature-sensitive pheS lesion in E. coli NP37. pID1-transformed NP37 overproduce initiation factor 3 and phenylalanyl-tRNA synthetase. Gene expression from pID1 was studied in vitro in a coupled transcription-translation system and in minicells. The results suggest that the genes for initiation factor 3 and phenylalanyl- and threonyl-tRNA synthetase are regulated by different mechanisms. Images PMID:6749810

  6. Molecular cloning and regulation of expression of the genes for initiation factor 3 and two aminoacyl-tRNA synthetases.

    PubMed

    Elseviers, D; Gallagher, P; Hoffman, A; Weinberg, B; Schwartz, I

    1982-10-01

    A 22-kilobase fragment of the Escherichia coli chromosome which contains the genes for translation initiation factor 3, phenylalanyl-tRNA synthetase, and threonyl-tRNA synthetase was cloned into plasmid pACYC184. The hybrid plasmid (designated pID1) complements a temperature-sensitive pheS lesion in E. coli NP37. pID1-transformed NP37 overproduce initiation factor 3 and phenylalanyl-tRNA synthetase. Gene expression from pID1 was studied in vitro in a coupled transcription-translation system and in minicells. The results suggest that the genes for initiation factor 3 and phenylalanyl- and threonyl-tRNA synthetase are regulated by different mechanisms.

  7. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G

    2014-03-11

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  8. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase

    PubMed Central

    Donnelly, M. Lauren; Fimlaid, Kelly A.

    2016-01-01

    ABSTRACT The spore-forming obligate anaerobe Clostridium difficile is a leading cause of antibiotic-associated diarrhea around the world. In order for C. difficile to cause infection, its metabolically dormant spores must germinate in the gastrointestinal tract. During germination, spores degrade their protective cortex peptidoglycan layers, release dipicolinic acid (DPA), and hydrate their cores. In C. difficile, cortex hydrolysis is necessary for DPA release, whereas in Bacillus subtilis, DPA release is necessary for cortex hydrolysis. Given this difference, we tested whether DPA synthesis and/or release was required for C. difficile spore germination by constructing mutations in either spoVAC or dpaAB, which encode an ion channel predicted to transport DPA into the forespore and the enzyme complex predicted to synthesize DPA, respectively. C. difficile spoVAC and dpaAB mutant spores lacked DPA but could be stably purified and were more hydrated than wild-type spores; in contrast, B. subtilis spoVAC and dpaAB mutant spores were unstable. Although C. difficile spoVAC and dpaAB mutant spores exhibited wild-type germination responses, they were more readily killed by wet heat. Cortex hydrolysis was not affected by this treatment, indicating that wet heat inhibits a stage downstream of this event. Interestingly, C. difficile spoVAC mutant spores were significantly more sensitive to heat treatment than dpaAB mutant spores, indicating that SpoVAC plays additional roles in conferring heat resistance. Taken together, our results demonstrate that SpoVAC and DPA synthetase control C. difficile spore resistance and reveal differential requirements for these proteins among the Firmicutes. IMPORTANCE Clostridium difficile is a spore-forming obligate anaerobe that causes ∼500,000 infections per year in the United States. Although spore germination is essential for C. difficile to cause disease, the factors required for this process have been only partially characterized

  9. Giardia fatty acyl-CoA synthetases as potential drug targets

    PubMed Central

    Guo, Fengguang; Ortega-Pierres, Guadalupe; Argüello-García, Raúl; Zhang, Haili; Zhu, Guan

    2015-01-01

    Giardiasis caused by Giardia intestinalis (syn. G. lamblia, G. duodenalis) is one of the leading causes of diarrheal parasitic diseases worldwide. Although limited drugs to treat giardiasis are available, there are concerns regarding toxicity in some patients and the emerging drug resistance. By data-mining genome sequences, we observed that G. intestinalis is incapable of synthesizing fatty acids (FA) de novo. However, this parasite has five long-chain fatty acyl-CoA synthetases (GiACS1 to GiACS5) to activate FA scavenged from the host. ACS is an essential enzyme because FA need to be activated to form acyl-CoA thioesters before they can enter subsequent metabolism. In the present study, we performed experiments to explore whether some GiACS enzymes could serve as drug targets in Giardia. Based on the high-throughput datasets and protein modeling analyses, we initially studied the GiACS1 and GiACS2, because genes encoding these two enzymes were found to be more consistently expressed in varied parasite life cycle stages and when interacting with host cells based on previously reported transcriptome data. These two proteins were cloned and expressed as recombinant proteins. Biochemical analysis revealed that both had apparent substrate preference toward palmitic acid (C16:0) and myristic acid (C14:0), and allosteric or Michaelis–Menten kinetics on palmitic acid or ATP. The ACS inhibitor triacsin C inhibited the activity of both enzymes (IC50 = 1.56 μM, Ki = 0.18 μM for GiACS1, and IC50 = 2.28 μM, Ki = 0.23 μM for GiACS2, respectively) and the growth of G. intestinalis in vitro (IC50 = 0.8 μM). As expected from giardial evolutionary characteristics, both GiACSs displayed differences in overall folding structure as compared with their human counterparts. These observations support the notion that some of the GiACS enzymes may be explored as drug targets in this parasite. PMID:26257723

  10. Bacillus subtilis GlnR contains an autoinhibitory C-terminal domain required for the interaction with glutamine synthetase.

    PubMed

    Wray, Lewis V; Fisher, Susan H

    2008-04-01

    The Bacillus subtilis GlnR transcription factor regulates gene expression in response to changes in nitrogen availability. Glutamine synthetase transmits the nitrogen regulatory signal to GlnR. The DNA-binding activity of GlnR is activated by a transient protein-protein interaction with feedback-inhibited glutamine synthetase that stabilizes GlnR-DNA complexes. This signal transduction mechanism was analysed by creating mutant GlnR proteins with partial or complete truncations of their C-terminal domains. The truncated GlnR proteins were found to constitutively repress gene expression in vivo. This constitutive repression did not require glutamine synthetase. Purified mutant GlnR proteins bound DNA in vitro more tightly than wild-type GlnR protein and this binding was not activated by feedback-inhibited glutamine synthetase. While full-length GlnR is monomeric, the truncated GlnR proteins contained significant levels of dimers. These results indicate that the C-terminal region of GlnR acts as an autoinhibitory domain that prevents GlnR dimerization and thus impedes DNA binding. The GlnR C-terminal domain is also required for the interaction between GlnR and feedback-inhibited glutamine synthetase. Compared with the full-length GlnR protein, the truncated GlnR proteins were defective in their interaction with feedback-inhibited glutamine synthetase in cross-linking experiments.

  11. A CMP-N-acetylneuraminic acid synthetase purified from a marine bacterium, Photobacterium leiognathi JT-SHIZ-145.

    PubMed

    Kajiwara, Hitomi; Mine, Toshiki; Miyazaki, Tatsuo; Yamamoto, Takeshi

    2011-01-01

    A cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) synthetase was found in a crude extract prepared from Photobacterium leiognathi JT-SHIZ-145, a marine bacterium that also produces a β-galactoside α2,6-sialyltransferase. The CMP-Neu5Ac synthetase was purified from the crude extract of the cells by a combination of anion-exchange and gel filtration column chromatography. The purified enzyme migrated as a single band (60 kDa) on sodium dodecylsulfate-polyacrylamide gel electrophoresis. The activity of the enzyme was maximal at 35 °C at pH 9.0, and the synthetase required Mg(2+) for activity. Although these properties are similar to those of other CMP-Neu5Ac synthetases isolated from bacteria, this synthetase produced not only CMP-Neu5Ac from cytidine triphosphate and Neu5Ac, but also CMP-N-glycolylneuraminic acid from cytidine triphosphate and N-glycolylneuraminic acid, unlike CMP-Neu5Ac synthetase purified from Escherichia coli.

  12. The purification and properties of the glutamine synthetase from the cytosol of Soya-bean root nodules.

    PubMed Central

    McParland, R H; Guevara, J G; Becker, R R; Evans, H J

    1976-01-01

    The major portion of glutamine synthetase activity in root nodules of soya-bean plants is associated with the cytosol rather than with Rhizobium japonicum bacteroids. Glutamine synthetase accounts for about 2% of the total soluble protein in nodule cytosol. Glutamine synthetase from nodule cytosol has been purified by a procedure involving fractionation with protamine sulphate, ammonium sulphate and polypropylene glycol, chromatography on DEAE-Bio-Gel A and Bio-Gel A-5m and affinity chromatography on glutamate-agarose columns. The purified preparation appeared to be homogeneous in the analytical ultracentrifuge. From sedimentation-equilibrium experiments a mol. wt. of about 376000 was determined for the native enzyme and 47300 for the enzyme in guanidinium chloride. From these data and measurements of electron micrographs, we have concluded that glutamine synthetase from nodule cytosol consists of eight subunits arranged in two sets of planar tetramers which form a cubical configuration with dimensions of about 10 nm (100 A) across each side. Glutamine synthetase from nodule cytosol has a higher glycine and proline content and a lower content of phenylalanine than the glutamine synthetase that has been prepared from pea seed. The cytosol enzyme contains four half-cystine molecules per subunit, which is in contrast with two reported for the enzyme from pea seed. Enzyme activity is striking influenced by the relative proportion of Mg2+ and Mn2+ in the assay medium. Activity is inhibited by feedback inhibitors and is influenced by energy charge. Images PLATE 1 PLATE 2 PMID:8035

  13. Aminoacyl transfer ribonucleic acid synthetases from cell-free extract of Plasmodium berghei.

    PubMed

    Ilan, J; Ilan, J

    1969-05-02

    Aminoacyl transfer ribonucleic acid synthetases for leucine tyrosine, histidine, valine, proline, threonine, and lysine were obtainnned from cell-free extract of Plasmodium berghei. The leucyl-tRNA synthetase cane charge tRNA from liver or Escherichia coli with leucine-c(14), liver tRNA being a better substrate. The amount of aminoacylation increses linerly with respect to the quantity of tRNA added from either source and is dependent on the amount of enzyme added. The rate of aminoacylation is constant for 10 minutes and then decreases. It is enhanced by polyvinylsulfate. One-tenth millimoler pyrimethamine, hydroxystilbamidine, quinacrine, and acriflavine inhibited the formation of C(14)-valyl-tRNA. Species specificity between tRNA and its charging enzyme with respect to the recognition site is discussed.

