Sample records for large accelerators design

  1. Recirculating linacs for a neutrino factory - Arc optics design and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alex Bogacz; Valeri Lebedev

    2001-10-21

    A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190MeV/c and proceeding to 50GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice design choices. The resultingmore » arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.« less

  2. Recirculating linacs for a neutrino factory - Arc optics design and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valeri Lebedev; S. Bogacz

    2001-10-25

    A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3 GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190 MeV/c and proceeding to 50 GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice designmore » choices. The resulting arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.« less

  3. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Panagiotis; /Fermilab; Cary, John

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less

  4. Los Alamos high-power proton linac designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.P.

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  5. Universality of accelerating change

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Shlesinger, Michael F.

    2018-03-01

    On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.

  6. Shielding analyses for repetitive high energy pulsed power accelerators

    NASA Astrophysics Data System (ADS)

    Jow, H. N.; Rao, D. V.

    Sandia National Laboratories (SNL) designs, tests and operates a variety of accelerators that generate large amounts of high energy Bremsstrahlung radiation over an extended time. Typically, groups of similar accelerators are housed in a large building that is inaccessible to the general public. To facilitate independent operation of each accelerator, test cells are constructed around each accelerator to shield it from the radiation workers occupying surrounding test cells and work-areas. These test cells, about 9 ft. high, are constructed of high density concrete block walls that provide direct radiation shielding. Above the target areas (radiation sources), lead or steel plates are used to minimize skyshine radiation. Space, accessibility and cost considerations impose certain restrictions on the design of these test cells. SNL Health Physics division is tasked to evaluate the adequacy of each test cell design and compare resultant dose rates with the design criteria stated in DOE Order 5480.11. In response, SNL Health Physics has undertaken an intensive effort to assess existing radiation shielding codes and compare their predictions against measured dose rates. This paper provides a summary of the effort and its results.

  7. Science 101: How Do People Design Safe Amusement Park Rides?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2015-01-01

    To address the question of how people design safe amusement park rides, Bill Robertson focuses on the factors designers must consider so that human bodies don't experience too large an acceleration (any change in speed and/or direction) or "g-force" (the acceleration an object undergoes while freely falling, with no air resistance, under…

  8. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.« less

  9. Chaotic dynamical aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Tepikian, S.

    1985-01-01

    Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator designs have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipolesmore » should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take a tremendous amount of computing time. In this review the method of determining chaotic orbit and applying the method to nonlinear problems in accelerator physics is discussed. We then discuss the scaling properties and effect of random sextupoles.« less

  10. Design of Octupole Channel for Integrable Optics Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergey; Carlson, Kermit; Castellotti, Riccardo

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements onmore » maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.« less

  11. Improvements of the magnetic field design for SPIDER and MITICA negative ion beam sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitarin, G., E-mail: chitarin@igi.cnr.it; University of Padova, Dept. of Management and Engineering, Strad. S. Nicola 3, 36100 Vicenza; Agostinetti, P.

    2015-04-08

    The design of the magnetic field configuration in the SPIDER and MITICA negative ion beam sources has evolved considerably during the past four years. This evolution was driven by three factors: 1) the experimental results of the large RF-driven ion sources at IPP, which have provided valuable indications on the optimal magnetic configurations for reliable RF plasma source operation and for large negative ion current extraction, 2) the comprehensive beam optics and heat load simulations, which showed that the magnetic field configuration in the accelerator is crucial for keeping the heat load due to electrons on the accelerator grids withinmore » tolerable limits, without compromising the optics of the negative ion beam in the foreseen operating scenarios, 3) the progress of the detailed mechanical design of the accelerator, which stimulated the evaluation of different solutions for the correction of beamlet deflections of various origin and for beamlet aiming. On this basis, new requirements and solution concepts for the magnetic field configuration in the SPIDER and MITICA beam sources have been progressively introduced and updated until the design converged. The paper presents how these concepts have been integrated into a final design solution based on a horizontal “long-range” field (few mT) in combination with a “local” vertical field of some tens of mT on the acceleration grids.« less

  12. An accelerated test design for use with synchronous orbit. [on Ni-Cd cell degradation behavior

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.; Vasanth, K. L.

    1980-01-01

    The Naval Weapons Support Center at Crane, Indiana has conducted a large scale accelerated test of 6.0 Ah Ni-Cd cells. Data from the Crane test have been used to develop an equation for the description of Ni-Cd cell behavior in geosynchronous orbit. This equation relates the anticipated time to failure for a cell in synchronous orbit to temperature and overcharge rate sustained by the cell during the light period. A test design is suggested which uses this equation for setting test parameters for future accelerated testing.

  13. A Segmented Ion-Propulsion Engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    New design approach for high-power (100-kW class or greater) ion engines conceptually divides single engine into combination of smaller discharge chambers integrated to operate as single large engine. Analogous to multicylinder automobile engine, benefits include reduction in required accelerator system span-to-gap ratio for large-area engines, reduction in required hollow-cathode emission current, mitigation of plasma-uniformity problem, increased tolerance to accelerator system faults, and reduction in vacuum-system pumping speed.

  14. Amplitude-dependent orbital period in alternating gradient accelerators

    DOE PAGES

    Machida, S.; Kelliher, D. J.; Edmonds, C. S.; ...

    2016-03-16

    Orbital period in a ring accelerator and time of flight in a linear accelerator depend on the amplitude of betatron oscillations. The variation is negligible in ordinary particle accelerators with relatively small beam emittance. In an accelerator for large emittance beams like muons and unstable nuclei, however, this effect cannot be ignored. In this study, we measured orbital period in a linear non-scaling fixed-field alternating-gradient accelerator, which is a candidate for muon acceleration, and compared it with the theoretical prediction. The good agreement between them gives important ground for the design of particle accelerators for a new generation of particlemore » and nuclear physics experiments.« less

  15. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  16. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Tobari, H.

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltagemore » holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.« less

  17. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    NASA Astrophysics Data System (ADS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.

  18. Compliance by Design: Influence of Acceleration Trade-offs on CO2 Emissions and Costs of Fuel Economy and Greenhouse Gas Regulations.

    PubMed

    Whitefoot, Kate S; Fowlie, Meredith L; Skerlos, Steven J

    2017-09-19

    The ability of automakers to improve the fuel economy of vehicles using engineering design modifications that compromise other performance attributes, such as acceleration, is not currently considered when setting fuel economy and greenhouse-gas emission standards for passenger cars and light trucks. We examine the role of these design trade-offs by simulating automaker responses to recently reformed vehicle standards with and without the ability to adjust acceleration performance. Results indicate that acceleration trade-offs can be important in two respects: (1) they can reduce the compliance costs of the standards, and (2) they can significantly reduce emissions associated with a particular level of the standards by mitigating incentives to shift sales toward larger vehicles and light trucks relative to passenger cars. We contrast simulation-based results with observed changes in vehicle attributes under the reformed standards. We find evidence that is consistent with firms using acceleration trade-offs to achieve compliance. Taken together, our analysis suggests that acceleration trade-offs play a role in automaker compliance strategies with potentially large implications for both compliance costs and emissions.

  19. Introduction to spallation physics and spallation-target design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, G.J.; Pitcher, E.J.; Daemen, L.L.

    1995-10-01

    When coupled with the spallation process in appropriate target materials, high-power accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation offers exciting new possibilities for generating intense neutron fluxes for a variety of applications, including: (a) spallation-neutron sources for materials science research; (b) accelerator-based production of tritium; (c) accelerator-based transmutation of waste; (d) accelerator-based destruction of plutonium; and (e) radioisotope production for medical and energy applications. Target design plays a key role in these applications, with neutron production/leakage being strongly dependent on the incidentmore » particle type and energy, and target material and geometry.« less

  20. Method for computationally efficient design of dielectric laser accelerator structures

    DOE PAGES

    Hughes, Tyler; Veronis, Georgios; Wootton, Kent P.; ...

    2017-06-22

    Here, dielectric microstructures have generated much interest in recent years as a means of accelerating charged particles when powered by solid state lasers. The acceleration gradient (or particle energy gain per unit length) is an important figure of merit. To design structures with high acceleration gradients, we explore the adjoint variable method, a highly efficient technique used to compute the sensitivity of an objective with respect to a large number of parameters. With this formalism, the sensitivity of the acceleration gradient of a dielectric structure with respect to its entire spatial permittivity distribution is calculated by the use of onlymore » two full-field electromagnetic simulations, the original and ‘adjoint’. The adjoint simulation corresponds physically to the reciprocal situation of a point charge moving through the accelerator gap and radiating. Using this formalism, we perform numerical optimizations aimed at maximizing acceleration gradients, which generate fabricable structures of greatly improved performance in comparison to previously examined geometries.« less

  1. Design of general apochromatic drift-quadrupole beam lines

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.

    2016-07-01

    Chromatic errors are normally corrected using sextupoles in regions of large dispersion. In low emittance linear accelerators, use of sextupoles can be challenging. Apochromatic focusing is a lesser-known alternative approach, whereby chromatic errors of Twiss parameters are corrected without the use of sextupoles, and has consequently been subject to renewed interest in advanced linear accelerator research. Proof of principle designs were first established by Montague and Ruggiero and developed more recently by Balandin et al. We describe a general method for designing drift-quadrupole beam lines of arbitrary order in apochromatic correction, including analytic expressions for emittance growth and other merit functions. Worked examples are shown for plasma wakefield accelerator staging optics and for a simple final focus system.

  2. Electromagnetic launchers for space applications

    NASA Technical Reports Server (NTRS)

    Schroeder, J. M.; Gully, J. H.; Driga, M. D.

    1989-01-01

    An electromagnetic launcher (EML) was designed for NASA-Langley to boost large models to hypervelocity for flight evaluation. Two different concepts were developed using railgun and coilgun principles. A coilgun was designed to accelerate a 14-kg mass to 6 km/s and, by adding additional equipment, to accelerate a 10-kg mass to 11 km/s. The railgun system was designed to accelerate only 14 kg to 6 km/s. Of significance in this development is the opportunity to use the launcher for aeroballistic research of the upper atmosphere, eventually placing packages in low earth orbit using a small rocket. The authors describe the railgun and coilgun launch designs and suggest a reconfiguration for placement of 150-kg parcels into low earth orbit for aeroballistic studies and possible space lab support. Each design is detailed along with the performance adjustments which would be required for circular orbit payload placement.

  3. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    NASA Astrophysics Data System (ADS)

    Lebrun, Ph

    2017-02-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices - magnets and high-frequency cavities - distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.

  4. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  5. Testing of a Loop Heat Pipe Subjected to Variable Accelerating Forces

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Tarik; Rogers, Paul; Hoff, Craig

    2000-01-01

    This paper presents viewgraphs of the functionality of a loop heat pipe that was subjected to variable accelerating forces. The topics include: 1) Summary of LHP (Loop Heat Pipe) Design Parameters; 2) Picture of the LHP; 3) Schematic of Test Setup; 4) Test Configurations; 5) Test Profiles; 6) Overview of Test Results; 7) Start-up; 8) Typical Start-up without Temperature Overshoot; 9) Start-up with a Large Temperature Overshoot; 10) LHP Operation Under Stationary Condition; 11) LHP Operation Under Continuous Acceleration; 12) LHP Operation Under Periodic Acceleration; 13) Effects of Acceleration on Temperature Oscillation and Hysteresis; 14) Temperature Oscillation/Hysteresis vs Spin Rate; and 15) Summary.

  6. Seismic hazard of American Samoa and neighboring South Pacific Islands--methods, data, parameters, and results

    USGS Publications Warehouse

    Petersen, Mark D.; Harmsen, Stephen C.; Rukstales, Kenneth S.; Mueller, Charles S.; McNamara, Daniel E.; Luco, Nicolas; Walling, Melanie

    2012-01-01

    American Samoa and the neighboring islands of the South Pacific lie near active tectonic-plate boundaries that host many large earthquakes which can result in strong earthquake shaking and tsunamis. To mitigate earthquake risks from future ground shaking, the Federal Emergency Management Agency requested that the U.S. Geological Survey prepare seismic hazard maps that can be applied in building-design criteria. This Open-File Report describes the data, methods, and parameters used to calculate the seismic shaking hazard as well as the output hazard maps, curves, and deaggregation (disaggregation) information needed for building design. Spectral acceleration hazard for 1 Hertz having a 2-percent probability of exceedance on a firm rock site condition (Vs30=760 meters per second) is 0.12 acceleration of gravity (1 second, 1 Hertz) and 0.32 acceleration of gravity (0.2 seconds, 5 Hertz) on American Samoa, 0.72 acceleration of gravity (1 Hertz) and 2.54 acceleration of gravity (5 Hertz) on Tonga, 0.15 acceleration of gravity (1 Hertz) and 0.55 acceleration of gravity (5 Hertz) on Fiji, and 0.89 acceleration of gravity (1 Hertz) and 2.77 acceleration of gravity (5 Hertz) on the Vanuatu Islands.

  7. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, J. S.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compactionmore » in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex; Bruning, Oliver; Cruz-Alaniz, E.

    Unprecedently high luminosity of 10 34 cm -2 s -1, promised by the LHeC accelerator complex poses several beam dynamics and lattice design challenges. As part of accelerator design process, exploration of innovative beam dynamics solutions and their lattice implementations is the key to mitigating performance limitations due to fundamental beam phenomena, such as: synchrotron radiation and collective instabilities. This article will present beam dynamics driven approach to accelerator design, which in particular, addresses emittance dilution due to quantum excitations and beam breakup instability in a large scale, multi-pass Energy Recovery Linac (ERL). The use of ERL accelerator technology tomore » provide improved beam quality and higher brightness continues to be the subject of active community interest and active accelerator development of future Electron Ion Colliders (EIC). Here, we employ current state of though for ERLs aiming at the energy frontier EIC. We will follow conceptual design options recently identified for the LHeC. The main thrust of these studies was to enhance the collider performance, while limiting overall power consumption through exploring interplay between emittance preservation and efficiencies promised by the ERL technology. Here, this combined with a unique design of the Interaction Region (IR) optics gives the impression that luminosity of 10 34 cm -2 s -1 is indeed feasible.« less

  9. Novel Lattice Solutions for the LHeC

    DOE PAGES

    Bogacz, Alex; Bruning, Oliver; Cruz-Alaniz, E.; ...

    2017-08-01

    Unprecedently high luminosity of 10 34 cm -2 s -1, promised by the LHeC accelerator complex poses several beam dynamics and lattice design challenges. As part of accelerator design process, exploration of innovative beam dynamics solutions and their lattice implementations is the key to mitigating performance limitations due to fundamental beam phenomena, such as: synchrotron radiation and collective instabilities. This article will present beam dynamics driven approach to accelerator design, which in particular, addresses emittance dilution due to quantum excitations and beam breakup instability in a large scale, multi-pass Energy Recovery Linac (ERL). The use of ERL accelerator technology tomore » provide improved beam quality and higher brightness continues to be the subject of active community interest and active accelerator development of future Electron Ion Colliders (EIC). Here, we employ current state of though for ERLs aiming at the energy frontier EIC. We will follow conceptual design options recently identified for the LHeC. The main thrust of these studies was to enhance the collider performance, while limiting overall power consumption through exploring interplay between emittance preservation and efficiencies promised by the ERL technology. Here, this combined with a unique design of the Interaction Region (IR) optics gives the impression that luminosity of 10 34 cm -2 s -1 is indeed feasible.« less

  10. Reliability Considerations for the Operation of Large Accelerator User Facilities

    DOE PAGES

    Willeke, F. J.

    2016-01-29

    The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. Finally, the article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.

  11. New self-magnetically insulated connection of multilevel accelerators to a common load

    DOE PAGES

    VanDevender, J. Pace; Langston, William L.; Pasik, Michael F.; ...

    2015-03-04

    A new way to connect pulsed-power modules to a common load is presented. Unlike previous connectors, the clam shell magnetically insulated transmission line (CSMITL) has magnetic nulls only at large radius where the cathode electric field is kept below the threshold for emission, has only a simply connected magnetic topology to avoid plasma motion along magnetic field lines into highly stressed gaps, and has electron injectors that ensure efficient electron flow even in the limiting case of self-limited MITLs. Multilevel magnetically insulated transmission lines with a posthole convolute are the standard solution but associated losses limit the performance of state-of-the-artmore » accelerators. Mitigating these losses is critical for the next generation of pulsed-power accelerators. A CSMITL has been successfully implemented on the Saturn accelerator. A reference design for the Z accelerator is derived and presented. The design conservatively meets the design requirements and shows excellent transport efficiency in three simulations of increasing complexity: circuit simulations, electromagnetic fields only with Emphasis, fields plus electron and ion emission with Quicksilver.« less

  12. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    NASA Astrophysics Data System (ADS)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.

  13. Design details of Intelligent Instruments for PLC-free Cryogenic measurements, control and data acquisition

    NASA Astrophysics Data System (ADS)

    Antony, Joby; Mathuria, D. S.; Chaudhary, Anup; Datta, T. S.; Maity, T.

    2017-02-01

    Cryogenic network for linear accelerator operations demand a large number of Cryogenic sensors, associated instruments and other control-instrumentation to measure, monitor and control different cryogenic parameters remotely. Here we describe an alternate approach of six types of newly designed integrated intelligent cryogenic instruments called device-servers which has the complete circuitry for various sensor-front-end analog instrumentation and the common digital back-end http-server built together, to make crateless PLC-free model of controls and data acquisition. These identified instruments each sensor-specific viz. LHe server, LN2 Server, Control output server, Pressure server, Vacuum server and Temperature server are completely deployed over LAN for the cryogenic operations of IUAC linac (Inter University Accelerator Centre linear Accelerator), New Delhi. This indigenous design gives certain salient features like global connectivity, low cost due to crateless model, easy signal processing due to integrated design, less cabling and device-interconnectivity etc.

  14. Plasma production for electron acceleration by resonant plasma wave

    NASA Astrophysics Data System (ADS)

    Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  15. Symposium on Electromagnetic Launcher Technology, 5th, Sandestin, FL, Apr. 3-5, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    Gooden, Clarence E.

    1991-01-01

    The present conference on electromagnetic accelerators (EMAs) and railguns (RGs) discusses active-current management for four-rail RGs, the design of a compulsator-drive 60-caliber RG, EMA studies with augmented rails, muzzle-shunt augmentation of conventional RGs, effect of in-bore gas on RG performance, the distributed-energy store RG, plasma diagnostics for high power ignitron development, a review of EMA armature research, RG hybrid armatures, a new solid-armature design concept, and the electrodynamics of RG plasma armatures. Also discussed is RG modeling at speed using three-dimensional finite elements, power supply technology for EMAs, rotating machine power supplies for next-generation EMAs, advanced EMA power supplies with magnetic-flux compression, metal-to-metal switches for large currents, lightweight high-effiency energy-storage transformers, hypervelocity projectile development for EMAs, structural design issues for EMA projectiles, stiff RGs, a reinforced Al conductor for cryogenic applications, mass-stabilized projectile designs for EMA launch, indictively-commutated coilguns, an actively switched pulsed induction accelerator, a plasma gun-augmented electrothermal accelerator, a symmetrical rail accelerator, and a travelling-wave synchronous coil gun.

  16. Beam Dynamics for ARIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August Jr.

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  17. High Efficiency Electron-Laser Interactions in Tapered Helical Undulators

    NASA Astrophysics Data System (ADS)

    Duris, Joseph Patrick

    Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used for acceleration in this experiment. By accounting for the evolving radiation field in the design of the undulator tapering, a large fraction of energy may be transferred between the electrons and laser, enabling compact, high-current GeV accelerators and various wavelength light-sources of unprecedented peak powers.

  18. The chaotic dynamical aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Tepikian, S.

    1985-10-01

    Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator design have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipolesmore » should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take tremendous amount of computing time. In this paper, we try to apply the existing method in the nonlinear dynamics to study the possible alternative solution. When the Hamiltonian motion becomes chaotic, the tune of the machine becomes undefined. The aperture related to the chaotic orbit can be identified as chaotic dynamical aperture. We review the method of determining chaotic orbit and apply the method to nonlinear problems in accelerator physics. We then discuss the scaling properties and effect of random sextupoles.« less

  19. Harmonic ratcheting for fast acceleration

    NASA Astrophysics Data System (ADS)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  20. A New Concept of Controller for Accelerators' Magnet Power Supplies

    NASA Astrophysics Data System (ADS)

    Visintini, Roberto; Cleva, Stefano; Cautero, Marco; Ciesla, Tomasz

    2016-04-01

    The complexity of a particle accelerator implies the remote control of very large numbers of devices, with many different typologies, either distributed along the accelerator or concentrated in locations, often far away from each other. Local and global control systems handle the devices through dedicated communication channels and interfaces. Each controlled device is practically a “smart node” performing a specific task. In addition, very often, those tasks are managed in real-time mode. The performances required to the control interface has an influence on the cost of the distributed nodes as well as on their hardware and software implementation. In large facilities (e.g. CERN) the “smart nodes” derive from specific in-house developments. Alternatively, it is possible to find on the market commercial devices, whose performances (and prices) are spread over a broad range, and spanning from proprietary design (customizable to the user's needs) to open source/design. In this paper, we will describe some applications of smart nodes in the particle accelerators field, with special focus on the power supplies for magnets. In modern accelerators, in fact, magnets and their associated power supplies constitute systems distributed along the accelerator itself, and strongly interfaced with the remote control system as well as with more specific (and often more demanding) orbit/trajectory feedback systems. We will give examples of actual systems, installed and operational on two light sources, Elettra and FERMI, located in the Elettra Research Center in Trieste, Italy.

  1. HOM frequency control of SRF cavity in high current ERLs

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ben-Zvi, Ilan

    2018-03-01

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety of Energy Recovery Linac (ERL) applications.

  2. Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Carlson, Kermit; Nobrega, Lucy

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII)more » gun and collector under ultra-high vacuum (UHV) conditions.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Slawomir Alex

    Here, we summarize current state of concept for muon acceleration aimed at future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance through exploring interplay between complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival of the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to initially low RF frequency, e.g. 325 MHz, and then increased to 650 MHz, as the transverse size shrinks with increasing energy. High-gradient normalmore » conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Here, we considered two cost effective schemes for accelerating muon beams for a stagable Neutrino Factory: Exploration of the so-called 'dual-use' linac concept, where the same linac structure is used for acceleration of both H- and muons and alternatively, the SRF efficient design based on multi-pass (4.5) 'dogbone' RLA, extendable to multi-pass FFAG-like arcs.« less

  4. Isochronous (CW) Non-Scaling FFAGs: Design and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, C.; Berz, M.; Makino, K.

    2010-11-04

    The drive for higher beam power, high duty cycle, and reliable beams at reasonable cost has focused international attention and design effort on fixed field accelerators, notably Fixed-Field Alternating Gradient accelerators (FFAGs). High-intensity GeV proton drivers encounter duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons. A 10-20 MW proton driver is challenging, if even technically feasible, with conventional accelerators--with the possible exception of a SRF linac, which has a large associated cost and footprint. Recently, the concept of isochronous orbits has been explored and developed for nonscaling FFAGs using powerful new methodologiesmore » in FFAG accelerator design and simulation. The property of isochronous orbits enables the simplicity of fixed RF and, by tailoring a nonlinear radial field profile, the FFAG can remain isochronous beyond the energy reach of cyclotrons, well into the relativistic regime. With isochronous orbits, the machine proposed here has the high average current advantage and duty cycle of the cyclotron in combination with the strong focusing, smaller losses, and energy variability that are more typical of the synchrotron. This paper reports on these new advances in FFAG accelerator technology and presents advanced modeling tools for fixed-field accelerators unique to the code COSY INFINITY.« less

  5. Overview of the design of the ITER heating neutral beam injectors

    NASA Astrophysics Data System (ADS)

    Hemsworth, R. S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; de Esch, H. P. L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; Serianni, G.; Shah, D.; Singh, M.; Urbani, M.; Zaccaria, P.

    2017-02-01

    The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H- and D- remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of the HNB injectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushing which separates the vacuum of the beamline from the high pressure SF6 of the high voltage (1 MV) transmission line, through which the power, gas and cooling water are supplied to the beam source. Also the magnetic field reduction system is not described.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex

    We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory and extendable to Higgs Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650more » MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider an SRF-efficient design based on a multi-pass (4.5) ?dogbone? RLA, extendable to multi-pass FFAG-like arcs.« less

  7. Mercury BLASTP: Accelerating Protein Sequence Alignment

    PubMed Central

    Jacob, Arpith; Lancaster, Joseph; Buhler, Jeremy; Harris, Brandon; Chamberlain, Roger D.

    2008-01-01

    Large-scale protein sequence comparison is an important but compute-intensive task in molecular biology. BLASTP is the most popular tool for comparative analysis of protein sequences. In recent years, an exponential increase in the size of protein sequence databases has required either exponentially more running time or a cluster of machines to keep pace. To address this problem, we have designed and built a high-performance FPGA-accelerated version of BLASTP, Mercury BLASTP. In this paper, we describe the architecture of the portions of the application that are accelerated in the FPGA, and we also describe the integration of these FPGA-accelerated portions with the existing BLASTP software. We have implemented Mercury BLASTP on a commodity workstation with two Xilinx Virtex-II 6000 FPGAs. We show that the new design runs 11-15 times faster than software BLASTP on a modern CPU while delivering close to 99% identical results. PMID:19492068

  8. SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO

    NASA Astrophysics Data System (ADS)

    Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-01

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  9. Muon Acceleration Concepts for NuMAX: "Dual-use" Linac and "Dogbone" RLA

    DOE PAGES

    Bogacz, S. A.

    2018-02-01

    In this paper, we summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz asmore » the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Finally, we consider two cost effective schemes for accelerating muon beams for a stageable Neutrino Factory: exploration of the so-called "dual-use" linac concept, where the same linac structure is used for acceleration of both H - and muons and, alternatively, an SRF-efficient design based on a multi-pass (4.5) "dogbone" RLA, extendable to multi-pass FFAG-like arcs.« less

  10. Two-material optimization of plate armour for blast mitigation using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Goetz, J.; Tan, H.; Renaud, J.; Tovar, A.

    2012-08-01

    With the increased use of improvised explosive devices in regions at war, the threat to military and civilian life has risen. Cabin penetration and gross acceleration are the primary threats in an explosive event. Cabin penetration crushes occupants, damaging the lower body. Acceleration causes death at high magnitudes. This investigation develops a process of designing armour that simultaneously mitigates cabin penetration and acceleration. The hybrid cellular automaton (HCA) method of topology optimization has proven efficient and robust in problems involving large, plastic deformations such as crash impact. Here HCA is extended to the design of armour under blast loading. The ability to distribute two metallic phases, as opposed to one material and void, is also added. The blast wave energy transforms on impact into internal energy (IE) inside the solid medium. Maximum attenuation occurs with maximized IE. The resulting structures show HCA's potential for designing blast mitigating armour structures.

  11. Chaotic dynamics in accelerator physics

    NASA Astrophysics Data System (ADS)

    Cary, J. R.

    1992-11-01

    Substantial progress was made in several areas of accelerator dynamics. We have completed a design of an FEL wiggler with adiabatic trapping and detrapping sections to develop an understanding of longitudinal adiabatic dynamics and to create efficiency enhancements for recirculating free-electron lasers. We developed a computer code for analyzing the critical KAM tori that binds the dynamic aperture in circular machines. Studies of modes that arise due to the interaction of coating beams with a narrow-spectrum impedance have begun. During this research educational and research ties with the accelerator community at large have been strengthened.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUANG, H.; AHRENS, L.A.; BAI, M.

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  13. Design study for a staged Very Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter J. Limon et al.

    Advancing accelerator designs and technology to achieve the highest energies has enabled remarkable discoveries in particle physics. This report presents the results of a design study for a new collider at Fermilab that will create exceptional opportunities for particle physics--a two-stage very large hadron collider. In its first stage, the machine provides a facility for energy-frontier particle physics research, at an affordable cost and on a reasonable time scale. In a second-stage upgrade in the same tunnel, the VLHC offers the possibility of reaching 100 times the collision energy of the Tevatron. The existing Fermilab accelerator complex serves as themore » injector, and the collision halls are on the Fermilab site. The Stage-1 VLHC reaches a collision energy of 40 TeV and a luminosity comparable to that of the LHC, using robust superferric magnets of elegant simplicity housed in a large-circumference tunnel. The Stage-2 VLHC, constructed after the scientific potential of the first stage has been fully realized, reaches a collision energy of at least 175 TeV with the installation of high-field magnets in the same tunnel. It makes optimal use of the infrastructure developed for the Stage-1 machine, using the Stage-1 accelerator itself as the injector. The goals of this study, commissioned by the Fermilab Director in November 2000, are: to create reasonable designs for the Stage-1 and Stage-2 VLHC in the same tunnel; to discover the technical challenges and potential impediments to building such a facility at Fermilab; to determine the approximate costs of the major elements of the Stage-1 VLHC; and to identify areas requiring significant R and D to establish the basis for the design.« less

  14. HOM frequency control of SRF cavity in high current ERLs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chen; Ben-Zvi, Ilan

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety ofmore » Energy Recovery Linac (ERL) applications.« less

  15. HOM frequency control of SRF cavity in high current ERLs

    DOE PAGES

    Xu, Chen; Ben-Zvi, Ilan

    2017-12-06

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety ofmore » Energy Recovery Linac (ERL) applications.« less

  16. Engineering survey planning for the alignment of a particle accelerator: part II. Design of a reference network and measurement strategy

    NASA Astrophysics Data System (ADS)

    Junqueira Leão, Rodrigo; Raffaelo Baldo, Crhistian; Collucci da Costa Reis, Maria Luisa; Alves Trabanco, Jorge Luiz

    2018-03-01

    The building blocks of particle accelerators are magnets responsible for keeping beams of charged particles at a desired trajectory. Magnets are commonly grouped in support structures named girders, which are mounted on vertical and horizontal stages. The performance of this type of machine is highly dependent on the relative alignment between its main components. The length of particle accelerators ranges from small machines to large-scale national or international facilities, with typical lengths of hundreds of meters to a few kilometers. This relatively large volume together with micrometric positioning tolerances make the alignment activity a classical large-scale dimensional metrology problem. The alignment concept relies on networks of fixed monuments installed on the building structure to which all accelerator components are referred. In this work, the Sirius accelerator is taken as a case study, and an alignment network is optimized via computational methods in terms of geometry, densification, and surveying procedure. Laser trackers are employed to guide the installation and measure the girders’ positions, using the optimized network as a reference and applying the metric developed in part I of this paper. Simulations demonstrate the feasibility of aligning the 220 girders of the Sirius synchrotron to better than 0.080 mm, at a coverage probability of 95%.

  17. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to bemore » conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.« less

  18. Investigation of using shrinking method in construction of Institute for Research in Fundamental Sciences Electron Linear Accelerator TW-tube (IPM TW-Linac tube)

    NASA Astrophysics Data System (ADS)

    Ghasemi, F.; Abbasi Davani, F.

    2015-06-01

    Due to Iran's growing need for accelerators in various applications, IPM's electron Linac project has been defined. This accelerator is a 15 MeV energy S-band traveling-wave accelerator which is being designed and constructed based on the klystron that has been built in Iran. Based on the design, operating mode is π /2 and the accelerating chamber consists of two 60cm long tubes with constant impedance and a 30cm long buncher. Amongst all construction methods, shrinking method is selected for construction of IPM's electron Linac tube because it has a simple procedure and there is no need for large vacuum or hydrogen furnaces. In this paper, different aspects of this method are investigated. According to the calculations, linear ratio of frequency alteration to radius change is 787.8 MHz/cm, and the maximum deformation at the tube wall where disks and the tube make contact is 2.7μ m. Applying shrinking method for construction of 8- and 24-cavity tubes results in satisfactory frequency and quality factor. Average deviations of cavities frequency of 8- and 24-cavity tubes to the design values are 0.68 MHz and 1.8 MHz respectively before tune and 0.2 MHz and 0.4 MHz after tune. Accelerating tubes, buncher, and high power couplers of IPM's electron linac are constructed using shrinking method.

  19. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  20. Fast vaccine design and development based on correlates of protection (COPs)

    PubMed Central

    van Els, Cécile; Mjaaland, Siri; Næss, Lisbeth; Sarkadi, Julia; Gonczol, Eva; Smith Korsholm, Karen; Hansen, Jon; de Jonge, Jørgen; Kersten, Gideon; Warner, Jennifer; Semper, Amanda; Kruiswijk, Corine; Oftung, Fredrik

    2014-01-01

    New and reemerging infectious diseases call for innovative and efficient control strategies of which fast vaccine design and development represent an important element. In emergency situations, when time is limited, identification and use of correlates of protection (COPs) may play a key role as a strategic tool for accelerated vaccine design, testing, and licensure. We propose that general rules for COP-based vaccine design can be extracted from the existing knowledge of protective immune responses against a large spectrum of relevant viral and bacterial pathogens. Herein, we focus on the applicability of this approach by reviewing the established and up-coming COPs for influenza in the context of traditional and a wide array of new vaccine concepts. The lessons learnt from this field may be applied more generally to COP-based accelerated vaccine design for emerging infections. PMID:25424803

  1. Present status and future prospects of heavy ion beams as drivers for ICF

    NASA Astrophysics Data System (ADS)

    Godlove, Terry F.

    1986-01-01

    A candidate driver for a practical inertial fusion reactor system must, among other characteristics, be cost effective and reliable for the parameters required by the fusion target and the remainder of the system. Although the history of large particle accelerators provides abundant evidence of their reliability at high repetition rates, their capital cost for the fusion application has been open to question. Attempts to design cost effective systems began with accelerators based on currently available technology such as RF linacs and storage rings. The West German HIBALL and the Japanese HIBLIC are examples of this initial effort. These designs are sufficiently credible that a strong argument can be made for the heavy ion method in general, but to reduce the cost per unit power it was found necessary to design for large scale, hence high capital cost. Emphasis in the U.S. shifted to newer technologies which offer hope of significant improvement in cost. In this paper the status of various heavy ion driver designs are compared with currently perceived requirements in order to illustrate their potential and assess their development needs.

  2. Radiation protection and environmental management at the relativistic heavy ion collider.

    PubMed

    Musolino, S V; Briggs, S L; Stevens, A J

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a high energy hadron accelerator built to study basic nuclear physics. It consists of two counter-rotating beams of fully stripped gold ions that are accelerated in two rings to an energy of 100 GeV/nucleon or protons at 250 GeV/c. The beams can be stored for a period of five to ten hours and brought into collision for experiments during that time. The first major physics objective is to recreate a state of matter, the quark-gluon plasma, that has been predicted to have existed at a short time after the creation of the universe. Because there are only a few other high energy particle accelerators like RHIC in the world, the rules promulgated in the US Code of Federal Regulations under the Atomic Energy Act, State regulations, or international guidance documents do not cover prompt radiation from accelerators to govern directly the design and operation of a superconducting collider. Special design criteria for prompt radiation were developed to provide guidance tor the design of radiation shielding. Environmental Management at RHIC is accomplished through the ISO 14001 Environmental Management System. The applicability, benefits, and implementation of ISO 14001 within the framework of a large research accelerator complex are discussed in the paper.

  3. ION ROCKET ENGINE

    DOEpatents

    Ehlers, K.W.; Voelker, F. III

    1961-12-19

    A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)

  4. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L.

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less

  5. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafka, Gene

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state ofmore » the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.« less

  6. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Kafka, Gene

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with significant flexibility in mind, but without compromising cost efficiency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of different variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of-flight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  7. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations

    PubMed Central

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors. PMID:27493624

  8. Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations.

    PubMed

    Gokmen, Tayfun; Vlasov, Yurii

    2016-01-01

    In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors.

  9. Rail accelerator technology and applications

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.

    1985-01-01

    Rail accelerators offer a viable means of launching ton-size payloads from the Earth's surface to space. The results of two mission studies which indicate that an Earth-to-Space Rail Launcher (ESRL) system is not only technically feasible but also economically beneficial, particularly when large amounts of bulk cago are to be delivered to space are given. An in-house experimental program at the Lewis Research Center (LeRC) was conducted in parallel with the mission studies with the objective of examining technical feasibility issues. A 1 m long - 12.5 by 12.5 mm bore rail accelerator as designed with clear polycarbonate sidewalls to visually observe the plasma armature acceleration. The general character of plasma/projectile dynamics is described for a typical test firing.

  10. Development and Comparison of Mechanical Structures for FNAL 15 T Nb$$_3$$Sn Dipole Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novitski, I.; Zlobin, A. V.

    2016-11-08

    Main design challenges for 15 T accelerator magnets are large Lorentz forces at this field level. The large Lorentz forces generate high stresses in the coil and mechanical structure and, thus, need stress control to maintain them at the acceptable level for brittle Nb3Sn coils and other elements of magnet mechanical structure. To provide these conditions and achieve the design field in the FNAL 15 T dipole demonstrator, several mechanical structures have been developed and analysed. The possibilities and limitations of these designs are discussed in this paper

  11. Accelerating NASA GN&C Flight Software Development

    NASA Technical Reports Server (NTRS)

    Tamblyn, Scott; Henry, Joel; Rapp, John

    2010-01-01

    When the guidance, navigation, and control (GN&C) system for the Orion crew vehicle undergoes Critical Design Review (CDR), more than 90% of the flight software will already be developed - a first for NASA on a project of this scope and complexity. This achievement is due in large part to a new development approach using Model-Based Design.

  12. A polymer dataset for accelerated property prediction and design.

    PubMed

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.

  13. Simulation-based MDP verification for leading-edge masks

    NASA Astrophysics Data System (ADS)

    Su, Bo; Syrel, Oleg; Pomerantsev, Michael; Hagiwara, Kazuyuki; Pearman, Ryan; Pang, Leo; Fujimara, Aki

    2017-07-01

    For IC design starts below the 20nm technology node, the assist features on photomasks shrink well below 60nm and the printed patterns of those features on masks written by VSB eBeam writers start to show a large deviation from the mask designs. Traditional geometry-based fracturing starts to show large errors for those small features. As a result, other mask data preparation (MDP) methods have become available and adopted, such as rule-based Mask Process Correction (MPC), model-based MPC and eventually model-based MDP. The new MDP methods may place shot edges slightly differently from target to compensate for mask process effects, so that the final patterns on a mask are much closer to the design (which can be viewed as the ideal mask), especially for those assist features. Such an alteration generally produces better masks that are closer to the intended mask design. Traditional XOR-based MDP verification cannot detect problems caused by eBeam effects. Much like model-based OPC verification which became a necessity for OPC a decade ago, we see the same trend in MDP today. Simulation-based MDP verification solution requires a GPU-accelerated computational geometry engine with simulation capabilities. To have a meaningful simulation-based mask check, a good mask process model is needed. The TrueModel® system is a field tested physical mask model developed by D2S. The GPU-accelerated D2S Computational Design Platform (CDP) is used to run simulation-based mask check, as well as model-based MDP. In addition to simulation-based checks such as mask EPE or dose margin, geometry-based rules are also available to detect quality issues such as slivers or CD splits. Dose margin related hotspots can also be detected by setting a correct detection threshold. In this paper, we will demonstrate GPU-acceleration for geometry processing, and give examples of mask check results and performance data. GPU-acceleration is necessary to make simulation-based mask MDP verification acceptable.

  14. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  15. Status of Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Lineberry, John T.

    2007-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems, The baseline configuration for this high-power experimental facility utilizes a 1,5-MW, multi-gas arc-heater as a thermal driver for a 2-MW, MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable beat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  16. Co-evolution of upstream waves and accelerated ions at parallel shocks

    NASA Astrophysics Data System (ADS)

    Fujimoto, M.; Sugiyama, T.

    2016-12-01

    Shock waves in space plasmas have been considered as the agents for various particle acceleration phenomena. The basic idea behind shock acceleration is that particles are accelerated as they move back-and-forth across a shock front. Detailed studies of ion acceleration at the terrestrial bow shock have been performed, however, the restricted maximum energies attained prevent a straight-forward application of obtained knowledge to more energetic astrophysical situations. Here we show by a large-scale self-consistent particle simulation that the co-evolution of magnetic turbulence and accelerated ion population is the foundation for continuous operation of shock acceleration to ever higher energies. Magnetic turbulence is created by ions reflected back upstream of a parallel shock front. The co-evolution arises because more energetic ions excite waves of longer wavelengths, and because longer wavelength modes are capable of scattering (in the upstream) and reflecting (at the shock front) more energetic ions. Via carefully designed numerical experiments, we show very clearly that this picture is true.

