-
New generation of integrated geological-geomorphological reconstruction maps in the Rhine-Meuse delta, The Netherlands
NASA Astrophysics Data System (ADS)
Pierik, Harm Jan; Cohen, Kim; Stouthamer, Esther
2016-04-01
Geological-geomorphological reconstructions are important for integrating diverse types of data and improving understanding of landscape formation processes. This works especially well in densely populated Holocene landscapes, where large quantities of raw data are produced by geotechnical, archaeological, soil science and hydrological communities as well as in academic research. The Rhine-Meuse delta, The Netherlands, has a long tradition of integrated digital reconstruction maps and databases. This contributed to improve understanding of delta evolution, especially regarding the channel belt network evolution. In this contribution, we present a new generation of digital map products for the Holocene Rhine-Meuse delta. Our reconstructions expand existing channel belt network maps, with new map layers containing natural levee extent and relative elevation. The maps we present have been based on hundreds of thousands of lithological borehole descriptions, >1000 radiocarbon dates, and further integrate LIDAR data, soil maps and archaeological information. For selected time slices through the Late Holocene, the map products describe the patterns of levee distribution. Additionally, we mapped the palaeo-topography of the levees through the delta, aiming to resolve what parts of the overbank river landscape were the relatively low and high positioned areas in the past landscape. The resulting palaeogeographical maps are integrative products created for a very data-rich research area. They will allow for delta-wide analysis in studying changes in the Late Holocene landscape and the interaction with past habitation.
-
USGS standard quadrangle maps for emergency response
USGS Publications Warehouse
Moore, Laurence R.
2009-01-01
The 1:24,000-scale topographic quadrangle was the primary product of the U.S. Geological Survey's (USGS) National Mapping Program from 1947-1992. This map series includes about 54,000 map sheets for the conterminous United States, and is the only uniform map series ever produced that covers this area at such a large scale. This map series partially was revised under several programs, starting as early as 1968, but these programs were not adequate to keep the series current. Through the 1990s the emphasis of the USGS mapping program shifted away from topographic maps and toward more specialized digital data products. Topographic map revision dropped off rapidly after 1999, and stopped completely by 2004. Since 2001, emergency-response and homeland security requirement have revived the question of whether a standard national topographic series is needed. Emergencies such as Hurricane Katrina in 2005 and California wildfires in 2007-08 demonstrated that familiar maps are important to first responders. Maps that have a standard scale, extent, and grids help reduce confusion and save time in emergencies. Traditional maps are designed to allow the human brain to quickly process large amounts of information, and depend on artistic layout and design that cannot be fully automated. In spite of technical advances, creating a traditional, general-purpose topographic map is still expensive. Although the content and layout of traditional topographic maps probably is still desirable, the preferred packaging and delivery of maps has changed. Digital image files are now desired by most users, but to be useful to the emergency-response community, these files must be easy to view and easy to print without specialized geographic information system expertise or software.
-
Satellite SAR interferometric techniques applied to emergency mapping
NASA Astrophysics Data System (ADS)
Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene
2017-04-01
This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce monitoring maps for risk prevention and mitigation purposes. Nevertheless, multi-temporal techniques require large SAR temporal datasets, i.e. 20 and more images. Being the Sentinel-1 missions operational only since April 2014, multi-mission SAR datasets should be therefore exploited to carry out historical analysis.
