Science.gov

Sample records for large aperture optical

  1. Development of large aperture composite adaptive optics

    NASA Astrophysics Data System (ADS)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  2. Large aperture adaptive optics for intense lasers

    NASA Astrophysics Data System (ADS)

    Deneuville, François; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-05-01

    ISP SYSTEM has developed a range of large aperture electro-mechanical deformable mirrors (DM) suitable for ultra short pulsed intense lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations thanks to electromechanical actuators driven by stepper motors. DM design and assembly method have been adapted to large aperture beams and the performances were evaluated on a first application for a beam with a diameter of 250mm at 45° angle of incidence. A Strehl ratio above 0.9 was reached for this application. Simulations were correlated with measurements on optical bench and the design has been validated by calculation for very large aperture (up to Ø550mm). Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for actual MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The MD-AME mirrors can be adapted to circular, square or elliptical beams and they are compatible with all dielectric or metallic coatings.

  3. Large aperture ac interferometer for optical testing.

    PubMed

    Moore, D T; Murray, R; Neves, F B

    1978-12-15

    A 20-cm clear aperture modified Twyman-Green interferometer is described. The system measures phase with an AC technique called phase-lock interferometry while scanning the aperture with a dual galvanometer scanning system. Position information and phase are stored in a minicomputer with disk storage. This information is manipulated with associated software, and the wavefront deformation due to a test component is graphically displayed in perspective and contour on a CRT terminal. PMID:20208642

  4. Large Aperture Multiplexed Diffractive Lidar Optics

    NASA Technical Reports Server (NTRS)

    Rallison, Richard D.; Schwemmer, Geary K. (Technical Monitor)

    1999-01-01

    We have delivered only 2 or 3 UV Holographic Optical Elements (HOEs) thus far and have fallen short of the intended goal in size and in dual wavelength function. Looking back, it has been fortuitous that we even made anything work in the UV region. It was our good fortune to discover that the material we work with daily was adequate for use at 355 nm, if well rinsed during processing. If we had stuck to our original plan of etching in small pieces of fused silica, we would still be trying to make the first small section in our ion mill, which is not yet operational. The original plan was far too ambitious and would take another 2 years to complete beginning where we left off this time. In order to make a HOE for the IR as well as the UV we will likely have to learn to sensitize some film to the 1064 line and we have obtained sensitizer that is reported to work in that region already. That work would also take an additional year to complete.

  5. Large-aperture active optical carbon fiber reinforced polymer mirror

    NASA Astrophysics Data System (ADS)

    Jungwirth, Matthew E. L.; Wilcox, Christopher C.; Wick, David V.; Baker, Michael S.; Hobart, Clinton G.; Milinazzo, Jared J.; Robichaud, Joseph; Romeo, Robert C.; Martin, Robert N.; Ballesta, Jerome; Lavergne, Emeric; Dereniak, Eustace L.

    2013-05-01

    An active reflective component can change its focal length by physically deforming its reflecting surface. Such elements exist at small apertures, but have yet to be fully realized at larger apertures. This paper presents the design and initial results of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  6. Large-aperture, high-damage-threshold optics for beamlet

    SciTech Connect

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J.

    1996-06-01

    Beamlet serves as a test bed for the proposed National Ignition Facility (NIF) laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of the previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, the authors discuss the properties and characteristics of the large-aperture optics used on Beamlet.

  7. Optical system design for lens with large relative aperture

    NASA Astrophysics Data System (ADS)

    Zhang, Kaisheng; Zhang, Zhi; Zhang, Zhaohui; Wang, Zefeng; Yan, Aqi; Fei, Jiaqi; Mei, Chao; Zhang, Gaopeng

    2015-10-01

    As the space remote sensing technology progresses, the developing trend of telescope is larger and larger aperture, higher and higher resolution. An Optical system with the relative aperture of 1:2 is introduced. The primary optical properties are: focal length of 120mm, F number of 2, field angle of 7.4°. It has the advantages of large high resolution, small size and excellent image quality. Several kinds of aberration curves and the MTF curve are given. Its imaging quality is nearly diffraction limited so that the spatial frequency is greater than 70lp/mm when its modulated transfer function (MTF) value of the optical system is equal to 0.8,and the optical system distortion is less than 1%. At last, the stray light is analyzed and the baffle of the telescope is designed. The solid model of the Optical system was constructed in Tracepro software, the point sources transmittance (PST) cure was given at different off-axis angle between 7.4°~80° the analysis result indicates that the PST values are less than 10-6 when off-axis angle are larger than soar critical angle. So the system is suitable for observation or photography of deep sky objects.

  8. Advances in optical materials for large aperture lasers

    SciTech Connect

    Stokowski, S.E.; Lowdermilk, W.H.; Marchi, F.T.; Swain, J.E.; Wallerstein, E.P.; Wirtenson, G.R.

    1981-12-15

    Lawrence Livermore National Laboratory (LLNL) is using large aperture Nd: glass lasers to investigate the feasibility of inertial confinement fusion. In our experiments high power laser light is focussed onto a small (100 to 500 micron) target containing a deuterium-tritium fuel mixture. During the short (1 to 5 ns) laser pulse the fuel is compressed and heated, resulting in fusion reactions. The generation and control of the powerful laser pulses for these experiments is a challenging scientific and engineering task, which requires the development of new optical materials, fabrication techniques, and coatings. LLNL with the considerable cooperation and support from the optical industry, where most of the research and development and almost all the manufacturing is done, has successfully applied several new developments in these areas.

  9. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    SciTech Connect

    Nostrand, M C; Weiland, T L; Luthi, R L; Vickers, J L; Sell, W D; Stanley, J A; Honig, J; Auerbach, J; Hackel, R P; Wegner, P J

    2003-11-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm{sup 2} high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics.

  10. Large Aperture Scanning Lidar Based on Holographic Optical Elements

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne

  11. Large Aperture Scanning Lidar Based on Holographic Optical Elements

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne

  12. Large aperture solar optical telescope and instruments for the SOLAR-C mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Hara, H.; Kano, R.; Shimizu, T.; Ichimoto, K.

    2014-08-01

    A large aperture solar optical telescope and its instruments for the SOLAR-C mission are under study to provide the critical physical parameters in the lower solar atmosphere and to resolve the mechanism of magnetic dynamic events happening there and in the upper atmosphere as well. For the precise magnetic field measurements and high angular resolution in wide wavelength region, covering FOV of 3 arcmin x3 arcmin, an entrance aperture of 1.4 m Gregorian telescope is proposed. Filtergraphs are designed to realize high resolution imaging and pseudo 2D spectro-polarimetry in several magnetic sensitive lines of both photosphere and chromosphere. A full stokes polarimetry is carried out at three magnetic sensitive lines with a four-slit spectrograph of 2D image scanning mechanism. We present a progress in optical and structural design of SOLAR-C large aperture optical telescope and its observing instruments which fulfill science requirements.

  13. An improved low-optical-power variable focus lens with a large aperture.

    PubMed

    Wang, Lihui; Oku, Hiromasa; Ishikawa, Masatoshi

    2014-08-11

    We report an improved method of fabricating a variable focus lens in which an in-plane pretension force is applied to a membrane. This method realized a lens with a large optical aperture and high performance in a low-optical-power region. The method was verified by comparing membranes in a simulation using the finite element method. A prototype with a 26 mm-diameter aperture was fabricated, and the wavefront behavior was measured by using a Shack-Hartmann sensor. Thanks to the in-plane pretension force, the lens achieved an infinite focal length with a wavefront error of 105.1 nm root mean square.

  14. Stray light analysis of large aperture optical telescope using TracePro

    NASA Astrophysics Data System (ADS)

    Sun, Cheng-ming; Zhao, Fei; Zhang, Ze

    2014-11-01

    In order to verify the effect of stray light elimination design, the detailed stray light analysis of one modified large aperture optical telescope using TracePro is described in this paper. Firstly, the sources of stray light in optical telescope and the influence of stray light on optical telescope are introduced. Then, the principle of stray light analysis using TracePro is presented. The solid model, surface properties and light paths of the modified large aperture optical telescope are determined. Ray splitting and importance sampling are adopted to ensure the calculation accuracy and reduce the time consumption. The Point Source Normalized Irradiance Transmittance (PSNIT) curve of the system is plotted. It shows the PSNITs are less than 10-12 when off-axis angles are larger than 30°, which satisfies the requirement of the system. Finally, the several special fields of stray light control are discussed.

  15. Research of the application of low-precision large aperture nonimaging optics in free-space optical communication system

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Yu, Xin

    2008-03-01

    A novel receiving antenna using low precision large aperture nonimaging optical apparatus in free-space optical (FSO) communication system has been proposed. The receiving optical antenna of FSO communication system is usually a conventional imaging optical system such as Newton system, Green system or Cassegrain system. It is ineffective to use a large aperture receiving antenna in FSO communication system because the precision imaging optical apparatus will be very expensive with aperture increase, so that, in order to reduce the difficulty of pointing and tracking between transmitter and receiver, the beam divergence has to be increased with the cost of lost part of the transmitted power. Since in the field of FSO communication system, the receiving optical antenna is used not to image but to concentrate optical signal as much as possible, the novel concept of using low precision large aperture nonimaging optical apparatus as receiving optical antenna to replace the conventional imaging optical system was proposed. Several nonimaging apparatus including spherical reflector, elliptical reflector, compound parabolic concentrator (CPC) and conical barrel concentrator are analyzed by ray tracing. Their gain and the transmission rate limitation due to wave-front aberrations are discussed, and their merit used in FSO communication system has been proved.

  16. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    SciTech Connect

    Hyde, R

    2003-02-10

    A series of studies by the Air Force, the National Reconnaissance Office and NASA have identified the critical role played by large optics in fulfilling many of the space related missions of these agencies. Whether it is the Next Generation Space Telescope for NASA, high resolution imaging systems for NRO, or beam weaponry for the Air Force, the diameter of the primary optic is central to achieving high resolution (imaging) or a small spot size on target (lethality). While the detailed requirements differ for each application (high resolution imaging over the visible and near-infrared for earth observation, high damage threshold but single-wavelength operation for directed energy), the challenges of a large, lightweight primary optic which is space compatible and operates with high efficiency are the same. The advantage of such large optics to national surveillance applications is that it permits these observations to be carried-out with much greater effectiveness than with smaller optics. For laser weapons, the advantage is that it permits more tightly focused beams which can be leveraged into either greater effective range, reduced laser power, and/or smaller on-target spot-sizes; weapon systems can be made either much more effective or much less expensive. This application requires only single-wavelength capability, but places an emphasis upon robust, rapidly targetable optics. The advantages of large aperture optics to astronomy are that it increases the sensitivity and resolution with which we can view the universe. This can be utilized either for general purpose astronomy, allowing us to examine greater numbers of objects in more detail and at greater range, or it can enable the direct detection and detailed examination of extra-solar planets. This application requires large apertures (for both light-gathering and resolution reasons), with broad-band spectral capability, but does not emphasize either large fields-of-view or pointing agility. Despite

  17. Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-07-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  18. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  19. Imprinting continuously varying topographical structure onto large-aperture optical surfaces using magnetorheological finishing

    SciTech Connect

    Menapace, J A; Davis, P J; Dixit, S; Campbell, J H; Golini, D; Hachkowski, M R; Nelson, A

    2007-03-07

    Over the past four years we have advanced Magnetorheological Finishing (MRF) techniques and tools to imprint complex continuously varying topographical structures onto large-aperture (430 x 430 mm) optical surfaces. These optics, known as continuous phase plates (CPPs), are important for high-power laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm and surface peak-to-valleys as high as 22 {micro}m. During this discussion, we will present the evolution of the MRF imprinting technology and the MRF tools designed to manufacture large-aperture 430 x 430 mm CPPs. Our results will show how the MRF removal function impacts and limits imprint fidelity and what must be done to arrive at a high-quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use in high-power laser applications.

  20. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 {times} 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V{sub x} ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V{sub x}, the polarization of an incoming, linearly polarized, laser beam is rotated by 90{degree}. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 {times} 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  1. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    SciTech Connect

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 [times] 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V[sub x] ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V[sub x], the polarization of an incoming, linearly polarized, laser beam is rotated by 90[degree]. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 [times] 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches.

  2. End-to-end assessment of a large aperture segmented ultraviolet optical infrared (UVOIR) telescope architecture

    NASA Astrophysics Data System (ADS)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Olivier; Stark, Chris; Arenberg, Jon

    2016-07-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield exo-earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an exo-earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and exo-earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling these missions.

  3. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.

  4. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  5. In-situ monitoring of surface post-processing in large aperture fused silica optics with Optical Coherence Tomography

    SciTech Connect

    Guss, G M; Bass, I l; Hackel, R P; Mailhiot, C; Demos, S G

    2008-02-08

    Optical Coherence Tomography is explored as a method to image laser-damage sites located on the surface of large aperture fused silica optics during post-processing via CO{sub 2} laser ablation. The signal analysis for image acquisition was adapted to meet the sensitivity requirements for this application. A long-working distance geometry was employed to allow imaging through the opposite surface of the 5-cm thick optic. The experimental results demonstrate the potential of OCT for remote monitoring of transparent material processing applications.

  6. Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Jenstrom, Del

    2000-01-01

    In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers

  7. Laser damage threshold and nonlinear optical properties of large aperture elements of YCOB crystal

    NASA Astrophysics Data System (ADS)

    Zheng, Yanqing; Wu, Anhua; Gao, Pan; Tu, Xiaoniu; Liang, Xiaoyan; Hou, Jing; Yang, Liming; Wang, Tao; Qian, Liejia; Shi, Erwei

    2012-01-01

    Large size of YCa4O(BO3)3(YCOB) crystals were grown both by Czochralski and Bridgman methods. Large size elements as large as 60 mm clear aperture were cut and polished with surface flatness of 1/5 wavelength. Optical homogeneity of YCOB crystal was found in the order of 10-6. Laser damage thresholds of several YCOB crystal elements were tested using different laser facilities with different pulse widths or wavelengths, with thresholds varied from 0.8 GW/cm2 to more than 1 TW/cm2. One SHG and two optical parametric chirped-pulse amplification (OPCPA) experiments were executed to characterize the nonlinear optical properties of YCOB crystals and the quality of the crystals. The results shown that YCOB had good performance in OPCPA application, especially with low content of parameter florescence. Combined with good NLO performance and possibility to grow large size crystals, YCOB crystal was a good choice for high power OPCPA applications.

  8. Laser damage threshold and nonlinear optical properties of large aperture elements of YCOB crystal

    NASA Astrophysics Data System (ADS)

    Zheng, Yanqing; Wu, Anhua; Gao, Pan; Tu, Xiaoniu; Liang, Xiaoyan; Hou, Jing; Yang, Liming; Wang, Tao; Qian, Liejia; Shi, Erwei

    2011-11-01

    Large size of YCa4O(BO3)3(YCOB) crystals were grown both by Czochralski and Bridgman methods. Large size elements as large as 60 mm clear aperture were cut and polished with surface flatness of 1/5 wavelength. Optical homogeneity of YCOB crystal was found in the order of 10-6. Laser damage thresholds of several YCOB crystal elements were tested using different laser facilities with different pulse widths or wavelengths, with thresholds varied from 0.8 GW/cm2 to more than 1 TW/cm2. One SHG and two optical parametric chirped-pulse amplification (OPCPA) experiments were executed to characterize the nonlinear optical properties of YCOB crystals and the quality of the crystals. The results shown that YCOB had good performance in OPCPA application, especially with low content of parameter florescence. Combined with good NLO performance and possibility to grow large size crystals, YCOB crystal was a good choice for high power OPCPA applications.

  9. Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array

    NASA Astrophysics Data System (ADS)

    Cranch, G. A.; Crickmore, R.; Kirkendall, C. K.; Bautista, A.; Daley, K.; Motley, S.; Salzano, J.; Latchem, J.; Nash, P. J.

    2004-06-01

    A large-aperture, seabed mounted, fiber-optic hydrophone array has been constructed and characterized. The system is designed for use as a large area surveillance array for deployment in shallow water regions. The underwater portion comprises two arrays of 48 hydrophones separated by a 3 km fiber-optic link, which are connected to a shore station by 40 km of single-mode optical fiber. The hydrophone is based on a fiber-optic Michelson interferometer and the acoustic transduction mechanism is a fiber-wrapped mandrel design. No electrical power is required in the underwater portion. The performance of the system is described, characterized during laboratory measurements and during a recent sea trial. Specifically, measurements of the acoustic resolution, array shape, beam patterns, array gain, and target tracking capability of this array. The system demonstrates self-noise levels up to 20 dB (typically 10 dB) lower than the ambient acoustic noise experienced in the sea trial and array gains close to the theoretical maximum. The system telemetry and electronics have been designed to be expandable to accommodate several hundred hydrophones.

  10. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  11. Structural Feasibility Analysis of a Robotically Assembled Very Large Aperture Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.

    2007-01-01

    This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.

  12. Improving 351-nm Damage Performance of Large-Aperture Fused Silica and DKDP Optics

    SciTech Connect

    Burnham, A K; Hackel, L; Wegner, P; Parham, T; Hrubesh, L; Penetrante, B; Whitman, P; Demos, S; Menapace, J; Runkel, M; Fluss, M; Feit, M; Key, M; Biesiada, T

    2002-01-07

    A program to identify and eliminate the causes of UV laser-induced damage and growth in fused silica and DKDP has developed methods to extend optics lifetimes for large-aperture, high-peak-power, UV lasers such as the National Ignition Facility (NIF). Issues included polish-related surface damage initiation and growth on fused silica and DKDP, bulk inclusions in fused silica, pinpoint bulk damage in DKDP, and UV-induced surface degradation in fused silica and DKDP in a vacuum. Approaches included an understanding of the mechanism of the damage, incremental improvements to existing fabrication technology, and feasibility studies of non-traditional fabrication technologies. Status and success of these various approaches are reviewed. Improvements were made in reducing surface damage initiation and eliminating growth for fused silica by improved polishing and post-processing steps, and improved analytical techniques are providing insights into mechanisms of DKDP damage. The NIF final optics hardware has been designed to enable easy retrieval, surface-damage mitigation, and recycling of optics.

  13. Novel large aperture EBCCD

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsumu; Aoki, Shigeki; Haba, Junji; Sakuda, Makoto; Suyama, Motohiro

    2011-02-01

    A novel large aperture electron bombardment charge coupled device (EBCCD) has been developed. The diameter of its photocathode is 10 cm and it is the first EBCCD with such a large aperture. Its gain shows good linearity as a function of applied voltage up to -12 kV, where the gain is 2400. The spatial resolution was measured using ladder pattern charts. It is better than 2 line pairs/mm, which corresponds to 3.5 times the CCD pixel size. The spatial resolution was also measured with a copper foil pattern on a fluorescent screen irradiated with X-rays (14 and 18 keV) and a 60 keV gamma-ray from an americium source. The result was consistent with the measurement using ladder pattern charts. The output signal as a function of input light intensity shows better linearity than that of image intensifier tubes (IIT) as expected. We could detect cosmic rays passing through a scintillating fiber block and a plastic scintillator as a demonstration for a practical use in particle physics experiments. This kind of large aperture EBCCD can, for example, be used as an image sensor for a detector with a large number of readout channels and is expected to be additionally applied to other physics experiments.

  14. Optical synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Asaf; Zach, Shlomo; Zalevsky, Zeev

    2013-06-01

    A method is proposed for increasing the resolution of an object and overcoming the diffraction limit of an optical system installed on top of a moving imaging system, such as an airborne platform or satellite. The resolution improvement is obtained via a two-step process. First, three low resolution differently defocused images are captured and the optical phase is retrieved using an improved iterative Gershberg-Saxton based algorithm. The phase retrieval allows numerical back propagation of the field to the aperture plane. Second, the imaging system is shifted and the first step is repeated. The obtained optical fields at the aperture plane are combined and a synthetically increased lens aperture is generated along the direction of movement, yielding higher imaging resolution. The method resembles a well-known approach from the microwave regime called the synthetic aperture radar in which the antenna size is synthetically increased along the platform propagation direction. The proposed method is demonstrated via Matlab simulation as well as through laboratory experiment.

  15. Large aperture scanning airborne lidar

    NASA Technical Reports Server (NTRS)

    Smith, J.; Bindschadler, R.; Boers, R.; Bufton, J. L.; Clem, D.; Garvin, J.; Melfi, S. H.

    1988-01-01

    A large aperture scanning airborne lidar facility is being developed to provide important new capabilities for airborne lidar sensor systems. The proposed scanning mechanism allows for a large aperture telescope (25 in. diameter) in front of an elliptical flat (25 x 36 in.) turning mirror positioned at a 45 degree angle with respect to the telescope optical axis. The lidar scanning capability will provide opportunities for acquiring new data sets for atmospheric, earth resources, and oceans communities. This completed facility will also make available the opportunity to acquire simulated EOS lidar data on a near global basis. The design and construction of this unique scanning mechanism presents exciting technological challenges of maintaining the turning mirror optical flatness during scanning while exposed to extreme temperatures, ambient pressures, aircraft vibrations, etc.

  16. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    SciTech Connect

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.

  17. Measuring parameters of large-aperture crystals used for generating optical harmonics

    SciTech Connect

    English, R. E.; Hibbard, R. L.; Michie, R. B.; Wegner, P. J.; Auerbach, J. M.; Norton, M. A.; Summers, M. D.; Perfect, S. A.

    1999-02-23

    The purpose of this project was to develop tools for understanding the influence of crystal quality and crystal mounting on harmonic-generation efficiency at high irradiance. Measuring the homogeneity of crystals interferometrically, making detailed physics calculations of conversion efficiency, performing finite- element modeling of mounted crystals, and designing a new optical metrology tool were key elements in obtaining that understanding. For this work, we used the following frequency-tripling scheme: type I second- harmonic generation followed by type II sum-frequency mixing of the residual fundamental and the second harmonic light. The doubler was potassium dihydrogen phosphate (KDP), and the tripler was deuterated KDP (KD*P). With this scheme, near-infrared light (1053 nm) can be frequency tripled (to 351 nm) at high efficiency (theoretically >90%) for high irradiance (>3 GW/cm²). Spatial variations in the birefringence of the large crystals studied here (37 to 41 cm square by about 1 cm thick) imply that the ideal phase-matching orientation of the crystal with respect to the incident laser beam varies across the crystal. We have shown that phase-measuring interferometry can be used to measure these spatial variations. We observed transmitted wavefront differences between orthogonally polarized interferograms of {lambda}/50 to {lambda}/100, which correspond to index variations of order 10-6. On some plates that we measured, the standard deviation of angular errors is 22-23 µrad; this corresponds to a 1% reduction in efficiency. Because these conversion crystals are relatively thin, their surfaces are not flat (deviate by k2.5 urn from flat). A crystal is mounted against a precision-machined surface that supports the crystal on four edges. This mounting surface is not flat either (deviates by +2.5 µm from flat). A retaining flange presses a compliant element against the crystal. The load thus applied near the edges of the crystal surface holds

  18. Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  19. Relationship between large-aperture optical components of striated surface shape and focal spot characteristics in the far-field

    NASA Astrophysics Data System (ADS)

    Lei, Zemin; Sun, Xiaoyan; Yin, Xianhua; Lv, Fengnian; Zhang, Zhen; Lu, Xingqiang; Fan, Dianyuan

    2015-07-01

    Surface shape of optical components is an essential factor of the laser beam quality. Different types of surface correspond to different characteristics of the laser focal spot. Striated surface shape is one of common and typical cases of optical component surfaces in laser facilities, which have attracted great attention. For learning the impact of the component on focal spot in the far-field, a model component with the similar features was introduced in the study. Intensity distributions of focal spot in the far-field was simulated after laser beam went through the model component. Effects of the modulation depth and the modulation period on spot morphology were presented. Furthermore, the relations between these optical specifications and focal spots with some requirements had been analyzed. The results can enhance our understanding about striae degrees of optical elements and have reference values to guide the processing and the use of large-aperture components correctly.

  20. Large aperture, high-speed calorimeter for high-energy optical pulses

    SciTech Connect

    Niimura, M.; Dooling, J.; Zich, R.L.; Brock, R.N.; York, T.M.

    1985-12-01

    A radiometric calorimeter is described in which the energy absorber works at the same time as a temperature sensor so that thermal equilibrium for the entire volume of absorber is not required before measuring an incident energy. The achievable frequency response is therefore quite high, and this is not offset by the size and/or damage threshold of energy receiver. The device, formerly called Rat's Nest Calorimeter (RNC), has been found quite useful for measuring the total energy of modern pulsed lasers with a large beam cross section. The aperture (presently 6 cm) can be increased arbitrarily without degrading the rise time. Excellent stability and high damage threshold (>>439 MW/cm/sup 2/) result when a thick wire bolometer and amplifier combination is used. Response time (approx.9 ..mu..s) and spectral flatness are much better than previously reported. Potentials of the RNC for measuring any energy which it absorbs up to 2 kJ at the rise time 60 ns (approx.10 MHz) are discussed. The maximum sensitivity of the model 3.5 mJ/cm/sup 2/ is sufficient to detect the radiative energy emitting from today's fusion test plasmas.

  1. Piezoelectrically driven translatory optical MEMS actuator with 7mm apertures and large displacements

    NASA Astrophysics Data System (ADS)

    Quenzer, H.-J.; Gu-Stoppel, S.; Stoppel, F.; Janes, J.; Hofmann, U.; Benecke, W.

    2015-02-01

    The design and manufacturing of a piezoelectrically driven translatory MEMS actuator is presented, which features a 7 mm aperture and four thin-film PZT actuators achieving large displacements. The actuator performs piston mode oscillation in resonance which can serve for Fourier Transform Infrared Spectroscopy (FTIR). Thereby vertical displacements in piston mode of up to ± 800 μm at 163 Hz and 25 V driving sinusoidal voltage has been achieved under ambient conditions. Due to the low frequencies and the low driving voltages only low power consumption is required. The effect of residual gas friction and internal friction on the piezo-driven MEMS actuator is analyzed by measuring Qvalues associated with the piston mode. Laser Doppler Vibrometry (LDV) was also used to detect and analyses the parasitic effects especially tilting which superimposes the vertical movement of the mirror. The deviation from the pure vertical piston mode was found to 1.3 μm along the x and 3 μm in the y-axis.

  2. Differential Optical Synthetic Aperture Radar

    DOEpatents

    Stappaerts, Eddy A.

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  3. Laser damage performance of large-aperture fused silica optical components at 351 nm

    NASA Astrophysics Data System (ADS)

    Huang, Wanqing; Han, Wei; Wang, Fang; Xiang, Yong; Li, Fuquan; Feng, Bin; Jing, Feng; Wei, Xiaofeng; Zheng, Wanguo; Zhang, Xiaomin

    2008-12-01

    High power laser facility for ICF will routinely operate at high fluence level. The damage on the large-area FOA optics is a key lifetime limiter. The optics should be checked after each laser shot for damage initiation and growth. On-line monitoring equipments are installed for this purpose. Damage pictures of a fused silica component are successfully taken and the luminance of the pictures could reflect the deterioration of the operational environment. Damage initiation and growth behaviors at 351nm high-fluence laser were observed. Damage density and damage growth are exponential with the shot number and some conclusions could be drawn. These results bring forward demands for future monitoring equipments and more experiments to establish a lifetime model.

  4. Performance Evaluation of Large Aperture 'Polished Panel' Optical Receivers Based on Experimental Data

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor

    2013-01-01

    Recent interest in hybrid RF/Optical communications has led to the development and installation of a "polished-panel" optical receiver evaluation assembly on the 34-meter research antenna at Deep-Space Station 13 (DSS-13) at NASA's Goldstone Communications Complex. The test setup consists of a custom aluminum panel polished to optical smoothness, and a large-sensor CCD camera designed to image the point-spread function (PSF) generated by the polished aluminum panel. Extensive data has been obtained via realtime tracking and imaging of planets and stars at DSS-13. Both "on-source" and "off-source" data were recorded at various elevations, enabling the development of realistic simulations and analytic models to help determine the performance of future deep-space communications systems operating with on-off keying (OOK) or pulse-position-modulated (PPM) signaling formats with photon-counting detection, and compared with the ultimate quantum bound on detection performance for these modulations. Experimentally determined PSFs were scaled to provide realistic signal-distributions across a photon-counting detector array when a pulse is received, and uncoded as well as block-coded performance analyzed and evaluated for a well-known class of block codes.

  5. Interdisciplinary science with large aperture detectors

    NASA Astrophysics Data System (ADS)

    Wiencke, Lawrence

    2013-06-01

    Large aperture detector systems to measure high energy cosmic rays also offer unique opportunities in other areas of science. Disciplines include geophysics such as seismic and volcanic activity, and atmospheric science ranging from clouds to lightning to aerosols to optical transients. This paper will discuss potential opportunities based on the ongoing experience of the Pierre Auger Observatory.

  6. Thermo-optical simulation and experiment for the assessment of single, hollow, and large aperture retroreflector for lunar laser ranging

    NASA Astrophysics Data System (ADS)

    Araki, Hiroshi; Kashima, Shingo; Noda, Hirotomo; Kunimori, Hiroo; Chiba, Kouta; Mashiko, Hitomi; Kato, Hiromasa; Otsubo, Toshimichi; Matsumoto, Yoshiaki; Tsuruta, Seiitsu; Asari, Kazuyoshi; Hanada, Hideo; Yasuda, Susumu; Utsunomiya, Shin; Takino, Hideo

    2016-06-01

    A single aperture and hollow retroreflector [corner-cube mirror (CCM)] that in principle has no internal optical path difference is a key instrument for achieving lunar laser ranging one order or more accurate than the current level (~2 cm). We are developing CCM whose aperture is 20 cm with optimized dihedral angles. The 20-cm CCM yields two times peak height for returned laser pulse compared with Apollo 15's retroreflector. Two investigations were conducted to confirm the feasibility of the 20-cm aperture CCM. The first is thermo-optical simulation and evaluation of the 20-cm CCM in the lunar thermal environment. Through this simulation, it has turned out for the first time that 20-cm aperture CCM made of single-crystal Si or "ultra-low expansion glass-ceramics" such as CCZ-EX® (OHARA Inc.) can be used for CCM with no thermal control, if the perfectly fixed point of CCM is limited to one. The second is annealing and shear loading experiments of single-crystal silicon (Si) samples. Through these experiments, high-temperature annealing from 100 to 1000 °C is confirmed to be effective for the enhancement of the adhesive strength between optically contacted surfaces with no optical damage in roughness and accuracy, indicating that this annealing process would enhance the rigidity of CCM fabricated by the optically contacted plates.

  7. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  8. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  9. Affordable Options for Ground-Based, Large-Aperture Optical Space Surveillance Systems

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Beason, J. D.; Kiziah, R.; Spillar, E.; Vestrand, W. T.; Cox, D.; McGraw, J.; Zimmer, P.; Holland, C.

    2013-09-01

    The Space Surveillance Telescope (SST) developed by the Defense Advanced Research Projects Agency (DARPA) - has demonstrated significant capability improvements over legacy ground-based optical space surveillance systems. To fulfill better the current and future space situational awareness (SSA) requirements, the Air Force would benefit from a global network of such telescopes, but the high cost to replicate the SST makes such an acquisition decision difficult, particularly in an era of fiscal austerity. Ideally, the Air Force needs the capabilities provided by the SST, but at a more affordable price. To address this issue, an informal study considered a total of 67 alternative optical designs, with each being evaluated for cost, complexity and SSA performance. One promising approach identified in the study uses a single mirror at prime focus with a small number of corrective lenses. This approach results in telescopes that are less complex and estimated to be less expensive than replicated SSTs. They should also be acquirable on shorter time scales. Another approach would use a modest network of smaller telescopes for space surveillance. This approach provides significant cost advantages but faces some challenges with very dim objects. In this paper, we examine the cost and SSA utility for each of the 67 designs considered.

  10. the Large Aperture GRB Observatory

    SciTech Connect

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  11. Manufacture of Large-Aperture Diffractive Optics and Ultrathin Optics for High-Power Laser and Space Applications

    SciTech Connect

    Britten, J A

    2002-01-18

    We have developed equipment and technology for fabricating submicron pitch, high-efficiency diffraction gratings over meter-scale apertures that are used for pulse compression in ultrafast systems around the world. We have also developed wet-etch figuring (WEF) to generate arbitrary continuous contours on ultrathin glass substrates in a closed loop process. The current and future states of these technologies will be discussed.

  12. Large aperture nanocomposite deformable mirror technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Hale, Richard D.

    2007-12-01

    We report progress in the development of deformable mirrors (DM) using nanocomposite materials. For the extremely large telescopes (ELTs) currently being planned, a new generation of DMs with unprecedented performance is a critical path item. The DMs need to have large apertures (meters), continuous surfaces, and low microroughness. Most importantly, they must have excellent static optical figures and yet be sufficiently thin (1-2 mm) and flexible to function with small, low powered actuators. Carbon fiber reinforced plastics (CFRP) have the potential to fulfill these requirements. However, CFRP mirrors made using direct optical replication have encountered a number of problems. Firstly, it is difficult if not impossible for a CFRP mirror to maintain a good static optical figure if a small number of plies are used, but adding more plies to the laminate tends to make the substrate too thick and stiff. Secondly, direct optical replication requires precision mandrels, the costs of which become prohibitive at multi-meter apertures. We report development of a new approach. By using a combination of a novel support structure, selected fibers, and binding resins infused with nanoparticles, it is possible to make millimeter thick optical mirrors that can both maintain good static optical figures and yet still have the required flexibility for actuation. Development and refinement of a non-contact, deterministic process of fine figuring permits generation of accurate optical surfaces without the need for precision optical mandrels. We present data from tests that have been carried out to demonstrate these new processes. A number of flat DMs have been fabricated, as well as concave and convex DMs in spherical, parabolic, and other forms.

  13. Optical Transmission Properties of Dielectric Aperture Arrays

    NASA Astrophysics Data System (ADS)

    Yang, Tao

    Optical detection devices such as optical biosensors and optical spectrometers are widely used in many applications for the functions of measurements, inspections and analysis. Due to the large dimension of prisms and gratings, the traditional optical devices normally occupy a large space with complicated components. Since cheaper and smaller optical devices are always in demand, miniaturization has been kept going for years. Thanks to recent fabrication advances, nanophotonic devices such as semiconductor laser chips have been growing in number and diversity. However, the optical biosensor chips and the optical spectrometer chips are seldom reported in the literature. For the reason of improving system integration, the study of ultra-compact, low-cost, high-performance and easy-alignment optical biosensors and optical spectrometers are imperative. This thesis is an endeavor in these two subjects and will present our research work on studying the optical transmission properties of dielectric aperture arrays and developing new optical biosensors and optical spectrometers. The first half of the thesis demonstrates that the optical phase shift associated with the surface plasmon (SP) assisted extraordinary optical transmission (EOT) in nano-hole arrays fabricated in a metal film has a strong dependence on the material refractive index value in close proximity to the holes. A novel refractive index sensor based on detecting the EOT phase shift is proposed by building a model. This device readily provides a 2-D biosensor array platform for non-labeled real-time detection of a variety of organic and biological molecules in a sensor chip format, which leads to a high packing density, minimal analyte volumes, and a large number of parallel channels while facilitating high resolution imaging and supporting a large space-bandwidth product (SBP). Simulation (FDTD Solutions, Lumerical Solutions Inc) results indicate an achievable sensitivity limit of 4.37x10-9 refractive index

  14. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    SciTech Connect

    Hyde, R; Dixit, S; Weisberg, A; Rushford, M

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.

  15. Fiber optic synthetic aperture interferometer

    NASA Astrophysics Data System (ADS)

    Hercher, Michael

    1990-08-01

    This report describes a Fiber Optic Stellar Interferometer built by Optra, Inc. for the purposes of (1) measuring stellar diameters using a pair of small portable telescopes (rather than a large observatory telescope), and (2) measuring atmospheric turbulence. The key element of this concept is the use of singlemode optical fibers to link the separate small telescopes with the interferometer module. We have shown that the proposed turbulence measurements are entirely feasible using a distant light source (preferably a laser). The demonstration of the ability to obtain white light fringes through the fibers was not successful. We believe that this is due to a mismatch in the lengths of the fibers, and we have proposed a simple and flexible solution to this problem.

  16. Experimental and numerical investigation of ADP square crystal with large aperture in the new Final Optics Assembly under the non-critical phase matching

    NASA Astrophysics Data System (ADS)

    Sun, Fuzhong; Zhang, Peng; Bai, Qingshun; Lu, Lihua; Xiang, Yong

    2016-04-01

    This paper presented a new Final Optics Assembly (FOA) of ammonium dihydrogen phosphate (ADP) square crystal with large aperture under the non-critical phase matching (NCPM), which controlled by the constant temperature water, and the temperature distribution was analyzed by simulation and experiment. Firstly, thermal analysis was carried out, as well as the temperature distribution of the cavity only heated under different velocities was analyzed. Then, the temperature distributions of ADP square crystal in the cavity were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results when the velocity is 0.1 m/s and 0.5 m/s. Finally, the optimal FHG conversion efficiency was obtained and the comparison of different heating methods was also highlighted.

  17. OpTIIX: An ISS-Based Testbed Paving the Roadmap Toward a Next Generation Large Aperture UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Etemad, Shar; Seery, Bernard D.; Thronson, Harley; Burdick, Gary M.; Coulter, Dan; Goullioud, Renaud; Green, Joseph J.; Liu, Fengchuan; Ess, Kim; Postman, Marc; Sparks, Williams

    2012-01-01

    The next generation large aperture UV/Optical space telescope will need a diameter substantially larger than even that of JWST in order to address some of the most compelling unanswered scientific quests. These quests include understanding the earliest phases of the Universe and detecting life on exo-planets by studying spectra of their atmospheres. Such 8-16 meter telescopes face severe challenges in terms of cost and complexity and are unlikely to be affordable unless a new paradigm is adopted for their design and construction. The conventional approach is to use monolithic or preassembled segmented mirrors requiring complicated and risky deployments and relying on future heavy-lift vehicles, large fairings and complex geometry. The new paradigm is to launch component modules on relatively small vehicles and then perform in-orbit robotic assembly of those modules. The Optical Testbed and Integration on ISS eXperiment (OpTIIX) is designed to demonstrate, at low cost by leveraging the infrastructure provided by ISS, telescope assembly technologies and end-to-end optical system technologies. The use of ISS as a testbed permits the concentration of resources on reducing the technical risks associated with robotically integrating the components. These include laser metrology and wavefront sensing and control (WFS&C) systems, an imaging instrument, lightweight, low-cost deformable primary mirror segments and the secondary mirror. These elements are then aligned to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems like the Special Purpose Dexterous Manipulator (SPDM), or by the ISS flight crew, allows for future experimentation, as well as repair.

  18. Large Aperture Electrostatic Dust Detector

    SciTech Connect

    C.H. Skinner, R. Hensley, and A.L Roquemore

    2007-10-09

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 ν has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  19. Single-pulse driven, large-aperture 2×1 array plasma-electrodes optical switch for SG-II upgrading facility

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Wu, Dengsheng; Zheng, Jiangang; Zheng, Kuixing; Zhu, Qihua; Zhang, Xiongjun

    2014-12-01

    We demonstrate the design and performance of an optical switch that has been constructed for the SG-II upgrading facility. The device is a longitudinal, potassium di-hydrogen phosphate (KDP), 360 mm×360 mm aperture, and 2×1 array electro-optical switch driven by a 20 kV output switching-voltage pulse generator through two plasma electrodes produced at the rise edge of the switching-voltage pulse. The results show that the temporal responses and the spatial performance of the optical switch fulfill the operation requirements of the SG-II upgrading facility.

  20. Self-Referencing Hartmann Test for Large-Aperture Telescopes

    NASA Technical Reports Server (NTRS)

    Korechoff, Robert P.; Oseas, Jeffrey M.

    2010-01-01

    A method is proposed for end-to-end, full aperture testing of large-aperture telescopes using an innovative variation of a Hartmann mask. This technique is practical for telescopes with primary mirrors tens of meters in diameter and of any design. Furthermore, it is applicable to the entire optical band (near IR, visible, ultraviolet), relatively insensitive to environmental perturbations, and is suitable for ambient laboratory as well as thermal-vacuum environments. The only restriction is that the telescope optical axis must be parallel to the local gravity vector during testing. The standard Hartmann test utilizes an array of pencil beams that are cut out of a well-corrected wavefront using a mask. The pencil beam array is expanded to fill the full aperture of the telescope. The detector plane of the telescope is translated back and forth along the optical axis in the vicinity of the nominal focal plane, and the centroid of each pencil beam image is recorded. Standard analytical techniques are then used to reconstruct the telescope wavefront from the centroid data. The expansion of the array of pencil beams is usually accomplished by double passing the beams through the telescope under test. However, this requires a well-corrected, autocollimation flat, the diameter or which is approximately equal to that of the telescope aperture. Thus, the standard Hartmann method does not scale well because of the difficulty and expense of building and mounting a well-corrected, large aperture flat. The innovation in the testing method proposed here is to replace the large aperture, well-corrected, monolithic autocollimation flat with an array of small-aperture mirrors. In addition to eliminating the need for a large optic, the surface figure requirement for the small mirrors is relaxed compared to that required of the large autocollimation flat. The key point that allows this method to work is that the small mirrors need to operate as a monolithic flat only with regard to

  1. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-04-16

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths.

  2. Bridgman growth of large-aperture yttrium calcium oxyborate crystal

    SciTech Connect

    Wu, Anhua; Jiang, Linwen; Qian, Guoxing; Zheng, Yanqing; Xu, Jun; Shi, Erwei

    2012-09-15

    Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested for high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.

  3. Aperture-synthesis interferometry at optical wavelengths

    NASA Technical Reports Server (NTRS)

    Burke, Bernard F.

    1987-01-01

    The prospects for applying aperture-synthesis interferometry to the optical domain are reviewed. The radio examples such as the VLA provide a model, since the concepts are equally valid for radio and optical wavelengths. If scientific problems at the milliarc-second resolution level (or better) are to be addressed, a space-based optical array seems to be the only practical alternative, for the same reasons that dictated array development at radio wavelengths. One concept is examined, and speculations are offered concerning the prospects for developing real systems. Phase-coherence is strongly desired for a practical array, although self-calibration and phase-closure techniques allow one to relax the restriction on absolute phase stability. The design of an array must be guided by the scientific problems to be addressed.

  4. KAOS: kilo-aperture optical spectrograph

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.; Dey, Arjun; Boyle, Brian; Glazebrook, Karl

    2004-09-01

    A design is described for a potential new facility capable of taking detailed spectroscopy of millions of objects in the Universe to explore the complexity of the Universe and to answer fundamental questions relating to the equation of state of dark energy and to how the Milky Way galaxy formed. The specific design described is envisioned for implementation on the Gemini 8-meter telescopes. It utilizes a 1.5° field of view and samples that field with up to ~5000 apertures. This Kilo-Aperture Optical Spectrograph (KAOS) is mounted at prime focus with a 4-element corrector, atmospheric dispersion compensator (ADC), and an Echidna-style fiber optic positioner. The ADC doubles as a wobble plate, allowing fast guiding that cancels out the wind buffeting of the telescope. The fibers, which can be reconfigured in less than 10 minutes, feed to an array of 12 spectrographs located in the pier of the telescope. The spectrographs are capable of provided spectral resolving powers of a few thousand up to about 40,000.

  5. Lyot coronagraph design study for large, segmented space telescope apertures

    NASA Astrophysics Data System (ADS)

    Zimmerman, Neil T.; N'Diaye, Mamadou; St. Laurent, Kathryn E.; Soummer, Rémi; Pueyo, Laurent; Stark, Christopher C.; Sivaramakrishnan, Anand; Perrin, Marshall; Vanderbei, Robert J.; Kasdin, N. J.; Shaklan, Stuart; Carlotti, Alexis

    2016-07-01

    Recent efforts combining the optimization techniques of apodized pupil Lyot coronagraphs (APLC) and shaped pupils have demonstrated the viability of a binary-transmission mask architecture for extremely high contrast (10-10) exoplanet imaging. We are now building on those innovations to carry out a survey of Lyot coronagraph performance for large, segmented telescope apertures. These apertures are of the same kind under considera- tion for NASA's Large UV/Optical/IR (LUVOIR) observatory concept. To map the multi-dimensional design parameter space, we have developed a software toolkit to manage large sets of mask optimization programs and execute them on a computing cluster. Here we summarize a preliminary survey of 500 APLC solutions for 4 reference hexagonal telescope apertures. Several promising designs produce annular, 10-10 contrast dark zones down to inner working angle 4λ0=D over a 15% bandpass, while delivering a half-max PSF core throughput of 18%. We also report our progress on devising solutions to the challenges of Lyot stop alignment/fabrication tolerance that arise in this contrast regime.

  6. Optical aperture synthesis with electronically connected telescopes

    PubMed Central

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  7. Optical aperture synthesis with electronically connected telescopes.

    PubMed

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  8. Extraordinary optical transmission through patterned subwavelength apertures.

    SciTech Connect

    Kemme, Shanalyn A.; El-Kady, Ihab Fathy; Hadley, G. Ronald; Peters, David William; Lanes, Chris E.

    2004-12-01

    Light propagating through a subwavelength aperture can be dramatically increased by etching a grating in the metal around the hole. Moreover, light that would typically broadly diverge when passing through an unpatterned subwavelength hole can be directed into a narrow beam by utilizing a specific pattern around the aperture. While the increased transmission and narrowed angular emission appear to defy far-field diffraction theory, they are consistent with a fortuitous plasmon/photon coupling. In addition, the coupling between photons and surface plasmons affects the emissivity of a surface comprised of such structures. These properties are useful across several strategic areas of interest to Sandia. A controllable emission spectrum could benefit satellite and military application areas. Photolithography and near-field microscopy are natural applications for a system that controls light beyond the diffraction limit in a manner that is easily parallelizable. Over the one year of this LDRD, we have built or modified the numerical tools necessary to model such structures. These numerical codes and the knowledge base for using them appropriately will be available in the future for modeling work on surface plasmons or other optical modeling at Sandia. Using these tools, we have designed and optimized structures for various transmission or emission properties. We demonstrate the ability to design a metallic skin with an emissivity peak at a pre-determined wavelength in the spectrum. We optimize structures for maximum light transmission and show transmitted beams that beat the far-field diffraction limit.

  9. U-turn alternative to the large aperture switch

    SciTech Connect

    Vann, C.S.

    1994-03-09

    The primary alternative laser architecture is the U-turn design. The U-turn has significantly different cost and performance risks than the full-aperture switch, which makes it a highly desirable alternative. The U-turn was conceived at LLNL in 1992. A similar concept, the L-turn had already been discovered by the French at CEL-V. Both concepts are based on the multipass glass amplifier design, but the full-aperture Pockels cell and polarizer are replaced with smaller and less expensive optics. Eliminating the large switch and polarizer not only reduces component costs, it also provides options for shortening the laser which, in turn, could reduce the size and cost of the laser building. Efficient use of the amplifier aperture (small vignetting allowance) requires that the U-turn have a long transport spatial filter; however, this is not a disadvantage if a long spatial filter is already required for image relaying to the frequency converter. Given a long spatial filter, the U-turn is potentially more efficient because losses in the switch and polarizer are avoided.

  10. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    NASA Astrophysics Data System (ADS)

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  11. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures

    PubMed Central

    Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  12. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    PubMed

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-21

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  13. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    PubMed

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-01

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605

  14. A modular approach toward extremely large apertures

    NASA Astrophysics Data System (ADS)

    Woods, A. A., Jr.

    1981-02-01

    Modular antenna construction can provide a significant increase in reflector aperture size over deployable reflectors. The modular approach allows reflective mesh surfaces to be supported by a minimum of structure. The kinematics of the selected deployable design approach were validated by the subscale demonstration model. Further design refinements on the module structural/joints and design optimization on intermodule joints are needed.

  15. Optical nanolithography with λ/15 resolution using bowtie aperture array

    NASA Astrophysics Data System (ADS)

    Wen, Xiaolei; Traverso, Luis M.; Srisungsitthisunti, Pornsak; Xu, Xianfan; Moon, Euclid E.

    2014-10-01

    We report optical parallel nanolithography using bowtie apertures with the help of the interferometric-spatial-phase-imaging (ISPI) technique. The ISPI system can detect and control the distance between the bowtie aperture, and photoresist with a resolution of sub-nanometer level. It overcomes the difficulties brought by the light divergence of bowtie apertures. Parallel nanolithography with feature size of 22 ± 5 nm is achieved. This technique combines high resolution, parallel throughput, and low cost, which is promising for practical applications.

  16. Multi-aperture digital coherent combining for free-space optical communication receivers.

    PubMed

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  17. Multi-aperture digital coherent combining for free-space optical communication receivers.

    PubMed

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture. PMID:27410287

  18. A Future Large-Aperture UVOIR Space Observatory: Study Overview

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Thronson, Harley A.; Feinberg, Lee; Redding, David; Stahl, H. Philip

    2015-01-01

    The scientific drivers for very high angular resolution coupled with very high sensitivity and wavefront stability in the UV and optical wavelength regime have been well established. These include characterization of exoplanets in the habitable zones of solar type stars, probing the physical properties of the circumgalactic medium around z < 2 galaxies, and resolving stellar populations across a broad range of galactic environments. The 2010 NRC Decadal Survey and the 2013 NASA Science Mission Directorate 30-Year Roadmap identified a large-aperture UVOIR observatory as a priority future space mission. Our joint NASA GSFC/JPL/MSFC/STScI team has extended several earlier studies of the technology and engineering requirements needed to design and build a single filled aperture 10-meter class space-based telescope that can enable these ambitious scientific observations. We present here an overview of our new technical work including a brief summary of the reference science drivers as well as in-depth investigations of the viable telescope architectures, the requirements on thermal control and active wavefront control systems, and the range of possible launch configurations.