  17. Accelerating evaluation of converged lattice thermal conductivity

    NASA Astrophysics Data System (ADS)

    Qin, Guangzhao; Hu, Ming

    2018-01-01

    High-throughput computational materials design is an emerging area in materials science, which is based on the fast evaluation of physical-related properties. The lattice thermal conductivity (κ) is a key property of materials for enormous implications. However, the high-throughput evaluation of κ remains a challenge due to the large resources costs and time-consuming procedures. In this paper, we propose a concise strategy to efficiently accelerate the evaluation process of obtaining accurate and converged κ. The strategy is in the framework of phonon Boltzmann transport equation (BTE) coupled with first-principles calculations. Based on the analysis of harmonic interatomic force constants (IFCs), the large enough cutoff radius (rcutoff), a critical parameter involved in calculating the anharmonic IFCs, can be directly determined to get satisfactory results. Moreover, we find a simple way to largely ( 10 times) accelerate the computations by fast reconstructing the anharmonic IFCs in the convergence test of κ with respect to the rcutof, which finally confirms the chosen rcutoff is appropriate. Two-dimensional graphene and phosphorene along with bulk SnSe are presented to validate our approach, and the long-debate divergence problem of thermal conductivity in low-dimensional systems is studied. The quantitative strategy proposed herein can be a good candidate for fast evaluating the reliable κ and thus provides useful tool for high-throughput materials screening and design with targeted thermal transport properties.

  18. Sensitivity Analysis of the Off-Normal Conditions of the SPIDER Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veltri, P.; Agostinetti, P.; Antoni, V.

    2011-09-26

    In the context of the development of the 1 MV neutral beam injector for the ITER tokamak, the study on beam formation and acceleration has considerable importance. This effort includes the ion source and accelerator SPIDER (Source for Production of Ions of Deuterium Extracted from an Rf plasma) ion source, planned to be built in Padova, and designed to extract and accelerate a 355 A/m{sup 2} current of H{sup -}(or 285 A/m{sup 2} D{sup -}) up to 100 kV. Exhaustive simulations were already carried out during the accelerator optimization leading to the present design. However, as it is expected thatmore » the accelerator shall operate also in case of pre-programmed or undesired off-normal conditions, the investigation of a large set of off-normal scenarios is necessary. These analyses will also be useful for the evaluation of the real performances of the machine, and should help in interpreting experimental results, or in identifying dangerous operating conditions.The present contribution offers an overview of the results obtained during the investigation of these off-normal conditions, by means of different modeling tools and codes. The results, showed a good flexibility of the device in different operating conditions. Where the consequences of the abnormalities appeared to be problematic further analysis were addressed.« less

  19. Inverse compton light source: a compact design proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deitrick, Kirsten Elizabeth

    In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source wasmore » constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.« less

  20. The last large pelletron accelerator of the Herb era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, S.; Narayanan, M. M.; Joshi, R.

    1999-04-26

    Prof. Ray Herb pioneered the concept and design of the tandem Pelletron accelerator in the late sixties at NEC. The 15UD Pelletron at Nuclear Science Centre (NSC), upgraded for 16MV operation using compressed geometry accelerating tubes is the last such large Pelletron. It has unique features like offset and matching quadrupoles after the stripper for charge state selection inside the high voltage terminal and consequently the option of further stripping the ion species of the selected charge states at high energy dead section, and elaborate pulsing system in the pre-acceleration region consisting of a beam chopper, a travelling wave deflector,more » a light ion buncher (1-80 amu) and a heavy ion buncher (>80 amu). NSC was established as a heavy ion accelerator based inter university centre in 1985. It became operational in July 1991 to cater to the research requirements of a large user community which at present includes about fifty universities, twenty-eight colleges and a dozen other academic institutes and research laboratories. The number of users in Materials and allied sciences is about 500. Various important modifications have been made to improve the performance of the accelerator in the last seven years. These include replacement of the corona voltage grading system by a resistor based one, a pick-up loop to monitor charging system performance, conversion from basic double unit structure to singlet, installation of a spiral cavity based phase detector system with post-accelerator stripper after the analyzing magnet, and a high efficiency multi harmonic buncher. Installation of a turbo pump based stripper gas recirculation system in the terminal is also planned. A brief description of utilization of the machine will be given.« less

  1. Nonlinear modeling, strength-based design, and testing of flexible piezoelectric energy harvesters under large dynamic loads for rotorcraft applications

    NASA Astrophysics Data System (ADS)

    Leadenham, Stephen; Erturk, Alper

    2014-04-01

    There has been growing interest in enabling wireless health and usage monitoring for rotorcraft applications, such as helicopter rotor systems. Large dynamic loads and acceleration fluctuations available in these environments make the implementation of vibration-based piezoelectric energy harvesters a very promising choice. However, such extreme loads transmitted to the harvester can also be detrimental to piezoelectric laminates and overall system reliability. Particularly flexible resonant cantilever configurations tuned to match the dominant excitation frequency can be subject to very large deformations and failure of brittle piezoelectric laminates due to excessive bending stresses at the root of the harvester. Design of resonant piezoelectric energy harvesters for use in these environments require nonlinear electroelastic dynamic modeling and strength-based analysis to maximize the power output while ensuring that the harvester is still functional. This paper presents a mathematical framework to design and analyze the dynamics of nonlinear flexible piezoelectric energy harvesters under large base acceleration levels. A strength-based limit is imposed to design the piezoelectric energy harvester with a proof mass while accounting for material, geometric, and dissipative nonlinearities, with a focus on two demonstrative case studies having the same linear fundamental resonance frequency but different overhang length and proof mass values. Experiments are conducted at different excitation levels for validation of the nonlinear design approach proposed in this work. The case studies in this work reveal that harvesters exhibiting similar behavior and power generation performance at low excitation levels (e.g. less than 0.1g) can have totally different strength-imposed performance limitations under high excitations (e.g. above 1g). Nonlinear modeling and strength-based design is necessary for such excitation levels especially when using resonant cantilevers with no geometric constraint.

  2. Hardware accelerated high performance neutron transport computation based on AGENT methodology

    NASA Astrophysics Data System (ADS)

    Xiao, Shanjie

    The spatial heterogeneity of the next generation Gen-IV nuclear reactor core designs brings challenges to the neutron transport analysis. The Arbitrary Geometry Neutron Transport (AGENT) AGENT code is a three-dimensional neutron transport analysis code being developed at the Laboratory for Neutronics and Geometry Computation (NEGE) at Purdue University. It can accurately describe the spatial heterogeneity in a hierarchical structure through the R-function solid modeler. The previous version of AGENT coupled the 2D transport MOC solver and the 1D diffusion NEM solver to solve the three dimensional Boltzmann transport equation. In this research, the 2D/1D coupling methodology was expanded to couple two transport solvers, the radial 2D MOC solver and the axial 1D MOC solver, for better accuracy. The expansion was benchmarked with the widely applied C5G7 benchmark models and two fast breeder reactor models, and showed good agreement with the reference Monte Carlo results. In practice, the accurate neutron transport analysis for a full reactor core is still time-consuming and thus limits its application. Therefore, another content of my research is focused on designing a specific hardware based on the reconfigurable computing technique in order to accelerate AGENT computations. It is the first time that the application of this type is used to the reactor physics and neutron transport for reactor design. The most time consuming part of the AGENT algorithm was identified. Moreover, the architecture of the AGENT acceleration system was designed based on the analysis. Through the parallel computation on the specially designed, highly efficient architecture, the acceleration design on FPGA acquires high performance at the much lower working frequency than CPUs. The whole design simulations show that the acceleration design would be able to speedup large scale AGENT computations about 20 times. The high performance AGENT acceleration system will drastically shortening the computation time for 3D full-core neutron transport analysis, making the AGENT methodology unique and advantageous, and thus supplies the possibility to extend the application range of neutron transport analysis in either industry engineering or academic research.

  3. ACHIEVING THE REQUIRED COOLANT FLOW DISTRIBUTION FOR THE ACCELERATOR PRODUCTION OF TRITIUM (APT) TUNGSTEN NEUTRON SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. SIEBE; K. PASAMEHMETOGLU

    The Accelerator Production of Tritium neutron source consists of clad tungsten targets, which are concentric cylinders with a center rod. These targets are arranged in a matrix of tubes, producing a large number of parallel coolant paths. The coolant flow required to meet thermal-hydraulic design criteria varies with location. This paper describes the work performed to ensure an adequate coolant flow for each target for normal operation and residual heat-removal conditions.

  4. Industrialization of Superconducting RF Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project currently being designed by the international collaboration GDE (`global design effort'). If the ILC will be built, about 18,000 SRF cavities need to be manufactured worldwide within about five years. The industrialization of SRF accelerator technology is analyzed and reviewed in this article in view of the main accelerator projects of the last two to three decades.

  5. Vacuum insulation of the high energy negative ion source for fusion application.

    PubMed

    Kojima, A; Hanada, M; Hilmi, A; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Kobayashi, S; Yamano, Y; Grisham, L R

    2012-02-01

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of ∼2 m(2). The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D(-) ion beams for 100 s.

  6. A proton medical accelerator by the SBIR route — an example of technology transfer

    NASA Astrophysics Data System (ADS)

    Martin, R. L.

    1989-04-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates has received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described.

  7. Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.

    2003-01-01

    The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.

  8. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    NASA Astrophysics Data System (ADS)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    2016-06-01

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

  9. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20xmore » to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.« less

  10. A Fine-Grained Pipelined Implementation for Large-Scale Matrix Inversion on FPGA

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Dou, Yong; Zhao, Jianxun; Xia, Fei; Lei, Yuanwu; Tang, Yuxing

    Large-scale matrix inversion play an important role in many applications. However to the best of our knowledge, there is no FPGA-based implementation. In this paper, we explore the possibility of accelerating large-scale matrix inversion on FPGA. To exploit the computational potential of FPGA, we introduce a fine-grained parallel algorithm for matrix inversion. A scalable linear array processing elements (PEs), which is the core component of the FPGA accelerator, is proposed to implement this algorithm. A total of 12 PEs can be integrated into an Altera StratixII EP2S130F1020C5 FPGA on our self-designed board. Experimental results show that a factor of 2.6 speedup and the maximum power-performance of 41 can be achieved compare to Pentium Dual CPU with double SSE threads.

  11. Effect of habitat-improvement thinnings on lumber products from coastal Douglas-fir

    Treesearch

    Dennis P. Dykstra; Patricia K. Lebow; Stephen Pilkerton; Jamie Barbour; Susan Hummel; Stuart R. Johnston

    2016-01-01

    We selected 66 sample trees from two thinning treatments, each of which was applied at three sites on the Siuslaw National Forest in Oregon. The first commercial thinnings, conducted in 1992 and 1993, had been designed to accelerate the development of large trees with large branches and other old-growth characteristics so as to improve habitat for bird species that...

  12. Design for simultaneous acceleration of stable and unstable beams in a superconducting heavy-ion linear accelerator for RISP

    NASA Astrophysics Data System (ADS)

    Kim, Jongwon; Son, Hyock-Jun; Park, Young-Ho

    2017-11-01

    The post-accelerator of isotope separation on-line (ISOL) system for rare isotope science project (RISP) is a superconducting linear accelerator (SC-linac) with a DC equivalent voltage of around 160 MV. An isotope beam extracted from the ISOL is in a charge state of 1+ and its charge state is increased to n+ by charge breeding with an electron beam ion source (EBIS). The charge breeding takes tens of ms and the pulse width of extracted beam from the EBIS is tens of μs, which operates at up to 30 Hz. Consequently a large portion of radio frequency (rf) time of the post SC-linac is unused. The post-linac is equipped also with an electron cyclotron resonance (ECR) ion source for stable ion acceleration. Thanks to the large phase acceptance of SC-linac, it is possible to accelerate simultaneously both stable and radioisotope ions with a similar charge to mass ratio by sharing rf time. This operation scheme is implemented for RISP with the addition of an electric chopper and magnetic kickers. The facility will be capable of providing the users of the ISOL and in-flight fragmentation (IF) systems with different beams simultaneously, which would help nuclear science users in obtaining a beam time as high-precision measurements often need long hours.

  13. Proposal for an astronaut mass measurement device for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Beyer, Neil; Lomme, Jon; Mccollough, Holly; Price, Bradford; Weber, Heidi

    1994-01-01

    For medical reasons, astronauts in space need to have their mass measured. Currently, this measurement is performed using a mass-spring system. The current system is large, inaccurate, and uncomfortable for the astronauts. NASA is looking for new, different, and preferably better ways to perform this measurement process. After careful analysis our design team decided on a linear acceleration process. Within the process, four possible concept variants are put forth. Among these four variants, one is suggested over the others. The variant suggested is that of a motor-winch system to linearly accelerate the astronaut. From acceleration and force measurements of the process combined Newton's second law, the mass of an astronaut can be calculated.

  14. Synergia: an accelerator modeling tool with 3-D space charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amundson, James F.; Spentzouris, P.; /Fermilab

    2004-07-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab boostermore » accelerator.« less

  15. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  16. Leveraging FPGAs for Accelerating Short Read Alignment.

    PubMed

    Arram, James; Kaplan, Thomas; Luk, Wayne; Jiang, Peiyong

    2017-01-01

    One of the key challenges facing genomics today is how to efficiently analyze the massive amounts of data produced by next-generation sequencing platforms. With general-purpose computing systems struggling to address this challenge, specialized processors such as the Field-Programmable Gate Array (FPGA) are receiving growing interest. The means by which to leverage this technology for accelerating genomic data analysis is however largely unexplored. In this paper, we present a runtime reconfigurable architecture for accelerating short read alignment using FPGAs. This architecture exploits the reconfigurability of FPGAs to allow the development of fast yet flexible alignment designs. We apply this architecture to develop an alignment design which supports exact and approximate alignment with up to two mismatches. Our design is based on the FM-index, with optimizations to improve the alignment performance. In particular, the n-step FM-index, index oversampling, a seed-and-compare stage, and bi-directional backtracking are included. Our design is implemented and evaluated on a 1U Maxeler MPC-X2000 dataflow node with eight Altera Stratix-V FPGAs. Measurements show that our design is 28 times faster than Bowtie2 running with 16 threads on dual Intel Xeon E5-2640 CPUs, and nine times faster than Soap3-dp running on an NVIDIA Tesla C2070 GPU.

  17. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.

  18. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    PubMed

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.

  19. Distribution uniformity of laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  20. Concept definition study for an extremely large aerophysics range facility

    NASA Technical Reports Server (NTRS)

    Swift, Hallock F.

    1993-01-01

    A conceptual design of a very large aeroballistic range is presented, as are its operational characteristics and procedures. The proposed model launcher is a two-stage light-gas gun, having a launch tube diameter of 254 mm, and the capability of accelerating a 14 kg launch mass to 6.1 km/sec. The gun's 91.4 cm diameter piston is driven by pressurized helium. High pressures in the central breech are contained by a multiple disk arrangement. The blast tank and sabot separation tank are described, as are methods for arresting sabot segments. The conceptual design of the range itself includes a 3.3 m diameter test or flight chamber some 330 m in length. Provisions are made for testing of free flight models and tests in which the model is confined by a track system. Methods for model deceleration and recovery are described. Provisions required for future addition of advanced model launchers such as an electromagnetic launcher or ram accelerator are addressed. Siting and safety issues are also addressed.

  1. A large hadron electron collider at CERN

    DOE PAGES

    Abelleira Fernandez, J. L.

    2015-04-06

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously withmore » the LHC in the twenties and to achieve an integrated luminosity of O(100)fb –1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.« less

  2. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2017-12-09

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  3. Design of a Ram Accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Ram Accelerator, a chemically propelled, impulsive mass launch system, is presented as a viable concept for directly launching acceleration-insensitive payloads into low Earth orbit. The principles of propulsion are based on those of an airbreathing supersonic ramjet. The payload vehicle acts as the ramjet centerbody and travels through a fixed launch tube that acts as the ramjet outer cowling. The launch tube is filled with premixed gaseous fuel and oxidizer mixtures that combust at the base of the vehicle and produce thrust. Two modes of in-tube propulsion involving ramjet cycles are used in sequence to accelerate the vehicle from 0.7 km/sec to 9 km/sec. Requirements for placing a 2000 kg vehicle into a 500-km circular orbit, with a minimum amount of onboard rocket propellant for orbital maneuvers, are examined. It is shown that in-tube propulsion requirements dictate a launch tube length of 5.1 km to achieve an exit velocity of 9 km/sec, with peak accelerations not to exceed 1000 g's. Aerodynamic heating due to atmospheric transit requires minimal ablative protection and the vehicle retains a large percentage of its exit velocity. An indirect orbital insertion maneuver with aerobraking and two apogee burns is examined to minimize the required onboard propellant mass. An appropriate onboard propulsion system design to perform the required orbital maneuvers with minimum mass requirements is also determined. The structural designs of both the launch tube and the payload vehicle are examined using simple structural and finite element analysis for various materials.

  4. Design of a ram accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick

    1988-01-01

    The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.

  5. A polymer dataset for accelerated property prediction and design

    DOE PAGES

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; ...

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate targetmore » of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. As a result, it will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.« less

  6. Generation and application of ultrashort coherent mid-infrared electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Wandel, Scott

    Particle accelerators are useful instruments that help address critical issues for the future development of nuclear energy. Current state-of-the-art accelerators based on conventional radio-frequency (rf) cavities are too large and expensive for widespread commercial use, and alternative designs must be considered for supplying relativistic beams to small-scale applications, including medical imaging, secu- rity screening, and scientific research in a university-scale laboratory. Laser-driven acceleration using micro-fabricated dielectric photonic structures is an attractive approach because such photonic microstructures can support accelerating fields that are 10 to 100 times higher than that of rf cavity-based accelerators. Dielectric laser accelerators (DLAs) use commercial lasers as a driving source, which are smaller and less expensive than the klystrons used to drive current rf-based accelerators. Despite the apparent need for compact and economical laser sources for laser-driven acceleration, the availability of suitable high-peak-power lasers that cover a broad spectral range is currently limited. To address the needs of several innovative acceleration mechanisms like DLA, it is proposed to develop a coherent source of mid-infrared (IR) electromagnetic radiation that can be implemented as a driving source of laser accelerators. The use of ultrashort mid-IR high peak power laser systems in various laser-driven acceleration schemes has shown the potential to greatly reduce the optical pump intensities needed to realize high acceleration gradients. The optical intensity needed to achieve a given ponderomotive potential is 25 times less when using a 5-mum mid-IR laser as compared to using a 1-mum near-IR solid-state laser. In addition, dielectric structure breakdown caused by multiphoton ionization can be avoided by using longer-wavelength driving lasers. Current mid-IR laser sources do not produce sufficiently short pulse durations, broad spectral bandwidths, or high energies as required by certain accelerator applications. The use of a high-peak-power mid-IR laser system in DLA could enable tabletop accelerators on the MeV to GeV scale for security scanners, medical therapy devices, and compact x-ray light sources. This dissertation reports on the design and construction of a simple and robust, short-pulse parametric source operating at a center wavelength of 5 mum. The design and construction of a high-energy, short-pulse 2-mum parametric source is also presented, which serves as a surrogate pumping source for the 5-mum source. An elegant method for mid-IR pulse characterization is demonstrated, which makes use of ubiquitous silicon photodetectors, traditionally reserved for the characterization of near-IR radiation. In addition, a dual-chirped parametric amplification technique is extended into the mid-IR spectral region, producing a bandwidth-tunable mid-IR source in a simple design without sacrificing conversion efficiency. The design and development of a compact single-shot mid-IR prism spectrometer is also reported, and its implementation in a number of condensed matter studies at the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center is discussed. Rapid tuning and optimization of a high-energy parametric laser system using the mid-IR spectrometer is demonstrated, which significantly enhances the capabilities of performing optical measurements on superconducting materials using the LCLS instrument. All of the laser sources and optical technologies presented in this dissertation were developed using relatively simple designs to provide compact and cost-e ective systems to address some of the challenges facing accelerator and IR spectroscopy technologies. (Abstract shortened by ProQuest.).

  7. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  8. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  9. Power Transmission From The ITER Model Negative Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boilson, D.; Esch, H. P. L. de; Grand, C.

    2007-08-10

    In Cadarache development on negative ion sources is being carried out on the KAMABOKO III ion source on the MANTIS test bed. This is a model of the ion source designed for the neutral beam injectors of ITER. This ion source has been developed in collaboration with JAERI, Japan, who also designed and supplied the ion source. Its target performance is to accelerate a D- beam, with a current density of 200 A/m2 and <1 electron extracted per accelerated D- ion, at a source filling pressure of 0.3 Pa. For ITER a continuous ion beam must be assured for pulsemore » lengths of 1000 s, but beams of up to 3,600 s are also envisaged. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter. During long pulse operation ({<=}1000 s) it was found that the current density of both D- and H- beams, measured at the calorimeter was lower than expected and that a large discrepancy existed between the accelerated currents measured electrically and those transmitted to the calorimeter. The possibility that this discrepancy arose because the accelerated current included electrons (which would not be able to reach the calorimeter) was investigated and subsequently eliminated. Further studies have shown that the fraction of the electrical current reaching the calorimeter varies with the pulse length, which led to the suggestion that one or more of the accelerator grids were distorting due to the incident power during operation, leading to a progressive deterioration in the beam quality.. New extraction and acceleration grids have been designed and installed, which should have a better tolerance to thermal loads than those previously used. This paper describes the measurements of the power transmission and distribution using these grids.« less

  10. Code comparison for accelerator design and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1988-01-01

    We present a comparison between results obtained from standard accelerator physics codes used for the design and analysis of synchrotrons and storage rings, with programs SYNCH, MAD, HARMON, PATRICIA, PATPET, BETA, DIMAD, MARYLIE and RACE-TRACK. In our analysis we have considered 5 (various size) lattices with large and small angles including AGS Booster (10/degree/ bend), RHIC (2.24/degree/), SXLS, XLS (XUV ring with 45/degree/ bend) and X-RAY rings. The differences in the integration methods used and the treatment of the fringe fields in these codes could lead to different results. The inclusion of nonlinear (e.g., dipole) terms may be necessary inmore » these calculations specially for a small ring. 12 refs., 6 figs., 10 tabs.« less

  11. Vacuum insulation of the high energy negative ion source for fusion application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Inoue, T.

    2012-02-15

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A,more » 500 keV D{sup -} ion beams for 100 s.« less

  12. Neutron and Synchrotron Radiation Studies for Designer Materials, Sustainable Energy and Healthy Lives

    NASA Astrophysics Data System (ADS)

    Gibson, J. Murray

    2009-05-01

    Probably the most prolific use of large accelerators today is in the creation of bright beams of x-ray photons or neutrons. The number of scientific users of such sources in the US alone is approaching 10,000. I will describe the some of the major applications of synchrotron and neutron radiation and their impact on society. If you have AIDS, need a better IPOD or a more efficient car, or want to clean up a superfund site, you are benefitting from these accelerators. The design of new materials is becoming more and more dependent on structural information from these sources. I will identify the trends in applications which are demanding new sources with greater capabilities.

  13. Design and commissioning of a 16.1 MHz multiharmonic buncher for the reaccelerator at NSCL

    NASA Astrophysics Data System (ADS)

    Alt, Daniel Maloney

    The ReAccelerator (ReA) linear accelerator facility at the National Superconducting Cyclotron Laboratory is a unique resource for the nuclear physics community. The particle fragmentation beam production technique, combined with the ability to stop and then reaccelerate the beam to energies of astrophysical interest, give experimenters an unprecedented range of rare isotopes at energies of nuclear and astrophysical interest. The ReAccelerator also functions as a testbed for technology to be incorporated in the upcoming Facility for Rare Isotope Beams linear accelerator, which will eventually in turn become the beam source for ReA. This prototype nature of the ReAccelerator, however, dictated some design choices which have resulted in a final beam with a time structure that is less than ideal for certain classes of experiments. The cavities and RFQ used in ReA have an operating frequency of 80.5 MHz, which corresponds to a separation between particle bunches at the detectors of 12.4 ns. While this separation is acceptable for many experiments, sensitive time of flight measurements require a greater separation between pulses. As nuclear physics experiments rely on statistics, a solution to increasing bunch separation without simply discarding a large fraction of the beam particles was desired. This document describes the design and construction of such a device, a 16.1 MHz multiharmonic buncher. The first chapter provides backgound information on the NSCL and ReA, and some basic concepts in accelerator physics to lay the groundwork for the project.Next, more specifics are provided on the time structure of accelerated beams, and the experimental motivation for greater separation. The third chapter outlines the basic principles of multiharmonic bunching. In order to evaluate the feasibility of any buncher design, the exact acceptance of the Radiofrequency Quadrupole (RFQ) of the ReAccelerator needed to be empirically measured. Chapter 4 describes the results of that measurement. Chapter 5 outlines the simulations and calculations that went into the design choices for this particular buncher, incorporating the results of the RFQ measurements. The next two chapters describe the construction, installation, and testing of the device, and give experimental results. Finally, Chapter 8 summarizes the project and the final steps which need to be undertaken to make the device a simple to use asset for future experimentalists at ReA.

  14. Analysis and Design of Launch Vehicle Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  15. Magnetic Materials Characterization and Modeling for the Enhanced Design of Magnetic Shielding of Cryomodules in Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sah, Sanjay

    Particle accelerators produce beams of high-energy particles, which are used for both fundamental and applied scientific research and are critical to the development of accelerator driven sub-critical reactor systems. An effective magnetic shield is very important to achieve higher quality factor (Qo) of the cryomodule of a particle accelerator. The allowed value of field inside the cavity due to all external fields (particularly the Earth’s magnetic field) is ~15 mG or less. The goal of this PhD dissertation is to comprehensively study the magnetic properties of commonly used magnetic shielding materials at both cryogenic and room temperatures. This knowledge canmore » be used for the enhanced design of magnetic shields of cryomodes (CM) in particle accelerators. To this end, we first studied the temperature dependent magnetization behavior (M-H curves) of Amumetal and A4K under different annealing and deformation conditions. This characterized the effect of stress or deformation induced during the manufacturing processes and subsequent restoration of high permeability with appropriate heat treatment. Next, an energy based stochastic model for temperature dependent anhysteretic magnetization behavior of ferromagnetic materials was proposed and benchmarked against experimental data. We show that this model is able to simulate and explain the magnetic behavior of as rolled, deformed and annealed amumetal and A4K over a large range of temperatures. The experimental results for permeability are then used in a finite element model (FEM) in COMSOL to evaluate the shielding effectiveness of multiple shield designs at room temperature as well as cryogenic temperature. This work could serve as a guideline for future design, development and fabrication of magnetic shields of CMs.« less

  16. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps,more » then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.« less

  17. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    DOE PAGES

    Liu, Tao; Zhang, Tong; Wang, Dong; ...

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU)more » is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. As a result, theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.« less

  18. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to amore » resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.« less

  19. Software package for modeling spin-orbit motion in storage rings

    NASA Astrophysics Data System (ADS)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  20. State of the art in electromagnetic modeling for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Kabel, Andreas; Lee, Lie-Quan

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less

  1. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    NASA Astrophysics Data System (ADS)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  2. Development of a Multi-GeV spectrometer for laser-plasma experiment at FLAME

    NASA Astrophysics Data System (ADS)

    Valente, P.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benocci, R.; Benedetti, C.; Cacciotti, L.; Cecchetti, C. A.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Fioravanti, S.; Gallo, A.; Gamucci, A.; Gatti, G.; Ghigo, A.; Giulietti, A.; Giulietti, D.; Gizzi, L. A.; Koester, P.; Labate, L.; Levato, T.; Lollo, V.; Londrillo, P.; Martellotti, S.; Pace, E.; Pathak, N.; Rossi, A.; Tani, F.; Serafini, L.; Turchetti, G.; Vaccarezza, C.

    2011-10-01

    The advance in laser-plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular, the upcoming experiments with the 250 TW laser at the FLAME facility of the INFN Laboratori Nazionali di Frascati, will enter the GeV regime with more than 100 pC of electrons. At the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need for developing a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV), with still unknown angular divergences. Within the PlasmonX experiment at FLAME, a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence, present challenges in the design and construction of such a device. We present the design considerations for this spectrometer that lead to the use of scintillating fibers, multichannel photo-multipliers and a multiplexing electronics, a combination which is innovative in the field. We also present the experimental results obtained with a high intensity electron beam performed on a prototype at the LNF beam test facility.

  3. Recent Developments at the Accelerator Laboratory in Jyvaeskylae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trzaska, Wladyslaw Henryk

    Recent developments at the Accelerator Laboratory in Jyvaeskylae are described. In addition to the existing K = 130 a new cyclotron has been added. It is capable of producing of high current proton and deuteron beams at 30 and 15 MeV correspondingly. It should be fully operational in 2010. A new development in Jyvaeskylae is the growing commitment to astroparticle physics. Jyvaeskylae took the main scientific responsibility for a new cosmic-ray experiment EMMA and has joined the LAGUNA project working on the design of the next generation of very large volume detectors for underground observatories.

  4. The Sanford Science Education Center: Addressing Key Design Challenges in Sharing Complex Science with Diverse Audiences

    ERIC Educational Resources Information Center

    Inverness Research, 2016

    2016-01-01

    In facilities throughout the United States and abroad, communities of scientists share infrastructure, instrumentation, and equipment to conduct scientific research. In these large facilities--laboratories, accelerators, telescope arrays, and research vessels--scientists are researching key questions that have the potential to make a significant…

  5. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator.

    PubMed

    Lindstrøm, C A; Adli, E; Allen, J M; An, W; Beekman, C; Clarke, C I; Clayton, C E; Corde, S; Doche, A; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; O'Shea, B D; Vafaei-Najafabadi, N; Yakimenko, V

    2018-03-23

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.

  6. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.; Allen, J. M.; An, W.; Beekman, C.; Clarke, C. I.; Clayton, C. E.; Corde, S.; Doche, A.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; O'Shea, B. D.; Vafaei-Najafabadi, N.; Yakimenko, V.

    2018-03-01

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.

  7. Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Andrews, Richard; Carlson, Kermit

    2016-07-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development ofmore » a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.« less

  8. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  9. The theory of an auto-resonant field emission cathode relativistic electron accelerator for high efficiency microwave to direct current power conversion

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1990-01-01

    A novel method of microwave power conversion to direct current is discussed that relies on a modification of well known resonant linear relativistic electron accelerator techniques. An analysis is presented that shows how, by establishing a 'slow' electromagnetic field in a waveguide, electrons liberated from an array of field emission cathodes, are resonantly accelerated to several times their rest energy, thus establishing an electric current over a large potential difference. Such an approach is not limited to the relatively low frequencies that characterize the operation of rectennas, and can, with appropriate waveguide and slow wave structure design, be employed in the 300 to 600 GHz range where much smaller transmitting and receiving antennas are needed.

  10. Testing Gravity and Cosmic Acceleration with Galaxy Clustering

    NASA Astrophysics Data System (ADS)

    Kazin, Eyal; Tinker, J.; Sanchez, A. G.; Blanton, M.

    2012-01-01

    The large-scale structure contains vast amounts of cosmological information that can help understand the accelerating nature of the Universe and test gravity on large scales. Ongoing and future sky surveys are designed to test these using various techniques applied on clustering measurements of galaxies. We present redshift distortion measurements of the Sloan Digital Sky Survey II Luminous Red Galaxy sample. We find that when combining the normalized quadrupole Q with the projected correlation function wp(rp) along with cluster counts (Rapetti et al. 2010), results are consistent with General Relativity. The advantage of combining Q and wp is the addition of the bias information, when using the Halo Occupation Distribution framework. We also present improvements to the standard technique of measuring Hubble expansion rates H(z) and angular diameter distances DA(z) when using the baryonic acoustic feature as a standard ruler. We introduce clustering wedges as an alternative basis to the multipole expansion and show that it yields similar constraints. This alternative basis serves as a useful technique to test for systematics, and ultimately improve measurements of the cosmic acceleration.

  11. Large-scale particle acceleration by magnetic reconnection during solar flares

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, G.; Li, S.

    2017-12-01

    Magnetic reconnection that triggers explosive magnetic energy release has been widely invoked to explain the large-scale particle acceleration during solar flares. While great efforts have been spent in studying the acceleration mechanism in small-scale kinetic simulations, there have been rare studies that make predictions to acceleration in the large scale comparable to the flare reconnection region. Here we present a new arrangement to study this problem. We solve the large-scale energetic-particle transport equation in the fluid velocity and magnetic fields from high-Lundquist-number MHD simulations of reconnection layers. This approach is based on examining the dominant acceleration mechanism and pitch-angle scattering in kinetic simulations. Due to the fluid compression in reconnection outflows and merging magnetic islands, particles are accelerated to high energies and develop power-law energy distributions. We find that the acceleration efficiency and power-law index depend critically on upstream plasma beta and the magnitude of guide field (the magnetic field component perpendicular to the reconnecting component) as they influence the compressibility of the reconnection layer. We also find that the accelerated high-energy particles are mostly concentrated in large magnetic islands, making the islands a source of energetic particles and high-energy emissions. These findings may provide explanations for acceleration process in large-scale magnetic reconnection during solar flares and the temporal and spatial emission properties observed in different flare events.

  12. Design of large vacuum chamber for VEC superconducting cyclotron beam line switching magnet

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sumantra; Nandi, Chinmoy; Gayen, Subhasis; Roy, Suvadeep; Mishra, Santosh Kumar; Ramrao Bajirao, Sanjay; Pal, Gautam; Mallik, C.

    2012-11-01

    VEC K500 superconducting cyclotron will be used to accelerate heavy ion. The accelerated beam will be transported to different beam halls by using large switching magnets. The vacuum chamber for the switching magnet is around 1000 mm long. It has a height of 85 mm and width varying from 100 mm to 360 mm. The material for the chamber has been chosen as SS304.The material for the vacuum chamber for the switching magnet has been chosen as SS304. Design of the vessel was done as per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. It was observed that primary stress values exceed the allowable limit. Since, the magnet was already designed with a fixed pole gap; increase of the vacuum chamber plate thickness restricts the space for beam transport. Design was optimized using stress analysis software ANSYS. Analysis was started using plate thickness of 4 mm. The stress was found higher than the allowable level. The analysis was repeated by increasing plate thickness to 6 mm, resulting in the reduction of stress level below the allowable level. In order to reduce the stress concentration due to sharp bend, chamfering was done at the corner, where the stress level was higher. The thickness of the plate at the corner was increased from 6 mm to 10 mm. These measures resulted in reduction of localized stress.

  13. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  14. Test of the CLAS12 RICH large-scale prototype in the direct proximity focusing configuration

    DOE PAGES

    Anefalos Pereira, S.; Baltzell, N.; Barion, L.; ...

    2016-02-11

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c up to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Laboratory. The adopted solution foresees a novel hybrid optics design based on aerogel radiator, composite mirrors and high-packed and high-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). We report here the results of the tests of a large scale prototype of the RICH detector performed withmore » the hadron beam of the CERN T9 experimental hall for the direct detection configuration. As a result, the tests demonstrated that the proposed design provides the required pion-to-kaon rejection factor of 1:500 in the whole momentum range.« less

  15. Report of the Fermilab ILC Citizens' Task Force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations.more » While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.« less

  16. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE PAGES

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; ...

    2016-03-01

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  17. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  18. Drive development for an 10 Mbar Rayleigh-Taylor strength experiment on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon; Park, Hye-Sook; Huntington, Channing; McNaney, James; Smith, Raym; Wehrenberg, Christopher; Swift, Damian; Panas, Cynthia; Lord, Dawn; Arsenlis, Athanasios

    2017-10-01

    Strength can be inferred by the amount a Rayleigh-Taylor surface deviates from classical growth when subjected to acceleration. If the acceleration is great enough, even materials highly resistant to deformation will flow. We use the National Ignition Facility (NIF) to create an acceleration profile that will cause sample metals, such as Mo or Cu, to reach peak pressures of 10 Mbar without inducing shock melt. To create such a profile we shock release a stepped density reservoir across a large gap with the stagnation of the reservoir on the far side of the gap resulting in the desired pressure drive history. Low density steps (foams) are a necessary part of this design and have been studied in the last several years on the Omega and NIF facilities. We will present computational and experimental progress that has been made on the 10 Mbar drive designs - including recent drive shots carried out at the NIF. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. LLNL-ABS-734781.

  19. EDITORIAL: Metrological Aspects of Accelerator Technology and High Energy Physics Experiments

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Pozniak, Krzysztof T.

    2007-08-01

    The subject of this special feature in Measurement Science and Technology concerns measurement methods, devices and subsystems, both hardware and software aspects, applied in large experiments of high energy physics (HEP) and superconducting RF accelerator technology (SRF). These experiments concern mainly the physics of elementary particles or the building of new machines and detectors. The papers present practical examples of applied solutions in large, contemporary, international research projects such as HERA, LHC, FLASH, XFEL, ILC and others. These machines are unique in their global scale and consist of extremely dedicated apparatus. The apparatus is characterized by very large dimensions, a considerable use of resources and a high level of overall technical complexity. They possess a large number of measurement channels (ranging from thousands to over 100 million), are characterized by fast of processing of measured data and high measurement accuracies, and work in quite adverse environments. The measurement channels cooperate with a large number of different sensors of momenta, energies, trajectories of elementary particles, electron, proton and photon beam profiles, accelerating fields in resonant cavities, and many others. The provision of high quality measurement systems requires the designers to use only the most up-to-date technical solutions, measurement technologies, components and devices. Research work in these demanding fields is a natural birthplace of new measurement methods, new data processing and acquisition algorithms, complex, networked measurement system diagnostics and monitoring. These developments are taking place in both hardware and software layers. The chief intention of this special feature is that the papers represent equally some of the most current metrology research problems in HEP and SRF. The accepted papers have been divided into four topical groups: superconducting cavities (4 papers), low level RF systems (8 papers), ionizing radiation (5 papers) and HEP experiments (8 papers). The editors would like to thank cordially all the authors who accepted our invitation to present their very recent results. A number of authors of the papers in this issue are active in the 6th European Framework Research Program CARE—Coordinated Accelerators Research in Europe and ELAN—the European Linear Accelerator Network. Some authors are active in research programs of a global extent such as the LHC, ILC and GDE—the Global Design Effort for the International Linear Collider. We also would like to thank personally, as well as on behalf of all the authors, the Editorial Board of Measurement Science and Technology for accepting this very exciting field of contemporary metrology. This field seems to be really a birthplace of a host of new metrological technologies, where the driving force is the incredibly high technical requirements that must soon be fulfilled if we dream of building new accelerators for elementary particles, new biological materials and medicine alike. Special thanks are due to Professor R S Jachowicz of Warsaw University of Technology for initiating this issue and for continuous support and advice during our work.

  20. The Microgravity Vibration Isolation Mount: A Dynamic Model for Optimal Controller Design

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Tryggvason, Bjarni V.; DeCarufel, Jean; Townsend, Miles A.; Wagar, William O.

    1997-01-01

    Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Microgravity Vibration Isolation Mount (MIM) was built by the Canadian Space Agency to attenuate these disturbances to acceptable levels, and has been operational on the Russian Space Station Mir since May 1996. It has demonstrated good isolation performance and has supported several materials science experiments. The MIM uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation (Euler-parameter) measurements are fed to a state-space controller. The controller, in turn, determines the actuator currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of the MIM, in a form suitable for optimal controller design.

  1. Glovebox Integrated Microgravity Isolation Technology (g-LIMIT): A Linearized State-Space Model

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Calhoun, Philip C.; Whorton, Mark S.

    2001-01-01

    Vibration acceleration levels on large space platforms exceed the requirements of many space experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate these disturbances to acceptable levels. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to levitate and isolate payloads at the individual experiment/sub-experiment (versus rack) level. Payload acceleration, relative position, and relative orientation measurements are fed to a state-space controller. The controller, in turn, determines the actuator Currents needed for effective experiment isolation. This paper presents the development of an algebraic, state-space model of g-LIMIT, in a form suitable for optimal controller design. The equations are first derived using Newton's Second Law directly, then simplified to a linear form for the purpose of controller design.

  2. Electrical Engineering in Los Alamos Neutron Science Center Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Michael James

    The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the verymore » few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.« less

  3. Fatigue-test acceleration with flight-by-flight loading and heating to simulate supersonic-transport operation

    NASA Technical Reports Server (NTRS)

    Imig, L. A.; Garrett, L. E.