  14. Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response

    PubMed Central

    Park, Sang Gyu; Kim, Hye Jin; Min, You Hong; Choi, Eung-Chil; Shin, Young Kee; Park, Bum-Joon; Lee, Sang Won; Kim, Sunghoon

    2005-01-01

    Although aminoacyl-tRNA synthetases (ARSs) are essential for protein synthesis, they also function as regulators and signaling molecules in diverse biological processes. Here, we screened 11 different human ARSs to identify the enzyme that is secreted as a signaling molecule. Among them, we found that lysyl-tRNA synthetase (KRS) was secreted from intact human cells, and its secretion was induced by TNF-α. The secreted KRS bound to macrophages and peripheral blood mononuclear cells to enhance the TNF-α production and their migration. The mitogen-activated protein kinases, extracellular signal-regulated kinase and p38 mitogen-activated protein kinase, and Gαi were determined to be involved in the signal transduction triggered by KRS. All of these activities demonstrate that human KRS may work as a previously uncharacterized signaling molecule, inducing immune response through the activation of monocyte/macrophages. PMID:15851690

  15. Genetic incorporation of histidine derivatives using an engineered pyrrolysyl-tRNA synthetase.

    PubMed

    Xiao, Han; Peters, Francis B; Yang, Peng-Yu; Reed, Sean; Chittuluru, Johnathan R; Schultz, Peter G

    2014-05-16

    A polyspecific amber suppressor aminoacyl-tRNA synthetase/tRNA pair was evolved that genetically encodes a series of histidine analogues in both Escherichia coli and mammalian cells. In combination with tRNACUA(Pyl), a pyrrolysyl-tRNA synthetase mutant was able to site-specifically incorporate 3-methyl-histidine, 3-pyridyl-alanine, 2-furyl-alanine, and 3-(2-thienyl)-alanine into proteins in response to an amber codon. Substitution of His66 in the blue fluorescent protein (BFP) with these histidine analogues created mutant proteins with distinct spectral properties. This work further expands the structural and chemical diversity of unnatural amino acids (UAAs) that can be genetically encoded in prokaryotic and eukaryotic organisms and affords new probes of protein structure and function.

  16. Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.

    1987-01-01

    The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.

  17. Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Jahnke, L.

    1979-01-01

    Previous studies on the yeast Saccharomyces cerevisiae have shown that two different forms of the enzyme acetyl coenzyme A synthetase (ACS) are present, depending on the conditions under which the cells are grown. The paper evaluates the usefulness of a method designed to assay both synthetases simultaneously in yeast homogenates. The data presented confirm the possibility of simultaneous detection and estimation of the amount of both ACSs of S. cerevisiae in crude homogenates of this strain, making possible the study of physiological factors involved in the formation of these isoenzymes. One important factor for specifying which of the two enzymes is found in these yeast cells is the presence or absence of oxygen in their environment. Aeration not only affects the ratio of the two ACSs but also appears to affect the cellular distribution of these enzymes. Most of the data presented suggest the possibility that the nonaerobic ACS may serve as a precursor to the aerobic form.

  18. Assessing the effects of threonyl-tRNA synthetase on angiogenesis-related responses.

    PubMed

    Mirando, Adam C; Abdi, Khadar; Wo, Peibin; Lounsbury, Karen M

    2017-01-15

    Several recent reports have found a connection between specific aminoacyl-tRNA synthetases and the regulation of angiogenesis. As this new area of research is explored, it is important to have reliable assays to assess the specific angiogenesis functions of these enzymes. This review provides information about specific in vitro and in vivo methods that were used to assess the angiogenic functions of threonyl-tRNA synthetase including endothelial cell migration and tube assays as well as chorioallantoic membrane and tumor vascularization assays. The theory and discussion include best methods of analysis and quantification along with the advantages and limitations of each type of assay. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Jahnke, L.

    1979-01-01

    Previous studies on the yeast Saccharomyces cerevisiae have shown that two different forms of the enzyme acetyl coenzyme A synthetase (ACS) are present, depending on the conditions under which the cells are grown. The paper evaluates the usefulness of a method designed to assay both synthetases simultaneously in yeast homogenates. The data presented confirm the possibility of simultaneous detection and estimation of the amount of both ACSs of S. cerevisiae in crude homogenates of this strain, making possible the study of physiological factors involved in the formation of these isoenzymes. One important factor for specifying which of the two enzymes is found in these yeast cells is the presence or absence of oxygen in their environment. Aeration not only affects the ratio of the two ACSs but also appears to affect the cellular distribution of these enzymes. Most of the data presented suggest the possibility that the nonaerobic ACS may serve as a precursor to the aerobic form.

  20. Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation.

    PubMed Central

    Francklyn, Christopher; Perona, John J; Puetz, Joern; Hou, Ya-Ming

    2002-01-01

    Aminoacyl-tRNA synthetases attach amino acids to the 3' termini of cognate tRNAs to establish the specificity of protein synthesis. A recent Asilomar conference (California, January 13-18, 2002) discussed new research into the structure-function relationship of these crucial enzymes, as well as a multitude of novel functions, including participation in amino acid biosynthesis, cell cycle control, RNA splicing, and export of tRNAs from nucleus to cytoplasm in eukaryotic cells. Together with the discovery of their role in the cellular synthesis of proteins to incorporate selenocysteine and pyrrolysine, these diverse functions of aminoacyl-tRNA synthetases underscore the flexibility and adaptability of these ancient enzymes and stimulate the development of new concepts and methods for expanding the genetic code. PMID:12458790

  1. Structure of Human Phosphopantothenoylcysteine Synthetase at 2.3 Å Resolution

    SciTech Connect

    Manoj, N.; Strauss, E.; Begley, T.P.; Ealick, S.E.

    2010-12-01

    The structure of human phosphopantothenoylcysteine (PPC) synthetase was determined at 2.3 {angstrom} resolution. PPC synthetase is a dimer with identical monomers. Some features of the monomer fold resemble a group of NAD-dependent enzymes, while other features resemble the ribokinase fold. The ATP, phosphopantothenate, and cysteine binding sites were deduced from modeling studies. Highly conserved ATP binding residues include Gly43, Ser61, Gly63, Gly66, Phe230, and Asn258. Highly conserved phosphopantothenate binding residues include Asn59, Ala179, Ala180, and Asp183 from one monomer and Arg55 from the adjacent monomer. The structure predicts a ping pong mechanism with initial formation of an acyladenylate intermediate, followed by release of pyrophosphate and attack by cysteine to form the final products PPC and AMP.

  2. Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.

    1987-01-01

    The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.

  3. Purification, crystallization and data collection of methicillin-resistant Staphylococcus aureus Sar2676, a pantothenate synthetase

    PubMed Central

    Seetharamappa, Jaldappagari; Oke, Muse; Liu, Huanting; McMahon, Stephen A.; Johnson, Kenneth A.; Carter, Lester; Dorward, Mark; Zawadzki, Michal; Overton, Ian M.; van Niekirk, C. A. Johannes; Graham, Shirley; Botting, Catherine H.; Taylor, Garry L.; White, Malcolm F.; Barton, Geoffrey J.; Coote, Peter J.; Naismith, James H.

    2007-01-01

    Sar2676, a pantothenate synthetase with a molecular weight of 31 419 Da from methicillin-resistant Staphylococcus aureus, has been expressed, purified and crystallized at 293 K. The protein crystallizes in a primitive triclinic lattice, with unit-cell parameters a = 45.3, b = 60.5, c = 117.6 Å, α = 87.2, β = 81.2, γ = 68.4°. A complete data set has been collected to 2.3 Å resolution at the ESRF. Consideration of the likely solvent content suggested the asymmetric unit to contain four molecules. This has been confirmed by molecular-replacement phasing calculations, which give a solution with four monomers using a monomer of pantothenate synthetase from Escherichia coli (PDB code 1iho), which is 41% identical to Sar2676, as a search model. PMID:17554169

  4. Quality Control by Isoleucyl-tRNA Synthetase of Bacillus subtilis Is Required for Efficient Sporulation

    PubMed Central

    Kermgard, Elizabeth; Yang, Zhou; Michel, Annika-Marisa; Simari, Rachel; Wong, Jacqueline; Ibba, Michael; Lazazzera, Beth A.

    2017-01-01

    Isoleucyl-tRNA synthetase (IleRS) is an aminoacyl-tRNA synthetase whose essential function is to aminoacylate tRNAIle with isoleucine. Like some other aminoacyl-tRNA synthetases, IleRS can mischarge tRNAIle and correct this misacylation through a separate post-transfer editing function. To explore the biological significance of this editing function, we created a ileS(T233P) mutant of Bacillus subtilis that allows tRNAIle mischarging while retaining wild-type Ile-tRNAIle synthesis activity. As seen in other species defective for aminoacylation quality control, the growth rate of the ileS(T233P) strain was not significantly different from wild-type. When the ileS(T233P) strain was assessed for its ability to promote distinct phenotypes in response to starvation, the ileS(T233P) strain was observed to exhibit a significant defect in formation of environmentally resistant spores. The sporulation defect ranged from 3-fold to 30-fold and was due to a delay in activation of early sporulation genes. The loss of aminoacylation quality control in the ileS(T233P) strain resulted in the inability to compete with a wild-type strain under selective conditions that required sporulation. These data show that the quality control function of IleRS is required in B. subtilis for efficient sporulation and suggests that editing by aminoacyl-tRNA synthetases may be important for survival under starvation/nutrient limitation conditions. PMID:28139725

  5. Glutamine synthetase immunor present in oligodendroglia of regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, Fernando; Eng, Lawrence F.; Gibbs, Michael A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  6. A Phenotypic Based Target Screening Approach Delivers New Antitubercular CTP Synthetase Inhibitors.