-
Vapor and healing treatment for CH3NH3PbI3-xClx films toward large-area perovskite solar cells
NASA Astrophysics Data System (ADS)
Gouda, Laxman; Gottesman, Ronen; Tirosh, Shay; Haltzi, Eynav; Hu, Jiangang; Ginsburg, Adam; Keller, David A.; Bouhadana, Yaniv; Zaban, Arie
2016-03-01
Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non-uniform performance. Thus, production and characterization of the lateral uniformity of large-area films is a crucial step towards scale-up of devices. In this paper, we present a reproducible method for improving the lateral uniformity and performance of large-area perovskite solar cells (32 cm2). The method is based on methyl-ammonium iodide (MAI) vapor treatment as a new step in the sequential deposition of perovskite films. Following the MAI vapor treatment, we used high throughput techniques to map the photovoltaic performance throughout the large-area device. The lateral uniformity and performance of all photovoltaic parameters (Voc, Jsc, Fill Factor, Photo-conversion efficiency) increased, with an overall improved photo-conversion efficiency of ~100% following a vapor treatment at 140 °C. Based on XRD and photoluminescence measurements, We propose that the MAI treatment promotes a ``healing effect'' to the perovskite film which increases the lateral uniformity across the large-area solar cell. Thus, the straightforward MAI vapor treatment is highly beneficial for large scale commercialization of perovskite solar cells, regardless of the specific deposition method.Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non-uniform performance. Thus, production and characterization of the lateral uniformity of large-area films is a crucial step towards scale-up of devices. In this paper, we present a reproducible method for improving the lateral uniformity and performance of large-area perovskite solar cells (32 cm2). The method is based on methyl-ammonium iodide (MAI) vapor treatment as a new step in the sequential deposition of perovskite films. Following the MAI vapor treatment, we used high throughput techniques to map the photovoltaic performance throughout the large-area device. The lateral uniformity and performance of all photovoltaic parameters (Voc, Jsc, Fill Factor, Photo-conversion efficiency) increased, with an overall improved photo-conversion efficiency of ~100% following a vapor treatment at 140 °C. Based on XRD and photoluminescence measurements, We propose that the MAI treatment promotes a ``healing effect'' to the perovskite film which increases the lateral uniformity across the large-area solar cell. Thus, the straightforward MAI vapor treatment is highly beneficial for large scale commercialization of perovskite solar cells, regardless of the specific deposition method. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08658b
-
Global seafloor geomorphic features map: applications for ocean conservation and management
NASA Astrophysics Data System (ADS)
Harris, P. T.; Macmillan-Lawler, M.; Rupp, J.; Baker, E.
2013-12-01
Seafloor geomorphology, mapped and measured by marine scientists, has proven to be a very useful physical attribute for ocean management because different geomorphic features (eg. submarine canyons, seamounts, spreading ridges, escarpments, plateaus, trenches etc.) are commonly associated with particular suites of habitats and biological communities. Although we now have better bathymetric datasets than ever before, there has been little effort to integrate these data to create an updated map of seabed geomorphic features or habitats. Currently the best available global seafloor geomorphic features map is over 30 years old. A new global seafloor geomorphic features map (GSGM) has been created based on the analysis and interpretation of the SRTM (Shuttle Radar Topography Mission) 30 arc-second (~1 km) global bathymetry grid. The new map includes global spatial data layers for 29 categories of geomorphic features, defined by the International Hydrographic Organisation. The new geomorphic features map will allow: 1) Characterization of bioregions in terms of their geomorphic content (eg. GOODS bioregions, Large Marine Ecosystems (LMEs), ecologically or biologically significant areas (EBSA)); 2) Prediction of the potential spatial distribution of vulnerable marine ecosystems (VME) and marine genetic resources (MGR; eg. associated with hydrothermal vent communities, shelf-incising submarine canyons and seamounts rising to a specified depth); and 3) Characterization of national marine jurisdictions in terms of their inventory of geomorphic features and their global representativeness of features. To demonstrate the utility of the GSGM, we have conducted an analysis of the geomorphic feature content of the current global inventory of marine protected areas (MPAs) to assess the extent to which features are currently represented. The analysis shows that many features have very low representation, for example fans and rises have less than 1 per cent of their total area inside existing protected areas. The ';best' represented features, trenches and troughs, have only 8.7 and 5.9 per cent respectively of their total area inside existing protected areas. Seamounts have only 2.8% of their area within existing MPAs. Diagram showing the hierarchy of geomorphic features mapped in the present study. Base layer features are the shelf, slope, abyss and hadal zones. The occurrence of some features is confined to one of the base layers, whereas the occurrence of other features is confined to two or more base layers, as illustrated by shading. Basins and sills are the only features that occur over all four base layers.
-
Large-scale drivers of malaria and priority areas for prevention and control in the Brazilian Amazon region using a novel multi-pathogen geospatial model.