  19. A review of large aperture Schlieren photography technique

    NASA Astrophysics Data System (ADS)

    Xu, Song-bo; Xie, Yong-jun; Chen, Lei

    2016-01-01

    Schlieren photography is a visual process to display the flow of fluids of varying density. It is widely used in wind tunnel tests to photograph the flow of air around objects. To achieve schlieren images with high sensitivity and high resolution, and satisfy the requirements of the large-scale wind tunnel tests, it is urgent to develop schlieren photographers with large aperture primary mirrors. However, the application of large aperture primary mirrors may bring many challenges in the design of the schlieren system. First, the surface figure of large aperture primary mirrors is difficult to control so that the support structure may need more strategical design. Second, because the schlieren system works under some severe environments of the wind tunnel test including the air disturbance, wind-induced ground vibration and high ambient pressure, it has to withstand serious instability risks to ensure a good schlieren image quality. In this work, the current status of the development in the large aperture schlieren systems is reviewed. Several advanced methods, for example, active damping control technique, focal spot monitoring technique, 18-points whilffletree support technique, etc.., are introduced to deal with the challenges of the large aperture schlieren system. This work aims at improving the technical development of large aperture schlieren photographer, which may contribute to the acquisition of the high sensitive and high resolution schlieren images and the improvement of the testing capability in wind tunnel experiments.

  20. Analytical model and optical design of distributed aperture optical system for millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Chen, Caihua; Schuetz, Christopher A.; Martin, Richard D.; Samluk, Jesse; Stein, E. Lee, Jr.; MacKrides, Daniel G.; Mirotznik, Mark; Prather, Dennis W.

    2008-10-01

    Millimeter-wave imaging is very interesting due to its unique transmission properties through a broad range of atmospheric obscurants such as cloud, dust, fog, sandstorms, and smoke, which thereby enables all-weather passive imaging. Unfortunately, the usefulness of millimeter-wave imagers is often limited by the large aperture sizes required to obtain images of sufficient resolution, as governed by the diffraction limit. To this end, we previously proposed a distributed aperture system for direct non-scan millimeter-wave imaging using an optical upconversion technique. In this proposed approach, an antenna array is employed to sample image signals in the millimeter-wave domain. The sampled millimeter-wave signals are then upconverted to the optical domain using electro-optic modulation techniques. These optical signals are mapped into a similar array on the entrance pupil of the following optical system for direct imaging. Although distributed aperture imaging is not new in both radio astronomy and conventional optical inteferometric imaging, the proposed approach is different in that it physically samples image in the millimeter-wave domain and directly forms the image in the optical domain. Therefore, specific analysis and evaluation techniques are required for the design and optimization of the proposed system. In this paper, we will address these issues, develop techniques to evaluate and enhance the system imaging performance and present methods to optimize the geometric configuration.

  1. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    NASA Astrophysics Data System (ADS)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  2. Research on axial support technology of large aperture primary mirror

    NASA Astrophysics Data System (ADS)

    Yao, Hui

    2010-05-01

    In ground-based optical detection system, when large aperture primary mirror in a different pitch angle detection, the surface shape error of primary mirror is affected by its weight deformation, and the surface shape error of primary mirror is one of the key factors affecting imaging quality. The primary mirror support system, including axial support and radial support, and the axial support is main factor affecting the surface shape error of primary mirror, the position and number of axial support is very important for surface shape error of primary mirror. The support technology of Φ1.2m primary mirror was studied detailedly in this paper, the parameterized model of primary mirror was built based on ANSYS, the relationship between the surface shape error of primary mirror and the ratio of its diameter to thickness was analyzed, the axial support was optimized, and the support-ring number, support-ring radius and support point position of axial support were optimum designed. The result of analysis showed that the Root-Mean-Square (RMS) value of the surface shape error of primary mirror was 1.8 nm, when the primary mirror pointed to zenith, met to the design need of the optical system, and the axial support system was verified.

  3. Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers

    PubMed Central

    Brzobohatý, Oto; Šiler, Martin; Trojek, Jan; Chvátal, Lukáš; Karásek, Vítězslav; Paták, Aleš; Pokorná, Zuzana; Mika, Filip; Zemánek, Pavel

    2015-01-01

    It was previously believed that larger metal nanoparticles behave as tiny mirrors that are pushed by the light beam radiative force along the direction of beam propagation, without a chance to be confined. However, several groups have recently reported successful optical trapping of gold and silver particles as large as 250 nm. We offer a possible explanation based on the fact that metal nanoparticles naturally occur in various non-spherical shapes and their optical properties differ significantly due to changes in localized plasmon excitation. We demonstrate experimentally and support theoretically three-dimensional confinement of large gold nanoparticles in an optical trap based on very low numerical aperture optics. We showed theoretically that the unique properties of gold nanoprisms allow an increase of trapping force by an order of magnitude at certain aspect ratios. These results pave the way to spatial manipulation of plasmonic nanoparticles using an optical fibre, with interesting applications in biology and medicine. PMID:25630432

  4. Teaching and Research in Astronomy using Small Aperture Optical Telescopes

    NASA Astrophysics Data System (ADS)

    Pandey, S. K.

    2006-08-01

    Small aperture (<1m, typically 20-50cm) optical telescopes with adequate back-end instrumentation (photometer, CCD camera and CCD spectrograph etc) can be used for spreading the joy and excitement of observational astronomy among postgraduate and research students in Colleges/. On the basis of over a decade's experience in observing with small optical telescopes it has been amply demonstrated that such a facility, which any University department can hope to procure and maintain, can be effectively used for teaching as well quality research. The Physics Department of Pt Ravishankar Shukla University at Raipur, India offers Astronomy & Astrophysics (A&A) as one of the specialization as a part of M Sc program in Physics. A set of observational exercises has been incorporated with a view to provide training in observations, analysis and interpretation of the astronomical data to the students. Observing facilities available in the department include 8"-14" aperture telescopes (CGE series from Celestron) equipped with the new-state-of-the-art backend instrumentation like Photometer, CCD Camera and also a CCD spectrograph. Observing facility of this kind is ideally suited for continuous monitoring of a variety of variable stars, and thus can provide valuable data for understanding the physics of stellar variability. This is especially true for a class of variable stars known as chromospherically active stars. The stars belonging to this class have variable light curves, and the most puzzling feature is that their light curves change year after year in a rather queerer way. A large fraction of these active stars are bright ones and, hence, the importance of small aperture telescope for collecting the much needed photometric data. For over a decade the research activity using 14" optical telescope is focused on photometric monitoring of well known as well suspected active stars. This together with spectroscopic data using observing facility at Indian Observatories has led

  5. NST: Thermal Modeling for a Large Aperture Solar Telescope

    NASA Astrophysics Data System (ADS)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  6. Research on primary mirror lateral support structure of large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yang

    2010-05-01

    The primary mirror of large-aperture telescope is an important component of telescope system. The surface figure error of the primary mirror is a critical factor affecting the imaging quality of telescope system. With the augment of primary mirror aperture, the surface figure error of the primary mirror is affected by many factors, such as gravity, thermal deformation and so on. The factors that influence the surface figure error of the primary mirror are considered and analyzed roundly according to technical requirements of optical system. So the feasible project is researched on the lateral support structure of large-aperture telescope primary mirror. The primary mirror support system of large-aperture telescope is composed of axial support and lateral support. In traditional telescope, the contribution of lateral support to surface distortion is less than axial support. With increase of diameter to thickness ratio, lateral support is becoming more complicated and important than before. Lateral support is a key technology the same as axial support for the large-aperture telescope primary mirror. With the foundation of analysis, comparison and conclusion of related literature and monograph, according to primary mirror supporting principle of the large-aperture telescope. Lateral support methods, the influence of the primary mirror surface figure error due to primary mirror lateral support and lateral support structure of primary mirror are analyzed.

  7. Optical transmission through silver film with compound periodic array of annular apertures

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Yao, Wen-jie; Yu, Hong

    2015-03-01

    Recently, some kinds of structures have been found to show the property of extraordinary optical transmission (EOT). In this paper, we present a novel composite structure based on array of annular apertures (AAA) with compound lattice. The lattice includes two kinds of annular apertures with the same outer radius and different inner radii. The transmission spectrum of this compound periodic AAA can be achieved by adding up the spectra of two corresponding simple periodic AAAs, and the transmission shows EOT property. The transmission peaks of this kind of structure can be adjusted to desire wavelengths by changing the inner radius of aperture or the index of the dielectric material in the aperture. This structure can be used as a filter with dual pass bands when the difference between inner radii or indices of dielectric inside is large enough for two kinds of apertures.

  8. Design and performance of a distributed aperture millimeter-wave imaging system using optical upconversion

    NASA Astrophysics Data System (ADS)

    Martin, Richard; Schuetz, Christopher A.; Dillon, Thomas E.; Chen, Caihua; Samluk, Jesse; Stein, E. Lee, Jr.; Mirotznik, Mark; Prather, Dennis W.

    2009-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, blowing dust or sand, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions typically desired in surveillance applications. As a result, lens-based focal plane systems tend to require large aperture optics, which severely limit the minimum achievable volume and weight of such systems. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. However, such systems typically require high frequency (~ 30 - 300 GHz) signal routing and down conversion as well as large correlator banks. Herein, we describe an alternate approach to distributed aperture mmW imaging using optical upconversion of the mmW signal onto an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The optical side bands are subsequently stripped from the optical carrier and optically recombined to provide a real-time snapshot of the mmW signal. In this paper, the design tradeoffs of resolution, bandwidth, number of elements, and field of view inherent in this type of system will be discussed. We also will present the performance of a 30 element distributed aperture proof of concept imaging system operating at 35 GHz.

  9. Metrology measurements for large-aperture VPH gratings

    NASA Astrophysics Data System (ADS)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  10. Inter-aperture correlation in MIMO free space optical systems

    NASA Astrophysics Data System (ADS)

    Özbilgin, Tuğba; Koca, Mutlu

    2015-10-01

    We present a unified framework for determining the inter-aperture separations in multiple-input-multiple-output (MIMO) free space optical (FSO) systems such that the transmitter-receiver paths are resolvable. The analysis framework is also useful in determining the amount of spatial correlation for a given set of system configuration parameters and aperture separations. It is applicable to both point apertures and also apertures with larger diameters and can be used at both transmit and receive arrays. We show that the results obtained via theoretical derivations are in good agreement with those in the literature obtained via measurements or simulations. The theoretical calculations reveal that even under strong turbulence conditions and very long link distances, aperture separations at the order of a few tens of centimeters are sufficient to have resolvable paths with independent fading gains. Furthermore, the channel correlations increase relatively slowly with decreasing inter-aperture separations which are below these values. We also provide design guidelines to obtain resolvable paths for several commonly used system configurations.

  11. Fabrication and optical measurement of double-overlapped annular apertures

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Jiang, Xiaoxiao; Xia, Liangping; Tang, Linlong; Hu, Sheng; Lv, Jiangtao; Zhao, Hongquan; Si, Guangyuan; Shi, Ruiying

    2016-10-01

    We demonstrate double-overlapped annular aperture (DOAA) arrays fabricated in a gold film via focused ion beam milling. The high order resonance modes of DOAA are investigated both theoretically and experimentally. Polarization dependency is observed for DOAA arrays and lower order resonance modes in the mid-infrared range exhibit extraordinary optical transmission and dependency on geometric parameters.

  12. Common aperture techniques for imaging electro-optical sensors

    NASA Astrophysics Data System (ADS)

    1980-02-01

    A multispectral optical imaging system was designed and fabricated to demonstrate the feasibility of utilizing a pointable common optical aperture in conjunction with interchangeable day or night TV sensors and a thermal imaging sensor. Limited processing capability was incorporated to permit mixing of both visible and infrared video of common scenes for more effective all weather electrooptical capability. An optical configuration was established which will accommodate image sensors as well as illuminating and designating/ranging lasers. In the early phases of the program various techniques were evaluated for optimizing spectral separation, gating image intensifiers and minimizing degradation of sensor performance due to insertion of .723 and 1.06 micron laser radiation through the common aperture. Preliminary testing indicates that combining sensors achieves synergistic performance in targeting and identification. Edited monthly R D Status Reports detail the design, fabrication and integration aspects of the program.

  13. Mission definition for a large-aperture microwave radiometer spacecraft

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.

    1981-01-01

    An Earth-observation measurements mission is defined for a large-aperture microwave radiometer spacecraft. This mission is defined without regard to any particular spacecraft design concept. Space data application needs, the measurement selection rationale, and broad spacecraft design requirements and constraints are described. The effects of orbital parameters and image quality requirements on the spacecraft and mission performance are discussed. Over the land the primary measurand is soil moisture; over the coastal zones and the oceans important measurands are salinity, surface temperature, surface winds, oil spill dimensions and ice boundaries; and specific measurement requirements have been selected for each. Near-all-weather operation and good spatial resolution are assured by operating at low microwave frequencies using an extremely large aperture antenna in a low-Earth-orbit contiguous mapping mode.

  14. Applications of optical upconversion to sparse aperture millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Schuetz, C. A.; Mirotznik, M. S.; Shi, S.; Schneider, G. J.; Murakowski, J.; Prather, D. W.

    2005-11-01

    Passive millimeter-wave imagers have shown significant potential for use in applications that require penetration through atmospheric obscurations such a fog and smoke. However, the large apertures required to achieve sufficient diffraction-limited resolution in such systems often prohibit their use for many applications. One possible technique to circumvent this limitation is to use sparse-aperture imaging techniques. To date, such systems have not been realized because they require a high number of phase-sensitive, low-noise detectors spread over a large physical area. Collection and correlation processing of the data from this large array of sensors has not been practical using available technologies. Herein, we present the potential of optical upconversion detectors for sparse aperture imaging. The optical signals generated in such detectors preserve the phase information of the detected signal up until photodetection and may be easily routed to a central processor using low-loss optical fiber. Potential architectures for sparse aperture imagers using optical upconversion are discussed and compared to more traditional down-converted approaches. In addition, experimental results demonstrating the viability of such imagers are presented.

  15. Obtaining Crosswind from Single-Aperture Optical Scintillometers

    NASA Astrophysics Data System (ADS)

    van Dinther, D.; Hartogensis, O. K.

    2010-09-01

    A scintillometer is a device that consist of a transmitter and receiver. The receiver records intensity fluctuations of the electromagnetic beam emitted at optical or microwave wavelengths by the transmitter. These fluctuations are caused by refraction of the beam upon its passage through the turbulent surface layer. An increasingly popular application of scintillometry is to estimate the area-averaged surface fluxes from these raw measurements following scintillometer theory (Tatarskii, 1961) relating the raw intensity measurements to the structure parameter of the refractive index, Cn2 and Monin-Obukhov similarity theory that relates structure parameters to surface fluxes (Meijninger et al., 2002). A less known application of scintillometry is the estimation of the crosswind, i.e. the wind perpendicular to the scintillometer path. Past research on this issue focused on multiple aperture scintillometers that use the time delay between the turbulence signals of the displaced apertures to estimate the crosswind (Andreas, 2000, Poggio et al., 2000 and Furger et al., 2001,). The goal of this study is to explore a method to obtain the crosswind from single aperture scintillometers through spectral analysis of the raw scintillometer signal. In theory the scintillometer spectrum shows an inflection at the transition of the refractive and absorption part of the spectrum. The transition frequency (fC2) is related to the ratio of the crosswind and the diameter of the receiver and transmitter (Nieveen et al., 1998) via fc2 = -u-- 1.25D where u is the crosswind speed and D the diameter of the scintillometer. Limitation of the method is that it only works properly when the crosswind is constant, i.e. with a horizontal scintillometer path, no time variation and no spatial variations of the crosswind. The prescribed method to obtain the crosswind is examined with LITFASS-2009 (Germany) and Haarweg (The Netherlands) datasets. At LITFASS-2009 different optical and microwave

  16. Compact 4 cm aperture transmissive liquid crystal optical phased array for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hua; Mahajan, Milind; Taber, Donald; Wen, Bing; Winker, Bruce

    2005-08-01

    There is a critical need for high bandwidth, high availability free-space optical communication links between the battlefield and the global information grid. Compact large aperture transceivers with low size, weight and power (SWaP) are needed to initiate and maintain communication links involving airborne platforms. The transceiver optical beam director typically contains fine and coarse steering stages. Existing beam director technology is based on electro-mechanical gimbaled mirrors with large SWaP that hinders deployment on many airborne platforms. To address the need for compact beam directors, we designed, fabricated, and tested an optical phased array (OPA) based on electro-optic dual frequency liquid crystal technology. This OPA has a transmissive architecture that enables a lower system SWaP, as compared to conventional reflective OPA. It has an 8 μm pixel pitch and steers over a 2.5° field of regard in one dimension at 1.55 μm. Two such OPAs can be stacked to steer in two dimensions. It has four independently addressable 1 cm x 4 cm regions arranged in a linear array to produce a continuous 4 cm x 4 cm aperture. The device incorporates novel addressing schemes to reduce the number of control channels by over an order of magnitude compared to conventional OPA addressing methods. It also utilizes proprietary low-loss transparent conductive TransconTM film for low optical absorption in the infrared. The OPA uses a custom multi-channel controller circuit operating at a 500 Hz frame rate. We present results on OPA design, fabrication, and optical performance on steering.

  17. A Future Large-Aperture UVOIR Space Observatory: Reference Designs

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Rioux, Norman; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-01-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  18. Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system

    NASA Astrophysics Data System (ADS)

    Fei, Yiting; Chai, Bruce H. T.; Ebbers, C. A.; Liao, Z. M.; Schaffers, K. I.; Thelin, P.

    2006-04-01

    Yttrium calcium oxyborate YCa4O(BO3)3 (YCOB) is a novel non-linear optical crystal possessing good thermal, mechanical and non-linear optical properties. Large-aperture YCOB crystals with 75 mm diameter were grown for high-average power frequency conversion on the mercury laser system. The growth morphology (included facet and spiral growth), cracking and inclusions in the as-grown crystal boule were discussed as the critical problem for large-aperture YCOB crystal growth. This can be minimized through modification of the growth program, including pulling rate, separation procedure, and cooling program. High-average power frequency conversion of the mercury laser using YCOB has been demonstrated, and experimental validation of YCOB material yields 50% conversion at 10 Hz has been achieved.

  19. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST)

    NASA Astrophysics Data System (ADS)

    Devlin, Mark J.; Ade, Peter A. R.; Aretxaga, Itziar; Bock, James J.; Chung, Jaspaul; Chapin, Edward; Dicker, Simon R.; Griffin, Matt; Gundersen, Joshua; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeffrey; Marsden, Gaelen; Martin, Peter; Mauskopf, Philip D.; Netterfield, Barth; Olmi, Luca; Pascale, Enzo; Rex, Marie; Scott, Douglas; Semisch, Christopher; Truch, Matthew; Tucker, Carole; Tucker, Gregory; Turner, Anthony D.; Weibe, Donald

    2004-10-01

    Advances in bolometric detector technology over the past decade have allowed submillimeter wavelength measurements to contribute important data to some of the most challenging questions in observational cosmology. The availability of large format bolometer arrays will provide observations with unprecedented image fidelity. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) will be one of the first experiments to make full use of this new capability. The high altitude (~35$ km) of the balloon platform allows for high-sensitivity measurements in the 250, 350 and 500 micron bands with a total of 260 detectors.

  20. Silicon Powder Filters for Large-Aperture Cryogenic Receivers

    NASA Astrophysics Data System (ADS)

    Boone, Fletcher; Essinger-Hileman, T.; Bennett, C. L.; Marriage, T.; Xu, Z.

    2014-01-01

    Upcoming experiments probing for the existence of B-mode polarization in the cosmic microwave background (CMB) will require large arrays of background-limited detectors. This will necessitate the use of cryogenic receivers with large-aperture vacuum windows and correspondingly large low-pass infrared-blocking filters to minimize thermal load. Large-diameter filters composed of absorptive dielectrics are difficult to conductively cool adequately, and thus tend to heat up and re-radiate towards the focal plane. Reflective metal-mesh filters are challenging to manufacture at such large apertures and with feature sizes small enough to effectively block 300K thermal radiation. In order to overcome these difficulties, we have developed a novel type of thermal filter that scatters, rather than reflects or absorbs, unwanted infrared radiation. Comprised of ultra-pure silicon powder distributed within a polymethylpentene (PMP) substrate, these filters are not absorptive in the infrared while being transparent to microwaves, and are comparatively straightforward to produce. By adjusting the size of the silicon particles, the frequency cut-off of these low-pass filters is fully tunable. Small scale (70mm diameter, 3mm thickness) prototypes have exhibited <10% transmission throughout the infrared spectrum and <1% transmission at the peak of the 300K blackbody spectrum, while maintaining an estimated 97% transmission in the microwave regime.

  1. Multi-aperture optics as a universal platform for computational imaging

    NASA Astrophysics Data System (ADS)

    Tanida, Jun

    2016-10-01

    Computational imaging is a novel imaging framework based on optical encoding and computational decoding. To avoid a heuristic design that depends on the particular problem to be solved, multi-aperture optics is useful as a universal platform for optical encoding. In this paper, the fundamental properties of multi-aperture optics are summarized. Then some examples of interesting functions implemented by multi-aperture optics are explained, together with some effective applications.

  2. Multi-aperture optics as a universal platform for computational imaging

    NASA Astrophysics Data System (ADS)

    Tanida, Jun

    2016-08-01

    Computational imaging is a novel imaging framework based on optical encoding and computational decoding. To avoid a heuristic design that depends on the particular problem to be solved, multi-aperture optics is useful as a universal platform for optical encoding. In this paper, the fundamental properties of multi-aperture optics are summarized. Then some examples of interesting functions implemented by multi-aperture optics are explained, together with some effective applications.

  3. Kaleidoscope modes in large aperture Porro prism resonators.

    PubMed

    Burger, Liesl; Forbes, Andrew

    2008-08-18

    We apply a new method of modeling Porro prism resonators, using the concept of rotating loss screens, to study stable and unstable Porro prism resonator. We show that the previously observed petal--like modal output is in fact only the lowest order mode, and reveal that a variety of kaleidoscope beam modes will be produced by these resonators when the intra--cavity apertures are sufficiently large to allow higher order modes to oscillate. We also show that only stable resonators will produce these modes. PMID:18711509

  4. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    NASA Astrophysics Data System (ADS)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  5. The development of large-aperture test system of infrared camera and visible CCD camera

    NASA Astrophysics Data System (ADS)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  6. Development of Large-Aperture, Light-Weight Fresnel Lenses for Gossamer Space Telescopes

    SciTech Connect

    Sham, D; Hyde, R; Weisberg, A; Early, J; Rushford, M; Britten, J

    2002-04-29

    In order to examine more distant astronomical objects, with higher resolution, future space telescopes require objectives with significantly larger aperture than presently available. NASA has identified a progression in size from the 2.4m aperture objective currently used in the HUBBLE space telescope[l,2], to 25m and greater in order to observe, e.g., extra-solar planets. Since weight is a crucial factor for any object sent into space, the relative weight of large optics over a given area must be reduced[3]. The areal mass density of the primary mirror for the Hubble space telescope is {approx}200 kg/m{sup 2}. This is expected to be reduced to around 15 kg/m{sup 2} for the successor to Hubble--the next generation space telescope (NGST)[4]. For future very large aperture telescopes needed for extra-solar planet detection, the areal mass density must be reduced even further. For example, the areal mass density goal for the Gossamer space telescopes is < 1 kg/m{sup 2}. The production of lightweight focusing optics at >10m size is also an enabling technology for many other applications such as Earth observation, power beaming, and optical communications.

  7. Research on the support structure of the primary mirror of large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Jingxu

    2007-12-01

    Large-aperture telescope can be used in surveying battlefield, researching landform, searching object, real-time monitoring, imaging, detecting and identifying spatial targets and so on. A large-aperture telescope for achieving high resolution power is designed to monitor spatial target and image in real time. Real-time monitoring plays an important role in military conflicts. The orbit parameter of object, quantity, geometrical shape parameter and so on can be obtained by detect spatial target. With the development of optical technology, people require larger aperture in optics-electronic (O-E) system. By increasing optical aperture, the ability of collecting light and resolution power in the system can be enhanced. But the support structure of the primary mirror of large-aperture telescope will be a very difficult problem. With the increase of primary mirror aperture, the weight of the primary mirror will become larger than before. The root mean square (rms) of the primary mirror is affected by many factors, such as deadweight, deformation of heat, environment and so on. Due to the primary mirror of telescope is an important component of telescope system. By reducing the weight of primary mirror, precision of the system is ensured. During the designing phase, one can consider the supporting project of the primary mirror synthetically and analyze it roundly according to technical requirement of optical system and the effect factors. The final structural design can be reasonable. In an astronomical telescope, the surface of reflector is an important part for collecting dark radiation of celestial bodies. Its surface shape will have an effect on collecting efficiency of telescope radiant energy directly. So the rms must be very high. Optical system of large aperture, small wavelength and small focus can receive maximal light intensity. For ground-based optical astronomical telescope, the design proposed in the paper can satisfy the requirement of the possible

  8. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  9. Design of large aperture, low mass vacuum windows

    SciTech Connect

    Leonhardt, W.J.; Mapes, M.

    1993-01-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to traverse without interacting with air molecules. These vessels generally have a large aperture opening known as a vacuum window which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions.

  10. Design of large aperture, low mass vacuum windows

    SciTech Connect

    Leonhardt, W.J.; Mapes, M.

    1993-07-01

    Large vacuum vessels are employed downstream of fixed targets in High Energy Physics experiments to provide a long path for particles to traverse without interacting with air molecules. These vessels generally have a large aperture opening known as a vacuum window which employs a thin membrane to preserve the vacuum environment yet allows the particles to pass through with a minimal effect on them. Several large windows have been built using a composite of Kevlar/Mylar including circular windows to a diameter of 96.5 cm and rectangular windows up to 193 cm x 86 cm. This paper describes the design, fabrication, testing and operating experience with these windows and relates the actual performance to theoretical predictions.

  11. Compact large-aperture Fabry-Perot interferometer modules for gas spectroscopy at mid-IR

    NASA Astrophysics Data System (ADS)

    Kantojärvi, Uula; Varpula, Aapo; Antila, Tapani; Holmlund, Christer; Mäkynen, Jussi; Näsilä, Antti; Mannila, Rami; Rissanen, Anna; Antila, Jarkko; Disch, Rolf J.; Waldmann, Torsten A.

    2014-03-01

    VTT has developed Fabry-Pérot Interferometers (FPI) for visible and infrared wavelengths since 90's. Here we present two new platforms for mid-infrared gas spectroscopy having a large optical aperture to provide high optical throughput but still enabling miniaturized instrument size. First platform is a tunable filter that replaces a traditional filter wheel, which operates between wavelengths of 4-5 um. Second platform is for correlation spectroscopy where the interferometer provides a comb-like transmission pattern mimicking absorption of diatomic molecules at the wavelength range of 4.7-4.8 um. The Bragg mirrors have 2-4 thin layers of polysilicon and silicon oxide.

  12. Optical imaging process based on two-dimensional Fourier transform for synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei

    2013-09-01

    The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.

  13. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  14. A support method of large aperture light weighted primary mirror manufacturing and testing

    NASA Astrophysics Data System (ADS)

    Zhao, Ye; Zhou, Yuming; Li, Chenxi

    2010-05-01

    With the resolution of space optical remote sensor getting higher, the aperture of the primary mirror has been becoming larger correlatively. The requirement of the plane precision has also become higher. The manufacturing and testing of space optical remote sensor primary mirror should be under more critical status which is different from the mirror on the ground, especially for the primary mirror aperture that is larger than 1 m. This paper compares the differences of testing and manufacturing status between the primary mirror on space optical remote sensor and on the ground. A support method of large aperture primary mirror manufacturing and testing has been released, which is to carry out multiplediscrete support on the back of the mirror by controlling the support stress. The results indicates that this method could reduce the plane error of the primary mirror brought by its self weight effectively by finite element simulation when the mirror is being polishing, so as to satisfy the design and use requirement of the primary mirror.

  15. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  16. Factors affecting the performance of large-aperture microphone arrays.

    PubMed

    Silverman, Harvey F; Patterson, William R; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m x 8 m x 3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment. PMID:12051434

  17. Factors affecting the performance of large-aperture microphone arrays.

    PubMed

    Silverman, Harvey F; Patterson, William R; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m x 8 m x 3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  18. Factors affecting the performance of large-aperture microphone arrays

    NASA Astrophysics Data System (ADS)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  19. Experimental instrumentation system for the Phased Array Mirror Extendible Large Aperture (PAMELA) test program

    NASA Technical Reports Server (NTRS)

    Boykin, William H., Jr.

    1993-01-01

    Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.

  20. Development of a large aperture Nb3Sn racetrack quadrupolemagnet

    SciTech Connect

    Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich,Daniel R.; Gourlay, Steven A.; Hannaford, Charles R.; Hafalia, AurelioR.; Lietzke, Alan F.; Mattafirri, Sara; McInturff, Alfred D.; Nyman,Mark; Sabbi, Gianluca

    2005-04-14

    The U.S. LHC Accelerator Research Program (LARP), a collaboration between BNL, FNAL, LBNL, and SLAC, has among its major objectives the development of advanced magnet technology for an LHC luminosity upgrade. The LBNL Superconducting Magnet Group supports this program with a broad effort involving design studies, Nb{sub 3}Sn conductor development, mechanical models, and basic prototypes. This paper describes the development of a large aperture Nb{sub 3}Sn racetrack quadrupole magnet using four racetrack coils from the LBNL Subscale Magnet (SM) Program. The magnet provides a gradient of 95 T/m in a 110 mm bore, with a peak field in the conductor of 11.2 T. The coils are prestressed by a mechanical structure based on a pre-tensioned aluminum shell, and axially supported with aluminum rods. The mechanical behavior has been monitored with strain gauges and the magnetic field has been measured. Results of the test are reported and analyzed.

  1. ATLAST-9.2m: a Large-Aperture Deployable Space Telescope

    NASA Technical Reports Server (NTRS)

    Oergerle, William; Feinberg, Lee D.; Purves, Lloyd R.; Hyde, T. Tupper; Thronson, Harley A.; Townsend, Jacqueline A.; Postman, Marc; Bolear, Matthew R.; Budinoff, Jason G.; Dean, Bruce H.; Clampin, Mark C.; Ebbets, Dennis C.; Gong, Qian; Gull, Theodore R.; Howard, Joseph M.; Jones, Andrew L.; Lyon, Richard G.; Pasquale, Bert A.; Perrygo, Charles; Smith, Jeffrey S.; Thompson, Patrick L.; Woodgate, Bruce E.

    2010-01-01

    We present results of a study of a deployable version of the Advanced Technology Large-Aperture Space Telescope (ATLAST), designed to operate in a Sun-Earth L2 orbit. The primary mirror of the segmented 9.2-meter aperture has 36 hexagonal 1.315 m (flat to flat) glass mirrors. The architecture and folding of the telescope is similar to JWST, allowing it to fit into the 6.5 m fairing of a modest upgrade to the Delta-IV Heavy version of the Evolved Expendable Launch Vehicle (EELV). We discuss the overall observatory design, optical design, instruments, stray light, wavefront sensing and control, pointing and thermal control, and in-space servicing options.

  2. BLAST: The Balloon-Borne Large Aperture Submillimeter Telescope

    NASA Technical Reports Server (NTRS)

    Devlin, Mark; Ade, Peter; Bock, Jamie; Dicker, Simon; Griffin, Matt; Gunderson, Josh; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeff

    2004-01-01

    BLAST is the Balloon-borne Large-Aperture Sub-millimeter Telescope. It will fly from a Long Duration Balloon (LDB) platform from Antarctica. The telescope design incorporates a 2 m primary mirror with large-format bolometer arrays operating at 250, 350 and 500 microns. By providing the first sensitive large-area (10 sq. deg.) sub-mm surveys at these wavelengths, BLAST will address some of the most important galactic and cosmological questions regarding the formation and evolution of stars, galaxies and clusters. Galactic and extragalactic BLAST surveys will: (1) identify large numbers of high-redshift galaxies; (2) measure photometric redshifts, rest-frame FIR luminosities and star formation rates thereby constraining the evolutionary history of the galaxies that produce the FIR and sub-mm background; (3) measure cold pre-stellar sources associated with the earliest stages of star and planet formation; (4) make high-resolution maps of diffuse galactic emission over a wide range of galactic latitudes. In addition to achieving the above scientific goals, the exciting legacy of the BLAST LDB experiment will be a catalogue of 3000-5000 extragalactic sub-mm sources and a 100 sq. deg. sub-mm galactic plane survey. Multi-frequency follow-up observations from SIRTF, ASTRO-F, and Herschel, together with spectroscopic observations and sub-arcsecond imaging from ALMA are essential to understand the physical nature of the BLAST sources.

  3. APPLICATION OF LARGE APERTURE EMATS TO WELD INSPECTION

    SciTech Connect

    Maclauchlan, D. T.; Clark, S. P.; Hancock, J. W.

    2008-02-28

    One of the most significant developments in EMAT operation is the incorporation of phased array techniques. Phased array EMATs enable electronic beam steering and focusing while operating with temporally short pulses for good range resolution. Using phased array EMAT operation, multiple high powered pulsers are combined in the generation of the ultrasonic wave and multiple elements are combined in the reception of the ultrasonic wave, for improved sensitivity. EMATs make it practical to operate with shear horizontal (SH) waves and scan over a metal part's surface. An EMAT generated line force at the surface launches shear horizontal waves with uniform amplitude for beam angles from -90 deg. to 90 deg. Shear horizontal waves also reflect without mode conversion from surfaces that are parallel to the polarization of the shear wave displacements. The combination of these advantages makes phased array EMATs well suited for weld inspection. Recently, BWXT Services has developed a 32 active channel EMAT phased array system for operation up to 5 MHz. In addition, each element can be constructed with several sub-elements, alternating in polarity, to effectively multiply the number of active elements for a restricted range of beam angles. For example by using elements comprised of 4 sub elements, a 128 active element aperture designed for operation with a nominal 60 deg. beam angle provides good beam steering and focusing performance for 45 deg. to 70 deg. beam angles. The large active apertures allow the use of highly focused beams for good defect detection and high resolution imaging of weld defects. Application of this system to weld inspections has verified that good defect detection and imaging is possible. In addition, operation with SH waves has proven to provide improved detection of lack of fusion at the cap and root of the weld for certain weld geometries. The system has also been used to demonstrate the inspection of submerged metal arc welds while welding.

  4. Application of Large Aperture Emats to Weld Inspection

    NASA Astrophysics Data System (ADS)

    Maclauchlan, D. T.; Clark, S. P.; Hancock, J. W.

    2008-02-01

    One of the most significant developments in EMAT operation is the incorporation of phased array techniques. Phased array EMATs enable electronic beam steering and focusing while operating with temporally short pulses for good range resolution. Using phased array EMAT operation, multiple high powered pulsers are combined in the generation of the ultrasonic wave and multiple elements are combined in the reception of the ultrasonic wave, for improved sensitivity. EMATs make it practical to operate with shear horizontal (SH) waves and scan over a metal part's surface. An EMAT generated line force at the surface launches shear horizontal waves with uniform amplitude for beam angles from -90° to 90°. Shear horizontal waves also reflect without mode conversion from surfaces that are parallel to the polarization of the shear wave displacements. The combination of these advantages makes phased array EMATs well suited for weld inspection. Recently, BWXT Services has developed a 32 active channel EMAT phased array system for operation up to 5 MHz. In addition, each element can be constructed with several sub-elements, alternating in polarity, to effectively multiply the number of active elements for a restricted range of beam angles. For example by using elements comprised of 4 sub elements, a 128 active element aperture designed for operation with a nominal 60° beam angle provides good beam steering and focusing performance for 45° to 70° beam angles. The large active apertures allow the use of highly focused beams for good defect detection and high resolution imaging of weld defects. Application of this system to weld inspections has verified that good defect detection and imaging is possible. In addition, operation with SH waves has proven to provide improved detection of lack of fusion at the cap and root of the weld for certain weld geometries. The system has also been used to demonstrate the inspection of submerged metal arc welds while welding.

  5. Imaging plasmas with coded aperture methods instead of conventional optics

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Bellan, Paul

    2012-10-01

    The spheromak and astrophysical jet plasma at Caltech emits localized EUV and X-rays associated with magnetic reconnection. However, conventional optics does not work for EUV or X-rays due to their high energy. Coded aperture imaging is an alternative method that will work at these energies. The technique has been used in spacecraft for high-energy radiation and also in nuclear medicine. Coded aperture imaging works by having patterns of materials opaque to various wavelengths block and unblock radiation in a known pattern. The original image can be determined from a numerical procedure that inverts information from the coded shadow on the detector plane. A one-dimensional coded mask has been designed and constructed for visualization of the evolution of a 1-d cross-section image of the Caltech plasmas. The mask is constructed from Hadamard matrices. Arrays of photo-detectors will be assembled to obtain an image of the plasmas in the visible light range. The experiment will ultimately be re-configured to image X-ray and EUV radiation.

  6. Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots.

    PubMed

    Chen, Yang; Chen, Jianfeng; Xu, Xianfan; Chu, Jiaru

    2015-04-01

    Bowtie aperture antennas are known to generate sub-diffraction limited optical spots in the visible and near-infrared frequencies, which can be applied to many areas. Regular bowtie apertures fabricated by FIB suffer from tapered sidewall and rounded corner, which degrade its optical enhancement and localization. In this work, a new fabrication method is demonstrated to manufacture bowtie aperture antennas which can produce optical spots with lateral size smaller than 20 nm. We also employ numerical simulations to compute the near-field distribution on the surface of the bowtie aperture with topography extracted from the fabrication antennas. The near-field distribution measured by s-NSOM agrees well with the simulation and confirms the improved near-field localization of our bowtie aperture. This new fabrication method can be applied to other types of ridged apertures, which promises wide applications of deep sub-diffraction limited optical spots in many areas.

  7. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Burdine, Robert (Technical Monitor)

    2001-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include in improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  8. Limitations of synthetic aperture laser optical feedback imaging.

    PubMed

    Glastre, Wilfried; Jacquin, Olivier; Hugon, Olivier; Guillet de Chatellus, Hugues; Lacot, Eric

    2012-11-01

    In this paper we study the origin and the effect of amplitude and phase noise on laser optical feedback imaging associated with a synthetic aperture (SA) imaging system. Amplitude noise corresponds to photon noise and acts as an additive noise; it can be reduced by increasing the global measurement time. Phase noise can be divided in three families: random, sinusoidal, and drift phase noise; we show that it acts as a multiplicative noise. We explain how we can reduce phase noise by making oversampling or multiple measurements depending on its type. This work can easily be extended to all SA systems (radar, laser, or terahertz), especially when raw holograms are acquired point by point.

  9. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field

    PubMed Central

    Wen, X.; Datta, A.; Traverso, L. M.; Pan, L.; Xu, X.; Moon, E. E.

    2015-01-01

    Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy. PMID:26525906

  10. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field

    NASA Astrophysics Data System (ADS)

    Wen, X.; Datta, A.; Traverso, L. M.; Pan, L.; Xu, X.; Moon, E. E.

    2015-11-01

    Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy.

  11. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field.

    PubMed

    Wen, X; Datta, A; Traverso, L M; Pan, L; Xu, X; Moon, E E

    2015-11-03

    Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy.

  12. Correction on the effect of numerical aperture in optical scatterometry

    NASA Astrophysics Data System (ADS)

    Li, Weiqi; Liu, Shiyuan; Zhang, Chuanwei; Chen, Xiuguo; Gu, Honggang

    2013-10-01

    Optical scatterometry, also referred to as optical critical dimension (OCD) metrology, has been introduced for critical dimension (CD) monitoring and overlay metrology with great success in recent years. Forward modeling to calculate the optical signature from the measured diffractive structure is one of the most important issues in OCD metrology. To simplify the forward modeling approach, such as rigorous coupled-wave analysis (RCWA), the incidence and azimuthal angles are usually assumed to be constant. However, since some focusing elements, such as focusing lens or parabolic mirrors with finite numerical aperture (NA), are always used to gain a sufficient small spot size onto the sample, this assumption is not true in the whole exit pupil of the focusing elements, leading to a modeling error in forward modeling, and finally leading to a fitting error in OCD metrology. In this paper, we propose a correction method with consideration of the effect of NA to decrease the modeling error in the forward modeling. The correction method is an average integral method based on Gaussian quadrature in two dimensions inside a circle, and is performed on forward modeling with varied incidence and azimuthal angles over the exit pupil. Experiments performed on silicon gratings with a Mueller matrix polarimeter have demonstrated that the proposed correction method achieves a higher accuracy in OCD metrology.

  13. Low mass large aperture vacuum window development at CEBAF

    SciTech Connect

    Keppel, C.

    1995-04-01

    Large aperture low mass vacuum windows are being developed for the HMS (High Momentum Spectrometer) and SOS (Short Orbit Spectrometer) spectrometers in Hall C at CEBAF. Because multiple scattering degrades the performance of a spectrometer it is important that the volume be evacuated and that the entrance and exit windows be as low mass as possible. The material used for such windows must be thin and light enough so as to have minimum effect of the beam, and at the same time, be thick and strong enough to operate reliably and safely. To achieve these goals, composite vacuum windows have been constructed of a thin sheet of Mylar with a reinforcing fabric. Reinforcing fabrics such as Kevlar and Spectra are available with tensile strengths significantly greater than that of Mylar. A thin layer of Myler remains necessary since the fabrics cannot achieve any sort of vacuum seal. The design, fabrication, testing, and operating experience with such composite windows for the Hall C spectrometers will be discussed.

  14. Error analysis of large aperture static interference imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Fan; Zhang, Guo

    2015-12-01

    Large Aperture Static Interference Imaging Spectrometer is a new type of spectrometer with light structure, high spectral linearity, high luminous flux and wide spectral range, etc ,which overcomes the contradiction between high flux and high stability so that enables important values in science studies and applications. However, there're different error laws in imaging process of LASIS due to its different imaging style from traditional imaging spectrometers, correspondingly, its data processing is complicated. In order to improve accuracy of spectrum detection and serve for quantitative analysis and monitoring of topographical surface feature, the error law of LASIS imaging is supposed to be learned. In this paper, the LASIS errors are classified as interferogram error, radiometric correction error and spectral inversion error, and each type of error is analyzed and studied. Finally, a case study of Yaogan-14 is proposed, in which the interferogram error of LASIS by time and space combined modulation is mainly experimented and analyzed, as well as the errors from process of radiometric correction and spectral inversion.

  15. A LARGE APERTURE NARROW QUADROUPOLE FOR THE SNS ACCUMULATOR RING.

    SciTech Connect

    TSOUPAS,N.; BRODOWSKI,J.; MENG,W.; WEI,J.; LEE,Y.Y.; TUOZZOLO,J.

    2002-06-03

    The accumulator ring of the Spallation Neutron Source (SNS) is designed to accept high-intensity H{sup -} beam of 1 GeV kinetic energy from the injecting LINAC, and to accumulate, in a time interval of 1 msec, 2 x 10{sup 14} protons in a single bunch of 700 nsec. In order to optimize the effective straight-section spaces for beam-injection, extraction and collimation, we have minimized the width of the large aperture quadrupoles which are located in the same straight sections of the accumulator ring with the injection and extraction systems. By minimizing the width of the quadrupoles to {+-}40.4 cm, the beam-injection and extraction angles are lowered to 8.75{sup o} and 16.8{sup o} respectively. Further optimization of the narrow quadrupole, minimizes the strength of the dodecapole multipole component of the quadrupole, thus reducing the width of the 12pole structure resonance and allowing a larger tune space for stability of the circulating beam. In this paper we present results derived from magnetic field calculations of 2D and 3D modeling, and discuss the method of optimizing the size of the quadrupole and minimizing its dodecapole multipole component.

  16. The Balloon-Borne Large Aperture Submillimeter Telescope - BLAST

    NASA Astrophysics Data System (ADS)

    Devlin, Mark

    We are proposing a comprehensive program to study the link between Galactic magnetic fields and star formation. After decades of study, the physical processes regulating star formation still remain poorly understood. Large-scale observations of star forming regions provide counts of the number of dense clouds each of which will eventually evolve into tens to hundreds of stars. However, when simple models of gravitational collapse are applied to the clouds they yield a Galactic star formation rate (SFR) which is many times what is actually observed. Some process or combination of processes must be slowing the collapse of the clouds. The two prevailing theories involve turbulence which prevents the effective dissipation of energy and Galactic magnetic fields which are captured and squeezed by the collapsing cloud provide a mechanism for mechanical support. Understanding these effects fits very well the SMD 2010 Science Plan's Cosmic Origins program. The Balloon-borne Large Aperture Telecope BLASTPol and its planned successor, Super BLASTPol, are the first instruments to combine the sensitivity and mapping speed necessary to trace magnetic fields across entire clouds with the resolution to trace fields down into dense substructures, including cores and laments. Super BLAST-Pol will provide polarization at 250, 350 and 500 mm, with a diffraction limited beam FWHM of 22 arcmin at 250 mm. Super BLASTPol therefore provides the critical link between the PLANCK all-sky polarization maps with 5 arcmin resolution and ALMA s ultra-high resolution, but with only a 20-arcsec field of view. BLASTPol will use the PLANCK data to refine its target selection, then ALMA will utilize BLASTPol maps to zero in on areas of particular interest. Together, these three instruments will be able to probe the inner workings of star formation with previously unreachable resolution, sensitivity and scope.

  17. An Engineering Concept and Enabling Technologies for a Large Single Aperture Far-Infrared Observatory (SAFIR)

    NASA Astrophysics Data System (ADS)

    Amato, Michael J.; Benford, Dominic J.; Moseley, Harvey S.; Roman, Juan

    2003-03-01

    "To take the next step in exploring this important part of the spectrum [30-300μm], the committee recommends the Single Aperture Far-Infrared Observatory (SAFIR)." - Astronomy and Astrophysics in the New Millennium, 2001. In response to this recommendation, we have undertaken a study of the enabling technologies for a large single aperture far-infrared telescope such as SAFIR. A broad list of science investigations was produced and used to generate an explicit list of science requirements, from which top-level engineering requirements were derived. From these requirements, we developed a conceptual design for the SAFIR observatory based on NGST's current designs. A detailed analysis has been made of the changes and technologies necessary to produce SAFIR. Crucial technologies requiring innovation include lightweight deployable optics, cryogenic cooling of optical elements and instruments, and large arrays of sensitive detectors. Cryogen-free refrigeration technologies are necessary for SAFIR's long mission lifetime, and will have to provide significant (~100mW) cooling power at 4K to cool the mirrors while providing very low temperatures (~50mK) for detector arrays. The detector arrays require wide wavelength coverage, thousands of continuum elements, and compatibility with broadband and spectroscopic instruments.

  18. Large- and Small-Aperture Fixed-Point Cells of Cu, Pt C, and Re C

    NASA Astrophysics Data System (ADS)

    Anhalt, Klaus; Wang, Yunfen; Yamada, Yoshiro; Hartmann, Jürgen

    2008-06-01

    Extending the application of metal (carbide) carbon eutectic fixed-point cells to radiometry, e.g., for measurements in irradiance mode, requires fixed-point cells with large apertures. In order to make large-aperture cells more readily usable in furnace systems with smaller furnace tubes commonly used for small-aperture fixed-point cells, a novel cell design was developed. For each of Cu, Pt C, and Re C fixed points, two types of fixed-point cells were manufactured, the small- and large-aperture cell. For Pt C and Re C, the large-aperture cells were filled with a hyper-eutectic metal carbon mixture; for the small cells, a hypo-eutectic mixture was used for filling. For each material, the small and large cells were compared with respect to radiometric differences. Whereas plateau shape and melting temperature are in good agreement for the small- and large-aperture Cu cells, a larger difference was observed between small- and large-aperture cells of Pt C and Re C, respectively. The origin of these observations, attributed to the temperature distribution inside the furnace, ingot contamination during manufacture, and non-uniform ingot formation for the larger cells, is discussed. The comparison of measurements by a radiation thermometer and filter radiometer of the Re C and Pt C large-aperture cells showed large differences that could be explained only by a strong radiance distribution across the cavity bottom. Further investigations are envisaged to clarify the cause.

  19. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.

    PubMed

    Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A

    2016-09-01

    Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles. PMID:27607663

  20. Large optics for the National Ignition Facility

    SciTech Connect

    Baisden, P.

    2015-01-12

    The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world’s largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF’s high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advanced optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.

  1. The balloon-borne large aperture submillimeter telescope

    NASA Astrophysics Data System (ADS)

    Truch, Matthew David Patey

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is designed to produce large (1-100 deg 2 ) maps of the sky at 250, 350, and 500 pm. The balloon platform lifts BLAST above most of the atmosphere, which is nearly opaque in the submillimeter, making BLAST significantly more sensitive than existing ground-based submillimeter telescopes. BLAST has had three successful flights on a high-altitude balloon. This thesis is in three parts. In the first part, the design, construction, and operation of BLAST is described in detail. Specifically, the submillimeter telescope and receiver, the cryogenic system, the various pointing sensors, and the command and control systems are covered. The processes of launching and landing the gondola are also discussed. In the second part, the analysis of BLAST data is discussed, and specifically data from the BLAST05 flight. The process of cleaning and preparing bolometer time-streams for map-making is discussed. The process of calibrating the data, flat-fielding the bolometer responsivity, removing time-varying changes in bolometer responsivity, and absolute flux calibration based on the fluxes of a known astronomical submillimeter source is detailed. Reconstructing the pointing solution from the data from the in-flight pointing sensors is discussed. Finally, combining the calibrated bolometer data with the reconstructed pointing solution to generate maps is described. In the third part, BLAST05 flight data and results are presented. Several compact sources were mapped, including solar system, Galactic, and extragalactic targets. These included Pallas and Saturn in the solar system, K3-50, W 75N, IRAS 20126+4104, CRL 2688, IRAS 21078+5211, LDN 1014, IRAS 21307+5049, IRAS 22134+5834, and IRAS 23011+6126 in the Galaxy, and the galaxies NGC 4565, Mrk 231, and Arp 220. Fluxes and spectral energy distributions (SEDs) of each of these sources at the BLAST wavelengths are presented, and these are compared with previous

  2. Comparison of real-time acousto-optic SAR (synthetic aperture radar) processor architectures

    SciTech Connect

    Stalker, K.T.; Dickey, F.M.; Molley, P.A.

    1987-08-01

    A comparison of real-time acousto-optic processors for synthetic aperture radar (SAR) image formation has been performed. These processors take advantage of the high processing speed and large time bandwidth product of acousto-optic devices (AOD's) in combination with the multichannel correlation capability of charge coupled devices (CCD) to form the SAR image in real time. They offer significant size, weight and power consumption advantages compared to conventional optical or digital processors. Architectures utilizing both spatial carriers and subtraction schemes for elimininating the unwanted bias terms have been analyzed. Also, multichannel architectures for complex (quadrature) processing have been addressed. In addition to imaging performance, the impact of these approaches on system complexity, real-time processing speed and required component capabilities are discussed. Results from both our analysis and the experimental implementation of a selected group of these architectures are presented. 8 refs., 5 figs., 1 tab.