    PubMed

    Esposito, Marta; Szadocka, Sára; Degiacomi, Giulia; Orena, Beatrice S; Mori, Giorgia; Piano, Valentina; Boldrin, Francesca; Zemanová, Júlia; Huszár, Stanislav; Barros, David; Ekins, Sean; Lelièvre, Joel; Manganelli, Riccardo; Mattevi, Andrea; Pasca, Maria Rosalia; Riccardi, Giovanna; Ballell, Lluis; Mikušová, Katarína; Chiarelli, Laurent R

    2017-06-09

    Despite its great potential, the target-based approach has been mostly unsuccessful in tuberculosis drug discovery, while whole cell phenotypic screening has delivered several active compounds. However, for many of these hits, the cellular target has not yet been identified, thus preventing further target-based optimization of the compounds. In this context, the newly validated drug target CTP synthetase PyrG was exploited to assess a target-based approach of already known, but untargeted, antimycobacterial compounds. To this purpose the publically available GlaxoSmithKline antimycobacterial compound set was assayed, uncovering a series of 4-(pyridin-2-yl)thiazole derivatives which efficiently inhibit the Mycobacterium tuberculosis PyrG enzyme activity, one of them showing low activity against the human CTP synthetase. The three best compounds were ATP binding site competitive inhibitors, with Ki values ranging from 3 to 20 μM, but did not show any activity against a small panel of different prokaryotic and eukaryotic kinases, thus demonstrating specificity for the CTP synthetases. Metabolic labeling experiments demonstrated that the compounds directly interfere not only with CTP biosynthesis, but also with other CTP dependent biochemical pathways, such as lipid biosynthesis. Moreover, using a M. tuberculosis pyrG conditional knock-down strain, it was shown that the activity of two compounds is dependent on the intracellular concentration of the CTP synthetase. All these results strongly suggest a role of PyrG as a target of these compounds, thus strengthening the value of this kind of approach for the identification of new scaffolds for drug development.

  7. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Eng, L. F.; Gibbs, M. A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  8. Co-operation between Polymerases and Nucleotide Synthetases in the RNA World

    PubMed Central

    Kim, Ye Eun; Higgs, Paul G.

    2016-01-01

    It is believed that life passed through an RNA World stage in which replication was sustained by catalytic RNAs (ribozymes). The two most obvious types of ribozymes are a polymerase, which uses a neighbouring strand as a template to make a complementary sequence to the template, and a nucleotide synthetase, which synthesizes monomers for use by the polymerase. When a chemical source of monomers is available, the polymerase can survive on its own. When the chemical supply of monomers is too low, nucleotide production by the synthetase is essential and the two ribozymes can only survive when they are together. Here we consider a computational model to investigate conditions under which coexistence and cooperation of these two types of ribozymes is possible. The model considers six types of strands: the two functional sequences, the complementary strands to these sequences (which are required as templates), and non-functional mutants of the two sequences (which act as parasites). Strands are distributed on a two-dimensional lattice. Polymerases replicate strands on neighbouring sites and synthetases produce monomers that diffuse in the local neighbourhood. We show that coexistence of unlinked polymerases and synthetases is possible in this spatial model under conditions in which neither sequence could survive alone; hence, there is a selective force for increasing complexity. Coexistence is dependent on the relative lengths of the two functional strands, the strand diffusion rate, the monomer diffusion rate, and the rate of deleterious mutations. The sensitivity of this two-ribozyme system suggests that evolution of a system of many types of ribozymes would be difficult in a purely spatial model with unlinked genes. We therefore speculate that linkage of genes onto mini-chromosomes and encapsulation of strands in protocells would have been important fairly early in the history of life as a means of enabling more complex systems to evolve. PMID:27820829

  9. What is the oligoadenylate synthetases-like protein and does it have therapeutic potential for influenza?

    PubMed

    Alcorn, John F; Sarkar, Saumendra N

    2015-02-01

    Besides its pandemic potential, seasonal influenza infection is associated with an estimated 250,000 to 500,000 deaths worldwide every year. Part of this virulence of influenza virus can be attributed to its ability to evade the host innate immune response. Here, we discuss the possibility of using a recently described mechanism of boosting the innate immunity by oligoadenylate synthetase-like protein, to combat influenza infections.

  10. Glutamine synthetase gene expression and glutamate transporters in C6-glioma cells.

    PubMed

    Baber, Zafeer; Haghighat, Nasrin

    2010-12-01

    Glutamine synthetase (GS) is the major glutamate-forming enzyme of vertebrae and is accepted to be a marker of astroglial cells. Maturation of astroglial cells is characterized by an increase in GS activity, and the regulation of this enzyme is the topic of many publications. The amino acid glutamate is the major excitatory neurotransmitter in the brain and mediates normal excitatory synaptic transmission by interaction with postsynaptic receptors. Glutamate also acts as a potent neurotoxin when present at high concentration. Glutamate neurotoxicity plays an important role in the pathophysiology of many neurological disorders, such as Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis. In the normal condition, L-glutamate is predominantly taken up, metabolized and recycled by astrocytes through the glutamate transporters (GLAST/GLT1) and glutamine synthetase (GS) catalytic activity. Because of the fundamental role of these glutamate transporters and the glutamine synthetase enzyme in controlling cerebral glutamate level, regulation of GS and studying of the glutamate transporters in glial cells is important. Astrocytes are supportive cells and act as the site of detoxification of glutamate in the brain. However, their isolation from the brain is a tedious, costly and time consuming procedure. On the other hand, the C6-glioma cells are readily available on the market. They are well characterized and have been a useful model for CNS glia in many laboratories. For this study, we used the C6-glioma cell line as a model system. We examined the presence or absence of glial specific glutamate transporters (GLTI and GLAST) in C6-glioma cells, which was done by immunocytochemistry. We also examined glutamine synthetase gene expression in these cells by treatment of the C6-glioma cells with estrogen (17ß estradiol). The findings from this study provide useful information about C6-glioma cells which makes the study of the CNS tremendously inexpensive.

  11. Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy.

    PubMed

    Elo, Jenni M; Yadavalli, Srujana S; Euro, Liliya; Isohanni, Pirjo; Götz, Alexandra; Carroll, Christopher J; Valanne, Leena; Alkuraya, Fowzan S; Uusimaa, Johanna; Paetau, Anders; Caruso, Eric M; Pihko, Helena; Ibba, Michael; Tyynismaa, Henna; Suomalainen, Anu

    2012-10-15

    Next-generation sequencing has turned out to be a powerful tool to uncover genetic basis of childhood mitochondrial disorders. We utilized whole-exome analysis and discovered novel compound heterozygous mutations in FARS2 (mitochondrial phenylalanyl transfer RNA synthetase), encoding the mitochondrial phenylalanyl transfer RNA (tRNA) synthetase (mtPheRS) in two patients with fatal epileptic mitochondrial encephalopathy. The mutations affected highly conserved amino acids, p.I329T and p.D391V. Recently, a homozygous FARS2 variant p.Y144C was reported in a Saudi girl with mitochondrial encephalopathy, but the pathogenic role of the variant remained open. Clinical features, including postnatal onset, catastrophic epilepsy, lactic acidemia, early lethality and neuroimaging findings of the patients with FARS2 variants, resembled each other closely, and neuropathology was consistent with Alpers syndrome. Our structural analysis of mtPheRS predicted that p.I329T weakened ATP binding in the aminoacylation domain, and in vitro studies with recombinant mutant protein showed decreased affinity of this variant to ATP. Furthermore, p.D391V and p.Y144C were predicted to disrupt synthetase function by interrupting the rotation of the tRNA anticodon stem-binding domain from a closed to an open form. In vitro characterization indicated reduced affinity of p.D391V mutant protein to phenylalanine, whereas p.Y144C disrupted tRNA binding. The stability of p.I329T and p.D391V mutants in a refolding assay was impaired. Our results imply that the three FARS2 mutations directly impair aminoacylation function and stability of mtPheRS, leading to a decrease in overall tRNA charging capacity. This study establishes a new genetic cause of infantile mitochondrial Alpers encephalopathy and reports a new mitochondrial aminoacyl-tRNA synthetase as a cause of mitochondrial disease.

  12. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Eng, L. F.; Gibbs, M. A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  13. What is the oligoadenylate synthetases-like protein and does it have therapeutic potential for influenza?

    PubMed Central

    Alcorn, John F.; Sarkar, Saumendra N.

    2015-01-01

    Besides its pandemic potential, seasonal influenza infection is associated with an estimated 250,000 to 500,000 deaths worldwide every year. Part of this virulence of influenza virus can be attributed to its ability to evade the host innate immune response. Here we discuss the possibility of using a recently described mechanism of boosting the innate immunity by oligoadenylate synthetase-like protein, to combat influenza infections. PMID:25544107

  14. [Isolation of tyrosyl-tRNA-synthetase from Thermus thermophilus HB-27].

    PubMed

    Iaremchuk, A D; Tukalo, M A; Egorova, S P; Konovalenko, A V; Matsuka, G Kh

    1990-01-01

    A method for isolating tyrosyl-tRNA synthetase from Thermus thermophilus is described, including ammonium sulfate fractionation, chromatography on DEAE-sepharose, hydroxyapatite, heparin-sepharose and hydrophobic chromatography on Toyopearl HW-65. The yield of the purified enzyme was 1.6 mg per 1 kg of T. thermophilus cells. The enzyme is a dimer protein of the alpha 2 type with molecular weight of 100 kDa.