    1973-01-01

    Possibilities for reducing fatigue-test time for supersonic-transport materials and structures were studied in tests with simulated flight-by-flight loading. In order to determine whether short-time tests were feasible, the results of accelerated tests (2 sec per flight) were compared with the results of real-time tests (96 min per flight). The effects of design mean stress, the stress range for ground-air-ground cycles, simulated thermal stress, the number of stress cycles in each flight, and salt corrosion were studied. The flight-by-flight stress sequences were applied to notched sheet specimens of Ti-8Al-1Mo-1V and Ti-6Al-4V titanium alloys. A linear cumulative-damage analysis accounted for large changes in stress range of the simulated flights but did not account for the differences between real-time and accelerated tests. The fatigue lives from accelerated tests were generally within a factor of two of the lives from real-time tests; thus, within the scope of the investigation, accelerated testing seems feasible.

  4. Centrifugal accelerator, system and method for removing unwanted layers from a surface

    DOEpatents

    Foster, Christopher A.; Fisher, Paul W.

    1995-01-01

    A cryoblasting process having a centrifugal accelerator for accelerating frozen pellets of argon or carbon dioxide toward a target area utilizes an accelerator throw wheel designed to induce, during operation, the creation of a low-friction gas bearing within internal passages of the wheel which would otherwise retard acceleration of the pellets as they move through the passages. An associated system and method for removing paint from a surface with cryoblasting techniques involves the treating, such as a preheating, of the painted surface to soften the paint prior to the impacting of frozen pellets thereagainst to increase the rate of paint removal. A system and method for producing large quantities of frozen pellets from a liquid material, such as liquid argon or carbon dioxide, for use in a cryoblasting process utilizes a chamber into which the liquid material is introduced in the form of a jet which disintegrates into droplets. A non-condensible gas, such as inert helium or air, is injected into the chamber at a controlled rate so that the droplets freeze into bodies of relatively high density.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Li, Z.; Ng, C.

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedentedmore » accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.« less

  6. A systematic FPGA acceleration design for applications based on convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.

  7. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.

    2017-08-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  8. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  9. Accelerating development of late-successional features in second-growth pine stands of the Goosenest Adaptive Management Area

    Treesearch

    Martin W. Ritchie; Kathleen A. Harcksen

    2005-01-01

    This paper describes implementation and early results of a large-scale, interdisciplinary experiment in the Goosenest Adaptive Management Area in northeastern California. The study is designed to investigate development of late-successional forest attributes in second-growth ponderosa pine stands. The experiment has four treatments replicated five times and encompasses...

  10. Is the detection of accelerated sea level rise imminent?

    DOE PAGES

    Fasullo, J. T.; Nerem, R. S.; Hamlington, B.

    2016-08-10

    Global mean sea level rise estimated from satellite altimetry provides a strong constraint on climate variability and change and is expected to accelerate as the rates of both ocean warming and cryospheric mass loss increase over time. In stark contrast to this expectation however, current altimeter products show the rate of sea level rise to have decreased from the first to second decades of the altimeter era. Here, a combined analysis of altimeter data and specially designed climate model simulations shows the 1991 eruption of Mt Pinatubo to likely have masked the acceleration that would have otherwise occurred. This maskingmore » arose largely from a recovery in ocean heat content through the mid to late 1990 s subsequent to major heat content reductions in the years following the eruption. As a result, a consequence of this finding is that barring another major volcanic eruption, a detectable acceleration is likely to emerge from the noise of internal climate variability in the coming decade.« less

  11. Software package for modeling spin–orbit motion in storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de

    2015-12-15

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{supmore » 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.« less

  12. Is the detection of accelerated sea level rise imminent?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasullo, J. T.; Nerem, R. S.; Hamlington, B.

    Global mean sea level rise estimated from satellite altimetry provides a strong constraint on climate variability and change and is expected to accelerate as the rates of both ocean warming and cryospheric mass loss increase over time. In stark contrast to this expectation however, current altimeter products show the rate of sea level rise to have decreased from the first to second decades of the altimeter era. Here, a combined analysis of altimeter data and specially designed climate model simulations shows the 1991 eruption of Mt Pinatubo to likely have masked the acceleration that would have otherwise occurred. This maskingmore » arose largely from a recovery in ocean heat content through the mid to late 1990 s subsequent to major heat content reductions in the years following the eruption. As a result, a consequence of this finding is that barring another major volcanic eruption, a detectable acceleration is likely to emerge from the noise of internal climate variability in the coming decade.« less

  13. Management and design of long-life systems; Proceedings of the Symposium, Denver, Colo., April 24-26, 1973

    NASA Technical Reports Server (NTRS)

    Schurmeier, H. M.

    1974-01-01

    The long life of Pioneer interplanetary spacecraft is considered along with a general accelerated methodology for long-life mechanical components, dependable long-lived household appliances, and the design and development philosophy to achieve reliability and long life in large turbine generators. Other topics discussed include an integrated management approach to long life in space, artificial heart reliability factors, and architectural concepts and redundancy techniques in fault-tolerant computers. Individual items are announced in this issue.

  14. Inertial Head-Tracker Sensor Fusion by a Complementary Separate-Bias Kalman Filter

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric

    1996-01-01

    Current virtual environment and teleoperator applications are hampered by the need for an accurate, quick-responding head-tracking system with a large working volume. Gyroscopic orientation sensors can overcome problems with jitter, latency, interference, line-of-sight obscurations, and limited range, but suffer from slow drift. Gravimetric inclinometers can detect attitude without drifting, but are slow and sensitive to transverse accelerations. This paper describes the design of a Kalman filter to integrate the data from these two types of sensors in order to achieve the excellent dynamic response of an inertial system without drift, and without the acceleration sensitivity of inclinometers.

  15. Nuclear nanoprobe development for visualization of three-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Takai, M.; Abo, S.; Wakaya, F.; Kikuchi, T.; Sawaragi, H.

    2007-08-01

    A nanoprobe system, having a liquid metal ion source with a compact electrostatic accelerating column with a maximum accelerating voltage of 200 kV and an ultra high vacuum chamber, giving rise to the enhanced sensitivity because of the large scattering cross-section, has been designed for analysis of nanostructures. The focusing performance of the probes down to 10 nm was measured and compared with the simulation. Time-of-flight (TOF) RBS using a micro channel plate (MCP) further increases the sensitivity because of the increase in acceptance angle, which realizes the visualization of nanostructures with a beam spot diameter less than 10 nm with less probe damage.

  16. Inertial head-tracker sensor fusion by a complementary separate-bias Kalman filter

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric

    1996-01-01

    Current virtual environment and teleoperator applications are hampered by the need for an accurate, quick responding head-tracking system with a large working volume. Gyroscopic orientation sensors can overcome problems with jitter, latency, interference, line-of-sight obscurations, and limited range, but suffer from slow drift. Gravimetric inclinometers can detect attitude without drifting, but are slow and sensitive to transverse accelerations. This paper describes the design of a Kalman filter to integrate the data from these two types of sensors in order to achieve the excellent dynamic response of an inertial system without drift, and without the acceleration sensitivity of inclinometers.

  17. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  18. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstrom, C. A.; Adli, E.; Allen, J. M.

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, andmore » measured with another 20 GeV lower charge trailing positron probe bunch. Furthermore, the measurements are largely consistent with theory.« less

  19. Measurement of Transverse Wakefields Induced by a Misaligned Positron Bunch in a Hollow Channel Plasma Accelerator

    DOE PAGES

    Lindstrom, C. A.; Adli, E.; Allen, J. M.; ...

    2018-03-23

    Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, andmore » measured with another 20 GeV lower charge trailing positron probe bunch. Furthermore, the measurements are largely consistent with theory.« less

  20. Aerogel mass production for the CLAS12 RICH: Novel characterization methods and optical performance

    NASA Astrophysics Data System (ADS)

    Contalbrigo, M.; Balossino, I.; Barion, L.; Barnyakov, A. Yu.; Battaglia, G.; Danilyuk, A. F.; Katcin, A. A.; Kravchenko, E. A.; Mirazita, M.; Movsisyan, A.; Orecchini, D.; Pappalardo, L. L.; Squerzanti, S.; Tomassini, S.; Turisini, M.

    2017-12-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capabilities in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the Jefferson Lab upgraded 12 GeV continuous electron beam accelerator facility. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely-packed and highly-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The status of the aerogel mass-production and the assessment studies of the aerogel optical performance are here reported.

  1. Accelerating the design of solar thermal fuel materials through high throughput simulations.

    PubMed

    Liu, Yun; Grossman, Jeffrey C

    2014-12-10

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  2. Intermittent nature of acceleration in near wall turbulence.

    PubMed

    Lee, Changhoon; Yeo, Kyongmin; Choi, Jung-Il

    2004-04-09

    Using direct numerical simulation of a fully developed turbulent channel flow, we investigate the behavior of acceleration near a solid wall. We find that acceleration near the wall is highly intermittent and the intermittency is in large part associated with the near wall organized coherent turbulence structures. We also find that acceleration of large magnitude is mostly directed towards the rotation axis of the coherent vortical structures, indicating that the source of the intermittent acceleration is the rotational motion associated with the vortices that causes centripetal acceleration.

  3. Design, Construction, and Test of a 473 MHZ Four - Cavity Rfq.

    NASA Astrophysics Data System (ADS)

    Kazimi, Reza

    1992-01-01

    An RFQ accelerator using the new four-rod cavity design has been fabricated and successfully tested at Texas Accelerator Center. The RFQ is designed to accelerate a 10 mA H^- ion beam from 30 keV to 500 keV with the operating frequency of 473 MHz. This new type of RFQ structure not only promises simplicity of design, construction, and operation, but also can be manufactured to operate at higher frequencies than previously achieved by other four-rod type RFQs. Combination of simplicity and compactness due to higher operating frequencies (400 to 500 MHz) makes the design desirable for injector of proton accelerators, medical linear accelerators, and variety of other applications. This dissertation presents the steps I went through in inventing, developing, and experimentally testing this new RFQ design. First an introduction to accelerators is given, and the basic accelerator physics terminologies are defined. The principles of operations of the RFQs are described, and the theory behind new type of RFQ structure is explained. Then the beam dynamics and cavity design of the RFQ are presented. Finally, the mechanical design and construction procedure are discussed, and experimental results of rf tests and actual H ^- beam test are given.

  4. BBU design of linear induction accelerator cells for radiography application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C.C.; Chen, Y.J.; Gaporaso, G.J.

    1997-05-06

    There is an ongoing effort to develop accelerating modules for high-current electron accelerators for advanced radiography application. Accelerating modules with low beam-cavity coupling impedances along with gap designs with acceptable field stresses comprise a set of fundamental design criteria. We examine improved cell designs which have been developed for accelerator application in several radiographic operating regimes. We evaluate interaction impedances, analyze the effects of beam structure coupling on beam dynamics (beam break-up instability and corkscrew motion). We also provide estimates of coupling through interesting new high-gradient insulators and evaluate their potential future application in induction cells.

  5. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    PubMed

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  6. Linear induction accelerators made from pulse-line cavities with external pulse injection.

    PubMed

    Smith, I

    1979-06-01

    Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator.

  7. A 10 Billion MeV Cyclotron

    ERIC Educational Resources Information Center

    Edge, R. D.

    1974-01-01

    Discusses the design of a device which serves to demonstrate the principle of acceleration and phase stability by accelerating gravitationally a ball bearing along a spiral groove. Application of the design principle to the acceleration aspect of a linear accelerator is recommended. (CC)

  8. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeyratne, S; Ahmed, S; Barber, D

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectivelymore » utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top-off refilling. The CEBAF fixed-target nuclear physics program can be simultaneously operated since the filling time of the electron ring is very short. The ion complex for MEIC consists of sources for polarized light ions and unpolarized light to heavy ions, an SRF ion linac with proton energy up to 280 MeV, a 3 GeV prebooster synchrotron, a large booster synchrotron for proton energy up to 20 GeV, and a medium-energy collider ring with energy up to 100 GeV. The ion complex can accelerate other species of ions with corresponding energies at each accelerating stage. There are three collision points planned for MEIC. Two of them are for collisions with medium-energy ions; the third is for low energy ion beams stored in a dedicated low-energy compact storage ring, as a possible follow-on project.« less

  9. Numerical Simulation of the RTA Combustion Rig

    NASA Technical Reports Server (NTRS)

    Davoudzadeh, Farhad; Buehrle, Robert; Liu, Nan-Suey; Winslow, Ralph

    2005-01-01

    The Revolutionary Turbine Accelerator (RTA)/Turbine Based Combined Cycle (TBCC) project is investigating turbine-based propulsion systems for access to space. NASA Glenn Research Center and GE Aircraft Engines (GEAE) planned to develop a ground demonstrator engine for validation testing. The demonstrator (RTA-1) is a variable cycle, turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle from Sea Level Static (SLS) to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratios from sea level static to Mach 4 conditions. Key components of this engine are new, such as a nickel alloy fan, advanced trapped vortex combustor, a Variable Area Bypass Injector (VABI), radial flameholders, and multiple fueling zones. A means to mitigate risks to the RTA development program was the use of extensive component rig tests and computational fluid dynamics (CFD) analysis.

  10. Acceleration of block-matching algorithms using a custom instruction-based paradigm on a Nios II microprocessor

    NASA Astrophysics Data System (ADS)

    González, Diego; Botella, Guillermo; García, Carlos; Prieto, Manuel; Tirado, Francisco

    2013-12-01

    This contribution focuses on the optimization of matching-based motion estimation algorithms widely used for video coding standards using an Altera custom instruction-based paradigm and a combination of synchronous dynamic random access memory (SDRAM) with on-chip memory in Nios II processors. A complete profile of the algorithms is achieved before the optimization, which locates code leaks, and afterward, creates a custom instruction set, which is then added to the specific design, enhancing the original system. As well, every possible memory combination between on-chip memory and SDRAM has been tested to achieve the best performance. The final throughput of the complete designs are shown. This manuscript outlines a low-cost system, mapped using very large scale integration technology, which accelerates software algorithms by converting them into custom hardware logic blocks and showing the best combination between on-chip memory and SDRAM for the Nios II processor.

  11. The Role of Formal Experiment Design in Hypersonic Flight System Technology Development

    NASA Technical Reports Server (NTRS)

    McClinton, Charles R.; Ferlemann, Shelly M.; Rock, Ken E.; Ferlemann, Paul G.

    2002-01-01

    Hypersonic airbreathing engine (scramjet) powered vehicles are being considered to replace conventional rocket-powered launch systems. Effective utilization of scramjet engines requires careful integration with the air vehicle. This integration synergistically combines aerodynamic forces with propulsive cycle functions of the engine. Due to the highly integrated nature of the hypersonic vehicle design problem, the large flight envelope, and the large number of design variables, the use of a statistical design approach in design is effective. Modern Design-of-Experiments (MDOE) has been used throughout the Hyper-X program, for both systems analysis and experimental testing. Application of MDOE fall into four categories: (1) experimental testing; (2) studies of unit phenomena; (3) refining engine design; and (4) full vehicle system optimization. The MDOE process also provides analytical models, which are also used to document lessons learned, supplement low-level design tools, and accelerate future studies. This paper will discuss the design considerations for scramjet-powered vehicles, specifics of MDOE utilized for Hyper-X, and present highlights from the use of these MDOE methods within the Hyper-X Program.

  12. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  13. Design of Linear Accelerator (LINAC) tanks for proton therapy via Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellano, T.; De Palma, L.; Laneve, D.

    2015-07-01

    A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)

  14. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Young Min; Green, A.; Lumpkin, A. H.

    2016-09-16

    A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients in principle since the density of charge carriers (conduction electrons) in solids n 0 = ~ 10 20 – 10 23 cm -3 is significantly higher than what can be obtained in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced andmore » the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single-cycle laser pulses with tens of Petawatt power based on thin film compression (TFC) technique has been investigated for target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). The experimental plan with a nanometer foil is discussed with an available test facility such as Extreme Light Infrastructure – Nuclear Physics (ELI-NP).« less

  15. Ultra-high gradient channeling acceleration in nanostructures: Design/progress of proof-of-concept (POC) experiments

    NASA Astrophysics Data System (ADS)

    Shin, Y. M.; Green, A.; Lumpkin, A. H.; Thurman-Keup, R. M.; Shiltsev, V.; Zhang, X.; Farinella, D. M.-A.; Taborek, P.; Tajima, T.; Wheeler, J. A.; Mourou, G.

    2017-03-01

    A short bunch of relativistic particles, or a short-pulse laser, perturb the density state of conduction electrons in a solid crystal and excite wakefields along atomic lattices in a crystal. Under a coupling condition between a driver and plasma, the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1], in principle, since the density of charge carriers (conduction electrons) in solids n0 = 1020 - 1023 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The de-channeling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from the Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and Northern Illinois University (NIU). In the FAST facility, the electron beamline was successfully commissioned at 50 MeV, and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration proof-of-concept (POC). Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single-cycle laser pulses with tens of Petawatt power based on the thin film compression (TFC) technique has been investigated for target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). The experimental plan with a nanometer foil is discussed with an available test facility such as Extreme Light Infrastructure - Nuclear Physics (ELI-NP).

  16. Large Eddy Simulations of the Tilted Rig Experiment: A Two-dimensional Rayleigh-Taylor Instability Case

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Denissen, Nicholas A.; Reisner, Jon M.; Andrews, Malcolm J.

    2012-11-01

    The tilted rig experiment is a derivative of the rocket rig experiment designed to investigate turbulent mixing induced by the Rayleigh-Taylor (RT) instability. A tank containing two fluids of different densities is accelerated downwards between two parallel guiding rods by rocket motors. The acceleration is such that the pressure and density gradients face opposite directions at the fluids interface, creating a Rayleigh-Taylor unstable configuration. The rig is tilted such that the tank is initially at an angle and the acceleration is not perpendicular to the fluids interface when the rockets fire. This results in a two dimensional Rayleigh-Taylor instability case where the fluids experience RT mixing and a bulk overturning motion. The tilted rig is therefore a valuable experiment to help calibrating two-dimensional mixing models. Large Eddy Simulations of the tilted rig experiments will be compared to available experimental results. A study of the behavior of turbulence variables relevant to turbulence modeling will be presented. LA-UR 12-23829. This work was performed for the U.S. Department of Energy by Los Alamos National Laboratory under Contract No.DEAC52- 06NA2-5396.

  17. Treatment of foods with high-energy X rays

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  18. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    NASA Astrophysics Data System (ADS)

    Susoeff, A. R.; Hawke, R. S.; Morrison, J. J.; Dimonte, G.; Remington, B. A.

    1993-12-01

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh-Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g(sub o), where g(sub o) is accelerated due to gravity.

  19. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  20. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    NASA Astrophysics Data System (ADS)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  1. The Nike KrF laser facility: Performance and initial target experiments

    NASA Astrophysics Data System (ADS)

    Obenschain, S. P.; Bodner, S. E.; Colombant, D.; Gerber, K.; Lehmberg, R. H.; McLean, E. A.; Mostovych, A. N.; Pronko, M. S.; Pawley, C. J.; Schmitt, A. J.; Sethian, J. D.; Serlin, V.; Stamper, J. A.; Sullivan, C. A.; Dahlburg, J. P.; Gardner, J. H.; Chan, Y.; Deniz, A. V.; Hardgrove, J.; Lehecka, T.; Klapisch, M.

    1996-05-01

    Krypton-fluoride (KrF) lasers are of interest to laser fusion because they have both the large bandwidth capability (≳THz) desired for rapid beam smoothing and the short laser wavelength (1/4 μm) needed for good laser-target coupling. Nike is a recently completed 56-beam KrF laser and target facility at the Naval Research Laboratory. Because of its bandwidth of 1 THz FWHM (full width at half-maximum), Nike produces more uniform focal distributions than any other high-energy ultraviolet laser. Nike was designed to study the hydrodynamic instability of ablatively accelerated planar targets. First results show that Nike has spatially uniform ablation pressures (Δp/p<2%). Targets have been accelerated for distances sufficient to study hydrodynamic instability while maintaining good planarity. In this review we present the performance of the Nike laser in producing uniform illumination, and its performance in correspondingly uniform acceleration of targets.

  2. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    DOE PAGES

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less

  3. Accelerated Discovery of Large Electrostrains in BaTiO3 -Based Piezoelectrics Using Active Learning.

    PubMed

    Yuan, Ruihao; Liu, Zhen; Balachandran, Prasanna V; Xue, Deqing; Zhou, Yumei; Ding, Xiangdong; Sun, Jun; Xue, Dezhen; Lookman, Turab

    2018-02-01

    A key challenge in guiding experiments toward materials with desired properties is to effectively navigate the vast search space comprising the chemistry and structure of allowed compounds. Here, it is shown how the use of machine learning coupled to optimization methods can accelerate the discovery of new Pb-free BaTiO 3 (BTO-) based piezoelectrics with large electrostrains. By experimentally comparing several design strategies, it is shown that the approach balancing the trade-off between exploration (using uncertainties) and exploitation (using only model predictions) gives the optimal criterion leading to the synthesis of the piezoelectric (Ba 0.84 Ca 0.16 )(Ti 0.90 Zr 0.07 Sn 0.03 )O 3 with the largest electrostrain of 0.23% in the BTO family. Using Landau theory and insights from density functional theory, it is uncovered that the observed large electrostrain is due to the presence of Sn, which allows for the ease of switching of tetragonal domains under an electric field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cognitive ergonomics of operational tools

    NASA Astrophysics Data System (ADS)

    Lüdeke, A.

    2012-10-01

    Control systems have become increasingly more powerful over the past decades. The availability of high data throughput and sophisticated graphical interactions has opened a variety of new possibilities. But has this helped to provide intuitive, easy to use applications to simplify the operation of modern large scale accelerator facilities? We will discuss what makes an application useful to operation and what is necessary to make a tool easy to use. We will show that even the implementation of a small number of simple application design rules can help to create ergonomic operational tools. The author is convinced that such tools do indeed help to achieve higher beam availability and better beam performance at accelerator facilities.

  5. FR4-based electromagnetic energy harvester for wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    Hatipoglu, G.; Ürey, H.

    2010-01-01

    Electromagnetic (EM) energy harvesting seems to be one of the most promising ways to power wireless sensors in a wireless sensor network. In this paper, FR4, the most commonly used PCB material, is utilized as a mechanical vibrating structure for EM energy harvesting for body-worn sensors and intelligent tire sensors, which involve impact loadings. FR4 can be a better material for such applications compared to silicon MEMS devices due to lower stiffness and broadband response. In order to demonstrate FR4 performance and broadband response, three moving magnet type EM generator designs are developed and investigated throughout the paper. A velocity-damped harvester simulation model is first developed, including a detailed magnetic model and the magnetic damping effects. The numerical results agree well with the experimental results. Human running acceleration at the hip area that is obtained experimentally is simulated in order to demonstrate system performance, which results in a scavenged power of about 40 µW with 15 m s-2 acceleration input. The designed FR4 energy scavengers with mechanical stoppers implemented are particularly well suited for nearly periodic and non-sinusoidal high- g excitations with rich harmonic content. For the intelligent tire applications, a special compact FR4 scavenger is designed that is able to withstand large shocks and vibrations due to mechanical shock stoppers built into the structure. Using our design, 0.4 mW power across a load resistance at off-resonance operation is obtained in shaker experiments. In the actual operation, the tangential accelerations as a result of the tire-road contact are estimated to supply power around 1 mW with our design, which is sufficient for powering wireless tire sensors. The normalized power density (NPD) of the designed actuators compares favorably with most actuators reported in the literature.

  6. Mechanical engineering and design criteria for the Magnetically Insulated Transmission Experiment Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staller, G.E.; Hamilton, I.D.; Aker, M.F.

    1978-02-01

    A single-unit electron beam accelerator was designed, fabricated, and assembled in Sandia's Technical Area V to conduct magnetically insulated transmission experiments. Results of these experiments will be utilized in the future design of larger, more complex accelerators. This design makes optimum use of existing facilities and equipment. When designing new components, possible future applications were considered as well as compatibility with existing facilities and hardware.

  7. Pros and Cons of the Acceleration Scheme (NF-IDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex; Bogacz, Slawomir

    The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and beam shaping can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a nonâ scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. Pros and cons of various stages are discussed here in detail. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain acrossmore » the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. Close proximity of strong solenoids and superc« less

  8. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design

    PubMed Central

    Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco

    2016-01-01

    The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms. PMID:27886061

  9. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design.

    PubMed

    Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco

    2016-11-23

    The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms.

  10. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Challenging developments in three decades of accelerator mass spectrometry at ETH: from large particle accelerators to table size instruments.

    PubMed

    Suter, Martin

    2010-01-01

    Accelerator mass spectrometry (AMS) was invented for the detection of radiocarbon at natural isotopic concentrations (10(-12) to 10(-15)) more than 30 years ago. Meanwhile this method has also been applied for the analysis of many other long-lived radioisotopes, which are found at very low concentrations. The first investigations were made at large tandem accelerators originally built for nuclear physics research and operating at voltages of 6-12 MV. Today dedicated instruments are mostly used for AMS, which are optimized for associated applications. In the past 15 years, a new generation of much smaller instruments has been developed. For many years it was believed that accelerators with voltages of 2 MV or higher are needed to eliminate the molecular interferences. At these energies the ions are predominantly stripped to charge state 3+, thereby removing the binding electrons of the molecules. In contrast, the new compact facilities use 1+ or 2+ ions. In this case the molecular destruction process is based on molecule-atom collisions in the gas cell. The cross sections for this destruction are sufficiently large that the intensity of molecular components such as (12)CH(2) and (13)CH can be reduced by 10 orders of magnitude. These new facilities can be built much smaller due to the lower energies. Universal instruments providing analysis for many isotopes over the whole range of periodic table have a space requirement of about 4 x 6 m(2); dedicated radiocarbon facilities based on a 200 kV accelerator have a footprint of about 2.5 x 3 m(2). This smallest category of instruments use special technologies: The high voltage terminal with the gas stripper canal is vacuum insulated and the gas is pumped to ground potential through a ceramic pipe. A conventional 200 kV power supply provides the terminal voltage from outside. A review of this new generation of compact AMS facilities is given. Design considerations and performance of these new instruments will be presented. With these developments, new AMS instruments are not much larger than conventional mass spectrometers, allowing a significant reduction in cost.

  12. Apollo-Soyuz pamphlet no. 4: Gravitational field. [experimental design

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    Two Apollo Soyuz experiments designed to detect gravity anomalies from spacecraft motion are described. The geodynamics experiment (MA-128) measured large-scale gravity anomalies by detecting small accelerations of Apollo in the 222 km orbit, using Doppler tracking from the ATS-6 satellite. Experiment MA-089 measured 300 km anomalies on the earth's surface by detecting minute changes in the separation between Apollo and the docking module. Topics discussed in relation to these experiments include the Doppler effect, gravimeters, and the discovery of mascons on the moon.

  13. Results from the HARP Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catanesi, M. G.

    2008-02-21

    Hadron production is a key ingredient in many aspects of {nu} physics. Precise prediction of atmospheric {nu} fluxes, characterization of accelerator {nu} beams, quantification of {pi} production and capture for {nu}-factory designs, all of these would profit from hadron production measurements. HARP at the CERN PS was the first hadron production experiment designed on purpose to match all these requirements. It combines a large, full phase space acceptance with low systematic errors and high statistics. HARP was operated in the range from 3 GeV to 15 GeV. We briefly describe here the most recent results.

  14. Cybermaterials: materials by design and accelerated insertion of materials

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Olson, Gregory B.

    2016-02-01

    Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.

  15. Design considerations of a power supply system for fast cycling superconducting accelerator magnets of 2 Tesla b-field generated by a conductor of 100 kA current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Steve; Piekarz, Henryk; Pfeffer, Howie

    2007-06-01

    Recently proposed fast cycling accelerators for proton drivers (SF-SPS, CERN and SF-MR, SF-BOOSTER, FNAL) neutrino sources require development of new magnet technology. In support of this magnet development a power supply system will need to be developed that can support the high current and high rate of power swing required by the fast cycling (1 sec rise and fall in the SF-MR, 5Hz in Booster). This paper will outline a design concept for a +/- 2000 V and 100,000 A fast ramping power supply system. This power supply design is in support of a 6.44 km magnet system at 0.020more » H and 330 m 5 Hz, 0.00534 H superconducting loads. The design description will include the layout and plan for extending the present FNAL Main Injector style ramping power supply to the higher currents needed for this operation. This will also include the design for a harmonic filter and power factor corrector that will be needed to control the large power swings caused by the fast cycle time. A conceptual design for the current regulation system and control will also be outlined. The power circuit design will include the bridge, filter and transformer plan based on existing designs.« less

  16. Flat electron beam sources for DLA accelerators

    DOE PAGES

    Ody, A.; Musumeci, P.; Maxson, J.; ...

    2016-10-26

    In this study we discuss the application of the flat beam transform to generate beams suitable for injection into slab-symmetric dielectric laser-driven accelerators (DLAs). A study of the focusing requirements to keep the particles within the tight apertures characterizing these accelerators shows the benefits of employing ultralow beam emittances. The slab geometry of the many dielectric accelerating structures strongly favors the use of flat beams with large ratio between vertical and horizontal emittances. We employ particle tracking simulations to study the application of the flat beam transform for two injector designs, a DC non relativistic photogun and a 1.6 cellmore » S-band RF photoinjector, obtaining in both cases emittance ratios between the horizontal and vertical plane in excess of 100 in agreement with simple analytical estimates. The 4 MeV RF photoinjector study-case can be directly applied to the UCLA Pegasus beamline and shows normalized emittances down to < 3 nm in the vertical dimension for beam charges up to 20 fC, enabling a two-stage DLA experiment.« less

  17. Properties of the superconductor in accelerator dipole magnets

    NASA Astrophysics Data System (ADS)

    Teravest, Derk

    Several aspects of the application of superconductors to high field dipole magnets for particle accelerators are discussed. The attention is focused on the 10 tesla (1 m model) magnet that is envisaged for the future Large Hadron Collider (LHC) accelerator. The basic motivation behind the study is the intention of employing superconductors to their utmost performance. An overview of practical supercomputers, their applications and their impact on high field dipole magnets used for particle accelerators, is presented. The LHC reference design for the dipole magnets is outlined. Several models were used to study the influence of a number of factors in the shape and in particular, the deviation from the shape that is due to the flux flow state. For the investigated extrinsic and intrinsic factors, a classification can be made with respect to the effect on the shape of the characteristic of a multifilamentary wire. The optimization of the coil structure for high field dipole magnets, with respect to the field quality is described. An analytical model for solid and hollow filaments, to calculate the effect of filament magnetization in the quality of the dipole field, is presented.

  18. Method for producing pellets for use in a cryoblasting process

    DOEpatents

    Foster, Christopher A.; Fisher, Paul W.

    1997-01-01

    A cryoblasting process having a centrifugal accelerator for accelerating frozen pellets of argon or carbon dioxide toward a target area utilizes an accelerator throw wheel designed to induce, during operation, the creation of a low-friction gas bearing within internal passages of the wheel which would otherwise retard acceleration of the pellets as they move through the passages. An associated system and method for removing paint from a surface with cryoblasting techniques involves the treating, such as a preheating, of the painted surface to soften the paint prior to the impacting of frozen pellets thereagainst to increase the rate of paint removal. A system and method for producing large quantities of frozen pellets from a liquid material, such as liquid argon or carbon dioxide, for use in a cryoblasting process utilizes a chamber into which the liquid material is introduced in the form of a jet which disintegrates into droplets. A non-condensible gas, such as inert helium or air, is injected into the chamber at a controlled rate so that the droplets freeze into bodies of relatively high density.

  19. Controlling Surface Plasmons Through Covariant Transformation of the Spin-Dependent Geometric Phase Between Curved Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhong, Fan; Li, Jensen; Liu, Hui; Zhu, Shining

    2018-06-01

    General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.

  20. The Heavy Nuclei eXplorer (HNX) Mission

    NASA Astrophysics Data System (ADS)

    Krizmanic, John; Mitchell, John; Binns, W. Robert; Hams, Thomas; Israel, Martin; Link, Jason; Rauch, Brian; Sakai, Kenichi; Sasaki, Makoto; Westphal, Andrew; Wiedenbeck, Mark; Heavy Nuclei eXplorer Collaboration

    2016-03-01

    The Heavy Nuclei eXplorer (HNX) will use two large high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-ray Trans-Iron Galactic Element Recorder (CosmicTIGER), designed to fly in a SpaceX DragonLab Capsule, to measure the cosmic-ray abundance of every individual element in the periodic table from carbon through curium, providing the first measurement of many of these elements. These measurements provide an investigation on the nature of the source material of cosmic rays, the processes that inject them into cosmic accelerators, and the acceleration mechanisms. HNX will measure several thousand ultra-heavy galactic cosmic ray (UHGCR) nuclei with Z >= 30 , including about 50 actinides (Z >= 79). These data allow for a measurement of the mix of new and old material that is accelerated to GCRs, determine their age, measure the mix of nucleosynthesis processes responsible for the UHGCRs, determine how UHGCR elements are selected for acceleration, and measure the mean integrated pathlength traversed by UHGCRs before observation. The scientific motivation and instrumentation of HNX will be discussed as well as recent beam test results.

  1. Optimal active vibration absorber: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1992-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  2. Dynamics of High Temperature Plasmas.

    DTIC Science & Technology

    1985-10-01

    25 VI. > LASER BEAT WAVE PARTICLE ACCELERATION-.. ..... .. 27 ,, VII. ORBITRON MASER DESIGN .. ..... ............. 30 0 VIIM> ELECTRON BEAM STABILITY...IN THE MODIFIED BETATRON .... ............ 32 IX. * RELATIVISTIC ELECTRON BEAM DIODE DESIGN . . . . 35 X. FREE ELECTRON LASER APPLICATION TO XUV...Accelerators (B), VI. Laser Beat Wave Particle Acceleration, VII. Orbitron Maser Design , VIII. Electron Beam Stability in the Modified Betatron, IX

  3. Design of FastQuery: How to Generalize Indexing and Querying System for Scientific Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jerry; Wu, Kesheng

    2011-04-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies such as FastBit are critical for facilitating interactive exploration of large datasets. These technologies rely on adding auxiliary information to existing datasets to accelerate query processing. To use these indices, we need to match the relational data model used by the indexing systems with the array data model used by most scientific data, and to provide an efficient input and output layer for reading and writing the indices. In this work, we present a flexible design that can be easily applied to most scientific datamore » formats. We demonstrate this flexibility by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using simulation data from the particle accelerator and climate simulation communities. To demonstrate the effectiveness of the new design, we also present a detailed performance study using both synthetic and real scientific workloads.« less

  4. Testing of the 3M Company Composite Conductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stovall, John P; Rizy, D Tom; Kisner, Roger A

    2010-10-01

    The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum-Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors. The objective of this work is to accelerate the commercial acceptance by electric utilities of this new conductor design by testing four representative conductor classes in controlled conditions. A unique facility called the Powerline Conductor Accelerated Testing (PCAT) Facility was built at ORNL for testing overhead conductors. The PCAT has been uniquely designed for testing overhead bare transmission line conductors at high currents and temperatures after they have beenmore » installed and tensioned to the manufacturer's specifications. The ability to operate a transmission line conductor in this manner does not exist elsewhere in the United States. Four classes of ACCR cable designed by the 3M Company have been successfully test at ORNL small, medium, large and small/compact. Based on these and other manufacturer tests, the 3M Company has successfully introduced the ACCR into the commercial market and has completed over twenty installations for utility companies.« less

  5. The large-area hybrid-optics RICH detector for the CLAS12 spectrometer

    DOE PAGES

    Mirazita, M.; Angelini, G.; Balossino, I.; ...

    2017-01-16

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forwardmore » tracks) or after two mirror reflections (large angle tracks). Finally, the preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.« less

  6. Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Grossman, JC

    2014-12-01

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastablemore » structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.« less

  7. Near Stall Flow Analysis in the Transonic Fan of the RTA Propulsion System

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2010-01-01

    Turbine-based propulsion systems for access to space have been investigated at NASA Glenn Research center. A ground demonstrator engine for validation testing has been developed as a part of the program. The demonstrator, the Revolutionary Turbine Accelerator (RTA-1), is a variable cycle turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratio from sea level static to Mach 4 flight condition. A key component of this engine is a new fan stage that accommodates these large variations in bypass ratio and flow ranges. In the present study, unsteady flow behavior in the fan of the RTA-1 is studied in detail with large eddy simulation (LES) and the numerical results are compared with measured data. During the experimental study of the fan stage, humming sound was detected at 100 % speed near stall operation. The main purpose of the study is to investigate details of the unsteady flow behavior at near stall operation and to identify a possible cause of the hum. The large eddy simulation of the current flow field reproduces main features of the measured flow very well. The LES simulation indicates that non-synchronous flow instability develops as the fan operates toward the stall limit. The FFT analysis of the calculated wall pressure shows that the rotating flow instability has the characteristic frequency that is about 50% of the blade passing frequency.

  8. Model-based Acceleration Control of Turbofan Engines with a Hammerstein-Wiener Representation

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Ye, Zhifeng; Hu, Zhongzhi; Wu, Xin; Dimirovsky, Georgi; Yue, Hong

    2017-05-01

    Acceleration control of turbofan engines is conventionally designed through either schedule-based or acceleration-based approach. With the widespread acceptance of model-based design in aviation industry, it becomes necessary to investigate the issues associated with model-based design for acceleration control. In this paper, the challenges for implementing model-based acceleration control are explained; a novel Hammerstein-Wiener representation of engine models is introduced; based on the Hammerstein-Wiener model, a nonlinear generalized minimum variance type of optimal control law is derived; the feature of the proposed approach is that it does not require the inversion operation that usually upsets those nonlinear control techniques. The effectiveness of the proposed control design method is validated through a detailed numerical study.

  9. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  10. Cryogenic studies for the proposed CERN large hadron electron collider (LHEC)

    NASA Astrophysics Data System (ADS)

    Haug, F.; LHeC Study Team, The

    2012-06-01

    The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energyrecovery type machine with two 1 km long straight acceleration sections. The 944 high field 2 K SC cavities dissipate 30 kW at CW operation. Eight 10 kW @ 4.5 K refrigerators are proposed. The particle detector contains a combined SC solenoid and dipole forming the cold mass and an independent liquid argon calorimeter. Cooling is done with two individual small sized cryoplants; a 4.5 K helium, and a 87 K liquid nitrogen plant.

  11. Multi-GPU Accelerated Admittance Method for High-Resolution Human Exposure Evaluation.

    PubMed

    Xiong, Zubiao; Feng, Shi; Kautz, Richard; Chandra, Sandeep; Altunyurt, Nevin; Chen, Ji

    2015-12-01

    A multi-graphics processing unit (GPU) accelerated admittance method solver is presented for solving the induced electric field in high-resolution anatomical models of human body when exposed to external low-frequency magnetic fields. In the solver, the anatomical model is discretized as a three-dimensional network of admittances. The conjugate orthogonal conjugate gradient (COCG) iterative algorithm is employed to take advantage of the symmetric property of the complex-valued linear system of equations. Compared against the widely used biconjugate gradient stabilized method, the COCG algorithm can reduce the solving time by 3.5 times and reduce the storage requirement by about 40%. The iterative algorithm is then accelerated further by using multiple NVIDIA GPUs. The computations and data transfers between GPUs are overlapped in time by using asynchronous concurrent execution design. The communication overhead is well hidden so that the acceleration is nearly linear with the number of GPU cards. Numerical examples show that our GPU implementation running on four NVIDIA Tesla K20c cards can reach 90 times faster than the CPU implementation running on eight CPU cores (two Intel Xeon E5-2603 processors). The implemented solver is able to solve large dimensional problems efficiently. A whole adult body discretized in 1-mm resolution can be solved in just several minutes. The high efficiency achieved makes it practical to investigate human exposure involving a large number of cases with a high resolution that meets the requirements of international dosimetry guidelines.

  12. Equivalent-Groups versus Single-Group Equating Designs for the Accelerated CAT-ASVAB (Computerized Adaptive Test-Armed Services Vocational Aptitude Battery) Project.