  3. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    PubMed

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching. PMID:27410061

  4. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    PubMed

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

  5. Optical aperture area determination for accurate illuminance and luminous efficacy measurements of LED lamps

    NASA Astrophysics Data System (ADS)

    Dönsberg, Timo; Mäntynen, Henrik; Ikonen, Erkki

    2016-06-01

    The measurement uncertainty of illuminance and, consequently, luminous flux and luminous efficacy of LED lamps can be reduced with a recently introduced method based on the predictable quantum efficient detector (PQED). One of the most critical factors affecting the measurement uncertainty with the PQED method is the determination of the aperture area. This paper describes an upgrade to an optical method for direct determination of aperture area where superposition of equally spaced Gaussian laser beams is used to form a uniform irradiance distribution. In practice, this is accomplished by scanning the aperture in front of an intensity-stabilized laser beam. In the upgraded method, the aperture is attached to the PQED and the whole package is transversely scanned relative to the laser beam. This has the benefit of having identical geometry in the laser scanning of the aperture area and in the actual photometric measurement. Further, the aperture and detector assembly does not have to be dismantled for the aperture calibration. However, due to small acceptance angle of the PQED, differences between the diffraction effects of an overfilling plane wave and of a combination of Gaussian laser beams at the circular aperture need to be taken into account. A numerical calculation method for studying these effects is discussed in this paper. The calculation utilizes the Rayleigh-Sommerfeld diffraction integral, which is applied to the geometry of the PQED and the aperture. Calculation results for various aperture diameters and two different aperture-to-detector distances are presented.

  6. Design quadrilateral apertures in binary computer-generated holograms of large space bandwidth product.

    PubMed

    Wang, Jing; Sheng, Yunlong

    2016-09-20

    A new approach for designing the binary computer-generated hologram (CGH) of a very large number of pixels is proposed. Diffraction of the CGH apertures is computed by the analytical Abbe transform and by considering the aperture edges as the basic diffracting elements. The computation cost is independent of the CGH size. The arbitrary-shaped polygonal apertures in the CGH consist of quadrilateral apertures, which are designed by assigning the binary phases using the parallel genetic algorithm with a local search, followed by optimizing the locations of the co-vertices with a direct search. The design results in high performance with low image reconstruction error. PMID:27661593

  7. Optical synthetic-aperture radar processor archietecture with quadratic phase-error correction

    SciTech Connect

    Dickey, F.M.; Mason, J.J. )

    1990-10-15

    Uncompensated phase errors limit the image quality of synthetic-aperture radar. We present an acousto-optic synthetic-aperture radar processor architecture capable of measuring the quadratic phase error. This architecture allows for the error signal to be fed back to the processor to generate the corrected image.

  8. Optical synthetic-aperture radar processor architecture with quadratic phase-error correction.

    PubMed

    Dickey, F M; Mason, J J

    1990-10-15

    Uncompensated phase errors limit the image quality of synthetic-aperture radar. We present an acousto-optic synthetic-aperture radar processor architecture capable of measuring the quadratic phase error. This architecture allows for the error signal to be fed back to the processor to generate the corrected image.

  9. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope.

    PubMed

    Liu, Shutian; Hu, Rui; Li, Quhao; Zhou, Ping; Dong, Zhigang; Kang, Renke

    2014-12-10

    For the large-aperture space telescope, the lightweight primary mirror design with a high-quality optical surface is a critical and challenging issue. This work presents a topology optimization-based design procedure for a lightweight primary mirror and a new mirror configuration of a large-aperture space telescope is obtained through the presented design procedure. Inspired by the topology optimization method considering cast constraints, an optimization model for the configuration design of the mirror back is proposed, through which the distribution and the heights of the stiffeners on the mirror back can be optimized simultaneously. For the purpose of minimizing the optical surface deviation due to self-weight and polishing pressure loadings, the objective function is selected as to maximize the mirror structural stiffness, which can be achieved by minimizing the structural compliance. The total mass of the primary mirror is assigned as the constraint. In the application example, results of the optimized design topology for two kinds of mass constraints are presented. Executing the design procedure for specific requirements and postprocessing the topology obtained of the structure, a new mirror configuration with tree-like stiffeners and a multiple-arch back in double directions is proposed. A verification model is constructed to evaluate the design results and the finite element method is used to calculate the displacement of the mirror surface. Then the RMS deviation can be obtained after fitting the deformed surface by Zernike polynomials. The proposed mirror is compared with two classical mirrors in the optical performance, and the comparison results demonstrate the superiority of the new mirror configuration. PMID:25608076

  10. Optimization analysis of primary mirror in large aperture telescope based on workbench

    NASA Astrophysics Data System (ADS)

    Feng, Zhengsen; Wang, Guomin

    2015-10-01

    With the diameter increasing for large aperture telescope primary mirror, the gravity caused by the increased of surface size will directly affect the quality of optical imaging, the adjustment of large aperture primary mirror will be frequent according to the requirement of observation. As the angle and the azimuth's transformation of primary mirror influences the surface shape accuracy immediately, the rational design of the primary mirror supporting structure is of crucial importance. Now the general method is to use ANSYS APDL programming, which is inconvenient and complex to fit for the different components, the calculation require much time and the analysis is lack of efficient. Taking the diameter of 1.12 m telescope primary mirror as the research objection, the paper combine the actual design parameters of SONG telescope, respectively using ANSYS WORKBENCH to employ the primary mirror axial and lateral support model in finite element method, the optimal solution is obtained by optimization design and the change rule of mirror surface deformation under inclined condition is studied. The optimization results according with the requirements of the primary mirror comprehensive error proves that the optimization analysis method is available and applicable.

  11. Designs for a large-aperture telescope to map the CMB 10× faster.

    PubMed

    Niemack, Michael D

    2016-03-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 10⁴ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 10⁵-10⁶ detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >10⁵ detectors in a next generation CMB telescope. PMID:26974631

  12. Designs for a large-aperture telescope to map the CMB 10× faster.

    PubMed

    Niemack, Michael D

    2016-03-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 10⁴ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 10⁵-10⁶ detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >10⁵ detectors in a next generation CMB telescope.

  13. Focussed ion beam machined cantilever aperture probes for near-field optical imaging.

    PubMed

    Jin, E X; Xu, X

    2008-03-01

    Near-field optical probe is the key element of a near-field scanning optical microscopy (NSOM) system. The key innovation in the first two NSOM experiments (Pohl et al., 1984; Lewis et al., 1984) is the fabrications of a sub-wavelength optical aperture at the apex of a sharply pointed transparent probe tip with a thin metal coating. This paper discusses the routine use of focussed ion beam (FIB) to micro-machine NSOM aperture probes from the commercial silicon nitride cantilevered atomic force microscopy probes. Two FIB micro-machining approaches are used to form a nanoaperture of controllable size and shape at the apex of the tip. The FIB side slicing produces a silicon nitride aperture on the flat-end tips with controllable sizes varying from 120 nm to 30 nm. The FIB head-on drilling creates holes on the aluminium-coated tips with sizes down to 50 nm. Nanoapertures in C and bow tie shapes can also be patterned using the FIB head-on milling method to possibly enhance the optical transmission. A transmission-collection NSOM system is constructed from a commercial atomic force microscopy to characterize the optical resolution of FIB-micro-machined aperture tips. The optical resolution of 78 nm is demonstrated by an aperture probe fabricated by FIB head-on drilling. Simultaneous topography imaging can also be realized using the same probe. By mapping the optical near-field from a bow-tie aperture, optical resolution as small as 59 nm is achieved by an aperture probe fabricated by the FIB side slicing method. Overall, high resolution and reliable optical imaging of routinely FIB-micro-machined aperture probes are demonstrated.

  14. Analysis for simplified optics coma effection on spectral image inversion of coded aperture spectral imager

    NASA Astrophysics Data System (ADS)

    Liu, Yangyang; Lv, Qunbo; Li, Weiyan; Xiangli, Bin

    2015-09-01

    As a novel spectrum imaging technology was developed recent years, push-broom coded aperture spectral imaging (PCASI) has the advantages of high throughput, high SNR, high stability etc. This coded aperture spectral imaging utilizes fixed code templates and push-broom mode, which can realize the high-precision reconstruction of spatial and spectral information. But during optical lens designing, manufacturing and debugging, it is inevitably exist some minor coma errors. Even minor coma errors can reduce image quality. In this paper, we simulated the system optical coma error's influence to the quality of reconstructed image, analyzed the variant of the coded aperture in different optical coma effect, then proposed an accurate curve of image quality and optical coma quality in 255×255 size code template, which provide important references for design and development of push-broom coded aperture spectrometer.

  15. Effect of bandwidth and numerical aperture in optical scatterometry

    NASA Astrophysics Data System (ADS)

    Germer, Thomas A.; Patrick, Heather J.

    2010-03-01

    We consider the effects of finite spectral bandwidth and numerical aperture in scatterometry measurements and discuss efficient integration methods based upon Gaussian quadrature in one dimension (for spectral bandwidth averaging) and two dimensions inside a circle (for numerical aperture averaging). Provided the wavelength is not near a Wood's anomaly for the grating, we find that the resulting methods converge very quickly to a level suitable for most measurement applications. In the vicinity of a Wood's anomaly, however, the methods provide rather poor behavior. We also describe a method that can be used to extract the effective spectral bandwidth and numerical aperture for a scatterometry tool. We find that accounting for spectral bandwidth and numerical aperture is necessary to obtain satisfactory results in scatterometry.

  16. Rigorous analysis and design of diffractive cylindrical lenses with high numerical and large geometrical apertures

    NASA Astrophysics Data System (ADS)

    Schmitz, Martin; Bryngdahl, Olof

    1998-07-01

    A concept is presented for the analysis of diffractive cylindrical lenses with apertures larger than 100 wavelengths which are denoted as large geometrical apertures throughout this paper. The transmitted field of a cylindrical lens is calculated by the use of rigorous electromagnetic diffraction theory. Large geometrical apertures are subdivided into smaller overlapping areas that are treated in sequence. The wave propagation from the lens plane to the focal plane is calculated with the spectrum of plane waves. A design concept is presented which ensures that the performance of diffractive cylindrical lenses with high numerical apertures (NA≥0.3) is almost independent of the polarization of the illuminating light. The design concept is based on the local grating model in combination with the phase detour principle. As an example we design and analyze a F/0.5 cylindrical lens (NA=0.71) with a geometrical aperture of 600 wavelengths.

  17. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    PubMed

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations. PMID:27607276

  18. Study on the method to test large-aperture hyperboloid convex mirror

    NASA Astrophysics Data System (ADS)

    Meng, Xiaohui; Dong, Huiwen; Guo, Wen; Wang, Huijun

    2014-08-01

    There are numerous reflecting optical system designs that call for large-aperture convex surfaces, such as secondary mirror in on-axis three mirror anastigmatic (TMA). Several methods to test high accuracy hyperboloid convex surfaces are introduced separately in this paper. A kind of arrangement is chosen to test a surface with diameter of 420mm, radius of 1371mm, and conic K -2.1229. The CGH compensator for testing is designed, which is made up of illumination lens and hologram test plate with designed residual wavefront aberration less than 0.001λ (RMS). The second transmitted method that is equipped with a technical flat surface coating by Ag film in the bottom of surface mirror under test, which form an auto-collimation optical system to eliminate the aberration. The Hindle-Simpson test that requires a larger meniscus lens to compensate the optical aberration, and the designed result of optical test system is less than 0.0016λ. Contrasting the CGH compensator and the second transmitted method, the Hindle-Simpson testing method has the advantage of it is easily to manufacture and adjust; meanwhile the test result is stable and has been less affected by the environment. It has been found that the method is rational and reliable, and it can fulfill the requirement of manufacturing and testing process for hyperboloid convex mirrors.

  19. Large-Aperture Wide-Bandwidth Anti-Reflection-Coated Silicon Lenses for Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, E. J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, M. A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coffecient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 deg. with low cross-polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to sub-millimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  20. Large-aperture Wide-bandwidth Antireflection-coated Silicon Lenses for Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, Edward J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.; Hubmayr, J.; Irwin, K.; Newburgh, L.; Nibarger, J. P.; Page, L.; Quijada, Manuel A.; Schmitt, B. L.; Staggs, S. T.; Thornton, R.; Zhang, L.

    2013-01-01

    The increasing scale of cryogenic detector arrays for submillimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n 3.4, low loss, and high thermal conductivity is a nearly optimal material for these purposes but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three-axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating.We have fabricated silicon lenses as large as 33.4 cm in diameter with micromachined layers optimized for use between 125 and 165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30deg with low cross polarization.We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to submillimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

  1. Advanced Technology Large-Aperture Space Telescope: Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Glavallsco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2012-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8- to 16-m ultraviolet optical near Infrared space observatory for launch in the 2025 to 2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including: Is there life elsewhere in the Galaxy? We present a range of science drivers and the resulting performance requirements for ATLAST (8- to 16-marcsec angular resolution, diffraction limited imaging at 0.5 micron wavelength, minimum collecting area of 45 sq m, high sensitivity to light wavelengths from 0.1 to 2.4 micron, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to that of current generation observatory-class space missions.

  2. THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE (BLAST) 2006: CALIBRATION AND FLIGHT PERFORMANCE

    SciTech Connect

    Truch, Matthew D. P.; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Gundersen, Joshua O.; Hughes, David H.; Martin, Peter G.; Netterfield, C. Barth; Olmi, Luca; Patanchon, Guillaume

    2009-12-20

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 250 hr flight over Antarctica in 2006 December (BLAST06). As part of the calibration and pointing procedures, the red hypergiant star VY CMa was observed and used as the primary calibrator. Details of the overall BLAST06 calibration procedure are discussed. The 1sigma uncertainty on the absolute calibration is accurate to 9.5%, 8.7%, and 9.2% at the 250, 350, and 500 mum bands, respectively. The errors are highly correlated between bands resulting in much lower errors for the derived shape of the 250-500 mum continuum. The overall pointing error is < 5'' rms for the 36'', 42'', and 60'' beams. The performance of optics and pointing systems is discussed.

  3. Design of MEMS devices with optical apertures for the detection of transparent biological cells.

    PubMed

    Zhou, Xiaodong; Poenar, Daniel Puiu; Liu, Kai Yu; Tse, Man Siu; Heng, Chew-Kiat; Tan, Swee Ngin

    2008-10-01

    This paper provides a novel technique to detect transparent biological living cells trapped in a microfluidic MEMS device by optical diffraction. The device essentially consists of an optical aperture or an aperture array patterned in metal layer and a microfluidic chamber positioned above the center of the aperture. When the cells in the chamber are illuminated through the aperture, the far-field diffraction pattern can be recorded by a CCD camera or a photodetector array. This diffraction pattern uniquely corresponds to the sizes, positions, and intrinsic optical properties of the aperture, cells, and the microfluidic chamber materials, so any unknown but relevant parameter is able to be extrapolated when all other parameters are fixed or identified. This paper describes in detail the designs of various microfluidic chambers and apertures for this application, and the development of a complete set of software for the analysis of the cells' optical properties. Compared with other currently available methods for the detection of transparent living cells, this method has the advantages of simple device structure, easy to manipulate, able to simultaneously detect several cells of different species, as well as providing accurate and sensitive results. Besides the detection of living cells, this technique can also be used to detect or characterize other transparent or low optical absorption particles, such as polymer spheres or insoluble droplets, inside an aqueous solution.

  4. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine. PMID:23481818

  5. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine.

  6. Precision Imaging with Adaptive Optics Aperture Masking Interferometry

    NASA Astrophysics Data System (ADS)

    Martinache, F.; Lloyd, J. P.; Tuthill, P.; Woodruff, H. C.; ten Brummelaar, T.; Turner, N.

    2005-12-01

    Adaptive Optics (AO) enables sensitive diffraction limited imaging from the ground on large telescopes. Much of the promise of AO has yet to be fully realised, due to the difficulties imposed by the complicated, unstable and unknown PSF. At the highest resolutions, (inside the PSF) AO has yet to demonstrate full potential for improvements over speckle techniques. The most precise astronomical speckle imaging observations have resulted from non-redundant pupil masking. We are developing a technique to solve the problem of PSF characterization in AO imaging by synthesizing the heritage of image reconstruction with sparse pupil sampling from astronomical interferometry with the long coherence times available after AO correction. Masking the output pupil of the AO system with a non-redundant array can provide self-calibrated imaging. Further calibration of the MTF can be provided with AO wavefront sensor telemetry data. With a precision calibrated PSF, reliable, well-posed deconvolution is possible. High SNR data and accurate MTF calibration provided by the combination of non-redundant masking and AO system telemetry, allow super-resolution. AEOS provides a unique capability to explore the dynamic range and imaging precision of this technique at visible wavelengths. The NSF/AFOSR program has funded an instrument to explore these new imaging techniques at AEOS. ZOR/AO (Zero Optical Redundance with Adaptive Optics) is presently under construction, to be deployed at AEOS in 2005.

  7. ATLAST-9.2: A Deployable Large Aperture UVOIR Space Telescope

    NASA Astrophysics Data System (ADS)

    Oegerle, William R.; Feinberg, L.; Purves, L.; Hyde, T.; Thronson, H.; Townsend, J.; Postman, M.; Bolcar, M.; Budinoff, J.; Dean, B.; Clampin, M.; Ebbets, D.; Gong, Q.; Gull, T.; Howard, J.; Jones, A.; Lyon, R.; Pasquale, B.; Perrygo, C.; Smith, S.; Thompson, P.; Woodgate, B.

    2010-01-01

    We present the results of a study of a deployable version of the Advanced Technology Large Aperture Space Telescope (ATLAST) that could be launched on an Evolved Expendable Launch Vehicle (EELV). ATLAST is a concept for a next-generation UVOIR observatory to follow HST and JWST. The observatory retains significant heritage from JWST, thereby taking advantage of technologies and engineering already developed for that mission. At the same time, we have identified several design changes to the JWST architecture, some of which are required due to the demanding wavefront error requirements at visible wavelengths. The optical telescope assembly has a segmented 9.2-meter aperture and consists of 36 hexagonal glass mirrors, each of which is 1.315m in size (flat-to-flat). The telescope can be folded to fit in the 6.5m fairing on the planned upgrade to the Delta-IV heavy launch vehicle. Near-real time wavefront sensing and control is performed on-board the telescope using stars in the field of view to deliver diffraction limited imaging performance at 500nm wavelength. The optical design of the telescope provides an 8x20 arcmin FOV in which 4-5 instruments can be accommodated, plus fine guidance and wavefront sensors. Unlike JWST, the OTA sits at the end of a multi-gimbaled arm, allowing pitch and roll motion, and is isolated from the sunshield and spacecraft bus by an active isolation system. Our design permits servicing in order to extend the life of the observatory.

  8. Three-dimensional digital holographic aperture synthesis for rapid and highly-accurate large-volume metrology

    NASA Astrophysics Data System (ADS)

    Crouch, Stephen; Kaylor, Brant M.; Barber, Zeb W.; Reibel, Randy R.

    2015-09-01

    Currently large volume, high accuracy three-dimensional (3D) metrology is dominated by laser trackers, which typically utilize a laser scanner and cooperative reflector to estimate points on a given surface. The dependency upon the placement of cooperative targets dramatically inhibits the speed at which metrology can be conducted. To increase speed, laser scanners or structured illumination systems can be used directly on the surface of interest. Both approaches are restricted in their axial and lateral resolution at longer stand-off distances due to the diffraction limit of the optics used. Holographic aperture ladar (HAL) and synthetic aperture ladar (SAL) can enhance the lateral resolution of an imaging system by synthesizing much larger apertures by digitally combining measurements from multiple smaller apertures. Both of these approaches only produce two-dimensional imagery and are therefore not suitable for large volume 3D metrology. We combined the SAL and HAL approaches to create a swept frequency digital holographic 3D imaging system that provides rapid measurement speed for surface coverage with unprecedented axial and lateral resolution at longer standoff ranges. The technique yields a "data cube" of Fourier domain data, which can be processed with a 3D Fourier transform to reveal a 3D estimate of the surface. In this paper, we provide the theoretical background for the technique and show experimental results based on an ultra-wideband frequency modulated continuous wave (FMCW) chirped heterodyne ranging system showing ~100 micron lateral and axial precisions at >2 m standoff distances.

  9. Reflective Schmidt-Cassegrain system for large-aperture telescopes.

    PubMed

    Brychikhin, M N; Chkhalo, N I; Eikhorn, Ya O; Malyshev, I V; Pestov, A E; Plastinin, Yu A; Polkovnikov, V N; Rizvanov, A A; Salashchenko, N N; Strulya, I L; Toropov, M N

    2016-06-01

    A reflective modification of the Schmidt-Cassegrain system was built and tested. Ultraviolet (UV) and soft x-ray applications are discussed. The system consists of a planoid mirror with an aspheric profile and prime concave and secondary convex spherical mirrors. Spherical aberration in a wide field of view and astigmatism are compensated by the aspheric profile of the planoid. The main parameters of the scheme are as follows: an entrance aperture of 180 mm, a focal ratio F/3.2, an angular resolution better than 3'' (corresponding to a pixel size of a back-side illuminated CCD), a field of view of ±1.5° (2ω=3°) and a flat image field with a diameter of 30.4 mm. Due to the absence of chromatic aberrations and wide field of view, the scheme is of considerable interest for hyperspectral instruments. In particular, the operating range of the instruments can be expanded into vacuum UV and UV regions. PMID:27411199

  10. Reflective Schmidt-Cassegrain system for large-aperture telescopes.

    PubMed

    Brychikhin, M N; Chkhalo, N I; Eikhorn, Ya O; Malyshev, I V; Pestov, A E; Plastinin, Yu A; Polkovnikov, V N; Rizvanov, A A; Salashchenko, N N; Strulya, I L; Toropov, M N

    2016-06-01

    A reflective modification of the Schmidt-Cassegrain system was built and tested. Ultraviolet (UV) and soft x-ray applications are discussed. The system consists of a planoid mirror with an aspheric profile and prime concave and secondary convex spherical mirrors. Spherical aberration in a wide field of view and astigmatism are compensated by the aspheric profile of the planoid. The main parameters of the scheme are as follows: an entrance aperture of 180 mm, a focal ratio F/3.2, an angular resolution better than 3'' (corresponding to a pixel size of a back-side illuminated CCD), a field of view of ±1.5° (2ω=3°) and a flat image field with a diameter of 30.4 mm. Due to the absence of chromatic aberrations and wide field of view, the scheme is of considerable interest for hyperspectral instruments. In particular, the operating range of the instruments can be expanded into vacuum UV and UV regions.

  11. Detection of Luminescent Nanodiamonds Using a Scanning Near-Field Optical Microscope with an Aperture Probe

    NASA Astrophysics Data System (ADS)

    Shershulin, V. A.; Samoylenko, S. R.; Shenderova, O. A.; Vlasov, I. I.; Konov, V. I.

    2016-09-01

    Scanning near-fi eld optical microscopy (SNOM) with an aperture probe has been used to map the luminescence of isolated submicron diamond crystallites. 532-nm laser light was used to excite luminescence of nitrogen-vacancy (NV) centers. The sizes of the analyzed diamond crystallites were determined with an atomic-force microscope. The optical resolution for the lateral dimensions of the luminescing diamond crystallites was doubled on going from confocal luminescence microscopy to scanning near-fi eld optical microscopy with a 290-nm probe aperture diameter.

  12. Algorithm and simulation for analysis of bio-images obtained by aperture diffraction based optical MEMS.

    PubMed

    Zhou, Xiaodong; Poenar, Daniel Puiu; Liu, Kai Yu; Tse, Man Siu; Heng, Chew-Kiat; Tan, Swee Ngin; Zhang, Nan

    2008-08-01

    This paper proposes a novel method to detect transparent living cells in a transparent microfluidic chamber by optical diffraction of an aperture or an aperture array. Through the analysis of the far-field diffraction pattern, one of the parameters of the cells, including the size, refractive index, or position, can be extracted by the analysis software developed in this paper. Calculations are carried out to discuss the key issues of this MEMS device, and our simulation is verified by diffraction patterns of transparent microparticles on fabricated apertures, recorded via a digital camera.

  13. Focal shift for a gaussian beam by an aperture written in terms of matrix optics

    NASA Astrophysics Data System (ADS)

    Lu, Xuanhui; Wang, Shaomin; Ronchi, Laura

    1992-05-01

    The focal shift in a gaussian beam focussed by an optical system with an aperture is generalized by applying Collin's diffraction integral. By this implementation, the field distribution on axis is given. The method may be useful to determine the focal shift of a thin lens and of an optical focusing system as well.

  14. Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy.

    PubMed

    Sheppard, Colin J R; Kou, Shan Shan; Depeursinge, Christian

    2012-03-01

    It is shown that the spatial frequencies recorded in interferometric synthetic aperture microscopy do not correspond to exact backscattering [as they do in unistatic synthetic aperture radar (SAR)] and that the reconstruction process based on SAR is therefore based on an approximation. The spatial frequency response is developed based on the three-dimensional coherent transfer function approach and compared with that in optical coherence tomography and digital holographic microscopy.

  15. A high-resolution detecting system based on machine vision for defects on large aperture and super-smooth surface

    NASA Astrophysics Data System (ADS)

    Yang, Yongying; Zhao, Limin; Wang, Shitong; Cao, Pin; Liu, Dong; Li, Lu; Yan, Lu; Li, Chen; Xie, Shibing; Li, Yang; Chen, Yangjie

    2015-02-01

    The high-resolution detecting system based on machine vision for defects on large aperture and super-smooth surface uses a novel ring telecentric lighting optical system detecting the defects on the sample all round and without blind spots. The scattering light induced by surface defects enters the adaptive and highly zoom microscopic scattering dark-field imaging system for defect detecting and then forms digital images. Sub-aperture microscopic scanning sampling and fast stitching on the surface is realized by using precise multi-axis shifting guided scanning system and a standard comparison board based upon binary optics is used to implement fast calibration of micron-dimension defects detected actually. The pattern recognition technology of digital image processing which can automatically output digitalized surface defects statements after scaling is established to comprehensively evaluate defects. This system which can reach micron-dimension defect resolution can achieve detections of large aperture components of 850 mm × 500 mm, solve the durable problem of subjective uncertainty brought in by human visual detection of defects and achieve quantitative detection of defects with machine vision.

  16. LCLS X-ray mirror measurements using a large aperture visible light interferometer

    SciTech Connect

    McCarville, T; Soufli, R; Pivovaroff, M

    2011-03-02

    Synchrotron or FEL X-ray mirrors are required to deliver an X-ray beam from its source to an experiment location, without contributing significantly to wave front distortion. Accurate mirror figure measurements are required prior to installation to meet this intent. This paper describes how a 300 mm aperture phasing interferometer was calibrated to <1 nm absolute accuracy and used to mount and measure 450 mm long flats for the Linear Coherent Light Source (LCLS) at Stanford Linear Accelerator Center. Measuring focus mirrors with an interferometer requires additional calibration, because high fringe density introduces systematic errors from the interferometer's imaging optics. This paper describes how these errors can be measured and corrected. The calibration approaches described here apply equally well to interferometers larger than 300 mm aperture, which are becoming more common in optics laboratories. The objective of this effort was to install LCLS flats with < 10 nm of spherical curvature, and < 2 nm rms a-sphere. The objective was met by measuring the mirrors after fabrication, coating and mounting, using a 300 mm aperture phasing interferometer calibrated to an accuracy < 1 nm. The key to calibrating the interferometer accurately was to sample the error using independent geometries that are available. The results of those measurements helped identify and reduce calibration error sources. The approach used to measure flats applies equally well to focus mirrors, provided an additional calibration is performed to measure the error introduced by fringe density. This calibration has been performed on the 300 mm aperture interferometer, and the measurement correction was evaluated for a typical focus mirror. The 300 mm aperture limitation requires stitching figure measurements together for many X-ray mirrors of interest, introducing another possible error source. Stitching is eliminated by applying the calibrations described above to larger aperture instruments

  17. 8 Meter Advanced Technology Large-Aperture Space Telescope (ATLAST-8m)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    ATLAST-8m (Advanced Technology Large Aperture Space Telescope) is a proposed 8-meter monolithic UV/optical/NIR space observatory (wavelength range 110 to 2500 nm) to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V heavy lift vehicle. Given its very high angular resolution (15 mas @ 500 nm), sensitivity and performance stability, ATLAST-8m is capable of achieving breakthroughs in a broad range of astrophysics including: Is there life elsewhere in the Galaxy? An 8-meter UVOIR observatory has the performance required to detect habitability (H2O, atmospheric column density) and biosignatures (O2, O3, CH4) in terrestrial exoplanet atmospheres, to reveal the underlying physics that drives star formation, and to trace the complex interactions between dark matter, galaxies, and intergalactic medium. The ATLAST Astrophysics Strategic Mission Concept Study developed a detailed point design for an 8-m monolithic observatory including optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; mass and power budgets; and system cost. The results of which were submitted by invitation to NRC's 2010 Astronomy & Astrophysics Decadal Survey.

  18. [Manufacture tolerance analysis of solid Mach-Zehnder interferometer in large aperture static imaging spectrometer (LASIS)].

    PubMed

    Liu, Qing; Zhou, Jin-Song; Nie, Yun-Feng; Lü, Qun-Bo

    2014-07-01

    The principle and instrumental structure of large aperture static imaging spectrometer (LASIS) were briefly described in the present paper, the principle of the Mach-Zehnder imaging spectrometer was introduced, and the Mach-Zehnder interferometers' working way in the imaging spectrometer was illustrated. The structure of solid Mach-Zehnder interferometer was analyzed, and discussion was made based on the requirements of field of view (FOV) in image space and single sided interferogram with a small portion around zero path difference (ZPD). The additional optical path difference (OPD) created by manufacturing and matching tolerance of two asymmetrical pentagonal prisms will lead to the displacement of shearing and OPD nonlinearity. It was showed that the additional OPD from non-common optical path structure of solid Mach-Zehnder spectrometer implies more requirements on the manufacture of this element, compared with Sagnac interferometer, for the matching tolerance of two asymmetrical pentagonal prisms to br lower than 0.02 mm. The recovery spectrum error caused by the OPD nonlinearity is lower than 0.2% and can be ignored.

  19. Complex ray analysis of radiation from large apertures with tapered illumination

    NASA Astrophysics Data System (ADS)

    Ghione, G.; Felsen, L. B.; Montrosset, I.

    1984-07-01

    An attempt is made to model the initial distribution of radiation emitted by an antenna feed in terms of a building-block approach. Attention is given to both near and far field calculations for large apertures with tapered illumination. Generalized one-dimensional tapered profiles expressed in terms of the wavenumber and the aperture coordinate are used to handle profiles ranging from gaussian to rectangular. The analysis covers complex ray tracing from the aperture plane to the observer. The inclusion of all relevant rays is assured by a saddle point analysis of the exact field integral. The ray tracing procedure is demonstrated to be effective without reference to an aperture integral. Several field radiation patterns are calculated as examples.

  20. Thermal analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8-meter primary mirror

    NASA Astrophysics Data System (ADS)

    Hornsby, Linda; Hopkins, Randall C.; Stahl, H. Philip

    2010-07-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 point and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The objective is to maintain the primary mirror at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop®1. A detailed model of the primary mirror was required in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew and a 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the solar environment that influences the thermal performance. All assumptions that were used in the analysis are also documented. Estimates of mirror heater power requirements are reported. The thermal model is used to predict gradients across and through the primary mirror using an idealized boundary temperature on the back and sides of the mirror of 280 K.

  1. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  2. Large-Aperture, Three Mirror Telescopes for Near-Earth

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; McGraw, J.

    In this era when Space Situational Awareness (SSA) is a national priority and optical-infrared telescopic sensor development is underway, cost-benefit analyses of competing approaches are necessary and appropriate. The DOD is presently investing in a new three-mirror telescope for SSA. At the same time, the Air Force, various universities and private research organizations are either studying or building wide-field telescopes with similar capabilities, but in most cases, at a significantly lower cost. Much of the expense for the DOD system appears driven by certain design choices which were advertised as necessary to fulfill the mission. Design details which would allow an independent analysis have not been published and no public comparison with other approaches is known to exist. Most telescope designs however, can be closely approximated from their optical configuration and imaging performance specifications. An optical designer will tell you that field curvature is one of the five monochromatic aberrations which they try to eliminate. The fact that one DOD development effort considers field curvature a design feature immediately draws attention to the project. This coupled with the paucity of published information and the very high development cost makes this program irresistible for comparison with competing approaches. This paper examines the likely design and performance of a proxy telescope intended to find NEOs, compares and contrasts that telescope with similar, but lower cost on-going projects, and examines the predictable impacts of reproducing such a telescope and placing multiple copies around the globe. The study primarily concentrates on performance measured in terms of search rate in square degrees per hour vs. object visual magnitude. Other considerations such as cost, transportability, availability of replacement components and ease of installation are also considered.

  3. RF/optical shared aperture for high availability wideband communication RF/FSO links

    SciTech Connect

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2014-04-29

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  4. RF/optical shared aperture for high availability wideband communication RF/FSO links

    SciTech Connect

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2015-03-24

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  5. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    NASA Technical Reports Server (NTRS)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  6. Synthesis of a large communications aperture using small antennas

    NASA Technical Reports Server (NTRS)

    Resch, George M.; Cwik, T. W.; Jamnejad, V.; Logan, R. T.; Miller, R. B.; Rogstad, Dave H.

    1994-01-01

    In this report we compare the cost of an array of small antennas to that of a single large antenna assuming both the array and single large antenna have equal performance and availability. The single large antenna is taken to be one of the 70-m antennas of the Deep Space Network. The cost of the array is estimated as a function of the array element diameter for three different values of system noise temperature corresponding to three different packaging schemes for the first amplifier. Array elements are taken to be fully steerable paraboloids and their cost estimates were obtained from commercial vendors. Array loss mechanisms and calibration problems are discussed. For array elements in the range 3 - 35 m there is no minimum in the cost versus diameter curve for the three system temperatures that were studied.

  7. The research of filtering on images with noises of the three-mirror aperture optical system

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wu, Quanying; Fan, Junliu; Wang, Youqing

    2014-11-01

    In order to eliminate the noise in images acquired by the sparse aperture system, the modeling and filtering of electrical and optical noise are analyzed by the case of three-mirror aperture optical system. The study shows that the median filter can be applied to remove Gauss and salt & pepper noise, meanwhile high-pass filter with Gauss function can eliminate the influence of non-uniform illuminating on imaging. The Lucy-Richardson algorithm is used to restore the image, by which the resolution is heightened.

  8. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; Shaklan, Stuart B.; Stahl, H. Philip; Thronson, Harley A.

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  9. Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)

    2000-01-01

    We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.

  10. Metrological characterization of a large aperture Fizeau for x-ray mirrors measurement

    NASA Astrophysics Data System (ADS)

    Vannoni, Maurizio; Freijo Martín, Idoia

    2015-06-01

    The European XFEL is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 milliseconds long pulse train at 10Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale) and high average brilliance (1.61025 photons / s / mm2 / mrad2/ 0.1% bandwidth). Due to the very short wavelength and very high pulse energy, all the mirrors need to have high quality surface, to be very long, and at the same time to implement an effective cooling system. Matching these tight specifications and assessing them with high precision optical measurements is very challenging. In order to measure the mirrors and to characterize their interaction with the mechanical mounts, we equipped a Metrology Laboratory with a Large Aperture Fizeau. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter. Despite the commercial nature of the system, special care has been done in the polishing of the reference flats and in the expander quality. In this report, we show the preparation of the instrument, the calibration and the performance characterization, together with some preliminary results. We also describe the approach that we want to follow for the x-rays mirrors measurements. The final goal will be to characterize very long mirrors, almost 1 meter long, with nanometer accuracy.

  11. Determination of Turbulent Sensible Heat Flux over a Coastal Maritime Area Using a Large Aperture Scintillometer

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun

    2015-11-01

    Scintillometers have been widely used in estimating the surface-layer sensible heat flux (Q_H) over natural and urban surfaces, but their application over water bodies is rare. Here, a large aperture scintillometer (LAS) was deployed over a coastal maritime area (`a beach') with an optical path distance of 1 km to investigate LAS capability in estimating the sensible heat fluxes. The measurements were conducted for clear days in the cold season, characterized by a warmer sea surface than the overlying air throughout the studied days. The LAS-derived Q_H showed a significant diurnal variability of 10-150 W m^{-2} at the coastal site, and it was found that local thermal advection and tidal change at the site largely influenced the diurnal variability. A series of sensitivity tests indicated that the uncertainty in the LAS-derived Q_H was less than 11 %, except when De Bruin's similarity function was used. The overall results demonstrate that the LAS system can detect the magnitude and variability of the turbulent heat exchange at the coastal site with high temporal resolution, suggesting its usefulness for estimating Q_H in the coastal maritime environment.

  12. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    NASA Technical Reports Server (NTRS)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; Shaklan, S.; Stahl, P.; Thronson, H.

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  13. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    SciTech Connect

    Chen, Tao; Fan, Tingbo; Zhang, Wei; Qiu, Yuanyuan; Tu, Juan E-mail: dzhang@nju.edu.cn; Guo, Xiasheng; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2014-03-21

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focused HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.

  14. Large aperture vibrating wire monitor with two mechanically coupled wires for beam halo measurements

    SciTech Connect

    Arutunian, S. G.; Avetisyan, A. E.; Davtyan, M. M.; Harutyunyan, G. S.; Vasiniuk, I. E.; Chung, M.; Scarpine, V.

    2014-03-01

    Development of a new type of Vibrating Wire Monitor (VWM), which has two mechanically coupled wires (vibrating and target), is presented. The new monitor has a much larger aperture size than the previous model of the VWM, and thus allows us to measure transverse beam halos more effectively. A prototype of such a large aperture VWM with a target wire length of 60 mm was designed, manufactured, and bench-tested. Initial beam measurements have been performed at the Fermilab High Intensity Neutrino Source (HINS) facility, and key results are presented.

  15. A novel method of calculating far-field patterns of large aperture antennas

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1986-01-01

    A method is described for calculation of the radiation pattern of large aperture antennas. A piece-wise linear approximation of the aperture field using overlapping pyramidal basis functions allows the radiation pattern of an aperture antenna to be calculated as though it were a two-dimensional array. The calculation of radiation pattern data versus theta and phi, suitable for 3-D or contour plot algorithms, is achieved by locating the array in the yz-plane and performing a summation over the aperture field data sampled on a square grid. A FORTRAN subroutine is provided for performing radiation pattern calculations. Numerical results are included to demonstrate the accuracy and convergence of the method. These numerical results indicate that typical accuracies of + or - 0.1 dB for Directivity, + or - dB for the 1st Sidelobe Level, and + - 2dB for the 2nd Sidelobe Level can be obtained with an aperture grid of 45x45 points and requires approximately 0.02 seconds CPU time per far-field data point on a VAX 11/750 with a floating point accelerator.

  16. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay; Ayers, Shannon Lee

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  17. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay; Ayers, Shannon Lee

    2012-10-09

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  18. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building, and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 34 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers, and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  19. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.

    2004-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 3 - 4 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  20. Measurement of radius of curvature of spherical optical surfaces with small curvature and aperture by optical profiler

    NASA Astrophysics Data System (ADS)

    Ma, Shuang; Yi, Shengzhen; Chen, Shenghao; Wang, Zhanshan

    2014-11-01

    Monochromatic energy multilayer Kirkpatrick-Baez microscope is one of key diagnostic tools for researches on inertial confinement fusion. It is composed by two orthogonal concave spherical mirrors with small curvature and aperture, and produce the image of an object by collecting X-rays in each orthogonal direction, independently. Accurate measurement of radius of curvature of concave spherical mirrors is very important to achieve its design optical properties including imaging quality, optical throughput and energy resolution. However, it is difficult to measure the radius of curvature of spherical optical surfaces with small curvature and aperture by conventional methods, for the produced reflective intensity of glass is too low to correctly test. In this paper, we propose an improved measuring method of optical profiler to accomplish accurate measurement of radius of curvature of spherical optical surfaces with small curvature and aperture used in the monochromatic energy multilayer Kirkpatrick-Baez microscope. Firstly, we use a standard super-smooth optical flat to calibrate reference mirror before each experiment. Following, deviation of central position between measurement area and interference pattern is corrected by the theory of Newton's rings, and the zero-order fringe position is derived from the principle of interference in which surface roughness has minimum values in the position of zero light path difference. Measured results by optical profiler show the low relative errors and high repeatability. Eventually, an imaging experiment of monochromatic energy multilayer Kirkpatrick-Baez microscope determines the measurement accuracy of radius of curvature.

  1. Near-field radiation of bow-tie antennas and apertures at optical frequencies.

    PubMed

    Sendur, K; Challener, W

    2003-06-01

    We investigate the ability of the bow-tie slot antenna to generate intense optical spots below the diffraction limit. A commercially available finite-difference time-domain electromagnetic modelling software is used in the numerical simulations. The finite-difference time-domain software is first compared to analytical results at optical frequencies to verify its accuracy. We then present numerical simulations for various geometries involving apertures on thin films and the bow-tie antenna. The transmission efficiency and optical spot size of the bow-tie antenna are compared with those of rectangular and circular apertures on thin metal films. We also investigate the effects of material composition, frequency, and antenna geometry on the near-field radiation pattern using numerical simulations. PMID:12787099

  2. High numerical aperture large-core photonic crystal fiber for a broadband infrared transmission

    NASA Astrophysics Data System (ADS)

    Pniewski, J.; Stepniewski, G.; Kasztelanic, R.; Siwicki, B.; Pierscinska, D.; Pierscinski, K.; Pysz, D.; Borzycki, K.; Stepien, R.; Bugajski, M.; Buczynski, R.

    2016-11-01

    In this paper we present a large mode area photonic crystal fiber made of the heavy metal oxide glass CS-740, dedicated for a broadband light guidance in the visible, near- and mid-infrared regions of wavelengths from 0.4 to 4.7 μm. The fiber is effectively multi-mode in the considered wavelength range. It is composed of a ring of air-holes surrounding the core, with a high linear filling factor of 0.97. The fiber was made using a standard stack-and-draw technique. Each hole has a size of approx. 2.5 × 3.0 μm and diameter of core is 80 μm. Fiber attenuation is below 3 dB/m in the 0.9-1.7 μm wavelength range, while at 4.4 μm (mid-IR) it is approx. 5 dB/cm. Bending loss at the 1.55 μm wavelength is 0.45 dB per loop of 8 mm radius. Fiber numerical aperture is 0.53 at 1.55 μm. The effective mode area of the fundamental mode is approx. 2400 μm2 in the wavelength range of 0.8-1.7 μm. We present a proof-of-concept demonstration that our large core photonic crystal fiber is able to efficiently collect light directly from a mid-IR quantum cascade laser without use of additional optics and can be used for pigtailing mid-IR sources and detectors.

  3. Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth.

    PubMed

    Mo, Jianhua; de Groot, Mattijs; de Boer, Johannes F

    2015-02-23

    Optical coherence tomography (OCT) has proven to be able to provide three-dimensional (3D) volumetric images of scattering biological tissues for in vivo medical diagnostics. Unlike conventional optical microscopy, its depth-resolving ability (axial resolution) is exclusively determined by the laser source and therefore invariant over the full imaging depth. In contrast, its transverse resolution is determined by the objective's numerical aperture and the wavelength which is only approximately maintained over twice the Rayleigh range. However, the prevailing laser sources for OCT allow image depths of more than 5 mm which is considerably longer than the Rayleigh range. This limits high transverse resolution imaging with OCT. Previously, we reported a novel method to extend the depth-of-focus (DOF) of OCT imaging in Mo et al.Opt. Express 21, 10048 (2013)]. The approach is to create three different optical apertures via pupil segmentation with an annular phase plate. These three optical apertures produce three OCT images from the same sample, which are encoded to different depth positions in a single OCT B-scan. This allows for correcting the defocus-induced curvature of wave front in the pupil so as to improve the focus. As a consequence, the three images originating from those three optical apertures can be used to reconstruct a new image with an extended DOF. In this study, we successfully applied this method for the first time to both an artificial phantom and biological tissues over a four times larger depth range. The results demonstrate a significant DOF improvement, paving the way for 3D high resolution OCT imaging beyond the conventional Rayleigh range. PMID:25836528

  4. Optical Property Enhancement and Durability Evaluation of Heat Receiver Aperture Shield Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.

    1998-01-01

    Under the Solar Dynamic Flight Demonstration (SDFD) program, NASA Lewis Research Center worked with AlliedSignal Aerospace, the heat receiver contractor, on the development, characterization and durability testing of refractory metals to obtain appropriate optical and thermal properties for the SDFD heat receiver aperture shield. Molybdenum and tungsten foils were grit-blasted using silicon carbide or alumina grit under various grit-blasting conditions for optical property enhancement. Black rhenium coated tungsten foil was also evaluated. Tungsten, black rhenium-coated tungsten, and grit-blasted tungsten screens of various mesh sizes were placed over the pristine and grit-blasted foils for optical property characterization. Grit-blasting was found to be effective in decreasing the specular reflectance and the absorptance/emittance ratio of the refractory foils. The placement of a screen further enhanced these optical properties, with a grit-blasted screen over a grit-blasted foil producing the best results. Based on the optical property enhancement results, samples were tested for atomic oxygen and vacuum heat treatment durability. Grit-blasted (Al2O3 grit) 2 mil tungsten foil was chosen for the exterior layer of the SDFD heat receiver aperture shield. A 0.007 in. wire diameter, 20 x 20 mesh tungsten screen was chosen to cover the tungsten foil. Based on these test results, a heat receiver aperture shield test unit has been built with the screen covered grit-blast tungsten foil exterior layers. The aperture shield was tested and verified the thermal and structural durability of the outer foil layers during an off-pointing period.

  5. Large-aperture prism-array lens for high-energy X-ray focusing.

    PubMed

    Zhang, Weiwei; Liu, Jing; Chang, Guangcai; Shi, Zhan; Li, Ming; Ren, Yuqi; Zhang, Xiaowei; Yi, Futing; Liu, Peng; Sheng, Weifan

    2016-09-01

    A new prism-array lens for high-energy X-ray focusing has been constructed using an array of different prisms obtained from different parabolic structures by removal of passive parts of material leading to a multiple of 2π phase variation. Under the thin-lens approximation the phase changes caused by this lens for a plane wave are exactly the same as those caused by a parabolic lens without any additional corrections when they have the same focal length, which will provide good focusing; at the same time, the total transmission and effective aperture of this lens are both larger than those of a compound kinoform lens with the same focal length, geometrical aperture and feature size. This geometry can have a large aperture that is not limited by the feature size of the lens. Prototype nickel lenses with an aperture of 1.77 mm and focal length of 3 m were fabricated by LIGA technology, and were tested using CCD camera and knife-edge scan method at the X-ray Imaging and Biomedical Application Beamline BL13W1 at Shanghai Synchrotron Radiation Facility, and provided a focal width of 7.7 µm and a photon flux gain of 14 at an X-ray energy of 50 keV. PMID:27577761

  6. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  7. Single-molecule detection at high concentrations with optical aperture nanoantennas.

    PubMed

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-14

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field.

  8. Single-molecule detection at high concentrations with optical aperture nanoantennas

    NASA Astrophysics Data System (ADS)

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-01

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field.

  9. Single-molecule detection at high concentrations with optical aperture nanoantennas.

    PubMed

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-14

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field. PMID:27120086

  10. Fabrication of large aperture kinoform phase plates in fused silica for smoothing focal plane intensity profiles

    SciTech Connect

    Rushford, M.; Dixit, S.; Thomas, I.; Perry, M.

    1996-04-26

    We have fabricated large aperture (40-cm) kinoform phase plates for producing super-Gaussian focal plane intensity profiles. The continuous phase screen, designed using a new iterative procedure, was fabricated in fused silica as a 16-level, one-wave deep rewrapped phase profile using a lithographic process and wet etching in buffered hydrofluoric acid. The observed far-field contains 94% of the incident energy inside the desired spot.

  11. Photosensor aperture shaping to reduce aliasing in optical-mechanical line-scan imaging systems.

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.; Huck, F. O.; Wall, S. D.

    1973-01-01

    Review of optical-mechanical scanning techniques that are generally employed in instruments specifically designed to characterize variations in scene brightness spectrally or radiometrically. Special attention is given to the effect of aliasing on the spatial detail of the reconstructed image. Aliasing may be caused by linescan sampling and can, in turn, severely degrade images that emphasize the spatial characterization of a scene. Photosensor aperture shaping and line-scan spacing are investigated as means for reducing this degradation.

  12. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  13. Determining the responsivity of microbolometer FPA using variable optical aperture stop

    NASA Astrophysics Data System (ADS)

    Bieszczad, Grzegorz; Gogler, Sławomir; Sosnowski, Tomasz; Madura, Henryk; Kucharz, Juliusz; Zarzycka, Alicja

    2012-10-01

    Contemporary infrared detector arrays suffers from technological imprecision which causes that the response to uniform radiation results in nonuniform image with superimposed fixed pattern noise (FPN). In order to compensate this noise there is a need to evaluate detectors characteristics like responsivity and offset of every detector in array. In article the method of determining the responsivity of detectors in a microbolometer array is described. In the method geometrical and optical parameters of the detector array and the measurement system are taken into account. A special test bench was constructed and is consisting of: two precise surface black bodies, aperture limiter, an electronic interface for data acquisition and software for measurement and correction of results with optical parameters of the measuring stand taken into account. Constructed aperture limiter enables evaluation of optical paths in measurement stand with equivalent relative aperture F# from 0.5 to 16.1 In order to evaluate the impact of optical path to radiation distribution in the measurement system, special radiation model was elaborated and evaluated in Zemax software. Incident radiation intensity distribution on the detector surface was calculated using Monte-Carlo method for various parameters of the optical path in the measurement system. Calculated radiation maps were used to compensate radiation intensity nonuniformity of optical measurement system giving more precise responsivity evaluation of detector array parameters. The obtained values of voltage responsivity of the detectors in the array, can be used in algorithms like nonuniformity correction and radiometric calibration of the infrared camera. In article results of responsivity evaluation is presented for microbolometer infrared arrays from ULIS company (France).