PubMed
Valle, Denis; Lima, Joanna M Tucker
2014-11-20
Most of the malaria burden in the Americas is concentrated in the Brazilian Amazon but a detailed spatial characterization of malaria risk has yet to be undertaken. Utilizing 2004-2008 malaria incidence data collected from six Brazilian Amazon states, large-scale spatial patterns of malaria risk were characterized with a novel Bayesian multi-pathogen geospatial model. Data included 2.4 million malaria cases spread across 3.6 million sq km. Remotely sensed variables (deforestation rate, forest cover, rainfall, dry season length, and proximity to large water bodies), socio-economic variables (rural population size, income, and literacy rate, mortality rate for children age under five, and migration patterns), and GIS variables (proximity to roads, hydro-electric dams and gold mining operations) were incorporated as covariates. Borrowing information across pathogens allowed for better spatial predictions of malaria caused by Plasmodium falciparum, as evidenced by a ten-fold cross-validation. Malaria incidence for both Plasmodium vivax and P. falciparum tended to be higher in areas with greater forest cover. Proximity to gold mining operations was another important risk factor, corroborated by a positive association between migration rates and malaria incidence. Finally, areas with a longer dry season and areas with higher average rural income tended to have higher malaria risk. Risk maps reveal striking spatial heterogeneity in malaria risk across the region, yet these mean disease risk surface maps can be misleading if uncertainty is ignored. By combining mean spatial predictions with their associated uncertainty, several sites were consistently classified as hotspots, suggesting their importance as priority areas for malaria prevention and control. This article provides several contributions. From a methodological perspective, the benefits of jointly modelling multiple pathogens for spatial predictions were illustrated. In addition, maps of mean disease risk were contrasted with that of statistically significant disease clusters, highlighting the critical importance of uncertainty in determining disease hotspots. From an epidemiological perspective, forest cover and proximity to gold mining operations were important large-scale drivers of disease risk in the region. Finally, the hotspot in Western Acre was identified as the area that should receive highest priority from the Brazilian national malaria prevention and control programme.
-
Soil-geographical regionalization as a basis for digital soil mapping: Karelia case study
NASA Astrophysics Data System (ADS)
Krasilnikov, P.; Sidorova, V.; Dubrovina, I.
2010-12-01
Recent development of digital soil mapping (DSM) allowed improving significantly the quality of soil maps. We tried to make a set of empirical models for the territory of Karelia, a republic at the North-East of the European territory of Russian Federation. This territory was selected for the pilot study for DSM for two reasons. First, the soils of the region are mainly monogenetic; thus, the effect of paleogeographic environment on recent soils is reduced. Second, the territory was poorly mapped because of low agricultural development: only 1.8% of the total area of the republic is used for agriculture and has large-scale soil maps. The rest of the territory has only small-scale soil maps, compiled basing on the general geographic concepts rather than on field surveys. Thus, the only solution for soil inventory was the predictive digital mapping. The absence of large-scaled soil maps did not allow data mining from previous soil surveys, and only empirical models could be applied. For regionalization purposes, we accepted the division into Northern and Southern Karelia, proposed in the general scheme of soil regionalization of Russia; boundaries between the regions were somewhat modified. Within each region, we specified from 15 (Northern Karelia) to 32 (Southern Karelia) individual soilscapes and proposed soil-topographic and soil-lithological relationships for every soilscape. Further field verification is needed to adjust the models.
-
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
USGS Publications Warehouse
Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.
2009-01-01
The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.
-
Geologic Map of the Yukon-Koyukuk Basin, Alaska
USGS Publications Warehouse
Patton, William W.; Wilson, Frederic H.; Labay, Keith A.; Shew, Nora B.