    DTIC Science & Technology

    1987-01-01

    DESIGNS FOR THE ACCELERATED CAT -ASVAB * PROJECT Peter H. Stoloff DTIC’- , " SELECTE -NOV 2 3 987 A Division of Hudson Institute CENTER FOR NAVAL ANALYSES...65153M C0031 SI TITLE (Include Security Classification) Equivalent-Groups Versus Single-Group Equating Designs For The Accelerated CAT -ASVAB Project...GROUP ACAP (Accelerated CAT -ASVAB Program), Aptitude tests, ASVAB (Armed 05 10 Services Vocational Aptitude Battery), CAT (Computerized Adaptive Test

  13. Accelerating Cogent Confabulation: An Exploration in the Architecture Design Space

    DTIC Science & Technology

    2008-06-01

    DATES COVERED (From - To) 1-8 June 2008 4. TITLE AND SUBTITLE ACCELERATING COGENT CONFABULATION: AN EXPLORATION IN THE ARCHITECTURE DESIGN SPACE 5a...spiking neural networks is proposed in reference [8]. Reference [9] investigates the architecture design of a Brain-state-in-a-box model. The...Richard Linderman2, Thomas Renz2, Qing Wu1 Accelerating Cogent Confabulation: an Exploration in the Architecture Design Space POSTPRINT complexity

  14. Accelerating k-NN Algorithm with Hybrid MPI and OpenSHMEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jian; Hamidouche, Khaled; Zheng, Jie

    2015-08-05

    Machine Learning algorithms are benefiting from the continuous improvement of programming models, including MPI, MapReduce and PGAS. k-Nearest Neighbors (k-NN) algorithm is a widely used machine learning algorithm, applied to supervised learning tasks such as classification. Several parallel implementations of k-NN have been proposed in the literature and practice. However, on high-performance computing systems with high-speed interconnects, it is important to further accelerate existing designs of the k-NN algorithm through taking advantage of scalable programming models. To improve the performance of k-NN on large-scale environment with InfiniBand network, this paper proposes several alternative hybrid MPI+OpenSHMEM designs and performs a systemicmore » evaluation and analysis on typical workloads. The hybrid designs leverage the one-sided memory access to better overlap communication with computation than the existing pure MPI design, and propose better schemes for efficient buffer management. The implementation based on k-NN program from MaTEx with MVAPICH2-X (Unified MPI+PGAS Communication Runtime over InfiniBand) shows up to 9.0% time reduction for training KDD Cup 2010 workload over 512 cores, and 27.6% time reduction for small workload with balanced communication and computation. Experiments of running with varied number of cores show that our design can maintain good scalability.« less

  15. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  16. [Shielding design and detection of neutrons from medical and industrial electron accelerators--simple method of design calculation for neutron shielding].

    PubMed

    Nakamura, T; Uwamino, Y

    1986-02-01

    The neutron leakage from medical and industrial electron accelerators has become an important problem and its detection and shielding is being performed in their facilities. This study provides a new simple method of design calculation for neutron shielding of those electron accelerator facilities by dividing into the following five categories; neutron dose distribution in the accelerator room, neutron attenuation through the wall and the door in the accelerator room, neutron and secondary photon dose distributions in the maze, neutron and secondary photon attenuation through the door at the end of the maze, neutron leakage outside the facility-skyshine.

  17. The Effects of Wave Escape on Fast Magnetosonic Wave Turbulence in Solar Flares

    NASA Technical Reports Server (NTRS)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ("fast waves"). In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast-waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term.We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region.We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  18. Highly-Damped Spectral Acceleration as a Ground Motion Intensity Measure for Estimating Collapse Vulnerability of Buildings

    NASA Astrophysics Data System (ADS)

    Buyco, K.; Heaton, T. H.

    2016-12-01

    Current U.S. seismic code and performance-based design recommendations quantify ground motion intensity using 5%-damped spectral acceleration when estimating the collapse vulnerability of buildings. This intensity measure works well for predicting inter-story drift due to moderate shaking, but other measures have been shown to be better for estimating collapse risk.We propose using highly-damped (>10%) spectral acceleration to assess collapse vulnerability. As damping is increased, the spectral acceleration at a given period T begins to behave like a weighted average of the corresponding lowly-damped (i.e. 5%) spectrum at a range of periods. Weights for periods longer than T increase as damping increases. Using high damping is physically intuitive for two reasons. Firstly, ductile buildings dissipate a large amount of hysteretic energy before collapse and thus behave more like highly-damped systems. Secondly, heavily damaged buildings experience period-lengthening, giving further credence to the weighted-averaging property of highly-damped spectral acceleration.To determine the optimal damping value(s) for this ground motion intensity measure, we conduct incremental dynamic analysis for a suite of ground motions on several different mid-rise steel buildings and select the damping value yielding the lowest dispersion of intensity at the collapse threshold. Spectral acceleration calculated with damping as high as 70% has been shown to be a better indicator of collapse than that with 5% damping.

  19. White paper: A plan for cooperation between NASA and DARPA to establish a center for advanced architectures

    NASA Technical Reports Server (NTRS)

    Denning, P. J.; Adams, G. B., III; Brown, R. L.; Kanerva, P.; Leiner, B. M.; Raugh, M. R.

    1986-01-01

    Large, complex computer systems require many years of development. It is recognized that large scale systems are unlikely to be delivered in useful condition unless users are intimately involved throughout the design process. A mechanism is described that will involve users in the design of advanced computing systems and will accelerate the insertion of new systems into scientific research. This mechanism is embodied in a facility called the Center for Advanced Architectures (CAA). CAA would be a division of RIACS (Research Institute for Advanced Computer Science) and would receive its technical direction from a Scientific Advisory Board established by RIACS. The CAA described here is a possible implementation of a center envisaged in a proposed cooperation between NASA and DARPA.

  20. Seismic site coefficients and acceleration design response spectra based on conditions in South Carolina : final report.

    DOT National Transportation Integrated Search

    2014-11-15

    The simplified procedure in design codes for determining earthquake response spectra involves : estimating site coefficients to adjust available rock accelerations to site accelerations. Several : investigators have noted concerns with the site coeff...

  1. Future Facility: FAIR at GSI

    NASA Astrophysics Data System (ADS)

    Rosner, Guenther

    2007-05-01

    The Facility for Antiproton and Ion Research, FAIR, is a new particle accelerator facility to be built at the GSI site in Germany. The research at FAIR will cover a wide range of topics in nuclear and hadron physics, high density plasma and atomic physics, and applications in condensed matter physics and biology. A 1.1 km circumference double ring of rapidly cycling 100 and 300 Tm synchrotrons, will be FAIR's central accelerator system. It will be used to produce, inter alia, high intensity secondary beams of antiprotons and short-lived radioactive nuclei. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experiments are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.

  2. Experiences with Deriva: An Asset Management Platform for Accelerating eScience.

    PubMed

    Bugacov, Alejandro; Czajkowski, Karl; Kesselman, Carl; Kumar, Anoop; Schuler, Robert E; Tangmunarunkit, Hongsuda

    2017-10-01

    The pace of discovery in eScience is increasingly dependent on a scientist's ability to acquire, curate, integrate, analyze, and share large and diverse collections of data. It is all too common for investigators to spend inordinate amounts of time developing ad hoc procedures to manage their data. In previous work, we presented Deriva, a Scientific Asset Management System, designed to accelerate data driven discovery. In this paper, we report on the use of Deriva in a number of substantial and diverse eScience applications. We describe the lessons we have learned, both from the perspective of the Deriva technology, as well as the ability and willingness of scientists to incorporate Scientific Asset Management into their daily workflows.

  3. Accelerating the Rate of Astronomical Discovery

    NASA Astrophysics Data System (ADS)

    Norris, Ray P. Ruggles, Clive L. N.

    2010-05-01

    Special Session 5 on Accelerating the Rate of Astronomical Discovery addressed a range of potential limits to progress - paradigmatic, technological, organisational, and political - examining each issue both from modern and historical perspectives, and drawing lessons to guide future progress. A number of issues were identified which potentially regulate the flow of discoveries, such as the balance between large strongly-focussed projects and instruments, designed to answer the most fundamental questions confronting us, and the need to maintain a creative environment with room for unorthodox thinkers and bold, high risk, projects. Also important is the need to maintain historical and cultural perspectives, and the need to engage the minds of the most brilliant young people on the planet, regardless of their background, ethnicity, gender, or geography.

  4. SpS5: Accelerating the Rate of Astronomical Discovery

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.

    2010-11-01

    Special Session 5 on Accelerating the Rate of Astronomical Discovery addressed a range of potential limits to progress: paradigmatic, technological, organizational, and political. It examined each issue both from modern and historical perspectives, and drew lessons to guide future progress. A number of issues were identified which may regulate the flow of discoveries, such as the balance between large strongly-focussed projects and instruments, designed to answer the most fundamental questions confronting us, and the need to maintain a creative environment with room for unorthodox thinkers and bold, high risk, projects. Also important is the need to maintain historical and cultural perspectives, and the need to engage the minds of the most brilliant young people on the planet, regardless of their background, ethnicity, gender, or geography.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Ahrens, L. A.; Bai, M.

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is challenging. In a medium energy accelerator, the depolarizing spin resonances are strong enough to cause significant polarization loss but full Siberian snakes cause intolerably large orbit excursions and are also not feasible since straight sections usually are too short. Recently, two helical partial Siberian snakes with double pitch design have been installed in the Brookhaven Alternating Gradient Synchrotron (AGS). With a careful setup of optics at injection and along the energy ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances otherwise encountered during accelerationmore » to maintain a high intensity polarized beam in medium energy synchrotrons. The observation of partial snake resonances of higher than second order will also be described.« less

  6. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  7. Transform coding for hardware-accelerated volume rendering.

    PubMed

    Fout, Nathaniel; Ma, Kwan-Liu

    2007-01-01

    Hardware-accelerated volume rendering using the GPU is now the standard approach for real-time volume rendering, although limited graphics memory can present a problem when rendering large volume data sets. Volumetric compression in which the decompression is coupled to rendering has been shown to be an effective solution to this problem; however, most existing techniques were developed in the context of software volume rendering, and all but the simplest approaches are prohibitive in a real-time hardware-accelerated volume rendering context. In this paper we present a novel block-based transform coding scheme designed specifically with real-time volume rendering in mind, such that the decompression is fast without sacrificing compression quality. This is made possible by consolidating the inverse transform with dequantization in such a way as to allow most of the reprojection to be precomputed. Furthermore, we take advantage of the freedom afforded by off-line compression in order to optimize the encoding as much as possible while hiding this complexity from the decoder. In this context we develop a new block classification scheme which allows us to preserve perceptually important features in the compression. The result of this work is an asymmetric transform coding scheme that allows very large volumes to be compressed and then decompressed in real-time while rendering on the GPU.

  8. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.

    PubMed

    Inoue, T; Hattori, T; Sugimoto, S; Sasai, K

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  9. Dust particle injector for hypervelocity accelerators provides high charge-to-mass ratio

    NASA Technical Reports Server (NTRS)

    Berg, O. E.

    1966-01-01

    Injector imparts a high charge-to-mass ratio to microparticles and injects them into an electrostatic accelerator so that the particles are accelerated to meteoric speeds. It employs relatively large masses in the anode and cathode structures with a relatively wide separation, thus permitting a large increase in the allowable injection voltages.

  10. RFQ design for the RAON accelerator's ISOL system

    NASA Astrophysics Data System (ADS)

    Choi, Bong Hyuk; Hong, In-Seok

    2015-10-01

    The heavy-ion accelerator RAON has the advantage of having both an in-flight (IF) and an isotope separator on-line (ISOL) system. Two radio frequency quadrupoles (RFQs) will be installed in the RAON: the main linear accelerator (LINAC) RFQ will be used to accelerate the two-charge state 238U for the IF system, while the post-accelerator RFQ will be used to accelerate low-current isotope beams from the ISOL system. In this paper, the post-accelerator RFQ design for the ISOL system is reported. A beam current of 1 pμA was used, and the input beam and the output beam energies were 5 keV/u and 400 keV/u, respectively. Moreover, the design was optimized by reducing the total length and power, adjusting the beam quality. To quantify the influence of thermal expansion on the frequency, we calculated the frequency difference according to deference between the vane's tip and the body's diameter.

  11. Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Ken; Peralta, E.A.; Byer, R.L.

    A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry,more » as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a realizable structure. In this paper, we will present a 3-dimensional frequency-domain simulation of both the infinite and the finite grating accelerator structure. Additionally, we will present a new scheme for a focusing structure based on a perturbation of the accelerating structure. We will present simulations of this proposed focusing structure and quantify the quality of the focusing fields.« less

  12. The LeRC rail accelerators: Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1983-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed.

  13. Modulation of the phenolic composition and colour of red wines subjected to accelerated ageing by controlling process variables.

    PubMed

    González-Sáiz, J M; Esteban-Díez, I; Rodríguez-Tecedor, S; Pérez-Del-Notario, N; Arenzana-Rámila, I; Pizarro, C

    2014-12-15

    The aim of the present work was to evaluate the effect of the main factors conditioning accelerated ageing processes (oxygen dose, chip dose, wood origin, toasting degree and maceration time) on the phenolic and chromatic profiles of red wines by using a multivariate strategy based on experimental design methodology. The results obtained revealed that the concentrations of monomeric anthocyanins and flavan-3-ols could be modified through the application of particular experimental conditions. This fact was particularly remarkable since changes in phenolic profile were closely linked to changes observed in chromatic parameters. The main strength of this study lies in the possibility of using its conclusions as a basis to make wines with specific colour properties based on quality criteria. To our knowledge, the influence of such a large number of alternative ageing parameters on wine phenolic composition and chromatic attributes has not been studied previously using a comprehensive experimental design methodology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Accelerated search for materials with targeted properties by adaptive design

    PubMed Central

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  15. Experimental investigation of a 2.5 centimeter diameter Kaufman microthruster

    NASA Technical Reports Server (NTRS)

    Cohen, A. J.

    1973-01-01

    A 2.5-centimeter-diameter Kaufman electron bombardment microthruster was fabricated and tested. The microthruster design was based on the 15-centimeter-diameter SERT 2 and 5-centimeter-diameter Lewis experimental thruster designs. The microthruster with a two-grid system, operating at a net accelerating potential of 600 volts and an accelerator potential of 500 volts, produced a calculated 445 micronewton thrust when it was run with a 9-milliampere beam current. A glass grid was initially used in testing. Later a two-grid system was successfully incorporated. Both the propellant utilization efficiency and the total power efficiency were lower than for large-size advanced thrusters, as expected; but they were sufficiently high that 2.5-centimeter thrusters show promise for future space applications. Total power of the microthruster with an assumed 7-watt hollow-cathode neutralizer was less than 30 watts at a thrust level of 445 micronewton (100 Nu LBf). The hollow cathode was operated at zero tip heater power for power requirement tests.

  16. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W811XWH-13-1-0310 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Zhongyu Li, MD, PhD RECIPIENT: Wake Forest University Health Sciences...REPORT DATE September 2016 2. REPORT TYPE Annual 3. DATES COVERED 1Sep2015 - 31Aug2016 4. TITLE AND SUBTITLE Acceleration of Regeneration of Large

  17. AN ENGINEERING SOLUTION TO THE RHIC BEAM ABORT KICKER UPGRADE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.ROSER,T.SANDBERG,J.TAN,Y.ET AL.

    2004-05-23

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is the world largest superconducting accelerator for nuclear energy research. Particle beams traveling in opposite directions in two accelerator rings, Blue and Yellow, collide at six interaction regions to create phenomena of the early universe. There are more than 1700 superconducting magnets and very sophisticate and delicate large detectors inside the RHIC tunnel. With high beam intensity and ultra high beam energy, an inadvertent loss of beam can result severe damage to the superconducting magnets and detectors. Beam abort kickers are used to remove beam safely from the ring. Themore » large inductive load, high current capability, short beam gap, and high reliability are the challenging issues of this system design. With high intensity and high momentum beam operation, it is desirable to have all high voltage modulators located outside of RHIC tunnel. However, to generate 22 kA output current per modulator with fast rise time, a conventional low impedance PFN and matched transmission cable design can push the operation voltage easily into 100 kV range. The large quantity of high voltage pulse transmission cables required by conventional design is another difficult issue. Therefore, the existing system has all ten high voltage modulators located inside RHIC tunnel. More than a hundred plastic packaged mineral oil filled high voltage capacitors raise serious concerns of fire and smoking threats. Other issues, such as kicker misfire, device availability in the future, and inaccessibility during operation, also demand an engineering solution for the future upgrade. In this paper, we investigate an unconventional approach to meet the technical challenges of RHIC beam abort system. The proposed design has all modulators outside of the RHIC tunnel. It will transmit output pulse through high voltage cables. The modulators will utilize solid-state switches, and operate at a maximum voltage in 30 to 50 kV range.« less

  18. Design of bunch compressing system with suppression of coherent synchrotron radiation for ATF upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Yichao; Fedurin, Mikhail; Stratakis, Diktys

    2015-05-03

    One of the operation modes for Accelerator Test Facility (ATF) upgrade is to provide high peak current, high quality electron beam for users. Such operation requires a bunch compressing system with a very large compression ratio. The CSR originating from the strong compressors generally could greatly degrade the quality of the electron beam. In this paper, we present our design for the entire bunch compressing system that will limit the effect of CSR on the e-beam’s quality. We discuss and detail the performance from the start to end simulation of such a compressor for ATF.

  19. EuCARD2: enhanced accelerator research and development in Europe

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. EuCARD2 is an European research project which will be realized during 2013-2017 inside the EC FP7 framework. The project concerns the development and coordination of European Accelerator Research and Development. The project is particularly important, to a number of domestic laboratories, due to some plans to build large accelerator infrastructure in Poland. Large accelerator infrastructure of fundamental and applied research character stimulates around it the development and industrial applications as well as biomedical of advanced accelerators, material research and engineering, cryo-technology, mechatronics, robotics, and in particular electronics - like networked measurement and control systems, sensors, computer systems, automation and control systems. The paper presents a digest of the European project EuCARD2 which is Enhanced European Coordination for Accelerator Research and Development. The paper presents a digest of the research results and assumptions in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator R&D, and the kick-off meeting of the EuCARD2. There are debated a few basic groups of accelerator systems components like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution, high field magnets, superconducting cavities, novel beam collimators, etc. The paper bases on the following materials: Internet and Intranet documents combined with EuCARD2, Description of Work FP7 EuCARD-2 DoW-312453, 2013-02-13, and discussions and preparatory materials worked on by Eucard-2 initiators.

  20. Unveiling the Synchrotron Cosmic Web: Pilot Study

    NASA Astrophysics Data System (ADS)

    Brown, Shea; Rudnick, Lawrence; Pfrommer, Christoph; Jones, Thomas

    2011-10-01

    The overall goal of this project is to challenge our current theoretical understanding of the relativistic particle populations in the inter-galactic medium (IGM) through deep 1.4 GHz observations of 13 massive, high-redshift clusters of galaxies. Designed to compliment/extend the GMRT radio halo survey (Venturi et al. 2007), these observations will attempt to detect the peaks of the purported synchrotron cosmic-web, and place serious limits on models of CR acceleration and magnetic field amplification during large-scale structure formation. The primary goals of this survey are: 1) Confirm the bi-modal nature of the radio halo population, which favors turbulent re-acceleration of cosmic-ray electrons (CRe) during cluster mergers as the source of the diffuse radio emission; 2) Directly test hadronic secondary models which predict the presence of cosmic-ray protons (CRp) in the cores of massive X-ray clusters; 3) Search in polarization for shock structures, a potential source of CR acceleration in the IGM.

  1. Microgravity Effects on Microbiology In Space Laboratories

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Juergensmeyer, Elizabeth; Juergensmeyer, Margaret

    2000-01-01

    Here we present a review of the effects of residual acceleration on microorganisms in space Laboratories. Residual acceleration in the microgravity environment is frequently ignored by microbiologists, although their experiments may be as sensitive to this acceleration as those designed by materials scientists and fluid physicists. Furthermore, analysis to date has been largely empirical and/or based on very simple theoretical models. As a result, the responses of single cells to the space environment are widely assumed to be taking place in "pure" microgravity. These responses vary widely and are not well understood. Some of this variation may be due to the range of microgravity conditions experience by organisms. In the future, as we move from visiting orbital environments to living and working there, we will undoubtedly bring microorganisms with us. It is also quite likely that the first extraterrestrial life we encounter will be single-celled organisms. Therefore, we would like to present a summary of the current knowledge base, and to challenge the space community to develop new approaches in understanding this important field.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ody, A.; Musumeci, P.; Maxson, J.

    In this study we discuss the application of the flat beam transform to generate beams suitable for injection into slab-symmetric dielectric laser-driven accelerators (DLAs). A study of the focusing requirements to keep the particles within the tight apertures characterizing these accelerators shows the benefits of employing ultralow beam emittances. The slab geometry of the many dielectric accelerating structures strongly favors the use of flat beams with large ratio between vertical and horizontal emittances. We employ particle tracking simulations to study the application of the flat beam transform for two injector designs, a DC non relativistic photogun and a 1.6 cellmore » S-band RF photoinjector, obtaining in both cases emittance ratios between the horizontal and vertical plane in excess of 100 in agreement with simple analytical estimates. The 4 MeV RF photoinjector study-case can be directly applied to the UCLA Pegasus beamline and shows normalized emittances down to < 3 nm in the vertical dimension for beam charges up to 20 fC, enabling a two-stage DLA experiment.« less

  3. GPU accelerated particle visualization with Splotch

    NASA Astrophysics Data System (ADS)

    Rivi, M.; Gheller, C.; Dykes, T.; Krokos, M.; Dolag, K.

    2014-07-01

    Splotch is a rendering algorithm for exploration and visual discovery in particle-based datasets coming from astronomical observations or numerical simulations. The strengths of the approach are production of high quality imagery and support for very large-scale datasets through an effective mix of the OpenMP and MPI parallel programming paradigms. This article reports our experiences in re-designing Splotch for exploiting emerging HPC architectures nowadays increasingly populated with GPUs. A performance model is introduced to guide our re-factoring of Splotch. A number of parallelization issues are discussed, in particular relating to race conditions and workload balancing, towards achieving optimal performances. Our implementation was accomplished by using the CUDA programming paradigm. Our strategy is founded on novel schemes achieving optimized data organization and classification of particles. We deploy a reference cosmological simulation to present performance results on acceleration gains and scalability. We finally outline our vision for future work developments including possibilities for further optimizations and exploitation of hybrid systems and emerging accelerators.

  4. Social-Emotional Characteristics of Gifted Accelerated and Non-Accelerated Students in the Netherlands

    ERIC Educational Resources Information Center

    Hoogeveen, Lianne; van Hell, Janet G.; Verhoeven, Ludo

    2012-01-01

    Background: In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. Aims: In this study, social-emotional characteristics of accelerated…

  5. The Solar Flare: A Strongly Turbulent Particle Accelerator

    NASA Astrophysics Data System (ADS)

    Vlahos, L.; Krucker, S.; Cargill, P.

    The topics of explosive magnetic energy release on a large scale (a solar flare) and particle acceleration during such an event are rarely discussed together in the same article. Many discussions of magnetohydrodynamic (MHD) mod- eling of solar flares and/or CMEs have appeared (see [143] and references therein) and usually address large-scale destabilization of the coronal mag- netic field. Particle acceleration in solar flares has also been discussed exten- sively [74, 164, 116, 166, 87, 168, 95, 122, 35] with the main emphasis being on the actual mechanisms for acceleration (e.g., shocks, turbulence, DC electric fields) rather than the global magnetic context in which the acceleration takes place.

  6. Design of a High Speed Planing Hull with a Cambered Step and Surface Piercing Hydrofoils

    DTIC Science & Technology

    2014-06-01

    Impact Acceleration (Hoggard and Jones) - 1/10 highest eta_110_CG = 7.0*( H13 /Bpx)*(1+Tau/2...hulls with a higher deadrise angle perform better, with improved ride quality as the impact of wave is reduced. However, there is a disadvantage...the previous studies of Blount, Codega and Savitsky, a planing hull’s running trim angle and associated lift coefficient has a large impact on dynamic

  7. Development of high intensity linear accelerator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan

    2013-11-01

    In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.

  8. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  9. Novel Linac Structures For Low-Beta Ions And For Muons

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey S.

    2011-06-01

    Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies—the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ)—are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank—electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis—are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of ˜200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed 0-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

  10. Particle acceleration in pulsar magnetospheres

    NASA Technical Reports Server (NTRS)

    Baker, K. B.

    1978-01-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star.

  11. Accelerated Reader. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    "Accelerated Reader" is a computer-based reading management system designed to complement an existing classroom literacy program for grades pre-K-12. It is designed to increase the amount of time students spend reading independently. Students choose reading-level appropriate books or short stories for which Accelerated Reader tests are…

  12. 7 CFR 3201.64 - Compost activators and accelerators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROCUREMENT Designated Items § 3201.64 Compost activators and accelerators. (a) Definition. Products in liquid or powder form designed to be applied to compost piles to aid in speeding up the composting process... 7 Agriculture 15 2014-01-01 2014-01-01 false Compost activators and accelerators. 3201.64 Section...

  13. 7 CFR 3201.64 - Compost activators and accelerators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PROCUREMENT Designated Items § 3201.64 Compost activators and accelerators. (a) Definition. Products in liquid or powder form designed to be applied to compost piles to aid in speeding up the composting process... 7 Agriculture 15 2013-01-01 2013-01-01 false Compost activators and accelerators. 3201.64 Section...

  14. 7 CFR 3201.64 - Compost activators and accelerators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PROCUREMENT Designated Items § 3201.64 Compost activators and accelerators. (a) Definition. Products in liquid or powder form designed to be applied to compost piles to aid in speeding up the composting process... 7 Agriculture 15 2012-01-01 2012-01-01 false Compost activators and accelerators. 3201.64 Section...

  15. A feasibility study of a hypersonic real-gas facility

    NASA Technical Reports Server (NTRS)

    Gully, J. H.; Driga, M. D.; Weldon, W. F.

    1987-01-01

    A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch.

  16. Opportunities and challenges of a low-energy positron source in the LERF

    NASA Astrophysics Data System (ADS)

    Benson, Stephen; Wojtsekhowski, Bogdan; Vlahovic, Branislav; Golge, Serkan

    2018-05-01

    Though there are many applications of low energy positrons, many experiments are source limited. Using the LERF accelerator at the Thomas Jefferson National Accelerator Facility, it is possible to build a high brightness source of very low-energy positrons. The accelerator requirements are well within the capabilities of the installed hardware. The accelerator can produce 120 kW of beam with a beam energy of up to 170 MeV. For these experiments, we only need run at up to 120 MeV. The gamma-to-positron converter must be able to absorb 20% of the beam power that the linac delivers. At this low an energy the converter, though challenging, is possible. The transport of the low energy positrons from the production target to the next stage, where the energy is reduced even further, must have a very large acceptance to be able to efficiently transport the flux of positrons from the positron production target to the moderator. We propose to accomplish such a transport by means of a guiding solenoidal field with a novel endcap design. In this presentation, we will present the proposed schemes necessary to realize such a high brightness positron source.

  17. Efficacy of an accelerated recovery protocol for Oxford unicompartmental knee arthroplasty--a randomised controlled trial.

    PubMed

    Reilly, K A; Beard, D J; Barker, K L; Dodd, C A F; Price, A J; Murray, D W

    2005-10-01

    Unicompartmental knee arthroplasty (UKA) is appropriate for one in four patients with osteoarthritic knees. This study was performed to compare the safety, effectiveness and economic viability of a new accelerated protocol with current standard care in a state healthcare system. A single blind RCT design was used. Eligible patients were screened for NSAID tolerance, social circumstances and geographical location before allocation to an accelerated recovery group (A) or standard care group (S). Primary outcome was the Oxford Knee Assessment at 6 months post operation, compared using independent Mann-Whitney U-tests. A simple difference in costs incurred was calculated. The study power was sufficient to avoid type 2 errors. Forty-one patients were included. The average stay for Group A was 1.5 days. Group S averaged 4.3 days. No significant difference in outcomes was found between groups. The new protocol achieved cost savings of 27% and significantly reduced hospital bed occupancy. In addition, patient satisfaction was assessed as greater with the accelerated discharge than with the routine discharge time. The strict inclusion criteria meant that 75% of eligible patients were excluded. However, a large percentage of these were due to the distances patients lived from the hospital.

  18. Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for Low Energy Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei

    2017-03-01

    An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.

  19. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  20. The founding of CEBAF, 1979 to 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Westfall

    1995-02-01

    In early 1979 a group of physicists assembled at the University of Virginia (UVa) for a conference entitled ''Future Possibilities for Electron Accelerators.'' In the audience sat an organizer of the conference, UVa professor James McCarthy. While listening to talks by Gregory Loew of the Stanford Linear Accelerator Center (SLAC) and Roger Servranckx of the University of Saskatchewan, McCarthy got very excited. Both discussed new approaches to producing an almost continuous stream of electrons with improved designs for pulse stretcher rings that could be built within a reasonable budget. McCarthy saw the possibility of realizing a dream. This dream hadmore » its origins in the 1950s, when Robert Hofstadter, McCarthy's thesis advisor, made groundbreaking discoveries at Stanford's High Energy Physics Laboratory (HEPL) about the internal structure of nuclei and nucleons. For these experiments Hofstadter used Mark III, the most advanced in a series of electron accelerators designed by William Hansen, who pioneered methods of high frequency acceleration of electrons. The work by Hofstadter and Hansen led to two productive lines of inquiry. One group of researchers studied particle production using electrons at higher energies, which led to the construction in the 1960s of SLAC at Stanford. Another group of researchers, which included McCarthy, investigated nuclear structure with more modest increases in energy accompanied by increases in the duty factor of the electron beam. This line of inquiry, electro-nuclear physics, led in the 1960s and 1970s to a succession of accelerators, including a $7.2 million high duty factor 400 MeV linear accelerator (linac) completed in 1972 at the Bates Laboratory at the Massachusetts Institute of Technology (Bates-MIT), and ambitious attempts to develop untried technologies to further boost energy and duty factor, most notably the effort to develop superconducting radiofrequency (srf) accelerating technology at HEPL. By 1979 electro-nuclear physics had attracted a considerable following. The growing electro-nuclear physics community was eager to find a scheme to permit virtually continuous acceleration, which would greatly improve the capability of performing coincidence experiments. In the words of the UVa conference proceedings, this experimental capability promised to open entire new areas of nuclear physics. Convinced that he could be the one to design the necessary groundbreaking machine after hearing the ideas of Loew and Servranckx, McCarthy began gathering a small accelerator building team. Against all odds, McCarthy's pipe dream resulted in the construction of a major accelerator laboratory, the Continuous Electron Beam Accelerator Facility (CEBAF). The founding of CEBAF is a tale of luck, perseverance, the triumph of flexible amateurism over rigid professionalism, and ironically, the potential of amateurs when supported by a thoroughly professional international network with well-defined methods for organizing and building accelerators. The CEBAF tale also has a surprise ending, for at the last minute, McCarthy's pipe dream was radically transformed by Hermann Grunder, who would direct the construction of the project. The twists and turns of this tale reveal many lessons about what aids and what detracts from the success of a large, federally sponsored scientific project.« less

  1. Accelerator infrastructure in Europe: EuCARD 2011

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.

  2. Accurate Measurement of Velocity and Acceleration of Seismic Vibrations near Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Arif, Syed Javed; Imdadullah; Asghar, Mohammad Syed Jamil

    In spite of all prerequisite geological study based precautions, the sites of nuclear power plants are also susceptible to seismic vibrations and their consequent effects. The effect of the ongoing nuclear tragedy in Japan caused by an earthquake and its consequent tsunami on March 11, 2011 is currently beyond contemplations. It has led to a rethinking on nuclear power stations by various governments around the world. Therefore, the prediction of location and time of large earthquakes has regained a great importance. The earth crust is made up of several wide, thin and rigid plates like blocks which are in constant motion with respect to each other. A series of vibrations on the earth surface are produced by the generation of elastic seismic waves due to sudden rupture within the plates during the release of accumulated strain energy. The range of frequency of seismic vibrations is from 0 to 10 Hz. However, there appears a large variation in magnitude, velocity and acceleration of these vibrations. The response of existing or conventional methods of measurement of seismic vibrations is very slow, which is of the order of tens of seconds. A systematic and high resolution measurement of velocity and acceleration of these vibrations are useful to interpret the pattern of waves and their anomalies more accurately, which are useful for the prediction of an earthquake. In the proposed work, a fast rotating magnetic field (RMF) is used to measure the velocity and acceleration of seismic vibrations in the millisecond range. The broad spectrum of pulses within one second range, measured by proposed method, gives all possible values of instantaneous velocity and instantaneous acceleration of the seismic vibrations. The spectrum of pulses in millisecond range becomes available which is useful to measure the pattern of fore shocks to predict the time and location of large earthquakes more accurately. Moreover, instead of average, the peak values of these quantities are helpful in proper design of earthquake resistant nuclear power plants, buildings and structures. The proposed measurement scheme is successfully tested with a microprocessor based rocking vibration arrangement and the overall performance is recorded at dynamic conditions.

  3. Acceleration sensitivity of micromachined pressure sensors

    NASA Astrophysics Data System (ADS)

    August, Richard; Maudie, Theresa; Miller, Todd F.; Thompson, Erik

    1999-08-01

    Pressure sensors serve a variety of automotive applications, some which may experience high levels of acceleration such as tire pressure monitoring. To design pressure sensors for high acceleration environments it is important to understand their sensitivity to acceleration especially if thick encapsulation layers are used to isolate the device from the hostile environment in which they reside. This paper describes a modeling approach to determine their sensitivity to acceleration that is very general and is applicable to different device designs and configurations. It also describes the results of device testing of a capacitive surface micromachined pressure sensor at constant acceleration levels from 500 to 2000 g's.

  4. KLYNAC: Compact linear accelerator with integrated power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RFmore » source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.« less

  5. Klynac: Compact Linear Accelerator with Integrated Power Supply

    NASA Astrophysics Data System (ADS)

    Malyzhenkov, A. V.

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scientific community is working towards improving the quality of the accelerated beam and its parameters, while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype: resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simplified theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using Particle-In-Cell simulation studies for mono-resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  6. Accelerator science and technology in Europe: EuCARD 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the third annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.

  7. The Impact of Accelerating Faster than Exponential Population Growth on Genetic Variation

    PubMed Central

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-01-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models’ effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times. PMID:24381333

  8. The impact of accelerating faster than exponential population growth on genetic variation.

    PubMed

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  9. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  10. Evolutionary optimization methods for accelerator design

    NASA Astrophysics Data System (ADS)

    Poklonskiy, Alexey A.

    Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.

  11. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  12. Design of four-beam IH-RFQ linear accelerator

    NASA Astrophysics Data System (ADS)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  13. Accelerator Technology Division annual report, FY 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  14. Accelerated longitudinal designs: An overview of modelling, power, costs and handling missing data.

    PubMed

    Galbraith, Sally; Bowden, Jack; Mander, Adrian

    2017-02-01

    Longitudinal studies are often used to investigate age-related developmental change. Whereas a single cohort design takes a group of individuals at the same initial age and follows them over time, an accelerated longitudinal design takes multiple single cohorts, each one starting at a different age. The main advantage of an accelerated longitudinal design is its ability to span the age range of interest in a shorter period of time than would be possible with a single cohort longitudinal design. This paper considers design issues for accelerated longitudinal studies. A linear mixed effect model is considered to describe the responses over age with random effects for intercept and slope parameters. Random and fixed cohort effects are used to cope with the potential bias accelerated longitudinal designs have due to multiple cohorts. The impact of other factors such as costs and the impact of dropouts on the power of testing or the precision of estimating parameters are examined. As duration-related costs increase relative to recruitment costs the best designs shift towards shorter duration and eventually cross-sectional design being best. For designs with the same duration but differing interval between measurements, we found there was a cutoff point for measurement costs relative to recruitment costs relating to frequency of measurements. Under our model of 30% dropout there was a maximum power loss of 7%.

  15. The mechatronic design of a fast wire scanner in IHEP U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Baranov, V. T.; Makhov, S. S.; Savin, D. A.; Terekhov, V. I.

    2016-10-01

    This paper presents the mechatronic design of a fast wire scanner based on a servomotor. The design of the wire scanner is motivated by the need to measure the transverse profile of the high power proton and carbon beams at the IHEP U-70 accelerator. This paper formulates the requirements to the fast wire scanner system for the high intensity proton beam at the U-70 accelerator. The results on the design of electro-mechanical device for the wire scanner with a wire traveling speed 10-20 m/s are presented. The solution consists in a brushless servomotor and standard motor control electronics. High radiation levels in the accelerator enclosure dictate the use of a resolver as the position feedback element.

  16. Plasmon-driven acceleration in a photo-excited nanotube

    DOE PAGES

    Shin, Young -Min

    2017-02-21

    A plasmon-assisted channeling acceleration can be realized with a large channel, possibly at the nanometer scale. Carbon nanotubes (CNTs) are the most typical example of nano-channels that can confine a large number of channeled particles in a photon-plasmon coupling condition. This paper presents a theoretical and numerical study on the concept of high-field charge acceleration driven by photo-excited Luttinger-liquid plasmons in a nanotube. An analytic description of the plasmon-assisted laser acceleration is detailed with practical acceleration parameters, in particular, with the specifications of a typical tabletop femtosecond laser system. Lastly, the maximally achievable acceleration gradients and energy gains within dephasingmore » lengths and CNT lengths are discussed with respect to laser-incident angles and CNT-filling ratios.« less

  17. Accelerated Districts--The Next Step. A Summary of Research and Design.

    ERIC Educational Resources Information Center

    Driver, Cyrus; And Others

    The National Center for the Accelerated Schools Project at Stanford University has recognized that district-level change is necessary if changes at accelerated schools are to gain permanence and become widespread. The Center has therefore initiated a research and development project to design a set of models on which districts can reconstitute…

  18. Parallel Index and Query for Large Scale Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver

    2011-07-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing ofmore » a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.« less

  19. Genten: Software for Generalized Tensor Decompositions v. 1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Eric T.; Kolda, Tamara G.; Dunlavy, Daniel

    Tensors, or multidimensional arrays, are a powerful mathematical means of describing multiway data. This software provides computational means for decomposing or approximating a given tensor in terms of smaller tensors of lower dimension, focusing on decomposition of large, sparse tensors. These techniques have applications in many scientific areas, including signal processing, linear algebra, computer vision, numerical analysis, data mining, graph analysis, neuroscience and more. The software is designed to take advantage of parallelism present emerging computer architectures such has multi-core CPUs, many-core accelerators such as the Intel Xeon Phi, and computation-oriented GPUs to enable efficient processing of large tensors.

  20. MABE multibeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.

    1985-01-01

    The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less

  1. Seismic design parameters - A user guide

    USGS Publications Warehouse

    Leyendecker, E.V.; Frankel, A.D.; Rukstales, K.S.

    2001-01-01

    The 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings (1997 NEHRP Provisions) introduced seismic design procedure that is based on the explicit use of spectral response acceleration rather than the traditional peak ground acceleration and/or peak ground velocity or zone factors. The spectral response accelerations are obtained from spectral response acceleration maps accompanying the report. Maps are available for the United States and a number of U.S. territories. Since 1997 additional codes and standards have also adopted seismic design approaches based on the same procedure used in the NEHRP Provisions and the accompanying maps. The design documents using the 1997 NEHRP Provisions procedure may be divided into three categories -(1) Design of New Construction, (2) Design and Evaluation of Existing Construction, and (3) Design of Residential Construction. A CD-ROM has been prepared for use in conjunction with the design documents in each of these three categories. The spectral accelerations obtained using the software on the CD are the same as those that would be obtained by using the maps accompanying the design documents. The software has been prepared to operate on a personal computer using a Windows (Microsoft Corporation) operating environment and a point and click type of interface. The user can obtain the spectral acceleration values that would be obtained by use of the maps accompanying the design documents, include site factors appropriate for the Site Class provided by the user, calculate a response spectrum that includes the site factor, and plot a response spectrum. Sites may be located by providing the latitude-longitude or zip code for all areas covered by the maps. All of the maps used in the various documents are also included on the CDROM

  2. Radiation shielding design of a new tomotherapy facility.

    PubMed

    Zacarias, Albert; Balog, John; Mills, Michael

    2006-10-01

    It is expected that intensity modulated radiation therapy (IMRT) and image guided radiation therapy (IGRT) will replace a large portion of radiation therapy treatments currently performed with conventional MLC-based 3D conformal techniques. IGRT may become the standard of treatment in the future for prostate and head and neck cancer. Many established facilities may convert existing vaults to perform this treatment method using new or upgraded equipment. In the future, more facilities undoubtedly will be considering de novo designs for their treatment vaults. A reevaluation of the design principles used in conventional vault design is of benefit to those considering this approach with a new tomotherapy facility. This is made more imperative as the design of the TomoTherapy system is unique in several aspects and does not fit well into the formalism of NCRP 49 for a conventional linear accelerator.