  15. Glutamine synthetase stability and subcellular distribution in astrocytes are regulated by γ-aminobutyric type B receptors.

    PubMed

    Huyghe, Deborah; Nakamura, Yasuko; Terunuma, Miho; Faideau, Mathilde; Haydon, Philip; Pangalos, Menelas N; Moss, Stephen J

    2014-10-17

    Emerging evidence suggests that functional γ-aminobutyric acid B receptors (GABABRs) are expressed by astrocytes within the mammalian brain. GABABRs are heterodimeric G-protein-coupled receptors that are composed of R1/R2 subunits. To date, they have been characterized in neurons as the principal mediators of sustained inhibitory signaling; however their roles in astrocytic physiology have been ill defined. Here we reveal that the cytoplasmic tail of the GABABR2 subunit binds directly to the astrocytic protein glutamine synthetase (GS) and that this interaction determines the subcellular localization of GS. We further demonstrate that the binding of GS to GABABR2 increases the steady state expression levels of GS in heterologous cells and in mouse primary astrocyte culture. Mechanistically this increased stability of GS in the presence of GABABR2 occurs via reduced proteasomal degradation. Collectively, our results suggest a novel role for GABABRs as regulators of GS stability. Given the critical role that GS plays in the glutamine-glutamate cycle, astrocytic GABABRs may play a critical role in supporting both inhibitory and excitatory neurotransmission.

  16. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    PubMed

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma.

  17. Studies on the "Aerobic" Acetyl-Coenzyme A Synthetase of Saccharomyces Cerevisiae: Purification, Crystallization, and Physical Properties of the Enzyme

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Klein, Harold P.

    1976-01-01

    A procedure for the purification of a stable acetyl-coenzyme A synthetase (ACS) from aerobic cells of Saccharomyces cerevisiae is presented. The steps include differential centrifugation, solubilization of the bound enzyme from the crude mitochondrial fraction, ammonium sulfate fractionation, crystallization to constant specific activity from ammonium sulfate solutions followed by Bio-Gel A-1.5 m column chromatography. The resulting enzyme preparation is homogeneous as judged by chromatography on Bio-Gel columns, QAE-Sephadex A-50 anion exchange columns, analytical ultracentrifugal studies, and polyacrylamide gel electrophoresis. Sedimentation velocity runs revealed a single symmetric peak with an s(sub (20,w)) value of 10.6. The molecular weight of the native enzyme, as determined by gel filtration and analytical ultracentrifugation, is 250,000 +/- 500. In polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the molecular weight of the single polypeptide chain is 83,000 +/- 500. The purified enzyme is inhibited by palmityl-coenzyme A with a Hill interaction coefficient, n, of 2.88. These studies indicate that the ACS of aerobic Saccharomyces cerevisiae is composed of three subunits of identical or nearly identical size.

  18. Targeting Prolyl-tRNA Synthetase to Accelerate Drug Discovery against Malaria, Leishmaniasis, Toxoplasmosis, Cryptosporidiosis, and Coccidiosis.

    PubMed

    Jain, Vitul; Yogavel, Manickam; Kikuchi, Haruhisa; Oshima, Yoshiteru; Hariguchi, Norimitsu; Matsumoto, Makoto; Goel, Preeti; Touquet, Bastien; Jumani, Rajiv S; Tacchini-Cottier, Fabienne; Harlos, Karl; Huston, Christopher D; Hakimi, Mohamed-Ali; Sharma, Amit

    2017-10-03

    Developing anti-parasitic lead compounds that act on key vulnerabilities are necessary for new anti-infectives. Malaria, leishmaniasis, toxoplasmosis, cryptosporidiosis and coccidiosis together kill >500,000 humans annually. Their causative parasites Plasmodium, Leishmania, Toxoplasma, Cryptosporidium and Eimeria display high conservation in many housekeeping genes, suggesting that these parasites can be attacked by targeting invariant essential proteins. Here, we describe selective and potent inhibition of prolyl-tRNA synthetases (PRSs) from the above parasites using a series of quinazolinone-scaffold compounds. Our PRS-drug co-crystal structures reveal remarkable active site plasticity that accommodates diversely substituted compounds, an enzymatic feature that can be leveraged for refining drug-like properties of quinazolinones on a per parasite basis. A compound we termed In-5 exhibited a unique double conformation, enhanced drug-like properties, and cleared malaria in mice. It thus represents a new lead for optimization. Collectively, our data offer insights into the structure-guided optimization of quinazolinone-based compounds for drug development against multiple human eukaryotic pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Large Conformational Changes of Insertion 3 in Human Glycyl-tRNA Synthetase (hGlyRS) during Catalysis

    SciTech Connect

    Deng, Xiangyu; Qin, Xiangjing; Chen, Lei; Jia, Qian; Zhang, Yonghui; Zhang, Zhiyong; Lei, Dongsheng; Ren, Gang; Zhou, Zhihong; Wang, Zhong; Li, Qing; Xie, Wei

    2016-01-21

    Glycyl-tRNA synthetase (GlyRS) is the enzyme that covalently links glycine to cognate tRNA for translation. It is of great interest because of its nonconserved quaternary structures, unique species-specific aminoacylation properties, and noncanonical functions in neurological diseases, but none of these is fully understood. We report two crystal structures of human GlyRS variants, in the free form and in complex with tRNA Gly respectively, and reveal new aspects of the glycylation mechanism. We discover that insertion 3 differs considerably in conformation in catalysis and that it acts like a "switch" and fully opens to allow tRNA to bind in a cross-subunit fashion. The flexibility of the protein is supported by molecular dynamics simulation, as well as enzymatic activity assays. The biophysical and biochemical studies suggest that human GlyRS may utilize its flexibility for both the traditional function (regulate tRNA binding) and alternative functions (roles in diseases).

  20. Large Conformational Changes of Insertion 3 in Human Glycyl-tRNA Synthetase (hGlyRS) during Catalysis

    DOE PAGES

    Deng, Xiangyu; Qin, Xiangjing; Chen, Lei; ...

    2016-01-21

    Glycyl-tRNA synthetase (GlyRS) is the enzyme that covalently links glycine to cognate tRNA for translation. It is of great interest because of its nonconserved quaternary structures, unique species-specific aminoacylation properties, and noncanonical functions in neurological diseases, but none of these is fully understood. We report two crystal structures of human GlyRS variants, in the free form and in complex with tRNA Gly respectively, and reveal new aspects of the glycylation mechanism. We discover that insertion 3 differs considerably in conformation in catalysis and that it acts like a "switch" and fully opens to allow tRNA to bind in a cross-subunitmore » fashion. The flexibility of the protein is supported by molecular dynamics simulation, as well as enzymatic activity assays. The biophysical and biochemical studies suggest that human GlyRS may utilize its flexibility for both the traditional function (regulate tRNA binding) and alternative functions (roles in diseases).« less

  1. The toxic effects of diethyl phthalate on the activity of glutamine synthetase in greater duckweed (Spirodela polyrhiza L.).

    PubMed

    Cheng, Tai-Sheng

    2012-11-15

    The toxic effects of diethyl phthalate (DEP), a potent allelochemical, on the enzyme activity and polypeptide accumulation of glutamine synthetase (GS) in greater duckweed were investigated. In our previous studies, DEP induced oxidative responses at concentrations from 0.5 to 2 mM in greater duckweed and the antioxidant enzymes played important roles in the defense strategy against DEP stress. In this study, DAB-H(2)O(2) and NBT stain for superoxide radicals (O(2)(·-)), lipid peroxidation, HSP70, and ammonia accumulation in DEP-treated duckweed tissues revealed adverse effect of DEP in plant growth. Biochemical analysis and physiological methods were combined to investigate GS activity and polypeptide accumulation under DEP-induced stress. The results showed that GS activity was reduced with the increasing concentration of DEP, indicative of enhanced toxic effect. Immunoblot analysis with chloroplast soluble fractions indicated that the chloroplastic GS (GS2) polypeptide from greater duckweed was degraded under DEP stress conditions. The response of GS2 to the DEP stress may be modulated by means of redox change in plant tissues, chloroplasts, and chloroplast lysates. The results suggest that DEP is toxic to the greater duckweed by inhibition of the GS isoenzymes in nitrogen assimilation and the GS2 plays important roles in the adaptation strategy against DEP toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in Talaromyces islandicus ('Penicillium islandicum').