2009-01-01
This map and accompanying digital files represent part of a systematic effort to release geologic data for the United States in a uniform manner. All the geologic data in this series will be published as parts of the U.S. Geological Survey Data Series. The geologic data in this series have been compiled from a wide variety of sources, ranging from state and regional geologic maps to large-scale field mapping. The data are presented for use at a nominal scale of 1:500,000, although individual datasets may contain data suitable for use at larger scales. The metadata associated with each release will provide more detailed information on sources and appropriate scales for use. Associated attribute databases accompany the spatial database of the geology and are uniformly structured for ease in developing regional- and national-scale maps. The 1:500,000-scale geologic map of the Yukon-Koyukuk Basin, Alaska, covers more than 200,000 square kilometers of western Alaska or nearly 15 percent of the total land area of the state. It stretches from the Brooks Range on the north to the Kuskokwim River and lower reaches of the Yukon River on the south and from Kotzebue Sound, Seward Peninsula, and Norton Sound on the west to the Yukon-Tanana Uplands and Tanana-Kuskokwim Lowlands on the east. It includes not only the northern and central part of the basin, but also the lands that border the basin. The area is characterized by isolated clusters of hills and low mountain ranges separated by broad alluviated interior and coastal lowlands. Most of the lowlands, except those bordering Kotzebue Sound and Norton Sound, support a heavy vegetation cover. Exposures of bedrock are generally limited to rubble-strewn ridgetops and to cutbanks along the rivers. The map of the Yukon-Koyukuk Basin was prepared largely from geologic field data collected between 1953 and 1988 by the U.S. Geological Survey and published as 1:250,000-scale geologic quadrangle maps. Additional data for parts of the Wiseman, Ruby, Medfra, and Ophir quadrangles came from 1:63,360-scale quadrangle maps published by the Alaska Division of Geological and Geophysical Surveys. The map also incorporates some unpublished field data for the Ruby quadrangle collected by R.M. Chapman between 1944 and 1977 and for parts of the Tanana, Bettles, Norton Bay, and Candle quadrangles collected by W.W. Patton, Jr. and others between 1954 and 1985. Sources of geologic map data for each of the eighteen 1:250,000-scale quadrangles used in compiling this 1:500,000-scale map of the Yukon-Koyukuk Basin as well as sources of general geologic information pertaining to the entire map area are provided in the 'Sources of Information' section.
-
Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites.
PubMed
Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; Ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L
2014-08-01
The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1. Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
-
Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites
PubMed Central
Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L
2014-01-01
Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space. PMID:26430387
-
Structure contour map of the greater Green River basin, Wyoming, Colorado, and Utah
USGS Publications Warehouse
Lickus, M.R.; Law, B.E.
1988-01-01
The Greater Green River basin of Wyoming, Colorado, and Utah contains five basins and associated major uplifts (fig. 1). Published structure maps of the region have commonly used the top of the Lower Cretaceous Dakota Sandstone as a structural datum (Petroleum Ownership Map Company (POMCO), 1984; Rocky Mountain Association of Geologists, 1972). However, because relatively few wells in this area penetrate the Dakota, the Dakota structural datum has to be constructed by projecting down from shallower wells. Extrapolating in this manner may produce errors in the map. The primary purpose of this report is to present a more reliable structure contour map of the Greater Green River basin based on datums that are penetrated by many wells. The final map shows the large- to small-scale structures present in the Greater Green River basin. The availability of subsurface control and the map scale determined whether or not a structural feature was included on the map. In general, large structures such as the Moxa arch, Pinedale anticline, and other large folds were placed on the map based solely on the structure contours. In comparison, smaller folds and some faults were placed on the map based on structure contours and other reports (Bader 1987; Bradley 1961; Love and Christiansen, 1985; McDonald, 1975; Roehler, 1979; Wyoming Geological Association Oil and Gas Symposium Committee, 1979). State geologic maps and other reports were used to position basin margin faults (Bryant, 1985; Gries, 1983a, b; Hansen 1986; Hintze, 1980; Love and Christiansen, 1985; Tweto, 1979, 1983). In addition, an interpreted east-west-trending regional seismic line by Garing and Tainter (1985), which shows the basin configuration in cross-section, was helpful in locating buried faults, such as the high-angle reverse or thrust fault along the west flank of the Rock Springs uplift.