  3. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.

    2010-11-01

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  4. A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses

    NASA Astrophysics Data System (ADS)

    Shieh, Jen-Yu; Wang, Luke K.; Ke, Shih-Ying

    2010-07-01

    A computer aided engineering (CAE) tool-assisted technique, using Moldex3D and aspheric analysis utility (AAU) software in a polycarbonate injection molding design, is proposed to manufacture large diameter aspheric plastic lenses. An experiment is conducted to verify the applicability/feasibility of the proposed technique. Using the preceding two software tools, these crucial process parameters associated with the surface profile errors and birefringence of a molded lens can be attainable. The strategy adopted here is to use the actual quantity of shrinkage after an injection molding trial of an aspherical plastic lens as a reference to perform the core shaping job while keeping the coefficients of aspheric surface, radius, and conic constant unchanged. The design philosophy is characterized by using the CAE tool as a guideline to pursue the best symmetry condition, followed by injection molding trials, to accelerate a product’s developmental time. The advantages are less design complexity and shorter developmental time for a product.

  5. Projection-type see-through holographic three-dimensional display

    NASA Astrophysics Data System (ADS)

    Wakunami, Koki; Hsieh, Po-Yuan; Oi, Ryutaro; Senoh, Takanori; Sasaki, Hisayuki; Ichihashi, Yasuyuki; Okui, Makoto; Huang, Yi-Pai; Yamamoto, Kenji

    2016-10-01

    Owing to the limited spatio-temporal resolution of display devices, dynamic holographic three-dimensional displays suffer from a critical trade-off between the display size and the visual angle. Here we show a projection-type holographic three-dimensional display, in which a digitally designed holographic optical element and a digital holographic projection technique are combined to increase both factors at the same time. In the experiment, the enlarged holographic image, which is twice as large as the original display device, projected on the screen of the digitally designed holographic optical element was concentrated at the target observation area so as to increase the visual angle, which is six times as large as that for a general holographic display. Because the display size and the visual angle can be designed independently, the proposed system will accelerate the adoption of holographic three-dimensional displays in industrial applications, such as digital signage, in-car head-up displays, smart-glasses and head-mounted displays.

  6. Saturation Measurements of a Visible SASE FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Roger

    2002-08-14

    VISA (Visible to Infrared SASE Amplifier) is an FEL designed to obtain high gain at a radiation wavelength of 800 nm. Large gain is achieved by driving the FEL with the 71 MeV, high brightness beam of the Accelerator Test Facility (ATF) and using a novel, strong focusing, 4 m long undulator with a gap of 6 mm and a period of 1.8 cm. We report measurements of exponential gain, saturation, and spectra of the FEL radiation intensity.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, Joseph Christopher; Spearing, Dane Robert; Labouriau, Andrea

    Microclad is a composite material consisting of a thin copper coating applied on a single side over a Kapton substrate. Kapton is the commercial designator for polyimide supplied by DuPont. Microclad is a key material in detonator manufacture and function. Detonators which utilize Microclad function when a large current applied through a thin bridge etched into the copper produces a plasma, accelerating a Kapton flyer into an explosive (PETN) pellet. The geometry and properties of the Microclad are a critical element of this process.

  8. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  9. Analytical study of beam handling and emittance control

    NASA Astrophysics Data System (ADS)

    Thompson, James R.; Sloan, M. L.

    1993-12-01

    The thrust of our research on beam handling and emittance control was to explore how one might design high current electron accelerators, with the preservation of high beam quality designed as the primary design consideration. We considered high current, induction linacs in the parameter class of the ETA/ATA accelerators at LLNL, but with improvements to the accelerator gap design and other features to permit a significant increase in the deliverable beam brightness. Our approach for beam quality control centered on the use of solenoidal magnetic focusing through such induction accelerators, together with gently-shaped (adiabatic) acceleration gaps. This approach offers several tools for the control of beam quality. The strength and axial variation in the solenoidal magnetic field may be designed, as may the length and shape of the acceleration gaps, the loading of the gaps, and the axial spacing from gap to gap. This research showed that each of these design features may individually be optimized to contribute to improved beam quality control, and by exploiting these features, it appears feasible to produce high current, high energy electron beams possessing breakthrough beam quality and brightness. Applications which have been technologically unachievable may for the first time become possible. One such application is the production of high performance free electron lasers at very short wavelengths, extending down to the optical (less than 1 micron) regime.

  10. HACC: Simulating sky surveys on state-of-the-art supercomputing architectures

    NASA Astrophysics Data System (ADS)

    Habib, Salman; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas; Heitmann, Katrin; Daniel, David; Fasel, Patricia; Morozov, Vitali; Zagaris, George; Peterka, Tom; Vishwanath, Venkatram; Lukić, Zarija; Sehrish, Saba; Liao, Wei-keng

    2016-01-01

    Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the 'Dark Universe', dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers that enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC's design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.

  11. HACC: Simulating sky surveys on state-of-the-art supercomputing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Pope, Adrian; Finkel, Hal

    2016-01-01

    Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the ‘Dark Universe’, dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers thatmore » enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC’s design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.« less

  12. Accelerated Fast Spin-Echo Magnetic Resonance Imaging of the Heart Using a Self-Calibrated Split-Echo Approach

    PubMed Central

    Klix, Sabrina; Hezel, Fabian; Fuchs, Katharina; Ruff, Jan; Dieringer, Matthias A.; Niendorf, Thoralf

    2014-01-01

    Purpose Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. Methods For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. Results The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. Conclusion SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging. PMID:24728341

  13. The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide.

    PubMed

    St Aubin, Joel; Steciw, Stephen; Fallone, B G

    2010-02-01

    The design of a 3D in-line side-coupled 6 MV linac waveguide for medical use is given, and the effect of the side-coupling and port irises on the radio frequency (RF), beam dynamics, and dosimetric solutions is examined. This work was motivated by our research on a linac-MR hybrid system, where accurate electron trajectory information for a clinical medical waveguide in the presence of an external magnetic field was needed. For this work, the design of the linac waveguide was generated using the finite element method. The design outlined here incorporates the necessary geometric changes needed to incorporate a full-end accelerating cavity with a single-coupling iris, a waveguide-cavity coupling port iris that allows power transfer into the waveguide from the magnetron, as well as a method to control the RF field magnitude within the first half accelerating cavity into which the electrons from the gun are injected. With the full waveguide designed to resonate at 2998.5 +/- 0.1 MHz, a full 3D RF field solution was obtained. The accuracy of the 3D RF field solution was estimated through a comparison of important linac parameters (Q factor, shunt impedance, transit time factor, and resonant frequency) calculated for one accelerating cavity with the benchmarked program SUPERFISH. It was found that the maximum difference between the 3D solution and SUPERFISH was less than 0.03%. The eigenvalue solver, which determines the resonant frequencies of the 3D side-coupled waveguide simulation, was shown to be highly accurate through a comparison with lumped circuit theory. Two different waveguide geometries were examined, one incorporating a 0.5 mm first side cavity shift and another with a 1.5 mm first side cavity shift. The asymmetrically placed side-coupling irises and the port iris for both models were shown to introduce asymmetries in the RF field large enough to cause a peak shift and skewing (center of gravity minus peak shift) of an initially cylindrically uniform electron beam accelerating within the waveguide. The shifting and skewing of the electron beam were found to be greatest due to the effects of the side-coupling irises on the RF field. A further Monte Carlo study showed that this effect translated into a 1% asymmetry in a 40 x 40 cm2 field dose profile. A full 3D design for an in-line side-coupled 6 MV linear accelerator that emulates a common commercial waveguide has been given. The effect of the side coupling on the dose distribution has been shown to create a slight asymmetry, but overall does not affect the clinical applicability of the linac. The 3D in-line side-coupled linac model further provides a tool for the investigation of linac performance within an external magnetic field, which exists in an integrated linac-MR system.

  14. Understanding of Particle Acceleration by Foreshock Transients (invited)

    NASA Astrophysics Data System (ADS)

    Liu, T. Z.; Angelopoulos, V.; Hietala, H.; Lu, S.; Wilson, L. B., III

    2017-12-01

    Although plasma shocks are known to be a major particle accelerator at Earth's environment (e.g., the bow shock) and elsewhere in the universe, how particles are accelerated to very large energies compared to the shock potential is still not fully understood. Significant new information on such acceleration in the vicinity of Earth's bow shock has recently emerged due to the availability of multi-point observations, in particular from Cluster and THEMIS. These have revealed numerous types of foreshock transients, formed by shock-reflected ions, which could play a crucial role in particle pre-acceleration, i.e. before the particles reach the shock to be subjected again to even further acceleration. Foreshock bubbles (FBs) and hot flow anomalies (HFAs), are a subset of such foreshock transients that are especially important due to their large spatial scale (1-10 Earth radii), and their ability to have global effects at Earth.s geospace. These transients can accelerate particles that can become a particle source for the parent shock. Here we introduce our latest progress in understanding particle acceleration by foreshock transients including their statistical characteristics and acceleration mechanisms.

  15. Understanding of Particle Acceleration by Foreshock Transients

    NASA Astrophysics Data System (ADS)

    Liu, T. Z.; Angelopoulos, V.; Hietala, H.; Lu, S.; Wilson, L. B., III

    2017-12-01

    Although plasma shocks are known to be a major particle accelerator at Earth's environment (e.g., the bow shock) and elsewhere in the universe, how particles are accelerated to very large energies compared to the shock potential is still not fully understood. Significant new information on such acceleration in the vicinity of Earth's bow shock has recently emerged due to the availability of multi-point observations, in particular from Cluster and THEMIS. These have revealed numerous types of foreshock transients, formed by shock-reflected ions, which could play a crucial role in particle pre-acceleration, i.e. before the particles reach the shock to be subjected again to even further acceleration. Foreshock bubbles (FBs) and hot flow anomalies (HFAs), are a subset of such foreshock transients that are especially important due to their large spatial scale (1-10 Earth radii), and their ability to have global effects at Earth's geospace. These transients can accelerate particles that can become a particle source for the parent shock. Here we introduce our latest progress in understanding particle acceleration by foreshock transients including their statistical characteristics and acceleration mechanisms.

  16. Mechanical design optimization of a single-axis MOEMS accelerometer based on a grating interferometry cavity for ultrahigh sensitivity

    NASA Astrophysics Data System (ADS)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan; Yang, Guoguang

    2016-08-01

    The ultrahigh static displacement-acceleration sensitivity of a mechanical sensing chip is essential primarily for an ultrasensitive accelerometer. In this paper, an optimal design to implement to a single-axis MOEMS accelerometer consisting of a grating interferometry cavity and a micromachined sensing chip is presented. The micromachined sensing chip is composed of a proof mass along with its mechanical cantilever suspension and substrate. The dimensional parameters of the sensing chip, including the length, width, thickness and position of the cantilevers are evaluated and optimized both analytically and by finite-element-method (FEM) simulation to yield an unprecedented acceleration-displacement sensitivity. Compared with one of the most sensitive single-axis MOEMS accelerometers reported in the literature, the optimal mechanical design can yield a profound sensitivity improvement with an equal footprint area, specifically, 200% improvement in displacement-acceleration sensitivity with moderate resonant frequency and dynamic range. The modified design was microfabricated, packaged with the grating interferometry cavity and tested. The experimental results demonstrate that the MOEMS accelerometer with modified design can achieve the acceleration-displacement sensitivity of about 150μm/g and acceleration sensitivity of greater than 1500V/g, which validates the effectiveness of the optimal design.

  17. Particle Acceleration in Mildly Relativistic Shearing Flows: The Interplay of Systematic and Stochastic Effects, and the Origin of the Extended High-energy Emission in AGN Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ruo-Yu; Rieger, F. M.; Aharonian, F. A., E-mail: ruoyu@mpi-hd.mpg.de, E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: aharon@mpi-hd.mpg.de

    The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parametersmore » applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker–Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.« less

  18. Design of an rf quadrupole for Landau damping

    NASA Astrophysics Data System (ADS)

    Papke, K.; Grudiev, A.

    2017-08-01

    The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC) with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM) spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  19. Intense source of slow positrons

    NASA Astrophysics Data System (ADS)

    Perez, P.; Rosowsky, A.

    2004-10-01

    We describe a novel design for an intense source of slow positrons based on pair production with a beam of electrons from a 10 MeV accelerator hitting a thin target at a low incidence angle. The positrons are collected with a set of coils adapted to the large production angle. The collection system is designed to inject the positrons into a Greaves-Surko trap (Phys. Rev. A 46 (1992) 5696). Such a source could be the basis for a series of experiments in fundamental and applied research and would also be a prototype source for industrial applications, which concern the field of defect characterization in the nanometer scale.

  20. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    ScienceCinema

    None

    2017-12-09

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  1. Large-Scale NASA Science Applications on the Columbia Supercluster

    NASA Technical Reports Server (NTRS)

    Brooks, Walter

    2005-01-01

    Columbia, NASA's newest 61 teraflops supercomputer that became operational late last year, is a highly integrated Altix cluster of 10,240 processors, and was named to honor the crew of the Space Shuttle lost in early 2003. Constructed in just four months, Columbia increased NASA's computing capability ten-fold, and revitalized the Agency's high-end computing efforts. Significant cutting-edge science and engineering simulations in the areas of space and Earth sciences, as well as aeronautics and space operations, are already occurring on this largest operational Linux supercomputer, demonstrating its capacity and capability to accelerate NASA's space exploration vision. The presentation will describe how an integrated environment consisting not only of next-generation systems, but also modeling and simulation, high-speed networking, parallel performance optimization, and advanced data analysis and visualization, is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions. The talk will conclude by discussing how NAS partnered with various NASA centers, other government agencies, computer industry, and academia, to create a national resource in large-scale modeling and simulation.

  2. Conceptual design of the AGATA 1 π array at GANIL

    NASA Astrophysics Data System (ADS)

    Clément, E.; Michelagnoli, C.; de France, G.; Li, H. J.; Lemasson, A.; Barthe Dejean, C.; Beuzard, M.; Bougault, P.; Cacitti, J.; Foucher, J.-L.; Fremont, G.; Gangnant, P.; Goupil, J.; Houarner, C.; Jean, M.; Lefevre, A.; Legeard, L.; Legruel, F.; Maugeais, C.; Ménager, L.; Ménard, N.; Munoz, H.; Ozille, M.; Raine, B.; Ropert, J. A.; Saillant, F.; Spitaels, C.; Tripon, M.; Vallerand, Ph.; Voltolini, G.; Korten, W.; Salsac, M.-D.; Theisen, Ch.; Zielińska, M.; Joannem, T.; Karolak, M.; Kebbiri, M.; Lotode, A.; Touzery, R.; Walter, Ch.; Korichi, A.; Ljungvall, J.; Lopez-Martens, A.; Ralet, D.; Dosme, N.; Grave, X.; Karkour, N.; Lafay, X.; Legay, E.; Kojouharov, I.; Domingo-Pardo, C.; Gadea, A.; Pérez-Vidal, R. M.; Civera, J. V.; Birkenbach, B.; Eberth, J.; Hess, H.; Lewandowski, L.; Reiter, P.; Nannini, A.; De Angelis, G.; Jaworski, G.; John, P.; Napoli, D. R.; Valiente-Dobón, J. J.; Barrientos, D.; Bortolato, D.; Benzoni, G.; Bracco, A.; Brambilla, S.; Camera, F.; Crespi, F. C. L.; Leoni, S.; Million, B.; Pullia, A.; Wieland, O.; Bazzacco, D.; Lenzi, S. M.; Lunardi, S.; Menegazzo, R.; Mengoni, D.; Recchia, F.; Bellato, M.; Isocrate, R.; Egea Canet, F. J.; Didierjean, F.; Duchêne, G.; Baumann, R.; Brucker, M.; Dangelser, E.; Filliger, M.; Friedmann, H.; Gaudiot, G.; Grapton, J.-N.; Kocher, H.; Mathieu, C.; Sigward, M.-H.; Thomas, D.; Veeramootoo, S.; Dudouet, J.; Stézowski, O.; Aufranc, C.; Aubert, Y.; Labiche, M.; Simpson, J.; Burrows, I.; Coleman-Smith, P. J.; Grant, A.; Lazarus, I. H.; Morrall, P. S.; Pucknell, V. F. E.; Boston, A.; Judson, D. S.; Lalović, N.; Nyberg, J.; Collado, J.; González, V.; Kuti, I.; Nyakó, B. M.; Maj, A.; Rudigier, M.

    2017-05-01

    The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This set-up exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam γ-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy γ rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA 1 π array are presented.

  3. Transitioning Rationally Designed Catalytic Materials to Real 'Working' Catalysts Produced at Commercial Scale: Nanoparticle Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaidle, Joshua A.; Habas, Susan E.; Baddour, Frederick G.

    Catalyst design, from idea to commercialization, requires multi-disciplinary scientific and engineering research and development over 10-20 year time periods. Historically, the identification of new or improved catalyst materials has largely been an empirical trial-and-error process. However, advances in computational capabilities (new tools and increased processing power) coupled with new synthetic techniques have started to yield rationally-designed catalysts with controlled nano-structures and tailored properties. This technological advancement represents an opportunity to accelerate the catalyst development timeline and to deliver new materials that outperform existing industrial catalysts or enable new applications, once a number of unique challenges associated with the scale-up ofmore » nano-structured materials are overcome.« less

  4. Teacher Attitudes toward Subject-Specific Acceleration: Instrument Development and Validation

    ERIC Educational Resources Information Center

    Rambo, Karen E.; McCoach, D. Betsy

    2012-01-01

    Despite the research supporting acceleration, some teachers are still hesitant to recommend acceleration for advanced students. The Teacher Attitudes Toward Subject-Specific Acceleration (TATSSA) instrument was designed to uncover the factors that influence teacher decisions to recommend students for subject-specific acceleration. First, we…

  5. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  6. cellVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolecular Datasets

    PubMed Central

    Le Muzic, Mathieu; Autin, Ludovic; Parulek, Julius; Viola, Ivan

    2017-01-01

    In this article we introduce cellVIEW, a new system to interactively visualize large biomolecular datasets on the atomic level. Our tool is unique and has been specifically designed to match the ambitions of our domain experts to model and interactively visualize structures comprised of several billions atom. The cellVIEW system integrates acceleration techniques to allow for real-time graphics performance of 60 Hz display rate on datasets representing large viruses and bacterial organisms. Inspired by the work of scientific illustrators, we propose a level-of-detail scheme which purpose is two-fold: accelerating the rendering and reducing visual clutter. The main part of our datasets is made out of macromolecules, but it also comprises nucleic acids strands which are stored as sets of control points. For that specific case, we extend our rendering method to support the dynamic generation of DNA strands directly on the GPU. It is noteworthy that our tool has been directly implemented inside a game engine. We chose to rely on a third party engine to reduce software development work-load and to make bleeding-edge graphics techniques more accessible to the end-users. To our knowledge cellVIEW is the only suitable solution for interactive visualization of large bimolecular landscapes on the atomic level and is freely available to use and extend. PMID:29291131

  7. Lack of a synergistic effect of arginine-glutamic acid on the physical stability of spray-dried bovine serum albumin.

    PubMed

    Reslan, Mouhamad; Demir, Yusuf K; Trout, Bernhardt L; Chan, Hak-Kim; Kayser, Veysel

    2017-09-01

    Improving the physical stability of spray-dried proteins is essential for enabling pulmonary delivery of biotherapeutics as a noninvasive alternative to injections. Recently, a novel combination of two amino acids - l-arginine (l-Arg) and l-glutamic acid (l-Glu), has been reported to have synergistic protein-stabilizing effects on various protein solutions. Using spray-dried bovine serum albumin (BSA) reconstituted in solution as a model protein, we investigated the synergistic effect of these amino acids on the physical stability of proteins. Five BSA solutions were prepared: (1) BSA with no amino acids (control); (2) with 50 mM l-Arg; (3) with 200 mM l-Arg, (4) with 50 mM l-Glu and (5) with 25:25 mM of Arg:Glu. All solutions were spray-dried and accelerated studies at high temperatures were performed. Following accelerated studies, monomer BSA loss was measured using SE-HPLC. We found that l-Arg significantly improved the physical stability of spray-dried BSA even at low concentrations, however, when combined with l-Glu, was ineffective at reducing monomer BSA loss. Our findings demonstrate the limitations in using Arg-Glu for the stabilization of spray-dried BSA. Furthermore, we found that a low concentration of l-Glu enhanced monomer BSA loss. These findings may have significant implications on the design of future biotherapeutic formulations.

  8. Pulsed Electromagnetic Acceleration of Plasmas

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason T.; Markusic, Tom E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    A major shift in paradigm in driving pulsed plasma thruster is necessary if the original goal of accelerating a plasma sheet efficiently to high velocities as a plasma "slug" is to be realized. Firstly, the plasma interior needs to be highly collisional so that it can be dammed by the plasma edge layer not (upstream) adjacent to the driving 'vacuum' magnetic field. Secondly, the plasma edge layer needs to be strongly magnetized so that its Hall parameter is of the order of unity in this region to ensure excellent coupling of the Lorentz force to the plasma. Thirdly, to prevent and/or suppress the occurrence of secondary arcs or restrike behind the plasma, the region behind the plasma needs to be collisionless and extremely magnetized with sufficiently large Hall parameter. This places a vacuum requirement on the bore conditions prior to the shot. These requirements are quantified in the paper and lead to the introduction of three new design parameters corresponding to these three plasma requirements. The first parameter, labeled in the paper as gamma (sub 1), pertains to the permissible ratio of the diffusive excursion of the plasma during the course of the acceleration to the plasma longitudinal dimension. The second parameter is the required Hall parameter of the edge plasma region, and the third parameter the required Hall parameter of the region behind the plasma. Experimental research is required to quantify the values of these design parameters. Based upon fundamental theory of the transport processes in plasma, some theoretical guidance on the choice of these parameters are provided to help designing the necessary experiments to acquire these data.

  9. Design of a side coupled standing wave accelerating tube for NSTRI e-Linac

    NASA Astrophysics Data System (ADS)

    Zarei, S.; Abbasi Davani, F.; Lamehi Rachti, M.; Ghasemi, F.

    2017-09-01

    The design and construction of a 6 MeV electron linear accelerator (e-Linac) was defined in the Institute of Nuclear Science and Technology (NSTRI) for cargo inspection and medical applications. For this accelerator, a side coupled standing wave tube resonant at a frequency of 2998.5 MHZ in π/2 mode was selected. In this article, the authors provide a step-by-step explanation of the process of the design for this tube. The design and simulation of the accelerating and coupling cavities were carried out in five steps; (1) separate design of the accelerating and coupling cavities, (2) design of the coupling aperture between the cavities, (3) design of the entire structure for resonance at the nominal frequency, (4) design of the buncher, and (5) design of the power coupling port. At all design stages, in addition to finding the dimensions of the cavity, the impact of construction tolerances and simulation errors on the electromagnetic parameters were investigated. The values obtained for the coupling coefficient, coupling constant, quality factor and capture efficiency are 2.11, 0.011, 16203 and 36%, respectively. The results of beam dynamics study of the simulated tube in ASTRA have yielded a value of 5.14 π-mm-mrad for the horizontal emittance, 5.06 π-mm-mrad for the vertical emittance, 1.17 mm for the horizontal beam size, 1.16 mm for the vertical beam size and 1090 keV for the energy spread of the output beam.

  10. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

    PubMed

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-08

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  11. Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command

    NASA Technical Reports Server (NTRS)

    McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.

    1961-01-01

    An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.

  12. Design of a Low-Energy FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Rose, M. F.; Miller, R.; Best, S.; Owens, T.; Dankanich, J.

    2007-01-01

    The design of an electrodeless thruster that relies on a pulsed, rf-assisted discharge and electromagnetic acceleration using an inductive coil is presented. The thruster design is optimized using known performance,scaling parameters, and experimentally-determined design rules, with design targets for discharge energy, plasma exhaust velocity; and thrust efficiency of 100 J/pulse, 25 km/s, and 50%, respectively. Propellant is injected using a high-speed gas valve and preionized by a pulsed-RF signal supplied by a vector inversion generator, allowing for current sheet formation at lower discharge voltages and energies relative to pulsed inductive accelerators that do not employ preionization. The acceleration coil is designed to possess an inductance of at least 700 nH while the target stray (non-coil) inductance in the circuit is 70 nH. A Bernardes and Merryman pulsed power train or a pulse compression power train provide current to the acceleration coil and solid-state components are used to switch both powertrains.

  13. Strategies for Analyzing Sub-Micrometer Features with the FE-EPMA

    NASA Astrophysics Data System (ADS)

    McSwiggen, P.; Armstrong, J. T.; Nielsen, C.

    2013-12-01

    Changes in column design and electronics, as well as new types of spectrometers and analyzing crystals, have significantly advanced electron microprobes, in terms of stability, reproducibility and detection limits. A major advance in spatial resolution has occurred through the use of the field emission electron gun. The spatial resolution of an analysis is controlled by the diameter of the electron beam and the amount of scatter that takes place within the sample. The beam diameter is controlled by the column and type of electron gun being used. The accelerating voltage and the average atomic number/density of the sample control the amount of electron scatter within the sample. However a large electron interaction volume does not necessarily mean a large analytical volume. The beam electrons may spread out within a large volume, but if the electrons lack sufficient energy to produce the X-ray of interest, the analytical volume could be significantly smaller. Therefore there are two competing strategies for creating the smallest analytical volumes. The first strategy is to reduce the accelerating voltage to produce the smallest electron interaction volume. This low kV analytical approach is ultimately limited by the size of the electron beam itself. With a field emission gun, normally the smallest analytical area is achieved at around 5-7 kV. At lower accelerating voltages, the increase in the beam diameter begins to overshadow the reduction in internal scattering. For tungsten filament guns, the smallest analytical volume is reached at higher accelerating voltages. The second strategy is to minimize the overvoltage during the analysis. If the accelerating voltage is only 1-3 kV greater than the critical ionization energy for the X-ray line of interest, then even if the overall electron interaction volume is large, those electrons quickly loose sufficient energy to produce the desired X-rays. The portion of the interaction volume in which the desired X-rays will be produce will be very small and very near the surface. Both strategies have advantages and disadvantages depending on the ultimate goal of the analysis and the elements involved. This work will examine a number of considerations when attempting to decide which approach is best for a given analytical situation. These include: (1) the size of the analytical volumes, (2) minimum detection limits, (3) quality of the matrix corrections, (4) secondary fluorescence, (5) effects of surface contamination, oxide layers, and carbon coatings. This work is based on results largely from the Fe-Ni binary. A simple conclusion cannot be draw as to which strategy is better overall. The determination is highly system dependent. For many mineral systems, both strategies used in combination will produce the best results. Using multiple accelerating voltages to preform a single analysis allows the analyst to optimize their analytical conditions for each element individually.

  14. The Role of Fluid Compression in Particle Energization during Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, S.

    2017-12-01

    Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle energization. However, the role of compression in particle energization during magnetic reconnection is unclear. We present a cluster of studies to clarify and show the effect of fluid compression in accelerating particles to high energies during magnetic reconnection. Using fully kinetic reconnection simulations, we show that fluid compression is the leading mechanism for high-energy particle energization. We find that the compressional energization is more important in a low-beta plasma or in a reconnection layer with a weak guide field (the magnetic field component perpendicular to the reconnecting magnetic field), which are relevant to solar flares. Our analysis on 3D kinetic simulations shows that the self-generated turbulence scatters particles and enhances the particle diffusion processes in the acceleration regions. Based on these results, we then study large-scale reconnection acceleration by solving the particle transport equation in a large-scale reconnection layer evolved with MHD simulations. Due to the compressional effect, particles are accelerated to high energies and develop power-law energy distributions. This study clarifies the nature of particle acceleration in reconnection layer and is important to understand particle energization during large-scale acceleration such as solar flares.

  15. Accelerator Technology and High Energy Physics Experiments, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  16. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    DOE PAGES

    Friedman, Alex

    2013-10-19

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, which each have unique arrival times and may have unique kinetic energies. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: thatmore » the path lengths of the beams in a group must be equal, and that any delay of \\main-pulse" beams relative to \\foot-pulse" beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying \\di erential acceleration" to individual beams or sets of beam at strategic stages of the transport lines. That is, by accelerating some beams \\sooner" and others \\later," it is possible to simplify the beam line con guration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use di erential acceleration to e ect the simultaneous arrival on target of a set of beams ( e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model con gurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.« less

  17. Adapted RF pulse design for SAR reduction in parallel excitation with experimental verification at 9.4 T.

    PubMed

    Wu, Xiaoping; Akgün, Can; Vaughan, J Thomas; Andersen, Peter; Strupp, John; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2010-07-01

    Parallel excitation holds strong promises to mitigate the impact of large transmit B1 (B+1) distortion at very high magnetic field. Accelerated RF pulses, however, inherently tend to require larger values in RF peak power which may result in substantial increase in Specific Absorption Rate (SAR) in tissues, which is a constant concern for patient safety at very high field. In this study, we demonstrate adapted rate RF pulse design allowing for SAR reduction while preserving excitation target accuracy. Compared with other proposed implementations of adapted rate RF pulses, our approach is compatible with any k-space trajectories, does not require an analytical expression of the gradient waveform and can be used for large flip angle excitation. We demonstrate our method with numerical simulations based on electromagnetic modeling and we include an experimental verification of transmit pattern accuracy on an 8 transmit channel 9.4 T system.

  18. Five-cell superconducting RF module with a PBG coupler cell: design and cold testing of the copper prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenyev, Sergey Andreyevich; Simakov, Evgenya Ivanovna; Shchegolkov, Dmitry

    2015-04-29

    We report the design and experimental data for a copper prototype of a superconducting radio-frequency (SRF) accelerator module. The five-cell module has an incorporated photonic band gap (PBG) cell with couplers. The purpose of the PBG cell is to achieve better higher order mode (HOM) damping, which is vital for preserving the quality of high-current electron beams. Better HOM damping raises the current threshold for beam instabilities in novel SRF accelerators. The PBG design also increases the real-estate gradient of the linac because both HOM damping and the fundamental power coupling can be done through the PBG cell instead ofmore » on the beam pipe via complicated end assemblies. First, we will discuss the design and accelerating properties of the structure. The five-cell module was optimized to provide good HOM damping while maintaining the same accelerating properties as conventional elliptical-cell modules. We will then discuss the process of tuning the structure to obtain the desired accelerating gradient profile. Finally, we will list measured quality factors for the accelerating mode and the most dangerous HOMs.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovelace, III, Henry H.

    In accelerator physics, models of a given machine are used to predict the behaviors of the beam, magnets, and radiofrequency cavities. The use of the computational model has become wide spread to ease the development period of the accelerator lattice. There are various programs that are used to create lattices and run simulations of both transverse and longitudinal beam dynamics. The programs include Methodical Accelerator Design(MAD) MAD8, MADX, Zgoubi, Polymorphic Tracking Code (PTC), and many others. In this discussion the BMAD (Baby Methodical Accelerator Design) is presented as an additional tool in creating and simulating accelerator lattices for the studymore » of beam dynamics in the Relativistic Heavy Ion Collider (RHIC).« less

  20. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in a reproducible way.

  1. Development of a two-stage light gas gun to accelerate hydrogen pellets to high speeds for plasma fueling applications

    NASA Astrophysics Data System (ADS)

    Combs, S. K.; Milora, S. L.; Foust, C. R.; Gouge, M. J.; Fehling, D. T.; Sparks, D. O.

    1988-08-01

    The development of a two-stage light gas gun to accelerate hydrogen isotope pellets to high speeds is under way at Oak Ridge National Laboratory. High velocities are desirable for plasma fueling applications, since the faster pellets can penetrate more deeply into large, hot plasmas and deposit atoms of fuel directly in a larger fraction of the plasma volume. In the initial configuration of the two-stage device, a 2.2-l volume provides the gas to accelerate a 25.4-mm-diam piston in a 1-m-long pump tube; a burst disk or a fast valve initiates the acceleration process in the first stage. As the piston travels the length of the pump tube, the downstream gas is compressed (to pressures up to 2600 bar) and thus is driven to high temperature (approx. 5000 K). This provides the driving force for acceleration of a 4-mm pellet in a 1-m-long gun barrel. In preliminary tests using helium as the driver in both stages, 35-mg plastic pellets have been accelerated to speeds as high as 3.8 km/s. Projectiles composed of hydrogen ice will have a mass in the range from 5 to 20 mg. However, the use of sabots to encase and protect the cryogenic pellets from the high peak pressures will probably be required to realize speeds of approx. 3 km/s or greater. The experimental plan includes acceleration of hydrogen isotopes as soon as the gun geometry and operating parameters are optimized; theoretical models are being used to aid in this process. The hardware is being designed to accommodate repetitive operation, which is the objective of this research and is required for future applications.

  2. Large displacement behavior of double parallelogram flexure mechanisms with underconstraint eliminators

    DOE PAGES

    Panas, Robert M.

    2016-06-23

    This paper presents a new analytical method for predicting the large displacement behavior of flexural double parallelogram (DP) bearings with underconstraint eliminator (UE) linkages. This closed-form perturbative Euler analysis method is able to – for the first time – directly incorporate the elastomechanics of a discrete UE linkage, which is a hybrid flexure element that is linked to ground as well as both stages on the bearing. The models are used to understand a nested linkage UE design, however the method is extensible to other UE linkages. Design rules and figures-of-merit are extracted from the analysis models, which provide powerfulmore » tools for accelerating the design process. The models, rules and figures-of-merit enable the rapid design of a UE for a desired large displacement behavior, as well as providing a means for determining the limits of UE and DP structures. This will aid in the adoption of UE linkages into DP bearings for precision mechanisms. Models are generated for a nested linkage UE design, and the performance of this DP with UE structure is compared to a DP-only bearing. As a result, the perturbative Euler analysis is shown to match existing theories for DP-only bearings with distributed compliance within ≈2%, and Finite Element Analysis for the DP with UE bearings within an average 10%.« less

  3. Large displacement behavior of double parallelogram flexure mechanisms with underconstraint eliminators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panas, Robert M.

    This paper presents a new analytical method for predicting the large displacement behavior of flexural double parallelogram (DP) bearings with underconstraint eliminator (UE) linkages. This closed-form perturbative Euler analysis method is able to – for the first time – directly incorporate the elastomechanics of a discrete UE linkage, which is a hybrid flexure element that is linked to ground as well as both stages on the bearing. The models are used to understand a nested linkage UE design, however the method is extensible to other UE linkages. Design rules and figures-of-merit are extracted from the analysis models, which provide powerfulmore » tools for accelerating the design process. The models, rules and figures-of-merit enable the rapid design of a UE for a desired large displacement behavior, as well as providing a means for determining the limits of UE and DP structures. This will aid in the adoption of UE linkages into DP bearings for precision mechanisms. Models are generated for a nested linkage UE design, and the performance of this DP with UE structure is compared to a DP-only bearing. As a result, the perturbative Euler analysis is shown to match existing theories for DP-only bearings with distributed compliance within ≈2%, and Finite Element Analysis for the DP with UE bearings within an average 10%.« less

  4. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets.

    PubMed

    Arafat, Basel; Wojsz, Magdalena; Isreb, Abdullah; Forbes, Robert T; Isreb, Mohammad; Ahmed, Waqar; Arafat, Tawfiq; Alhnan, Mohamed A

    2018-06-15

    Fused deposition modelling (FDM) 3D printing has shown the most immediate potential for on-demand dose personalisation to suit particular patient's needs. However, FDM 3D printing often involves employing a relatively large molecular weight thermoplastic polymer and results in extended release pattern. It is therefore essential to fast-track drug release from the 3D printed objects. This work employed an innovative design approach of tablets with unique built-in gaps (Gaplets) with the aim of accelerating drug release. The novel tablet design is composed of 9 repeating units (blocks) connected with 3 bridges to allow the generation of 8 gaps. The impact of size of the block, the number of bridges and the spacing between different blocks was investigated. Increasing the inter-block space reduced mechanical resistance of the unit, however, tablets continued to meet pharmacopeial standards for friability. Upon introduction into gastric medium, the 1 mm spaces gaplet broke into mini-structures within 4 min and met the USP criteria of immediate release products (86.7% drug release at 30 min). Real-time ultraviolet (UV) imaging indicated that the cellulosic matrix expanded due to swelling of hydroxypropyl cellulose (HPC) upon introduction to the dissolution medium. This was followed by a steady erosion of the polymeric matrix at a rate of 8 μm/min. The design approach was more efficient than a comparison conventional formulation approach of adding disintegrants to accelerate tablet disintegration and drug release. This work provides a novel example where computer-aided design was instrumental at modifying the performance of solid dosage forms. Such an example may serve as the foundation for a new generation of dosage forms with complicated geometric structures to achieve functionality that is usually achieved by a sophisticated formulation approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing

    PubMed Central

    Fang, Ye; Ding, Yun; Feinstein, Wei P.; Koppelman, David M.; Moreno, Juana; Jarrell, Mark; Ramanujam, J.; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300

  6. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.

    PubMed

    Fang, Ye; Ding, Yun; Feinstein, Wei P; Koppelman, David M; Moreno, Juana; Jarrell, Mark; Ramanujam, J; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.

  7. Engineering Area Investigation of Reliability Attributes and Accelerated Stress Factors on Terrestrial Solar Cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Prince, J. L.

    1979-01-01

    Results obtained include the definition of a simplified stress test schedule for terrestrial solar cells based on the work performed during the first program year, and the design and fabrication of improved jigs and fixtures for electrical measurement and stress testing. Implementation of these advanced techniques for accelerated stress testing is underway on three solar cell types. In addition, review of the literature on second quadrant phenomena was begun and some preliminary second-quadrant electrical measurements were performed. Results obtained at the first down time for 75 C B-T testing and biased and unbiased T-H pressure cooker testing of type F cells showed little or no degradation in electrical parameters. Significant physical effects (large solder bubbles) were noted for type F cells subjected to the pressure cooker stress test.

  8. GPU-accelerated algorithms for compressed signals recovery with application to astronomical imagery deblurring

    NASA Astrophysics Data System (ADS)

    Fiandrotti, Attilio; Fosson, Sophie M.; Ravazzi, Chiara; Magli, Enrico

    2018-04-01

    Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain.

  9. Non-contacting "snubber bearing" for passive magnetic bearing systems

    DOEpatents

    Post, Richard F

    2017-08-22

    A new non-contacting magnetic "snubber" bearing is provided for application to rotating systems such as vehicular electromechanical battery systems subject to frequent accelerations. The design is such that in the equilibrium position the drag force of the snubber is very small (milliwatts). However in a typical case, if the rotor is displaced by as little as 2 millimeters a large restoring force is generated without any physical contact between the stationary and rotating parts of the snubber bearing.

  10. Inertia in the Brazil nut problem.

    PubMed

    Nahmad-Molinari, Y; Canul-Chay, G; Ruiz-Suárez, J C

    2003-10-01

    The rise dynamics of a large particle, in a granular bed under vertical vibrations, is experimentally studied with an inductive device designed to track the particle while it climbs through the granulate under different conditions. A model based on energy considerations is presented to explain our experimental data, drawing the important conclusion that it is the inertia of the particle, assisted by Reynolds dilatancy, the driven force behind its ascension mechanism. The ascension reveals a friction profile within the column which remains unchanged for different accelerations.

  11. Characterization of an 800 nm SASE FEL at Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    2002-11-13

    VISA (Visible to Infrared SASE Amplifier) is an FEL (Free Electron Laser) designed to saturate at a radiation wavelength of 800 nm within a 4-m long, strong focusing undulator. Large gain is achieved by driving the FEL with the 72 MeV, high brightness beam of BNL's Accelerator Test Facility (ATF). We present measurements that demonstrate saturation in addition to the frequency spectrum of the FEL radiation. Energy, gain length and spectral characteristics are compared and shown to agree with simulation and theoretical predictions.