    PubMed

    Schafhauser, Thomas; Kirchner, Norbert; Kulik, Andreas; Huijbers, Mieke M E; Flor, Liane; Caradec, Thibault; Fewer, David P; Gross, Harald; Jacques, Philippe; Jahn, Linda; Jokela, Jouni; Leclère, Valérie; Ludwig-Müller, Jutta; Sivonen, Kaarina; van Berkel, Willem J H; Weber, Tilmann; Wohlleben, Wolfgang; van Pée, Karl-Heinz

    2016-11-01

    Talaromyces islandicus ('Penicillium islandicum') is a widespread foodborne mold that produces numerous secondary metabolites, among them potent mycotoxins belonging to different chemical classes. A notable metabolite is the hepatotoxic and carcinogenic pentapeptide cyclochlorotine that contains the unusual amino acids β-phenylalanine, 2-aminobutyrate and 3,4-dichloroproline. Although the chemical structure has been known for over five decades, nothing is known about the biosynthetic pathway of cyclochlorotine. Bioinformatic analysis of the recently sequenced genome of T. islandicus identified a wealth of gene clusters potentially coding for the synthesis of secondary metabolites. Here, we show by RNA interference-mediated gene silencing that a nonribosomal peptide synthetase, CctN, is responsible for the synthesis of cyclochlorotine. Moreover, we identified novel cyclochlorotine chemical variants, whose production also depended on cctN expression. Surprisingly, the halogenase required for cyclochlorotine biosynthesis is not encoded in the cct cluster. Nonetheless, our findings enabled us to propose a detailed model for cyclochlorotine biosynthesis. In addition, comparative genomics revealed that cct-like clusters are present in all of the sequenced Talaromyces strains indicating a high prevalence of cyclochlorotine production ability. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Study of the Binding Energies between Unnatural Amino Acids and Engineered Orthogonal Tyrosyl-tRNA Synthetases

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Truong, Tan M.; Ai, Hui-Wang

    2015-07-01

    We utilized several computational approaches to evaluate the binding energies of tyrosine (Tyr) and several unnatural Tyr analogs, to several orthogonal aaRSes derived from Methanocaldococcus jannaschii and Escherichia coli tyrosyl-tRNA synthetases. The present study reveals the following: (1) AutoDock Vina and ROSETTA were able to distinguish binding energy differences for individual pairs of favorable and unfavorable aaRS-amino acid complexes, but were unable to cluster together all experimentally verified favorable complexes from unfavorable aaRS-Tyr complexes; (2) MD-MM/PBSA provided the best prediction accuracy in terms of clustering favorable and unfavorable enzyme-substrate complexes, but also required the highest computational cost; and (3) MM/PBSA based on single energy-minimized structures has a significantly lower computational cost compared to MD-MM/PBSA, but still produced sufficiently accurate predictions to cluster aaRS-amino acid interactions. Although amino acid-aaRS binding is just the first step in a complex series of processes to acylate a tRNA with its corresponding amino acid, the difference in binding energy, as shown by MD-MM/PBSA, is important for a mutant orthogonal aaRS to distinguish between a favorable unnatural amino acid (unAA) substrate from unfavorable natural amino acid substrates. Our computational study should assist further designing and engineering of orthogonal aaRSes for the genetic encoding of novel unAAs.

  4. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation.

    PubMed Central

    Schmitt, E; Moulinier, L; Fujiwara, S; Imanaka, T; Thierry, J C; Moras, D

    1998-01-01

    The crystal structure of aspartyl-tRNA synthetase (AspRS) from Pyrococcus kodakaraensis was solved at 1.9 A resolution. The sequence and three-dimensional structure of the catalytic domain are highly homologous to those of eukaryotic AspRSs. In contrast, the N-terminal domain, whose function is to bind the tRNA anticodon, is more similar to that of eubacterial enzymes. Its structure explains the unique property of archaeal AspRSs of accommodating both tRNAAsp and tRNAAsn. Soaking the apo-enzyme crystals with ATP and aspartic acid both separately and together allows the adenylate formation to be followed. Due to the asymmetry of the dimeric enzyme in the crystalline state, different steps of the reaction could be visualized within the same crystal. Four different states of the aspartic acid activation reaction could thus be characterized, revealing the functional correlation of the observed conformational changes. The binding of the amino acid substrate induces movement of two invariant loops which secure the position of the peptidyl moiety for adenylate formation. An unambiguous spatial and functional assignment of three magnesium ion cofactors can be made. This study shows the important role of residues present in both archaeal and eukaryotic AspRSs, but absent from the eubacterial enzymes. PMID:9724658

  5. The production of Multiple Small Peptaibol Families by Single 14-Module Peptide Synthetases in Trichoderma/Hypocrea

    SciTech Connect

    Degenkolb, Thomas; Aghchehb, Razieh Karimi; Dieckmann, Ralf; Neuhof, Torsten; Baker, Scott E.; Druzhinina, Irina S.; Kubicek, Christian P.; Brückner, Hans; von Dohren, Hans

    2012-03-01

    The most common peptaibibiotic structures are 11-residue peptaibols found widely distributed in the genus Trichoderma/Hypocrea. Frequently associated are 14-residue peptaibols sharing partial sequence identity. Genome sequencing projects of 3 Trichoderma strains of the major clades reveal the presence of up to 3 types of nonribosomal peptide synthetases with 7, 14, or 18-20 amino acid adding modules. We here provide evidence that the 14-module NRPS type found in T. virens, T. reesei (teleomorph Hypocrea jecorina) and T. atroviride produces both 11- and 14- residue peptaibols based on the disruption of the respective NRPS gene of T. reesei, and bioinformatic analysis of their amino acid activating domains and modules. The structures of these peptides may be predicted from the gene structures and have been confirmed by analysis of families of 11- and 14-residue peptaibols from the strain 618, termed hypojecorins A (23 sequences determined, 4 new) and B (3 new sequences), and the recently established trichovirins A from T. virens. The distribution of 11- and 14-residue products is strain-specific and depends on growth conditions as well. Possible mechanisms of module skipping are discussed.

  6. CDP-Diacylglycerol Synthetase Coordinates Cell Growth and Fat Storage through Phosphatidylinositol Metabolism and the Insulin Pathway

    PubMed Central

    Liu, Yuan; Wang, Wei; Shui, Guanghou; Huang, Xun

    2014-01-01

    During development, animals usually undergo a rapid growth phase followed by a homeostatic stage when growth has ceased. The increase in cell size and number during the growth phase requires a large amount of lipids; while in the static state, excess lipids are usually stored in adipose tissues in preparation for nutrient-limited conditions. How cells coordinate growth and fat storage is not fully understood. Through a genetic screen we identified Drosophila melanogaster CDP-diacylglycerol synthetase (CDS/CdsA), which diverts phosphatidic acid from triacylglycerol synthesis to phosphatidylinositol (PI) synthesis and coordinates cell growth and fat storage. Loss of CdsA function causes significant accumulation of neutral lipids in many tissues along with reduced cell/organ size. These phenotypes can be traced back to reduced PI levels and, subsequently, low insulin pathway activity. Overexpressing CdsA rescues the fat storage and cell growth phenotypes of insulin pathway mutants, suggesting that CdsA coordinates cell/tissue growth and lipid storage through the insulin pathway. We also revealed that a DAG-to-PE route mediated by the choline/ethanolamine phosphotransferase Bbc may contribute to the growth of fat cells in CdsA RNAi. PMID:24603715

  7. Niemeyer Virus: A New Mimivirus Group A Isolate Harboring a Set of Duplicated Aminoacyl-tRNA Synthetase Genes

    PubMed Central

    Boratto, Paulo V. M.; Arantes, Thalita S.; Silva, Lorena C. F.; Assis, Felipe L.; Kroon, Erna G.; La Scola, Bernard; Abrahão, Jônatas S.

    2015-01-01

    It is well recognized that gene duplication/acquisition is a key factor for molecular evolution, being directly related to the emergence of new genetic variants. The importance of such phenomena can also be expanded to the viral world, with impacts on viral fitness and environmental adaptations. In this work we describe the isolation and characterization of Niemeyer virus, a new mimivirus isolate obtained from water samples of an urban lake in Brazil. Genomic data showed that Niemeyer harbors duplicated copies of three of its four aminoacyl-tRNA synthetase genes (cysteinyl, methionyl, and tyrosyl RS). Gene expression analysis showed that such duplications allowed significantly increased expression of methionyl and tyrosyl aaRS mRNA by Niemeyer in comparison to APMV. Remarkably, phylogenetic data revealed that Niemeyer duplicated gene pairs are different, each one clustering with a different group of mimivirus strains. Taken together, our results raise new questions about the origins and selective pressures involving events of aaRS gain and loss among mimiviruses. PMID:26635738

  8. Interplay between Catalysts and Substrates for Activity of Class Ib Aminoacyl-tRNA Synthetases and Implications for Pharmacology.

    PubMed

    Stephen, Preyesh; Lin, Sheng-Xiang; Giege, Richard

    2016-01-01

    Aminoacyl-tRNA synthetase:transfer RNA (aaRS:tRNA) systems became recently essential targets in molecular medicine, because perturbed recognition of cognate tRNAs by aaRSs and poor precision in tRNA aminoacylation do not guarantee accurate protein biosynthesis, thus leading to diseases. Sets of identity determinants situated at particular zones of tRNA are responsible for functional accuracy. Recent work in X-ray crystallography has revealed various snapshots of aaRS:ligand complexes which represent the stages required for aminoacylation. Here we focus on a small group of class I aaRSs conserved in evolution, the ArgRSs, GluRSs, GlnRSs, and atypical LysRSs found mostly in Archaea and in a few Bacteria, that catalyze amino acid activation only in the presence of their cognate tRNAs. Structural and functional features of these aaRSs, ranked in subclass Ib, together with their peculiar mode of tRNA recognition and identity expression are reviewed and compared. Strategies to inhibit class Ib aaRS:tRNA aminoacylation systems, their dysfunction leading to human diseases, and the implications for pharmacology are outlined.