  14. Dual FOV infrared lens design with the laser common aperture optics

    NASA Astrophysics Data System (ADS)

    Chang, Wei-jun; Zhang, Xuan-zhi; Luan, Ya-dong; Zhang, Bo

    2015-02-01

    With the demand of autonomous precision guidance of air defense missile, the system scheme of the IR imaging/Ladar dual-mode seeker with a common aperture was proposed, and the optical system used in was designed. The system had a common receiving aperture, and its structure was very compact, so it could meet the requirement for the miniaturization of the seeker. Besides, it also could meet the demands of a wide field of view for searching target, and the demands for accurately recognizing and tracking the target at the same time. In order to increase the narrow FOV tracking performance, the dual FOV infrared optical used the zooming mode which some components flip in or out the optical system to firm the target signal. The dual FOV optics are divided into the zooming part, with dual variable focal length, and the reimaging part which was chosen in such a way to minimize the objective lens while maintaining 100% cold shield efficiency. The final infrared optics including 4°×3°(NFOV) and 16°×12°(WFOV) was designed. The NFOV lens composed of two common IR/Ladar lens, three relay lens, a beam splitter and two reflective fold mirrors, while WFOV lens increased two lens such as Germanium and Silicon. The common IR/Ladar lens ZnS and ZnSe could refractive the IR optics and Laser optics. The beam splitter which refractived IR optics and reflected Laser optics was located in the middle of Germanium and Silicon. The designed optical system had good image quality, and fulfilled the performance requirement of seeker system.

  15. High-numerical-aperture microlensed tip on an air-clad optical fiber.

    PubMed

    Kato, Shinya; Chonan, Sho; Aoki, Takao

    2014-02-15

    We show that a hemispherically shaped tip on an air-clad optical fiber simultaneously works as a high-numerical-aperture lens and efficiently collects photons from an emitter placed near the beam waist into the fundamental guided mode. Numerical simulations show that the coupling efficiency reaches about 25%. We have constructed a confocal microscope with such a lensed fiber. The measurements are in good agreement with the numerical simulation. The monolithic structure with a high-photon-collection efficiency will provide a flexible substitute for a conventional lens system in various experiments such as single-atom trapping with a tightly focused optical trap.

  16. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    PubMed

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  17. Source-Search Sensitivity of a Large-Area, Coded-Aperture, Gamma-Ray Imager

    SciTech Connect

    Ziock, K P; Collins, J W; Craig, W W; Fabris, L; Lanza, R C; Gallagher, S; Horn, B P; Madden, N W; Smith, E; Woodring, M L

    2004-10-27

    We have recently completed a large-area, coded-aperture, gamma-ray imager for use in searching for radiation sources. The instrument was constructed to verify that weak point sources can be detected at considerable distances if one uses imaging to overcome fluctuations in the natural background. The instrument uses a rank-19, one-dimensional coded aperture to cast shadow patterns onto a 0.57 m{sup 2} NaI(Tl) detector composed of 57 individual cubes each 10 cm on a side. These are arranged in a 19 x 3 array. The mask is composed of four-centimeter thick, one-meter high, 10-cm wide lead blocks. The instrument is mounted in the back of a small truck from which images are obtained as one drives through a region. Results of first measurements obtained with the system are presented.

  18. Detection of and compensation for blocked elements using large coherent apertures: ex vivo studies

    NASA Astrophysics Data System (ADS)

    Jakovljevic, Marko; Bottenus, Nick; Kuo, Lily; Kumar, Shalki; Dahl, Jeremy; Trahey, Gregg

    2016-04-01

    When imaging with ultrasound through the chest wall, it is not uncommon for parts of the array to get blocked by ribs, which can limit the acoustic window and significantly impede visualization of the structures of interest. With the development of large-aperture, high-element-count, 2-D arrays and their potential use in transthoracic imaging, detecting and compensating for the blocked elements is becoming increasingly important. We synthesized large coherent 2-D apertures and used them to image a point target through excised samples of canine chest wall. Blocked elements are detected based on low amplitude of their signals. As a part of compensation, blocked elements are turned off on transmit (Tx) and receive (Rx), and point-target images are created using: coherent summation of the remaining channels, compounding of intercostal apertures, and adaptive weighting of the available Tx/Rx channel-pairs to recover the desired k-space response. The adaptive compensation method also includes a phase aberration correction to ensure that the non-blocked Tx/Rx channel pairs are summed coherently. To evaluate the methods, we compare the point-spread functions (PSFs) and near-field clutter levels for the transcostal and control acquisitions. Specifically, applying k-space compensation to the sparse aperture data created from the control acquisition reduces sidelobes from -6.6 dB to -12 dB. When applied to the transcostal data in combination with phase-aberration correction, the same method reduces sidelobes only by 3 dB, likely due to significant tissue induced acoustic noise. For the transcostal acquisition, turning off blocked elements and applying uniform weighting results in maximum clutter reduction of 5 dB on average, while the PSF stays intact. Compounding reduces clutter by about 3 dB while the k-space compensation increases clutter magnitude to the non-compensated levels.

  19. Deployable large aperture optics system for remote sensing applications.

    SciTech Connect

    Sumali, Anton Hartono; Martin, Jeffrey W.; Main, John A.; Macke, Benjamin T.; Massad, Jordan Elias; Chaplya, Pavel Mikhail

    2004-04-01

    This report summarizes research into effects of electron gun control on piezoelectric polyvinylidene fluoride (PVDF) structures. The experimental apparatus specific to the electron gun control of this structure is detailed, and the equipment developed for the remote examination of the bimorph surface profile is outlined. Experiments conducted to determine the optimum electron beam characteristics for control are summarized. Clearer boundaries on the bimorphs control output capabilities were determined, as was the closed loop response. Further controllability analysis of the bimorph is outlined, and the results are examined. In this research, the bimorph response was tested through a matrix of control inputs of varying current, frequency, and amplitude. Experiments also studied the response to electron gun actuation of piezoelectric bimorph thin film covered with multiple spatial regions of control. Parameter ranges that yielded predictable control under certain circumstances were determined. Research has shown that electron gun control can be used to make macrocontrol and nanocontrol adjustments for PVDF structures. The control response and hysteresis are more linear for a small range of energy levels. Current levels needed for optimum control are established, and the generalized controllability of a PVDF bimorph structure is shown.

  20. Note: Computer controlled rotation mount for large diameter optics

    NASA Astrophysics Data System (ADS)

    Rakonjac, Ana; Roberts, Kris O.; Deb, Amita B.; Kjærgaard, Niels

    2013-02-01

    We describe the construction of a motorized optical rotation mount with a 40 mm clear aperture. The device is used to remotely control the power of large diameter laser beams for a magneto-optical trap. A piezo-electric ultrasonic motor on a printed circuit board provides rotation with a precision better than 0.03° and allows for a very compact design. The rotation unit is controlled from a computer via serial communication, making integration into most software control platforms straightforward.

  1. Optical bistability based on nonlinear oblique reflection of light beams from a screen with an aperture on its axis

    SciTech Connect

    Nikitenko, K Yu; Trofimov, V A

    1999-02-28

    It is shown that, in principle, optical bistability can be based on a nonlinear interaction of noncollinearly propagating beams when one of them is reflected from a plane screen with an aperture on its axis. The requirements to be satisfied by the interacting beams are discussed and estimates are obtained of the shortest response time of such an optically bistable system. (nonlinear optical phenomena)

  2. MRF Applications: On the Road to Making Large-Aperture Ultraviolet Laser Resistant Continuous Phase Plates for High-Power Lasers

    SciTech Connect

    Menapace, J A; Davis, P J; Steele, W A; Hachkowski, M R; Nelson, A; Xin, K

    2006-10-26

    Over the past two years we have developed MRF tools and procedures to manufacture large-aperture (430 X 430 mm) continuous phase plates (CPPs) that are capable of operating in the infrared portion (1053 nm) of high-power laser systems. This is accomplished by polishing prescribed patterns of continuously varying topographical features onto finished plano optics using MRF imprinting techniques. We have been successful in making, testing, and using large-aperture CPPs whose topography possesses spatial periods as low as 4 mm and surface peak-to-valleys as high as 8.6 {micro}m. Combining this application of MRF technology with advanced MRF finishing techniques that focus on ultraviolet laser damage resistance makes it potentially feasible to manufacture large-aperture CPPs that can operate in the ultraviolet (351 nm) without sustaining laser-induced damage. In this paper, we will discuss the CPP manufacturing process and the results of 351-nm/3-nsec equivalent laser performance experiments conducted on large-aperture CPPs manufactured using advanced MRF protocols.

  3. Nonlinear techniques in optical synthetic aperture radar image generation and target recognition.

    PubMed

    Weaver, S; Wagner, K

    1995-07-10

    One of the most successful optical signal-processing applications to date has been the use of optical processors to convert synthetic aperture radar (SAR) data into images of the radar reflectivity of the ground. We have demonstrated real-time input to a high-space-bandwidth optical SAR imagegeneration system by using a dynamic organic holographic recording medium and SAR phase-history data. Real-time speckle reduction in optically processed SAR imagery has been accomplished by the use of multilook averaging to achieve nonlinear modulus-squared accumulation of subaperture images. We designed and assembled an all-optical system that accomplished real-time target recognition in SAR imagery. This system employed a simple square-law nonlinearity in the form of an optically addressed spatial light modulator at the SAR image plane to remove the effects of speckle phase profiles returned from complex SAR targets. The detection stage enabled the creation of an optical SAR automatic target recognition system as a nonlinear cascade of an optical SAR image generator and an optical correlator.

  4. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    NASA Astrophysics Data System (ADS)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  5. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    SciTech Connect

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  6. A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument.

    PubMed

    Bryan, Sean; Ade, Peter; Amiri, Mandana; Benton, Steven; Bihary, Richard; Bock, James; Bond, J Richard; Chiang, H Cynthia; Contaldi, Carlo; Crill, Brendan; Dore, Olivier; Elder, Benjamin; Filippini, Jeffrey; Fraisse, Aurelien; Gambrel, Anne; Gandilo, Natalie; Gudmundsson, Jon; Hasselfield, Matthew; Halpern, Mark; Hilton, Gene; Holmes, Warren; Hristov, Viktor; Irwin, Kent; Jones, William; Kermish, Zigmund; Lawrie, Craig; MacTavish, Carrie; Mason, Peter; Megerian, Krikor; Moncelsi, Lorenzo; Montroy, Thomas; Morford, Tracy; Nagy, Johanna; Netterfield, C Barth; Padilla, Ivan; Rahlin, Alexandra S; Reintsema, Carl; Riley, Daniel C; Ruhl, John; Runyan, Marcus; Saliwanchik, Benjamin; Shariff, Jamil; Soler, Juan; Trangsrud, Amy; Tucker, Carole; Tucker, Rebecca; Turner, Anthony; Wen, Shyang; Wiebe, Donald; Young, Edward

    2016-01-01

    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the cosmic microwave background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of ±0.1(∘). The system performed well in Spider during its successful 16 day flight. PMID:26827333

  7. A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument

    NASA Astrophysics Data System (ADS)

    Bryan, Sean; Ade, Peter; Amiri, Mandana; Benton, Steven; Bihary, Richard; Bock, James; Bond, J. Richard; Chiang, H. Cynthia; Contaldi, Carlo; Crill, Brendan; Dore, Olivier; Elder, Benjamin; Filippini, Jeffrey; Fraisse, Aurelien; Gambrel, Anne; Gandilo, Natalie; Gudmundsson, Jon; Hasselfield, Matthew; Halpern, Mark; Hilton, Gene; Holmes, Warren; Hristov, Viktor; Irwin, Kent; Jones, William; Kermish, Zigmund; Lawrie, Craig; MacTavish, Carrie; Mason, Peter; Megerian, Krikor; Moncelsi, Lorenzo; Montroy, Thomas; Morford, Tracy; Nagy, Johanna; Netterfield, C. Barth; Padilla, Ivan; Rahlin, Alexandra S.; Reintsema, Carl; Riley, Daniel C.; Ruhl, John; Runyan, Marcus; Saliwanchik, Benjamin; Shariff, Jamil; Soler, Juan; Trangsrud, Amy; Tucker, Carole; Tucker, Rebecca; Turner, Anthony; Wen, Shyang; Wiebe, Donald; Young, Edward

    2016-01-01

    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the cosmic microwave background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of ±0.1∘. The system performed well in Spider during its successful 16 day flight.

  8. A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument.

    PubMed

    Bryan, Sean; Ade, Peter; Amiri, Mandana; Benton, Steven; Bihary, Richard; Bock, James; Bond, J Richard; Chiang, H Cynthia; Contaldi, Carlo; Crill, Brendan; Dore, Olivier; Elder, Benjamin; Filippini, Jeffrey; Fraisse, Aurelien; Gambrel, Anne; Gandilo, Natalie; Gudmundsson, Jon; Hasselfield, Matthew; Halpern, Mark; Hilton, Gene; Holmes, Warren; Hristov, Viktor; Irwin, Kent; Jones, William; Kermish, Zigmund; Lawrie, Craig; MacTavish, Carrie; Mason, Peter; Megerian, Krikor; Moncelsi, Lorenzo; Montroy, Thomas; Morford, Tracy; Nagy, Johanna; Netterfield, C Barth; Padilla, Ivan; Rahlin, Alexandra S; Reintsema, Carl; Riley, Daniel C; Ruhl, John; Runyan, Marcus; Saliwanchik, Benjamin; Shariff, Jamil; Soler, Juan; Trangsrud, Amy; Tucker, Carole; Tucker, Rebecca; Turner, Anthony; Wen, Shyang; Wiebe, Donald; Young, Edward

    2016-01-01

    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the cosmic microwave background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of ±0.1(∘). The system performed well in Spider during its successful 16 day flight.

  9. Large Coded Aperture Mask for Spaceflight Hard X-ray Images

    NASA Technical Reports Server (NTRS)

    Vigneau, Danielle N.; Robinson, David W.

    2002-01-01

    The 2.6 square meter coded aperture mask is a vital part of the Burst Alert Telescope on the Swift mission. A random, but known pattern of more than 50,000 lead tiles, each 5 mm square, was bonded to a large honeycomb panel which projects a shadow on the detector array during a gamma ray burst. A two-year development process was necessary to explore ideas, apply techniques, and finalize procedures to meet the strict requirements for the coded aperture mask. Challenges included finding a honeycomb substrate with minimal gamma ray attenuation, selecting an adhesive with adequate bond strength to hold the tiles in place but soft enough to allow the tiles to expand and contract without distorting the panel under large temperature gradients, and eliminating excess adhesive from all untiled areas. The largest challenge was to find an efficient way to bond the > 50,000 lead tiles to the panel with positional tolerances measured in microns. In order to generate the desired bondline, adhesive was applied and allowed to cure to each tile. The pre-cured tiles were located in a tool to maintain positional accuracy, wet adhesive was applied to the panel, and it was lowered to the tile surface with synchronized actuators. Using this procedure, the entire tile pattern was transferred to the large honeycomb panel in a single bond. The pressure for the bond was achieved by enclosing the entire system in a vacuum bag. Thermal vacuum and acoustic tests validated this approach. This paper discusses the methods, materials, and techniques used to fabricate this very large and unique coded aperture mask for the Swift mission.

  10. A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Ma, J. L.; Yan, C. L.; Liu, G. J.; Ma, X. H.; Gong, J. F.; Feng, Y.; Wei, Z. P.; Wang, Y. X.; Zhao, Y. J.

    2013-05-01

    A fundamental mode Nd:GdVO4 laser pumped by a vertical cavity surface emitting laser (VCSEL) is experimentally demonstrated. The VCSEL has a circular output-beam which makes it easier for it to be directly coupled to a Nd:GdVO4 microcrystal. In our research, a large aperture 808 nm VCSEL, with a multi-ring-shaped aperture (MRSA) and an almost Gaussian-shaped far-field profile, is used as the pumping source. Experimental results for the Nd:GdVO4 laser pumped by the VCSEL are presented. The maximum output peak power of 0.754 W is obtained under a pump peak power of 1.3 W, and the corresponding opto-optic conversion efficiency is 58.1%. The average slope efficiency is 65.8% from the threshold pump power of 0.2 W to the pump power of 1.3 W. The laser beam quality factors are measured to be {M}x2=1.2 0 and {M}y2=1.1 5.

  11. Simulation of image formation in x-ray coded aperture microscopy with polycapillary optics.

    PubMed

    Korecki, P; Roszczynialski, T P; Sowa, K M

    2015-04-01

    In x-ray coded aperture microscopy with polycapillary optics (XCAMPO), the microstructure of focusing polycapillary optics is used as a coded aperture and enables depth-resolved x-ray imaging at a resolution better than the focal spot dimensions. Improvements in the resolution and development of 3D encoding procedures require a simulation model that can predict the outcome of XCAMPO experiments. In this work we introduce a model of image formation in XCAMPO which enables calculation of XCAMPO datasets for arbitrary positions of the object relative to the focal plane as well as to incorporate optics imperfections. In the model, the exit surface of the optics is treated as a micro-structured x-ray source that illuminates a periodic object. This makes it possible to express the intensity of XCAMPO images as a convolution series and to perform simulations by means of fast Fourier transforms. For non-periodic objects, the model can be applied by enforcing artificial periodicity and setting the spatial period larger then the field-of-view. Simulations are verified by comparison with experimental data.

  12. Formation metrology and control for large separated optics space telescopes

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Quadrelli, M.; Breckenridge, W.

    2002-01-01

    In this paper we present formation flying performance analysis initial results for a representative large space telescope composed of separated optical elements [Mett 02]. A virtual-structure construct (an equivalent rigid body) is created by unique metrology and control that combines both centralized and decentralized methods. The formation may be in orbit at GEO for super-resolution Earth observation, as in the case of Figure 1, or it may be in an Earth-trailing orbit for astrophysics, Figure 2. Extended applications are envisioned for exo-solar planet interferometric imaging by a formation of very large separated optics telescopes, Figure 3. Space telescopes, with such large apertures and f/10 to f/100 optics, are not feasible if connected by massive metering structures. Instead, the new virtual-structure paradigm of information and control connectivity between the formation elements provides the necessary spatial rigidity and alignment precision for the telescope.

  13. An approach to fabrication of large adaptive optics mirrors

    NASA Astrophysics Data System (ADS)

    Schwartz, Eric; Rey, Justin; Blaszak, David; Cavaco, Jeffrey

    2014-07-01

    For more than two decades, Northrop Grumman Xinetics has been the principal supplier of small deformable mirrors that enable adaptive optical (AO) systems for the ground-based astronomical telescope community. With today's drive toward extremely large aperture systems, and the desire of telescope designers to include adaptive optics in the main optical path of the telescope, Xinetics has recognized the need for large active mirrors with the requisite bandwidth and actuator stoke. Presented in this paper is the proposed use of Northrop Grumman Xinetics' large, ultra-lightweight Silicon Carbide substrates with surface parallel actuation of sufficient spatial density and bandwidth to meet the requirements of tomorrow's AO systems, while reducing complexity and cost.

  14. Differential Synthetic Aperture Radar Interferometry in monitoring large landslide (La Frasse, Switzerland)

    NASA Astrophysics Data System (ADS)

    Michoud, C.; Rune Lauknes, T.; Pedrazzini, A.; Jaboyedoff, M.; Tapia, R.; Steinmann, G.

    2009-04-01

    Spaceborne Differential Interferometric Synthetic Aperture Radar (DInSAR) is able to detect quasi vertical movements covering very large areas in a continuous way; it can be considered as an efficient tool to detect and monitor slope instabilities. The La Frasse landslide is located in the Canton of Vaud (Switzerland). It has a length of 2 km, a width of 500 m and its sliding surface is located at a depth of 60 to 100 m. With high velocities (presently at 40 cm/y in the active lower part), La Frasse landslide is in highly hazardous area according to the Swiss legislation. According to Varnes classification, it is a complex slide composed of tertiary flysch material and flowing over on flysch and limestone bedrock. The landscape is occupied by forests, pastures, some habitations and two main roads to touristic areas. The foot of the landslide is continuously eroded by the river "Grande-Eau". First of all, two interferometric pairs are constructed with data provided by the satellite Alos. The big wavelength (24 cm) of ALOS' PALSAR sensor gives good results in the foot of the landslide, where the movements are highest. Afterwards, fifty-three interferometric pairs are constructed with twenty-two images acquired with the European satellite Envisat. With the shorter wavelength (5.6 cm) of the Envisat's ASAR sensor, but the higher number of interferograms, the analysis provides the mean velocities of landslide's scaterrers by using the Small Baseline Subset (SBAS) methodology. The DInSAR results were compared to ground displacements measured every 2h by an optical total station (Robovec™ System). The results of this study are coherent with the amplitude of the deformations monitored by Robovec™. Moreover, the computation of the mean velocities shows that today, total displacements are measured in the active lower part of the landslide; the data complete Robovec™ results. But the accuracy of the measured displacements and the number of scatterers could be improved

  15. Large aperture single crystal ZnGeP 2 for high-energy applications

    NASA Astrophysics Data System (ADS)

    Zawilski, Kevin T.; Schunemann, Peter G.; Setzler, Scott D.; Pollak, Thomas M.

    2008-04-01

    Zinc germanium phosphide (ZGP), ZnGeP 2, is the non-linear optical crystal of choice for laser frequency conversion in the 2-8 μm spectral range by virtue of its high non-linear coefficient ( d14=75 pm/V) and thermal conductivity (0.35 W/(cm K)) as well as reductions in near-infrared absorption achieved in crystals grown by the horizontal gradient freeze technique. Recently, the growth of high optical quality, single crystal ZGP boules with dimensions of 27×39×140 mm 3 has been demonstrated. A low-loss (1 0 0)-oriented ZGP sample measuring 30×30×22 mm 3 was fabricated from this boule size. By adjusting the seeding orientation in single crystal boules with dimensions of 17×30×140 mm 3, low-loss ZGP optical parametric oscillator (OPO) samples of 20×20×16 mm 3 have been produced. Previously, typical ZGP OPO samples were 6×6×15 mm 3. Besides allowing for larger aperture samples, the larger ZGP single crystals have the added benefit of lower absorption at both 2 μm ( α2 μm <0.05 cm -1) and 1 μm ( α1 μm ˜1.0 cm -1) than the smaller scale crystals. Improvements to the fabrication and polishing of ZGP samples resulted in an increased laser-induced damage threshold (LIDT). The LIDT of anti-reflection-coated samples at 2.05 μm and 10 kHz pulse rate frequency was increased to 2 J/cm 2, which was double the previously measured value of 1 J/cm 2. The combination of increased aperture, lower absorption, and improved LIDT of ZGP has resulted in material better suited to high-energy applications.

  16. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  17. Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating.

    SciTech Connect

    Ashley, Carol S.; Rambo, Patrick K.; Schwarz, Jens; Dunphy, Darren Robert; Branson, Eric D.; Smith, Ian Craig; Johnson, William Arthur; Reed, Scott T.; Cook, Adam W.

    2005-03-01

    In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

  18. Optically controlled dense current structures driven by relativistic plasma aperture-induced diffraction

    NASA Astrophysics Data System (ADS)

    Gonzalez-Izquierdo, Bruno; Gray, Ross J.; King, Martin; Dance, Rachel J.; Wilson, Robbie; McCreadie, John; Butler, Nicholas M. H.; Capdessus, Remi; Hawkes, Steve; Green, James S.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-05-01

    The collective response of charged particles to intense fields is intrinsic to plasma accelerators and radiation sources, relativistic optics and many astrophysical phenomena. Here we show that a relativistic plasma aperture is generated in thin foils by intense laser light, resulting in the fundamental optical process of diffraction. The plasma electrons collectively respond to the resulting laser near-field diffraction pattern, producing a beam of energetic electrons with a spatial structure that can be controlled by variation of the laser pulse parameters. It is shown that static electron-beam and induced-magnetic-field structures can be made to rotate at fixed or variable angular frequencies depending on the degree of ellipticity in the laser polarization. The concept is demonstrated numerically and verified experimentally, and is an important step towards optical control of charged particle dynamics in laser-driven dense plasma sources.

  19. Image revivals in multi-mode optical fibers with periodic multiple sub-apertures

    NASA Astrophysics Data System (ADS)

    Wang, Long; Powers, Peter E.; Sarangan, Andrew; Haus, Joseph W.

    2014-09-01

    We report experiments on a multi-mode fiber-based device that reimages the input pattern after specific propagation distances. The reimaging has two propagation length scales related to the Talbot self-imaging in a periodic grating and image revival effects. We use a beam propagation method to simulate diffraction and refraction of light in the optical fiber. The details of the fiber preparation and optical experiments are described. We study the optical imaging properties using a close-packed array of sub-apertures placed at regular positions on a triangular lattice. We numerically analyze the propagation, diffraction and coupling characteristics of the beam oscillating inside the fiber. Our simulations identify the optimal reimaging length of the multi-mode (MM) fiber to get high fidelity image revival. Experiments are performed to validate the simulation results.

  20. Real-time optical processor for synthetic aperture radar image formation

    SciTech Connect

    Stalker, K.T.; Molley, P.A.; Dickey, F.M.

    1987-01-01

    An acousto-optic processor which forms synthetic aperture radar images in real-time is described. It employs a space and time integrating architecture to perform the required two dimensional matched filtering operation as a sequence of one dimensional processes. The matched filtering in range is performed on each radar return pulse using the acousto-optic device. The azimuthal matched filtering is performed using a fixed reference mask and a charge-coupled device operating in the time delay and integrate mode. This fixed mask architecture has been modified to include a background subtraction capability to reduce the effects of unwanted bias terms on image quality. The effectiveness of this technique will be analyzed for two different time bandwidth product cases. SAR imagery formed using the real-time optical processor is also presented.

  1. All-reflective optical target illumination system with high numerical aperture

    DOEpatents

    Thomas, Carlton E.; Sigler, Robert D.; Hoeger, John G.

    1979-01-01

    An all-reflective optical system for providing illumination of a target focal region at high numerical aperture from a pair of confluent collimated light beams. The collimated beams are each incident upon an associated concave eccentric pupil paraboloidal reflective surface, and thereby each focused through an opening in an associated outer ellipsoidal reflective surface onto a plane reflector. Each beam is reflected by its associated plane reflector onto the opposing concave surface of the outer ellipsoids to be focused through an opening in the plane surface onto an opposing inner concave ellipsoidal reflective surface, and thence onto the target region.

  2. A conceptual design of a large aperture microwave radiometer geostationary platform

    NASA Technical Reports Server (NTRS)

    Garn, Paul A.; Garrison, James L.; Jasinski, Rachel

    1992-01-01

    A conceptual design of a Large Aperture Microwave Radiometer (LAMR) Platform has been developed and technology areas essential to the design and on-orbit viability of the platform have been defined. Those technologies that must be developed to the requirement stated here for the LAMR mission to be viable include: advanced radiation resistant solar cells, integrated complex structures, large segmented reflector panels, sub 3 kg/m(exp 2) areal density large antennas, and electric propulsion systems. Technology areas that require further development to enhance the capabilities of the LAMR platform (but are not essential for viability) include: electrical power storage, on-orbit assembly, and on-orbit systems checkout and correction.

  3. Repetitively pulsed regime of Nd : glass large-aperture laser amplifiers

    SciTech Connect

    Kuzmin, A A; Khazanov, Efim A; Shaykin, A A

    2012-04-30

    A repetitively pulsed operation regime of neodymium glass rod laser amplifiers with apertures of 4.5, 6, 8.5, and 10 cm is analysed using experimental data. The limits of an increase in the pulse repetition rates are determined. Universal dependences are obtained, which help finding a compromise between increasing the repetition rate and enhancing the gain for each particular case. In particular, it is shown that an amplifier 4.5-cm in diameter exhibits a five-fold safety factor with respect to a thermo-mechanical breakdown at a repetition rate of 1 pulse min{sup -1} and stored energy of above 100 J. A strong thermally induced birefringence in two such amplifiers is experimentally reduced to a 'cold' level by employing a 90 Degree-Sign optical rotator.

  4. Radiometric calibration method for large aperture infrared system with broad dynamic range.

    PubMed

    Sun, Zhiyuan; Chang, Songtao; Zhu, Wei

    2015-05-20

    Infrared radiometric measurements can acquire important data for missile defense systems. When observation is carried out by ground-based infrared systems, a missile is characterized by long distance, small size, and large variation of radiance. Therefore, the infrared systems should be manufactured with a larger aperture to enhance detection ability and calibrated at a broader dynamic range to extend measurable radiance. Nevertheless, the frequently used calibration methods demand an extended-area blackbody with broad dynamic range or a huge collimator for filling the system's field stop, which would greatly increase manufacturing costs and difficulties. To overcome this restriction, a calibration method based on amendment of inner and outer calibration is proposed. First, the principles and procedures of this method are introduced. Then, a shifting strategy of infrared systems for measuring targets with large fluctuations of infrared radiance is put forward. Finally, several experiments are performed on a shortwave infrared system with Φ400  mm aperture. The results indicate that the proposed method cannot only ensure accuracy of calibration but have the advantage of low cost, low power, and high motility. Hence, it is an effective radiometric calibration method in the outfield.

  5. Recent developments in wafer-level fabrication of micro-optical multi-aperture imaging systems

    NASA Astrophysics Data System (ADS)

    Leitel, R.; Dannberg, P.; Brückner, A.; Bräuer, A.

    2011-10-01

    Micro-optical systems, that utilize multiple channels for imaging instead of a single one, are frequently discussed for ultra-compact applications such as digital cameras. The strategy of their fabrication differs due to different concepts of image formation. Illustrated by recently implemented systems for multi-aperture imaging, typical steps of wafer-level fabrication are discussed in detail. In turn, the made progress may allow for additional degrees of freedom in optical design. Pressing ahead with very short overall lengths and multiple diaphragm array layers, results in the use of extremely thin glass substrates down to 100 microns in thickness. The desire for a wide field of view for imaging has led to chirped arrays of microlenses and diaphragms. Focusing on imaging quality, aberrations were corrected by introducing toroidal lenslets and elliptical apertures. Such lenslets had been generated by thermal reflow of lithographic patterned photoresist and subsequent molding. Where useful, the system's performance can be further increased by applying aspheric microlenses from reactive ion etching (RIE) transfer or by achromatic doublets from superimposing two moldings with different polymers. Multiple diaphragm arrays prevent channel crosstalk. But using simple metal layers may lead to multiple reflections and an increased appearance of ghost images. A way out are low reflecting black matrix polymers that can be directly patterned by lithography. But in case of environmental stability and high resolution, organic coatings should be replaced by patterned metal coatings that exhibit matched antireflective layers like the prominent black chromium. The mentioned components give an insight into the fabrication process of multi-aperture imaging systems. Finally, the competence in each step decides on the overall image quality.

  6. Large aperture focus stacking with max-gradient flow by anchored rolling filtering.

    PubMed

    Yin, Xuanwu; Wang, Guijin; Li, Wentao; Liao, Qingmin

    2016-07-10

    Focus stacking is a computational technique to extend the depth of field through combining multiple images taken at various focus distances. However, in the large aperture case, there are always defects caused by the large blur scale, which, to the best of our knowledge, has not been well studied. In our work, we propose a max-gradient flow-based method to reduce artifacts and obtain a high-quality all-in-focus image by anchored rolling filtering. First, we define a max-gradient flow to describe the gradient propagation in the stack. The points are divided into trivial and source points with this flow. The source points are extracted as true edge points and are utilized as anchors to refine the depth map and the composited all-in-focus image iteratively. The experiments show that our method can effectively suppress the incorrect depth estimations and give a high-quality all-in-focus image. PMID:27409303

  7. Nonlinear optical characterization of graphite oxide thin film by open aperture Z-scan technique

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Cheruvalathu, Ajina; Reshmi, R.; Devasia, Sebin; Anila, E. I.

    2016-05-01

    In this paper we explore the structural characterization of graphite oxide powder prepared from graphite powder by oxidation via modified Hummers method. The nonlinear optical properties of the spin coated graphite oxide thin film is also explored by open aperture Z-Scan technique. Structural and physiochemical properties of the samples were investigated with the help of Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (Raman).The results of FT-IR and Raman spectroscopy showed that the graphite is oxidized by strong oxidants and the oxygen atoms are introduced into the graphite layers forming C=C, O-H and -C-H groups. The synthesized sample has good crystalline nature with lesser defects. The nonlinear optical property of GO thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated GO thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated to explore its applications in Q switched mode locking laser systems.

  8. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    NASA Astrophysics Data System (ADS)

    Zaghloul, Aziz; Kim, Dogyun; Kim, Jangyoul; Kim, Mijung; Kim, Myeongjin; Yun, Chongcheoul; Kim, Jongwon

    2014-01-01

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed.

  9. Design of large aperture superferric quadrupole magnets for an in-flight fragment separator

    SciTech Connect

    Zaghloul, Aziz; Kim, Dogyun; Kim, Jangyoul; Kim, Mijung; Kim, Myeongjin; Yun, Chongcheoul; Kim, Jongwon

    2014-01-29

    Superferric quadrupole magnets to be used for in-flight fragment separator have been designed. A quadrupole magnet triplet for beam focusing is placed in a cryostat together with superconducting correction coils. To maximize acceptance of rare isotope beams produced by projectile fragmentation, it is essential to use large-aperture quadrupole magnets. The pole tip radius is 17 cm in the current design, and we tried to enlarge the aperture with 3D analysis on magnetic fields. In the front end of the separator, where a target and beam dump are located, we plan to use two sets of quadrupole triplets made of high-Tc superconductor (HTS) operating at 20-50 K considering high radiation heat load. The HTS magnet will use warm iron poles. Both low-Tc and high-Tc superconductors are acquired for test winding, and two kinds of dewar and cryostat are under construction to perform the coil and magnet tests. The magnetic design of superferric quadrupole is mainly discussed.

  10. Optics in large-scale architectural projects: public aquariums

    NASA Astrophysics Data System (ADS)

    Tesar, John C.

    2002-09-01

    Submersed aquatic vegetation can survive to a depth of approximately 20% of surface water irradiance. Large displays featured in public aquariums are often open to the sky, but the building roof acts as an aperture and obscures much of the direct solar path. Side-walls within the tank often absorb more than they reflect or scatter and as a result plants and fish get little more than the diffuse solar component without supplemental illumination. The loss mechanisms are detailed and design suggestions are considered, including heliostats, lightpipes and tracked parabolic reflectors with fiber optics.

  11. Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures.

    PubMed

    Stark, Peter R H; Halleck, Allison E; Larson, Dale N

    2007-11-27

    The optical diffraction limit has been the dominant barrier to achieving higher optical resolution in the fields of microscopy, photolithography, and optical data storage. We present here an approach toward imaging below the diffraction barrier. Through the exposure of photosensitive films placed a finite and known distance away from nanoscale, zero-mode apertures in thin metallic films, we show convincing, physical evidence that the propagating component of light emerging from these apertures shows a very strong degree of collimation well past the maximum extent of the near-field (lambda(0)/4n-lambda(0)/2n). Up to at least 2.5 wavelengths away from the apertures, the transmitted light exhibits subdiffraction limit irradiance patterns. These unexpected results are not explained by standard diffraction theory or nanohole-based "beaming" rationalizations. This method overcomes the diffraction barrier and makes super-resolution fluorescence imaging practical.

  12. Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures

    PubMed Central

    Stark, Peter R. H.; Halleck, Allison E.; Larson, Dale N.

    2007-01-01

    The optical diffraction limit has been the dominant barrier to achieving higher optical resolution in the fields of microscopy, photolithography, and optical data storage. We present here an approach toward imaging below the diffraction barrier. Through the exposure of photosensitive films placed a finite and known distance away from nanoscale, zero-mode apertures in thin metallic films, we show convincing, physical evidence that the propagating component of light emerging from these apertures shows a very strong degree of collimation well past the maximum extent of the near-field (λ0/4n–λ0/2n). Up to at least 2.5 wavelengths away from the apertures, the transmitted light exhibits subdiffraction limit irradiance patterns. These unexpected results are not explained by standard diffraction theory or nanohole-based “beaming” rationalizations. This method overcomes the diffraction barrier and makes super-resolution fluorescence imaging practical. PMID:18024583

  13. Data correction techniques for the airborne large-aperture static image spectrometer based on image registration

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Shi, Dalian; Wang, Shuang; Yu, Tao; Hu, Bingliang

    2015-01-01

    We propose an approach to correct the data of the airborne large-aperture static image spectrometer (LASIS). LASIS is a kind of stationary interferometer which compromises flux output and device stability. It acquires a series of interferograms to reconstruct the hyperspectral image cube. Reconstruction precision of the airborne LASIS data suffers from the instability of the plane platform. Usually, changes of plane attitudes, such as yaws, pitches, and rolls, can be precisely measured by the inertial measurement unit. However, the along-track and across-track translation errors are difficult to measure precisely. To solve this problem, we propose a co-optimization approach to compute the translation errors between the interferograms using an image registration technique which helps to correct the interferograms with subpixel precision. To demonstrate the effectiveness of our approach, experiments are run on real airborne LASIS data and our results are compared with those of the state-of-the-art approaches.

  14. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources

    NASA Astrophysics Data System (ADS)

    Truch, Matthew; BLAST Collaboration

    2007-12-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 100-hour flight from northern Sweden in June 2005 (BLAST05). As part of the calibration and pointing procedures, several compact sources were mapped, including solar system, Galactic, and extragalactic targets, specifically Pallas, CRL 2688, LDN 1014, IRAS 20126+4104, IRAS 21078+5211, IRAS 21307+5049, IRAS 22134+5834, IRAS 23011+6126, K3-50, W 75N, Mrk 231, NGC 4565, and Arp 220 (this last source being our primary calibrator). The BLAST observations of each compact source are described, flux densities and spectral energy distributions are reported, and these are compared with previous measurements at other wavelengths. BLAST was particularly useful for constraining the slope of the submillimeter continuum.

  15. Development of a Large Aperture Nb3Sn Racetrack Quadrupole Magnet

    SciTech Connect

    Ferracin, Paolo; Bartlett, Scott E.; Caspi, Shlomo; Dietderich, Daniel R.; Gourlay, Steve A.; Hannaford, Charles R.; Hafalia, Aurelio R.; Lietzke, Alan F.; Mattafirri, Sara; McInturff, Alfred D.; Nyman, Mark; Sabbi, Gianluca

    2005-06-01

    The U.S. LHC Accelerator Research Program (LARP), a collaboration between BNL, FNAL, LBNL, and SLAC, has among its major objectives the development of advanced magnet technology for an LHC luminosity upgrade. The LBNL Superconducting Magnet Group supports this program with a broad effort involving design studies, Nb{sub 3}Sn conductor development, mechanical models, and basic prototypes. This paper describes the development of a large aperture Nb{sub 3}Sn racetrack quadrupole magnet using four racetrack coils from the LBNL Subscale Magnet (SM) Program. The magnet provides a gradient of 95 T/m in a 110 mm bore, with a peak field in the conductor of 11.2 T. The coils are pre-stressed by a mechanical structure based on a pre-tensioned aluminum shell, and axially supported with aluminum rods. The mechanical behavior has been monitored with strain gauges and the magnetic field has been measured. Results of the test are reported and analyzed.

  16. Large core fiber optic cleaver

    DOEpatents

    Halpin, J.M.

    1996-03-26

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  17. Large core fiber optic cleaver

    DOEpatents

    Halpin, John M.

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  18. Large Diffractive Optics for GEo-Based Earth Surveillance

    SciTech Connect

    Hyde, R A

    2003-09-11

    The natural vantage point for performing Earth-centric operations from space is geosynchronous orbit (GEO); a platform there moves at the same rate as the Earth's surface, so appears to continually ''hover'' over a fixed site on the Earth. Unlike spacecraft in other orbits, which rapidly fly-over targets, a GEO-based platform remains in-position all the time. In order to insure continual access to sites using low earth orbit (LEO) platforms, one needs a large enough constellation ({approx} 50) of spacecraft so that one is always overhead; in contrast, a single GEO platform provides continuous coverage over sites throughout Euro-Asia. This permanent coverage comes, unfortunately, with a stiff price-tag; geosynchronous orbit is 36,000 km high, so space platforms there must operate at ranges roughly 100 times greater than ones located in LEO. For optical-based applications, this extreme range is difficult to deal with; for surveillance the price is a 100-fold loss of resolution, for laser weapons it is a 10,000-fold loss in flux-on-target. These huge performance penalties are almost always unacceptable, preventing us from successfully using GEO-based platforms. In practice, we are forced to either settle for brief, infrequent access to targets, or, if we demand continuous coverage, to invest in large, many-satellite, constellations. There is, fortunately, a way to use GEO-based optical platforms without incurring the huge, range-dependent, performance penalties; one must simply use bigger optics. As long as the aperture of a platform's optics increases as much as its operating range, then its performance (resolution and/or flux) does not suffer; the price for operating from GEO is simply 100-fold larger optics. This is, of course, a very stiff price; while meter-class optics may suffice for many low-earth-orbit applications, 100 meter apertures are needed in order to achieve similar performance from GEO. Since even the largest Earth-based telescope is only 10 meters

  19. OASIS 1.0: Very Large-Aperture High-Power Lidar for Exploring Geospace

    NASA Astrophysics Data System (ADS)

    Chu, X.; Smith, J. A.; Chen, C.; Zhao, J.; Yu, Z.; Gardner, C. S.

    2015-12-01

    A new initiative, namely OASIS (the Observatory for Atmosphere Space Interaction Studies), has called for a very large-aperture high-power (VLAHP) lidar as its first step forward to acquire the unprecedented measurement capabilities for exploring the space-atmosphere interaction region (SAIR). Currently, there exists a serious observational gap of the Earth's neutral atmosphere above 100 km. Information on neutral winds and temperatures and on the plasma-neutral coupling in the SAIR, especially between 100 and 200 km, is either sparse or nonexistent. Fully exploring the SAIR requires measurements of the neutral atmosphere to complement radar observations of the plasma. Lidar measurements of neutral winds, temperatures and species can enable these explorations. Many of these topics will be addressed with the VLAHP lidar. Discoveries of thermospheric neutral Fe, Na and K layers up to nearly 200 km at McMurdo, Antarctica and other locations on Earth, have opened a new door to observing the neutral thermosphere with ground-based instruments. These neutral metal layers provide the tracers for resonance Doppler lidars to directly measure the neutral temperatures and winds in the thermosphere, thus enabling the VLAHP lidar dream! Because the thermospheric densities of these metal atoms are many times smaller than the layer peak densities near 90 km, high power-aperture product lidars, like the VLAHP lidar, are required to derive scientifically useful measurements. Furthermore, several key technical challenges for VLAHP lidar have been largely resolved in the last a few years through the successful development of Fe and Na Doppler lidars at Boulder. By combining Rayleigh and Raman with resonance lidar techniques and strategically operating the VLAHP lidar next to incoherent scatter radar and other complementary instruments, the VLAHP lidar will enable new cutting-edge exploration of the geospace. These new concepts and progresses will be introduced in this paper.

  20. Large-Optics white light interferometer for laser wavefront test: apparatus and application

    NASA Astrophysics Data System (ADS)

    Luan, Zhu; Liu, Liren; Wang, Lijuan; Liu, De'an

    2008-08-01

    There is transmitting optics of 250mm aperture with about 8 microradians in SILEX system. This is often large aperture and diffraction-limited laser beam in the laser communications. Large-Optics white light interferometer using double-shearing structure has been submitted to analysis the laser wavefront before. Six optical plates of 490 millimeters apertures are manufactured now one of which is also aperture-divided so that the precision of measured wave front is higher than the full aperture design. It is suitable for measurement of minimum diffraction-limited laser wave front and any wavelength. The interference is happened between equal optical path of the reflection and the other. The plates are the basic structures which are precisely parallel or perpendicular needed for either two plates. There are several tools equipped with the interferometer including white light test source and collimators and so on to confirm the precision of several seconds angle. The apparatus and application is explained in detail in this paper. The adjustment is important for the realization of white light test.

  1. Large aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet Lasers

    SciTech Connect

    Rushford, M.C.; Dixit, S.N.; Thomas, I.M.; Martin, A.M.; Perry, M.D.

    1997-03-01

    It is now widely recognized that spatial beam smoothing (homogenization) is essential in coupling the laser energy to the inertial confinement fusion (ICF) targets. For the indirect drive approach to ICF, it is desirable to distribute the laser energy into a uniformly speckled profile that has a flat-top super-Gaussian envelope (8th power or higher) and contains greater than 95% of the energy inside the super-Gaussian profile. Spatial smoothing is easily achieved by introducing a binary random phase plate (RPP) in the beam. This produces a homogenized far-field pattern which consists of an overall envelope function determined by the RPP element superimposed with a fine scale speckle pattern arising due to the interference among the various RPP elements. Although easy to fabricate and currently in routine use in many fusion laboratories, the binary RPPs do not meet the ICF requirements stated above since the far-field intensity profile is restricted to essentially an Airy function containing only 84% (an upper limit) of the energy inside the central spot. Approaches using lenslet arrays (refractive or diffractive) have limited use since they operate in the quasi-far-field and have a short depth of focus. The limitations of the RPPs can be overcome by relaxing the binary phase constraint. We have recently presented 5 continuously varying phase screens for tailoring the focal plane irradiance profiles. Called kinoform phase plates (KPPs), these phase screens offer complete flexibility in tailoring the focal plane envelope and, at the same time, increasing the energy efficiency inside the focal spot. In this paper we discuss the design and fabrication of such kinoform phase plates in fused silica for spatial beam smoothing on the Nova and the Beamlet lasers. Since the phase plates are used at the end of the laser chain, KPPs on Nova and Beamlet have to be fabricated on large aperture optics (65-cm diameter and 40-cm square substrates respectively). The following

  2. The experiment to detect equivalent optical path difference in independent double aperture interference light path based on step scanning method

    NASA Astrophysics Data System (ADS)

    Wang, Chaoyan; Chen, Xin-yang; Zheng, Lixin; Ding, Yuanyuan

    2014-11-01

    Fringe test is the method which can detect the relative optical path difference in optical synthetic aperture telescope array. To get to the interference fringes, the two beams of light in the meeting point must be within the coherence length. Step scanning method is within its coherence length, selecting a specific step, changing one-way's optical path of both by changing position of micro displacement actuator. At the same time, every fringe pattern can be recorded. The process of fringe patterns is from appearing to clear to disappearing. Firstly, a particular pixel is selected. Then, we keep tract of the intensity of every picture in the same position. From the intensity change, the best position of relative optical path difference can be made sure. The best position of relative optical path difference is also the position of the clearest fringe. The wavelength of the infrared source is 1290nm and the bandwidth is 63.6nm. In this experiment, the coherence length of infrared source is detected by cube reflection experiment. The coherence length is 30μm by data collection and data processing, and that result of 30μm is less different from the 26μm of theoretical calculated. In order to further test the relative optical path of optical synthetic aperture using step scanning method, the infrared source is placed into optical route of optical synthesis aperture telescope double aperture. The precision position of actuator can be obtained when the fringe is the clearest. By the experiment, we found that the actuating step affects the degree of precision of equivalent optical path. The smaller step size, the more accurate position. But the smaller the step length, means that more steps within the coherence length measurement and the longer time.

  3. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    NASA Technical Reports Server (NTRS)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  4. An optical pressure chamber designed for high numerical aperture studies on adherent living cells.

    PubMed

    Pagliaro, L; Reitz, F; Wang, J

    1995-06-01

    We have developed an optical pressure chamber designed for use with high numerical aperture oil immersion microscope objectives at working pressures up to 1,000 psi (67 atm abs). The chamber is optimized for studies of living, adherent, cultured mammalian cells using high resolution epifluorescence and phase contrast microscopy, and biophysical techniques such as fluorescence redistribution after photobleaching and optical trapping. The primary optical window assembly of the chamber can be removed and placed into a standard 35-mm tissue culture dish, allowing for culture, microinjection, and micromanipulation of adherent cells before they are loaded into the chamber. The chamber is designed to fit into a commercially available stage heater for temperature control, and we used a computer-controlled high pressure liquid chromatography pump for pressure control. A graphic software interface allows the user to program "dive" profiles and to link temperature and pressure data with digital image files of specimens under study. A minor modification of the present design will allow perfusion at high pressure. PMID:7633279

  5. Large-aperture two-dimensional x-ray refractive mosaic lenses.

    PubMed

    Nazmov, Vladimir; Reznikova, Elena; Mohr, Juergen; Saile, Volker; Tajiri, Hiroo; Voigt, Anja

    2016-09-01

    Lenses with high numerical aperture are required for images with very high spatial resolution, which is difficult to realize in the x-ray range because of low-refraction-index decrement and relatively high absorption of x-rays in the material. However, such an aperture can be realized by means of a mosaic lens, as shown in this work. PMID:27607293

  6. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    SciTech Connect

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Baida, Fadi I.; Grosjean, Thierry; Nedeljkovic, Dusan; Tannous, Tony

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  7. A CLOSE COMPANION SEARCH AROUND L DWARFS USING APERTURE MASKING INTERFEROMETRY AND PALOMAR LASER GUIDE STAR ADAPTIVE OPTICS

    SciTech Connect

    Bernat, David; Bouchez, Antonin H.; Cromer, John L.; Dekany, Richard G.; Moore, Anna M.; Ireland, Michael; Tuthill, Peter; Martinache, Frantz; Angione, John; Burruss, Rick S.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; Kibblewhite, Edward; McKenna, Daniel L.; Petrie, Harold L.; Roberts, Jennifer; Shelton, J. Chris; Thicksten, Robert P.; Trinh, Thang

    2010-06-01

    We present a close companion search around 16 known early L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics (LGS AO). The use of aperture masking allows the detection of close binaries, corresponding to projected physical separations of 0.6-10.0 AU for the targets of our survey. This survey achieved median contrast limits of {Delta}K {approx} 2.3 for separations between 1.2 {lambda}/D-4{lambda}/D and {Delta}K {approx} 1.4 at 2/3 {lambda}/D. We present four candidate binaries detected with moderate-to-high confidence (90%-98%). Two have projected physical separations less than 1.5 AU. This may indicate that tight-separation binaries contribute more significantly to the binary fraction than currently assumed, consistent with spectroscopic and photometric overluminosity studies. Ten targets of this survey have previously been observed with the Hubble Space Telescope as part of companion searches. We use the increased resolution of aperture masking to search for close or dim companions that would be obscured by full aperture imaging, finding two candidate binaries. This survey is the first application of aperture masking with LGS AO at Palomar. Several new techniques for the analysis of aperture masking data in the low signal-to-noise regime are explored.