  12. Functional inks and printing of two-dimensional materials.

    PubMed

    Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique

    2018-05-08

    Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.

  13. National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.

    2018-05-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.

  14. Does one need a 4.5 K screen in cryostats of superconducting accelerator devices operating in superfluid helium? lessons from the LHL

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Parma, Vittorio; Tavian, Laurent

    2014-01-01

    Superfluid helium is increasingly used as a coolant for superconducting devices in particle accelerators: the lower temperature enhances the performance of superconductors in high-field magnets and reduces BCS losses in RF acceleration cavities, while the excellent transport properties of superfluid helium can be put to work in efficient distributed cooling systems. The thermodynamic penalty of operating at lower temperature however requires careful management of the heat loads, achieved inter alia through proper design and construction of the cryostats. A recurrent question appears to be that of the need and practical feasibility of an additional screen cooled by normal helium at around 4.5 K surrounding the cold mass at about 2 K, in such cryostats equipped with a standard 80 K screen. We introduce the issue in terms of first principles applied to the configuration of the cryostats, discuss technical constraints and economical limitations, and illustrate the argumentation with examples taken from large projects confronted with this issue, i.e. CEBAF, SPL, ESS, LHC, TESLA, European X-FEL, ILC.

  15. Parallel Implementation of MAFFT on CUDA-Enabled Graphics Hardware.

    PubMed

    Zhu, Xiangyuan; Li, Kenli; Salah, Ahmad; Shi, Lin; Li, Keqin

    2015-01-01

    Multiple sequence alignment (MSA) constitutes an extremely powerful tool for many biological applications including phylogenetic tree estimation, secondary structure prediction, and critical residue identification. However, aligning large biological sequences with popular tools such as MAFFT requires long runtimes on sequential architectures. Due to the ever increasing sizes of sequence databases, there is increasing demand to accelerate this task. In this paper, we demonstrate how graphic processing units (GPUs), powered by the compute unified device architecture (CUDA), can be used as an efficient computational platform to accelerate the MAFFT algorithm. To fully exploit the GPU's capabilities for accelerating MAFFT, we have optimized the sequence data organization to eliminate the bandwidth bottleneck of memory access, designed a memory allocation and reuse strategy to make full use of limited memory of GPUs, proposed a new modified-run-length encoding (MRLE) scheme to reduce memory consumption, and used high-performance shared memory to speed up I/O operations. Our implementation tested in three NVIDIA GPUs achieves speedup up to 11.28 on a Tesla K20m GPU compared to the sequential MAFFT 7.015.

  16. Effect of design over-all compressor pressure ratio division on acceleration characteristics of three hypothetical two-spool turbojet engines

    NASA Technical Reports Server (NTRS)

    Filippi, Richard E; Dugan, James F , Jr

    1956-01-01

    The engines, each with a compressor overall total-pressure ratio of 12 and a design inner-turbine-inlet temperature of 2500 degrees R, were investigated at static sea-level conditions to determine the effect on transient performance of varying the desitn pressure ratio divisions 2-6, 3-4, and 4-3 between the outer and inner compressors. The transient considered was an acceleration from 40 to 100 percent design thrust. When the outer compressor of each engine reached design speed, the inner compressors were overspeeding, the maximum being only 1.7 over design mechanical speed. Acceleration times for the three engines were equal.

  17. A new fast-cycling system for AMS at ANU

    NASA Astrophysics Data System (ADS)

    De Cesare, M.; Fifield, L. K.; Weisser, D. C.; Tsifakis, D.; Cooper, A.; Lobanov, N. R.; Tunningley, T. B.; Tims, S. G.; Wallner, A.

    2015-10-01

    In order to perform higher precision measurements, an upgrade of the ANU accelerator is underway. Fast switching times on the low-energy side, with maximum settling times of 30 ms, are achieved by holding the injector magnet field constant while changing the energy of the different isotopes by changing the pre-acceleration voltage after the ion source. Because ions of the different isotopes then have different energies before injection, it is necessary to adjust the strength and steering of the electrostatic quadrupole lens that focusses the beam before entry into the accelerator. First tests of the low-energy system will be reported. At the high energy end, a larger vacuum box in the analyzing magnet has been designed, manufactured and installed to allow the transport of differences in mass as large as 10% at constant terminal voltage. For the cases where more than one isotope must be transported to the detector an additional refinement is necessary. If the accelerator voltage is to be kept constant, then the trajectories of the different isotopes around both the analyzing and switching magnets must be modified. This will be achieved using bounced electrostatic steerers before and after the magnets. Simulations have been performed with the ion optic code COSY Infinity to determine the optimal positions and sizes of these steerers.

  18. Solar Flares Observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2004-01-01

    Solar flares are impressive examples of explosive energy release in unconfined, magnetized plasma. It is generally believed that the flare energy is derived from the coronal magnetic field. However, we have not been able to establish the specific energy release mechanism(s) or the relative partitioning of the released energy between heating, particle acceleration (electrons and ions), and mass motions. NASA's RHESSI Mission was designed to study the acceleration and evolution of electrons and ions in flares by observing the X-ray and gamma-ray emissions these energetic particles produce. This is accomplished through the combination of high-resolution spectroscopy and spectroscopic imaging, including the first images of flares in gamma rays. RHESSI has observed over 12,000 solar flares since its launch on February 5, 2002. I will demonstrate how we use the RHESSI spectra to deduce physical properties of accelerated electrons and hot plasma in flares. Using images to estimate volumes, w e typically find that the total energy in accelerated electrons is comparable to that in the thermal plasma. I will also present flare observations that provide strong support for the presence of magnetic reconnection in a large-scale, vertical current sheet in the solar corona. RHESSI observations such as these are allowing us to probe more deeply into the physics of solar flares.

  19. Limiting technologies for particle beams and high energy physics

    NASA Astrophysics Data System (ADS)

    Panofsky, W. K. H.

    1985-07-01

    Since 1930 the energy of accelerators had grown by an order of magnitude roughly every 7 years. Like all exponential growths, be they human population, the size of computers, or anything else, this eventually will have to come to an end. When will this happen to the growth of the energy of particle accelerators and colliders? Fortunately, as the energy of accelerators has grown the cost per unit energy has decreased almost as fast as has the increase in energy. The result is that while the energy has increased so dramatically the cost per new installation has increased only by roughly an order of magnitude since the 1930's (corrected for inflation), while the number of accelerators operating at the frontier of the field has shrunk. As is shown in the by now familiar Livingston chart this dramatic decrease in cost has been achieved largely by a succession of new technologies, in addition to the more moderate gains in efficiency due to improved design, economies of scale, etc. We are therefore facing two questions: (1) Is there good reason scientifically to maintain the exponential growth, and (2) Are there new technologies in sight which promise continued decreases in unit costs. The answer to the first question is definitely yes; the answer to the second question is maybe.

  20. Prediction of scaling physics laws for proton acceleration with extended parameter space of the NIF ARC

    NASA Astrophysics Data System (ADS)

    Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  1. How to Produce a Reactor Neutron Spectrum Using a Proton Accelerator

    DOE PAGES

    Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; ...

    2015-06-18

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. Themore » particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.« less

  2. Hierarchical algorithms for modeling the ocean on hierarchical architectures

    NASA Astrophysics Data System (ADS)

    Hill, C. N.

    2012-12-01

    This presentation will describe an approach to using accelerator/co-processor technology that maps hierarchical, multi-scale modeling techniques to an underlying hierarchical hardware architecture. The focus of this work is on making effective use of both CPU and accelerator/co-processor parts of a system, for large scale ocean modeling. In the work, a lower resolution basin scale ocean model is locally coupled to multiple, "embedded", limited area higher resolution sub-models. The higher resolution models execute on co-processor/accelerator hardware and do not interact directly with other sub-models. The lower resolution basin scale model executes on the system CPU(s). The result is a multi-scale algorithm that aligns with hardware designs in the co-processor/accelerator space. We demonstrate this approach being used to substitute explicit process models for standard parameterizations. Code for our sub-models is implemented through a generic abstraction layer, so that we can target multiple accelerator architectures with different programming environments. We will present two application and implementation examples. One uses the CUDA programming environment and targets GPU hardware. This example employs a simple non-hydrostatic two dimensional sub-model to represent vertical motion more accurately. The second example uses a highly threaded three-dimensional model at high resolution. This targets a MIC/Xeon Phi like environment and uses sub-models as a way to explicitly compute sub-mesoscale terms. In both cases the accelerator/co-processor capability provides extra compute cycles that allow improved model fidelity for little or no extra wall-clock time cost.

  3. Object-oriented design for accelerator control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stok, P.D.V. van der; Berk, F. van den; Deckers, R.

    1994-02-01

    An object-oriented design for the distributed computer control system of the accelerator ring EUTERPE is presented. Because of the experimental nature of the ring, flexibility is of the utmost importance. The object-oriented principles have contributed considerably to the flexibility of the design incorporating multiple views, multi-level access and distributed surveillance.

  4. Hardware acceleration and verification of systems designed with hardware description languages (HDL)

    NASA Astrophysics Data System (ADS)

    Wisniewski, Remigiusz; Wegrzyn, Marek

    2005-02-01

    Hardware description languages (HDLs) allow creating bigger and bigger designs nowadays. The size of prototyped systems very often exceeds million gates. Therefore verification process of the designs takes several hours or even days. The solution for this problem can be solved by hardware acceleration of simulation.

  5. Diffusive Shock Acceleration and Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos

    2018-05-01

    Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.

  6. Proposed new accelerator design for homeland security x-ray applications

    DOE PAGES

    Clayton, James; Shedlock, Daniel; Langeveld, Willem G.J.; ...

    2015-01-01

    Two goals for security scanning of cargo and freight are the ability to determine the type of material that is being imaged, and to do so at low radiation dose. One commonly used technique to determine the effective Z of the cargo is dual-energy imaging, i.e. imaging with different x-ray energy spectra. Another technique uses the fact that the transmitted x-ray spectrum itself also depends on the effective Z. Spectroscopy is difficult because the energy of individual x rays needs to be measured in a very high count-rate environment. Typical accelerators for security applications offer large but short bursts ofmore » x-rays, suitable for current-mode integrated imaging. In order to perform x-ray spectroscopy, a new accelerator design is desired that has the following features: 1) increased duty factor in order to spread out the arrival of x-rays at the detector array over time; 2) x-ray intensity modulation from one delivered pulse to the next by adjusting the accelerator electron beam instantaneous current so as to deliver adequate signal without saturating the spectroscopic detector; and 3) the capability to direct the (forward peaked) x-ray intensity towards high-attenuation areas in the cargo (“fan-beam-steering”). Current sources are capable of 0.1% duty factor, although usually they are operated at significantly lower duty factors (~0.04%), but duty factors in the range 0.4-1.0% are desired. The higher duty factor can be accomplished, e.g., by moving from 300 pulses per second (pps) to 1000 pps and/or increasing the pulse duration from a typical 4 μs to 10 μs. This paper describes initial R&D to examine cost effective modifications that could be performed on a typical accelerator for these purposes, as well as R&D for fan-beam steering.« less

  7. Main Design Principles of the Cold Beam Pipe in the FastRamped Superconducting Accelerator Magnets for Heavy Ion Synchrotron SIS100

    NASA Astrophysics Data System (ADS)

    Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.

    SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures < 10-12 mbar under dynamic machine conditions which are only achievable when the whole beam pipe is used as an huge cryopump. In order to find technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.

  8. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  9. Designing a Dielectric Laser Accelerator on a Chip

    NASA Astrophysics Data System (ADS)

    Niedermayer, Uwe; Boine-Frankenheim, Oliver; Egenolf, Thilo

    2017-07-01

    Dielectric Laser Acceleration (DLA) achieves gradients of more than 1GeV/m, which are among the highest in non-plasma accelerators. The long-term goal of the ACHIP collaboration is to provide relativistic (>1 MeV) electrons by means of a laser driven microchip accelerator. Examples of ’’slightly resonant” dielectric structures showing gradients in the range of 70% of the incident laser field (1 GV/m) for electrons with beta=0.32 and 200% for beta=0.91 are presented. We demonstrate the bunching and acceleration of low energy electrons in dedicated ballistic buncher and velocity matched grating structures. However, the design gradient of 500 MeV/m leads to rapid defocusing. Therefore we present a scheme to bunch the beam in stages, which does not only reduce the energy spread, but also the transverse defocusing. The designs are made with a dedicated homemade 6D particle tracking code.

  10. 3D printing of gas jet nozzles for laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Döpp, A.; Guillaume, E.; Thaury, C.

    2016-07-15

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we havemore » used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the SALLE JAUNE terawatt laser at Laboratoire d’Optique Appliquée.« less

  11. Advanced induction accelerator designs for ground based and space based FELs

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1994-04-01

    The primary goal of this program was to improve the performance of induction accelerators with particular regards to their being used to drive Free Electron Lasers (FEL's). It is hoped that FEL's operating at visible wavelengths might someday be used to beam power from earth to extraterrestrial locations. One application of this technology might be strategic theater defense, but this power source might be used to propel vehicles or supplement solar energized systems. Our path toward achieving this goal was directed first toward optimization of the nonlinear magnetic material used in induction accelerator construction and secondly at the overall design in terms of cost, size and efficiency. We began this research effort with an in depth study into the properties of various nonlinear magnetic materials. With the data on nonlinear magnetic materials, so important to the optimization of efficiency, in hand, we envisioned a new induction accelerator design where all of the components were packaged together in one container. This induction accelerator module would combine an /ll-solid-state, nonlinear magnetic driver and the induction accelerator cells all in one convenient package. Each accelerator module (denoted SNOMAD-IVB) would produce 1.0 MeV of acceleration with the exception of the SNOMAD-IV injector module which would produce 0.5 MeV of acceleration for an electron beam current up to 1000 amperes.

  12. Monolithic composite “pressure + acceleration + temperature + infrared” sensor using a versatile single-sided “SiN/Poly-Si/Al” process-module.

    PubMed

    Ni, Zao; Yang, Chen; Xu, Dehui; Zhou, Hong; Zhou, Wei; Li, Tie; Xiong, Bin; Li, Xinxin

    2013-01-16

    We report a newly developed design/fabrication module with low-cost single-sided "low-stress-silicon-nitride (LS-SiN)/polysilicon (poly-Si)/Al" process for monolithic integration of composite sensors for sensing-network-node applications. A front-side surface-/bulk-micromachining process on a conventional Si-substrate is developed, featuring a multifunctional SiN/poly-Si/Al layer design for diverse sensing functions. The first "pressure + acceleration + temperature + infrared" (PATIR) composite sensor with the chip size of 2.5 mm × 2.5 mm is demonstrated. Systematic theoretical design and analysis methods are developed. The diverse sensing components include a piezoresistive absolute-pressure sensor (up to 700 kPa, with a sensitivity of 49 mV/MPa under 3.3 V supplied voltage), a piezoresistive accelerometer (±10 g, with a sensitivity of 66 μV/g under 3.3 V and a -3 dB bandwidth of 780 Hz), a thermoelectric infrared detector (with a responsivity of 45 V/W and detectivity of 3.6 × 107 cm·Hz1/2/W) and a thermistor (-25-120 °C). This design/fabrication module concept enables a low-cost monolithically-integrated "multifunctional-library" technique. It can be utilized as a customizable tool for versatile application-specific requirements, which is very useful for small-size, low-cost, large-scale sensing-network node developments.

  13. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  14. Scaling of induction-cell transverse impedance: effect on accelerator design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August

    2016-08-09

    The strength of the dangerous beam breakup (BBU) instability in linear induction accelerators (LIAs) is characterized by the transverse coupling impedance Z ⊥. This note addresses the dimensional scaling of Z ⊥, which is important when comparing new LIA designs to existing accelerators with known i BBU growth. Moreover, it is shown that the scaling of Z ⊥ with the accelerating gap size relates BBU growth directly to high-voltage engineering considerations. It is proposed to firmly establish this scaling though a series of AMOS calculations.

  15. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Astrophysics Data System (ADS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; McMinn, John D.; Shaughnessy, John D.

    1994-10-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  16. Petabyte Class Storage at Jefferson Lab (CEBAF)

    NASA Technical Reports Server (NTRS)

    Chambers, Rita; Davis, Mark

    1996-01-01

    By 1997, the Thomas Jefferson National Accelerator Facility will collect over one Terabyte of raw information per day of Accelerator operation from three concurrently operating Experimental Halls. When post-processing is included, roughly 250 TB of raw and formatted experimental data will be generated each year. By the year 2000, a total of one Petabyte will be stored on-line. Critical to the experimental program at Jefferson Lab (JLab) is the networking and computational capability to collect, store, retrieve, and reconstruct data on this scale. The design criteria include support of a raw data stream of 10-12 MB/second from Experimental Hall B, which will operate the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer (CLAS). Keeping up with this data stream implies design strategies that provide storage guarantees during accelerator operation, minimize the number of times data is buffered allow seamless access to specific data sets for the researcher, synchronize data retrievals with the scheduling of postprocessing calculations on the data reconstruction CPU farms, as well as support the site capability to perform data reconstruction and reduction at the same overall rate at which new data is being collected. The current implementation employs state-of-the-art StorageTek Redwood tape drives and robotics library integrated with the Open Storage Manager (OSM) Hierarchical Storage Management software (Computer Associates, International), the use of Fibre Channel RAID disks dual-ported between Sun Microsystems SMP servers, and a network-based interface to a 10,000 SPECint92 data processing CPU farm. Issues of efficiency, scalability, and manageability will become critical to meet the year 2000 requirements for a Petabyte of near-line storage interfaced to over 30,000 SPECint92 of data processing power.

  17. X-43C Flight Demonstrator Project Overview

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.

  18. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1994-01-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  19. Exploratory results from a new rotary shear designed to reproduce the extreme deformation conditions of crustal earthquakes

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Nielsen, S. B.; Spagnuolo, E.; Smith, S.; Violay, M. E.; Niemeijer, A. R.; Di Felice, F.; Di Stefano, G.; Romeo, G.; Scarlato, P.

    2011-12-01

    A challenging goal in experimental rock deformation is to reproduce the extreme deformation conditions typical of coseismic slip in crustal earthquakes: large slip (up to 50 m), slip rates (0.1-10 m/s), accelerations (> 10 m/s2) and normal stress (> 50 MPa). Moreover, fault zones usually contain non-cohesive rocks (gouges) and fluids. The integration of all these deformation conditions is such a technical challenge that there is currently no apparatus in the world that can reproduce seismic slip. Yet, the determination of rock friction at seismic slip rates remains one of the main unknowns in earthquake physics, as it cannot be determined (or very approximately) by seismic wave inversion analysis. In the last thirty years, rotary shear apparatus were designed that combine large normal stresses and slip but low slip rates (high-pressure rotary shears first designed by Tullis) or low normal stresses but large slip rates and slip (rotary shears first designed by Shimamoto). Here we present the results of experiments using a newly-constructed Slow to HIgh Velocity Apparatus (SHIVA), installed at INGV in Rome, which extends the combination of normal stress, slip and slip rate achieved by previous apparatus and reproduces the conditions likely to occur during an earthquake in the shallow crust. SHIVA uses two brushless engines (max power 300 kW, max torque 930 Nm) and an air actuator (thrust 5 tons) in a rotary shear configuration (nominally infinite displacement) to slide hollow rock cylinders (30/50 mm int./ext. diameter) at slip rates ranging from 10 micron/s up to 6.5 m/s, accelerations up to 80 m/s2 and normal stresses up to 50 MPa. SHIVA can also perform experiments in which the torque on the sample (rather than the slip rate) is progressively increased until spontaneous failure occurs: this experimental capability should better reproduce natural conditions. The apparatus is equipped with a sample chamber to carry out experiments in the presence of fluids (up to 15 MPa fluid pressure), devices to determine the fluid composition during sliding, a gouge sample holder (tested up to 34 MPa in normal stress), and an environmental/vacuum chamber connected to a mass spectrometer to measure gas release during frictional sliding. In particular, we will show: 1) the extremely low friction coefficients (often approaching zero) and short (few cm is some cases) slip weakening distances measured in experiments performed at large normal stress (<40MPa) and accelerations on cohesive rocks (carbonatic marbles and gabbros); 2) the spontaneous creep episodes, lasting a few mm to a few cm in slip, that precede the large stress drops typical of earthquake instabilities, observed in torque-controlled experiments on gabbro and marbles; 3) how the presence of free fluids (H2O) delays the onset of dynamic weakening in carbonatic rocks; 4) the experimental microstructures, produced at normal stresses up to 34 MPa and slip rates of 1-3 m/s, in calcite gouges that closely resemble those found in exhumed seismic fault zones.

  20. Laser ion source for heavy ion inertial fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, Masahiro

    The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less

  1. Laser ion source for heavy ion inertial fusion

    DOE PAGES

    Okamura, Masahiro

    2018-01-10

    The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less

  2. Optimization of a Small Scale Linear Reluctance Accelerator

    NASA Astrophysics Data System (ADS)

    Barrera, Thor; Beard, Robby

    2011-11-01

    Reluctance accelerators are extremely promising future methods of transportation. Several problems still plague these devices, most prominently low efficiency. Variables to overcoming efficiency problems are many and difficult to correlate how they affect our accelerator. The study examined several differing variables that present potential challenges in optimizing the efficiency of reluctance accelerators. These include coil and projectile design, power supplies, switching, and the elusive gradient inductance problem. Extensive research in these areas has been performed from computational and theoretical to experimental. Findings show that these parameters share significant similarity to transformer design elements, thus general findings show current optimized parameters the research suggests as a baseline for further research and design. Demonstration of these current findings will be offered at the time of presentation.

  3. Track profile approximation using railcar body acceleration data.

    DOT National Transportation Integrated Search

    2014-12-01

    Accelerations are frequently measured from the car body of a rail vehicle, which is mounted above one or more suspension : systems. Measuring accelerations in the car body is largely done for convenience, as mounting an accelerometer to a truck or ax...

  4. Designing Instruction for Speed: Qualitative Insights into Instructional Design for Accelerated Online Graduate Coursework

    ERIC Educational Resources Information Center

    Trekles, Anastasia M.; Sims, Roderick

    2013-01-01

    The purpose of this exploratory case study was to explore instructional design strategies and characteristics of online, asynchronous accelerated courses and students' choices of deep or surface learning approaches within this environment. An increasing number of university programs, particularly at the graduate level, are moving to an…

  5. 78 FR 38349 - Draft Guidance for Industry on Expedited Programs for Serious Conditions-Drugs and Biologics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... approval, and priority review designation. DATES: Although you can comment on any guidance at any time (see... designation, (3) accelerated approval, and (4) priority review designation. The draft guidance describes... (the FD&C Act) (Enhancement of Accelerated Approval Access to New Medical Treatments) within 1 year of...

  6. Co-design of software and hardware to implement remote sensing algorithms

    NASA Astrophysics Data System (ADS)

    Theiler, James P.; Frigo, Janette R.; Gokhale, Maya; Szymanski, John J.

    2002-01-01

    Both for offline searches through large data archives and for onboard computation at the sensor head, there is a growing need for ever-more rapid processing of remote sensing data. For many algorithms of use in remote sensing, the bulk of the processing takes place in an ``inner loop'' with a large number of simple operations. For these algorithms, dramatic speedups can often be obtained with specialized hardware. The difficulty and expense of digital design continues to limit applicability of this approach, but the development of new design tools is making this approach more feasible, and some notable successes have been reported. On the other hand, it is often the case that processing can also be accelerated by adopting a more sophisticated algorithm design. Unfortunately, a more sophisticated algorithm is much harder to implement in hardware, so these approaches are often at odds with each other. With careful planning, however, it is sometimes possible to combine software and hardware design in such a way that each complements the other, and the final implementation achieves speedup that would not have been possible with a hardware-only or a software-only solution. We will in particular discuss the co-design of software and hardware to achieve substantial speedup of algorithms for multispectral image segmentation and for endmember identification.

  7. Acceleration of GPU-based Krylov solvers via data transfer reduction

    DOE PAGES

    Anzt, Hartwig; Tomov, Stanimire; Luszczek, Piotr; ...

    2015-04-08

    Krylov subspace iterative solvers are often the method of choice when solving large sparse linear systems. At the same time, hardware accelerators such as graphics processing units continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them often fail to reduce certain data communications, and hence fail to leverage the full potential of the accelerator. In this study, we target the acceleration of Krylov subspace iterative methods for graphicsmore » processing units, and in particular the Biconjugate Gradient Stabilized solver that significant improvement can be achieved by reformulating the method to reduce data-communications through application-specific kernels instead of using the generic BLAS kernels, e.g. as provided by NVIDIA’s cuBLAS library, and by designing a graphics processing unit specific sparse matrix-vector product kernel that is able to more efficiently use the graphics processing unit’s computing power. Furthermore, we derive a model estimating the performance improvement, and use experimental data to validate the expected runtime savings. Finally, considering that the derived implementation achieves significantly higher performance, we assert that similar optimizations addressing algorithm structure, as well as sparse matrix-vector, are crucial for the subsequent development of high-performance graphics processing units accelerated Krylov subspace iterative methods.« less

  8. Conceptual design of a high real-estate gradient cavity for a SRF ERL

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; Xin, Tianmu; Wang, Haipeng

    2017-10-01

    The term "real-estate gradient" is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total accelerating efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this paper, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).

  9. Optimal Control Design using an H(sub 2) Method for the Glovebox Integrated Microgravity Isolation Technology (G-Limit)

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Hampton, R. David

    2002-01-01

    The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H(sub 2) norms. Comparison of the performance and robustness to plant uncertainty for this control design approach is included in the discussion.

  10. Frequency Weighted H2 Control Design for the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT)

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Hampton, R. David

    2004-01-01

    The acceleration environment on the International Space Station (ISS) exceeds the requirements of many microgravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) has been built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. The g-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform, for mounting science payloads, from the nominal acceleration environment. The system utilizes payload-acceleration, relative-position, and relative-orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. The present work documents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H2 norms. Comparison of performance and robustness to plant uncertainty for this control design approach is included in the discussion. System performance is demonstrated in the presence of plant modeling error.

  11. Optimal Control Design Using an H2 Method for the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT)

    NASA Technical Reports Server (NTRS)

    Calhoun, Phillip C.; Hampton, R. David; Whorton, Mark S.

    2001-01-01

    The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for micro-gravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current command to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for both frequency-weighted H(sub 2) and H(sub infinity) norms. Comparison of the performance and robustness to plant uncertainty for these two optimal control design approaches are included in the discussion.

  12. Development of Acceleration Sensor and Acceleration Evaluation System for Super-Low-Range Frequencies

    NASA Astrophysics Data System (ADS)

    Asano, Shogo; Matsumoto, Hideki

    2001-05-01

    This paper describes the development process for acceleration sensors used on automobiles and an acceleration evaluation system designed specifically for acceleration at super-low-range frequencies. The features of the newly developed sensor are as follows. 1) Original piezo-bimorph design based on a disc-center-fixed structure achieves pyroeffect cancelling and stabilization of sensor characteristics and enables the detection of the acceleration of 0.0009 G at the super-low-range-frequency of 0.03 Hz. 2) The addition of a self-diagnostic function utilizing the characteristics of piezoceramics enables constant monitoring of sensor failure. The frequency range of acceleration for accurate vehicle motion control is considered to be from DC to about 50 Hz. However, the measurement of acceleration in the super-low-range frequency near DC has been difficult because of mechanical and electrical noise interruption. This has delayed the development of the acceleration sensor for automotive use. We have succeeded in the development of an acceleration evaluation system for super-low-range frequencies from 0.015 Hz to 2 Hz with detection of the acceleration range from 0.0002 G (0.2 gal) to 1 G, as well as the development of a piezoelectric-type acceleration sensor for automotive use.

  13. Accelerating hydrodynamic description of pseudorapidity density and the initial energy density in p +p , Cu + Cu, Au + Au, and Pb + Pb collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ze-Fang, Jiang; Chun-Bin, Yang; Csanád, Máté; Csörgő, Tamás

    2018-06-01

    A known class of analytic, exact, accelerating solutions of prefect relativistic hydrodynamics with longitudinal acceleration is utilized to describe results on the pseudorapidity distributions for different collision systems. These results include d N /d η measured in p +p , Cu+Cu, Au+Au, and Pb+Pb collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, in a broad centrality range. Going beyond the traditional Bjorken model, from the accelerating hydrodynamic description we determine the initial energy density and other thermodynamic quantities in those collisions.

  14. High energy density physics issues related to Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2017-07-01

    A design study for a post-Large Hadron Collider accelerator named, Future Circular Collider (FCC), is being carried out by the International Scientific Community. A complete design report is expected to be ready by spring 2018. The FCC will accelerate two counter rotating beams of 50 TeV protons in a tunnel having a length (circumference) of 100 km. Each beam will be comprised of 10 600 proton bunches, with each bunch having an intensity of 1011 protons. The bunch length is of 0.5 ns, and two neighboring bunches are separated by 25 ns. Although there is an option for 5 ns bunch separation as well, in the present studies, we consider the former case only. The total energy stored in each FCC beam is about 8.5 GJ, which is equivalent to the kinetic energy of Airbus 380 (560 t) flying at a speed of 850 km/h. Machine protection is a very important issue while operating with such powerful beams. It is important to have an estimate of the damage caused to the equipment and accelerator components due to the accidental release of a partial or total beam at a given point. For this purpose, we carried out numerical simulations of full impact of one FCC beam on an extended solid copper target. These simulations have been done employing an energy deposition code, FLUKA, and a two-dimensional hydrodynamic code, BIG2, iteratively. This study shows that although the static range of a single FCC proton and its shower is about 1.5 m in solid copper, the entire beam will penetrate around 350 m into the target. This substantial increase in the range is due to the hydrodynamic tunneling of the beam. Our calculations also show that a large part of the target will be converted into high energy density matter including warm dense matter and strongly coupled plasmas.

  15. Using Solar Radiation Pressure to Control L2 Orbits

    NASA Technical Reports Server (NTRS)

    Tene, Noam; Richon, Karen; Folta, David

    1998-01-01

    The main perturbations at the Sun-Earth Lagrange points L1 and L2 are from solar radiation pressure (SRP), the Moon and the planets. Traditional approaches to trajectory design for Lagrange-point orbits use maneuvers every few months to correct for these perturbations. The gravitational effects of the Moon and the planets are small and periodic. However, they cannot be neglected because small perturbations in the direction of the unstable eigenvector are enough to cause exponential growth within a few months. The main effect of a constant SRP is to shift the center of the orbit by a small distance. For spacecraft with large sun-shields like the Microwave Anisotropy Probe (MAP) and the Next Generation Space Telescope (NGST), the SRP effect is larger than all other perturbations and depends mostly on spacecraft attitude. Small variations in the spacecraft attitude are large enough to excite or control the exponential eigenvector. A closed-loop linear controller based on the SRP variations would eliminate one of the largest errors to the orbit and provide a continuous acceleration for use in controlling other disturbances. It is possible to design reference trajectories that account for the periodic lunar and planetary perturbations and still satisfy mission requirements. When such trajectories are used the acceleration required to control the unstable eigenvector is well within the capabilities of a continuous linear controller. Initial estimates show that by using attitude control it should be possible to minimize and even eliminate thruster maneuvers for station keeping.

  16. Overview of Accelerator Applications in Energy

    NASA Astrophysics Data System (ADS)

    Garnett, Robert W.; Sheffield, Richard L.

    An overview of the application of accelerators and accelerator technology in energy is presented. Applications span a broad range of cost, size, and complexity and include large-scale systems requiring high-power or high-energy accelerators to drive subcritical reactors for energy production or waste transmutation, as well as small-scale industrial systems used to improve oil and gas exploration and production. The enabling accelerator technologies will also be reviewed and future directions discussed.

  17. A simulation study of particle energization observed by THEMIS spacecraft during a substorm

    NASA Astrophysics Data System (ADS)

    Ashour-Abdalla, Maha; Bosqued, Jean-Michel; El-Alaoui, Mostafa; Peroomian, Vahe; Zhou, Meng; Richard, Robert; Walker, Raymond; Runov, Andrei; Angelopoulos, Vassilis

    2009-09-01

    Energetic ions with hundreds of keV energy are frequently observed in the near-Earth tail during magnetospheric substorms. We examined the sources and acceleration of ions during a magnetospheric substorm on 1 March 2008 by using Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Cluster observations and numerical simulations. Four of the THEMIS spacecraft were aligned at yGSM = 6 RE during a very large substorm (AE = 1200) while the Cluster spacecraft were located about 5 RE above the auroral ionosphere. For 2 h before the substorm, Cluster observed ionospheric oxygen flowing out into the magnetosphere. After substorm onset the THEMIS P3 and P4 spacecraft located in the near-Earth tail (xGSM = -9 RE and -8 RE, respectively) observed large fluxes of energetic ions up to 500 keV. We used calculations of millions of ions of solar wind and ionospheric origin in the time-dependent electric and magnetic fields from a global magnetohydrodynamic simulation of this event to study the source of these ions and their acceleration. The simulation did a good job of reproducing the particle observations. Both solar wind protons and ionospheric oxygen were accelerated by nonadiabatic motion across large (>˜5 mV/m) total electric fields (both potential and induced). The acceleration occurred in the "wall" region of the near-Earth tail where nonadiabatic motion dominates over convection and the particles move rapidly across the tail. The acceleration occurred mostly in regions with large electric fields and nonadiabatic motion. There was relatively little acceleration in regions with large electric fields and adiabatic motion or small electric fields and nonadiabatic motion. Prior to substorm onset, ionospheric ions were a significant contributor to the cross-tail current, but after onset, solar wind ions become more dominant.

  18. WarpIV: In situ visualization and analysis of ion accelerator simulations

    DOE PAGES

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...

    2016-05-09

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  19. Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    2000-01-01

    We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.

  20. Electron acceleration via magnetic island coalescence

    NASA Astrophysics Data System (ADS)

    Shinohara, I.; Yumura, T.; Tanaka, K. G.; Fujimoto, M.

    2009-06-01

    Electron acceleration via fast magnetic island coalescence that happens as quick magnetic reconnection triggering (QMRT) proceeds has been studied. We have carried out a three-dimensional full kinetic simulation of the Harris current sheet with a large enough simulation run for two magnetic islands coalescence. Due to the strong inductive electric field associated with the non-linear evolution of the lower-hybrid-drift instability and the magnetic island coalescence process observed in the non-linear stage of the collisionless tearing mode, electrons are significantly accelerated at around the neutral sheet and the subsequent X-line. The accelerated meandering electrons generated by the non-linear evolution of the lower-hybrid-drift instability are resulted in QMRT, and QMRT leads to fast magnetic island coalescence. As a whole, the reconnection triggering and its transition to large-scale structure work as an effective electron accelerator.

  1. Atmospheric Disturbance Environment Definition

    NASA Technical Reports Server (NTRS)

    Tank, William G.

    1994-01-01

    Traditionally, the application of atmospheric disturbance data to airplane design problems has been the domain of the structures engineer. The primary concern in this case is the design of structural components sufficient to handle transient loads induced by the most severe atmospheric "gusts" that might be encountered. The concern has resulted in a considerable body of high altitude gust acceleration data obtained with VGH recorders (airplane velocity, V, vertical acceleration, G, altitude, H) on high-flying airplanes like the U-2 (Ehernberger and Love, 1975). However, the propulsion system designer is less concerned with the accelerations of the airplane than he is with the airflow entering the system's inlet. When the airplane encounters atmospheric turbulence it responds with transient fluctuations in pitch, yaw, and roll angles. These transients, together with fluctuations in the free-stream temperature and pressure will disrupt the total pressure, temperature, Mach number and angularity of the inlet flow. For the mixed compression inlet, the result is a disturbed throat Mach number and/or shock position, and in extreme cases an inlet unstart can occur (cf. Section 2.1). Interest in the effects of inlet unstart on the vehicle dynamics of large, supersonic airplanes is not new. Results published by NASA in 1962 of wind tunnel studies of the problem were used in support of the United States Supersonic Transport program (SST) (White, at aI, 1963). Such studies continued into the late 1970's. However, in spite of such interest, there never was developed an atmospheric disturbance database for inlet unstart analysis to compare with that available for the structures load analysis. Missing were data for the free-stream temperature and pressure disturbances that also contribute to the unStart problem.

  2. SMART empirical approaches for predicting field performance of PV modules from results of reliability tests

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata

    2016-09-01

    Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.

  3. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-13-1-0309 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Thomas L. Smith, PhD RECIPIENT: Wake Forest University Health Sciences

  4. The development of enabling technologies for producing active interrogation beams.

    PubMed

    Kwan, Thomas J T; Morgado, Richard E; Wang, Tai-Sen F; Vodolaga, B; Terekhin, V; Onischenko, L M; Vorozhtsov, S B; Samsonov, E V; Vorozhtsov, A S; Alenitsky, Yu G; Perpelkin, E E; Glazov, A A; Novikov, D L; Parkhomchuk, V; Reva, V; Vostrikov, V; Mashinin, V A; Fedotov, S N; Minayev, S A

    2010-10-01

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (∼1 mA) and high-quality (emittance ∼15 πmm mrad; energy spread ∼0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  5. SymDex: increasing the efficiency of chemical fingerprint similarity searches for comparing large chemical libraries by using query set indexing.

    PubMed

    Tai, David; Fang, Jianwen

    2012-08-27

    The large sizes of today's chemical databases require efficient algorithms to perform similarity searches. It can be very time consuming to compare two large chemical databases. This paper seeks to build upon existing research efforts by describing a novel strategy for accelerating existing search algorithms for comparing large chemical collections. The quest for efficiency has focused on developing better indexing algorithms by creating heuristics for searching individual chemical against a chemical library by detecting and eliminating needless similarity calculations. For comparing two chemical collections, these algorithms simply execute searches for each chemical in the query set sequentially. The strategy presented in this paper achieves a speedup upon these algorithms by indexing the set of all query chemicals so redundant calculations that arise in the case of sequential searches are eliminated. We implement this novel algorithm by developing a similarity search program called Symmetric inDexing or SymDex. SymDex shows over a 232% maximum speedup compared to the state-of-the-art single query search algorithm over real data for various fingerprint lengths. Considerable speedup is even seen for batch searches where query set sizes are relatively small compared to typical database sizes. To the best of our knowledge, SymDex is the first search algorithm designed specifically for comparing chemical libraries. It can be adapted to most, if not all, existing indexing algorithms and shows potential for accelerating future similarity search algorithms for comparing chemical databases.

  6. Intermittency of acceleration in isotropic turbulence.

    PubMed

    Lee, Sang; Lee, Changhoon

    2005-05-01

    The intermittency of acceleration is investigated for isotropic turbulence using direct numerical simulation. Intermittently found acceleration of large magnitude always points towards the rotational axis of a vortex filament, indicating that the intermittency of acceleration is associated with the rotational motion of the vortices that causes centripetal acceleration, which is consistent with the reported result for the near-wall turbulence. Furthermore, investigation on movements of such vortex filaments provides some insights into the dynamics of local dissipation, enstrophy and acceleration. Strong dissipation partially covering the edge of a vortex filament shows weak correlation with enstrophy, while it is strongly correlated with acceleration.

  7. High-Energy Neutron Imaging Development at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, J M; Rusnak, B; Shen, S

    2005-02-16

    We are proceeding with the development of a high-energy (10 MeV) neutron imaging system for use as an inspection tool in nuclear stockpile stewardship applications. Our goal is to develop and deploy an imaging system capable of detecting cubic-mm-scale voids, cracks or other significant structural defects in heavily-shielded low-Z materials within nuclear device components. The final production-line system will be relatively compact (suitable for use in existing facilities within the DOE complex) and capable of acquiring both radiographic and tomographic (CT) images. In this report, we will review our recent programmatic accomplishments, focusing primarily on progress made in FY04. Themore » design status of the high-intensity, accelerator-driven neutron source and large-format imaging detector associated with the system will be discussed and results from a recent high-energy neutron imaging experiment conducted at the Ohio University Accelerator Laboratory (OUAL) will also be presented.« less

  8. A strategic plan to accelerate development of acute stroke treatments.

    PubMed

    Marler, John R

    2012-09-01

    In order to reenergize acute stroke research and accelerate the development of new treatments, we need to transform the usual design and conduct of clinical trials to test for small but significant improvements in effectiveness, and treat patients as soon as possible after stroke onset when treatment effects are most detectable. This requires trials that include thousands of acute stroke patients. A plan to make these trials possible is proposed. There are four components: (1) free access to the electronic medical record; (2) a large stroke emergency network and clinical trial coordinating center connected in real time to hundreds of emergency departments; (3) a clinical trial technology development center; and (4) strategic leadership to raise funds, motivate clinicians to participate, and interact with politicians, insurers, legislators, and other national and international organizations working to advance the quality of stroke care. © 2012 New York Academy of Sciences.