  9. Study of the Binding Energies between Unnatural Amino Acids and Engineered Orthogonal Tyrosyl-tRNA Synthetases

    PubMed Central

    Ren, Wei; Truong, Tan M.; Ai, Hui-wang

    2015-01-01

    We utilized several computational approaches to evaluate the binding energies of tyrosine (Tyr) and several unnatural Tyr analogs, to several orthogonal aaRSes derived from Methanocaldococcus jannaschii and Escherichia coli tyrosyl-tRNA synthetases. The present study reveals the following: (1) AutoDock Vina and ROSETTA were able to distinguish binding energy differences for individual pairs of favorable and unfavorable aaRS-amino acid complexes, but were unable to cluster together all experimentally verified favorable complexes from unfavorable aaRS-Tyr complexes; (2) MD-MM/PBSA provided the best prediction accuracy in terms of clustering favorable and unfavorable enzyme-substrate complexes, but also required the highest computational cost; and (3) MM/PBSA based on single energy-minimized structures has a significantly lower computational cost compared to MD-MM/PBSA, but still produced sufficiently accurate predictions to cluster aaRS-amino acid interactions. Although amino acid-aaRS binding is just the first step in a complex series of processes to acylate a tRNA with its corresponding amino acid, the difference in binding energy, as shown by MD-MM/PBSA, is important for a mutant orthogonal aaRS to distinguish between a favorable unnatural amino acid (unAA) substrate from unfavorable natural amino acid substrates. Our computational study should assist further designing and engineering of orthogonal aaRSes for the genetic encoding of novel unAAs. PMID:26220470

  10. Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG

    PubMed Central

    Mori, Giorgia; Chiarelli, Laurent R.; Esposito, Marta; Makarov, Vadim; Bellinzoni, Marco; Hartkoorn, Ruben C.; Degiacomi, Giulia; Boldrin, Francesca; Ekins, Sean; de Jesus Lopes Ribeiro, Ana Luisa; Marino, Leonardo B.; Centárová, Ivana; Svetlíková, Zuzana; Blaško, Jaroslav; Kazakova, Elena; Lepioshkin, Alexander; Barilone, Nathalie; Zanoni, Giuseppe; Porta, Alessio; Fondi, Marco; Fani, Renato; Baulard, Alain R.; Mikušová, Katarína; Alzari, Pedro M.; Manganelli, Riccardo; de Carvalho, Luiz Pedro S.; Riccardi, Giovanna; Cole, Stewart T.; Pasca, Maria Rosalia

    2015-01-01

    Summary To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target. PMID:26097035

  11. Streptogramin B biosynthesis in Streptomyces pristinaespiralis and Streptomyces virginiae: molecular characterization of the last structural peptide synthetase gene.

    PubMed Central

    de Crécy-Lagard, V; Saurin, W; Thibaut, D; Gil, P; Naudin, L; Crouzet, J; Blanc, V

    1997-01-01

    Streptomyces pristinaespiralis and S. virginiae both produce closely related hexadepsipeptide antibiotics of the streptogramin B family. Pristinamycins I and virginiamycins S differ only in the fifth incorporated precursor, di(mono)methylated amine and phenylalanine, respectively. By using degenerate oligonucleotide probes derived from internal sequences of the purified S. pristinaespiralis SnbD and SnbE proteins, the genes from two streptogramin B producers, S. pristinaespiralis and S. virginiae, encoding the peptide synthetase involved in the activation and incorporation of the last four precursors (proline, 4-dimethylparaaminophenylalanine [for pristinamycin I(A)] or phenylalanine [for virginiamycin S], pipecolic acid, and phenylglycine) were cloned. Analysis of the sequence revealed that SnbD and SnbE are encoded by a unique snbDE gene. SnbDE (4,849 amino acids [aa]) contains four amino acid activation domains, four condensation domains, an N-methylation domain, and a C-terminal thioesterase domain. Comparison of the sequences of 55 amino acid-activating modules from different origins confirmed that these sequences contain enough information for the performance of legitimate predictions of their substrate specificity. Partial sequencing (1,993 aa) of the SnbDE protein of S. virginiae allowed comparison of the proline and aromatic acid activation domains of the two species and the identification of coupled frameshift mutations. PMID:9303382

  12. Large Conformational Changes of Insertion 3 in Human Glycyl-tRNA Synthetase (hGlyRS) during Catalysis*

    PubMed Central

    Deng, Xiangyu; Qin, Xiangjing; Chen, Lei; Jia, Qian; Zhang, Yonghui; Zhang, Zhiyong; Lei, Dongsheng; Ren, Gang; Zhou, Zhihong; Wang, Zhong; Li, Qing; Xie, Wei

    2016-01-01

    Glycyl-tRNA synthetase (GlyRS) is the enzyme that covalently links glycine to cognate tRNA for translation. It is of great research interest because of its nonconserved quaternary structures, unique species-specific aminoacylation properties, and noncanonical functions in neurological diseases, but none of these is fully understood. We report two crystal structures of human GlyRS variants, in the free form and in complex with tRNAGly respectively, and reveal new aspects of the glycylation mechanism. We discover that insertion 3 differs considerably in conformation in catalysis and that it acts like a “switch” and fully opens to allow tRNA to bind in a cross-subunit fashion. The flexibility of the protein is supported by molecular dynamics simulation, as well as enzymatic activity assays. The biophysical and biochemical studies suggest that human GlyRS may utilize its flexibility for both the traditional function (regulate tRNA binding) and alternative functions (roles in diseases). PMID:26797133

  13. Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress.

    PubMed

    Díaz, Pedro; Betti, Marco; Sánchez, Diego H; Udvardi, Michael K; Monza, Jorge; Márquez, Antonio J

    2010-12-01

    The role of plastidic glutamine synthetase (GS2) in proline biosynthesis and drought stress responses in Lotus japonicus was investigated using the GS2 mutant, Ljgln2-2. Wild-type (WT) and mutant plants were submitted to different lengths of time of water and nutrient solution deprivation. Several biochemical markers were measured and the transcriptional response to drought was determined by both quantitative real-time polymerase chain reaction and transcriptomics. The Ljgln2-2 mutant exhibited normal sensitivity to mild water deprivation, but physiological, biochemical and massive transcriptional differences were detected in the mutant, which compromised recovery (rehydration) following re-watering after severe drought stress. Proline accumulation during drought was substantially lower in mutant than in WT plants, and significant differences in the pattern of expression of the genes involved in proline metabolism were observed. Transcriptomic analysis revealed that about three times as many genes were regulated in response to drought in Ljgln2-2 plants compared with WT. The transcriptomic and accompanying biochemical data indicate that the Ljgln2-2 mutant is subject to more intense cellular stress than WT during drought. The results presented here implicate plastidic GS2 in proline production during stress and provide interesting insights into the function of proline in response to drought.

  14. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases

    PubMed Central

    Narita, Tomomi; Naganuma, Tatsuro; Sase, Yurie; Kihara, Akio

    2016-01-01

    Transport of dietary lipids into small-intestinal epithelial cells is pathologically and nutritionally important. However, lipid uptake remains an almost unexplored research area. Although we know that long-chain bases (LCBs), constituents of sphingolipids, can enter into cells efficiently, the molecular mechanism of LCB uptake is completely unclear. Here, we found that the yeast acyl-CoA synthetases (ACSs) Faa1 and Faa4 are redundantly involved in LCB uptake. In addition to fatty acid-activating activity, transporter activity toward long-chain fatty acids (LCFAs) has been suggested for ACSs. Both LCB and LCFA transports were largely impaired in faa1Δ faa4Δ cells. Furthermore, LCB and LCFA uptakes were mutually competitive. However, the energy dependency was different for their transports. Sodium azide/2-deoxy-D-glucose treatment inhibited import of LCFA but not that of LCB. Furthermore, the ATP-AMP motif mutation FAA1 S271A largely impaired the metabolic activity and LCFA uptake, while leaving LCB import unaffected. These results indicate that only LCFA transport requires ATP. Since ACSs do not metabolize LCBs as substrates, Faa1 and Faa4 are likely directly involved in LCB transport. Furthermore, we revealed that ACSs are also involved in LCB transport in mammalian cells. Thus, our findings provide strong support for the hypothesis that ACSs directly transport LCFAs. PMID:27136724

  15. AMP-Forming Acetyl Coenzyme A Synthetase in the Outermost Membrane of the Hyperthermophilic Crenarchaeon Ignicoccus hospitalis

    PubMed Central

    Mayer, Florian; Küper, Ulf; Meyer, Carolin; Daxer, Stefanie; Müller, Volker; Rachel, Reinhard

    2012-01-01

    Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic crenarchaeon was found to possess a new CO2 fixation pathway, the dicarboxylate/4-hydroxybutyrate cycle. The primary acceptor molecule for this pathway is acetyl coenzyme A (acetyl-CoA), which is regenerated in the cycle via the characteristic intermediate 4-hydroxybutyrate. In the presence of acetate, acetyl-CoA can alternatively be formed in a one-step mechanism via an AMP-forming acetyl-CoA synthetase (ACS). This enzyme was identified after membrane preparation by two-dimensional native PAGE/SDS-PAGE, followed by matrix-assisted laser desorption ionization–time of flight tandem mass spectrometry and N-terminal sequencing. The ACS of I. hospitalis exhibits a molecular mass of ∼690 kDa with a monomeric molecular mass of 77 kDa. Activity tests on isolated membranes and bioinformatic analyses indicated that the ACS is a constitutive membrane-associated (but not an integral) protein complex. Unexpectedly, immunolabeling on cells of I. hospitalis and other described Ignicoccus species revealed that the ACS is localized at the outermost membrane. This perfectly coincides with recent results that the ATP synthase and the H2:sulfur oxidoreductase complexes are also located in the outermost membrane of I. hospitalis. These results imply that the intermembrane compartment of I. hospitalis is not only the site of ATP synthesis but may also be involved in the primary steps of CO2 fixation. PMID:22247508

  16. Food safety: Structure and expression of the asparagine synthetase gene family of wheat

    PubMed Central

    Gao, Runhong; Curtis, Tanya Y.; Powers, Stephen J.; Xu, Hongwei; Huang, Jianhua; Halford, Nigel G.