  8. Key technology of data registration for large aperture aspheric surface measurement

    NASA Astrophysics Data System (ADS)

    Ren, Tongqun; Guo, Yinbiao; Ke, Xiaolong

    2010-10-01

    Large measuring range and high resolution are always contradictories in practical measurement for large aperture aspheric surface. They must be met simultaneously in high precision measurement. Stitching method based on data registration is an effective way to resolve this contradiction. Aiming at the problem of rapid searching corresponding points, a key problem in offset sampling point set registration under rectangular coordinate system, a complete and effective approach is described in this paper. The original and destination point sets are registered roughly according to initial transformation and then projected to x-y plane. The intersection of two planar point sets' minimal bounding rectangle is solved to reduce the original points to be matched. The convex boundary of destination point set is solved and then principle of connected graphs is employed to judge whether one original point lies in destination point set. Strategy of space separating is employed to accelerate the neighboring points searching process. For each original point, its neighboring points belonging to a small area are solved. Subsequently, quadratic surface fitting is performed based on these neighboring points. Then method of Point-to-(Tangent) Plane is used to calculate its corresponding point. An emulation experiment is performed and experimental results are presented to show the feasibility of the proposed methods. It can realize rapid corresponding points searching effectively and meet the high precision registration under the situation of offset sampling.

  9. Large-explosive source, wide-recording aperture, seismic profiling on the Columbia Plateau, Washington

    SciTech Connect

    Jarchow, C.M. . Dept. of Geophysics); Catchings, R.D.; Lutter, W.J. )

    1994-02-01

    Clear subsurface seismic images have been obtained at low cost on the Columbia Plateau, Washington. The Columbia Plateau is perhaps the most notorious of all bad-data'' areas because large impedance contrasts in surface flood basalts severely degrade the seismic wavefield. This degradation was mitigated in this study via a large-explosive source, wide-recording aperture shooting method. The shooting method emphasizes the wide-angle portion of the wavefield, where Fermat's principle guarantees reverberation will not interfere with the seismic manifestations of crucial geologic interfaces. The basalt diving wave, normally discarded in standard common midpoint (CMP) seismic profiling, can be used to image basalt velocity structure via travel-time inversion. Maximum depth-penetration of the diving wave tightly constrains basalt-sediment interface depth. An arrival observed only at shot-receiver offsets greater than 15 km can be used to determine the velocity and geometry of basement via simultaneous inversion. The results from this study suggest that previous geologic hypotheses and hydrocarbon play concepts for the Columbia Plateau may have been in error.

  10. A scalable multi-chip architecture to realise large-format microshutter arrays for coded aperture applications

    NASA Astrophysics Data System (ADS)

    McNie, Mark E.; King, David O.; Smith, Gilbert W.; Stone, Steven M.; Brown, Alan G.; Gordon, Neil T.; Slinger, Christopher W.; Cannon, Kevin; Riches, Stephen; Rogers, Stanley

    2009-08-01

    Coded aperture imaging has been used for astronomical applications for several years. Typical implementations used a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. Recently applications have emerged in the visible and infra red bands for low cost lens-less imaging systems and system studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. Previously we reported on the realization of a 2x2cm single chip mask in the mid-IR based on polysilicon micro-opto-electro-mechanical systems (MOEMS) technology and its integration with ASIC drive electronics using conventional wire bonding. The MOEMS architecture employs interference effects to modulate incident light - achieved by tuning a large array of asymmetric Fabry-Perot optical cavities via an applied voltage and uses a hysteretic row/column scheme for addressing. In this paper we present the latest transmission results in the mid-IR band (3-5μm) and report on progress in developing a scalable architecture based on a tiled approach using multiple 2 x 2cm MOEMS chips with associated control ASICs integrated using flip chip technology. Initial work has focused on a 2 x 2 tiled array as a stepping stone towards an 8 x 8 array.

  11. Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate.

    PubMed

    Zhao, Zhigang; Dong, Yantao; Pan, Sunqiang; Liu, Chong; Chen, Jun; Tong, Lixin; Gao, Qingsong; Tang, Chun

    2012-01-16

    A large aperture fused silica tapered fiber phase conjugate mirror is presented with a maximum 70% stimulated Brillouin scattering (SBS) reflectivity, which is obtained with 1 kHz repetition rate, 15 ns pulse width and 38 mJ input pulse energy. To the best of our knowledge, this is the highest SBS reflectivity ever reported by using optical fiber as a phase conjugate mirror for such high pulse repetition rate (1 kHz) and several tens of millijoule (mJ) input pulse energy. The influences of fiber end surface quality and pump pulse widths on SBS reflectivity are investigated experimentally. The results show that finer fiber end surface quality and longer input pulse widths are preferred for obtaining higher SBS reflectivity with higher input pulse energy. Double passing amplification experiments are also performed. 52 mJ pulse energy is achieved at 1 kHz repetition rate, with a reflected SBS pulse width of 1.5 ns and a M(2) factor of 2.3. The corresponding peak power reaches 34.6 MW. Obvious beam quality improvement is observed. PMID:22274534

  12. Effect of the parameters of a wide-aperture acousto-optic filter on the image processing quality

    SciTech Connect

    Voloshinov, V B; Bogomolov, D V

    2006-05-31

    The properties of wide-aperture paratellurite crystal acousto-optic filters used for optical image processing are studied. The influence of parameters of these filters on the quality of optical imaging in laser and nonmonochromatic light is studied. The spatial resolution of filters is measured upon laser and nonmonochromatic illumination of objects. Filtration is performed in a broad wavelength range at different powers of a control electric signal. The optimisation of the filter parameters for improving its spatial resolution is discussed. (optical image processing)

  13. Optical phase distortion due to turbulent-fluid density fields - Quantification using the small-aperture beam technique

    NASA Astrophysics Data System (ADS)

    Jumper, E. J.; Hugo, R. J.

    1992-07-01

    This paper discusses the small-aperture beam technique, a relatively new way of experimentally quantifying optically-active, turbulent-fluid-flow-induced optical degradation. The paper lays out the theoretical basis for the technique, and the relationship of the measured jitter of the beam to optical path difference. A numerical simulation of a two-dimensional heated jet is used to explore the validity of beam jitter to obtain optical path difference in a flow region where eddy production constitutes the major character of the 'turbulent' flow field.

  14. A New Type of X-ray Condenser Lenses with Large Apertures Fabricated by Rolling of Structured Films

    SciTech Connect

    Simon, M.; Reznikova, E.; Nazmov, V.; Grund, T.; Last, A.

    2010-04-06

    In order to meet the demand for X-ray lenses with large apertures and, hence, photon flux, a new type of X-ray lenses has been developed: Rolled prismatic X-ray lenses feature a vast number of refracting surfaces to increase transparency and aperture, respectively. Prototypes of such lenses have been fabricated by molding and rolling of a structured polyimide film. In this work, rolled prismatic X-ray lenses are pictured, and results of first tests performed at the ANKA storage ring in Karlsruhe are presented.

  15. Ray-tracing and physical-optics analysis of the aperture efficiency in a radio telescope.

    PubMed

    Olmi, Luca; Bolli, Pietro

    2007-07-01

    The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of approximately 10 in terms of D/lambda. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between approximately 0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95.

  16. Synthetic Aperture Radar (sar) and Optical Imagery Data Fusion: Crop Yield Analysis in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Parks, S. M.

    2012-08-01

    With the expanding energy crisis and rising food prices, crop yield analysis in Southeast Asia is an increasingly important topic in this region. Rice is the most important food crop in Southeast Asia and the ability to accurately predict crop yields during a growing season is useful for decision-makers, aid providers, and commercial trade organizations. The use of optical satellite image data by itself is difficult due to the almost constant cloud in many parts of Southeast Asia. However, Synthetic Aperture Radar (SAR), or SAR data, which can image the Earth's surface through cloud cover, is suitable for many agricultural purposes, such as the detection of rice fields, and the identification of different crop species. Crop yield analysis is difficult in this region due to many factors. Rice cropping systems are often characterized by the type of rice planted, the size of rice field, the sowing dates for different fields, different types of rice cropping systems from one area to another, as well as cultural practices such as sowing and transplanting. This paper will discuss the use of SAR data fused with optical imagery to improve the ability to perform crop yield analysis on rice crops in Southeast Asia.

  17. Ray-tracing and physical-optics analysis of the aperture efficiency in a radio telescope.

    PubMed

    Olmi, Luca; Bolli, Pietro

    2007-07-01

    The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of approximately 10 in terms of D/lambda. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between approximately 0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95. PMID:17571151

  18. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  19. Origins of high-frequency scattered waves near PKKP from large aperture seismic array data

    USGS Publications Warehouse

    Earle, P.S.

    2002-01-01

    This article identifies the likely origin of 1-Hz scattered waves in the vicinity of PKKP by comparing measurements of slowness and onset time to ray-theoretical predictions. The measurements are obtained from slant stacks of Large Aperture Seismic Array (LASA) data from 36 earthquakes and six explosions in the range 30??-116??. Three types of scattered waves explain the main features seen in the stacks, including: P scattered to PKP near the Earth's surface (P.PKP), PKKP scattered near its core-mantle-boundary (CMB) reflection point (PK.KP), and SKKP scattered near its CMB reflection point (SK.KP). The LASA stacks image the amplitude and slowness variations of the scattered waves with time. They also show where these waves can be detected and where they are free from contaminating arrivals. SK.KP waves rise above the noise approximately 100 sec before the onset time of the main SKKP arrival near 113??. Observations of PK.KP span 30??-100??. However, at distances greater than 50?? they suffer from P.PKP contamination. At distances less than 40?? the PK.KP last for about 280 sec. This is approximately 130 sec longer than the maximum ray-theoretical prediction for waves scattered at the CMB, indicating a possible combination of near-surface scattering and contributions from the overlying mantle.

  20. A procedure for combining rotating-coil measurements of large-aperture accelerator magnets

    NASA Astrophysics Data System (ADS)

    Köster, Oliver; Fiscarelli, Lucio; Russenschuck, Stephan

    2016-05-01

    The rotating search coil is a precise and widely used tool for measuring the magnetic field harmonics of accelerator magnets. This paper deals with combining several such multipole measurements, in order to cover magnet apertures largely exceeding the diameter of the available search coil. The method relies on the scaling laws for multipole coefficients and on the method of analytic continuation along zero-homotopic paths. By acquiring several measurements of the integrated magnetic flux density at different transverse positions within the bore of the accelerator magnet, the uncertainty on the field harmonics can be reduced at the expense of tight tolerances on the positioning. These positioning tolerances can be kept under control by mounting the rotating coil and its motor-drive unit on precision alignment stages. Therefore, the proposed technique is able to yield even more precise results for the higher-order field components than a dedicated rotating search coil of larger diameter. Moreover, the versatility of the measurement bench is enhanced by avoiding the construction of rotating search coils of different measurement radii.

  1. Assessing inter-sensor variability and sensible heat flux derivation accuracy for a large aperture scintillometer.

    PubMed

    Rambikur, Evan H; Chávez, José L

    2014-01-01

    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies.

  2. The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) 2005: Calibration and Targeted Sources

    NASA Astrophysics Data System (ADS)

    Truch, M. D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; Marsden, G.; Martin, P. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2008-07-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 100 hr flight from northern Sweden in 2005 June (BLAST05). As part of the calibration and pointing procedures, several compact sources were mapped, including solar system, Galactic, and extragalactic targets, specifically Pallas, CRL 2688, LDN 1014, IRAS 20126+4104, IRAS 21078+5211, IRAS 21307+5049, IRAS 22134+5834, IRAS 23011+6126, K3-50, W75N, and Mrk 231. One additional source, Arp 220, was observed and used as our primary calibrator. Details of the overall BLAST05 calibration procedure are discussed here. The BLAST observations of each compact source are described, flux densities and spectral energy distributions are reported, and these are compared with previous measurements at other wavelengths. The 250, 350, and 500 μm BLAST data can provide useful constraints to the amplitude and slope of the submillimeter continuum, which in turn may be useful for the improved calibration of other submillimeter instruments.

  3. Microstrip patch antenna panel for large aperture L-band phased array

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Amaro, Luis; Oakes, Eric; Hodges, Richard; Spitz, Suzanne; Rosen, Paul A.

    2004-01-01

    This paper describes the design and development of a large, lightweight antenna panel for an active phased array operating at L-band. The panel was developed under a JPL program of technology development for space based radar. It utilizes dual-stacked patch elements that are interconnected with corporate feed manifold of striplines. This paper focuses on the electromagnetic design and performance of the radiating elements, with emphasis on scan performance, and also addresses mechanical and thermal aspects of the panel. The element in the array environment has a bandwidth of more than 80MHz centered at 1260MHz and is fed so that it can radiate orthogonal linear polarizations. The envisioned phased array, with a nominal aperture of 50m x 2m, is designed to scan +/-45 degrees in azimuth and +/-20 degrees in elevation. The panel of radiating elements has a mass density of 3.9 kg/m2, which represents approximately 50% of the target 8kg/m2 total panel mass density that includes T/R modules and feed manifolds.

  4. APERTURE: a precise extremely large reflective telescope using re-configurable elements

    NASA Astrophysics Data System (ADS)

    Ulmer, M. P.; Coverstone, V. L.; Cao, J.; Chung, Y.-W.; Corbineau, M.-C.; Case, A.; Murchison, B.; Lorenz, C.; Luo, G.; Pekosh, J.; Sepulveda, J.; Schneider, A.; Yan, X.; Ye, S.

    2016-07-01

    One of the pressing needs for the UV-Vis is a design to allow even larger mirrors than the JWST primary at an affordable cost. We report here the results of a NASA Innovative Advanced Concepts phase 1 study. Our project is called A Precise Extremely large Reflective Telescope Using Reconfigurable Elements (APERTURE). The idea is to deploy a continuous membrane-like mirror. The mirror figure will be corrected after deployment to bring it into better or equal lambda/20 deviations from the prescribed mirror shape. The basic concept is not new. What is new is to use a different approach from the classical piezoelectric-patch technology. Instead, our concept is based on a contiguous coating of a so called magnetic smart material (MSM). After deployment a magnetic write head will move on the non-reflecting side of the mirror and will generate a magnetic field that will produce a stress in the MSM that will correct the mirror deviations from the prescribed shape.

  5. Tracking marine mammals and ships with small and large-aperture hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Gassmann, Martin

    Techniques for passive acoustic tracking in all three spatial dimensions of marine mammals and ships were developed for long-term acoustic datasets recorded continuously over months using custom-designed arrays of underwater microphones (hydrophones) with spacing ranging from meters to kilometers. From the three-dimensional tracks, the acoustical properties of toothed whales and ships, such as sound intensity and directionality, were estimated as they are needed for the passive acoustic abundance estimation of toothed whales and for a quantitative description of the contribution of ships to the underwater soundscape. In addition, the tracks of the toothed whales reveal their underwater movements and demonstrate the potential of the developed tracking techniques to investigate their natural behavior and responses to sound generated by human activity, such as from ships or military SONAR. To track the periodically emitted echolocation sounds of toothed whales in an acoustically refractive environment in the upper ocean, a propagation-model based technique was developed for a hydrophone array consisting of one vertical and two L-shaped subarrays deployed from the floating instrument platform R/P FLIP. The technique is illustrated by tracking a group of five shallow-diving killer whales showing coordinated behavior. The challenge of tracking the highly directional echolocation sounds of deep-diving (< 1 km) toothed whales, in particular Cuvier's beaked whales, was addressed by embedding volumetric small-aperture (≈ 1 m element spacing) arrays into a large-aperture (≈ 1 km element spacing) seafloor array to reduce the minimum number of required receivers from five to two. The capabilities of this technique are illustrated by tracking several groups of up to three individuals over time periods from 10 min to 33 min within an area of 20 km2 in the Southern California Bight. To track and measure the underwater radiated sound of ships, a frequency domain beamformer was

  6. Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun; Lee, Jun-Ho; Kim, Bo-Young

    2015-08-01

    The accurate determination of surface-layer turbulent fluxes over urban areas is critical to understanding urban boundary layer (UBL) evolution. In this study, a remote-sensing technique using a large aperture scintillometer (LAS) was investigated to estimate surface-layer turbulent fluxes over a highly heterogeneous urban area. The LAS system, with an optical path length of 2.1 km, was deployed in an urban area characterized by a complicated land-use mix (residential houses, water body, bare ground, etc.). The turbulent sensible heat ( Q H) and momentum fluxes (τ) were estimated from the scintillation measurements obtained from the LAS system during the cold season. Three-dimensional LAS footprint modeling was introduced to identify the source areas ("footprint") of the estimated turbulent fluxes. The analysis results showed that the LAS-derived turbulent fluxes for the highly heterogeneous urban area revealed reasonable temporal variation during daytime on clear days, in comparison to the land-surface process-resolving numerical modeling. A series of sensitivity tests indicated that the overall uncertainty in the LAS-derived daytime Q H was within 20%-30% in terms of the influence of input parameters and the nondimensional similarity function for the temperature structure function parameter, while the estimation errors in τ were less sensitive to the factors of influence, except aerodynamic roughness length. The 3D LAS footprint modeling characterized the source areas of the LAS-derived turbulent fluxes in the heterogeneous urban area, revealing that the representative spatial scales of the LAS system deployed with the 2.1 km optical path distance ranged from 0.2 to 2 km2 (a "micro- a scale"), depending on local meteorological conditions.

  7. Stylus profilometry of large optics

    NASA Astrophysics Data System (ADS)

    Wills-Moren, William J.; Leadbeater, Peter B.

    1990-11-01

    This paper indicates the emerging requirements for profilometry instruments for use in the fabrication and characterization of modern optical systems. Important design principles are covered, together with some of the problems which can be experienced. Examples of a number of systems recently developed are given - both stand-alone systems and those which operate in situ to the machining process.

  8. Fabrication of near-field optical apertures in aluminium by a highly selective corrosion process in the evanescent field.

    PubMed

    Haefliger, D; Stemmer, A

    2003-03-01

    A simple, one-step process to fabricate high-quality apertures for scanning near-field optical microscope probes based on aluminium-coated silicon nitride cantilevers is presented. A thin evanescent optical field at a glass-water interface was used to heat the aluminium at the tip apex due to light absorption. The heat induced a breakdown of the passivating oxide layer and local corrosion of the metal, which selectively exposed the front-most part of the probe tip from the aluminium. Apertures with a protruding silicon nitride tip up to 72 nm in height were fabricated. The height of the protrusion was controlled by the extent of the evanescent field, whereas the diameter depended on the geometry of the probe substrate. The corrosion process proved to be self-terminating, yielding highly reproducible tip heights. Near-field optical resolution in a transmission mode of 85 nm was demonstrated.

  9. Aperture averaging in multiple-input single-output free-space optical systems using partially coherent radial array beams.

    PubMed

    Gökçe, Muhsin Caner; Baykal, Yahya; Uysal, Murat

    2016-06-01

    Multiple-input single-output (MISO) techniques are employed in free-space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, for the MISO FSO system, a partially coherent radial array and a finite-sized receiver aperture are used at the transmitter and the receiver, respectively. Using the extended Huygens-Fresnel principle, we formulate the average power and the power correlation at the finite-sized slow detector in weak atmospheric turbulence. System performance indicators such as the power scintillation index and the aperture averaging factor are determined. Effects of the source size, ring radius, receiver aperture radius, link distance, and structure constant and the degree of source coherence are analyzed on the performance of the MISO FSO system. In the limiting cases, the numerical results are found to be the same when compared to the existing coherent and partially coherent Gaussian beam scintillation indices. PMID:27409430

  10. Aperture averaging in multiple-input single-output free-space optical systems using partially coherent radial array beams.

    PubMed

    Gökçe, Muhsin Caner; Baykal, Yahya; Uysal, Murat

    2016-06-01

    Multiple-input single-output (MISO) techniques are employed in free-space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, for the MISO FSO system, a partially coherent radial array and a finite-sized receiver aperture are used at the transmitter and the receiver, respectively. Using the extended Huygens-Fresnel principle, we formulate the average power and the power correlation at the finite-sized slow detector in weak atmospheric turbulence. System performance indicators such as the power scintillation index and the aperture averaging factor are determined. Effects of the source size, ring radius, receiver aperture radius, link distance, and structure constant and the degree of source coherence are analyzed on the performance of the MISO FSO system. In the limiting cases, the numerical results are found to be the same when compared to the existing coherent and partially coherent Gaussian beam scintillation indices.

  11. Imaging the midcontinent rift beneath Lake Superior using large aperture seismic data

    SciTech Connect

    Trehu, A.; Shay, J. ); Morel-a-l'Huissier, P.; Milkereit, B. ); Meyer, R.; Jefferson, T.; Shih, X.R. ); Karl, J. ); Mereu, R.; Epili, D. ); Sexton, J.; Wendling, S. ); Hajnal, Z.; Chan, W.K. ); Hutchison, D. )

    1991-04-01

    The authors present a detailed velocity model across the 1.1 billion year old Midcontinent Rift System (MRS) in central Lake Superior. The model was derived primarily from onshore-offshore large-aperture seismic and gravity data. High velocities obtained within a highly reflective half-graben that was imaged on coincident seismic reflection data demonstrate the dominantly magic composition of the graben fill and constrain its total thickness to be at least 30 km. Strong wide-angle reflections are observed from the lower crust and Moho, indicating that the crust is thickest (55-60 km) beneath the axis of the graben. The total crustal thickness decreases rapidly to about 40 km beneath the south shore of the lake and decreases more gradually to the north. Above the Moho is a high-velocity lower crust interpreted to result from syn-rift basaltic intrusion into and/or underplating beneath the Archean lower crust. The lower crust is thickest beneath the axis of the main rift half-graben. A second region of thick lower crust is found approximately 100 km north of the axis of the rift beneath a smaller half graben that is interpreted to reflect an earlier stage of rifting. The crustal model presented here resembles recent models of some passive continental margins and is in marked contrast to many models of both active and extinct Phanerozoic continental rift zones. It demonstrates that the Moho is a dynamic feature, since the pre-rift Moho is probably within or above the high-velocity lower crust, whereas the post-rift Moho is defined as the base of this layer. In the absence of major tectonic activity, however, the Moho is very stable, since the large, abrupt variations in crustal thickness beneath the MRS have been preserved for at least a billion years.

  12. HI at z 20: The Large Aperture Experiment to Detect the Dark Ages

    NASA Astrophysics Data System (ADS)

    Greenhill, Lincoln J.; Werthimer, D.; Taylor, G.; Ellingson, S.; LEDA Collaboration

    2012-05-01

    When did the first stars form? Did supermassive black holes form at the same time, earlier, or later? One of the great challenges of cosmology today is the study of these first generation objects. The Large Aperture Experiment to Detect the Dark Ages (LEDA) project seeks to detect, in total-power, emission from neutral Hydrogen (21 cm rest wavelength) in the intergalactic medium about 100 million years after the Big Bang (redshifts 20). Detection would deliver the first observational constraints on models of structure formation and the first pockets of star and black holes formation in the Universe. LEDA will develop and integrate by 2013 signal processing instrumentation into the new first station of the Long Wavelength Array (LWA). This comprises a large-N correlator serving all 512 dipole antennas of the LWA1, leveraging a packetized CASPER architecture and combining FPGAs and GPUs for the F and X stages. Iterative calibration and imaging will rely on warped snapshot imaging and be drawn from a GPU-enabled library (cuWARP) that is designed specifically to support wide-field full polarization imaging with fixed dipole arrays. Calibration techniques will include peeling, correction for ionospheric refraction, direction dependent dipole gains, deconvolution via forward modeling, and exploration of pulsar data analysis to improve performance. Accurate calibration and imaging will be crucial requirements for LEDA, necessary to subtract the bright foreground sky and detect the faint neutral Hydrogen signal. From the computational standpoint, LEDA is a O(100) TeraFlop per second challenge that enables a scalable architecture looking toward development of radio arrays requiring power efficient 10 PetaFlop per second performance. Stage two of the Hydrogen Epoch of Reionization Array (HERA2) is one example.

  13. Imaging the midcontinent rift beneath Lake Superior using large aperture seismic data

    USGS Publications Warehouse

    Trehu, Anne M.; Morel-a-l'Huissier, Patrick; Meyer, R.; Hajnal, Z.; Karl, J.; Mereu, R. F.; Sexton, J.; Shay, J.; Chan, W. K.; Epili, D.; Jefferson, T.; Shih, X. R.; Wendling, S.; Milkereit, B.; Green, A.; Hutchinson, Deborah R.

    1991-01-01

    We present a detailed velocity model across the 1.1 billion year old Midcontinent Rift System (MRS) in central Lake Superior. The model was derived primarily from onshore-offshore large-aperture seismic and gravity data. High velocities obtained within a highly reflective half-graben that was imaged on coincident seismic reflection data demonstrate the dominantly mafic composition of the graben fill and constrain its total thickness to be at least 30km. Strong wide-angle reflections are observed from the lower crust and Moho, indicating that the crust is thickest (55–60km) beneath the axis of the graben. The total crustal thickness decreases rapidly to about 40 km beneath the south shore of the lake and decreases more gradually to the north. Above the Moho is a high-velocity lower crust interpreted to result from syn-rift basaltic intrusion into and/or underplating beneath the Archean lower crust. The lower crust is thickest beneath the axis of the main rift half-graben. A second region of thick lower crust is found approximately 100km north of the axis of the rift beneath a smaller half graben that is interpreted to reflect an earlier stage of rifting. The crustal model presented here resembles recent models of some passive continental margins and is in marked contrast to many models of both active and extinct Phanerozoic continental rift zones. It demonstrates that the Moho is a dynamic feature, since the pre-rift Moho is probably within or above the high-velocity lower crust, whereas the post-rift Moho is defined as the base of this layer. In the absence of major tectonic activity, however, the Moho is very stable, since the large, abrupt variations in crustal thickness beneath the MRS have been preserved for at least a billion years.

  14. Large-scale and non-contact surface topography measurement using scanning ion conductance microscopy and sub-aperture stitching technique

    NASA Astrophysics Data System (ADS)

    Zhuang, Jian; Guo, Renfei; Li, Fei; Yu, Dehong

    2016-08-01

    In this paper, we propose a large-scale and non-contact surface topography measurement method using a non-contact scanning probe microscopy (SPM) technique, scanning ion conductance microscopy (SICM), combined with the sub-aperture stitching technique. The phase correlation techniques were first applied to the three-dimensional (3D) images measured by the SICM to acquire an initially coarse stitching position. Then the tip-tilt compensated sub-aperture stitching algorithm is utilized to eliminate tilts and translations among adjacent images and expand the lateral measuring range of the existing hopping mode SICM system. This SICM and the stitching based method has been used to measure some large-scale samples (micrometer to millimeter scale) in a non-contact, quantitative and high resolution way. Simulation and experimental results on these samples verify the feasibility of this method and the effectiveness of the stitching algorithm. A measuring range of 1.08 mm  ×  0.55 mm and a lateral resolution of 100 nm or even higher were obtained in these experiments. Compared with atomic force microscopy (AFM), the non-contact feature of the proposed method ensures less damage to the surface topography. The non-optical feature makes the data stitching simpler than the existing optical microscopic methods, which need consider how to compensate the vignetting effect caused by the inhomogeneity of light.

  15. Multiplexing in optical encryption by using an aperture system and a rotating sandwich random phase diffuser in the Fourier plane

    NASA Astrophysics Data System (ADS)

    Singh, Madan; Kumar, Arvind; Singh, Kehar

    2008-03-01

    In the present paper, we describe multiplexing in optical encryption of two-dimensional images, by using apertures and rotation of one of the constituent phase diffusers of a sandwich phase diffuser in the Fourier plane. The sandwich phase diffuser is made with two random constituent phase-diffusing surfaces sandwiched together. The apertures of different sizes and shapes are made with the help of 'paint brush' software. Simulation results are presented showing the effects of size, shape, and orientation of the apertures on the decrypted images obtained via multiplexing techniques. In addition to the results of using aperture systems in encryption and decryption, the results of rotation of one of the constituent phase diffusers in decryption are analyzed and used in multiplexing. Due to the use of aperture systems and the rotation of the constituent phase diffuser, the multiplexing capability of the system in encryption is enhanced along with the enhanced security due to using a sandwich diffuser. To evaluate the reliability of the technique, mean square error between the decrypted and the original image has been calculated.

  16. Large stable aluminum optics for aerospace applications

    NASA Astrophysics Data System (ADS)

    Vukobratovich, Daniel; Schaefer, John P.

    2011-09-01

    Aluminum mirrors offer the advantages of lower cost, shorter fabrication time, more rugged mounting, and same material athermalization when compared to classical glass mirrors. In the past these advantages were offset by controversial dimensional stability and high surface scatter, limiting applications to IR systems. Raytheon developed processes to improve long term stability, and reduce surface scatter. Six 380 mm aperture aluminum mirrors made using these processes showed excellent stability, with figure changes of less than 0.01 wave RMS(1 wave = 633 nm) when cycled 10 times between -51 and +71 deg. C. The VQ process developed at ELCAN reduces surface scatter in bare aluminum mirrors to below 20 angstroms RMS, and has been used in thousands of production mirrors up to 300 mm aperture. These processes were employed in the fabrication of two lightweight single arch 600 mm aluminum mirrors. The two mirrors were produced in four months, with a mounted surface figure of 0.22 waves RMS and surface roughness of 20 angstroms. Mounted fundamental frequency was 218 Hz, and no figure distortion was observed at preload levels four times higher than design. Subsequently the mirrors performed well when subjected to severe environmental loadings in a Raytheon test system. This technology is being extended to ultra-lightweight sandwich mirrors, which are competitive with other material technologies used in advanced aerospace applications such as high-altitude UAV surveillance systems and satellite optics.

  17. Determining suitability of Large Aperture Scintillometer for validating remote sensing based evapotranspiration maps

    NASA Astrophysics Data System (ADS)

    Paul, G.; Gowda, P. H.; Howell, T. A.; Basu, S.; Colaizzi, P. D.; Marek, T.

    2013-12-01

    Scintillation method is a relatively new technique for measuring the sensible heat and water fluxes over land surfaces. Path integrating capabilities of scintillometer over heterogeneous landscapes make it a potential tool for comparing the energy fluxes derived from remote sensing based energy balance algorithms. For this reason, scintillometer-derived evapotranspiration (ET) fluxes are being used to evaluate remote sensing based energy balance algorithms for their ability to estimate ET fluxes. However, LAS' (Large Aperture Scintillometer) ability to derive ET fluxes is not thoroughly tested. The objective of this study was to evaluate LAS- and Surface Energy Balance System (SEBS)-derived fluxes against lysimetric data to determine LAS' suitability for validating remote sensing based evapotranspiration (ET) maps. The study was conducted during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment - 2008 (BEAREX-08) at the USDA-ARS Conservation and Production Research Laboratory (CPRL), Bushland, Texas. SEBS was coded in a GIS environment to retrieve ET fluxes from the high resolution imageries acquired using airborne multispectral sensors. The CPRL has four large weighing lysimeters (3 m long x 3 m wide x 2.4 m deep), each located in the middle of approximately 5 ha fields, arranged in a block pattern. The two lysimeter fields located on the east (NE and SE) were managed under irrigated conditions, and the other two lysimeters on the west (NW and SW) were under dryland management. Each lysimeter field was equipped with an automated weather station that provided measurements for net radiation (Rn), Ts, soil heat flux (Go), Ta, relative humidity, and wind speed. During BEAREX08, the NE and SE fields were planted to cotton on May 21, and the NW and SW dryland lysimeters fields were planted to cotton on June 5. One LAS each was deployed across two large dryland lysimeter fields (NW and SW) and two large irrigated lysimeter fields (NE and SE). The

  18. Experimental measurement of a time-varying optical path difference using the small-aperture beam technique

    NASA Astrophysics Data System (ADS)

    Hugo, Ronald J.; Jumper, Eric J.

    1993-12-01

    This paper discusses the use of time series of the jitter angle of multiple, small-aperture probe beams as they emerge from a turbulent, optically-active flow field to quantify the time-varying optical path difference (OPD). Techniques to reconstruct a complete time series of instantaneous realizations of the OPD are first applied to a numerically-generated flow field and then to an experimental flow field. The flow field studied was that for the transitionally- turbulent region of a heated, two-dimensional jet. From these OPD histories spatial and temporal frequencies characterizing the OPD's are extracted. The relevance of these results to adaptive-optic devices is discussed.

  19. Assessing Inter-Sensor Variability and Sensible Heat Flux Derivation Accuracy for a Large Aperture Scintillometer

    PubMed Central

    Rambikur, Evan H.; Chávez, José L.

    2014-01-01

    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies. PMID:24473285

  20. All-reflective optical target illumination system with high numerical aperture

    DOEpatents

    Sigler, Robert D.

    1978-01-01

    An all-reflective optical system for providing illumination of a target focal region at high numerical aperture from a pair of co-axially, confluent collimated light beams. A target cavity is defined by a pair of opposed inner ellipsoidal reflectors having respective first focal points within a target region and second focal points at a vertex opening in the opposing reflector. Outwardly of each inner reflector is the opposed combination of a spherical reflector, and an outer generally ellipsoidal reflector having an aberrated first focal point coincident with the focus of the opposing spherical reflector and a second focal point coincident with the second focal point of the opposing inner ellipsoidal reflector through a vertex opening in the spherical reflector. The confluent collimated beams are incident through vertex openings in the outer ellipsoidal reflectors onto respective opposing spherical reflectors. Each beam is reflected by the associated spherical reflector onto the opposing outer ellipsoidal reflector and focused thereby onto the opposing inner ellipsoidal reflector, and then onto the target region.

  1. Convergent polishing: a simple, rapid, full aperture polishing process of high quality optical flats & spheres.

    PubMed

    Suratwala, Tayyab; Steele, Rusty; Feit, Michael; Dylla-Spears, Rebecca; Desjardin, Richard; Mason, Dan; Wong, Lana; Geraghty, Paul; Miller, Phil; Shen, Nan

    2014-01-01

    Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished ~λ/2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher. PMID:25489745

  2. Experimental measurement of a time-varying optical path difference by the small-aperture beam technique

    NASA Astrophysics Data System (ADS)

    Hugo, Ronald J.; Jumper, Eric J.

    1996-08-01

    We discuss the use of time series of the jitter angle of multiple, small-aperture probe beams (the small-aperture beam technique, or SABT) as they emerge from a turbulent, optically active flow-field to quantify the time-varying optical path difference (OPD). The flow field studied is that for the transitionally turbulent region of a two-dimensional heated jet. Techniques to construct a complete time series of instantaneous realizations of the OPD are first applied to a numerically generated flow field and then to an experimental flow field. The SABT sensor's measurement accuracy is assessed, and its application to flow fields that differ from the numerical heated jet is discussed.

  3. A novel measurement scheme for the radial group delay of large-aperture ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wu, Fenxiang; Xu, Yi; Li, Zhaoyang; Li, Wenkai; Lu, Jun; Wang, Cheng; Li, Yanyan; Liu, Yanqi; Lu, Xiaoming; Peng, Yujie; Wang, Ding; Leng, Yuxin; Li, Ruxin

    2016-05-01

    In femtosecond high-peak-power laser system, the radial group delay (RGD) of the pulse front introduced by conventional lens-based beam expanders can significantly decrease the achievable focal intensity, especially when it is larger than the pulse duration. In order to quantitatively analyze and compensate the RGD, a novel measurement scheme based on self-reference and second-order cross-correlation technology is proposed and applied to measure the RGD of the large-aperture ultra-short laser pulses directly. The measured result of the RGD in a 200 TW Ti:sapphire laser system is in good agreement with the theoretical calculation. To our knowledge, it is the first time to realize the direct RGD measurement of large-aperture ultra-short laser pulses.

  4. Preliminary results from a new large-aperture seismic and GPS array in southern Mexico

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Demets, C.; Brudzinski, M.; Arciniega-Ceballos, A.; Diaz-Molina, O.; Correa-Mora, F.

    2006-12-01

    A multi-year deployment of a large aperture seismic and GPS array in southern Mexico, for the purpose of studying the Oaxaca segment of the Middle America subduction zone, entered its second development phase during the summer of 2006. The Oaxaca segment is one of the few places on earth where land-based geophysical observations can be used to study both the locked, seismogenic area of a subduction interface and region of deeper transitional slip, where episodic tremor and slip may originate. The newly expanded array, consisting of eight broad-band seismic and nine continuous GPS stations, measures deformation in the state of Oaxaca and adjacent areas. Important goals of the deployment are to better understand the spatial and temporal histories of episodic slip transients, and their role in either relieving or increasing strain accumulating along the seismogenic portion of a subduction interface. The combined GPS and seismic arrays will be a powerful tool for studying slow slip and non-volcanic tremor, as well as imaging spatial and temporal variations in frictional coupling along the locked and transitional zones beneath our network. Preliminary analysis of seismic data indicates that the seismic stations are uniformly characterized by low noise in the non-volcanic tremor passband of 1-5 Hz, accomplishing an important goal of our site selection. We attribute this to our use of a newly developed, on-site 'listening test' in which our seismic equipment was used to record 30-60 minutes of data before the vault was excavated at a potentially low noise site. The data were processed on site with newly developed software to determine whether the amplitude of the background noise within the frequency band of non-volcanic tremors was low enough to observe the amplitude of tremors previously recorded in Cascadia. Using this test, we confirmed in advance that our selected seismic sites had sufficiently low noise to observe non-volcanic tremor if it is similar to that in

  5. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  6. World atlas of large optical telescopes

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1979-01-01

    By 1980 there will be approximately 100 large optical telescopes in the world with mirror or lens diameters of one meter (39 inches) and larger. This atlas gives information on these telescopes and shows their locations on continent-sized maps. Observatory locations considered suitable for the construction of future large telescopes are also shown.

  7. Image Restoration of Y-type Fizeau Optical Synthetic Aperture Telescope

    NASA Astrophysics Data System (ADS)

    Chen, Zhendong

    2015-08-01

    Based on the structure of the 4 aperture Y-type fizeau synthetic aperture, we simulate imaging system using the software Matlab, then use the image restoration algorithm of expectation maximum(OS-EM) to restore images with the poisson noise、gaussian noise and speckle noise. Through the image restoration, it can improve the image quality and can distinguish the detail of the image.

  8. Design and construction of a large aperture quadrupole electromagnet for ILSE

    SciTech Connect

    Fawley, W.M.; Vella, M.C.; Peters, C.; Stuart, M.; Faltens, A.

    1995-08-01

    We are currently constructing a prototype quadrupole electromagnet for the proposed Induction Linac Systems Experiment (ILSE) at LBNL. ILSE will address many physics and engineering issues relevant to the design of a heavy-ion fusion driver accelerator. The pulsed electromagnet has two layers of current windings and will produce a field gradient of 28 T/m, wi a usable aperture of 6 cm. It operates at a repetition rate of 1 Hz, steady-state. In this paper, we discuss how the interaction of various concerns such as maximum dynamic aperture, short lattice period, field quality, iron yoke weight, heat transfer, and voltage standoff have led to our particular design choices. We also present 2- and 3-D numerical calculations concerning field topography and the results of transport simulations of space-charge dominated ion beams with ILSE parameters.

  9. Defining A Risk Analysis Strategy for Exo-Earth Yields from a Future Large Aperture UVOIR Space Telescope

    NASA Astrophysics Data System (ADS)

    Mandell, Avi; Stark, Christopher C.; Roberge, Aki; Domagal-Goldman, Shawn; Stapelfeldt, Karl R.; Robinson, Tyler

    2015-01-01

    The discovery and characterization of Earth-like planets around Sun-like stars using high-contrast imaging is a critical science metric for constraining the requirements on the next-generation large UVOIR space telescope. The dominant driver for the observatory architecture, cost and schedule is the telescope aperture size. Therefore it is important to provide as much constraint as possible on the required aperture size early in the design and planning process.An estimate of the detection yield for Earth-like planets can be calculated using a Monte Carlo simulation of a design reference mission (DRM), allowing the exploration of a variety of mission design and astrophysical parameters. We have developed such a code (Stark et al. 2014); it optimizes the target list and exposure times to maximize mission yield for a specific set of mission parameters. However, many of the important astrophysical quantities and future technical capabilities that feed into these parameters are not well constrained. This leads to a large uncertainty in the final mission architecture needed to achieve a specific exo-Earth yield.In this presentation we discuss the various physical and technological parameters that go into the DRM simulations, and the associated uncertainties based on the current state of research. We then present a strategy for a three-tiered risk assessment using these uncertainties, and conclude with a discussion of the current range in telescope aperture size associated with each risk level.

  10. Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Connelly, Joseph

    2011-01-01

    The determination of radius of curvature (ROC) of optics typically uses either a phase measuring interferometer on an adjustable stage to determine the position of the ROC and the optics surface under test. Alternatively, a spherometer or a profilometer are used for this measurement. The difficulty of this approach is that for large optics, translation of the interferometer or optic under test is problematic because of the distance of translation required and the mass of the optic. Profilometry and spherometry are alternative techniques that can work, but require a profilometer or a measurement of subapertures of the optic. The proposed approach allows a measurement of the optic figure simultaneous with the full aperture radius of curvature.

  11. A Large Sparse Aperture Densified Pupil Hypertelescope Concept for Ground Based Detection of Extra-Solar Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Lyon, R.; Woodruff, R.; Labeyrie, A.; Oegerle, William (Technical Monitor)

    2002-01-01

    A concept is presented for a large (10 - 30 meter) sparse aperture hyper telescope to image extrasolar earth-like planets from the ground in the presence of atmospheric seeing. The telescope achieves high dynamic range very close to bright stellar sources with good image quality using pupil densification techniques. Active correction of the perturbed wavefront is simplified by using 36 small flat mirrors arranged in a parabolic steerable array structure, eliminating the need for large delat lines and operating at near-infrared (1 - 3 Micron) wavelengths with flats comparable in size to the seeing cells.

  12. Damage and fracture in large aperture, fused silica, vacuum spatial filter lenses

    SciTech Connect

    Campbell, J.H.; Edwards, G.J.; Marion, J.E.

    1995-07-07

    Optical damage that results in large scale fracture has been observed in the large, high-fluence, fused-silica, spatial filter lenses on the Nova and Beamlet lasers. In nearly all cases damage occurs on the vacuum side of the lenses and because the vacuum side of the lens is under tensile stress this damage can lead to catastrophic crack growth if the flaw (damage) size exceeds the critical flaw size for SiO{sub 2}. The damaged 52 cm Nova lenses fracture into two and sometimes three large pieces. Although under full vacuum load at the time they fracture, the Nova lenses do not implode. Rather the authors have observed that the pieces lock together and air slowly leaks into the vacuum spatial filter housing through the lens cracks. The Beamlet lenses have a larger aspect ratio and peak tensile stress than Nova. The peak tensile stress at the center of the output surface of the Beamlet lens is 1,490 psi versus 810 psi for Nova. During a recent Beamlet high energy shot, a damage spot on the lens grew to the critical flaw size and the lens imploded. Post shot data indicate the lens probably fractured into 5 to 7 pieces, however, unlike Nova, these pieces did not lock together. Analysis shows that the likely source of damage is contamination from pinhole blow-off or out-gassing of volatile materials within the spatial filter. Contamination degrades the antireflection properties of the sol-gel coating and reduces its damage threshold. By changing the design of the Beamlet lens it may be possible to insure that it fails safe by locking up in much that same manner as the Nova lens.

  13. A large aperture laser triggered intensified charge coupled device using second-harmonic laser light triggering

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toshihiko; Dimock, Dirck

    1997-06-01

    For application to a ruby laser Thomson scattering system, we have developed a laser triggered intensified charge coupled device (CCD) with 80 mm aperture, two stages of intensification, and 80 ns gating. To improve the dynamic range, the CCD is cooled and read out slowly (1 s). To obtain a good extinction ratio (>1.1×107), the zoom electrode of the first intensifier is gated using a ˜10 kV laser triggered spark gap. The stability of this spark gap has been greatly improved by frequency doubling the laser trigger light.

  14. Computation of scalar far-field patterns of large-aperture antennas

    NASA Technical Reports Server (NTRS)

    Omalley, T. A.

    1976-01-01

    In computer programs used for evaluating the performance of high-gain antennas, efficient numerical methods for calculating the far-field patterns must be used since the majority of computer time and storage requirements may be attributed to this phase of the program. The numerical method most frequently used is the Fast Fourier Transform (FFT), which computes the far field as the Fourier transform of the field distribution in the antenna aperture. A new numerical method that in many applications is superior to the FFT in terms of reducing computer time and storage requirements is described.

  15. Processing method and process modeling of large aperture transparent magnesium aluminate spinel domes

    NASA Astrophysics Data System (ADS)

    Yu, Jian; McWilliams, Brandon; Kilczewski, Steven; Gilde, Gary; Lidie, Ashley; Sands, James

    2009-05-01

    Polycrystalline spinel serves as an alternative to materials such as sapphire and magnesium fluoride that are currently being used in electromagnetic window applications such as missile domes, where high strength, high hardness and high transmittance in the visible and infrared spectra are required. The cubic crystal lattice of spinel imparts an isotropy to the bulk optical property, which eliminates optical distortion due to birefringence that occurs in sapphire and other non-cubic materials. The current study is to find a reliable manufacturing process to produce large magnesium aluminate spinel domes from powder consolidation efficiently. A binder-less dry ball milling process was used to deflocculate the spinel powder to increase its fluidity in an effort to ease the shape-forming. Dry ball milling time trials were conducted at several intervals to determine the appropriate level of time required to break up both the hard and soft agglomerates associated with the virgin spinel powder. The common problems encountered in dry powder shape-forming are crack growth and delamination of the green body during cold isostatic pressing (CIPing). The cracking and the delamination are due to the buildup of stress gradients on the green body that are created by the frictional force between the powder and the die wall or mold wall. To understand the stresses during the CIPing process, a finite element analysis of stresses on the green body was conducted. The simulation was used to evaluate the effect of die tooling and process characteristics on the development of stress gradients in the green body dome. Additionally, the effect of friction between the die wall and powder was examined by the simulation. It was found that by mitigating the frictional forces, cracking and delamination on the green body could be eliminated. A stepped-pressure CIPing technique was developed to reduce stress gradient build-up during CIPing. Also, oleic acid lubricant was applied to the die wall to

  16. Rapid Adaptive Optical Recovery of Optimal Resolution over LargeVolumes

    PubMed Central

    Wang, Kai; Milkie, Dan; Saxena, Ankur; Engerer, Peter; Misgeld, Thomas; Bronner, Marianne E.; Mumm, Jeff; Betzig, Eric

    2014-01-01

    Using a de-scanned, laser-induced guide star and direct wavefront sensing, we demonstrate adaptive correction of complex optical aberrations at high numerical aperture and a 14 ms update rate. This permits us to compensate for the rapid spatial variation in aberration often encountered in biological specimens, and recover diffraction-limited imaging over large (> 240 μm)3 volumes. We applied this to image fine neuronal processes and subcellular dynamics within the zebrafish brain. PMID:24727653

  17. Plasma surface figuring of large optical components

    NASA Astrophysics Data System (ADS)

    Jourdain, R.; Castelli, M.; Morantz, P.; Shore, P.

    2012-04-01

    Fast figuring of large optical components is well known as a highly challenging manufacturing issue. Different manufacturing technologies including: magnetorheological finishing, loose abrasive polishing, ion beam figuring are presently employed. Yet, these technologies are slow and lead to expensive optics. This explains why plasma-based processes operating at atmospheric pressure have been researched as a cost effective means for figure correction of metre scale optical surfaces. In this paper, fast figure correction of a large optical surface is reported using the Reactive Atom Plasma (RAP) process. Achievements are shown following the scaling-up of the RAP figuring process to a 400 mm diameter area of a substrate made of Corning ULE®. The pre-processing spherical surface is characterized by a 3 metres radius of curvature, 2.3 μm PVr (373nm RMS), and 1.2 nm Sq nanometre roughness. The nanometre scale correction figuring system used for this research work is named the HELIOS 1200, and it is equipped with a unique plasma torch which is driven by a dedicated tool path algorithm. Topography map measurements were carried out using a vertical work station instrumented by a Zygo DynaFiz interferometer. Figuring results, together with the processing times, convergence levels and number of iterations, are reported. The results illustrate the significant potential and advantage of plasma processing for figuring correction of large silicon based optical components.

  18. Optical binary image encryption using aperture-key and dual wavelengths.

    PubMed

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-11-17

    We described a method where the secret binary image that has been encoded into a single amplitude pattern in Fresnel domain can be recovered based on phase retrieval with an aperture-key and wavelength keys, and no holographic recording is needed in the encryption. The predesigned aperture-key not only realizes the intensity modulation of the encrypted image, but also helps to retrieve the secret image with high quality. All the necessary decryption keys can be kept in digital form that facilitates data transmission and loading in image retrieval process. Numerical simulation results are given for testing the validity and security of the proposed approach.

  19. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing.

    PubMed

    Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang

    2016-01-01

    Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341

  20. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing

    PubMed Central

    Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang

    2016-01-01

    Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341

  1. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing.

    PubMed

    Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang

    2016-01-01

    Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application.

  2. Laboratory demonstration of a primary active mirror for space with the LATT: large aperture telescope technology

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Biasi, Roberto; Gallieni, Daniele; Vettore, Christian; d'Amato, Francesco; Xompero, Marco; Arcidiacono, Carmelo; Lisi, Franco; Riccardi, Armando; Patauner, Christian; Lazzarini, Paolo; Tintori, Matteo; Duò, Fabrizio; Pucci, Mauro; Zuccaro Marchi, Alessandro; Maresi, Luca

    2016-07-01

    The LATT project is an ESA contract under TRP programme to demonstrate the scalability of the technology from ground-based adaptive mirrors to space active primary mirrors. A prototype spherical mirror based on a 40 cm diameter 1 mm thin glass shell with 19 contactless, voice-coil actuators and co-located position sensors have been manufactured and integrated into a final unit with an areal density lower than 20 kg/m2. Laboratory tests demonstrated the controllability with very low power budget and the survival of the fragile glass shell exposed to launch accelerations, thanks to an electrostatic locking mechanism; such achievements pushes the technology readiness level toward 5. With this prototype, the LATT project explored the feasibility of using an active and lightweight primary for space telescopes. The concept is attractive for large segmented telescopes, with surface active control to shape and co-phase them once in flight. In this paper we will describe the findings of the technological advances and the results of the environmental and optical tests.