-
Participatory Mapping for Flood Disaster Zoning based on World View-2 Data in Long Beluah, North Kalimantan Province
NASA Astrophysics Data System (ADS)
Sudaryatno; Awanda, Disyacitta; Eka Pratiwi, Sufiyana
2017-12-01
Flood is one of the most frequent disasters in Indonesia. These conditions cause the necessary efforts to reduce the impact of these hazards. To reduce the impact of these hazards is to understand spatially the impact of previous disasters. Participatory mapping is one of the solutions to be able to assist in reducing the impact of flood disaster by conducting flood zoning so it can be known the range of the flood. The community plays an important role in participatory mapping because the experiences and mental maps of the community are the main sources of information used. North Kalimantan Province has a very large watershed area that is in Kayan watershed, there are several villages, one of them is Long Beluah Village. Kayan watershed has a flood problem annually that affects most of the areas including the Long Beluah Village. This study aims to map the zoning of floods in the village of Long Beluah in a participatory manner using remote sensing World View-2 data within community, so that people also understand the conditions they face. The method for achieving that goal is participatory mapping which means community involvement as well as the ability of community mental maps that will make an important contribution in this research. The results of this study show that flood zoning can be mapped based on experience and community mental maps that the greatest floods in February 2015 inundated most of the community settlements in Long Beluah Village. There are few places from the uninhabited areas of settlements and serve as refugee camps. The participatory zonation map of the participatory floods is quite appropriate with the situation at the time of the greatest flood that hit the village of Long Beluah, so that through the map can be drawn up plans to reduce the impact of such disasters such as evacuation routes and a more strategic refuge point.
-
Nitrate contamination risk assessment in groundwater at regional scale
NASA Astrophysics Data System (ADS)
Daniela, Ducci
2016-04-01
Nitrate groundwater contamination is widespread in the world, due to the intensive use of fertilizers, to the leaking from the sewage network and to the presence of old septic systems. This research presents a methodology for groundwater contamination risk assessment using thematic maps derived mainly from the land-use map and from statistical data available at the national institutes of statistic (especially demographic and environmental data). The potential nitrate contamination is considered as deriving from three sources: agricultural, urban and periurban. The first one is related to the use of fertilizers. For this reason the land-use map is re-classified on the basis of the crop requirements in terms of fertilizers. The urban source is the possibility of leaks from the sewage network and, consequently, is linked to the anthropogenic pressure, expressed by the population density, weighted on the basis of the mapped urbanized areas of the municipality. The periurban sources include the un-sewered areas, especially present in the periurban context, where illegal sewage connections coexist with on-site sewage disposal (cesspools, septic tanks and pit latrines). The potential nitrate contamination map is produced by overlaying the agricultural, urban and periurban maps. The map combination process is very easy, being an algebraic combination: the output values are the arithmetic average of the input values. The groundwater vulnerability to contamination can be assessed using parametric methods, like DRASTIC or easier, like AVI (that involves a limited numbers of parameters). In most of cases, previous documents produced at regional level can be used. The pollution risk map is obtained by combining the thematic maps of the potential nitrate contamination map and the groundwater contamination vulnerability map. The criterion for the linkages of the different GIS layers is very easy, corresponding to an algebraic combination. The methodology has been successfully applied in a large flat area of southern Italy, with high concentrations in NO3.
-
Slope, Scarp and Sea Cliff Instability Susceptibility Mapping for Planning Regulations in Almada County, Portugal
NASA Astrophysics Data System (ADS)
Marques, Fernando; Queiroz, Sónia; Gouveia, Luís; Vasconcelos, Manuel
2017-12-01
In Portugal, the modifications introduced in 2008 and 2012 in the National Ecological Reserve law (REN) included the mandatory study of slope instability, including slopes, natural scarps, and sea cliffs, at municipal or regional scale, with the purpose of avoiding the use of hazardous zones with buildings and other structures. The law also indicates specific methods to perform these studies, with different approaches for slope instability, natural scarps and sea cliffs. The methods used to produce the maps required by REN law, with modifications and improvements to the law specified methods, were applied to the 71 km2 territory of Almada County, and included: 1) Slope instability mapping using the statistically based Information Value method validated with the landslide inventory using ROC curves, which provided an AAC=0.964, with the higher susceptibility zones which cover at least 80% of the landslides of the inventory to be included in REN map. The map was object of a generalization process to overcome the inconveniences of the use of a pixel based approach. 2) Natural scarp mapping including setback areas near the top, defined according to the law and setback areas near the toe defined by the application of the shadow angle calibrated with the major rockfalls which occurred in the study area; 3) Sea cliffs mapping including two levels of setback zones near the top, and one setback zone at the cliffs toe, which were based on systematic inventories of cliff failures occurred between 1947 and 2010 in a large scale regional littoral monitoring project. In the paper are described the methods used and the results obtained in this study, which correspond to the final maps of areas to include in REN. The results obtained in this study may be considered as an example of good practice of the municipal authorities in terms of solid, technical and scientifically supported regulation definitions, hazard prevention and safe and sustainable land use management.