    2016-01-01

    Asparagine is an important nitrogen storage and transport molecule, but its accumulation as a free amino acid in crops has implications for food safety because free asparagine is a precursor for acrylamide formation during cooking and processing. Asparagine synthesis occurs by the amidation of aspartate, catalysed by asparagine synthetase, and this study concerned the expression of asparagine synthetase (TaASN) genes in wheat. The expression of three genes, TaASN1-3, was studied in different tissues and in response to nitrogen and sulphur supply. The expression of TaASN2 in the embryo and endosperm during mid to late grain development was the highest of any of the genes in any tissue. Both TaASN1 and TaASN2 increased in expression through grain development, and in the grain of field-grown plants during mid-development in response to sulphur deprivation. However, only TaASN1 was affected by nitrogen or sulphur supply in pot-based experiments, showing complex tissue-specific and developmentally-changing responses. A putative N-motif or GCN4-like regulatory motif was found in the promoter of TaASN1 genes from several cereal species. As the study was completed, a fourth gene, TaASN4, was identified from recently available genome data. Phylogenetic analysis showed that other cereal species have similar asparagine synthetase gene families to wheat. PMID:27110058

  17. Food safety: Structure and expression of the asparagine synthetase gene family of wheat.

    PubMed

    Gao, Runhong; Curtis, Tanya Y; Powers, Stephen J; Xu, Hongwei; Huang, Jianhua; Halford, Nigel G

    2016-03-01

    Asparagine is an important nitrogen storage and transport molecule, but its accumulation as a free amino acid in crops has implications for food safety because free asparagine is a precursor for acrylamide formation during cooking and processing. Asparagine synthesis occurs by the amidation of aspartate, catalysed by asparagine synthetase, and this study concerned the expression of asparagine synthetase (TaASN) genes in wheat. The expression of three genes, TaASN1-3, was studied in different tissues and in response to nitrogen and sulphur supply. The expression of TaASN2 in the embryo and endosperm during mid to late grain development was the highest of any of the genes in any tissue. Both TaASN1 and TaASN2 increased in expression through grain development, and in the grain of field-grown plants during mid-development in response to sulphur deprivation. However, only TaASN1 was affected by nitrogen or sulphur supply in pot-based experiments, showing complex tissue-specific and developmentally-changing responses. A putative N-motif or GCN4-like regulatory motif was found in the promoter of TaASN1 genes from several cereal species. As the study was completed, a fourth gene, TaASN4, was identified from recently available genome data. Phylogenetic analysis showed that other cereal species have similar asparagine synthetase gene families to wheat.

  18. Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue.

    PubMed

    Levine, R L

    1983-10-10

    Intracellular proteolytic degradation of glutamine synthetase occurs in two distinct steps in Escherichia coli (Levine, R. L., Oliver, C. N., Fulks, R. M., and Stadtman, E. R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2120-2124). In the first step, a mixed function oxidation modifies the glutamine synthetase. The modified enzyme, which is catalytically inactive, becomes susceptible to proteolytic attack. In the second step, a protease specific for the modified enzyme catalyzes the actual proteolytic degradation. The oxidatively modified glutamine synthetase was studied to determine the chemical differences between it and the native enzyme. Only a single alteration was found; one of sixteen histidine residues/subunit was altered by the oxidative modification. The modification introduced a carbonyl group into the protein, permitting isolation of a stable dinitrophenylhydrazone. No other differences were detected between the native and modified proteins. Specifically, the cysteine, methionine, phenylalanine, tyrosine, and tryptophan contents were not altered. A number of other prokaryotic and eukaryotic enzymes are also susceptible to oxidative modification. This covalent modification may be important in intracellular proteolysis, in mammalian host defense systems, in prevention of autolysis, in aging processes, and in oxygen toxicity.

  19. Dual binding sites for translocation catalysis by Escherichia coli glutathionylspermidine synthetase.

    PubMed

    Pai, Chien-Hua; Chiang, Bing-Yu; Ko, Tzu-Ping; Chou, Chia-Cheng; Chong, Cheong-Meng; Yen, Fang-Jiun; Chen, Shoujun; Coward, James K; Wang, Andrew H-J; Lin, Chun-Hung

    2006-12-13

    Most organisms use glutathione to regulate intracellular thiol redox balance and protect against oxidative stress; protozoa, however, utilize trypanothione for this purpose. Trypanothione biosynthesis requires ATP-dependent conjugation of glutathione (GSH) to the two terminal amino groups of spermidine by glutathionylspermidine synthetase (GspS) and trypanothione synthetase (TryS), which are considered as drug targets. GspS catalyzes the penultimate step of the biosynthesis-amide bond formation between spermidine and the glycine carboxylate of GSH. We report herein five crystal structures of Escherichia coli GspS in complex with substrate, product or inhibitor. The C-terminal of GspS belongs to the ATP-grasp superfamily with a similar fold to the human glutathione synthetase. GSH is likely phosphorylated at one of two GSH-binding sites to form an acylphosphate intermediate that then translocates to the other site for subsequent nucleophilic addition of spermidine. We also identify essential amino acids involved in the catalysis. Our results constitute the first structural information on the biochemical features of parasite homologs (including TryS) that underlie their broad specificity for polyamines.

  20. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis

    PubMed Central

    Ranade, Ranae M.; Zhang, Zhongsheng; Dranow, David M.; Myers, Janette B.; Choi, Ryan; Nakazawa Hewitt, Steve; Edwards, Thomas E.; Davies, Douglas R.; Lorimer, Donald; Boyle, Stephen M.; Barrett, Lynn K.; Buckner, Frederick S.; Fan, Erkang; Van Voorhis, Wesley C.

    2016-01-01

    We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment. PMID:27500735

  1. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis.

    PubMed

    Ojo, Kayode K; Ranade, Ranae M; Zhang, Zhongsheng; Dranow, David M; Myers, Janette B; Choi, Ryan; Nakazawa Hewitt, Steve; Edwards, Thomas E; Davies, Douglas R; Lorimer, Donald; Boyle, Stephen M; Barrett, Lynn K; Buckner, Frederick S; Fan, Erkang; Van Voorhis, Wesley C

    2016-01-01

    We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment.

  2. Lactose synthetase activity in mouse mammary glands is controlled by thyroid hormones

    PubMed Central

    1979-01-01

    Epithelial cells in explants from the mammary glands of euthyroid mature virgin mice are proliferatively dormant. They must undergo DNA synthesis and traverse the cell cycle in vitro before they are able to differentiate fully in response to insulin, hydrocortisone, and prolactin, and synthesize enzymatically active alpha-lactalbumin (measured as lactose synthetase activity). In contrast, glands from hyperthyroid mature virgin mice do not require DNA synthesis in vitro to differentiate. Explants from the euthyroid virgin tissue overcome their dependence on DNA synthesis when 10(-9) M 3,5,3'-triiodo-L- thyronine is added directly to the cultures in addition to the other three hormones. Explants from involuted mammary glands from euthyroid primiparous mice do not require DNA synthesis in vitro to make the milk protein even though they, like explants from mature euthyroid virgin tissue, are proliferatively dormant and do not contain detectable lactose synthetase activity in vivo. Glands from primiparous animals made mildly hypothyroid by ingestion of 0.1% thiouracil in drinking water during 7 wk of involution remain morphologically indistinguishable from glands of their euthyroid counterparts. However, explants from the glands of these hypothyroid animals revert to a state of dependence on DNA synthesis to differentiate functionally. These observations suggest that the dependence on DNA synthesis and cell cycle traversal for hormonal induction of lactose synthetase activity in the mouse mammary gland is controlled by thyroid hormones. PMID:117014

  3. Beneficial consequences of a selective glutamine synthetase inhibitor in oats and legumes

    SciTech Connect

    Langston-Unkefer, P.J.; Knight, T.J.; Sengupta-Gopalan, C.

    1988-01-01

    We report on the effects of administering a unique glutamine synthetase inhibitor to cereals and N/sub 2/-fixing legumes. A bacterium (Pseudomonas syringae pv. tabaci) delivers this inhibitor to provide extended treatment periods; we inoculated the root systems of oat and legume plants with pv. tabaci to provide for delivery of this inhibitor to their root or root/nodule systems. Inoculation of legumes is accompanied by increased plant growth, total plant nitrogen, nodulation, and nitrogen fixation activity. Inoculation of the oats is accompanied by either of two results depending upon the genotype of the oat plant. One result is inhibition of plant growth followed by plant death as consequences of the loss of all of the glutamine synthetase activities in the plant and the subsequent accumulation of ammonia and cessation of nitrate uptake. The second and opposite result is observed in a small population of oats screened from a commercial cultivar and includes increased plant growth and leaf protein. The effects of this inhibitor can be beneficial when applied to appropriate plant material. In an attempt to effectively communicate these findings to the reader, we first introduce the inhibitor (a novel amino acid) and its bacterial delivery systems, the target of the inhibitor (glutamine synthetase-catalyzed ammonia assimilation), and the two different nitrogen economics in the legume and cereal plants used experimentally. The physiological, biochemical, and molecular genetic consequences of the inhibitor action in cereals and legumes, as we presently understand them, are then presented. 18 refs., 4 figs., 3 tabs.,

  4. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering.

    PubMed

    Wang, Xiaoyue; Wang, Guanglu; Li, Xinli; Fu, Jing; Chen, Tao; Wang, Zhiwen; Zhao, Xueming

    2016-08-10

    Adenylosuccinate synthetase (EC. 6.3.4.4) encoded by purA in Bacillus subtilis, catalyzing the first step of the conversion of IMP to AMP, plays an important role in flux distribution in the purine biosynthetic pathway. In this study, we described the use of site saturation mutagenesis to obtain a desired enzyme activity of adenylosuccinate synthetase and its application in flux regulation. Based on sequence alignment and structural modeling, a library of enzyme variants was created by a semi-rational evolution strategy in position Thr238 and Pro242. Other than purA deletion, the leaky mutation purA(P242N) partially reduced the flux towards AMP derived from IMP and increased the riboflavin synthesis precursor GTP, while also kept the requirement of ATP synthesis for cell growth. PurA(P242N) was introduced into an inosine-producing strain and resulted in an approximately 4.66-fold increase in inosine production, from 0.088±0.009g/L to 0.41±0.051g/L, in minimal medium without hypoxanthine accumulation. These results underline that the directed evolution of adenylosuccinate synthetase could tailor its activities and adjust metabolic flux. This mutation may provide a promising application in purine-based product accumulation, like inosine, guanosine and folate which are directly stemming from purine pathway in B. subtilis.