  3. A compact implementation of a real time acousto-optic synthetic aperture radar processor

    NASA Technical Reports Server (NTRS)

    Shaik, Kamran; Lesh, James R.; Hemmati, Hamid

    1988-01-01

    The architecture of a real-time acoustooptic synthetic aperture radar processor is reviewed and recent efforts to develop a compact processor are presented. It employs an acoustooptic device operated in the space integrating mode to compress the signal in range.

  4. HI-CLASS on AEOS: a large-aperture laser radar for space surveillance/situational awareness investigations

    NASA Astrophysics Data System (ADS)

    Kovacs, Mark A.; Dryden, Gordon L.; Pohle, Richard H.; Ayers, Kirstie; Carreras, Richard A.; Crawford, Linda L.; Taft, Russell

    2001-12-01

    The Air Force Research Laboratory/Directed Energy Directorate (AFRL/DE) via the ALVA (Applications of Lidars for Vehicles with Analysis) program installed in late 2000 a wideband, 12 J 15 Hz CO2 laser radar (ladar) on the 3.67 meter aperture AEOS (Advanced Electro-Optics System) telescope. This system is part of the Maui Space Surveillance System (MSSS), on the summit of Haleakala, Maui, HI. This ladar adopts the technology successfully demonstrated by the first generation HI-CLASS (High Performance CO2) Ladar Surveillance Sensor) operating on the nearby 0.6 meter aperture Laser Beam Director (LBD) and developed under the Field Ladar Demonstration program, jointly sponsored by AFRL/DE and the Army's Space and Missile Defense Command. The moderate power (approximately 180 watts) HI-CLASS/AEOS system generates multiple, coherent waveforms for precision satellite tracking and characterization of space objects for 1 m2 targets at ranges out to 10,000 km. This system also will be used to track space objects smaller than30 cm at ranges to 2,000 km. A third application of this system is to provide data for developing satellite identification, characterization, health and status techniques. This paper will discuss the operating characteristics and innovative features of the new system. The paper will also review recent results in support of AF needs, demonstrations, experiments, as well as planned activities that directly support applications in the DoD, scientific, and commercial arenas.

  5. Astrometric plates obtained at the primary focus of large aperture reflectors

    NASA Technical Reports Server (NTRS)

    Markos, A.

    1984-01-01

    Coma, astigmatism, and great differences in stellar magnitudes between photographed object and reference stars constitute the main sources of errors in measuring positional plates. These three sources of error can easily be eliminated by the method used at the Klet Observatory for obtaining precise observations of faint objects. The astrometric plates are taken by the method of two diaphragms. The first diaphragm, with a small central aperture; is located in front of the photographic plate. The second diaphragm is situated in front of the mirror. By a very short (of the order of tens of seconds) exposure a sufficient number of reference stars can be obtained throughout the entire plate. The stars are very well defined to the very edge of the plate and are easy to measure. Moreover, this method makes it possible to use plates of larger dimensions than usual so that it is always possible to find the necessary reference stars.

  6. Alternative Beam Efficiency Calculations for a Large-aperture Multiple-frequency Microwave Radiometer (LAMMR)

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1979-01-01

    The fundamental definition of beam efficiency, given in terms of a far field radiation pattern, was used to develop alternative definitions which improve accuracy, reduce the amount of calculation required, and isolate the separate factors composing beam efficiency. Well-known definitions of aperture efficiency were introduced successively to simplify the denominator of the fundamental definition. The superposition of complex vector spillover and backscattered fields was examined, and beam efficiency analysis in terms of power patterns was carried out. An extension from single to dual reflector geometries was included. It is noted that the alternative definitions are advantageous in the mathematical simulation of a radiometer system, and are not intended for the measurements discipline where fields have merged and therefore lost their identity.

  7. Design and construction of a large aperture, quadrupole electromagnet prototype for ILSE

    SciTech Connect

    Stuart, M.; Faltens, A.; Fawley, W.M.; Peters, C.; Vella, M.C.

    1995-04-01

    We are currently constructing a prototype quadrupole electromagnet for the proposed Induction Linac Systems Experiment (ILSE) at LBL. ILSE will address many physi and engineering issues relevant to the design of a heavy-ion fusion driver accelerator. The pulsed electromagnet has two layers of current windings and will produce a field gradient exceeding 25 T/m at a repetition rate of 1 Hz steady-state. In this paper, we discuss how the interaction of various concerns such as maximum dynamic aperture, short lattice period, field quality, iron yoke weight, heat transfer, and voltage standoff have led to our particular design choices. We also present 2- and 3-D numerical calculations concerning field topography and the results of transport simulations of space-charge dominated ion beams with ILSE parameters.

  8. Application of research for metal primary mirror of large-aperture infrared solar telescope

    NASA Astrophysics Data System (ADS)

    Meng, Xiaohui; Zhang, Haiying; Li, Xinnan

    2010-05-01

    Metal is an early telescope mirror material, it was later replaced by glass which has lower thermal expansion coefficient. However, for observing the sun, these glass materials in the primary mirror are affected by the sun's intense radiation, its temperature rises rapidly, but which conducts heat slowly. The temperature difference between mirror and ambient air is so large that causing the air turbulence which has affected the observation precision. While the metal material has better thermal conductivity characteristics, it can greatly improve the problems caused by air turbulence. This paper analyzes the characteristics of the various mirror materials, and then makes a rust-proof aluminum alloy 5A05 as the mirror substrate material. For the major deficiencies of the soft aluminum surface which is not suitable for polishing, this paper presents a method of electroless nickel plating to improve its surface properties. After the mirror go through a thermal shock, the upper and lower levels of metal CTE don't match with each other, which leads to mirror deformation and warping. The bimetallic effect has been illustrated by the theory of beam element and give a result of elementary approximated. The analysis shows that the displacement deformation of the upper and lower layers of metal which is caused by thermal shock is smaller when the CTE is closer. In the experiments, a spherical aluminum mirrors with the substrate of 5A05 aluminum alloy, diameter of 110mm, the radius of curvature of 258.672mm is manufactured in classical technique. And it ultimately achieves optical mirror-polished precision. Besides, the long-term thermal stability experimental study of the aluminum mirrors proved that Al-infrared solar telescope primary mirror meets the needs of the long-term observation during use.

  9. Towards predicting the laser damage threshold of large-area optics

    SciTech Connect

    Hue, J.; Genin, F.Y.; Maricle, S.M.; Kozlowski, M.R.

    1996-10-01

    As the size of optics increases, such as in the optical coatings being developed for the National Ignition Facility in US and the Laser MegaJoules in France, the difficulty also increases in measuring and defining their laser damage threshold. Measuring the threshold on small witness samples ({le}cm) rather than full aperture optic (=m) is advantageous, and in this article, the threshold of large-area components is addressed in two ways. First, a model based on the R-on-l threshold distribution is shown to predict the threshold of a large optic with a high degree of confidence. The average R-on-l threshold provides a reliable, accurate value to evaluate coatings. An automated damage test bench has been developed at CEA. Secondly, the damage threshold has to be defined according to final use of the component. LLNL has defined a functional damage threshold to set limits on maximum damage size. An empirical power law dependence of average damage size on peak fluence was found; this can be used to predict the damage behavior of large-aperture optics exhibiting the same damage morphology.

  10. Micro-precision control/structure interaction technology for large optical space systems

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.; Laskin, Robert A.

    1993-01-01

    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.

  11. Optical 'magnetic mirror' metasurfaces using interference between Fabry-Pérot cavity resonances in coaxial apertures.

    PubMed

    Rajasekharan, Ranjith; Roberts, Ann

    2015-01-01

    Here we propose and computationally demonstrate a quasi-planar metasurface consisting of arrays of pairs of concentric coaxial apertures in a metallic film. The structure relies on destructive interference between Fabry-Pérot modes excited in each aperture at resonance producing transmitted fields that interfere destructively leading to suppressed transmission. Conversely, we show that in the case of a perfect conductor, near-perfect, broadband reflection can be achieved with zero phase change in the electric field and a variation of 2π on passing through the coincident resonances. Extending the concept to shorter wavelengths, we show that mirrors exhibiting close to a 2π phase excursion, albeit with a reduction in the amplitude reflection coefficient at resonance and a lower Q, can be also achieved. Structures such as these can be used to enhance light-matter interactions at surfaces and act as high impedance ground planes for antenna applications. PMID:26020728

  12. The design, construction and testing of the optics for a 147-cm-aperture telescope

    NASA Technical Reports Server (NTRS)

    Buchroeder, R. A.; Elmore, L. H.; Shack, R. V.; Slater, P. N.

    1972-01-01

    Geodetic optics research for the Air Force Cambridge Research Laboratories (AFCRL) is described. The work consisted mainly of the fabrication of the optical components for a telescope with a 152-cm-diam (60-in.) primary mirror masked down to 147-cm-diam for use by the AFCRL for a lunar ranging experiment. Among the achievements of this contract were the following: completion of the primary and secondary mirrors for a high-quality 147-cm-diam telescope system in eight months from the start of edging the primary; manufacture and testing of a unique center mount for the primary according to an AFCRL design that allowed for a thin-edged and therefore less-massive mirror; and development of a quantitative analysis of the wire test for calculating the departure of the mirror figure from the design figure quickly and accurately after each polishing step. This analysis method in conjunction with a knowledge of polishing rates for given weights and diameters of tools, mirror, and polishing materials should considerably reduce the polishing time required for future large mirrors.

  13. Studies of coded aperture gamma-ray optics using an Anger camera

    NASA Astrophysics Data System (ADS)

    Charalambous, P. M.; Dean, A. J.; Stephen, J. B.; Young, N. G. S.; Gourlay, A. R.

    1983-08-01

    An experimental arrangement using an Anger camera as a position-sensitive focal plane, in conjunction with a series of coded aperture masks, has been employed to generate laboratory gamma-ray images. These tests were designed to investigate quantitatively a number of potential aberrations present in any practicable imaging system. It is shown that, by proper design, the major sources of image defects may be reduced to a level compatible with the production of good quality gamma-ray sky images.

  14. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics.

    PubMed

    Laskar, Junaid M; Shravan Kumar, P; Herminghaus, Stephan; Daniels, Karen E; Schröter, Matthias

    2016-04-20

    Optically transparent immersion liquids with refractive index (n∼1.77) to match the sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr3) salt dissolved in liquid diiodomethane (CH2I2) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n=1.74 (pure) to n=1.873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near-infrared range, an improvement over commercially available immersion liquids. This refractive-index-matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA=1.17) and long working distance (WD=12  mm). This opens up new possibilities for deep 3D imaging with high spatial resolution. PMID:27140083

  15. High refractive index immersion liquid for superresolution 3D imaging using sapphire-based aplanatic numerical aperture increasing lens optics.

    PubMed

    Laskar, Junaid M; Shravan Kumar, P; Herminghaus, Stephan; Daniels, Karen E; Schröter, Matthias

    2016-04-20

    Optically transparent immersion liquids with refractive index (n∼1.77) to match the sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr3) salt dissolved in liquid diiodomethane (CH2I2) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n=1.74 (pure) to n=1.873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near-infrared range, an improvement over commercially available immersion liquids. This refractive-index-matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA=1.17) and long working distance (WD=12  mm). This opens up new possibilities for deep 3D imaging with high spatial resolution.

  16. Large extinction ratio optical electrowetting shutter.

    PubMed

    Montoya, Ryan D; Underwood, Kenneth; Terrab, Soraya; Watson, Alexander M; Bright, Victor M; Gopinath, Juliet T

    2016-05-01

    A large extinction ratio optical shutter has been demonstrated using electrowetting liquids. The device is based on switching between a liquid-liquid interface curvature that produces total internal reflection and one that does not. The interface radius of curvature can be tuned continuously from 9 mm at 0 V to -45 mm at 26 V. Extinction ratios from 55.8 to 66.5 dB were measured. The device shows promise for ultracold chip-scale atomic clocks.

  17. HYBRID BRIDGMAN ANVIL DESIGN: AN OPTICAL WINDOW FOR IN-SITU SPECTROSCOPY IN LARGE VOLUME PRESSES

    SciTech Connect

    Lipp, M J; Evans, W J; Yoo, C S

    2005-07-29

    The absence of in-situ optical probes for large volume presses often limits their application to high-pressure materials research. In this paper, we present a unique anvil/optical window-design for use in large volume presses, which consists of an inverted diamond anvil seated in a Bridgman type anvil. A small cylindrical aperture through the Bridgman anvil ending at the back of diamond anvil allows optical access to the sample chamber and permits direct optical spectroscopy measurements, such as ruby fluorescence (in-situ pressure) or Raman spectroscopy. This performance of this anvil-design has been demonstrated by loading KBr to a pressure of 14.5 GPa.

  18. Multiple aperture window and seeker concepts for endo KEW applications

    SciTech Connect

    Shui, V.H.; Reeves, B.L.; Thyson, N.A.; Mueffelmann, W.H.; Werner, J.S.; Jones, G. Loral Infrared and Imaging Systems, Lexington, MA U.S. Army, Strategic Defense Command, Huntsville, AL )

    1992-05-01

    Hypersonic interceptors performing endoatmospheric hit-to-kill missions require very high seeker angle measurement accuracies in very severe aero-thermal environments. Wall jet window/aperture cooling usually leads to significant aero-optic degradation in seeker and hence interceptor performance. This paper describes window/aperture concepts that have the potential of eliminating or significantly reducing the need for coolant injection, together with a multiple aperture sensor concept that can provide a high angle measurement accuracy and a large field of regard, with a small aperture size. 15 refs.

  19. Optical very large array (OVLA) prototype telescope: status report and perspective for large mosaic mirrors

    NASA Astrophysics Data System (ADS)

    Dejonghe, Julien; Arnold, Luc; Lardiere, Olivier; Berger, Jean-Pierre; Cazale, C.; Dutertre, S.; Kohler, D.; Vernet, D.

    1998-08-01

    The OVLA will be a kilometric-size interferometric array of N equals 27 or more 1.5 m telescopes. It is expected to provide visible to infra-red snap-shot images, containing in densified pupil mode N(superscript 2) 10(superscript -4) arc-second wide resolved elements in yellow light. The prototype telescope is under construction at Observatoire de Haute Provence and will be connected in 2000 to the GI2T, Grand Interferometre a 2 Telescopes, thus upgraded to a GI3T. The prototype telescope has a spherical mount, well suited for multi- aperture interferometric work, and a thin active 1.5 m f/1.7 mirror weighting only 180 kg with the active cell. This meniscus-shaped mirror, made of low-cost ordinary window glass, is only 24 mm thick and supported by 32 actuators. We describe the telescope optical concept with emphasis on opto-mechanical aspects and the test results of the active optics system. We also discuss the application of this mirror concept to large mosaic mirrors of moderate cost.

  20. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials

    PubMed Central

    Vitek, Dawn N.; Adams, Daniel E.; Johnson, Adrea; Tsai, Philbert S.; Backus, Sterling; Durfee, Charles G.; Kleinfeld, David; Squier, Jeffrey A.

    2010-01-01

    Temporal focusing of spatially chirped femtosecond laser pulses overcomes previous limitations for ablating high aspect ratio features with low numerical aperture (NA) beams. Simultaneous spatial and temporal focusing reduces nonlinear interactions, such as self-focusing, prior to the focal plane so that deep (~1 mm) features with parallel sidewalls are ablated at high material removal rates (25 µm3 per 80 µJ pulse) at 0.04-0.05 NA. This technique is applied to the fabrication of microfluidic devices by ablation through the back surface of thick (6 mm) fused silica substrates. It is also used to ablate bone under aqueous immersion to produce craniotomies. PMID:20721196

  1. A 2x2 multi-chip reconfigurable MOEMS mask: a stepping stone to large format microshutter arrays for coded aperture applications

    NASA Astrophysics Data System (ADS)

    McNie, Mark E.; Brown, Alan G.; King, David O.; Smith, Gilbert W.; Gordon, Neil T.; Riches, Stephen; Rogers, Stanley

    2010-08-01

    Coded aperture imaging has been used for astronomical applications for several years. Typical implementations used a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. Recently applications have emerged in the visible and infra red bands for low cost lens-less imaging systems and system studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. Previously reported work focused on realising a 2x2cm single chip mask in the mid-IR based on polysilicon micro-optoelectro- mechanical systems (MOEMS) technology and its integration with ASIC drive electronics using conventional wire bonding. It employs interference effects to modulate incident light - achieved by tuning a large array of asymmetric Fabry-Perot optical cavities via an applied voltage and uses a hysteretic row/column scheme for addressing. In this paper we report on the latest results in the mid-IR for the single chip reconfigurable MOEMS mask, trials in scaling up to a mask based on a 2x2 multi-chip array and report on progress towards realising a large format mask comprising 44 MOEMS chips. We also explore the potential of such large, transmissive IR spatial light modulator arrays for other applications and in the current and alternative architectures.

  2. The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol): Instrument and 2010 Science Campaign

    NASA Astrophysics Data System (ADS)

    Gandilo, Natalie; BLAST-Pol Collaboration

    2012-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a 1.8-m telescope that observes polarized dust emission with a resolution of 1'. BLAST-Pol images the sky onto a focal plane that consists of 270 feed-horn coupled bolometers at 250, 350, and 500 microns. In January 2011, BLAST-Pol completed a successful 9.5-day flight over Antarctica. Eight science targets were observed, and a second flight is planned for December 2012. I will give an overview of the instrument performance during the first science campaign and present preliminary maps. BLAST-Pol maps will provide an excellent dataset for studying the role of magnetic fields in star formation.

  3. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers, Technology Developments, and Synergies with Other Future Facilities

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; Tumlinson, Jason; Mountain, Matt; Soummer, Remi; Hyde, Tupper

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions.

  4. Comparison of Turbulent Sensible Heat Flux Determined by Large-Aperture Scintillometer and Eddy Covariance over Urban and Suburban Areas

    NASA Astrophysics Data System (ADS)

    Zhang, He; Zhang, Hongsheng

    2015-01-01

    Field observations of the atmospheric boundary layer were made over urban and suburban areas in the Yangtze River Delta, China. Sensible heat fluxes were obtained by eddy-covariance (EC) systems and large-aperture scintillometers (LASs). The results indicated that (1) the sensible heat flux obtained by LAS was less noisy and slightly larger than that obtained by EC over both urban and suburban surfaces; (2) the values of were higher when the correlation coefficient of vertical wind speed and temperature () was smaller. Lower values of were due to low-frequency trends. The urban values of were smaller than suburban values at low values; (3) the sensible heat flux determined by LAS was improved by use of the Monin-Obukhov similarity theory of the temperature structure parameter over urban and suburban areas, and the improvement is more significant over urban surface areas.

  5. Large extinction ratio optical electrowetting shutter.

    PubMed

    Montoya, Ryan D; Underwood, Kenneth; Terrab, Soraya; Watson, Alexander M; Bright, Victor M; Gopinath, Juliet T

    2016-05-01

    A large extinction ratio optical shutter has been demonstrated using electrowetting liquids. The device is based on switching between a liquid-liquid interface curvature that produces total internal reflection and one that does not. The interface radius of curvature can be tuned continuously from 9 mm at 0 V to -45 mm at 26 V. Extinction ratios from 55.8 to 66.5 dB were measured. The device shows promise for ultracold chip-scale atomic clocks. PMID:27137579

  6. Optical encryption for large-sized images

    NASA Astrophysics Data System (ADS)

    Sanpei, Takuho; Shimobaba, Tomoyoshi; Kakue, Takashi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi

    2016-02-01

    We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to recognize the decrypted images. In order to reduce the speckle noise, we apply our random phase-free method to the framework. In addition, we employ scaled diffraction that calculates light propagation between planes with different sizes by changing the sampling rates.

  7. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view.

    PubMed

    Kremer, Y; Léger, J-F; Lapole, R; Honnorat, N; Candela, Y; Dieudonné, S; Bourdieu, L

    2008-07-01

    Acousto-optic deflectors (AOD) are promising ultrafast scanners for non-linear microscopy. Their use has been limited until now by their small scanning range and by the spatial and temporal dispersions of the laser beam going through the deflectors. We show that the use of AOD of large aperture (13mm) compared to standard deflectors allows accessing much larger field of view while minimizing spatio-temporal distortions. An acousto-optic modulator (AOM) placed at distance of the AOD is used to compensate spatial and temporal dispersions. Fine tuning of the AOM-AOD setup using a frequency-resolved optical gating (GRENOUILLE) allows elimination of pulse front tilt whereas spatial chirp is minimized thanks to the large aperture AOD.

  8. Resonant optical transmission through sub-wavelength annular apertures caused by a plasmonic transverse electromagnetic (TEM) mode

    NASA Astrophysics Data System (ADS)

    Ndao, A.; Salvi, J.; Salut, R.; Bernal, M.-P.; Alaridhee, T.; Belkhir, A.; Baida, F. I.

    2014-12-01

    We demonstrate enhanced transmission through annular aperture arrays (AAA) by the excitation of the transverse electromagnetic (TEM) guided mode. A complete numerical study is performed to correctly design the structure before it is experimentally characterized. Actually, the challenge was to get efficient TEM-based transmission in the visible range. It turned out to be a hard task because of the strong absorption associated with this guided mode. Nevertheless, we have succeeded to experimentally prove its excitation thanks to the enhanced transmission measured in the far-field. This is the first time we demonstrate experimental evidence of this phenomenon with such AAA structure illuminated at oblique incidence in the visible range. This increases the potential applications of such structures as well, single molecule spectroscopy, photovoltaic, spectral filtering, optical trapping, etc...

  9. Optical range-curvature correction for synthetic-aperture radar /SAR/ signals

    NASA Astrophysics Data System (ADS)

    Felstead, E. B.

    1980-01-01

    In synthetic-aperture radar (SAR), the radar signal, recorded as an interferogram, exhibits a defect known as range curvature. The two dimensions of the interferogram are coupled and cannot be processed separately, leading to image degradation. Two variations of a method of correcting for range curvature are presented. They both involve the insertion of a cylindrical lens or lenses near the region of the Fourier-transform plane of a standard tilted-plane SAR processor. Variable tilt of the lens(es) controls the amount of correction. In the presence of pointing errors of the SAR antenna, an extra cross-coupling factor is introduced. It is corrected by a simple rotation of the range-curvature corrector.

  10. Maintaining Flatness of a Large Aperture Potassium Bromide Beamsplitter Through Mounting and Vibration

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Morell, Armando; Heaney, Jim

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) instrument on the Cassini Mission launched in October of 1997. The CIRS instrument contains a mid-infrared (MIR) and a far-infrared interferometer (FIR) and operates at 170 Kelvin. The MIR is a Michelson Fourier transform spectrometer utilizing a 76 mm (3 inch) diameter potassium bromide beamsplitter and compensator pair. The potassium bromide elements were tested to verify effects of cooldown and vibration prior to integration into the instrument. The instrument was then aligned at ambient temperatures, tested cryogenically and re-verified after vibration. 'Me stringent design optical figure requirements for the beamsplitter and compensator included fabrication errors, mounting stresses and vibration load effects. This paper describes the challenges encountered in mounting the elements to minimize distortion and to survive vibration.

  11. Maintaining Flatness of a Large Aperture Potassium Bromide Beamsplitter through Mounting and Vibration

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James, III; Morell, Armando; Heaney, Jim

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) instrument on the Cassini Mission launched in October of 1997. The CIRS instrument contains a mid-infrared and a far-infrared interferometer and operates at 170 Kelvin. The mid-infrared interferometer is a Michelson- type Fourier transform spectrometer utilizing a 3 inch diameter potassium bromide beamsplitter/compensator pair. The potassium bromide elements were tested to verify effects of cooldown and vibration prior to integration into the instrument. The instrument was then aligned at ambient temperatures, tested cryogenically and re-verified after vibration. The stringent design optical figure requirements for the beamsplitter and compensator included fabrication errors, mounting stresses and vibration load effects. This paper describes the challenges encountered in mounting the elements to minimize distortion and to survive vibration.

  12. Mechanical setup for optical aperture synthesis for wide-field imaging

    NASA Astrophysics Data System (ADS)

    Giesen, Peter; Ouwerkerk, Bas; van Brug, Hedser; van den Dool, Teun C.; van der Avoort, Casper

    2004-10-01

    Homothetic mapping is a technique that combines the images from several telescopes so that it looks like as though they came form a single large telescope. This technique enables a much wider interferometric field of image than current techniques can provide. To investigate the feasibility, a research testbed is build know as Delft Testbed interferometer (DTI). DTI simulates a configuration of three telescopes collecting light of a set of 3 stars. The stars are simulated by coupling light of a Xenon light source into three fibres, which illuminate a parabolic mirror. The light that is used has wavelengths of 500 nm - 800 nm. The light of the three telescopes will be combined in such a way that the beam arrangement in the pupil plane corresponds with the telescope arrangement and the Optical Path Difference (OPD) is minimized for the three beams. To achieve white light fringes with high visibility, the mechanical testbed that is 2 m x 1 m x 0.5 m in size, requires stable mounting of components. This paper describes the mounting of the diamond turned off-axis parabolic mirrors of 200 mm in diameter and 240 mm flat mirrors; furthermore, it describes components like the telescopes and the active controllable components for repositioning of the beam arrangement. Mechanisms were developed for alignment of piezo actuators and for delay lines. The delay lines can also be used to compensate pupil rotation. Test results demonstrate that the test setup is highly stable for temperature as well as for airflow, although the system is placed in a non-thermally controlled lab. This allows measurements of nm, in presence of μm disturbances.

  13. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    SciTech Connect

    Bauman, B J

    2003-11-26

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro-electromechanical system (MEMS) to track the LGS light subaperture by

  14. New technologies for the actuation and controls of large aperture lightweight quality mirrors

    NASA Technical Reports Server (NTRS)

    Lih, S. S.; Yang, E. H.; Gullapalli, S. N.; Flood, R.

    2003-01-01

    This paper presents a set of candidate components: MEMS based large stroke (>100 microns) ultra lightweight (0.01 gm) discrete inch worm actuator technology, and a distributed actuator technology, in the context of a novel lightweight active flexure-hinged substrate concept that uses the nanolaminate face sheet.

  15. Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Sorokin, Mikail; Stone, Tom; Eck, Thomas F.; Hoff, Raymond; Welton, Ellsworth; Holben, Brent

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA s Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities.

  16. Nocturnal aerosol optical depth measurements with a small-aperture automated photometer using the moon as a light source

    USGS Publications Warehouse

    Berkoff, T.A.; Sorokin, M.; Stone, T.; Eck, T.F.; Hoff, R.; Welton, E.; Holben, B.

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA's Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities. ?? 2011 American Meteorological Society.

  17. Direct Measurement of Large, Diffuse, Optical Structures

    NASA Technical Reports Server (NTRS)

    Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.

    2004-01-01

    Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.

  18. Study on the Stressed Mirror Polishing with a Continuous Polishing Machine for Large Aperture Off-axis Aspheric Mirrors

    NASA Astrophysics Data System (ADS)

    Li, Xin-nan; Zhang, Hai-ying; Cui, Xiang-qun; Jiang, Zi-bo; Zheng, Yi; Liu, Xing-tao; Ni, Hou-kun

    2012-10-01

    A special stressed annular polishing technique is proposed to mill the off-axis aspheric sub-mirrors of a large segmented mirror with an annular polishing machine. Based on the basic principle of stressed annular polishing technique, a set of special stressing mechanisms are designed to convert milling the aspheric surfaces of sub-mirrors with different off-axis distances into milling the spherical surfaces with identical radii of curvature, so that they can be pol- ished simultaneously on a continuous polishing machine. It took about contin- uous 40 hours to polish a scaled-down mirror of the planning Chinese Future Giant Telescope (CFGT) using this technique. This mirror has the 330 mm di- ameter, 3.6 m off-axis distance, and the 21.6 m radius of curvature, and its max- imum asphericity is 16 micron. The experiment shows that this method has a high effciency, suits batch manufacturing, especially the batch manufacturing of aspheric sub-mirrors of the segmented primary mirror of an extremely large aperture telescope.

  19. T/R module development for large aperture L-band phased array

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Andricos, Constantine; Kumley, Kendra; Berkun, Andrew; Hodges, Richard; Spitz, Suzanne

    2004-01-01

    This paper describes a transmit / receive (T/R) module for a large L-band space based radar active phased array being developed at JPL. Electrical performance and construction techniques are described, with emphasis on the former. The T/R modules have a bandwidth of more than 80 MHz centered at 1260MHz and support dual, switched polarizations. Phase and amplitude are controlled by a 6-bit phase shifter and a 6-bit attenuator, respectively. The transmitter power amplifier generates 2.4 W into a nominal 50 ohm load with 36% overall efficiency. The receiver noise figure is 4.4 dB including all front-end losses. The module weighs 32 g and has a footprint of 8 cm x 4.5 cm. Fourteen of these T/R modules were fabricated at the JPL Pick-and-Place Facility and were tested using a computer-controlled measurement facility developed at JPL. Calibrated performance of this set of T/R modules is presented and shows good agreement with design predictions.

  20. Aperture averaging of optical scintillations in CO{sub 2} DIAL

    SciTech Connect

    Nelson, D.H.; Petrin, R.R.; Schmitt, M.J.; Whitehead, M.C.; Walters, D.L.

    1997-10-01

    Atmospheric turbulence causes several effects on a propagating laser beam. The authors have previously studied the effects of beam spreading and beam wander, and feel they have a good understanding of their impact on CO{sub 2} DIAL. Another effect is scintillation where atmospheric turbulence causes irradiance fluctuations within the envelope of the beam profile. They believe that scintillation at the target plays an important role in LIDAR return statistics. A Huygens-Fresnel wave optics computer simulation for propagating beams through atmospheric optical turbulence has been previously developed. They modify this simulation to include the effects of reflective speckle and examine its application in comparison with experimental data.

  1. Neutral density estimation derived from meteoroid measurements using high-power, large-aperture radar

    NASA Astrophysics Data System (ADS)

    Li, A.; Close, S.

    2016-07-01

    We present a new method to estimate the neutral density of the lower thermosphere/upper mesosphere given deceleration measurements from meteoroids as they enter Earth's atmosphere. By tracking the plasma (referred to as head echoes) surrounding the ablating meteoroid, we are able to measure the range and velocity of the meteoroid in 3-D. This is accomplished at Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR) with the use of four additional receiving horns. Combined with the momentum and ablation equations, we can feed large quantities of data into a minimization function which estimates the associated constants related to the ablation process and, more importantly, the density ratios between successive layers of the atmosphere. Furthermore, if we take statistics of the masses and bulk densities of the meteoroids, we can calculate the neutral densities and its associated error by the ratio distribution on the minimum error statistic. A standard deviation of approximately 10% can be achieved, neglecting measurement error from the radar. Errors in velocity and deceleration compound this uncertainty, which in the best case amounts to an additional 4% error. The accuracy can be further improved if we take increasing amounts of measurements, limited only by the quality of the ranging measurements and the probability of knowing the median of the distribution. Data analyzed consist mainly of approximately 500 meteoroids over a span of 20 min on two separate days. The results are compared to the existing atmospheric model NRLMSISE-00, which predicts lower density ratios and static neutral densities at these altitudes.

  2. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    NASA Astrophysics Data System (ADS)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  3. Systematic investigation of the principal and first secondary maxima of ultrashort optical pulses focused by a high numerical aperture aplanatic lens

    NASA Astrophysics Data System (ADS)

    Lindlein, Norbert; Loosen, Florian; Fries, Sebastian

    2015-09-01

    The electromagnetic field in the focus of an ideal aplanatic lens with high numerical aperture, which is illuminated by an ultrashort optical pulse and plane wave front, is simulated by taking the vectorial Debye integral and the coherent superposition of a frequency spectrum of monochromatic waves. The behavior of the principal maxima and the first secondary maxima as function of the numerical aperture (NA) and the pulse duration T is investigated systematically for light incident with linear polarization. First, one would not expect remarkable deviations from the stationary case. But also this simple system of an ideal aplanatic lens without any chromatic or monochromatic aberrations (of course only simple from the point of theory, but not at all from the point of practical realization) shows some remarkable results. If the NA (in vacuum) tends to the limiting case of 1.0 the maximum value of |E|2 increases faster than expected from the scalar theory (Airy disc) with a maximum deviation of about 13%. The second effect really comes from very short pulses, i.e. very small values T. Then, the value of |E|2 compared to the expected linear increase with 1/T decreases slightly (only less than 2%), but systematically for all NAs. Even more interesting is the dependence of the height of the first secondary maxima along the x-axis and y-axis on the NA and 1/T. It can be seen that along both axes the first secondary maxima nearly vanish for very short pulses, i.e. large values 1/T.

  4. The optical very large array and its moon-based version

    NASA Technical Reports Server (NTRS)

    Labeyrie, Antoine

    1992-01-01

    An Optical Very Large Array (OVLA) is currently in early prototyping stages for ground-based sites, such as Mauna Kea and perhaps the VLT site in Chile. Its concept is also suited for a moon-based interferometer. With a ring of bi-dimensionally mobile telescopes, there is maximal flexibility in the aperture pattern, and no need for delay lines. A circular configuration of many free-flying telescopes, TRIO, is also considered for space interferometers. Finally, the principle of gaseous mirrors may become applicable for moon-based optical arrays. Fifteen years after the first coherent linkage of two optical telescopes, the design of an ambitious imaging array, the OVLA, is now well advanced. Two 1.5 m telescopes have been built and now provide astronomical results. Elements of the OVLA are under construction. Although primarily conceived for ground-based sites, the OVLA structure appears to meet the essential requirements for operation on the Moon.

  5. Difficult fiber-optic intubation in a patient with giant neck masses: The role of McCoy laryngoscope in elevating compressed laryngeal aperture.

    PubMed

    Yeh, Lijen; Chen, Hung-Shu; Tan, Ping-Heng; Liu, Ping-Hsin; Hsieh, Shao-Wei; Hung, Kuo-Chuan

    2013-12-01

    Airway management in patients with giant neck masses is usually a challenge to anesthesiologists. A giant neck mass could compress the airway and thus impede endotracheal intubation. We encountered a situation where the giant neck masses of a patient pushed the epiglottis posteriorly toward the posterior pharyngeal wall and compressed the laryngeal aperture narrowing after anesthetic induction, causing direct laryngoscopic intubation and sequential fiber-optic intubation failed. The neck masses twisted the aryepiglottic fold tortuously and clogged the laryngeal aperture tightly, making a flexible fiber-optic bronchoscope unable to pass through the laryngeal aperture. Later, we utilized a McCoy laryngoscope alternately to lift the compressed larynx up and away from the posterior pharyngeal wall, creating a passage and completing endotracheal intubation successfully with the aid of a gum elastic bougie. Our case suggested that the tilting tip blade of the McCoy laryngoscope could lever the tongue base up against the tumor mass compression to improve laryngeal views and facilitate endotracheal intubation when a difficult fiber-optic intubation was encountered on a compressed laryngeal aperture.

  6. Polarization calibration with large apertures in full field of view for a full Stokes imaging polarimeter based on liquid-crystal variable retarders.

    PubMed

    Zhang, Ying; Zhao, Huijie; Li, Na

    2013-02-20

    Currently, polarization calibration for full Stokes imaging polarimeters is limited by the apertures of the retarders. In this paper, an improved polarization calibration with large apertures in full field of view for full Stokes imaging polarimeters based on liquid-crystal variable retarders is proposed and investigated theoretically and experimentally. The experimental precision of polarization calibration is 1.7% for linear polarization states and 8.8% for circular ones for an imaging polarimeter with a 100 mm aperture and 10° field of view. The feasibility for full Stokes polarization image is also confirmed in experiment for identifying objects due to degree of polarization and degree of circular polarization images. PMID:23435001

  7. Wide-aperture diffraction of unpolarised radiation in a system of two acousto-optic filters

    SciTech Connect

    Magdich, L N; Yushkov, K B; Voloshinov, V B

    2009-04-30

    Light diffraction is studied in two tandem acousto-optic cells filtering unpolarised radiation with a wide angular spectrum. It is shown that the side lobes of the ultrasonic radiation pattern of a piezoelectric transducer produce side diffraction intensity maxima at the output of the system consisting of two filters. Diffraction in paratellurite filters is studied experimentally at 1.06 {mu}m. (light modulation)

  8. Seasonal variability of turbulent fluxes over a vegetated subtropical coastal wetland measured by large aperture scintillometry and eddy covariance

    NASA Astrophysics Data System (ADS)

    Guyot, Adrien; Gray, Michael; Riesenkamp, Michiel; Lockington, David; McGowan, Hamish

    2016-04-01

    Subtropical coastal wetlands are particularly susceptible to the impacts of climate variability: their recharge rates strongly depend on rainfall, and the occurrence of prolonged droughts or wet periods have direct consequences for wetland health and bio-diversity. There is therefore a need to close the water budget of these ecosystems and this requires the quantification of rates of evaporation/evapotranspiration. However, few studies have documented land-atmosphere exchanges over wetlands for which water level varies considerably during a typical annual cycle. Here, we present a year of turbulent flux observations over a wetland on the subtropical coast of eastern Australia. Large Aperture Scintillometry and Eddy Covariance are used to derive sensible heat fluxes. Latent heat fluxes are also derived through an energy balance for both instruments' observations and also directly through Eddy Covariance. Careful sensitivity analysis of the instrumental footprints, seasonal variations of land surface parameters such as roughness length and displacement height are examined and subsequent uncertainties in the derived turbulent fluxes are discussed. Finally we show how these observations can also help better understand hydrological processes at the catchment scale.

  9. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  10. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, S. M.; Xu, Z. W.; Zhu, Z. L.; Jia, Z. Z.; Zhu, M. J.

    2013-04-01

    SummaryEvapotranspiration (ET) observations were made for 3 years (2008-2010), using eddy covariance (EC) systems and large aperture scintillometers (LAS), in typical underlying surfaces across the Hai River Basin: orchards (Miyun, MY), cropland in the suburbs (Daxing, DX), and cropland in the plains (Guantao, GT). Reliable data were obtained after carefully data processing, and the seasonal and interannual variability in ET was quantitatively analyzed. The annual ET during 2008-2010 ranged from 510-730 mm for the EC measurements and 430-560 mm for the LAS measurements. The differences in ET among the years and sites were connected with differences in soil moisture and crop growing conditions. The difference in the source areas of EC and LAS measurements and the heterogeneity in their source areas are the primary causes of the discrepancy between EC and LAS measurements. The EC and LAS measurements are compared to the field water balance method calculation and MOD16 ET (the MODIS ET product from the MODIS Global Evapotranspiration Project), respectively. The average difference was 0.85% (mean relative error) and 33.80 mm (root mean square error) between the EC measurements and field water balance method calculations, and 7.72% and 47.08 mm between LAS measurements and MOD16 ET from 2008 to 2010 at the three sites. We found a decreasing tendency for ET in the past 15 years across the Hai River Basin, especially after the year of 2005.

  11. Comparison of Aperture Averaging and Receiver Diversity Techniques for Free Space Optical Links in Presence of Turbulence and Various Weather Conditions

    NASA Astrophysics Data System (ADS)

    Kaur, Prabhmandeep; Jain, Virander Kumar; Kar, Subrat

    2014-12-01

    In this paper, we investigate the performance of a Free Space Optic (FSO) link considering the impairments caused by the presence of various weather conditions such as very clear air, drizzle, haze, fog, etc., and turbulence in the atmosphere. Analytic expression for the outage probability is derived using the gamma-gamma distribution for turbulence and accounting the effect of weather conditions using the Beer-Lambert's law. The effect of receiver diversity schemes using aperture averaging and array receivers on the outage probability is studied and compared. As the aperture diameter is increased, the outage probability decreases irrespective of the turbulence strength (weak, moderate and strong) and weather conditions. Similar effects are observed when the number of direct detection receivers in the array are increased. However, it is seen that as the desired level of performance in terms of the outage probability decreases, array receiver becomes the preferred choice as compared to the receiver with aperture averaging.

  12. Transparent electrode for optical switch

    DOEpatents

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  13. Parallel optical memories for very large databases

    NASA Astrophysics Data System (ADS)

    Mitkas, Pericles A.; Berra, P. B.

    1993-02-01

    The steady increase in volume of current and future databases dictates the development of massive secondary storage devices that allow parallel access and exhibit high I/O data rates. Optical memories, such as parallel optical disks and holograms, can satisfy these requirements because they combine high recording density and parallel one- or two-dimensional output. Several configurations for database storage involving different types of optical memory devices are investigated. All these approaches include some level of optical preprocessing in the form of data filtering in an attempt to reduce the amount of data per transaction that reach the electronic front-end.

  14. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam

    SciTech Connect

    Khonina, S. N. Savelyev, D. A.

    2013-10-15

    Diffraction of uniformly polarized laser beams with vortex phase singularity is theoretically analyzed using the plane wave expansion. It is shown that for a high numerical aperture, an intense longitudinal electric field component is formed on the optical axis in this case. It is numerically demonstrated that an analogous effect is ensured for diffraction of a conventional Gaussian beam from asymmetric binary axicons. The field intensity on the optical axis can be varied either by rotating the optical element or by changing the direction of polarization of radiation.

  15. Evolving Design Criteria for Very Large Aperture Space Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow-on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4-meter and 8-meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as

  16. Sub-nanometer interferometry and precision turning for large optical fabrication

    SciTech Connect

    Klingmann, J L; Sommargren, G E

    1999-04-01

    At Lawrence Livermore National Laboratory (LLNL), we have the unique combination of precision turning and metrology capabilities critical to the fabrication of large optical elements. We have developed a self-referenced interferometer to measure errors in aspheric optics to sub- nanometer accuracy over 200-millimeter apertures, a dynamic range of 5{approximately}10. We have utilized diamond turning to figure optics for X-ray to IR wavelengths and, with fast-tool-servo technology, can move optical segments from off-axis to on-axis. With part capacities to 2.3-meters diameter and the metrology described above, segments of very large, ultra-lightweight mirrors can potentially be figured to final requirements. precision of diamond-turning will carryover although the surface finish may be degraded. Finally, the most critical component of a fabrication process is the metrology that enables an accurate part. Well characterized machines are very repeatable and part accuracy must come from proper metrology. A self- referencing interferometer has been developed that can measure accurately to sub-nanometer values. As with traditional interferometers, measurements are fast and post- processed data provides useful feedback to the user. The simplicity of the device allows it to be used on large optics and systems.

  17. Resolving the Effects of Aperture and Volume Restriction of the Flow by Semi-Porous Barriers Using Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Chatziefstratiou, Efthalia K.; Velissariou, Vasilia; Bohrer, Gil

    2014-09-01

    The Regional Atmospheric Modelling System (RAMS)-based Forest Large-Eddy Simulation (RAFLES) model is used to simulate the effects of large rectangular prism-shaped semi-porous barriers of varying densities under neutrally buoyant conditions. RAFLES model resolves flows inside and above forested canopies and other semi-porous barriers, and it accounts for barrier-induced drag on the flow and surface flux exchange between the barrier and the air. Unlike most other models, RAFLES model also accounts for the barrier-induced volume and aperture restriction via a modified version of the cut-cell coordinate system. We explicitly tested the effects of the numerical representation of volume restriction, independent of the effects of the drag, by comparing drag-only simulations (where we prescribed neither volume nor aperture restrictions to the flow), restriction-only simulations (where we prescribed no drag), and control simulations where both drag and volume plus aperture restrictions were included. Previous modelling and empirical work have revealed the development of important areas of increased uplift upwind of forward-facing steps, and recirculation zones downwind of backward-facing steps. Our simulations show that representation of the effects of the volume and aperture restriction due to the presence of semi-porous barriers leads to differences in the strengths and locations of increased-updraft and recirculation zones, and the length and strength of impact and adjustment zones when compared to simulation solutions with a drag-only representation. These are mostly driven by differences to the momentum budget of the streamwise wind velocity by resolved turbulence and pressure gradient fields around the front and back edges of the barrier. We propose that volume plus aperture restriction is an important component of the flow system in semi-porous environments such as forests and cities and should be considered by large-eddy simulation (LES).

  18. Agile multiple aperture imager receiver development

    NASA Astrophysics Data System (ADS)

    Lees, David E. B.; Dillon, Robert F.

    1990-02-01

    A variety of unconventional imaging schemes have been investigated in recent years that rely on small, unphased optical apertures (subaperture) to measure properties of an incoming optical wavefront and recover images of distant objects without using precisely figured, large aperture optical elements. Such schemes offer several attractive features. They provide the potential to create very lare effective aperture that are expandable over time and can be launched into space in small pieces. Since the subapertures are identical in construction, they may be mass producible at potentially low cost. A preliminary design for a practical low cost optical receiver is presented. The multiple aperture design has high sensitivity, wide field-of-view, and is lightweight. A combination of spectral, temporal, and spatial background suppression are used to achieve daytime operation at low signal levels. Modular packaging to make the number of receiver subapertures conveniently scalable is also presented. The design is appropriate to a ground-base proof-of-concept experiment for long range active speckle imaging.

  19. Determining meteoroid bulk densities using a plasma scattering model with high-power large-aperture radar data

    NASA Astrophysics Data System (ADS)

    Close, Sigrid; Volz, Ryan; Loveland, Rohan; Macdonell, Alex; Colestock, Patrick; Linscott, Ivan; Oppenheim, Meers

    2012-09-01

    We present an improved technique for calculating bulk densities of low-mass (<1 g) meteoroids using a scattering model applied to the high-density plasma formed around the meteoroid as it enters Earth’s atmosphere. These plasmas, referred to as head echoes, travel at or near the speed of the meteoroid, thereby allowing the determination of the ballistic coefficient (mass divided by physical cross-section), which depends upon speed and deceleration. Concurrently, we apply a scattering model to the returned signal strength of the head echo in order to correlate radar-cross-section (RCS) to plasma density and meteoroid mass. In this way, we can uniquely solve for the meteoroid mass, radius and bulk density independently. We have applied this new technique to head echo data collected in 2007 and 2008 simultaneously at VHF (160 MHz) and UHF (422 MHz) at ALTAIR, which is a high-power large-aperture radar located on the Kwajalein Atoll. These data include approximately 20,000 detections with dual-frequency, dual-polarization, and monopulse (i.e. angle) returns. From 2000 detections with the smallest monopulse errors, we find a mean meteoroid bulk density of 0.9 g/cm3 with observations spanning almost three orders of magnitude from 0.01 g/cm3 to 8 g/cm3. Our results show a clear dependence between meteoroid bulk density and altitude of head echo formation, as well as dependence between meteoroid bulk density and 3D speed. The highest bulk densities are detected at the lowest altitudes and lowest speeds. Additionally, we stipulate that the approximations used to derive the ballistic parameter, in addition to neglecting fragmentation, suggest that the traditional ballistic parameter must be used with caution when determining meteoroid parameters.

  20. Optica aperture synthesis

    NASA Astrophysics Data System (ADS)

    van der Avoort, Casper

    2006-05-01

    aperture mask, these optical paths are stated to be homothetic. In short, these two types will be addressed as the Michelson or the Homothetic type. The other two types are addressed as Densified and Staircase. The first one is short for densified pupil imaging, an imaging technique very similar to the Homothetic type, be it that the natural course of light after the aperture mask is altered. However, the combination of the beams of light is again in focus. The Staircase method is an alternative to the co-axial Michelson method and lends its name from the fact that a staircase-shaped mirror is placed in an intermediate focal plane after each telescope in the array, before combining the beams of light co-axially. This addition allows stellar imaging as with the Michelson type, with the advantage of covering a large field-of-view. The details of these methods will intensively be discussed in this thesis, but the introduction of them at this point allows a short list of results, found by comparing them for equal imaging tasks. Homothetic imagers are best suited for covering a wide field-of-view, considering the information content of the interferometric signals these arrays produce. The large number of detectors does not seem to limit the imaging performance in the presence of noise, due to the high ratio of coherent versus incoherent information in the detector signal. The imaging efficiency of a Michelson type array is also high, although -considering only polychromatic wide-field imaging tasks- the ratio of coherent versus incoherent information in the detected signals is very low. This results in very large observation times needed to produce images comparable to those obtained with a Homothetic array. A detailed presentation of the characteristics of the detected signals in a co-axial Michelson array reveal that such signals, obtained by polychromatic observation of extended sources, have fringe envelope functions that do not allow Fourier-spectroscopy to obtain high

  1. Design and prototype tests of a large-aperture 37-53 MHz ferrite-tuned booster synchrotron cavity

    SciTech Connect

    Mark S. Champion et al.

    2001-07-12

    The Booster synchrotron at Fermilab employs eighteen 37-53 MHz ferrite-tuned double-gap coaxial radiofrequency cavities for acceleration of protons from 400 MeV to 8 GeV. The cavities have an aperture of 2.25 inches and operate at 55 kV per cavity. Future high duty factor operation of the Booster will be problematic due to unavoidable beam loss at the cavities resulting in excessive activation. The power amplifiers, high maintenance items, are mounted directly to the cavities in the tunnel. A proposed replacement for the Booster, the Proton Driver, will utilize the Booster radiofrequency cavities and requires not only a larger aperture, but also higher voltage. A research and development program is underway at Fermilab to modify the Booster cavities to provide a 5-inch aperture and a 20% voltage increase. A prototype has been constructed and high power tests have bee completed. The cavity design and test results is presented.

  2. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    SciTech Connect

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  3. Large diameter germanium single crystals for infrared optics.

    NASA Astrophysics Data System (ADS)

    Gafni, G.; Azoulay, M.; Shiloh, C.; Noter, Y.; Saya, A.; Galron, H.; Roth, M.

    1989-09-01

    Large single crystals, up to 200 mm in diameter, of high optical quality germanium have been grown by the Czochralski technique. Postgrowth thermal treatment improves the optical homogeneity and reduces optical losses, as shown by measurements of refractive index gradients and modulation transfer function (MTF). A new approach for the piecewise combination of interferograms, as well as a polychromatic treatment of MTF, is presented.