  9. Electron Accelerators for Research at the Frontiers of Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartline, Beverly; Grunder, Hermann

    1986-10-01

    Electron accelerators for the frontiers of nuclear physics must provide high duty factor (gte 80) for coincidence measurements; few-hundred-MeV through few-GeV energy for work in the nucleonic, hadronic, and confinement regimes; energy resolution of ~ 10 -4; and high current (gte 100 zA). To fulfill these requirements new machines and upgrades of existing ones are being planned or constructed. Representative microtron-based facilities are the upgrade of MAMI at the University of Mainz (West Germany), the proposed two-stage cascade microtron at the University of Illinois (U.S.A.), and the three-stage Troitsk ``polytron'' (USSR). Representative projects to add pulse stretcher rings to existingmore » linacs are the upgrades at MIT-Bates (U.S.A.) and at NIKHEF-K (Netherlands). Recent advances in superconducting rf technology, especially in cavity design and fabrication, have made large superconducting cw linacs become feasible. Recirculating superconducting cw linacs are under construc« less

  10. Accelerating assimilation development for new observing systems using EFSO

    NASA Astrophysics Data System (ADS)

    Lien, Guo-Yuan; Hotta, Daisuke; Kalnay, Eugenia; Miyoshi, Takemasa; Chen, Tse-Chun

    2018-03-01

    To successfully assimilate data from a new observing system, it is necessary to develop appropriate data selection strategies, assimilating only the generally useful data. This development work is usually done by trial and error using observing system experiments (OSEs), which are very time and resource consuming. This study proposes a new, efficient methodology to accelerate the development using ensemble forecast sensitivity to observations (EFSO). First, non-cycled assimilation of the new observation data is conducted to compute EFSO diagnostics for each observation within a large sample. Second, the average EFSO conditionally sampled in terms of various factors is computed. Third, potential data selection criteria are designed based on the non-cycled EFSO statistics, and tested in cycled OSEs to verify the actual assimilation impact. The usefulness of this method is demonstrated with the assimilation of satellite precipitation data. It is shown that the EFSO-based method can efficiently suggest data selection criteria that significantly improve the assimilation results.

  11. Extending NASA Research Results to Benefit Society: Rapid Prototyping for Coastal Applications

    NASA Technical Reports Server (NTRS)

    Glorioso, Mark V.; Miller, Richard L.; Hall, Callie M.; McPherson, Terry R.

    2006-01-01

    The mission of the NASA Applied Sciences Program is to expand and accelerate the use of NASA research results to benefit society in 12 application areas of national priority. ONe of the program's major challenges is to perform a quick, efficient, and detailed review (i.e., prototyping) of the large number of combinations of NASA observations and results from Earth system models that may be used by a wide range of decision support tools. A Rapid Prototyping Capacity (RPC) is being developed to accelerate the use of NASA research results. Here, we present the conceptual framework of the Rapid Prototyping Capacity within the context of quickly assessing the efficacy of NASA research results and technologies to support the Coastal Management application. An initial RPC project designed to quickly evaluate the utility of moderate-resolution MODIS products for calibrating/validating coastal sediment transport models is also presented.

  12. Low thrust vehicle concept study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were defined. Results indicate that it is cost effective and least risk to combine the OTV and stowed spacecraft in a single 65 K Shuttle. The study shows that the engine for an optimized low thrust stage (1) does not require very low thrust; (2) 1-3 K thrust range appears optimum; (3) thrust transient is not a concern; (4) throttling probably not worthwhile; and (5) multiple thrusters complicate OTV/LSS design and aggravate LSS loads. Regarding the optimum vehicle for low acceleration missions, the single shuttle launch (LSS and expendable OTV) is most cost effective and least risky. Multiple shuttles increase diameter 20%. The space based radar structure short OTV (which maximizes space available for packaged LSS) favors use of torus tank. Propellant tank pressures/vapor residuals are little affected by engine thrust level or number of burns.

  13. FEM Techniques for High Stress Detection in Accelerated Fatigue Simulation

    NASA Astrophysics Data System (ADS)

    Veltri, M.

    2016-09-01

    This work presents the theory and a numerical validation study in support to a novel method for a priori identification of fatigue critical regions, with the aim to accelerate durability design in large FEM problems. The investigation is placed in the context of modern full-body structural durability analysis, where a computationally intensive dynamic solution could be required to identify areas with potential for fatigue damage initiation. The early detection of fatigue critical areas can drive a simplification of the problem size, leading to sensible improvement in solution time and model handling while allowing processing of the critical areas in higher detail. The proposed technique is applied to a real life industrial case in a comparative assessment with established practices. Synthetic damage prediction quantification and visualization techniques allow for a quick and efficient comparison between methods, outlining potential application benefits and boundaries.

  14. An Instructional Design for Accelerating Children's Concept Learning. Technical Report No. 321.

    ERIC Educational Resources Information Center

    McMurray, Nancy E.; And Others

    An instructional design based on task analysis procedures was used to develop two experimental lessons to accelerate attainment of a subject-matter concept by fourth grade students. A variation of the Solomon Four-Group design was employed to determine the effects of the pretest. Performance of 118 randomly assigned subjects on a measure assessing…

  15. The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, J. T.; Drake, J. F.; Swisdak, M.

    2017-09-01

    Magnetic reconnection is an important driver of energetic particles in many astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the impact of three-dimensional reconnection dynamics on the efficiency of particle acceleration. In two-dimensional systems, Alfvénic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop an axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. We show that greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration. This suggests a natural explanation for the envelope of electron acceleration during the impulsive phase of eruptive flares.

  16. Two-color ionization injection using a plasma beatwave accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.

    Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less

  17. Two-color ionization injection using a plasma beatwave accelerator

    DOE PAGES

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...

    2018-01-10

    Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less

  18. Development Biology Worksheet Oriented Accelerated Learning on Plantae and Ecosystems for 10th-Grade Senior High School Students

    NASA Astrophysics Data System (ADS)

    Dipuja, D. A.; Lufri, L.; Ahda, Y.

    2018-04-01

    The problem that found are learning outcomes student is low on the plantae and ecosystems. Students less motivated and passive learning because learning is teacher center and teaching materials not facilitate student. Therefore, it is necessary to design a worksheet oriented accelerated learning. Accelerated learning approach that can improve motivation and learning activities. The purpose of the research was to produce worksheet oriented accelerated learning on plantae and ecosystems. This research is designed as a research and development by using Plomp model, consists of the preliminary, prototyping, and assessment phase. Data was collected through questionnaires, observation sheet, test, and documentation. The results of the research was worksheet oriented accelerated learning on plantae and ecosystems is very valid.

  19. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing

    PubMed Central

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-01

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4× speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration. PMID:28075343

  20. MAPA: Implementation of the Standard Interchange Format and use for analyzing lattices

    NASA Astrophysics Data System (ADS)

    Shasharina, Svetlana G.; Cary, John R.

    1997-05-01

    MAPA (Modular Accelerator Physics Analysis) is an object oriented application for accelerator design and analysis with a Motif based graphical user interface. MAPA has been ported to AIX, Linux, HPUX, Solaris, and IRIX. MAPA provides an intuitive environment for accelerator study and design. The user can bring up windows for fully nonlinear analysis of accelerator lattices in any number of dimensions. The current graphical analysis methods of Lifetime plots and Surfaces of Section have been used to analyze the improved lattice designs of Wan, Cary, and Shasharina (this conference). MAPA can now read and write Standard Interchange Format (MAD) accelerator description files and it has a general graphical user interface for adding, changing, and deleting elements. MAPA's consistency checks prevent deletion of used elements and prevent creation of recursive beam lines. Plans include development of a richer set of modeling tools and the ability to invoke existing modeling codes through the MAPA interface. MAPA will be demonstrated on a Pentium 150 laptop running Linux.

  1. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  2. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.

  3. Ultrafast superpixel segmentation of large 3D medical datasets

    NASA Astrophysics Data System (ADS)

    Leblond, Antoine; Kauffmann, Claude

    2016-03-01

    Even with recent hardware improvements, superpixel segmentation of large 3D medical images at interactive speed (<500 ms) remains a challenge. We will describe methods to achieve such performances using a GPU based hybrid framework implementing wavefront propagation and cellular automata resolution. Tasks will be scheduled in blocks (work units) using a wavefront propagation strategy, therefore allowing sparse scheduling. Because work units has been designed as spatially cohesive, the fast Thread Group Shared Memory can be used and reused through a Gauss-Seidel like acceleration. The work unit partitioning scheme will however vary on odd- and even-numbered iterations to reduce convergence barriers. Synchronization will be ensured by an 8-step 3D variant of the traditional Red Black Ordering scheme. An attack model and early termination will also be described and implemented as additional acceleration techniques. Using our hybrid framework and typical operating parameters, we were able to compute the superpixels of a high-resolution 512x512x512 aortic angioCT scan in 283 ms using a AMD R9 290X GPU. We achieved a 22.3X speed-up factor compared to the published reference GPU implementation.

  4. Social-emotional characteristics of gifted accelerated and non-accelerated students in the Netherlands.

    PubMed

    Hoogeveen, Lianne; van Hell, Janet G; Verhoeven, Ludo

    2012-12-01

    In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. In this study, social-emotional characteristics of accelerated gifted students in the Netherlands were examined in relation to personal and environmental factors. Self-concept and social contacts of accelerated (n = 148) and non-accelerated (n = 55) gifted students, aged 4 to 27 (M = 11.22, SD = 4.27) were measured. Self-concept and social contacts of accelerated and non-accelerated gifted students were measured using a questionnaire and a diary, and parents of these students evaluated their behavioural characteristics. Gender and birth order were studied as personal factors and grade, classroom, teachers' gender, teaching experience, and the quality of parent-school contact as environmental factors. The results showed minimal differences in the social-emotional characteristics of accelerated and non-accelerated gifted students. The few differences we found favoured the accelerated students. We also found that multiple grade skipping does not have negative effects on social-emotional characteristics, and that long-term effects of acceleration tend to be positive. As regards the possible modulation of personal and environmental factors, we merely found an impact of such factors in the non-accelerated group. The results of this study strongly suggest that social-emotional characteristics of accelerated gifted students and non-accelerated gifted students are largely similar. These results thus do not support worries expressed by teachers about the acceleration of gifted students. Our findings parallel the outcomes of earlier studies in the United States and Germany in that we observed that acceleration does not harm gifted students, not even in the case of multiple grade skipping. On the contrary, there is a suggestion in the data that accelerated students are more socially competent than non-accelerated students. The findings in this study can reassure those parents and teachers who worry about the social-emotional consequences of acceleration in school: If a student is gifted, acceleration seems to be a sound and, in many cases, appropriate measure in gifted education. ©2011 The British Psychological Society.

  5. Recommendations for Benchmarking Preclinical Studies of Nanomedicines.

    PubMed

    Dawidczyk, Charlene M; Russell, Luisa M; Searson, Peter C

    2015-10-01

    Nanoparticle-based delivery systems provide new opportunities to overcome the limitations associated with traditional small-molecule drug therapy for cancer and to achieve both therapeutic and diagnostic functions in the same platform. Preclinical trials are generally designed to assess therapeutic potential and not to optimize the design of the delivery platform. Consequently, progress in developing design rules for cancer nanomedicines has been slow, hindering progress in the field. Despite the large number of preclinical trials, several factors restrict comparison and benchmarking of different platforms, including variability in experimental design, reporting of results, and the lack of quantitative data. To solve this problem, we review the variables involved in the design of preclinical trials and propose a protocol for benchmarking that we recommend be included in in vivo preclinical studies of drug-delivery platforms for cancer therapy. This strategy will contribute to building the scientific knowledge base that enables development of design rules and accelerates the translation of new technologies. ©2015 American Association for Cancer Research.

  6. Perspective: Recommendations for benchmarking pre-clinical studies of nanomedicines

    PubMed Central

    Dawidczyk, Charlene M.; Russell, Luisa M.; Searson, Peter C.

    2015-01-01

    Nanoparticle-based delivery systems provide new opportunities to overcome the limitations associated with traditional small molecule drug therapy for cancer, and to achieve both therapeutic and diagnostic functions in the same platform. Pre-clinical trials are generally designed to assess therapeutic potential and not to optimize the design of the delivery platform. Consequently, progress in developing design rules for cancer nanomedicines has been slow, hindering progress in the field. Despite the large number of pre-clinical trials, several factors restrict comparison and benchmarking of different platforms, including variability in experimental design, reporting of results, and the lack of quantitative data. To solve this problem, we review the variables involved in the design of pre-clinical trials and propose a protocol for benchmarking that we recommend be included in in vivo pre-clinical studies of drug delivery platforms for cancer therapy. This strategy will contribute to building the scientific knowledge base that enables development of design rules and accelerates the translation of new technologies. PMID:26249177

  7. Single-turn extraction from a K110 AVF cyclotron by flat-top acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Okumura, Susumu

    2009-03-15

    Single-turn extraction from the Japan Atomic Energy Agency AVF cyclotron with a K number of 110 using a flat-top (FT) acceleration system has been achieved to reduce the energy spread of an ion beam for microbeam formation with energy up to hundreds of MeV and to increase extraction efficiency from the cyclotron. In order to generate a FT waveform voltage using the fifth-harmonic frequency on a dee electrode, a FT resonator was designed using MAFIA code to achieve downsizing and low power consumption. The FT resonator, coupled to the main resonator through a coupling capacitor, covered the full range ofmore » the fifth harmonic frequency from 55 to 110 MHz. Various ion beams, accelerated using different acceleration harmonic modes of h=1 and 2, such as 220 MeV {sup 12}C{sup 5+} (h=2), 260 MeV {sup 20}Ne{sup 7+} (h=2), and 45 MeV H{sup +} (h=1), were developed by FT acceleration. A clear turn separation of the beam bunches was successfully observed at the extraction region of the large-scale AVF cyclotron with number of revolutions greater than 200. As a result, high extraction efficiency (over 95%) from the cyclotron was achieved. Single-turn extraction was confirmed by counting the number of beam bunches out of the cyclotron for an injected beam pulsed by a beam chopping system in the injection line. The energy spread of the 260 MeV {sup 20}Ne{sup 7+} beam was measured using an analyzing magnet, and we verified a reduction in the energy spread from {delta}E/E=0.1% to 0.05% by single-turn extraction after FT acceleration.« less

  8. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration

    PubMed Central

    Cullen, D. Kacy; Harris, James P.; Browne, Kevin D.; Wolf, John A; Duda, John E.; Meaney, David F.; Margulies, Susan S.; Smith, Douglas H.

    2017-01-01

    Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive nonimpact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI. PMID:27604725

  9. The role of complex site and basin response in Wellington city, New Zealand, during the 2016 Mw 7.8 Kaikōura earthquake and other recent earthquake sequences.

    NASA Astrophysics Data System (ADS)

    Kaiser, A. E.; McVerry, G.; Wotherspoon, L.; Bradley, B.; Gerstenberger, M.; Benites, R. A.; Bruce, Z.; Bourguignon, S.; Giallini, S.; Hill, M.

    2017-12-01

    We present analysis of ground motion and complex amplification characteristics in Wellington during recent earthquake sequences and an overview of the 3D basin characterization and ongoing work to update site parameters for seismic design. Significant damage was observed in central Wellington, New Zealand's capital city, following the 2016 Mw7.8 Kaikōura earthquake. Damage was concentrated in mid-rise structures (5 - 15 storeys) and was clearly exacerbated by the particular characteristics of ground motion and the presence of basin effects. Due to the distance of the source (50 - 60km) from the central city, peak ground accelerations were moderate (up to 0.28g) and well within ultimate limit state (ULS) design levels. However, spectral accelerations within the 1 -2 s period range, exceeded 1 in 500 year design level spectra (ULS) in deeper parts of the basin. Amplification with respect to rock at these locations reached factors of up to 7, and was also observed with factors up to at least three across all central city soil recording sites. The ground motions in Wellington were the strongest recorded in the modern era of instrumentation. While similar amplification was observed during the 2013 Mw 6.6 Cook Strait and Grassmere earthquakes, which struck close to the termination of the Kaikōura earthquake rupture, these sources were not sufficiently large to excite significant long-period motions. However, other M7.2+ sources in the region that dominate the seismic hazard, e.g. Wellington Fault, Hikurangi subduction interface and other large proximal crustal faults, are also potentially capable of exciting significant long-period basin response in Wellington. These observations and the expectation of ongoing heightened seismicity have prompted re-evaluation of the current seismic demand levels. Additional field campaigns have also been undertaken to update geotechnical properties and the 3D basin model, in order to inform ongoing research and seismic design practice.

  10. Analysis of vibration characteristics of opening device for deepwater robot cabin door and study of its structural optimization design

    NASA Astrophysics Data System (ADS)

    Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations of key structure locations.

  11. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets.

    PubMed

    Sadia, Muzna; Arafat, Basel; Ahmed, Waqar; Forbes, Robert T; Alhnan, Mohamed A

    2018-01-10

    Conventional immediate release dosage forms involve compressing the powder with a disintegrating agent that enables rapid disintegration and dissolution upon oral ingestion. Among 3D printing technologies, the fused deposition modelling (FDM) 3D printing technique has a considerable potential for patient-specific dosage forms. However, the use of FDM 3D printing in tablet manufacturing requires a large portion of polymer, which slows down drug release through erosion and diffusion mechanisms. In this study, we demonstrate for the first time the use of a novel design approach of caplets with perforated channels to accelerate drug release from 3D printed tablets. This strategy has been implemented using a caplet design with perforating channels of increasing width (0.2, 0.4, 0.6, 0.8 or 1.0mm) and variable length, and alignment (parallel or at right angle to tablet long axis). Hydrochlorothiazide (BCS class IV drug) was chosen as the model drug as enhanced dissolution rate is vital to guarantee oral bioavailability. The inclusion of channels exhibited an increase in the surface area/volume ratio, however, the release pattern was also influenced by the width and the length of the channel. A channel width was ≥0.6mm deemed critical to meet the USP criteria of immediate release products. Shorter multiple channels (8.6mm) were more efficient at accelerating drug release than longer channels (18.2mm) despite having comparable surface area/mass ratio. This behaviour may be linked to the reduced flow resistance within the channels and the faster fragmentation during dissolution of these tablets. In conclusion, the width and length of the channel should be carefully considered in addition to surface area/mass when optimizing drug release from 3D printed designs. The incorporation of short channels can be adopted in the designs of dosage forms, implants or stents to enhance the release rate of eluting drug from polymer-rich structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. MASC: Magnetic Activity of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Fineschi, Silvano; Gan, Weiqun; Peter, Hardi; Vial, Jean-Claude; Zhukov, Andrei; Parenti, Susanna; Li, Hui; Romoli, Marco

    We present MASC, an innovative payload designed to explore the magnetic activity of the solar corona. It is composed of three complementary instruments: a Hard-X-ray spectrometer, a UV / EUV imager, and a Visible Light / UV polarimetric coronagraph able to measure the coronal magnetic field. The solar corona is structured in magnetically closed and open structures from which slow and fast solar winds are respectively released. In spite of much progress brought by two decades of almost uninterrupted observations from several space missions, the sources and acceleration mechanisms of both types are still not understood. This continuous expansion of the solar atmosphere is disturbed by sporadic but frequent and violent events. Coronal mass ejections (CMEs) are large-scale massive eruptions of magnetic structures out of the corona, while solar flares trace the sudden heating of coronal plasma and the acceleration of electrons and ions to high, sometimes relativistic, energies. Both phenomena are most probably driven by instabilities of the magnetic field in the corona. The relations between flares and CMEs are still not understood in terms of initiation and energy partition between large-scale motions, small-scale heating and particle acceleration. The initiation is probably related to magnetic reconnection which itself results magnetic topological changes due to e.g. flux emergence, footpoints motions, etc. Acceleration and heating are also strongly coupled since the atmospheric heating is thought to result from the impact of accelerated particles. The measurement of both physical processes and their outputs is consequently of major importance. However, despite its fundamental importance as a driver for the physics of the Sun and of the heliosphere, the magnetic field of our star’s outer atmosphere remains poorly understood. This is due in large part to the fact that the magnetic field is a very difficult quantity to measure. Our knowledge of its strength and orientation is primarily based on extrapolations from photospheric observations, not from direct measurements. These extrapolations require strong assumptions on critical but unobserved quantities and thus fail to accurately reproduce the complex topologies inferred from remote-sensing observations of coronal structures in white light, EUV, and X-rays. Direct measurements of the coronal magnetic field are also clearly identified by the international heliophysics community as a key element susceptible to lead to major breakthroughs in the understanding of our star. MASC is thus designed to answer the following top-level scientific questions: 1. What is the global magnetic field configuration in the corona? 2. What is the role of the magnetic field in the triggering of flares and CMEs? 3. What is the role of the magnetic field in the acceleration mechanisms of the solar winds? 4. What is the energy spectrum and in particular what are the highest energies to which charged particles can be accelerated in the solar corona? MASC will address these fundamental questions with a suite of instruments composed of an X-ray spectrometer, a UV / EUV imager, and a coronagraph working in the visible and at Lyman alpha. The spectrometer will provide information on the energetics of solar flares, in particular at very high energies of accelerated particles. The UV / EUV imager will provide constraints on the temperature of the flaring and non-flaring corona. The coronagraph will provide the number density of free electrons in the corona, maps of the outflow velocity of neutral hydrogen, and measurements of the coronal magnetic field, via the Hanle effect. These measurements will be performed at all steps of the flare-CME processes, thus providing a detailed picture of the solar coronal dynamics in the quiet and eruptive periods.

  13. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  14. Ground Motion Studies for Large Future Accelerator

    NASA Astrophysics Data System (ADS)

    Takeda, Shigeru; Oide, Katsunobu

    1997-05-01

    The future large accelerator, such as TeV linear collider, should have extremely small emittance to perform the required luminosity. Precise alignment of machine components is essential to prevent emittance dilution. The ground motion spoils alignment of accelerator elements and results in emittance growth. The ground motion in the frequency range of seismic vibration is mostly coherent in the related accelerator. But the incoherent diffusive or Brownian like motion becomes dominant at frequency region less than seismic vibration [1, 2, 3]. Slow ground motion with respect to the machine performance is discussed including the method of tunnel construction. Our experimental results and recent excavated results clarify that application of TBMs is better excavating method than NATM (Drill + Blast) for accelerator tunnel to prevent emittance dilution. ([1] V. Shiltsev, Proc. of IWAA95 Tsukuba, 1995. [2] Shigeru Takeda et al., Proc. of EPAC96, 1996. [3] A. Sery, Proc. of LINAC96, 1996.)

  15. The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Swisdak, M.; Dahlin, J. T.; Drake, J. F.

    2017-12-01

    Magnetic reconnection is an important driver of energetic particles in many space and astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the effects that the dynamics in three-dimensions has on reconnection and the efficiency of particle acceleration. In two-dimensional systems, Alfvenic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. The greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration.

  16. Achievement and improvement of the JT-60U negative ion source for JT-60 Super Advanced (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Tanaka, Y.

    2010-02-15

    Developments of the large negative ion source have been progressed in the high-energy, high-power, and long-pulse neutral beam injector for JT-60 Super Advanced. Countermeasures have been studied and tested for critical issues of grid heat load and voltage holding capability. As for the heat load of the acceleration grids, direct interception of D{sup -} ions was reduced by adjusting the beamlet steering. As a result, the heat load was reduced below an allowable level for long-pulse injections. As for the voltage holding capability, local electric field was mitigated by tuning gap lengths between large-area acceleration grids in the accelerator. Asmore » a result, the voltage holding capability was improved up to the rated value of 500 kV. To investigate the voltage holding capability during beam acceleration, the beam acceleration test is ongoing with new extended gap.« less

  17. Tuning the DARHT Axis-II linear induction accelerator focusing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl A.

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST)more » to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an accelerator cell to replace a failed solenoid in March of 2012. We took advantage of this opportunity to improve the design of the focusing tune with better models of the remaining partially failed solenoids, better estimates of beam initial conditions, and better values for pulsed-power voltages. As with all previous tunes for Axis-II, this one incorporates measures to mitigate beam-breakup (BBU) instability, image displacement instability (IDI), corkscrew (sweep), and emittance growth. Section II covers the general approach to of design of focusing solenoid tunes for the DARHT Axis-2 LIA. Section III explains the specific requirements and simulations needed to design the tune for the injector, which includes the thermionic electron source, diode, and six induction cells. Section IV explains the requirements and simulations for tuning the main accelerator, which consists of 68 induction cells. Finally, Section V explores sensitivity of the tune to deviations of parameters from nominal, random variations, and uncertainties in values. Four appendices list solenoid settings for this new tune, discuss comparisons of different simulation codes, show halo formation in mismatched beams, and present a brief discussion of the beam envelope equation, which is the heart of the method used to design LIA solenoid tunes.« less

  18. A new compact structure for a high intensity low-energy heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; A. Kolomiets, A.; Liu, Shu-Hui; Du, Xiao-Nan; Jia, Huan; Li, Chao; Wang, Wang-Sheng; Chen, Xi-Meng

    2013-12-01

    A new compact accelerating structure named Hybrid RFQ is proposed to accelerate a high-intensity low-energy heavy ion beam in HISCL (High Intensive heavy ion SuperConducting Linear accelerator), which is an injector of HIAF (Heavy Ion Advanced Research Facility). It is combined by an alternative series of acceleration gaps and RFQ sections. The proposed structure has a high accelerating ability compared with a conventional RFQ and is more compact than traditional DTLs. A Hybrid RFQ is designed to accelerate 238U34+ from 0.38 MeV/u to 1.33 MeV/u. The operation frequency is described to be 81.25 MHz at CW (continuous wave) mode. The design beam current is 1.0 mA. The results of beam dynamics and RF simulation of the Hybrid RFQ show that the structure has a good performance at the energy range for ion acceleration. The emittance growth is less than 5% in both directions and the RF power is less than 150 kW. In this paper, the results of beam dynamics and RF simulation of the Hybrid RFQ are presented.

  19. Use of active control technology to improve ride qualities of large transport aircraft

    NASA Technical Reports Server (NTRS)

    Cohen, G. C.; Cotter, C. J.; Taylor, D. L.

    1976-01-01

    Analyses, construction and flight testing of two systems: Beta-vane and Modal Suppression Augmentation System (MSAS), which were developed to suppress gust induced lateral accelerations of large aircraft, are described. The 747 transport was used as the test vehicle. The purpose of the Beta-vane system is to reduce acceleration levels at the dutch roll frequency whereas the function of the MSAS system is to reduce accelerations due to flexible body motions caused by turbulence. Data from flight test, with both systems engaged shows a 50 to 70 percent reduction in lateral aft body acceleration levels. Furthermore, it is suggested that present day techniques used for developing dynamic equations of motion in the flexible mode region are limited.

  20. Virtual gap dielectric wall accelerator

    DOEpatents

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  1. Artificial seismic acceleration

    USGS Publications Warehouse

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.

    2015-01-01

    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  2. Calibration of a Six-Degree-of-Freedom Acceleration Measurement Device

    DOT National Transportation Integrated Search

    1994-12-01

    This report describes the calibration of a six-degree-of-freedom acceleration measurement system designed for use in the measurement of linear and angular head accelerations of anthropomorphic dummies during crash tests. The calibration methodology, ...

  3. Conceptual design of an intense positron source based on an LIA

    NASA Astrophysics Data System (ADS)

    Long, Ji-Dong; Yang, Zhen; Dong, Pan; Shi, Jin-Shui

    2012-04-01

    Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography. A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper. One advantage of an LIA is its pulsed power being higher than conventional accelerators, which means a higher amount of primary electrons for positron generations per pulse. Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse. By implementing LIA cavities to decelerate the positron bunch before it is moderated, the positron yield could be greatly increased. These features may make the LIA based positron source become a high intensity pulsed positron source.

  4. Operational and design aspects of accelerators for medical applications

    NASA Astrophysics Data System (ADS)

    Schippers, Jacobus Maarten; Seidel, Mike

    2015-03-01

    Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.

  5. A Comprehensive Investigation and Coupler Design for Higher-Order Modes in the BNL Energy Recovery Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Marques, Carlos

    A next generation Energy Recovery Linac (ERL) is under development in the Collider-Accelerator Department at Brookhaven National Laboratory (BNL). This ERL uses a superconducting radio frequency (SFR) cavity to produce an electric field gradient ideal to accelerate charged particles. As with many accelerators, higher-order modes (HOMs) can be induced by a beam of charged particles traversing the linear accelerator cavity. The excitation of these modes can result in problematic single and multi-bunch effects and also produce undesirable heat loads to the cryogenic system. Understanding HOM prevalence and structure inside the accelerator cavity is crucial for devising a procedure for extracting HOM power and promoting excellent beam quality. In this work, a method was created to identify and characterize HOMs using a perturbation technique on a copper (Cu) cavity prototype of the BNL3 linac and a double lambda/4 crab cavity. Both analyses and correlation between simulated and measured results are shown. A coaxial to dual-ridge waveguide HOM coupler was designed, constructed and implemented to extract power from HOMs simultaneously making an evanescent fundamental mode for the BNL3 cavity. A full description of the design is given along with a simulated analysis of its performance. Comparison between previous HOM coupler designs as well as correspondence between simulation and measurement is also given.

  6. Accelerating large-scale protein structure alignments with graphics processing units

    PubMed Central

    2012-01-01

    Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU. PMID:22357132

  7. Laboratory-Model Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Best, S.; Miller, R.; Rose, M.F.; Owens, T.

    2008-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster [1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In a previous paper [3], the authors presented a basic design for a 100 J/pulse FARAD laboratory-version thruster. The design was based upon guidelines and performance scaling parameters presented in Refs. [4, 5]. In this paper, we expand upon the design presented in Ref. [3] by presenting a fully-assembled and operational FARAD laboratory-model thruster and addressing system and subsystem-integration issues (concerning mass injection, preionization, and acceleration) that arose during assembly. Experimental data quantifying the operation of this thruster, including detailed internal plasma measurements, are presented by the authors in a companion paper [6]. The thruster operates by first injecting neutral gas over the face of a flat, inductive acceleration coil and at some later time preionizing the gas. Once the gas is preionized current is passed through the acceleration coil, inducing a plasma current sheet in the propellant that is accelerated away from the coil through electromagnetic interaction with the time-varying magnetic field. Neutral gas is injected over the face of the acceleration coil through a fast-acting valve that feeds a central distribution manifold. The thruster is designed to preionize the gas using an RF-frequency ringing signal produced by a discharging Vector Inversion Generator (VIG). The acceleration stage consists of a multiple-turn, multiple-strand spiral induction coil (see Fig. 1, left panel) and is designed for operation at discharge energies on the order of 100 J/pulse. Several different pulsed power train modules can be used to drive current through the acceleration coil. One such power train is based upon the Bernardes and Merryman circuit topology, which restricts voltage reversal on the capacitor banks and can be clamped to eliminate current reversal in the coil. A second option is a pulse-compression-ring power train (see Fig. 1, right panel), which takesa temporally broad, low current pulse and transforms it into a short, high current pulse.

  8. Induction launcher design considerations

    NASA Technical Reports Server (NTRS)

    Driga, M. D.; Weldon, W. F.

    1989-01-01

    New concepts in the design of induction accelerators and their power supplies for space and military applications are discussed. Particular attention is given to a piecewise-rising-frequency power supply in which each elementary generator (normal compulsator or rising frequency generator) has a different base frequency. A preliminary design of a coaxial induction accelerator for a hypersonic real gas facility is discussed to illustrate the concepts described.

  9. Acceleration techniques for dependability simulation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Barnette, James David

    1995-01-01

    As computer systems increase in complexity, the need to project system performance from the earliest design and development stages increases. We have to employ simulation for detailed dependability studies of large systems. However, as the complexity of the simulation model increases, the time required to obtain statistically significant results also increases. This paper discusses an approach that is application independent and can be readily applied to any process-based simulation model. Topics include background on classical discrete event simulation and techniques for random variate generation and statistics gathering to support simulation.

  10. Large-Scale Production of Carbon Nanotubes Using the Jefferson Lab Free Electron Laser

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C.

    2003-01-01

    We report on our interdisciplinary program to use the Free Electron Laser (FEL) at the Thomas Jefferson National Accelerator Facility (J-Lab) for high-volume pulsed laser vaporization synthesis of carbon nanotubes. Based in part on the funding of from this project, a novel nanotube production system was designed, tested, and patented. Using this new system nanotube production rates over 100 times faster than conventional laser systems were achieved. Analysis of the material produced shows that it is of as high a quality as the standard laser-based materials.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Roger

    The VISA (Visible to Infrared SASE Amplifier) FEL is designed to obtain high gain at a radiation wavelength of 800nm. The FEL uses the high brightness electron beam of the Accelerator Test Facility (ATF), with energy of 72MeV. VISA uses a novel, 4 m long, strong focusing undulator with a gap of 6mm and a period of 1.8cm. To obtain large gain the beam and undulator axis have to be aligned to better than 50{micro}m. Results from initial measurements on the alignment, gain, and spectrum will be presented and compared to theoretical calculations and simulations.

  12. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.

    2018-05-01

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.

  13. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  14. A preliminary design of the collinear dielectric wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J. G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I.; Jing, C.; Kanareykin, A.; Li, Y.; Gao, Q.; Shchegolkov, D. Y.; Simakov, E. I.

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from 0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  15. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  16. SU-E-T-512: Electromagnetic Simulations of the Dielectric Wall Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uselmann, A; Mackie, T

    Purpose: To characterize and parametrically study the key components of a dielectric wall accelerator through electromagnetic modeling and particle tracking. Methods: Electromagnetic and particle tracking simulations were performed using a commercial code (CST Microwave Studio, CST Inc.) utilizing the finite integration technique. A dielectric wall accelerator consists of a series of stacked transmission lines sequentially fired in synchrony with an ion pulse. Numerous properties of the stacked transmission lines, including geometric, material, and electronic properties, were analyzed and varied in order to assess their impact on the transverse and axial electric fields. Additionally, stacks of transmission lines were simulated inmore » order to quantify the parasitic effect observed in closely packed lines. Particle tracking simulations using the particle-in-cell method were performed on the various stacks to determine the impact of the above properties on the resultant phase space of the ions. Results: Examination of the simulation results show that novel geometries can shape the accelerating pulse in order to reduce the energy spread and increase the average energy of accelerated ions. Parasitic effects were quantified for various geometries and found to vary with distance from the end of the transmission line and along the beam axis. An optimal arrival time of an ion pulse relative to the triggering of the transmission lines for a given geometry was determined through parametric study. Benchmark simulations of single transmission lines agree well with published experimental results. Conclusion: This work characterized the behavior of the transmission lines used in a dielectric wall accelerator and used this information to improve them in novel ways. Utilizing novel geometries, we were able to improve the accelerating gradient and phase space of the accelerated particle bunch. Through simulation, we were able to discover and optimize design issues with the device at low cost. Funding: Morgridge Institute for Research, Madison WI; Conflict of Interest: Dr. Mackie is an investor and board member at CPAC, a company developing compact accelerator designs similar to those discussed in this work, but designs discussed are not directed by CPAC. Funding: Morgridge Institute for Research, Madison WI; Conflict of Interest: Dr. Mackie is an investor and board member at CPAC, a company developing compact accelerator designs similar to those discussed in this work, but designs discussed are not directed by CPAC.« less

  17. Applications of a new mass-driver concept

    NASA Technical Reports Server (NTRS)

    Oneill, G. K.

    1981-01-01

    A description of the operating principles and requirements of a novel mass-driver concept is presented. The design obtains acceleration of payload bucket coils by means of transverse focussing from strong, off-axis restoring forces that are produced by drive coils operating in a 'pull-only' mode. The concept offers the unprecedented possibility of operating high-performance mass-drivers entirely within the limitations of existing commercial switching devices, such as silicon-controlled rectifiers, spark gaps, vacuum-triggered arcs or vacuum mechanical switches. Representative applications of the concept described are: (1) a large-diameter magnetic lunar launcher for payloads having autonomous maneuvering; (2) an intermediate-diameter launcher with long operational life; and (3) a reaction engine for orbit transfer of large, massive objects.

  18. Mitigating chromatic effects for the transverse focusing of intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Kaganovich, Igor; Davidson, Ronald

    2013-09-01

    A final focusing scheme designed to minimize chromatic effects is discussed. Solenoids are often used for transverse focusing in accelerator systems that require a charged particle beam with a small focal spot and/or large energy density A sufficiently large spread in axial momentum will reduce the effectiveness of transverse focusing, and result in chromatic effects on the final focal spot. Placing a weaker solenoid upstream of a stronger final focusing solenoid (FFS) mitigates chromatic effects on transverse beam focusing. J.M. Mitrani et al., Nucl. Inst. Meth. Phys. Res. A (2013) http://dx.doi.org/10.1016/j.nima.2013.05.09 This work was supported by DOE contract DE-AC02-09CH11466.

  19. Advanced Computing Tools and Models for Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  20. Preliminary research on flow rate and free surface of the accelerator driven subcritical system gravity-driven dense granular-flow target

    PubMed Central

    Li, Xiaodong; Wan, Jiangfeng; Zhang, Sheng; Lin, Ping; Zhang, Yanshi; Yang, Guanghui; Wang, Mengke; Duan, Wenshan; Sun, Jian’an

    2017-01-01

    A spallation target is one of the three core parts of the accelerator driven subcritical system (ADS), which has already been investigated for decades. Recently, a gravity-driven Dense Granular-flow Target (DGT) is proposed, which consists of a cylindrical hopper and an internal coaxial cylindrical beam pipe. The research on the flow rate and free surface are important for the design of the target whether in Heavy Liquid Metal (HLM) targets or the DGT. In this paper, the relations of flow rate and the geometry of the DGT are investigated. Simulations based on the discrete element method (DEM) implementing on Graphics Processing Units (GPUs) and experiments are both performed. It is found that the existence of an internal pipe doesn’t influence the flow rate when the distance from the bottom of the pipe to orifice is large enough even in a larger system. Meanwhile, snapshots of the free surface formed just below the beam pipe are given. It is observed that the free surface is stable over time. The entire research is meaningful for the design of DGT. PMID:29095910

  1. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lal, Shankar, E-mail: shankar@rrcat.gov.in; Pant, K. K.

    2016-08-15

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled withmore » β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.« less

  2. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    NASA Astrophysics Data System (ADS)

    Lal, Shankar; Pant, K. K.

    2016-08-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  3. Preliminary research on flow rate and free surface of the accelerator driven subcritical system gravity-driven dense granular-flow target.

    PubMed

    Li, Xiaodong; Wan, Jiangfeng; Zhang, Sheng; Lin, Ping; Zhang, Yanshi; Yang, Guanghui; Wang, Mengke; Duan, Wenshan; Sun, Jian'an; Yang, Lei

    2017-01-01

    A spallation target is one of the three core parts of the accelerator driven subcritical system (ADS), which has already been investigated for decades. Recently, a gravity-driven Dense Granular-flow Target (DGT) is proposed, which consists of a cylindrical hopper and an internal coaxial cylindrical beam pipe. The research on the flow rate and free surface are important for the design of the target whether in Heavy Liquid Metal (HLM) targets or the DGT. In this paper, the relations of flow rate and the geometry of the DGT are investigated. Simulations based on the discrete element method (DEM) implementing on Graphics Processing Units (GPUs) and experiments are both performed. It is found that the existence of an internal pipe doesn't influence the flow rate when the distance from the bottom of the pipe to orifice is large enough even in a larger system. Meanwhile, snapshots of the free surface formed just below the beam pipe are given. It is observed that the free surface is stable over time. The entire research is meaningful for the design of DGT.

  4. Design of an Integrated-System FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, K.A.; Rose, R.F.; Miller, R.; Owens, T.