  5. Comparison of effects of aspirin and indomethacin on human platelet prostaglandin synthetase.

    PubMed Central

    Crook, D; Collins, A J

    1977-01-01

    Human platelets were incubated in vitro with either aspirin or indomethacin and the prostaglandin synthetase activity of the resultant microsomal fraction from each incubation measured using a radiometric technique. Whereas aspirin produced a dose-related inhibition of the enzyme, indomethacin produced little or no inhibition over the same concentration range (10(-6) mol/l--10(-3) mol/l). Furthermore, administration of aspirin (600 mg) to volunteers produced a highly significant, prolonged inhibition of platelet microsomal prostaglandin synthetase whereas no inhibition was found with indomethacin (50 mg). As indomethacin is considerably more potent than aspirin as an inhibitor of human platelet prostaglandin synthetase in vitro, the results suggest a fundamental difference in the nature of the inhibition produced by each drug, aspirin being an essentially irreversible inhibitor whereas the inhibition produced by indomethacin is reversible. Studies with [3H-acetyl] aspirin have confirmed previous findings (Roth and Majerus, 1975) that aspirin produces an irreversible acetylation of a particulate fraction protein from human platelets. PMID:411427

  6. Regulation of 2', 5'-oligoadenylate synthetase gene expression by interferons and platelet-derived growth factor

    SciTech Connect

    Garcia-Blanco, M.A. ); Lengyel, P. . Dept. of Molecular Biophysics and Biochemistry); Morrison, E.; BrownLee, C.; Stiles, C.D. ); Williams, B.R.G. )

    1989-03-01

    In murine BALB/c 3T3 cell cultures, either beta interferon or platelet-derived growth factor (PDGF) enhanced expression of the 2', 5-oligoadenylate synthetase mRNA and protein. The time course of induction in response to beta inteferon was similar to that in response to PDGF. Of several growth factors known to be present in clotted blood serum (i.e., epidermal growth factor, transforming growth factor beta, and PDGF), only PDGF enhanced expression of 2', 5-oligoadenylate synthetase. The linkage of an interferon response element-containing segment from the 5'-flanking region of a human or murine 2'-5'-oligoadenylate synthetase gene made a heterologous gene responsive to interferon. The expression of such a gene construct in transfected cells was also induced by PDGF. Induction by PDGF was inhibited by mono- or polyclonal antibodies to murine interferon, which suggested that induction by PDGF requires interferon. Both PDGF and interferon induced nuclear factors that bound to this interferon response element-containing segment in vitro.

  7. Gene organization around the phenylalanyl-transfer ribonucleic acid synthetase locus in Escherichia coli.

    PubMed Central

    Comer, M M

    1981-01-01

    The organization of seven genes located at about 38 min on the genetic map of Escherichia coli was examined; these genes included pheS and pheT, which code for the alpha and beta subunits of phenylalanyl-transfer ribonucleic acid synthetase, and thrS, the structural gene for threonyl-transfer ribonucleic acid synthetase. Deletion mutants were isolated from an F-prime-containing merodiploid strain and were characterized genetically. Seventeen different kinds of deletions extending into pheS of pheT were identified. These deletions unambiguously defined the gene order as aroD pps himA pheT pheS thrS pfkB. Mutants with deletions covering either pheS or pheT, but not both, were analyzed further by assay of phenylalanyl-transfer ribonucleic acid synthetase. The phenotype of the mutants with a deletion from pfkB through pheS was anomalous; although the pheT gene was apparently still present, its product, the beta subunit, was much reduced in activity. PMID:7012115

  8. Unique domain appended to vertebrate tRNA synthetase is essential for vascular development

    PubMed Central

    Xu, Xiaoling; Shi, Yi; Zhang, Hui-Min; Swindell, Eric C.; Marshall, Alan G.; Guo, Min; Kishi, Shuji; Yang, Xiang-Lei

    2012-01-01

    New domains were progressively added to cytoplasmic aminoacyl transfer RNA (tRNA) synthetases during evolution. One example is the UNE-S domain, appended to seryl-tRNA synthetase (SerRS) in species that developed closed circulatory systems. Here we show using solution and crystal structure analyses and in vitro and in vivo functional studies that UNE-S harbours a robust nuclear localization signal (NLS) directing SerRS to the nucleus where it attenuates vascular endothelial growth factor A expression. We also show that SerRS mutants previously linked to vasculature abnormalities either deleted the NLS or have the NLS sequestered in an alternative conformation. A structure-based second-site mutation, designed to release the sequestered NLS, restored normal vasculature. Thus, the essential function of SerRS in vascular development depends on UNE-S. These results are the first to show an essential role for a tRNA synthetase-associated appended domain at the organism level, and suggest that acquisition of UNE-S has a role in the establishment of the closed circulatory systems of vertebrates. PMID:22353712

  9. Urease of Klebsiella aerogenes: control of its synthesis by glutamine synthetase.

    PubMed Central

    Friedrich, B; Magasanik, B

    1977-01-01

    Urease was purified 24-fold from extracts of Klebsiella aerogenes. The enzyme has a molecular weight of 230,000 as determined by gel filtration, is highly substrate specific, and has a Km for urea of 0.7 mM. A mutant strain lacking urease was isolated; it failed to grow with urea as the sole source of nitrogen but did grow on media containing other nitrogen sources such as ammonia, histidine, or arginine. Urease was present at a high level when the cells were starved for nitrogen; its synthesis was repressed when the external ammonia concentration was high. Formation of urease did not require induction by urea and was not subject to catabolite repression. Its synthesis was controlled by glutamine synthetase. Mutants lacking glutamine synthetase failed to produce urease, and mutants forming glutamine synthetase at a high constitutive level also formed urease constitutively. Thus, the formation of urease is regulated like that of other enzymes of K. aerogenes capable of supplying the cell with ammonia or glutamate. PMID:18438

  10. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase.

    PubMed

    Sharma, Arvind; Sharma, Amit

    2015-02-01

    The Plasmodium falciparum protein translation enzymes aminoacyl-tRNA synthetases (aaRSs) are an emergent family of drug targets. The aaRS ensemble catalyses transfer of amino acids to cognate tRNAs, thus providing charged tRNAs for ribosomal consumption. P. falciparum proteome expression relies on a total of 36 aaRSs for the three translationally independent compartments of cytoplasm, apicoplast and mitochondria. In the present study, we show that, of this set of 36, a single genomic copy of mitochondrial phenylalanyl-tRNA synthetase (mFRS) is targeted to the parasite mitochondria, and that the mFRS gene is exclusive to malaria parasites within the apicomplexan phyla. Our protein cellular localization studies based on immunofluorescence data show that, along with mFRS, P. falciparum harbours two more phenylalanyl-tRNA synthetase (FRS) assemblies that are localized to its apicoplast and cytoplasm. The 'extra' mFRS is found in mitochondria of all asexual blood stage parasites and is competent in aminoacylation. We show further that the parasite mitochondria import tRNAs from the cytoplasmic tRNA pool. Hence drug targeting of FRSs presents a unique opportunity to potentially stall protein production in all three parasite translational compartments.

  11. Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate.

    PubMed Central

    Arnez, J G; Harris, D C; Mitschler, A; Rees, B; Francklyn, C S; Moras, D

    1995-01-01

    The crystal structure at 2.6 A of the histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate has been determined. The enzyme is a homodimer with a molecular weight of 94 kDa and belongs to the class II of aminoacyl-tRNA synthetases (aaRS). The asymmetric unit is composed of two homodimers. Each monomer consists of two domains. The N-terminal catalytic core domain contains a six-stranded antiparallel beta-sheet sitting on two alpha-helices, which can be superposed with the catalytic domains of yeast AspRS, and GlyRS and SerRS from Thermus thermophilus with a root-mean-square difference on the C alpha atoms of 1.7-1.9 A. The active sites of all four monomers are occupied by histidyl-adenylate, which apparently forms during crystallization. The 100 residue C-terminal alpha/beta domain resembles half of a beta-barrel, and provides an independent domain oriented to contact the anticodon stem and part of the anticodon loop of tRNA(His). The modular domain organization of histidyl-tRNA synthetase reiterates a repeated theme in aaRS, and its structure should provide insight into the ability of certain aaRS to aminoacylate minihelices and other non-tRNA molecules. Images PMID:7556055

  12. A fluorescence-based coupling reaction for monitoring the activity of recombinant human NAD synthetase.

    PubMed

    Bembenek, Michael E; Kuhn, Eric; Mallender, William D; Pullen, Lester; Li, Ping; Parsons, Thomas

    2005-10-01

    NAD synthetase is responsible for the conversion of nicotinic acid adenine dinucleotide to nicotinamide adenine dinucleotide. This reaction provides a biosynthetic route of the coenzyme and, thus, a source of cellular reducing equivalents. Alterations in the oxidative reductive potential of the cell have been implicated as a contributing factor in many disease states. Thus, this enzyme represents a new class of potential drug targets, and, hence, our efforts were focused upon developing a robust assay for utilization in a high throughput screen. Toward that end, we describe a coupled enzyme assay format for the measurement of recombinant human NAD synthetase by employing lactate dehydrogenase in a cycling/amplification reaction linked ultimately to the fluorescence generation of resorufin from resazurin via diaphorase. We present kinetics of the reaction of NAD synthetase in the coupled assay format, optimization conditions, and inhibition of the reaction by gossypol [1,1',6,6',7,7'-hexahydroxy-3,3'-dimethyl-5,5'-bis(1-methylethyl)-[2,2'- binaphthalene]-8,8'-dicarboxaldehyde] and illustrate the robustness of the assay by demonstrating 384-well microtiter plate uniformity statistics. Collectively, our results show that the assay method is both robust and well suited for this class of enzymes involved in the NAD+ biosynthetic pathway.

  13. The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins.

    PubMed

    Lohman, Jeremy R; Ma, Ming; Cuff, Marianne E; Bigelow, Lance; Bearden, Jessica; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2014-07-01

    Carrier