  4. Biomass Mapping of US forests using synergy of Synthetic Aperture Radar and optical Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kellndorfer, J. M.; Baccini, A.; Bishop, J.; Cartus, O.; Cormier, T.; Walker, W. S.; Santoro, M.

    2011-12-01

    Santoro et al. (2011) for hyper-temporal stacks of ENVISAT ASAR C-band intensity, in which a semi-empirical model, relating backscatter to forest biophysical parameters, is trained with the aid of the MODIS VCF (Hansen et al., 2003) or similar optical remote sensing products. This algorithm allows accounting for environmental (soil/canopy moisture) or weather (freeze/thaw, rain) related effects on the backscatter signatures over forest without further need for in situ data. Once the model has been trained, it can be inverted to estimate the biomass for each image at pixel level. Where multi-temporal data was available, a weighted multi-temporal combination of the single-image estimates was done to improve the estimates. A comparison with the NBCD map indicated that at full resolution the accuracy of the ALOS biomass maps were relatively low with root mean square differences, RMSD, in the range of 80 to 100 t/ha. When, however, aggregating the maps to pixel size of >500 m, the RMSD reduced to less than 30 t/ha. The feasibility of accuracte ALOS based biomass mapping, at least at aggregated scales, was confirmed when extracting from the maps county level biomass statistics and comparing these to FIA county-level statistics (R2=0.95).

  5. Horizontal Shear Wave Imaging of Large Optics

    SciTech Connect

    Quarry, M J

    2007-09-05

    When complete the National Ignition Facility (NIF) will be the world's largest and most energetic laser and will be capable of achieving for the first time fusion ignition in the laboratory. Detecting optics features within the laser beamlines and sizing them at diameters of 0.1 mm to 10 mm allows timely decisions concerning refurbishment and will help with the routine operation of the system. Horizontally polarized shear waves at 10 MHz were shown to accurately detect, locate, and size features created by laser operations from 0.5 mm to 8 mm by placing sensors at the edge of the optic. The shear wave technique utilizes highly directed beams. The outer edge of an optic can be covered with shear wave transducers on four sides. Each transducer sends a pulse into the optic and any damage reflects the pulse back to the transmitter. The transducers are multiplexed, and the collected time waveforms are enveloped and replicated across the width of the element. Multiplying the data sets from four directions produces a map of reflected amplitude to the fourth power, which images the surface of the optic. Surface area can be measured directly from the image, and maximum depth was shown to be correlated to maximum amplitude of the reflected waveform.

  6. Materials for aerospace/large optics

    NASA Astrophysics Data System (ADS)

    Ernst, W. W.

    1987-01-01

    The potential of carbon fiber composite technology mirrors for astronomical observations is briefly addressed. Technical developments needed to assure the performance of lacquer-coated optics are summarized. A 10-meter monolithic mirror and larger segmented mirrors could be made with this technology.

  7. Estimating Evapotranspiration over Heterogeneously Vegetated Surfaces using Large Aperture Scintillometer, LiDAR, and Airborne Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Geli, H. M.; Neale, C. M.; Pack, R. T.; Watts, D. R.; Osterberg, J.

    2011-12-01

    Estimates of evapotranspiration (ET) over heterogeneous areas is challenging especially in water-limited sparsely vegetated environments. New techniques such as airborne full-waveform LiDAR (Light Detection and Ranging) and high resolution multispectral and thermal imagery can provide enough detail of sparse canopies to improve energy balance model estimations as well as footprint analysis of scintillometer data. The objectives of this study were to estimate ET over such areas and develop methodologies for the use of these airborne data technologies. Because of the associated heterogeneity, this study was conducted over the Cibola National wildlife refuge, southern California on an area dominated with tamarisk (salt cedar) forest (90%) interspersed with arrowweed and bare soil (10%). A set of two large aperture scintillometers (LASs) were deployed over the area to provide estimates of sensible heat flux (HLAS). The LASs were distributed over the area in a way that allowed capturing different surface spatial heterogeneity. Bowen ratio systems were used to provide hydrometeorological variables and surface energy balance fluxes (SEBF) (i.e. Rn, G, H, and LE) measurements. Scintillometer-based estimates of HLAS were improved by considering the effect of the corresponding 3D footprint and the associated displacement height (d) and the roughness length (z0) following Geli et al. (2011). The LiDAR data were acquired using the LASSI Lidar developed at Utah State University (USU). The data was used to obtain 1-m spatial resolution DEM's and vegetation canopy height to improve the HLAS estimates. The BR measurements of Rn and G were combined with LAS estimates, HLAS, to provide estimates of LELASas a residual of the energy balance equation. A thermal remote sensing model namely the two source energy balance (TSEB) of Norman et al. (1995) was applied to provide spatial estimates of SEBF. Four airborne images at 1-4 meter spatial resolution acquired using the USU airborne

  8. Large-Aperture [O I] 6300 A Photometry of Comet Hale-Bopp: Implications for the Photochemistry of OH

    NASA Technical Reports Server (NTRS)

    Morgenthaler, Jeffrey P.; Harris, Walter M.; Scherb, Frank; Anderson, Christopher M.; Oliversen, Ronald J.; Doane, Nathaniel E.; Combi, Michael R.; Marconi, Maximus L.; Smyth, William H.

    2001-01-01

    Large-aperture photometric observations of comet Hale-Bopp (C/1995 O1) in the forbidden red line of neutral oxygen ([O I] 6300 angstroms) with the 150 mm dual-etalon Fabry-Perot spectrometer that comprises the Wisconsin H-alpha Mapper and a 50 mm dual-etalon Fabry-Perot spectrometer at the McMath-Pierce main telescope from 1997 late February to mid April yield a total metastable O((sup 1)D) production rate of (2.3-5.9) x 10(exp 30)/s. Applying the standard H2O and OH photodissociation branching ratios, we derive a water production rate, Q(H2O), of (2.6-6.1) x 10(exp 31)/s, which disagrees with Q(H2O = 1x10(exp 31)/s determined by independent H2O, OH, and H measurements. Furthermore, our own [O I] 6300 observations of the inner coma (< 30,000 km) using the 3.5 m Wisconsin-Indiana-Yale-NOAO telescope Hydra and Densepak multi-object spectrographs yield Q(H2O) = 1 x 10(exp 31)/s. Using our [O I] 6300 data, which cover spatial scales ranging from 2,000 to 1x10(exp 6) km, and a complementary set of wide-field ground-based OH images, we can constrain the sources of the apparent excess O((sup 1)D) emission to the outer coma, where photodissociation of OH is assumed to be the dominant O((sup 1)D) production mechanism. From production rates of other oxygen-bearing volatiles (e.g., CO and CO2), we can account for at most 30% of the observed excess O((sup 1)D) emission. Since even less O((sup 1)D) should be coming from other sources (e.g., electron excitation of neutral O and distributed nonnuclear sources of H2O), we hypothesize that the bulk of the excess O((sup 1)D) is likely coming from photodissociating OH. Using the experimental OH photo-dissociation cross section of Nee and Lee at Ly-alpha as a guide in modifying the theoretical OH cross sections of van Dishoeck and Dalgarno, we can account for approximately 60% of the observed O((sup 1)D) excess without requiring major modifications to the other OH branching ratios or the total OH photodissociation lifetime.

  9. Fade statistics of a ground-to-satellite optical link in the presence of lead-ahead and aperture mismatch.

    PubMed

    Basu, Santasri; Voelz, David; Borah, Deva K

    2009-03-01

    In a recent publication [J. Opt. Soc. Am. A25, 1594-1608 (2008).JOAOD60740-323210.1364/JOSAA.25.001594] we developed expressions for the tilt errors that arise from the effects of lead-ahead and aperture mismatch when transmitting a laser beam from the ground to a satellite. We extend these results to examine the fade statistics of the irradiance at the satellite due to these tilt errors and turbulence induced scintillation. The system concept is that the light from a beacon on the satellite is received by the ground station and a derived signal is used to drive a tracking/pointing system for the uplink beam. However, the beam must be pointed ahead along the satellite track to intercept the satellite (lead-ahead), and physical constraints may require that the beam transmit aperture is different in size or location than the aperture receiving the beacon signal (aperture mismatch). These two issues cause the light entering the receiving aperture (tracker) and the beam exiting the transmit aperture (pointer) to traverse somewhat different turbulence volumes, which limits the ability of the tracking/pointing system to place the maximum flux on the satellite.

  10. The future of large optical system verification

    NASA Astrophysics Data System (ADS)

    Matthews, Gary

    2005-08-01

    As optical systems grow in size, there becomes a point in which traditional system verification prior to launch will become impossible. This implies that observatory ground testing will not be completed. Our history does not support this premise and therefore results in an unacceptable programmatic risk. But, if the dream of building 20-30 meter systems is ever to become true, these realities must be accepted. To make this possible, new and better analytical tools and processes must be developed and certified on programs that can be tested on the ground. This change in paradigm does not eliminate critical testing; it just does it at different assembly levels and most likely adds alignment flexibility to correct optical errors after launch. This paper provides ideas on how the hardware, analysis tools, and testing may evolve to support these ambitious future programs.

  11. Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors.

    PubMed

    Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali; Liaw, Shien-Kuei

    2016-01-01

    Joint effects of aperture averaging and beam width on the performance of free-space optical communication links, under the impairments of atmospheric loss, turbulence, and pointing errors (PEs), are investigated from an information theory perspective. The propagation of a spatially partially coherent Gaussian-beam wave through a random turbulent medium is characterized, taking into account the diverging and focusing properties of the optical beam as well as the scintillation and beam wander effects. Results show that a noticeable improvement in the average channel capacity can be achieved with an enlarged receiver aperture in the moderate-to-strong turbulence regime, even without knowledge of the channel state information. In particular, it is observed that the optimum beam width can be reduced to improve the channel capacity, albeit the presence of scintillation and PEs, given that either one or both of these adverse effects are least dominant. We show that, under strong turbulence conditions, the beam width increases linearly with the Rytov variance for a relatively smaller PE loss but changes exponentially with steeper increments for higher PE losses. Our findings conclude that the optimal beam width is dependent on the combined effects of turbulence and PEs, and this parameter should be adjusted according to the varying atmospheric channel conditions. Therefore, we demonstrate that the maximum channel capacity is best achieved through the introduction of a larger receiver aperture and a beam-width optimization technique.

  12. Aperture-ratio dependence of the efficiency of magneto-optical first-order diffraction in GdFe stripe arrays with alternating perpendicular magnetization

    NASA Astrophysics Data System (ADS)

    Wada, Kakeru; Antos, Roman; Aoshima, Ken-ichi; Machida, Kenji; Kuga, Kiyoshi; Ono, Hiroshi; Kikuchi, Hiroshi; Shimidzu, Naoki; Ishibashi, Takayuki

    2016-07-01

    The efficiency of magneto-optical (MO) diffraction in GdFe stripe arrays with alternating directions of perpendicular magnetization is investigated. The diffraction efficiency depends on the aperture ratio, as theoretically analyzed for an array composed of magnetic and nonmagnetic materials, with the magnetization directions parallel or antiparallel. The stripe patterns are composed of two ferromagnetic alloys of different compositions, Gd19.7Fe80.3 and Gd23.4Fe76.6 (denoted GF1 and GF2), having different coercivities in the parallel and antiparallel configurations. The stripe patterns are separated by nonmagnetic SiO2 stripes of different widths to obtain aperture ratios of 100, 75, 50 and 25%. The magnetization distributions in the samples is confirmed by MO microscopy. The diffraction efficiencies at a wavelength of 532 nm are measured to be 1.27×10-6, 1.04×10-6, 6.2×10-7 and 2.0×10-7 for aperture ratios of 100, 75, 50, and 25%, respectively. Those values are in accord with calculations using the measured MO and optical parameters of the GF1 layer, including the Kerr rotation angle of 0.12°, the Kerr ellipticity of -0.1° and the reflectance of 0.37.

  13. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    NASA Astrophysics Data System (ADS)

    Kojima, A.; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  14. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  15. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    PubMed

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings. PMID:26932032

  16. Extremely large telescopes' optical design and wavefront correction

    NASA Astrophysics Data System (ADS)

    Goncharov, Alexander Vladimirovich

    An overview of the state of art within optical design of large astronomical telescopes is given. Recent advances within the field are presented. The importance of new computer-controlled mirror-polishing methods is emphasized. Some important aspects of atmospheric optics are presented together with current compensation methods using adaptive optics, with or without laser guide stars. An overview of wavefront sensing, wavefront reconstruction and techniques for compensation is given. Methods for optical design of large, optical telescopes with fast primary mirrors are presented in a systematic way. Three different approaches are outlined and commented. They include an algebraic method, a method based on optimization through ray tracing and an analytical method based on Fermat's principle and the Abbe sine condition. Studies of optical designs for large telescopes with fast, spherical primary mirrors are examined and discussed. For two-mirror designs, an analytical method has been derived using aberration control based on Fermat's principle. Intrinsic apodization for design of extremely fast primary mirrors is analyzed. For four- mirror designs with spherical primary minors, a ray tracing approach has been chosen. A total of fifteen different four-mirror designs have been analyzed and discussed. For the 50 m optical telescope. Euro50, a two-mirror design was chosen. This optical design is presented in detail, together with the optical layout of an adaptive optical system that forms an integrated part of the telescope. An analysis of essential components of the Euro50 is given. Finally, an analytical approach is presented for control of two or more deformable mirrors for adaptive optics in extremely large telescopes for optical wavelengths. The same algorithms are used to evaluate and predict the performance of the adaptive optics for the Euro50.

  17. APT: Aperture Photometry Tool

    NASA Astrophysics Data System (ADS)

    Laher, Russ

    2012-08-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.

  18. Diffraction loss analysis of a plane-parallel optical cavity with a phase step and a slit aperture

    NASA Astrophysics Data System (ADS)

    Jalviste, Erko

    2012-06-01

    A model for calculating the round trip diffraction loss in a plane-mirror cavity with an intracavity phase step and an infinite slit aperture is developed. The round trip remaining intensity fraction for the low order transverse cavity modes can be calculated for any given location of the slit aperture and the phase step along the cavity and for any given phase delay on the phase step. The diffraction loss on the slit aperture is found to be a periodic function of the phase delay on the phase step. Transformation of the lasing spectrum emitted from a broadband pulsed dye laser on moving the phase step along the oscillator cavity is reproduced theoretically. The lasing spectrum affected by the phase step is interpreted as the wavelength dependence of the remaining intensity fraction for the principal transverse mode.

  19. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  20. Instrument Design of the Large Aperture Solar UV Visible and IR Observing Telescope (SUVIT) for the SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Takeyama, N.

    2012-12-01

    We present an instrumental design of one major solar observation payload planned for the SOLAR-C mission: the Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). The SUVIT is designed to provide high-angular-resolution investigation of the lower solar atmosphere, from the photosphere to the uppermost chromosphere, with enhanced spectroscopic and spectro-polarimetric capability in wide wavelength regions from 280 nm (Mg II h&k lines) to 1100 nm (He I 1083 nm line) with 1.5 m class aperture and filtergraphic and spectrographic instruments.

  1. A study program on large aperture electronic scanning phased array antennas for the shuttle imaging microwave system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Fundamental phased array theory and performance parameters are discussed in terms of their application to microwave radiometry, and four scanning phased arrays representing current examples of state-of-the-art phased array technology are evaluated for potential use as components of the multispectral antenna system for the space shuttle imaging microwave system (SIMS). A discussion of problem areas, both in performance and fabrication is included, with extrapolations of performance characteristics for phased array antennas of increased sizes up to 20 m by 20 m. The possibility of interlacing two or more phased arrays to achieve a multifrequency aperture is considered, and, finally, a specific antenna system is recommended for use with SIMS.

  2. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    PubMed

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  3. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    PubMed Central

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick–Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  4. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  5. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    PubMed

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-21

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  6. Differential Synthetic Aperture Ladar

    SciTech Connect

    Stappaerts, E A; Scharlemann, E

    2005-02-07

    We report a differential synthetic aperture ladar (DSAL) concept that relaxes platform and laser requirements compared to conventional SAL. Line-of-sight translation/vibration constraints are reduced by several orders of magnitude, while laser frequency stability is typically relaxed by an order of magnitude. The technique is most advantageous for shorter laser wavelengths, ultraviolet to mid-infrared. Analytical and modeling results, including the effect of speckle and atmospheric turbulence, are presented. Synthetic aperture ladars are of growing interest, and several theoretical and experimental papers have been published on the subject. Compared to RF synthetic aperture radar (SAR), platform/ladar motion and transmitter bandwidth constraints are especially demanding at optical wavelengths. For mid-IR and shorter wavelengths, deviations from a linear trajectory along the synthetic aperture length have to be submicron, or their magnitude must be measured to that precision for compensation. The laser coherence time has to be the synthetic aperture transit time, or transmitter phase has to be recorded and a correction applied on detection.

  7. Sub-surface damage issues for effective fabrication of large optics

    NASA Astrophysics Data System (ADS)

    Tonnellier, X.; Shore, P.; Morantz, P.; Baldwin, A.; Walker, D.; Yu, G.; Evans, R.

    2008-07-01

    A new ultra precision large optics grinding machine, BoX® has been developed at Cranfield University. BoX® is located at the UK's Ultra Precision Surfaces laboratory at the OpTIC Technium. This machine offers a rapid and economic solution for grinding large off-axis aspherical and free-form optical components. This paper presents an analysis of subsurface damage assessments of optical ground materials produced using diamond resin bonded grinding wheels. The specific materials used, Zerodur® and ULE® are currently under study for making extremely large telescope (ELT) segmented mirrors such as in the E-ELT project. The grinding experiments have been conducted on the BoX® grinding machine using wheels with grits sizes of 76 μm, 46 μm and 25 μm. Grinding process data was collected using a Kistler dynamometer platform. The highest material removal rate (187.5 mm3/s) used ensures that a 1 metre diameter optic can be ground in less than 10 hours. The surface roughness and surface profile were measured using a Form Talysurf. The subsurface damage was revealed using a sub aperture polishing process in combination with an etching technique. These results are compared with the targeted form accuracy of 1 μm p-v over a 1 metre part, surface roughness of 50-150 nm RMS and subsurface damage in the range of 2-5 μm. This process stage was validated on a 400 mm ULE® blank and a 1 metre hexagonal Zerodur® part.

  8. Measurement of large strains in ropes using plastic optical fibers

    DOEpatents

    Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David

    2006-02-14

    A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.

  9. Advanced Multiple Aperture Seeing Profiler

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Zhao, Gang

    2016-10-01

    Measurements of the seeing profile of the atmospheric turbulence as a function of altitude are crucial for solar astronomical site characterization, as well as the optimized design and performance estimation of solar Multi-Conjugate Adaptive Optics (MCAO). Knowledge of the seeing distribution, up to 30 km, with a potential new solar observation site, is required for future solar MCAO developments. Current optical seeing profile measurement techniques are limited by the need to use a large facility solar telescope for such seeing profile measurements, which is a serious limitation on characterizing a site's seeing conditions in terms of the seeing profile. Based on our previous work, we propose a compact solar seeing profiler called the Advanced Multiple Aperture Seeing Profile (A-MASP). A-MASP consists of two small telescopes, each with a 100 mm aperture. The two small telescopes can be installed on a commercial computerized tripod to track solar granule structures for seeing profile measurement. A-MASP is extreme simple and portable, which makes it an ideal system to bring to a potential new site for seeing profile measurements.

  10. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  11. Optical ‘magnetic mirror’ metasurfaces using interference between Fabry-Pérot cavity resonances in coaxial apertures

    PubMed Central

    Rajasekharan, Ranjith; Roberts, Ann

    2015-01-01

    Here we propose and computationally demonstrate a quasi-planar metasurface consisting of arrays of pairs of concentric coaxial apertures in a metallic film. The structure relies on destructive interference between Fabry-Pérot modes excited in each aperture at resonance producing transmitted fields that interfere destructively leading to suppressed transmission. Conversely, we show that in the case of a perfect conductor, near-perfect, broadband reflection can be achieved with zero phase change in the electric field and a variation of 2π on passing through the coincident resonances. Extending the concept to shorter wavelengths, we show that mirrors exhibiting close to a 2π phase excursion, albeit with a reduction in the amplitude reflection coefficient at resonance and a lower Q, can be also achieved. Structures such as these can be used to enhance light-matter interactions at surfaces and act as high impedance ground planes for antenna applications. PMID:26020728

  12. Tracking in a ground-to-satellite optical link: effects due to lead-ahead and aperture mismatch, including temporal tracking response.

    PubMed

    Basu, Santasri; Voelz, David

    2008-07-01

    Establishing a link between a ground station and a geosynchronous orbiting satellite can be aided greatly with the use of a beacon on the satellite. A tracker, or even an adaptive optics system, can use the beacon during communication or tracking activities to correct beam pointing for atmospheric turbulence and mount jitter effects. However, the pointing lead-ahead required to illuminate the moving object and an aperture mismatch between the tracking and the pointing apertures can limit the effectiveness of the correction, as the sensed tilt will not be the same as the tilt required for optimal transmission to the satellite. We have developed an analytical model that addresses the combined impact of these tracking issues in a ground-to-satellite optical link. We present these results for different tracker/pointer configurations. By setting the low-pass cutoff frequency of the tracking servo properly, the tracking errors can be minimized. The analysis considers geosynchronous Earth orbit satellites as well as low Earth orbit satellites.

  13. Integrated electrochromic aperture diaphragm

    NASA Astrophysics Data System (ADS)

    Deutschmann, T.; Oesterschulze, E.

    2014-05-01

    In the last years, the triumphal march of handheld electronics with integrated cameras has opened amazing fields for small high performing optical systems. For this purpose miniaturized iris apertures are of practical importance because they are essential to control both the dynamic range of the imaging system and the depth of focus. Therefore, we invented a micro optical iris based on an electrochromic (EC) material. This material changes its absorption in response to an applied voltage. A coaxial arrangement of annular rings of the EC material is used to establish an iris aperture without need of any mechanical moving parts. The advantages of this device do not only arise from the space-saving design with a thickness of the device layer of 50μm. But it also benefits from low power consumption. In fact, its transmission state is stable in an open circuit, phrased memory effect. Only changes of the absorption require a voltage of up to 2 V. In contrast to mechanical iris apertures the absorption may be controlled on an analog scale offering the opportunity for apodization. These properties make our device the ideal candidate for battery powered and space-saving systems. We present optical measurements concerning control of the transmitted intensity and depth of focus, and studies dealing with switching times, light scattering, and stability. While the EC polymer used in this study still has limitations concerning color and contrast, the presented device features all functions of an iris aperture. In contrast to conventional devices it offers some special features. Owing to the variable chemistry of the EC material, its spectral response may be adjusted to certain applications like color filtering in different spectral regimes (UV, optical range, infrared). Furthermore, all segments may be switched individually to establish functions like spatial Fourier filtering or lateral tunable intensity filters.

  14. Generation of cylindrically symmetric modes and orbital-angular-momentum modes with tilted optical gratings inscribed in high-numerical-aperture fibers.

    PubMed

    Fang, Liang; Jia, Hongzhi; Zhou, Hai; Liu, Baiying

    2015-01-01

    Optical fiber with high numerical aperture (NA) can efficiently relieve the degeneracy of higher-order linearly polarized modes. The degeneracy relief is investigated in two types of high-NA fibers, i.e., low-index-cladding fiber and high-index-core fiber. A naked-core fiber, as with low-index cladding, can be used theoretically to generate the orbital-angular-momentum mode (OAMM) HE21 and the cylindrically symmetric modes (CSMs) TM01 and TE01. A high-index-core fiber incorporated with high-contrast-index structure can be used similarly to obtain OAMM HE31. The generation of both CSMs and OAMMs required tilted optical gratings to couple the fundamental core mode HE11 into these modes. The tilt angle and modulation period of the grating fringes can be calculated simply and visually with the method proposed in this article.

  15. Large Optic Drying Station: Summary of Dryer Certification Tests

    SciTech Connect

    Barbee, T W; Ayers, S L; Ayers, M J

    2009-08-28

    The purpose of this document is to outline the methodology used to baseline and maintain the cleanliness status of the newly built and installed Large Optic Cleaning Station (LOCS). The station has currently been in use for eleven months; and after many cleaning studies and implementation of resulting improvements appears to be cleaning optics to a level that is acceptable for the fabrication of Nano-Laminates.

  16. Fiber-optic large area average temperature sensor

    SciTech Connect

    Looney, L.L.; Forman, P.R.

    1994-05-01

    In many instances the desired temperature measurement is only the spatial average temperature over a large area; eg. ground truth calibration for satellite imaging system, or average temperature of a farm field. By making an accurate measurement of the optical length of a long fiber-optic cable, we can determine the absolute temperature averaged over its length and hence the temperature of the material in contact with it.

  17. Contrails of Small and Very Large Optical Depth

    NASA Technical Reports Server (NTRS)

    Atlas, David; Wang, Zhien

    2010-01-01

    This work deals with two kinds of contrails. The first comprises a large number of optically thin contrails near the tropopause. They are mapped geographically using a lidar to obtain their height and a camera to obtain azimuth and elevation. These high-resolution maps provide the local contrail geometry and the amount of optically clear atmosphere. The second kind is a single trail of unprecedentedly large optical thickness that occurs at a lower height. The latter was observed fortuitously when an aircraft moving along the wind direction passed over the lidar, thus providing measurements for more than 3 h and an equivalent distance of 620 km. It was also observed by Geostationary Operational Environmental Satellite (GOES) sensors. The lidar measured an optical depth of 2.3. The corresponding extinction coefficient of 0.023 per kilometer and ice water content of 0.063 grams per cubic meter are close to the maximum values found for midlatitude cirrus. The associated large radar reflectivity compares to that measured by ultrasensitive radar, thus providing support for the reality of the large optical depth.

  18. Prediction of nonlinear optical properties of large organic molecules

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    1992-01-01

    The preparation of materials with large nonlinear responses usually requires involved synthetic processes. Thus, it is very advantageous for materials scientists to have a means of predicting nonlinear optical properties. The prediction of nonlinear optical properties has to be addressed first at the molecular level and then as bulk material. For relatively large molecules, two types of calculations may be used, which are the sum-over-states and the finite-field approach. The finite-field method was selected for this research, because this approach is better suited for larger molecules.

  19. Optical position measurement for a Large Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Shelton, Kevin J.; Clemmons, James I.

    1991-01-01

    This paper describes the design of an optical position measurement system which is being built as part of the NASA Langley Large Gap Magnetic Suspension System (LGMSS). The LGMSS is a five degree-of-freedom, large-gap magnetic suspension system which is being built for Langley Research Center as part of the Advanced Controls Test Facility (ACTF). The LGMSS consists of a planar array of electromagnets which levitate and position a cylindrically shaped model containing a permanent magnet core. The optical position measurement system provides information on the location and orientation of the model to the LGMSS control system to stabilize levitation of the model.

  20. Aperture Photometry Tool

    NASA Astrophysics Data System (ADS)

    Laher, Russ R.; Gorjian, Varoujan; Rebull, Luisa M.; Masci, Frank J.; Fowler, John W.; Helou, George; Kulkarni, Shrinivas R.; Law, Nicholas M.

    2012-07-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It is a graphical user interface (GUI) designed to allow the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. The finely tuned layout of the GUI, along with judicious use of color-coding and alerting, is intended to give maximal user utility and convenience. Simply mouse-clicking on a source in the displayed image will instantly draw a circular or elliptical aperture and sky annulus around the source and will compute the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs with just the push of a button, including image histogram, x and y aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has many functions for customizing the calculations, including outlier rejection, pixel "picking" and "zapping," and a selection of source and sky models. The radial-profile-interpolation source model

  1. Improved Optical Design for the Large Synoptic Survey Telescope (LSST)

    SciTech Connect

    Seppala, L

    2002-09-24

    This paper presents an improved optical design for the LSST, an fll.25 three-mirror telescope covering 3.0 degrees full field angle, with 6.9 m effective aperture diameter. The telescope operates at five wavelength bands spanning 386.5 nm to 1040 nm (B, V, R, I and Z). For all bands, 80% of the polychromatic diffracted energy is collected within 0.20 arc-seconds diameter. The reflective telescope uses an 8.4 m f/1.06 concave primary, a 3.4 m convex secondary and a 5.2 m concave tertiary in a Paul geometry. The system length is 9.2 m. A refractive corrector near the detector uses three fused silica lenses, rather than the two lenses of previous designs. Earlier designs required that one element be a vacuum barrier, but now the detector sits in an inert gas at ambient pressure. The last lens is the gas barrier. Small adjustments lead to optimal correction at each band. The filters have different axial thicknesses. The primary and tertiary mirrors are repositioned for each wavelength band. The new optical design incorporates features to simplify manufacturing. They include a flat detector, a far less aspheric convex secondary (10 {micro}m from best fit sphere) and reduced aspheric departures on the lenses and tertiary mirror. Five aspheric surfaces, on all three mirrors and on two lenses, are used. The primary is nearly parabolic. The telescope is fully baffled so that no specularly reflected light from any field angle, inside or outside of the full field angle of 3.0 degrees, can reach the detector.

  2. Evolving design criteria for very large aperture space-based telescopes and their influence on the need for intergrated tools in the optimization process

    NASA Astrophysics Data System (ADS)

    Arnold, William R.

    2015-09-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as

  3. Evolving Design Criteria for Very Large Aperture Space-Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as

  4. A new modular optical system for large format scene projection

    NASA Astrophysics Data System (ADS)

    Alexay, Christopher C.; Palmer, Troy A.

    2006-05-01

    This work will present a new approach to large format projection optics suitable for HWIL testing. Aspects of the design's modular approach and its ability to accommodate widely varying spectral ranges, focal lengths, zoom capabilities and the ability to deliver multi-spectral scene data are presented.

  5. CCD AND PIN-CMOS DEVELOPMENTS FOR LARGE OPTICAL TELESCOPE.

    SciTech Connect

    RADEKA, V.

    2006-04-03

    Higher quantum efficiency in near-IR, narrower point spread function and higher readout speed than with conventional sensors have been receiving increased emphasis in the development of CCDs and silicon PIN-CMOS sensors for use in large optical telescopes. Some key aspects in the development of such devices are reviewed.

  6. Large optics fabrication and testing at the College of Optical Sciences

    NASA Astrophysics Data System (ADS)

    Burge, James H.

    2014-10-01

    The origin of the Optical Sciences Center (OSC) at the University of Arizona was closely tied to the need to expand the national capability for manufacturing large optics. This connection allowed OSC to grow quickly to become a truly unique place where new technologies are born and applied and where students have opportunities to apply academic lessons to real-world projects. In the decades that follow, OSC has grown to become a leader in many other optical disciplines, including photonics, imaging, optical engineering, and optical physics. But the core capability of optical fabrication and testing has remained as a unique University of Arizona asset. The last decade has seen explosive growth in development and implementation of new technologies for manufacturing and measuring large optics at the College of Optical Sciences. The classic polishing techniques have given way to advanced computer controlled machines and highly engineered laps. New measuring methods have enabled accurate metrology of steeply aspheric surfaces, concave and convex, symmetric and freeform. This paper discusses the history of optical fabrication and testing at University of Arizona and reviews some recent major projects and the technical developments that have enabled their success.

  7. Large optical 3D MEMS switches in access networks

    NASA Astrophysics Data System (ADS)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  8. Location of Body Wave Microseism Sources Using Three-Component Data From a Large Aperture Seismic Array in China

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Koper, K. D.; Burlacu, R.; Ni, S.; Wang, F.

    2015-12-01

    From September 2013 through October 2014 up to 100 Guralp CMG-3 broadband seismometers were deployed in the WT-Array (WTA) in northwest China. The aperture of WTA is about 700 km, with an average station spacing of approximately 50 km. Here, we process continuous, three-component WTA data to detect and locate body wave microseism sources in four distinct period bands: 1.0-2.5 s, 2.5-5 s, 5-10 s, and 10-20 s. We back-project vertical component data through a 1D reference Earth model (AK135) to a global grid of hypothetical source locations, assuming P-wave (30o-90o), PP-wave (60o-180o), and S-wave (30o-75o) propagation. At the same time, we rotate the horizontals and back-project the radial and transverse components of the wavefield. For each frequency band, grid point, and assumed origin time, the array power is calculated from the amplitude of a windowed, filtered, and tapered time domain beam constructed with fourth-root stacking. We find strong P-wave and S-wave noise sources in the North Pacific and North Atlantic Oceans. Shorter period sources (2.5-5 s) are mainly observed in the North Pacific Ocean, while both short and long period (2.5-20 s) sources are observed in the North Atlantic Ocean. Median power plots for each month during September 2013 through October 2014 show distinct seasonal variations. The energy peaks in the North Atlantic are visible from November to March and strong energy is also observed in the North Pacific from October to April. We also observe PP-waves in the Southern Ocean, especially for May-August 2014. Using classical f-k analysis and plane-wave propagation, we are able to confirm the back-projection results. To improve our understanding of body wave microseism generation, we compare the observed P, S, and PP wave microseism locations with the predictions of significant wave height and wave-wave interactions derived from the WAVEWATCH III ocean model.From September 2013 through October 2014 up to 100 Guralp CMG-3 broadband

  9. Development and Testing of a Power Trough System Using a Structurally-Efficient, High-Performance, Large-Aperture Concentrator with Thin Glass Reflector and Focal Point Rotation

    SciTech Connect

    May, E. K.; Forristall, R.

    2005-11-01

    Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. The IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.

  10. The effect of air flow on the temperature distribution and the harmonic conversion efficiency of the ADP crystal with large aperture in the temperature control scheme

    NASA Astrophysics Data System (ADS)

    Sun, Fuzhong; Zhang, Peng; Lu, Lihua; Xiang, Yong; Bai, Qingshun

    2016-03-01

    This paper presented a temperature control scheme for ammonium dihydrogen phosphate (ADP) crystal of V80 mm in diameter, and the influence of the air flow was also studied. This research aims to obtain the high energy, high frequency laser with large aperture under the non-critical phase matching (NCPM). Firstly, thermal analysis was carried out to investigate the air flow property in the cavity, as well as the effect of ambient temperature was analyzed. Secondly, the temperature distributions of air flow were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results. Finally, the effect of air flow in the cavity was obtained from the heating method, and the variation of harmonic conversion efficiency caused by the ambient temperature was also highlighted.

  11. Coupling a small torsional oscillator to large optical angular momentum

    NASA Astrophysics Data System (ADS)

    Shi, H.; Bhattacharya, M.

    2013-03-01

    We propose a new configuration for realizing torsional optomechanics: an optically trapped windmill-shaped dielectric interacting with Laguerre-Gaussian cavity modes containing both angular and radial nodes. In contrast to existing schemes, our method can couple mechanical oscillators smaller than the optical beam waist to the in-principle unlimited orbital angular momentum that can be carried by a single photon, and thus generate substantial optomechanical interactions. Combining the advantages of small mass, large coupling, and low clamping losses, our work conceptually opens the way for the observation of quantum effects in torsional optomechanics.

  12. Large nonlocal nonlinear optical response of castor oil

    NASA Astrophysics Data System (ADS)

    Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.

    2009-09-01

    The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.

  13. Science and Instrument Design of 1.5-m Aperture Solar Optical Telescope for the SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Ichimoto, K.; Shimizu, T.

    2012-12-01

    We present science cases and a design of one of major instruments for SOLAR-C mission; 1.5-m-class aperture solar ultra-violet visible and near IR observing Telescope (SUVIT). The SOLAR-C mission aims at fully understanding dynamism and magnetic nature of the solar atmosphere by observing small-scale plasma processes and structures. The SUVIT is designed to provide high-angular-resolution investigation of lower atmosphere from the photosphere to the uppermost chromosphere with enhanced spectroscopic and spectro-polarimetric capability covering a wide wavelength region from 280 nm (Mg II h&k) to 1100 nm (He I 1083 nm), using focal plane instruments: wide-band and narrow-band filtergraphs and a spectrograph for high-precision spectro-polarimetry in the solar photospheric and chromospheric lines. We will discuss about instrument design to realize the science cases.

  14. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV.

  15. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV. PMID:22559541

  16. Large light X-ray optics: basic ideas and concepts

    NASA Astrophysics Data System (ADS)

    Citterio, O.; Ghigo, M.; Mazzoleni, F.; Pareschi, G.; Aschenbach, B.; Braeuninger, H.; Friedrich, P.; Hasinger, G.; Parodi, G.

    2004-01-01

    One of the main guidelines for future X-ray astronomy projects like, e.g., XEUS (ESA) and Generation-X (NASA) is to utilize grazing-incidence focusing optics with extremely large telescopes (several tens of m 2 at 1 keV), with a dramatic increase in collecting area of about two order of magnitude compared to the current X-ray telescopes. In order to avoid the problem of the source's confusion limit at low fluxes, the angular resolution required for these optics should be superb (a few arcsec at most). The enormous mirror dimensions together with the high imaging performances give rise to a number of manufacturing problems. It is basically impossible to realize so large mirrors from closed Wolter I shells which benefit from high mechanical stiffness. Instead the mirrors need to be formed as rectangular segments and a series of them will be assembled in a petal. Taking into account the realistic load capabilities of space launchers, to be able to put in orbit so large mirror modules the mass/geometric-area ratio of the optics should be very small. Finally, with a so large optics mass it would be very difficult to provide the electric power for an optics thermal active control, able to maintain the mirrors at the usual temperature of 20 °C. Therefore, very likely, the optics will instead operate in extreme thermal conditions, with the mirror temperature oscillating between -30 and -40 °C, that tends to exclude the epoxy replication approach (the mismatch between the CTE of the substrate and that of the resin would cause prohibitively large deformations of the mirror surface profiles). From these considerations light weight materials with high thermal-mechanical properties such as glass or ceramics become attractive to realize the mirrors of future Xray telescopes. In this paper, we will discuss a segments manufacturing method based on Borofloat TM glass. A series of finite element analysis concerning different aspects of the production, testing and integration of

  17. Measuring large optical transmission matrices of disordered media.

    PubMed

    Yu, Hyeonseung; Hillman, Timothy R; Choi, Wonshik; Lee, Ji Oon; Feld, Michael S; Dasari, Ramachandra R; Park, YongKeun

    2013-10-11

    We report a measurement of the large optical transmission matrix (TM) of a complex turbid medium. The TM is acquired using polarization-sensitive, full-field interferometric microscopy equipped with a rotating galvanometer mirror. It is represented with respect to input and output bases of optical modes, which correspond to plane wave components of the respective illumination and transmitted waves. The modes are sampled so finely in angular spectrum space that their number exceeds the total number of resolvable modes for the illuminated area of the sample. As such, we investigate the singular value spectrum of the TM in order to detect evidence of open transmission channels, predicted by random-matrix theory. Our results comport with theoretical expectations, given the experimental limitations of the system. We consider the impact of these limitations on the usefulness of transmission matrices in optical measurements.

  18. Measuring Large Optical Transmission Matrices of Disordered Media

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Hillman, Timothy R.; Choi, Wonshik; Lee, Ji Oon; Feld, Michael S.; Dasari, Ramachandra R.; Park, YongKeun

    2013-10-01

    We report a measurement of the large optical transmission matrix (TM) of a complex turbid medium. The TM is acquired using polarization-sensitive, full-field interferometric microscopy equipped with a rotating galvanometer mirror. It is represented with respect to input and output bases of optical modes, which correspond to plane wave components of the respective illumination and transmitted waves. The modes are sampled so finely in angular spectrum space that their number exceeds the total number of resolvable modes for the illuminated area of the sample. As such, we investigate the singular value spectrum of the TM in order to detect evidence of open transmission channels, predicted by random-matrix theory. Our results comport with theoretical expectations, given the experimental limitations of the system. We consider the impact of these limitations on the usefulness of transmission matrices in optical measurements.

  19. Measuring large optical transmission matrices of disordered media.

    PubMed

    Yu, Hyeonseung; Hillman, Timothy R; Choi, Wonshik; Lee, Ji Oon; Feld, Michael S; Dasari, Ramachandra R; Park, YongKeun

    2013-10-11

    We report a measurement of the large optical transmission matrix (TM) of a complex turbid medium. The TM is acquired using polarization-sensitive, full-field interferometric microscopy equipped with a rotating galvanometer mirror. It is represented with respect to input and output bases of optical modes, which correspond to plane wave components of the respective illumination and transmitted waves. The modes are sampled so finely in angular spectrum space that their number exceeds the total number of resolvable modes for the illuminated area of the sample. As such, we investigate the singular value spectrum of the TM in order to detect evidence of open transmission channels, predicted by random-matrix theory. Our results comport with theoretical expectations, given the experimental limitations of the system. We consider the impact of these limitations on the usefulness of transmission matrices in optical measurements. PMID:24160602

  20. Development of a metrology instrument for mapping the crystallographic axis in large optics

    SciTech Connect

    Hibbard, R L; Liou, L W; Michie, R B; Summers, M D

    1998-10-21

    A metrology instrument has been developed to scan crystals and map the peak tuning angles for frequency conversion from the infrared to the ultra violet over large apertures. The need for such a device emerged from the National Ignition Facility (NIF) program where frequency conversion crystals have been found to have significant crystallographic axis wander at the large NIF aperture size of 4 1 cm square. With only limited access to a large aperture laser system capable of testing these crystals, scientists have been unable to determine which crystal life-cycle components most affect these angular anomalies. A system that can scan crystals with a small diameter probe laser beam and deliver microradian accuracy and repeatability from probe point to probe point is needed. The Crystal Alignment Verification Equipment (CAVE) is the instrument designed to meet these needs and fit into the budget and time constraints of the ongoing NIF development. In order to measure NIF crystals, the CAVE has a workspace of 50 x 50 cm and an angular measurement accuracy of 10 {micro}radians. Other precision requirements are probe beam energy measurement to 2% of peak, thermal control to 20 0. 1°C around the crystal, crystal mounting surface flatness of 1 {micro}m over 40 cm square, and clean operations to Class 100 standards. Crystals are measured in a vertical position in a kinematic mount capable of tuning the crystal to 1 {micro}radian. The mirrors steering the probe beam can be aligned to the same precision. Making tip/tilt mounts with microradian level adjustment is relatively commonplace. The real precision engineering challenge of the CAVE system is maintaining the angular alignment accuracy of the probe laser relative to the crystal for each spatial position to be measured. The design team determined that a precision XY stage with the required workspace and angular accuracy would be prohibitive to develop under the given tight time constraints. Instead the CAVE uses

  1. Large Space Optics: From Hubble to JWST and Beyond

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    If necessity truly is the mother of invention, then advances in lightweight space mirror technology have been driven by launch vehicle mass and volume constraints. In the late 1970 s, at the start of Hubble development, the state of the art in ground based telescopes was 3 to 4 meter monolithic primary mirrors with masses of 6000 to 10,000 kg - clearly too massive for the planned space shuttle 25,000 kg capability to LEO. Necessity led Hubble to a different solution. Launch vehicle mass constraints (and cost) resulted in the development of a 2.4 meter lightweight eggcrate mirror. At 810 kg (180 kg/m2), this mirror was approximately 7.4% of HST s total 11,110 kg mass. And, the total observatory structure at 4.3 m x 13.2 m fit snuggly inside the space shuttle 4.6 m x 18.3 m payload bay. In the early 1990 s, at the start of JWST development, the state of the art in ground based telescopes was 8 meter class monolithic primary mirrors (16,000 to 23,000 kg) and 10 meter segmented mirrors (14,400 kg). Unfortunately, launch vehicles were still constrained to 4.5 meter payloads and 25,000 kg to LEO or 6,600 kg to L2. Furthermore, science now demanded a space telescope with 6 to 8 meter aperture operating at L2. Mirror technology was identified as a critical capability necessary to enable the next generation of large aperture space telescopes. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996 (1). These studies identified two significant architectural constraints: segmentation and areal density. Because the launch vehicle fairing payload dynamic envelop diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. And, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density of 20 kg/m2. At the inception of

  2. A high precision optical angle measuring instrument for large optical axis offsets

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Tan, Zuojun

    2014-09-01

    In many industrial activities such as manufacturing and inspection, optical axis offsets measurement is an essential process for keeping and improving the quality of products. The laser autocollimation method is improved to detect the large angular displacement with high precision by using a re-imaging technology. A large optical screen made of frosted glass is located at the focal position of the objective lens instead of the detector. A precision CCD imaging system was employed to measure the displacement of the light spot on the optical screen. The sub-pixel position of center of the light spot can be obtained accurately through the centroid and Gaussian fit methods. The actual test results show that the total systematic error of the optical angle measuring instrument in the mode of measuring the range 8°×8° does not exceed 0.16'.

  3. Optical delay control of large-spectral-bandwidth laser pulses

    SciTech Connect

    Ignesti, E.; Tognetti, M. V.; Buffa, R.; Cavalieri, S.; Fini, L.; Sali, E.; Eramo, R.

    2009-07-15

    In this Rapid Communication we report an experimental observation of temporal delay control of large-spectral-bandwidth multimode laser pulses by means of electromagnetically induced transparency. We achieved optically controllable retardation of laser pulses with an input spectral bandwidth of 3.3 GHz with limited temporal distortion and excellent values of the delay-bandwidth product. The experimental results compare favorably with a theoretical analysis.

  4. Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)

    NASA Technical Reports Server (NTRS)

    Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke

    2004-01-01

    The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.

  5. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser.

    PubMed

    Vannoni, M; Freijo Martín, I

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ⋅ 10(25) (photons s(-1) mm(-2) mrad(-2))/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy. PMID:27250373

  6. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser.

    PubMed

    Vannoni, M; Freijo Martín, I

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ⋅ 10(25) (photons s(-1) mm(-2) mrad(-2))/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy.

  7. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Vannoni, M.; Freijo Martín, I.

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ṡ 1025 (photons s-1 mm-2 mrad-2)/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy.

  8. Fast Optical Transillumination Tomography with Large-Size Projection Acquisition

    PubMed Central

    Huang, Hsuan-Ming; Xia, Jinjun; Haidekker, Mark A.

    2008-01-01

    Techniques such as optical coherence tomography and diffuse optical tomography have been shown to effectively image highly scattering samples such as tissue. An additional modality has received much less attention: Optical transillumination tomography (OT), a modality that promises very high acquisition speed for volumetric scans. With the motivation to image tissue-engineered blood vessels for possible biomechanical testing, we have developed a fast OT device using a collimated, non-coherent beam with a large diameter together with a large-size CMOS camera that has the ability to acquire 3D projections in a single revolution of the sample. In addition, we used accelerated iterative reconstruction techniques to improve image reconstruction speed, while at the same time obtaining better image quality than through filtered back projection. The device was tested using ink-filled PTFE tubes to determine geometric reconstruction accuracy and recovery of absorbance. Even in the presence of minor refractive index mismatch, the weighted error of the measured radius was less than 5% in all cases, and a high linear correlation of ink absorbance determined with a photospectrometer of R 2 =0.99 was found, although the OT device systematically underestimated absorbance. Reconstruction time was improved from several hours (standard arithmetic reconstruction) to 90 seconds per slice with our optimized algorithm. Composed of only a light source, two spatial filters, a sample bath, and a CMOS camera, this device was extremely simple and cost-efficient to build. PMID:18704687

  9. Optimum synthetic-aperture imaging of extended astronomical objects.

    PubMed

    van der Avoort, Casper; Pereira, Silvania F; Braat, Joseph J M; den Herder, Jan-Willem

    2007-04-01

    In optical aperture-synthesis imaging of stellar objects, different beam combination strategies are used and proposed. Coaxial Michelson interferometers are very common and a homothetic multiaxial interferometer is recently realized in the Large Binocular Telescope. Laboratory experiments have demonstrated the working principles of two new approaches: densified pupil imaging and wide field-of-view (FOV) coaxial imaging using a staircase-shaped mirror. We develop a common mathematical formulation for direct comparison of the resolution and noise sensitivity of these four telescope configurations for combining beams from multiple apertures for interferometric synthetic aperture, wide-FOV imaging. Singular value decomposition techniques are used to compare the techniques and observe their distinct signal-to-noise ratio behaviors. We conclude that for a certain chosen stellar object, clear differences in performance of the imagers are identifiable.

  10. Optimum synthetic-aperture imaging of extended astronomical objects.

    PubMed

    van der Avoort, Casper; Pereira, Silvania F; Braat, Joseph J M; den Herder, Jan-Willem

    2007-04-01

    In optical aperture-synthesis imaging of stellar objects, different beam combination strategies are used and proposed. Coaxial Michelson interferometers are very common and a homothetic multiaxial interferometer is recently realized in the Large Binocular Telescope. Laboratory experiments have demonstrated the working principles of two new approaches: densified pupil imaging and wide field-of-view (FOV) coaxial imaging using a staircase-shaped mirror. We develop a common mathematical formulation for direct comparison of the resolution and noise sensitivity of these four telescope configurations for combining beams from multiple apertures for interferometric synthetic aperture, wide-FOV imaging. Singular value decomposition techniques are used to compare the techniques and observe their distinct signal-to-noise ratio behaviors. We conclude that for a certain chosen stellar object, clear differences in performance of the imagers are identifiable. PMID:17361290

  11. Fast figuring of large optics by reactive atom plasma

    NASA Astrophysics Data System (ADS)

    Castelli, Marco; Jourdain, Renaud; Morantz, Paul; Shore, Paul

    2012-09-01

    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to λ/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours.

  12. Monte-Carlo modelling of multi-object adaptive optics performance on the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Morris, T. J.

    2016-09-01

    The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-object adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcseconds per pixel, and a field of view of at least 7 arcseconds, that EMCCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is necessary, and that sky coverage can be improved by a slight reduction in natural guide star sub-aperture count without significantly affecting tomographic performance. We find that adaptive optics correction can be maintained across a wide field of view, up to 7 arcminutes in diameter. We also recommend the use of at least 4 laser guide stars, and include ground-layer and multi-object adaptive optics performance estimates.

  13. Optical Distortion Evaluation in Large Area Windows using Interferometry

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Skow, Miles; Nurge, Mark A.

    2015-01-01

    It is important that imagery seen through large area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach the distortion of an acrylic window is measured using three different methods; image comparison, Moiré interferometry, and phase-shifting interferometry.

  14. A systematic review of aperture shapes

    NASA Astrophysics Data System (ADS)

    Schultz, A. B.; Frazier, T. V.

    The paper discusses the application of apodization to reflecting telescopes. The diffraction pattern of a telescope, which is the image of a star, can be changed considerably by using different aperture shapes in combination with appropriately shaped occulting masks on the optical axis. Aperture shapes studied were the circular, square, and hexagonal. Polaris (α-UMin) was used as the test system.

  15. Large dynamic range optical vector analyzer based on optical single-sideband modulation and Hilbert transform

    NASA Astrophysics Data System (ADS)

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2016-07-01

    A large dynamic range optical vector analyzer (OVA) based on optical single-sideband modulation is proposed and demonstrated. By dividing the optical signal after optical device under test into two paths, reversing the phase of one swept sideband using a Hilbert transformer in one path, and detecting the two signals from the two paths with a balanced photodetector, the measurement errors induced by the residual -1st-order sideband and the high-order sidebands can be eliminated and the dynamic range of the measurement is increased. In a proof-of-concept experiment, the stimulated Brillouin scattering and a fiber Bragg grating are measured by OVAs with and without the Hilbert transform and balanced photodetection. Results show that about 40-dB improvement in the measurement dynamic range is realized by the proposed OVA.

  16. L-band Synthetic Aperture Radar imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs

    NASA Astrophysics Data System (ADS)

    Naidoo, Laven; Mathieu, Renaud; Main, Russell; Wessels, Konrad; Asner, Gregory P.

    2016-10-01

    Woody canopy cover (CC) is the simplest two dimensional metric for assessing the presence of the woody component in savannahs, but detailed validated maps are not currently available in southern African savannahs. A number of international EO programs (including in savannah landscapes) advocate and use optical LandSAT imagery for regional to country-wide mapping of woody canopy cover. However, previous research has shown that L-band Synthetic Aperture Radar (SAR) provides good performance at retrieving woody canopy cover in southern African savannahs. This study's objective was to evaluate, compare and use in combination L-band ALOS PALSAR and LandSAT-5 TM, in a Random Forest environment, to assess the benefits of using LandSAT compared to ALOS PALSAR. Additional objectives saw the testing of LandSAT-5 image seasonality, spectral vegetation indices and image textures for improved CC modelling. Results showed that LandSAT-5 imagery acquired in the summer and autumn seasons yielded the highest single season modelling accuracies (R2 between 0.47 and 0.65), depending on the year but the combination of multi-seasonal images yielded higher accuracies (R2 between 0.57 and 0.72). The derivation of spectral vegetation indices and image textures and their combinations with optical reflectance bands provided minimal improvement with no optical-only result exceeding the winter SAR L-band backscatter alone results (R2 of ∼0.8). The integration of seasonally appropriate LandSAT-5 image reflectance and L-band HH and HV backscatter data does provide a significant improvement for CC modelling at the higher end of the model performance (R2 between 0.83 and 0.88), but we conclude that L-band only based CC modelling be recommended for South African regions.

  17. Large scale quantum walks by means of optical fiber cavities

    NASA Astrophysics Data System (ADS)

    Boutari, J.; Feizpour, A.; Barz, S.; Di Franco, C.; Kim, M. S.; Kolthammer, W. S.; Walmsley, I. A.

    2016-09-01

    We demonstrate a platform for implementing quantum walks that overcomes many of the barriers associated with photonic implementations. We use coupled fiber-optic cavities to implement time-bin encoded walks in an integrated system. We show that this platform can achieve very low losses combined with high-fidelity operations, enabling an unprecedented large number of steps in a passive system, as required for scenarios with multiple walkers. Furthermore the platform is reconfigurable, enabling variation of the coin, and readily extends to multidimensional lattices. We demonstrate variation of the coin bias experimentally for three different values.

  18. Large binocular telescope interferometer adaptive optics: on-sky performance and lessons learned

    NASA Astrophysics Data System (ADS)

    Bailey, Vanessa P.; Hinz, Philip M.; Puglisi, Alfio T.; Esposito, Simone; Vaitheeswaran, Vidhya; Skemer, Andrew J.; Defrère, Denis; Vaz, Amali; Leisenring, Jarron M.

    2014-07-01

    The Large Binocular Telescope Interferometer is a high contrast imager and interferometer that sits at the combined bent Gregorian focus of the LBT's dual 8.4 m apertures. The interferometric science drivers dictate 0.1" resolution with 103 - 104 contrast at 10 μm, while the 4 μm imaging science drivers require even greater contrasts, but at scales <0.2". In imaging mode, LBTI's Adaptive Optics system is already delivering 4 μm contrast of 104 - 105 at 0.3" - 0.75" in good conditions. Even in poor seeing, it can deliver up to 90% Strehl Ratio at this wavelength. However, the performance could be further improved by mitigating Non-Common Path Aberrations. Any NCPA remedy must be feasible using only the current hardware: the science camera, the wavefront sensor, and the adaptive secondary mirror. In preliminary testing, we have implemented an "eye doctor" grid search approach for astigmatism and trefoil, achieving 5% improvement in Strehl Ratio at 4 μm, with future plans to test at shorter wavelengths and with more modes. We find evidence of NCPA variability on short timescales and discuss possible upgrades to ameliorate time-variable effects.

  19. Long-Term Evaluation of the Scintec Boundary-Layer Scintillometer and the Wageningen Large-Aperture Scintillometer: Implications for Scintillometer Users

    NASA Astrophysics Data System (ADS)

    Van Kesteren, B.; Beyrich, F.; Hartogensis, O. K.; Braam, M.

    2015-08-01

    We compare the structure parameter of the refractive index, , measured simultaneously with two large-aperture scintillometers: the WagLAS (Wageningen University, Wageningen, the Netherlands) and the BLS900 (Scintec, Rottenburg, Germany). A 3.5-year dataset shows a bias in of about 17 % between the instruments. Analysis of these data reveals firstly that the logarithmic amplifiers in the WagLAS exhibit a strong dependence on temperature, resulting in an overestimation of of up to 35 % for temperatures 0 . Secondly, high-pass filtering of the WagLAS and BLS900 intensity data artificially reduces for crosswinds 2 (error 25 and 5 % respectively). Thirdly, the BLS900 increasingly underestimates (up to 10-15 %) with increasing signal saturation. We demonstrate that Scintec's data processing relies too heavily on the assumption that the intensity data obey a log-normal distribution, which they do not in the case of saturation. Fourthly, both instruments ignore the dissipation range of the refractive-index spectrum, which leads to an overestimation of of up to 30 % for friction velocity 0.2 . Implications of these findings are discussed and placed into perspective for other scintillometer users. Furthermore, we present a tool for revealing saturation and other violations of Rytov theory for any given scintillometer type, including microwave scintillometers.

  20. Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives.

    PubMed

    Fittinghoff, D N; Squier, J A; Barty, C P; Sweetser, J N; Trebino, R; Müller, M

    1998-07-01

    Ultrashort-pulse lasers are now commonly used for multiphoton microscopy, and optimizing the performance of such systems requires careful characterization of the pulses at the tight focus of the microscope objective. We solve this problem by use of a collinear geometry in frequency-resolved optical gating that uses type II second-harmonic generation and that allows the full N.A. of the microscope objective to be used. We then demonstrate the technique by measuring the intensity and the phase of a 22-fs pulse focused by a 20x, 0.4-N.A. air objective.

  1. Damage mechanisms avoided or managed for NIF large optics

    DOE PAGESBeta

    Manes, K. R.; Spaeth, M. L.; Adams, J. J.; Bowers, M. W.; Bude, J. D.; Carr, C. W.; Conder, A. D.; DiNicola, J. M. G.; Dixit, S. N.; Feigenbaum, E.; et al

    2016-02-09

    After every other failure mode has been considered, in the end, the high-performance limit of all lasers is set by optical damage. The demands of inertial confinement fusion (ICF) pushed lasers designed as ICF drivers into this limit from their very earliest days. The first ICF lasers were small, and their pulses were short. Their goal was to provide as much power to the target as possible. Typically, they faced damage due to high intensity on their optics. As requests for higher laser energy, longer pulse lengths, and better symmetry appeared, new kinds of damage also emerged, some of themmore » anticipated and others unexpected. This paper will discuss the various types of damage to large optics that had to be considered, avoided to the extent possible, or otherwise managed as the National Ignition Facility (NIF) laser was designed, fabricated, and brought into operation. Furthermore, it has been possible for NIF to meet its requirements because of the experience gained in previous ICF systems and because NIF designers have continued to be able to avoid or manage new damage situations as they have appeared.« less

  2. World Atlas of large optical telescopes (second edition)

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1986-01-01

    By early 1986 there will be over 120 large optical telescopes in the world engaged in astronomical research with mirror or lens diameters of one meter (39-inches) and larger. This atlas gives information on these telescopes and shows their observatory sites on continent sized maps. Also shown are observatory locations considered suitable for the construction of future large telescopes. Of the 126 major telescopes listed in this atlas, 101 are situated in the Northern Hemisphere and 25 are located in the Southern Hemisphere. The totals by regions are as follows: Europe (excluding the USSR), 30; Soviet Union, 9; Asia (excluding the USSR), 5; Africa, 9; Australia, 6; The Pacific, 4 (all on Hawaii); South America, 17; North America, 46 (the continental US has 38 of these). In all, the United States has 42 of the world's major telescopes on its territory (continental US plus Hawaii) making it by far the leading nation in astronomical instrumentation.

  3. The Configurable Aperture Space Telescope (CAST)

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly; Bendek, Eduardo A.; Lynch, Dana H.; Vassigh, Kenny K.; Young, Zion

    2016-07-01

    The Configurable Aperture Space Telescope, CAST, is a concept that provides access to a UV/visible-infrared wavelength sub-arcsecond imaging platform from space, something that will be in high demand after the retirement of the astronomy workhorse, the 2.4 meter diameter Hubble Space Telescope. CAST allows building large aperture telescopes based on small, compatible and low-cost segments mounted on autonomous cube-sized satellites. The concept merges existing technology (segmented telescope architecture) with emerging technology (smartly interconnected modular spacecraft, active optics, deployable structures). Requiring identical mirror segments, CAST's optical design is a spherical primary and secondary mirror telescope with modular multi-mirror correctors placed at the system focal plane. The design enables wide fields of view, up to as much as three degrees, while maintaining aperture growth and image performance requirements. We present a point design for the CAST concept based on a 0.6 meter diameter (3 x 3 segments) growing to a 2.6 meter diameter (13 x 13 segments) primary, with a fixed Rp=13,000 and Rs=8,750 mm curvature, f/22.4 and f/5.6, respectively. Its diffraction limited design uses a two arcminute field of view corrector with a 7.4 arcsec/mm platescale, and can support a range of platescales as fine as 0.01 arcsec/mm. Our paper summarizes CAST, presents a strawman optical design and requirements for the underlying modular spacecraft, highlights design flexibilities, and illustrates applications enabled by this new method in building space observatories.

  4. Semi-kinematic mount of the FIREBALL large optics

    NASA Astrophysics Data System (ADS)

    Rossin, C.; Grange, R.; Milliard, B.; Martin, L.; Moreaux, G.; Blanchard, P.; Deharveng, J.-M.; Evrard, J.; Martin, C.; McLean, R.; Schiminovich, D.

    2008-07-01

    In the context of the NASA CNES FIREBALL balloon borne experiment, we present the design of a semi-kinematic mount to hold the 1 meter class mirrors of this mission. To maintain these large optics in a reasonable mass and price budgets we choose thin ULE mirrors with a thickness over diameter ratio of 1/16. Such thin mirrors require a multi support mount to reduce self weight deflection. Classical multi support mount used for ground based telescope would not survive the level of shock observed in a balloon experiment either at parachute opening or landing. To firmly maintain these mirrors in several points without noticeably deforming them we investigated the design of a two stages semi-kinematic mount composed of 24 monopods. We present the detailed design of this innovative mirror mount, the finite element modeling with the deduced optical wavefront deformation. During the FIREBALL integration and flight campaign in July 2007 at CSBF, we confirmed the validity of the mechanical concept by obtaining an image quality well within the required specifications. Variants of this approach are potentially applicable to large thin mirrors on ground-based observatories.

  5. Large-Area Zone Plate Fabrication with Optical Lithography

    SciTech Connect

    Denbeaux, G.

    2011-09-09

    Zone plates as condenser optics for x-ray microscopes offer simple optical designs for both illumination and spectral resolution when used as a linear monochromator. However, due to the long write times for electron beam lithography, both the availability and the size of zone plates for condensers have been limited. Since the resolution provided by the linear monochromator scales almost linearly with the diameter of the zone plate, the full potential for zone plate monochromators as illumination systems for x-ray microscopes has not been achieved. For example, the 10-mm-diameter zone plate has demonstrated a spectral resolution of E/{Delta}E = 700[1], but with a 26-mm-diameter zone plate, the calculated spectral resolution is higher than E/{Delta}E = 3000. These large-area zone plates are possible to fabricate with the leading edge semiconductor lithography tools such as those available at the College of Nanoscale Science and Engineering at the University at Albany. One of the lithography tools available is the ASML TWINSCAN XT: 1950i with 37-nm resolution [2]. A single 300-mm wafer can contain more than 60 fields, each with a large area condenser, and the throughput of the tool can be more than one wafer every minute.

  6. Large-Area Zone Plate Fabrication with Optical Lithography

    NASA Astrophysics Data System (ADS)

    Denbeaux, G.

    2011-09-01

    Zone plates as condenser optics for x-ray microscopes offer simple optical designs for both illumination and spectral resolution when used as a linear monochromator. However, due to the long write times for electron beam lithography, both the availability and the size of zone plates for condensers have been limited. Since the resolution provided by the linear monochromator scales almost linearly with the diameter of the zone plate, the full potential for zone plate monochromators as illumination systems for x-ray microscopes has not been achieved. For example, the 10-mm-diameter zone plate has demonstrated a spectral resolution of E/ΔE = 700 [1], but with a 26-mm-diameter zone plate, the calculated spectral resolution is higher than E/ΔE = 3000. These large-area zone plates are possible to fabricate with the leading edge semiconductor lithography tools such as those available at the College of Nanoscale Science and Engineering at the University at Albany. One of the lithography tools available is the ASML TWINSCAN XT: 1950i with 37-nm resolution [2]. A single 300-mm wafer can contain more than 60 fields, each with a large area condenser, and the throughput of the tool can be more than one wafer every minute.

  7. IP over optical multicasting for large-scale video delivery

    NASA Astrophysics Data System (ADS)

    Jin, Yaohui; Hu, Weisheng; Sun, Weiqiang; Guo, Wei

    2007-11-01

    In the IPTV systems, multicasting will play a crucial role in the delivery of high-quality video services, which can significantly improve bandwidth efficiency. However, the scalability and the signal quality of current IPTV can barely compete with the existing broadcast digital TV systems since it is difficult to implement large-scale multicasting with end-to-end guaranteed quality of service (QoS) in packet-switched IP network. China 3TNet project aimed to build a high performance broadband trial network to support large-scale concurrent streaming media and interactive multimedia services. The innovative idea of 3TNet is that an automatic switched optical networks (ASON) with the capability of dynamic point-to-multipoint (P2MP) connections replaces the conventional IP multicasting network in the transport core, while the edge remains an IP multicasting network. In this paper, we will introduce the network architecture and discuss challenges in such IP over Optical multicasting for video delivery.

  8. Beam Combination for Stellar Imager and its Application to Full-Aperture Imaging

    NASA Technical Reports Server (NTRS)

    Mozurkewich, D.; Carpenter, K. G.; Lyon, R. G.

    2007-01-01

    Stellar Imager (SI) will be a Space-Based telescope consisting of 20 to 30 separated apertures. It is designed for UV/Optical imaging of stellar surfaces and asteroseismology. This report describes details of an alternative optical design for the beam combiner, dubbed the Spatial Frequency Remapper (SFR). It sacrifices the large field of view of the Fizeau combiner. In return, spectral resolution is obtained with a diffraction grating rather than an array of energy-resolving detectors. The SFR design works in principle and has been implemented with MIRC at CHARA for a small number of apertures. Here, we show the number of optical surfaces can be reduced and the concept scales gracefully to the large number of apertures needed for Stellar Imager. We also describe a potential application of this spatial frequency remapping to improved imaging with filled aperture systems. For filled-aperture imaging, the SFR becomes the core of an improved aperture masking system. To date, aperture-masking has produced the best images with ground-based telescopes but at the expense of low sensitivity due to short exposures and discarding most of the light collected by the telescope. This design eliminates the light-loss problem previously claimed to be inherent in all aperture-masking designs. We also argue that at least in principle, the short-integration time limit can also be overcome. With these improvements, it becomes an ideal camera for TPF-C; since it can form speckle-free images in the presence of wavefront errors, it should significantly relax the stability requirements of the current designs.

  9. Beam combination for Stellar Imager and its application to full-aperture imaging

    NASA Astrophysics Data System (ADS)

    Mozurkewich, D.; Carpenter, K. G.; Lyon, R. G.

    2007-09-01

    Stellar Imager (SI) will be a Space-Based telescope consisting of 20 to 30 separated apertures. It is designed for UV/Optical imaging of stellar surfaces and asteroseismology. This report describes details of an alternative optical design for the beam combiner, dubbed the Spatial Frequency Remapper (SFR). It sacrifices the large field of view of the Fizeau combiner. In return, spectral resolution is obtained with a diffraction grating rather than an array of energy-resolving detectors. The SFR design works in principle and has been implemented with MIRC at CHARA for a small number of apertures. Here, we show the number of optical surfaces can be reduced and the concept scales gracefully to the large number of apertures needed for Stellar Imager. We also describe a potential application of this spatial frequency remapping to improved imaging with filled-aperture systems. For filled-aperture imaging, the SFR becomes the core of an improved aperture masking system. To date, aperture-masking has produced the best images with ground-based telescopes but at the expense of low sensitivity due to short exposures and the discarding of most of the light collected by the telescope. This design eliminates the light-loss problem previously claimed to be inherent in all aperture-masking designs. We also argue that at least in principle, the short-integration time limit can also be overcome. With these improvements, it becomes an ideal camera for TPF-C; since it can form speckle-free images in the presence of wavefront errors, it should significantly relax the stability requirements of the current designs.

  10. Holographic topography using acousto-optically generated large synthetic wavelengths

    NASA Astrophysics Data System (ADS)

    Abeywickrema, U.; Beamer, D.; Banerjee, P.; Poon, T.-C.

    2016-03-01

    Digital holography uses phase imaging in a variety of techniques to produce a three-dimensional phase resolved image that includes accurate depth information about the object of interest. Multi-wavelength digital holography is an accurate method for measuring the topography of surfaces. Typically, the object phases are reconstructed for two wavelengths separately and the phase corresponding to the synthetic wavelength (obtained from the two wavelengths) is obtained by calculating the phase difference. Then the surface map can be obtained using proper phase-unwrapping techniques. Usually these synthetic wavelengths are on the order of microns which can be used to resolve depths on the order of microns. In this work, two extremely close wavelengths generated by an acousto-optic modulator (AOM) are used to perform two-wavelength digital holography. Since the difference between the two wavelengths is on the order of picometers, a large synthetic wavelength (on the order of centimeters) can be obtained which can be used to determine the topography of macroscopic surface features. Also since the synthetic wavelength is large, an accurate surface map can be obtained without using a phase-unwrapping technique. A 514 nm Argon-ion laser is used as the optical source, and used with an AOM to generate the zeroth-order and frequency-shifted first-order diffracted orders which are used as the two wavelengths. Both beams are aligned through the same spatial filter assembly. Holograms are captured sequentially using a typical Mach-Zehnder interferometric setup by blocking one beam at a time. Limitations of the large synthetic wavelength are also discussed.

  11. Sparse aperture endoscope

    DOEpatents

    Fitch, Joseph P.

    1999-07-06

    An endoscope which reduces the volume needed by the imaging part thereof, maintains resolution of a wide diameter optical system, while increasing tool access, and allows stereographic or interferometric processing for depth and perspective information/visualization. Because the endoscope decreases the volume consumed by imaging optics such allows a larger fraction of the volume to be used for non-imaging tools, which allows smaller incisions in surgical and diagnostic medical applications thus produces less trauma to the patient or allows access to smaller volumes than is possible with larger instruments. The endoscope utilizes fiber optic light pipes in an outer layer for illumination, a multi-pupil imaging system in an inner annulus, and an access channel for other tools in the center. The endoscope is amenable to implementation as a flexible scope, and thus increases the utility thereof. Because the endoscope uses a multi-aperture pupil, it can also be utilized as an optical array, allowing stereographic and interferometric processing.

  12. Sparse aperture endoscope

    DOEpatents

    Fitch, J.P.

    1999-07-06

    An endoscope is disclosed which reduces the volume needed by the imaging part, maintains resolution of a wide diameter optical system, while increasing tool access, and allows stereographic or interferometric processing for depth and perspective information/visualization. Because the endoscope decreases the volume consumed by imaging optics such allows a larger fraction of the volume to be used for non-imaging tools, which allows smaller incisions in surgical and diagnostic medical applications thus produces less trauma to the patient or allows access to smaller volumes than is possible with larger instruments. The endoscope utilizes fiber optic light pipes in an outer layer for illumination, a multi-pupil imaging system in an inner annulus, and an access channel for other tools in the center. The endoscope is amenable to implementation as a flexible scope, and thus increases it's utility. Because the endoscope uses a multi-aperture pupil, it can also be utilized as an optical array, allowing stereographic and interferometric processing. 7 figs.

  13. Aperture lamp

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.

    2003-01-01

    A discharge lamp includes means for containing a light emitting fill, the fill being capable of absorbing light at one wavelength and re-emitting the light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill; means for exciting the fill to cause the fill to emit light; and means for reflecting some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length. Another discharge lamp includes an envelope; a fill which emits light when excited disposed in the envelope; a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light; and a reflective ceramic structure disposed around the envelope and defining an light emitting opening, wherein the structure comprises a sintered body built up directly on the envelope and made from a combination of alumina and silica.

  14. Source locations of teleseismic P, SV, and SH waves observed in microseisms recorded by a large aperture seismic array in China

    NASA Astrophysics Data System (ADS)

    Liu, Qiaoxia; Koper, Keith D.; Burlacu, Relu; Ni, Sidao; Wang, Fuyun; Zou, Changqiao; Wei, Yunhao; Gal, Martin; Reading, Anya M.

    2016-09-01

    Transversely polarized seismic waves are routinely observed in ambient seismic energy across a wide range of periods, however their origin is poorly understood because the corresponding source regions are either undefined or weakly constrained, and nearly all models of microseism generation incorporate a vertically oriented single force as the excitation mechanism. To better understand the origin of transversely polarized energy in the ambient seismic wavefield we make the first systematic attempt to locate the source regions of teleseismic SH waves observed in microseismic (2.5-20 s) noise. We focus on body waves instead of surface waves because the source regions can be constrained in both azimuth and distance using conventional array techniques. To locate microseismic sources of SH waves (as well as SV and P waves) we continuously backproject the vertical, radial, and transverse components of the ambient seismic wavefield recorded by a large-aperture array deployed in China during 2013-2014. As expected, persistent P wave sources are observed in the North Atlantic, North Pacific, and Indian Oceans, mainly at periods of 2.5-10 s, in regions with the strong ocean wave interactions needed to produce secondary microseisms. SV waves are commonly observed to originate from locations indistinguishable from the P wave sources, but with smaller signal-to-noise ratios. We also observe SH waves with about half or less the signal-to-noise ratio of SV waves. SH source regions are definitively located in deep water portions of the Pacific, away from the sloping continental shelves that are thought to be important for the generation of microseismic Love waves, but nearby regions that routinely generate teleseismic P waves. The excitation mechanism for the observed SH waves may therefore be related to the interaction of P waves with small-wavelength bathymetric features, such as seamounts and basins, through some sort of scattering process.

  15. Quasi-real-time Adaptive Optics Simulations on GPUs for the Next Generation Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Gratadour, D.

    2012-09-01

    Final design studies for the first generation of Adaptive Optics (AO) systems for the E-ELT (European Extremely Large Telescope) should begin in 2012, the first step of which will involve realistic end-to-end numerical simulations of the instruments and their environment. In this paper we present the first performance analysis of our simulation code, showing its ability to provide Shack-Hartmann (SH) images and measurements at the kHz scale for VLT-sized AO system and in quasi-real-time (up to 100 iterations per second) for ELT-sized on a single top-end GPU. The simulation code includes multiple layers atmospheric turbulence generation, ray tracing through these layers, image formation at the focal plane of every sub-aperture of a SH sensor using either natural or laser guide stars and centroiding on these images using various algorithms. Turbulence is generated on-the-fly giving the ability to simulate hours of observations without the need of loading extremely large phase screens in the global memory. Because of its performance this code additionally provides the unique ability to test real-time controllers for future AO systems under nominal conditions. This open source project is distributed under a GPL license and can be used to simulate a wide range of AO systems from classical AO on a medium size telescope to multi-conjugate AO on an ELT. Simulation parameters (number of turbulent layers, turbulence strength, number and position of targets, etc.) can be modified dynamically thanks to the modular underlying implementation using the Standard Template Library. While a simulation run is fully scriptable, a Graphical User Interface is also provided for easier fine tuning of the system parameters and easier access to sophisticated system designs.

  16. Laser aperture diagnostics system for gain and wavefront measurements on NIF/LMJ amplifiers

    SciTech Connect

    Zapata, L. E., LLNL

    1996-12-17

    We are in the midst of constructing an amplifier laboratory (Arnplab) that will be the physics and engineering proving ground for fill sized segmented glass amplifiers of designs that will outfit the National Ignition Facility (NIF) and Laser Megajoule (LMJ) projects. Amplab will demonstrate the cornerstone mechanical, electrical and optical concepts that support the NW and LMJ amplifier schemes. Here we address the optical diagnostics that will be used to characterize optical performance of the amplifiers. We describe, the apparatus that will be used in pulsed measurements of gain distribution and wave-front distortions. The large aperture diagnostic system or LADS, is now being built through a collaborative effort between CEL-V and LLNL. The LADS will provide measurements of gain and wave front distortions over the fill extracting aperture of the NIF and LMJ prototype amplifiers. The LADS will be able to address each of eight apertures via motorized stages and following semi-automated alignment, take data on the aperture of interest. The LADS should be operational in mid-1997 at LLNL and will be used to characterize the optical performance of the very first fill scale prototype 4 x 2 NIF and LMJ amplifiers. It will be transported to Bordeaux, France to make similar measurements during activation of the first 8-aperture LMJ-like facility (LIL) that is planned to start in the near future.

  17. IR performance study of an adaptive coded aperture "diffractive imaging" system employing MEMS "eyelid shutter" technologies

    NASA Astrophysics Data System (ADS)

    Mahalanobis, A.; Reyner, C.; Patel, H.; Haberfelde, T.; Brady, David; Neifeld, Mark; Kumar, B. V. K. Vijaya; Rogers, Stanley

    2007-09-01

    Adaptive coded aperture sensing is an emerging technology enabling real time, wide-area IR/visible sensing and imaging. Exploiting unique imaging architectures, adaptive coded aperture sensors achieve wide field of view, near-instantaneous optical path repositioning, and high resolution while reducing weight, power consumption and cost of air- and space born sensors. Such sensors may be used for military, civilian, or commercial applications in all optical bands but there is special interest in diffraction imaging sensors for IR applications. Extension of coded apertures from Visible to the MWIR introduces the effects of diffraction and other distortions not observed in shorter wavelength systems. A new approach is being developed under the DARPA/SPO funded LACOSTE (Large Area Coverage Optical search-while Track and Engage) program, that addresses the effects of diffraction while gaining the benefits of coded apertures, thus providing flexibility to vary resolution, possess sufficient light gathering power, and achieve a wide field of view (WFOV). The photonic MEMS-Eyelid "sub-aperture" array technology is currently being instantiated in this DARPA program to be the heart of conducting the flow (heartbeat) of the incoming signal. However, packaging and scalability are critical factors for the MEMS "sub-aperture" technology which will determine system efficacy as well as military and commercial usefulness. As larger arrays with 1,000,000+ sub-apertures are produced for this LACOSTE effort, the available Degrees of Freedom (DOF) will enable better spatial resolution, control and refinement on the coding for the system. Studies (SNR simulations) will be performed (based on the Adaptive Coded Aperture algorithm implementation) to determine the efficacy of this diffractive MEMS approach and to determine the available system budget based on simulated bi-static shutter-element DOF degradation (1%, 5%, 10%, 20%, etc..) trials until the degradation level where it is

  18. Fabry-Perot etalon aperture requirements for direct detection Doppler wind lidar from Earth orbit.

    PubMed

    McKay, J A

    1999-09-20

    The design of Fabry-Perot etalons for direct detection Doppler wind lidar from a satellite is considered for two direct detection methods, fringe imaging (multichannel) and double edge. The area solid-angle product of the etalon for each technique is derived and shown to be inherently larger, for a given etalon aperture, for the fringe imager than for the double-edge Doppler analyzer. Modeling of the Doppler measurement accuracy of a spaceflight direct detection wind lidar shows that a very large optical aperture, 2 m or more, is necessary. Optical throughput matching to a 2-m collector requires, for the fringe-imaging Doppler analyzer, an etalon with 60 mm aperture, whereas the double-edge technique would require two etalons of 200 mm aperture, or a split-aperture etalon of 400 mm working aperture. Because the two direct detection methods have been shown to have practically identical intrinsic sensitivities (measurement accuracies per unit signal), this difference in etalon dimensions may be a significant selection consideration. PMID:18324101

  19. An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data

    NASA Astrophysics Data System (ADS)

    Sun, Genhou; Hu, Zeyong; Sun, Fanglin; Wang, Jiemin; Xie, Zhipeng; Lin, Yun; Huang, Fangfang

    2016-05-01

    The influence of spatial scales on surface fluxes is an interesting but not fully investigated question. This paper presents an analysis on the influence of spatial scales on surface fluxes in the north Tibetan Plateau based on eddy covariance (EC) and large aperture scintillometer (LAS) data at site Nagqu/BJ, combined with the land surface temperature (LST) and normalized difference vegetation index (NDVI) of moderate-resolution imaging spectroradiometer (MODIS). The analysis shows that sensible heat fluxes calculated with LAS data (H_LAS) agree reasonably well with sensible heat fluxes calculated with EC data (H_EC) in the rain and dry seasons. The difference in their footprints due to the wind direction is an important reason for the differences in H_EC and H_LAS. The H_LAS are statistically more consistent with H_EC when their footprints overlap than when their footprints do not. A detailed analysis on H_EC and H_LAS changes with net radiation and wind direction in rain and dry season indicates that the spatial heterogeneity in net radiation created by clouds contributes greatly to the differences in H_EC and H_LAS in short-term variations. A significant relationship between the difference in footprint-weighted averages of LST and difference in H_EC and H_LAS suggests that the spatial heterogeneity in LST at two spatial scales is a reason for the differences in H_EC and H_LAS and that LST has a positive correlation with the differences in H_EC and H_LAS. A significant relationship between the footprint-weighted averages of NDVI and the ratio of sensible heat fluxes at two spatial scales to net radiation (H/Rn) in the rain season supports the analysis that the spatial heterogeneity in canopy at two spatial scales is another reason for differences in H_EC and H_LAS and that canopy has a negative correlation with (H/Rn). An analysis on the influence of the difference in aerodynamic roughness lengths at two spatial scales on sensible heat fluxes shows that the

  20. An Upscaling Analysis on Aerodynamic Roughness Length in North Tibetan Plateau based on Eddy Covariance, Large Aperture Scitillometer Data and Remote Sensing Product

    NASA Astrophysics Data System (ADS)

    SUN, G.; Hu, Z.; Fanglin, S.

    2015-12-01

    Abstract: Aerodynamic roughness length (z0m) is a crucial parameter in quantifying momentum, sensible heat, and latent heat fluxes between atmosphere and land surface, and depends greatly on spatial scales. This paper presents a tentative study in upscaling of z0m in North Tibetan Plateau, based on ground measurement data of different spatial scales from eddy covariance (EC) and large aperture scintillometer (LAS) and NDVI products from MODIS with 250m and 2km spatial resolutions. The comparison of z0m calculated from EC and LAS data indicates that the z0m values at both scales have apparent seasonal variations, and are in good agreement with that of NDVI. However, z0m_LAS is higher than z0m_EC, which is attributed to the differences of roughness elements in their footprints. An upscaling relationship about z0m was established with z0m observations and NDVI products of MODIS.In addition, an altitude correction factor was introduced into vegetation height estimation with NDVI, because the low temperature environment in North Tibetan Plateau due to its high altitude has strong influence on vegetation heights.The z0m retrievals with NDVI products with 250m spatial resolutions from June to September are validated with ground z0m results of Naqu/Amdo, Naqu/MS3478 and Naqu/NewD66 and the agreement is acceptable. The spatial distribution of z0m at 250m spatial resolutions in North Tibetan Plateau from June to September shows that z0m values are below 0.015m in most area, except the area in the southeast part where z0m values reach 0.025m due to lower altitudes. The z0m retrievals at 2km spatial resolutions of the same period range from 0.015 to 0.065m, and high values appear in the area with lower altitudes.The z0m retrievals at both spatial scales are affected by altitude, indicating the uniqueness of Tibetan Plateau. Frequency statistics on z0m retrievals at both spatial resolutions from June to September, 2012 shows obvious typical monthly changes in monsoon season.

  1. Multiple instrument distributed aperture sensor (MIDAS) evolved design concept

    NASA Astrophysics Data System (ADS)

    Stubbs, David; Duncan, Alan; Pitman, Joseph T.; Sigler, Robert; Kendrick, Rick; Smith, Eric H.; Mason, James

    2004-10-01

    An innovative approach to future space telescopes that enables order of magnitude increased science return for astronomical, Earth-observing and planetary science missions is described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional space telescopes. MIDAS integrates many optical interferometry advances as an evolution of over a decade of technology development in distributed aperture optical imaging systems. Nine collector telescopes are integrated into MIDAS as the primary remote sensing science payload, supporting a collection of six back-end science instruments tailored to a specific mission. By interfacing to multiple science instruments, enabling sequential and concurrent functional modes, we expand the potential science return of future space science missions many fold. Passive imaging modes with MIDAS enable remote sensing at diffraction-limited resolution sequentially by each science instrument, as well as in somewhat lower resolution by multiple science instruments acting concurrently on the image, such as in different wavebands. Our MIDAS concept inherently provides nanometer-resolution hyperspectral passive imaging without the need for any moving parts in the science instruments. For Earth-observing and planetary science missions, the MIDAS optical design provides high-resolution imaging at high altitudes for long dwell times, thereby enabling real-time, wide-area remote sensing of dynamic planetary surface characteristics. In its active remote sensing modes, using an integrated solid-state laser source, MIDAS enables surface illumination, active spectroscopy, LIDAR, vibrometery, and optical communications. Our concept is directly scalable to telescope synthetic apertures of 5m, limited by launch vehicle fairing diameter, and above 5m diameter achieved by means of autonomous deployments or manned

  2. Optical interconnect assembly

    DOEpatents

    Laughlin, Daric; Abel, Philip

    2015-06-09

    An optical assembly includes a substrate with a first row of apertures and a second row of apertures. A first optical die includes a first plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each transducer element is aligned with an aperture of the first row of optical apertures. A second optical die includes a second plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each of the second plurality of optical transducer elements is aligned with an aperture of the second row of optical apertures. A connector configured to mate with the optical assembly supports a plurality of optical fibers. A terminal end of each optical fiber protrudes from the connector and extends into one of the apertures when the connector is coupled with the optical assembly.

  3. Characterization of C-apertures in a successful demonstration of heat-assisted magnetic recording.

    PubMed

    Hussain, Sajid; Bhatia, Charanjit S; Yang, Hyunsoo; Danner, Aaron J

    2015-08-01

    An optical pump-probe setup was used to measure the coercivity change in a heat-assisted magnetic recording (HAMR) medium. The incident optical power required to attain the Curie temperature of the medium was determined by calculating its coercivity from BH loops under different illuminating laser powers through use of the Kerr signal in the pump-probe setup. The HAMR medium was then illuminated through an array of square and C-shaped nanoapertures so that the necessary laser power required for magnetic reversal could be compared to the bulk case. Magnetic force microscopy and Kerr microscopy revealed that C-apertures were able to permit heating of the magnetic medium and lower the coercivity to achieve magnetic reversal whereas the square apertures were not. The results show that aperture shape and design play a large role in HAMR head designs. PMID:26258328

  4. Dual aperture multispectral Schmidt objective

    NASA Technical Reports Server (NTRS)

    Minott, P. O. (Inventor)

    1984-01-01

    A dual aperture, off-axis catadioptic Schmidt objective is described. It is formed by symmetrically aligning two pairs of Schmidt objectives on opposite sides of a common plane (x,z). Each objective has a spherical primary mirror with a spherical focal plane and center of curvature aligned along an optic axis laterally spaced apart from the common plane. A multiprism beamsplitter with buried dichroic layers and a convex entrance and concave exit surfaces optically concentric to the center of curvature may be positioned at the focal plane. The primary mirrors of each objective may be connected rigidly together and may have equal or unequal focal lengths.

  5. Large Magellanic Cloud Microlensing Optical Depth with Imperfect Event Selection

    NASA Astrophysics Data System (ADS)

    Bennett, David P.

    2005-11-01

    I present a new analysis of the MACHO Project 5.7 yr Large Magellanic Cloud (LMC) microlensing data set that incorporates the effects of contamination of the microlensing event sample by variable stars. Photometric monitoring of MACHO LMC microlensing event candidates by the EROS and OGLE groups has revealed that one of these events is likely to be a variable star, while additional data have confirmed that many of the other events are very likely to be microlensing. These additional data on the nature of the MACHO microlensing candidates are incorporated into a simple likelihood analysis to derive a probability distribution for the number of MACHO microlens candidates that are true microlensing events. This analysis shows that 10-12 of the 13 events that passed the MACHO selection criteria are likely to be microlensing events, with the other 1-3 being variable stars. This likelihood analysis is also used to show that the main conclusions of the MACHO LMC analysis are unchanged by the variable star contamination. The microlensing optical depth toward the LMC is τ=(1.0+/-0.3)×10-7. If this is due to microlensing by known stellar populations plus an additional population of lens objects in the Galactic halo, then the new halo population would account for 16% of the mass of a standard Galactic halo. The MACHO detection exceeds the expected background of two events expected from ordinary stars in standard models of the Milky Way and LMC at the 99.98% confidence level. The background prediction is increased to three events if maximal disk models are assumed for both the Milky Way and LMC, but this model fails to account for the full signal seen by MACHO at the 99.8% confidence level.

  6. Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra

    NASA Astrophysics Data System (ADS)

    Heusinger, Martin; Flügel-Paul, Thomas; Zeitner, Uwe-Detlef

    2016-08-01

    In this paper, we analyze the influence of large-scale segmentation errors in the morphology of high-performance optical gratings. It is thus assumed that the optical grating under consideration (typical lateral extends S are 10-1000 mm) can be spatially decomposed into a great many but unique sub-segments (≪ S; typical extends are 10-100 μm). Any violation of the perfect periodicity will result in the generation of stray light, especially Rowland ghosts, which radiate into a small angular region around the grating's diffraction orders. In this paper, we focus on three different kinds of segmentation errors. On the one hand, there are statistic as well as deterministic alignment errors between otherwise perfect sub-segments. On the other hand, we analyze the effect of chirping of geometrical parameters, i.e., the groove width, within every sub-segment. Most importantly, we find that the particular type of imperfection results in a unique characteristic of the according stray light spectrum which thus acts as a fingerprint. We come to this conclusion on three different ways. First, we rely on a simple theoretical model that is based on scalar diffraction theory. Second, we have performed rigorous numerical simulations for a high aspect ratio purely dielectric spectrometer grating (period = {667} nm). Third, the very same grating was then fabricated by e-beam lithography and its stray light spectrum was measured with a purposely designed optical setup. Eventually, all different routes to analyze the problem turn out to be in very good agreement, and we are confident that stray light measurements can be used as an important tool in the detection of fabrication imperfections.

  7. Adaptive Full Aperture Wavefront Sensor Study

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This grant and the work described was in support of a Seven Segment Demonstrator (SSD) and review of wavefront sensing techniques proposed by the Government and Contractors for the Next Generation Space Telescope (NGST) Program. A team developed the SSD concept. For completeness, some of the information included in this report has also been included in the final report of a follow-on contract (H-27657D) entitled "Construction of Prototype Lightweight Mirrors". The original purpose of this GTRI study was to investigate how various wavefront sensing techniques might be most effectively employed with large (greater than 10 meter) aperture space based telescopes used for commercial and scientific purposes. However, due to changes in the scope of the work performed on this grant and in light of the initial studies completed for the NGST program, only a portion of this report addresses wavefront sensing techniques. The wavefront sensing techniques proposed by the Government and Contractors for the NGST were summarized in proposals and briefing materials developed by three study teams including NASA Goddard Space Flight Center, TRW, and Lockheed-Martin. In this report, GTRI reviews these approaches and makes recommendations concerning the approaches. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities: Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form a space telescope with large aperture. Provide very large (greater than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or

  8. Signal Readout Using Small Near-Field Optical Head with Horizontal Light Introduction Through Optical Fiber

    NASA Astrophysics Data System (ADS)

    Kato, Kenji; Ichihara, Susumu; Oumi, Manabu; Maeda, Hidetaka; Niwa, Takashi; Mitsuoka, Yasuyuki; Nakajima, Kunio; Ohkubo, Toshifumi; Itao, Kiyoshi

    2003-08-01

    We have developed a small near-field optical head for high-recording-density data storage applications, to overcome the disadvantage of conventional near-field optical heads, such as large light introduction, low optical throughput, and difficulty in controlling the aperture-medium distance. The optical head structure has miniaturized light introduction using an optical fiber placed horizontally. To decrease the optical loss, an integrated microlens focuses on the aperture tip that has a shortened cut-off region. The fabricated optical head (3.2× 3.6× 0.9 mm3) with a φ 200 nm aperture of the same height as the sliders shows a clear readout signal of a 200-nm-wide line and space pattern at a speed of 5.2 MHz. We show that the optical head has the ability to read 4 times the recording density by simulations of the finite difference time domain (FDTD).

  9. Application of a geocentrifuge and sterolithographically fabricated apertures to multiphase flow in complex fracture apertures.

    SciTech Connect

    Glenn E. McCreery; Robert D. Stedtfeld; Alan T. Stadler; Daphne L. Stoner; Paul Meakin

    2005-09-01

    A geotechnical centrifuge was used to investigate unsaturated multiphase fluid flow in synthetic fracture apertures under a variety of flow conditions. The geocentrifuge subjected the fluids to centrifugal forces allowing the Bond number to be systematically changed without adjusting the fracture aperture of the fluids. The fracture models were based on the concept that surfaces generated by the fracture of brittle geomaterials have a self-affine fractal geometry. The synthetic fracture surfaces were fabricated from a transparent epoxy photopolymer using sterolithography, and fluid flow through the transparent fracture models was monitored by an optical image acquisition system. Aperture widths were chosen to be representative of the wide range of geological fractures in the vesicular basalt that lies beneath the Idaho Nation Laboratory (INL). Transitions between different flow regimes were observed as the acceleration was changed under constant flow conditions. The experiments showed the transition between straight and meandering rivulets in smooth walled apertures (aperture width = 0.508 mm), the dependence of the rivulet width on acceleration in rough walled fracture apertures (average aperture width = 0.25 mm), unstable meandering flow in rough walled apertures at high acceleration (20g) and the narrowing of the wetted region with increasing acceleration during the penetration of water into an aperture filled with wetted particles (0.875 mm diameter glass spheres).

  10. Energy, momentum and propagation of non-paraxial high-order Gaussian beams in the presence of an aperture

    NASA Astrophysics Data System (ADS)

    Stilgoe, Alexander B.; Nieminen, Timo A.; Rubinsztein-Dunlop, Halina

    2015-12-01

    Non-paraxial theories of wave propagation are essential to model the interaction of highly focused light with matter. Here we investigate the energy, momentum and propagation of the Laguerre-, Hermite- and Ince-Gaussian solutions (LG, HG, and IG) of the paraxial wave equation in an apertured non-paraxial regime. We investigate the far-field relationships between the LG, HG, and IG solutions and the vector spherical wave function (VSWF) solutions of the vector Helmholtz wave equation. We investigate the convergence of the VSWF and the various Gaussian solutions in the presence of an aperture. Finally, we investigate the differences in linear and angular momentum evaluated in the paraxial and non-paraxial regimes. The non-paraxial model we develop can be applied to calculations of the focusing of high-order Gaussian modes in high-resolution microscopes. We find that the addition of an aperture in high numerical aperture optical systems does not greatly affect far-field properties except when the beam is significantly clipped by an aperture. Diffraction from apertures causes large distortions in the near-field and will influence light-matter interactions. The method is not limited to a particular solution of the paraxial wave equation. Our model is constructed in a formalism that is commonly used in scattering calculations. It is thus applicable to optical trapping and other optical investigations of matter.

  11. Debuncher Momentum Aperture Measurements

    SciTech Connect

    O'Day, S.

    1991-01-01

    During the November 1990 through January 1991 {bar p} studies period, the momentum aperture of the beam in the debuncher ring was measured. The momentum aperture ({Delta}p/p) was found to be 4.7%. The momentum spread was also measured with beam bunch rotation off. A nearly constant particle population density was observed for particles with {Delta}p/p of less than 4.3%, indicating virtually unobstructed orbits in this region. The population of particles with momenta outside this aperture was found to decrease rapidly. An absolute or 'cut-off' momentum aperture of {Delta}p/p = 5.50% was measured.

  12. Large High Performance Optics for Spaceborne Missions: L-3 Brashear Experience and Capability

    NASA Technical Reports Server (NTRS)

    Canzian, Blaise; Gardopee, George; Clarkson, Andrew; Hull, Tony; Borucki, William J.

    2010-01-01

    Brashear is a division of L-3 Communications, Integrated Optical Systems. Brashear is well known for the ground-based telescopes it has manufactured at its facilities and delivered to satisfied customers. Optics from meter-class up to 8.3 meters diameter have been fabricated in Brashear's facilities. Brashear has demonstrated capabilities for large spaceborne optics. We describe in this paper both legacy and new Brashear capabilities for high performance spaceborne optics.

  13. Variable-aperture screen

    DOEpatents

    Savage, George M.

    1991-01-01

    Apparatus for separating material into first and second portions according to size including a plurality of shafts, a plurality of spaced disks radiating outwardly from each of the shafts to define apertures and linkage interconnecting the shafts for moving the shafts toward or away from one another to vary the size of the apertures while the apparatus is performing the separating function.

  14. Imaging performance of annular apertures. II - Line spread functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1978-01-01

    Line images formed by aberration-free optical systems with annular apertures are investigated in the whole range of central obstruction ratios. Annular apertures form lines images with central and side line groups. The number of lines in each line group is given by the ratio of the outer diameter of the annular aperture divided by the width of the annulus. The theoretical energy fraction of 0.889 in the central line of the image formed by an unobstructed aperture increases for centrally obstructed apertures to 0.932 for the central line group. Energy fractions for the central and side line groups are practically constant for all obstruction ratios and for each line group. The illumination of rectangular secondary apertures of various length/width ratios by apertures of various obstruction ratios is discussed.

  15. Rotating Aperture System

    DOEpatents

    Rusnak, Brian; Hall, James M.; Shen, Stewart; Wood, Richard L.

    2005-01-18

    A rotating aperture system includes a low-pressure vacuum pumping stage with apertures for passage of a deuterium beam. A stator assembly includes holes for passage of the beam. The rotor assembly includes a shaft connected to a deuterium gas cell or a crossflow venturi that has a single aperture on each side that together align with holes every rotation. The rotating apertures are synchronized with the firing of the deuterium beam such that the beam fires through a clear aperture and passes into the Xe gas beam stop. Portions of the rotor are lapped into the stator to improve the sealing surfaces, to prevent rapid escape of the deuterium gas from the gas cell.

  16. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  17. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations. PMID:26698746

  18. Beam optics in a MeV-class multi-aperture multi-grid accelerator for the ITER neutral beam injector.

    PubMed

    Kashiwagi, M; Taniguchi, M; Umeda, N; de Esch, H P L; Grisham, L R; Boilson, D; Hemsworth, R S; Tanaka, M; Tobari, H; Watanabe, K; Inoue, T

    2012-02-01

    In a multi-aperture multi-grid accelerator of the ITER neutral beam injector, the beamlets are deflected due to space charge repulsion between beamlets and beam groups, and also due to magnetic field. Moreover, the beamlet deflection is influenced by electric field distortion generated by grid support structure. Such complicated beamlet deflections and the compensations have been examined utilizing a three-dimensional beam analysis. The space charge repulsion and the influence by the grid support structure were studied in a 1∕4 model of the accelerator including 320 beamlets. Beamlet deflection due to the magnetic field was studied by a single beamlet model. As the results, compensation methods of the beamlet deflection were designed, so as to utilize a metal bar (so-called field shaping plate) of 1 mm thick beneath the electron suppression grid (ESG), and an aperture offset of 1 mm in the ESG.

  19. Convolutional neural networks for synthetic aperture radar classification

    NASA Astrophysics Data System (ADS)

    Profeta, Andrew; Rodriguez, Andres; Clouse, H. Scott

    2016-05-01

    For electro-optical object recognition, convolutional neural networks (CNNs) are the state-of-the-art. For large datasets, CNNs are able to learn meaningful features used for classification. However, their application to synthetic aperture radar (SAR) has been limited. In this work we experimented with various CNN architectures on the MSTAR SAR dataset. As the input to the CNN we used the magnitude and phase (2 channels) of the SAR imagery. We used the deep learning toolboxes CAFFE and Torch7. Our results show that we can achieve 93% accuracy on the MSTAR dataset using CNNs.

  20. Coupling a small torsional oscillator to large optical angular momentum

    NASA Astrophysics Data System (ADS)

    Shi, Hao; Bhattacharya, Mishkatul

    2013-05-01

    We propose a new optomechanical system to achieve torsional optomechanics. Our system is composed of a windmill-shaped dielectric optically trapped within a cavity interacting with Laguerre-Gaussian cavity modes with both angular and radial nodes. Compared to existing configurations, our proposal enables small mechanical oscillators to interact with the in-principle unlimited orbital angular momentum that can be carried by a single photon, and therefore allows the generation of scalable optomechanical coupling. Supported by Research Corporation for Science Advancement.