-
Risk Map of Cholera Infection for Vaccine Deployment: The Eastern Kolkata Case
PubMed Central
You, Young Ae; Ali, Mohammad; Kanungo, Suman; Sah, Binod; Manna, Byomkesh; Puri, Mahesh; Nair, G. Balakrish; Bhattacharya, Sujit Kumar; Convertino, Matteo; Deen, Jacqueline L.; Lopez, Anna Lena; Wierzba, Thomas F.; Clemens, John; Sur, Dipika
2013-01-01
Background Despite advancement of our knowledge, cholera remains a public health concern. During March-April 2010, a large cholera outbreak afflicted the eastern part of Kolkata, India. The quantification of importance of socio-environmental factors in the risk of cholera, and the calculation of the risk is fundamental for deploying vaccination strategies. Here we investigate socio-environmental characteristics between high and low risk areas as well as the potential impact of vaccination on the spatial occurrence of the disease. Methods and Findings The study area comprised three wards of Kolkata Municipal Corporation. A mass cholera vaccination campaign was conducted in mid-2006 as the part of a clinical trial. Cholera cases and data of the trial to identify high risk areas for cholera were analyzed. We used a generalized additive model (GAM) to detect risk areas, and to evaluate the importance of socio-environmental characteristics between high and low risk areas. During the one-year pre-vaccination and two-year post-vaccination periods, 95 and 183 cholera cases were detected in 111,882 and 121,827 study participants, respectively. The GAM model predicts that high risk areas in the west part of the study area where the outbreak largely occurred. High risk areas in both periods were characterized by poor people, use of unsafe water, and proximity to canals used as the main drainage for rain and waste water. Cholera vaccine uptake was significantly lower in the high risk areas compared to low risk areas. Conclusion The study shows that even a parsimonious model like GAM predicts high risk areas where cholera outbreaks largely occurred. This is useful for indicating where interventions would be effective in controlling the disease risk. Data showed that vaccination decreased the risk of infection. Overall, the GAM-based risk map is useful for policymakers, especially those from countries where cholera remains to be endemic with periodic outbreaks. PMID:23936491
-
Polarization Reversal Over Flooded Regions and Applications to Large-Scale Flood Mapping with Spaceborne Scatterometers
NASA Technical Reports Server (NTRS)
Nghiem, Son V.; Liu, W. Timothy; Xie, Xiao-Su
1999-01-01
We present the polarization reversal in backscatter over flooded land regions, and demonstrate for the first time the utility of spaceborne Ku-band scatterometer for large-scale flood mapping. Scatterometer data were collected over the globe by the NASA Scatterometer (NSCAT) operated at 14 GHz on the Japanese ADEOS spacecraft from September 1996 to June 1997. During this time span, several severe floods occurred. Over most land surface, vertical polarization backscatter (Sigma(sub upsilon(upsilon)) is larger than horizontal polarization backscatter (sigma(sub hh)). Such polarization characteristics is reversed and sigma(sub upsilon(upsilon)) is smaller than sigma(sub hh) over flooded regions, except under a dense forest canopy. The total backscatter from the flooded landscape consists of direct backscatter and boundary-interaction backscatter. The direct term is contributed by direct backscattering from objects protruding above the water surface, and by backscattering from waves on the water surface. The boundary-interaction term is contributed by the forward scattering from the protruding objects and then reflected from the water surface, and also by the forward scattering from these objects after the water-surface reflection. Over flooded regions, the boundary-interaction term is dominant at large incidence angles and the strong water-surface reflection is much larger for horizontal polarization than the vertical one due to the Brewster effect in transverse-magnetic waves. These scattering mechanisms cause the polarization reversal over flooded regions. An example obtained with the Analytic Wave Theory is used to illustrate the scattering mechanisms leading to the polarization reversal. We then demonstrate the utility of spaceborne Ku-band scatterometer for large-scale flood mapping. We process NSCAT data to obtain the polarization ratio sigma(sub