    2007-01-01

    Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a current s heet in a plasma located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current and the induced magne tic field, The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster is a type of pulsed inductive plasma accelerator in which t he plasma is preionized by a mechanism separate from that used to for m the current sheet and accelerate the gas. Employing a separate preionization mechanism allows for the formation of an inductive current s heet at much lower discharge energies and voltages than those used in previous pulsed inductive accelerators like the Pulsed Inductive Thr uster (PIT). In this paper, we present the design of a benchtop FARAD thruster with all the subsystems (mass injection, preionization, and acceleration) integrated into a single unit. Design of the thruster follows the guidelines and similarity performance parameters presented elsewhere. The system is designed to use the ringing, RF-frequency s ignal produced by a discharging Vector Inversion Generator (VIG) to p reionize the gas. The acceleration stage operates on the order of 100 J/pulse and can be driven by several different pulsed powertrains. These include a simple capacitor coupled to the system, a Bernardes and Merryman configuration, and a pulsecompression circuit that takes a temporally broad, low current pulse and transforms it into a short, h igh current pulse. A set of applied magnetic field coils are integrated into the system to guide the preionized propellant as it spreads ov er the face of the inductive acceleration coil. The coils are operate d in a pulsed mode, and the thruster can be operated without using the coils to determine if there is a performance improvement gain realiz ed when an applied field is present.

  5. Cantilever Beam Natural Frequencies in Centrifugal Inertia Field

    NASA Astrophysics Data System (ADS)

    Jivkov, V. S.; Zahariev, E. V.

    2018-03-01

    In the advanced mechanical science the well known fact is that the gravity influences on the natural frequencies and modes even for the vertical structures and pillars. But, the condition that should be fulfilled in order for the gravity to be taken into account is connected with the ration between the gravity value and the geometrical cross section inertia. The gravity is related to the earth acceleration but for moving structures there exist many other acceleration exaggerated forces and such are forces caused by the centrifugal accelerations. Large rotating structures, as wind power generators, chopper wings, large antennas and radars, unfolding space structures and many others are such examples. It is expected, that acceleration based forces influence on the structure modal and frequency properties, which is a subject of the present investigations. In the paper, rotating beams are subject to investigations and modal and frequency analysis is carried out. Analytical dependences for the natural resonances are derived and their dependences on the angular velocity and centrifugal accelerations are derived. Several examples of large rotating beams with different orientations of the rotating shaft are presented. Numerical experiments are conducted. Time histories of the beam tip deflections, that depict the beam oscillations are presented.

  6. The SuperB Accelerator: Overview and Lattice Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biagini, M.E.; Boni, R.; Boscolo, M.

    2011-11-22

    SuperB aims at the construction of a very high luminosity (10{sup 36} cm{sup -2} s{sup -1}) asymmetric e{sup +}e{sup -} Flavour Factory, with possible location at the campus of the University of Rome Tor Vergata, near the INFN Frascati National Laboratory. In this paper the basic principles of the design and details on the lattice are given. SuperB is a new machine that can exploit novel very promising design approaches: (1) large Piwinski angle scheme will allow for peak luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1}, well beyond the current state-of-the-art, without a significant increase inmore » beam currents or shorter bunch lengths; (2) 'crab waist' sextupoles will be used for suppression of dangerous resonances; (3) the low beam currents design presents reduced detector and background problems, and affordable operating costs; (4) a polarized electron beam can produce polarized {tau} leptons, opening an entirely new realm of exploration in lepton flavor physics. SuperB studies are already proving useful to the accelerator and particle physics communities. The principle of operation is being tested at DAFNE. The baseline lattice, based on the reuse of all PEP-II hardware, fits in the Tor Vergata University campus site, near Frascati. A CDR is being reviewed by an International Review Committee, chaired by J. Dainton (UK). A Technical Design Report will be prepared to be ready by beginning of 2010.« less

  7. Monolithic Composite “Pressure + Acceleration + Temperature + Infrared” Sensor Using a Versatile Single-Sided “SiN/Poly-Si/Al” Process-Module

    PubMed Central

    Ni, Zao; Yang, Chen; Xu, Dehui; Zhou, Hong; Zhou, Wei; Li, Tie; Xiong, Bin; Li, Xinxin

    2013-01-01

    We report a newly developed design/fabrication module with low-cost single-sided “low-stress-silicon-nitride (LS-SiN)/polysilicon (poly-Si)/Al” process for monolithic integration of composite sensors for sensing-network-node applications. A front-side surface-/bulk-micromachining process on a conventional Si-substrate is developed, featuring a multifunctional SiN/poly-Si/Al layer design for diverse sensing functions. The first “pressure + acceleration + temperature + infrared” (PATIR) composite sensor with the chip size of 2.5 mm × 2.5 mm is demonstrated. Systematic theoretical design and analysis methods are developed. The diverse sensing components include a piezoresistive absolute-pressure sensor (up to 700 kPa, with a sensitivity of 49 mV/MPa under 3.3 V supplied voltage), a piezoresistive accelerometer (±10 g, with a sensitivity of 66 μV/g under 3.3 V and a −3 dB bandwidth of 780 Hz), a thermoelectric infrared detector (with a responsivity of 45 V/W and detectivity of 3.6 × 107 cm·Hz1/2/W) and a thermistor (−25–120 °C). This design/fabrication module concept enables a low-cost monolithically-integrated “multifunctional-library” technique. It can be utilized as a customizable tool for versatile application-specific requirements, which is very useful for small-size, low-cost, large-scale sensing-network node developments. PMID:23325169

  8. Modelling the behaviour of oxide fuels containing minor actinides with urania, thoria and zirconia matrices in an accelerator-driven system

    NASA Astrophysics Data System (ADS)

    Sobolev, V.; Lemehov, S.; Messaoudi, N.; Van Uffelen, P.; Aı̈t Abderrahim, H.

    2003-06-01

    The Belgian Nuclear Research Centre, SCK • CEN, is currently working on the pre-design of the multipurpose accelerator-driven system (ADS) MYRRHA. A demonstration of the possibility of transmutation of minor actinides and long-lived fission products with a realistic design of experimental fuel targets and prognosis of their behaviour under typical ADS conditions is an important task in the MYRRHA project. In the present article, the irradiation behaviour of three different oxide fuel mixtures, containing americium and plutonium - (Am,Pu,U)O 2- x with urania matrix, (Am,Pu,Th)O 2- x with thoria matrix and (Am,Y,Pu,Zr)O 2- x with inert zirconia matrix stabilised by yttria - were simulated with the new fuel performance code MACROS, which is under development and testing at the SCK • CEN. All the fuel rods were considered to be of the same design and sizes: annular fuel pellets, helium bounded with the stainless steel cladding, and a large gas plenum. The liquid lead-bismuth eutectic was used as coolant. Typical irradiation conditions of the hottest fuel assembly of the MYRRHA subcritical core were pre-calculated with the MCNPX code and used in the following calculations as the input data. The results of prediction of the thermo-mechanical behaviour of the designed rods with the considered fuels during three irradiation cycles of 90 EFPD are presented and discussed.

  9. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef

    Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less

  10. Accelerated testing for studying pavement design and performance (FY 2003) : research summary.

    DOT National Transportation Integrated Search

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by : the highway departments of Missouri, Iowa, Kansas and Nebraska, has supported an : accelerated pavement testing (APT) project to compare the performance of stabilized ...

  11. Accelerated construction

    DOT National Transportation Integrated Search

    2004-01-01

    Accelerated Construction Technology Transfer (ACTT) is a strategic process that uses various innovative techniques, strategies, and technologies to minimize actual construction time, while enhancing quality and safety on today's large, complex multip...

  12. Preliminary design of a high-intensity continuous-wave deuteron RFQ

    NASA Astrophysics Data System (ADS)

    Liu, X.; Kamigaito, O.; Sakamoto, N.; Yamada, K.

    2017-07-01

    A high-intensity deuteron linear accelerator is currently being studied as a promising candidate to treat high-level radioactive waste through the nuclear transmutation process. This paper presents the study on a design of a 75.5 MHz, 400 mA, continuous-wave deuteron radio-frequency quadrupole (RFQ), which is proposed as the front-end of such a linear accelerator. The results of the beam dynamics simulation suggest that the designed RFQ can accelerate a 400-mA deuteron beam from 100 keV to 2.5 MeV with a transmission rate of 92.0 ∼ 93.3%, depending on the assumed input transverse emittance.

  13. Basic features of the STS/Spacelab vibration environment

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.; Ramachandran, N.

    1994-01-01

    The Space Shuttle acceleration environment is characterized. The acceleration environment is composed of a residual or quasi-steady component and higher frequency components induced by vehicle structural modes and the operation of onboard machinery. Quasi-steady accelerations are generally due to atmospheric drag, gravity gradient effects, and rotational forces. These accelerations tend to vary with the orbital frequency (approx. 10(exp -4) Hz) and have magnitudes less than or equal to 10(exp -6) g(sub 0) (where 1 g(sub 0) is terrestrial gravity). Higher frequency g-jitter is characterized by oscillatory disturbances in the 1-100 Hz range and transient components. Oscillatory accelerations are related to the response of large flexible structures like antennae, the Spacelab module, and the Orbiter itself, and to the operation of rotating machinery. The Orbiter structural modes in the 1-10 Hz range, are excited by oscillatory and transient disturbances and tend to dominate the energy spectrum of the acceleration environment. A comparison of the acceleration measurements from different Space Shuttle missions reveals the characteristic signature of the structural modes of the Orbiter overlaid with mission specific hardware induced disturbances and their harmonics. Transient accelerations are usually attributed to crew activity and Orbiter thruster operations. During crew sleep periods, the acceleration levels are typically on the order of 10(exp -6) g(sub 0) (1 micro-g). Crew work and exercise tend to raise the accelerations to the 10(exp -3) g(sub 0) (1 milli-g) level. Vernier reaction control system firings tend to cause accelerations of 10(exp -4) g(sub 0), while primary reaction control system and Orbiter maneuvering system firings cause accelerations as large as 10(exp -2) g(sub 0). Vibration isolation techniques (both active and passive systems) used during crew exercise have been shown to significantly reduce the acceleration magnitudes.

  14. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  15. The Pressure Distribution over the Horizontal Tail Surfaces of an Airplane III

    NASA Technical Reports Server (NTRS)

    Norton, F H; Brown, W G

    1923-01-01

    This report contains the results of an investigation of the distribution of pressure over the tail surfaces of a full-sized airplane during accelerated flight for the purpose of determining the magnitude of the tail and fuselage stresses in maneuvering. As the pressures in accelerated flight change in value with great rapidity, it was found that the liquid manometer used in the first part of this investigation would not be at all suitable under these conditions; so it was necessary to design and construct a new manometer containing a large number of recording diaphragm gauges for these measurements. Sixty openings on the tail surfaces were connected to this manometer and continuous records of pressures for each pair of holes were taken during various maneuvers. There were also recorded, simultaneously with the pressures, the normal acceleration at the center of gravity and the angular position of all the controls. The present investigation consisted in measuring on a standard rigged JN4H airplane the distribution of pressure over the whole of the horizontal tail surfaces while the airplane was being put through maneuvers as violently as it was thought safe, including spinning and pulling out of dives.

  16. Ion beamlet steering for two-grid electrostatic thrusters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Homa, J. M.

    1984-01-01

    An experimental study of ion beamlet steering in which the direction of beamlets emitted from a two grid aperture system is controlled by relative translation of the grids, is described. The results can be used to design electrostatic accelerating devices for which the direction and focus of emerging beamlets are important. Deflection and divergence angle data are presented for two grid systems as a function of the relative lateral displacement of the holes in these grids. At large displacements, accelerator grid impingements become excessive and this determines the maximum allowable displacement and as a result the useful range of beamlet deflection. Beamlet deflection is shown to vary linearly with grid offset angle over this range. The divergence of the beamlets is found to be unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished grid ion thruster are examined to determine the effects of thermally induced grid distortion and prescribed offsets of grid hole centerlines on the characteristics of the emerging beamlets. The results are used to determine the region on the grid surface where ion beamlet deflections exceed the useful range. Over this region high accelerator grid impingement currents and rapid grid erosion are predicted.

  17. Design of an upgradeable 45-100 mA RFQ accelerator for FAIR

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan; Schempp, Alwin

    2009-10-01

    A 325 MHz, 35 mA, 3 MeV Radio-Frequency Quadrupole (RFQ) accelerator will be operated as the first accelerating structure of the proton linac injector for the newly planned international science center Facility for Antiproton and Ion Research (FAIR) at GSI, Germany. In previous design studies, two high beam intensities, 70 and 100 mA, were used. Most recently, the design intensity has been changed to 45 mA, which is closer to the operational value. Taking advantage of the so-called New Four-Section Procedure, a new design, which is upgradable from 45 to 100 mA, has been developed for the FAIR proton RFQ. Besides the upgradability analyses, robustness studies of the new design to spatial displacements of the input beam and field errors are presented as well.

  18. Motivation for proposed experimentation in the realm of accelerated E. M. systems: A preliminary design for an experiment

    NASA Technical Reports Server (NTRS)

    Post, E. J.

    1970-01-01

    An experiment, designed to determine the difference between fields-magnetic and electric-surrounding a uniformly moving charge as contrasted with the fields surrounding an accelerated charge, is presented. A thought experiment is presented to illustrate the process.

  19. Effects of Vertical Direction and Aperture Size on the Perception of Visual Acceleration.

    PubMed

    Mueller, Alexandra S; González, Esther G; McNorgan, Chris; Steinbach, Martin J; Timney, Brian

    2016-02-06

    It is not well understood whether the distance over which moving stimuli are visible affects our sensitivity to the presence of acceleration or our ability to track such stimuli. It is also uncertain whether our experience with gravity creates anisotropies in how we detect vertical acceleration and deceleration. To address these questions, we varied the vertical extent of the aperture through which we presented vertically accelerating and decelerating random dot arrays. We hypothesized that observers would better detect and pursue accelerating and decelerating stimuli that extend over larger than smaller distances. In Experiment 1, we tested the effects of vertical direction and aperture size on acceleration and deceleration detection accuracy. Results indicated that detection is better for downward motion and for large apertures, but there is no difference between vertical acceleration and deceleration detection. A control experiment revealed that our manipulation of vertical aperture size affects the ability to track vertical motion. Smooth pursuit is better (i.e., with higher peak velocities) for large apertures than for small apertures. Our findings suggest that the ability to detect vertical acceleration and deceleration varies as a function of the direction and vertical extent over which an observer can track the moving stimulus. © The Author(s) 2016.

  20. Accelerator Science: Proton vs. Electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  1. Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

    NASA Astrophysics Data System (ADS)

    Königstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J. B.; Hidding, B.; Hidding

    2012-08-01

    We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.

  2. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.

  3. Momentum flux measurements: Techniques and needs, part 4.5A

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.

    1984-01-01

    The vertical flux of horizontal momentum by internal gravity waves is now recognized to play a significant role in the large-scale circulation and thermal structure of the middle atmosphere. This is because a divergence of momentum flux due to wave dissipation results in an acceleration of the local mean flow towards the phase speed of the gravity wave. Such mean flow acceleration are required to offset the large zonal accelerations driven by Coriolis torques acting on the diabatic meridional circulation. Techniques and observations regarding the momentum flux distribution in the middle atmosphere are discussed.

  4. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  5. Computational Aspects of Sensitivity Calculations in Linear Transient Structural Analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Greene, William H.

    1989-01-01

    A study has been performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semianalytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models.

  6. Invited Commentary: Indoor Tanning-A Melanoma Accelerator?

    PubMed

    Berwick, Marianne; Doré, Jean-François

    2017-02-01

    In this issue of the Journal, Ghiasvand et al. (Am J Epidemiol. 2017;185(3):147-156) present results from a longitudinal study of the association between indoor tanning and melanoma in a large cohort of Norwegian women. These new data further support previous findings on the damaging effects of tanning bed exposure on women, particularly young women. The authors present compelling evidence that early exposure to tanning beds advances the date of diagnosis of melanoma by at least 2 years. With a strong design and a large cohort followed for a mean of 13.7 years, this study lends additional support to previous evidence of the negative effects of tanning beds and provides further justification for stronger policy initiatives designed to reduce tanning bed use among young women. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Verification of mechanistic-empirical design models for flexible pavements through accelerated pavement testing : technical summary.

    DOT National Transportation Integrated Search

    2014-08-01

    Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed by the : highway departments of Kansas, Iowa, and Missouri, has supported an accelerated : pavement testing (APT) project to validate several models incorporated in the NCHRP :...

  8. Accelerated testing for studying pavement design and performance (FY 2002) : research summary.

    DOT National Transportation Integrated Search

    2004-01-01

    This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing : Laboratory at Kansas State University. The project was selected and funded by the : Midwest States Accelerated Testing Pooled Fund Program, which includes Iowa, Ka...

  9. Verification of mechanistic-empirical design models for flexible pavements through accelerated pavement testing.

    DOT National Transportation Integrated Search

    2014-08-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway : departments of Kansas, Iowa, and Missouri, has supported an accelerated pavement testing (APT) project to : validate several models incorporated in the NCH...

  10. In plane oscillation of a bifilar pendulum

    NASA Astrophysics Data System (ADS)

    Hinrichsen, Peter F.

    2016-11-01

    The line tensions, the horizontal and vertical accelerations as well as the period of large angle oscillations parallel to the plane of a bifilar suspension are presented and have been experimentally investigated using strain gauges and a smart phone. This system has a number of advantages over the simple pendulum for studying large angle oscillations, and for measuring the acceleration due to gravity.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogomilov, M.; Matev, R.; Tsenov, R.

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  12. Development of a range-extended electric vehicle powertrain for an integrated energy systems research printed utility vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambon, Paul; Curran, Scott; Huff, Shean

    Rapid vehicle and powertrain development has become essential to for the design and implementation of vehicles that meet and exceed the fuel efficiency, cost, and performance targets expected by today’s consumer while keeping pace with reduced development cycle and more frequent product releases. Advances in large-scale additive manufacturing have provided the means to bridge hardware-in-the-loop (HIL) experimentation and preproduction mule chassis evaluation, recently. Our paper details the accelerated development of a printed range-extended electric vehicle (REEV) by Oak Ridge National Laboratory, by paralleling hardware-in-the-loop development of the powertrain with rapid chassis prototyping using big area additive manufacturing (BAAM). BAAM’s abilitymore » to accelerate the mule vehicle development from computer-aided design to vehicle build is explored. The use of a hardware-in-the-loop laboratory is described as it is applied to the design of a range-extended electric powertrain to be installed in a printed prototype vehicle. Furthermore, the integration of the powertrain and the opportunities and challenges it presents are described in this work. A comparison of offline simulation, HIL and chassis rolls results is presented to validate the development process. Chassis dynamometer results for battery electric and range extender operation are analyzed to show the benefits of the architecture.« less

  13. Neutrino factory

    DOE PAGES

    Bogomilov, M.; Matev, R.; Tsenov, R.; ...

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  14. Development of a range-extended electric vehicle powertrain for an integrated energy systems research printed utility vehicle

    DOE PAGES

    Chambon, Paul; Curran, Scott; Huff, Shean; ...

    2017-01-29

    Rapid vehicle and powertrain development has become essential to for the design and implementation of vehicles that meet and exceed the fuel efficiency, cost, and performance targets expected by today’s consumer while keeping pace with reduced development cycle and more frequent product releases. Advances in large-scale additive manufacturing have provided the means to bridge hardware-in-the-loop (HIL) experimentation and preproduction mule chassis evaluation, recently. Our paper details the accelerated development of a printed range-extended electric vehicle (REEV) by Oak Ridge National Laboratory, by paralleling hardware-in-the-loop development of the powertrain with rapid chassis prototyping using big area additive manufacturing (BAAM). BAAM’s abilitymore » to accelerate the mule vehicle development from computer-aided design to vehicle build is explored. The use of a hardware-in-the-loop laboratory is described as it is applied to the design of a range-extended electric powertrain to be installed in a printed prototype vehicle. Furthermore, the integration of the powertrain and the opportunities and challenges it presents are described in this work. A comparison of offline simulation, HIL and chassis rolls results is presented to validate the development process. Chassis dynamometer results for battery electric and range extender operation are analyzed to show the benefits of the architecture.« less

  15. Development of a two-stage light gas gun to accelerate hydrogen pellets to high speeds for plasma fueling applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combs, S.K.; Milora, S.L.; Foust, C.R.

    1988-01-01

    The development of a two-stage light gas gun to accelerate hydrogen isotope pellets to high speeds is under way at Oak Ridge National Laboratory. High velocities (>2 km/s) are desirable for plasma fueling applications, since the faster pellets can penetrate more deeply into large, hot plasmas and deposit atoms of fuel directly in a larger fraction of the plasma volume. In the initial configuration of the two-stage device, a 2.2-l volume (/<=/55-bar) provides the gas to accelerate a 25.4-mm-diam piston in a 1-m-long pump tube; a burst disk or a fast valve initiates the acceleration process in the first stage.more » As the piston travels the length of the pump tube, the downstream gas (initially at <1 bar) is compressed (to pressures up to 2600 bar) and thus is driven to high temperature (approx.5000 K). This provides the driving force for acceleration of a 4-mm pellet in a 1-m-long gun barrel. In preliminary tests using helium as the driver in both stages, 35-mg plastic pellets have been accelerated to speeds as high as 3.8 km/s. Projectiles composed of hydrogen ice will have a mass in the range from 5 to 20 mg (/rho/ approx. 0.087, 0.20, and 0.32 g/cm/sup 3/ for frozen hydrogen isotopes). However, the use of sabots to encase and protect the cryogenic pellets from the high peak pressures will probably be required to realize speeds of approx.3 km/s or greater. The experimental plan includes acceleration of hydrogen isotopes as soon as the gun geometry and operating parameters are optimized; theoretical models are being used to aid in this process. The hardware is being designed to accommodate repetitive operation, which is the objective of this research and is required for future applications. 25 refs., 6 figs., 1 tab.« less

  16. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA.

    PubMed

    Tanaka, Y; Hanada, M; Kojima, A; Akino, N; Shimizu, T; Ohshima, K; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Grisham, L R

    2010-02-01

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cm x 1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D- ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulse duration to hold 500 kV reached 40 s of the power supply limitation.

  17. Large-scale studies of ion acceleration in laser-generated plasma at intensities from 1010 W/cm2 to 1019 W/cm2

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2018-02-01

    A large-scale study of ion acceleration in laser-generated plasma, extended to intensities from 1010 W/cm2 up to 1019 W/cm2, is presented. Aluminium thick and thin foils were irradiated in high vacuum using different infrared lasers and pulse durations from ns up to fs scale. Plasma was monitored mainly using SiC detectors employed in time-of-flight configuration. Protons and aluminium ions, at different energies and yields, were measured as a function of the laser intensity. The discontinuity region between particle acceleration from both the backward plasma (BPA) in thick targets and the forward plasma in thin foils in the target normal sheath acceleration (TNSA) regimes were investigated.

  18. Advanced structural design for precision radial velocity instruments

    NASA Astrophysics Data System (ADS)

    Baldwin, Dan; Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-07-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 °K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.

  19. CEPC-SPPC accelerator status towards CDR

    NASA Astrophysics Data System (ADS)

    Gao, J.

    2017-12-01

    In this paper we will give an introduction to the Circular Electron Positron Collider (CEPC). The scientific background, physics goal, the collider design requirements and the conceptual design principle of the CEPC are described. On the CEPC accelerator, the optimization of parameter designs for the CEPC with different energies, machine lengths, single ring and crab-waist collision partial double ring, advanced partial double ring and fully partial double ring options, etc. have been discussed systematically, and compared. The CEPC accelerator baseline and alternative designs have been proposed based on the luminosity potential in relation with the design goals. The CEPC sub-systems, such as the collider main ring, booster, electron positron injector, etc. have also been introduced. The detector and the MAchine-Detector Interface (MDI) design have been briefly mentioned. Finally, the optimization design of the Super Proton-Proton Collider (SppC), its energy and luminosity potentials, in the same tunnel of the CEPC are also discussed. The CEPC-SppC Progress Report (2015-2016) has been published.

  20. Residual acceleration data on IML-1: Development of a data reduction and dissemination plan

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. Iwan D.; Wolf, Randy

    1992-01-01

    The main thrust of our work in the third year of contract NAG8-759 was the development and analysis of various data processing techniques that may be applicable to residual acceleration data. Our goal is the development of a data processing guide that low gravity principal investigators can use to assess their need for accelerometer data and then formulate an acceleration data analysis strategy. The work focused on the flight of the first International Microgravity Laboratory (IML-1) mission. We are also developing a data base management system to handle large quantities of residual acceleration data. This type of system should be an integral tool in the detailed analysis of accelerometer data. The system will manage a large graphics data base in the support of supervised and unsupervised pattern recognition. The goal of the pattern recognition phase is to identify specific classes of accelerations so that these classes can be easily recognized in any data base. The data base management system is being tested on the Spacelab 3 (SL3) residual acceleration data.

  1. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE PAGES

    Degiovanni, A.; Bonomi, R.; Garlasche, M.; ...

    2018-02-09

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  2. SABRE, a 10-MV linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corely, J.P.; Alexander, J.A.; Pankuch, P.J.

    SABRE (Sandia Accelerator and Beam Research Experiment) is a 10-MV, 250-kA, 40-ns linear induction accelerator. It was designed to be used in positive polarity output. Positive polarity accelerators are important for application to Sandia's ICF (Inertial Confinement Fusion) and LMF (Laboratory Microfusion Facility) program efforts. SABRE was built to allow a more detailed study of pulsed power issues associated with positive polarity output machines. MITL (Magnetically Insulated Transmission Line) voltage adder efficiency, extraction ion diode development, and ion beam transport and focusing. The SABRE design allows the system to operate in either positive polarity output for ion extraction applications ormore » negative polarity output for more conventional electron beam loads. Details of the design of SABRE and the results of initial machine performance in negative polarity operation are presented in this paper. 13 refs., 12 figs., 1 tab.« less

  3. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, A.; Bonomi, R.; Garlasche, M.

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  4. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  5. Electric rail gun projectile acceleration to high velocity

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  6. Measuring Risky Driving Behavior Using an mHealth Smartphone App: Development and Evaluation of gForce

    PubMed Central

    Dave, Amisha D; Espey, Benjamin G; Stanley, Sean T; Garmendia, Marcial A; Pursley, Randall; Ehsani, Johnathon P; Simons-Morton, Bruce G; Pohida, Thomas J

    2018-01-01

    Background Naturalistic driving studies, designed to objectively assess driving behavior and outcomes, are conducted by equipping vehicles with dedicated instrumentation (eg, accelerometers, gyroscopes, Global Positioning System, and cameras) that provide continuous recording of acceleration, location, videos, and still images for eventual retrieval and analyses. However, this research is limited by several factors: the cost of equipment installation; management and storage of the large amounts of data collected; and data reduction, coding, and analyses. Modern smartphone technology includes accelerometers built into phones, and the vast, global proliferation of smartphones could provide a possible low-cost alternative for assessing kinematic risky driving. Objective We evaluated an in-house developed iPhone app (gForce) for detecting elevated g-force events by comparing the iPhone linear acceleration measurements with corresponding acceleration measurements obtained with both a custom Android app and the in-vehicle miniDAS data acquisition system (DAS; Virginia Tech Transportation Institute). Methods The iPhone and Android devices were dashboard-mounted in a vehicle equipped with the DAS instrumentation. The experimental protocol consisted of driving maneuvers on a test track, such as cornering, braking, and turning that were performed at different acceleration levels (ie, mild, moderate, or hard). The iPhone gForce app recorded linear acceleration (ie, gravity-corrected). The Android app recorded gravity-corrected and uncorrected acceleration measurements, and the DAS device recorded gravity-uncorrected acceleration measurements. Lateral and longitudinal acceleration measures were compared. Results The correlation coefficients between the iPhone and DAS acceleration measurements were slightly lower compared to the correlation coefficients between the Android and DAS, possibly due to the gravity correction on the iPhone. Averaging the correlation coefficients for all maneuvers, the longitudinal and lateral acceleration measurements between iPhone and DAS were rlng=0.71 and rlat=0.83, respectively, while the corresponding acceleration measurements between Android and DAS were rlng=0.95 and rlat=0.97. The correlation coefficients between lateral accelerations on all three devices were higher than with the corresponding longitudinal accelerations for most maneuvers. Conclusions The gForce iPhone app reliably assessed elevated g-force events compared to the DAS. Collectively, the gForce app and iPhone platform have the potential to serve as feature-rich, inexpensive, scalable, and open-source tool for assessment of kinematic risky driving events, with potential for research and feedback forms of intervention. PMID:29674309

  7. Parallel/Vector Integration Methods for Dynamical Astronomy

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    1999-01-01

    This paper reviews three recent works on the numerical methods to integrate ordinary differential equations (ODE), which are specially designed for parallel, vector, and/or multi-processor-unit(PU) computers. The first is the Picard-Chebyshev method (Fukushima, 1997a). It obtains a global solution of ODE in the form of Chebyshev polynomial of large (> 1000) degree by applying the Picard iteration repeatedly. The iteration converges for smooth problems and/or perturbed dynamics. The method runs around 100-1000 times faster in the vector mode than in the scalar mode of a certain computer with vector processors (Fukushima, 1997b). The second is a parallelization of a symplectic integrator (Saha et al., 1997). It regards the implicit midpoint rules covering thousands of timesteps as large-scale nonlinear equations and solves them by the fixed-point iteration. The method is applicable to Hamiltonian systems and is expected to lead an acceleration factor of around 50 in parallel computers with more than 1000 PUs. The last is a parallelization of the extrapolation method (Ito and Fukushima, 1997). It performs trial integrations in parallel. Also the trial integrations are further accelerated by balancing computational load among PUs by the technique of folding. The method is all-purpose and achieves an acceleration factor of around 3.5 by using several PUs. Finally, we give a perspective on the parallelization of some implicit integrators which require multiple corrections in solving implicit formulas like the implicit Hermitian integrators (Makino and Aarseth, 1992), (Hut et al., 1995) or the implicit symmetric multistep methods (Fukushima, 1998), (Fukushima, 1999).

  8. PERLE. Powerful energy recovery linac for experiments. Conceptual design report

    NASA Astrophysics Data System (ADS)

    Angal-Kalinin, D.; Arduini, G.; Auchmann, B.; Bernauer, J.; Bogacz, A.; Bordry, F.; Bousson, S.; Bracco, C.; Brüning, O.; Calaga, R.; Cassou, K.; Chetvertkova, V.; Cormier, E.; Daly, E.; Douglas, D.; Dupraz, K.; Goddard, B.; Henry, J.; Hutton, A.; Jensen, E.; Kaabi, W.; Klein, M.; Kostka, P.; Lasheras, N.; Levichev, E.; Marhauser, F.; Martens, A.; Milanese, A.; Militsyn, B.; Peinaud, Y.; Pellegrini, D.; Pietralla, N.; Pupkov, Y.; Rimmer, R.; Schirm, K.; Schulte, D.; Smith, S.; Stocchi, A.; Valloni, A.; Welsch, C.; Willering, G.; Wollmann, D.; Zimmermann, F.; Zomer, F.

    2018-06-01

    A conceptual design is presented of a novel energy-recovering linac (ERL) facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (HC) (>10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron–proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry–Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with HC beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.

  9. ELECTRON ACCELERATION AT A CORONAL SHOCK PROPAGATING THROUGH A LARGE-SCALE STREAMER-LIKE MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei

    2016-04-10

    Using a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featuring a partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature ismore » larger than that of the magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of the efficient electron acceleration region along the shock front during its propagation. We also find that, in general, the electron acceleration at the shock flank is not as efficient as that at the top of the closed field because a collapsing magnetic trap can be formed at the top. In addition, we find that the energy spectra of electrons are power-law-like, first hardening then softening with the spectral index varying in a range of −3 to −6. Physical interpretations of the results and implications for the study of solar radio bursts are discussed.« less

  10. Electron acceleration at a coronal shock propagating through a large-scale streamer-like magnetic field

    DOE PAGES

    Kong, Xiangliang; Chen, Yao; Guo, Fan; ...

    2016-04-05

    With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature ismore » larger than that of magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of efficient electron acceleration region along the shock front during its propagation. We also found that in general the electron acceleration at the shock flank is not so efficient as that at the top of closed field since at the top a collapsing magnetic trap can be formed. In addition, we find that the energy spectra of electrons is power-law like, first hardening then softening with the spectral index varying in a range of -3 to -6. In conclusion, physical interpretations of the results and implications on the study of solar radio bursts are discussed.« less

  11. 805 MHz Beta = 0.47 Elliptical Accelerating Structure R & D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Bricker; C. Compton; W. Hartung

    2008-09-22

    A 6-cell 805 MHz superconducting cavity for acceleration in the velocity range of about 0.4 to 0.53 times the speed of light was designed. After single-cell prototyping, three 6-cell niobium cavities were fabricated. In vertical RF tests of the 6-cell cavities, the measured quality factors (Q{sub 0}) were between 7 {center_dot} 10{sup 9} and 1.4 {center_dot} 10{sup 10} at the design field (accelerating gradient of 8 to 10 MV/m). A rectangular cryomodule was designed to house 4 cavities per cryomodule. The 4-cavity cryomodule could be used for acceleration of ions in a linear accelerator, with focusing elements between the cryomodules.more » A prototype cryomodule was fabricated to test 2 cavities under realistic operating conditions. Two of the 6-cell cavities were equipped with helium tanks, tuners, and input coupler and installed into the cryomodule. The prototype cryomodule was used to verify alignment, electromagnetic performance, frequency tuning, cryogenic performance, low-level RF control, and control of microphonics.« less

  12. Conceptual design of a high real-estate gradient cavity for a SRF ERL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chen; Ben-Zvi, Ilan; Hao, Yue

    The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less

  13. Conceptual design of a high real-estate gradient cavity for a SRF ERL

    DOE PAGES

    Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; ...

    2017-07-19

    The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less

  14. Twin-Screw Extruder and Pellet Accelerator Integration Developments for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meitner, Steven J; Baylor, Larry R; Combs, Stephen Kirk

    The ITER pellet injection system consisting of a twinscrew frozen hydrogen isotope extruder, coupled to a combination solenoid actuated pellet cutter and pneumatic pellet accelerator, is under development at the Oak Ridge National Laboratory. A prototype extruder has been built to produce a continuous solid deuterium extrusion and will be integrated with a secondary section, where pellets are cut, chambered, and launched with a single-stage pneumatic accelerator into the plasma through a guide tube. This integrated pellet injection system is designed to provide 5 mm fueling pellets, injected at a rate up to 10 Hz, or 3 mm edge localizedmore » mode (ELM) triggering pellets, injected at higher rates up to 20 Hz. The pellet cutter, chamber mechanism, and the solenoid operated pneumatic valve for the accelerator are optimized to provide pellet velocities between 200-300 m/s to ensure high pellet survivability while traversing the inner wall fueling guide tubes, and outer wall ELMpacing guide tubes. This paper outlines the current twin-screwextruder design, pellet accelerator design, and the integrationrequired for both fueling and ELM pacing pellets.« less

  15. Feasibility study of a cyclotron complex for hadron therapy

    NASA Astrophysics Data System (ADS)

    Smirnov, V.; Vorozhtsov, S.

    2018-04-01

    An accelerator complex for hadron therapy based on a chain of cyclotrons is under development at JINR (Dubna, Russia), and the corresponding conceptual design is under preparation. The complex mainly consists of two superconducting cyclotrons. The first accelerator is a compact cyclotron used as an injector to the main accelerator, which is a six-fold separated sector machine. The facility is intended for generation of protons and carbon beams. The H2+ and 12C6+ ions from the corresponding ECR ion sources are accelerated in the injector-cyclotron up to the output energy of 70 MeV/u. Then, the H2+ ions are extracted from the injector by a stripping foil, and the resulting proton beam with the energy of 70 MeV is used for medical purposes. After acceleration in the main cyclotron, the carbon beam can be either used directly for therapy or introduced to the main cyclotron for obtaining the final energy of 400 MeV/u. The basic requirements to the project are the following: compliance to medical requirements, compact size, feasible design, and high reliability of all systems of the complex. The advantages of the dual cyclotron design can help reaching these goals. The initial calculations show that this design is technically feasible with acceptable beam dynamics. The accelerator complex with a relatively compact size can be a good solution for medical applications. The basic parameters of the facility and detailed investigation of the magnetic system and beam dynamics are described.

  16. Design, modeling and simulations of a Cabinet Safe System for a linear particle accelerator of intermediate-low energy by optimization of the beam optics

    NASA Astrophysics Data System (ADS)

    Maidana, Carlos Omar

    As part of an accelerator based Cargo Inspection System, studies were made to develop a Cabinet Safe System by Optimization of the Beam Optics of Microwave Linear Accelerators of the IAC-Varian series working on the S-band and standing wave pi/2 mode. Measurements, modeling and simulations of the main subsystems were done and a Multiple Solenoidal System was designed. This Cabinet Safe System based on a Multiple Solenoidal System minimizes the radiation field generated by the low efficiency of the microwave accelerators by optimizing the RF waveguide system and by also trapping secondaries generated in the accelerator head. These secondaries are generated mainly due to instabilities in the exit window region and particles backscattered from the target. The electron gun was also studied and software for its right mechanical design and for its optimization was developed as well. Besides the standard design method, an optimization of the injection process is accomplished by slightly modifying the gun configuration and by placing a solenoid on the waist position while avoiding threading the cathode with the magnetic flux generated. The Multiple Solenoidal System and the electron gun optimization are the backbone of a Cabinet Safe System that could be applied not only to the 25 MeV IAC-Varian microwave accelerators but, by extension, to machines of different manufacturers as well. Thus, they constitute the main topic of this dissertation.

  17. Some practical observations on the accelerated testing of Nickel-Cadmium Cells

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1979-01-01

    A large scale test of 6.0 Ah Nickel-Cadmium Cells conducted at the Naval Weapons Support Center, Crane, Indiana has demonstrated a methodology for predicting battery life based on failure data from cells cycled in an accelerated mode. After examining eight variables used to accelerate failure, it was determined that temperature and depth of discharge were the most reliable and efficient parameters for use in accelerating failure and for predicting life.

  18. Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience.

    PubMed

    Paninski, L; Cunningham, J P

    2018-06-01

    Modern large-scale multineuronal recording methodologies, including multielectrode arrays, calcium imaging, and optogenetic techniques, produce single-neuron resolution data of a magnitude and precision that were the realm of science fiction twenty years ago. The major bottlenecks in systems and circuit neuroscience no longer lie in simply collecting data from large neural populations, but also in understanding this data: developing novel scientific questions, with corresponding analysis techniques and experimental designs to fully harness these new capabilities and meaningfully interrogate these questions. Advances in methods for signal processing, network analysis, dimensionality reduction, and optimal control-developed in lockstep with advances in experimental neurotechnology-promise major breakthroughs in multiple fundamental neuroscience problems. These trends are clear in a broad array of subfields of modern neuroscience; this review focuses on recent advances in methods for analyzing neural time-series data with single-neuronal precision. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Accelerator Science: Proton vs. Electron

    ScienceCinema

    Lincoln, Don

    2018-06-12

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  20. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.

    PubMed

    Zhou, Yikang; Li, Gang; Dong, Junkai; Xing, Xin-Hui; Dai, Junbiao; Zhang, Chong

    2018-05-01

    Facing boosting ability to construct combinatorial metabolic pathways, how to search the metabolic sweet spot has become the rate-limiting step. We here reported an efficient Machine-learning workflow in conjunction with YeastFab Assembly strategy (MiYA) for combinatorial optimizing the large biosynthetic genotypic space of heterologous metabolic pathways in Saccharomyces cerevisiae. Using β-carotene biosynthetic pathway as example, we first demonstrated that MiYA has the power to search only a small fraction (2-5%) of combinatorial space to precisely tune the expression level of each gene with a machine-learning algorithm of an artificial neural network (ANN) ensemble to avoid over-fitting problem when dealing with a small number of training samples. We then applied MiYA to improve the biosynthesis of violacein. Feed with initial data from a colorimetric plate-based, pre-screened pool of 24 strains producing violacein, MiYA successfully predicted, and verified experimentally, the existence of a strain that showed a 2.42-fold titer improvement in violacein production among 3125 possible designs. Furthermore, MiYA was able to largely avoid the branch pathway of violacein biosynthesis that makes deoxyviolacein, and produces very pure violacein. Together, MiYA combines the advantages of standardized building blocks and machine learning to accelerate the Design-Build-Test-Learn (DBTL) cycle for combinatorial optimization of metabolic pathways, which could significantly accelerate the development of microbial cell factories. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

Top