hh)/sigma(sub upsilon(upsilon)) with colocated data at incidence angles larger than 40 deg. The results over Asian summer monsoon regions in September-October 1996 indicate flooded areas in many countries such as Bangladesh, India, Lao, Vietnam, Cambodia, and China. Reports documented by the United Nation Department of Humanitarian Affairs (now called UN Office for the Coordination of Humanitarian Affairs) show loss of many lives and severe flood related damages which affected many million people in the corresponding flooded areas. We also map the NSCAT polarization ratio over the same regions in the "dry season" in January 1997 as a reference to confirm our results. Furthermore, we obtain concurrent ocean wind fields also derived from NSCAT data, and Asia topographic data (USGS GTOPO30) to investigate the flooded area. The results show that winds during summer monsoon season blowing inland, which perplex flood problems. Overlaying the topographic map over NSCAT results reveals an excellent correspondence between the confinement of flooded area within the relevant topographic features, which very well illustrates the value of topographic wetness index. Finally, we discuss the applications of future spaceborne scatterometers, including QuikSCAT and Seawinds, for flood mapping over the globe.
-
Controls on large landslide distribution and implications for the geomorphic evolution of the southern interior Columbia River basin
USGS Publications Warehouse
Safran, E.B.; Anderson, S.W.; Mills-Novoa, M.; House, P.K.; Ely, L.
2011-01-01
Large landslides (>0.1 km2) are important agents of geomorphic change. While most common in rugged mountain ranges, large landslides can also be widespread in relatively low-relief (several 100 m) terrain, where their distribution has been relatively little studied. A fuller understanding of the role of large landslides in landscape evolution requires addressing this gap, since the distribution of large landslides may affect broad regions through interactions with channel processes, and since the dominant controls on landslide distribution might be expected to vary with tectonic setting. We documented >400 landslides between 0.1 and ~40 km2 across ~140,000 km2 of eastern Oregon, in the semiarid, southern interior Columbia River basin. The mapped landslides cluster in a NW-SE-trending band that is 50-100 km wide. Landslides predominantly occur where even modest local relief (~100 m) exists near key contacts between weak sedimentary or volcaniclastic rock and coherent cap rock. Fault density exerts no control on landslide distribution, while ~10% of mapped landslides cluster within 3-10 km of mapped fold axes. Landslide occurrence is curtailed to the NE by thick packages of coherent basalt and to the SW by limited local relief. Our results suggest that future mass movements will localize in areas stratigraphically preconditioned for landsliding by a geologic history of fluviolacustrine and volcaniclastic sedimentation and episodic capping by coherent lava flows. In such areas, episodic landsliding may persist for hundreds of thousands of years or more, producing valley wall slopes of ~7??-13?? and impacting local channels with an evolving array of mass movement styles. ?? 2011 Geological Society of America.
-
Mapping forest characteristics at fine resolution across large landscapes of the southeastern United States using NAIP imagery and FIA field plot data
Treesearch
John Hogland; Nathaniel Anderson; Joseph St. Peter; Jason Drake; Paul Medley
2018-01-01
Accurate information is important for effective management of natural resources. In the field of forestry, field measurements of forest characteristics such as species composition, basal area, and stand density are used to inform and evaluate management activities. Quantifying these metrics accurately across large landscapes in a meaningful way is extremely important...
-
Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer
Treesearch
Mark Chopping; Gretchen G. Moisen; Lihong Su; Andrea Laliberte; Albert Rango; John V. Martonchik; Debra P. C. Peters
2008-01-01
A rapid canopy reflectance model inversion experiment was performed using multi-angle reflectance data from the NASA Multi-angle Imaging Spectro-Radiometer (MISR) on the Earth Observing System Terra satellite, with the goal of obtaining measures of forest fractional crown cover, mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona...