Sample records for large arf1 guanine

  1. Arf6 guanine-nucleotide exchange factor, cytohesin-2, interacts with actinin-1 to regulate neurite extension.

    PubMed

    Torii, Tomohiro; Miyamoto, Yuki; Nakamura, Kazuaki; Maeda, Masahiro; Yamauchi, Junji; Tanoue, Akito

    2012-09-01

    Proper regulation of morphological changes in neuronal cells is essential for their differentiation. Complex signaling mechanisms mediate a variety of morphological changes such as formation of neurites. It is well established that a number of small GTPases control neurite behavior before the connection with the target tissue. However, their regulatory mechanisms remain to be fully understood. Here, we show that the Arf6 guanine-nucleotide exchange factor (GEF), cytohesin-2 (CYTH2), interacts with the cytoskeletal protein actinin-1 (ACTN1) and regulates neurite extension in N1E-115 cells used as the model. Knockdown of ACTN1, as well as that of CYTH2, in cells inhibits cellular Arf6 activity and neurite extension. The C-terminal polybasic region of CYTH2 participates in interacting directly with the EFh2 domain of ACTN1. Expression of CYTH2 mutant deficient of the EFh2 domain in cells also inhibits Arf6 activation and neurite extension. Furthermore, FRET analysis detects that the respective interactive region peptides, tagged with cell-permeable short peptides, greatly decrease Arf6 activation at growth cones in a time-dependent manner. Collectively, the signaling through CYTH2 and ACTN1 properly regulates neurite extension in N1E-115 cells, demonstrating the unexpected interaction of CYTH2 and ACTN1 in the regulation of cellular Arf6 activity involved in neurite extension. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Arf6 Guanine Nucleotide Exchange Factor Cytohesin-2 Binds to CCDC120 and Is Transported Along Neurites to Mediate Neurite Growth*

    PubMed Central

    Torii, Tomohiro; Miyamoto, Yuki; Tago, Kenji; Sango, Kazunori; Nakamura, Kazuaki; Sanbe, Atsushi; Tanoue, Akito; Yamauchi, Junji

    2014-01-01

    The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth. PMID:25326380

  3. The Arf GEF GBF1 and Arf4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking.

    PubMed

    Wang, Jing; Fresquez, Theresa; Kandachar, Vasundhara; Deretic, Dusanka

    2017-12-01

    The small GTPase Arf4 and the Arf GTPase-activating protein (GAP) ASAP1 cooperatively sequester sensory receptor cargo into transport carriers targeted to primary cilia, but the input that drives Arf4 activation in this process remains unknown. Here, we show, by using frog retinas and recombinant human proteins, that during the carrier biogenesis from the photoreceptor Golgi/ trans -Golgi network (TGN) a functional complex is formed between Arf4, the Arf guanine nucleotide exchange factor (GEF) GBF1 and the light-sensing receptor, rhodopsin. Rhodopsin and Arf4 bind the regulatory N-terminal dimerization and cyclophillin-binding (DCB)-homology upstream of Sec7 (HUS) domain of GBF1. The complex is sensitive to Golgicide A (GCA), a selective inhibitor of GBF1 that accordingly blocks rhodopsin delivery to the cilia, without disrupting the photoreceptor Golgi. The emergence of newly synthesized rhodopsin in the endomembrane system is essential for GBF1-Arf4 complex formation in vivo Notably, GBF1 interacts with the Arf GAP ASAP1 in a GCA-resistant manner. Our findings indicate that converging signals on GBF1 from the influx of cargo into the Golgi/TGN and the feedback from Arf4, combined with input from ASAP1, control Arf4 activation during sensory membrane trafficking to primary cilia. © 2017. Published by The Company of Biologists Ltd.

  4. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein modulates ABCA1 trafficking and function

    PubMed Central

    Lin, Sisi; Zhou, Chun; Neufeld, Edward; Wang, Yu-Hua; Xu, Suo-Wen; Lu, Liang; Wang, Ying; Liu, Zhi-Ping; Li, Dong; Li, Cuixian; Chen, Shaorui; Le, Kang; Huang, Heqing; Liu, Peiqing; Moss, Joel; Vaughan, Martha; Shen, Xiaoyan

    2013-01-01

    Objective Cell surface localization and intracellular trafficking of ATP-binding cassette transporter A-1 (ABCA1) are essential for its function. However, regulation of these activities is still largely unknown. Brefeldin A (BFA), a uncompetitive inhibitor of brefeldin A-inhibited guanine nucleotide-exchange proteins (BIGs), disturbs the intracellular distribution of ABCA1, and thus inhibits cholesterol efflux. This study aimed to define the possible roles of BIGs in regulating ABCA1 trafficking and cholesterol efflux, and further to explore the potential mechanism. Methods and Results By vesicle immunoprecipitation, we found that BIG1 was associated with ABCA1 in vesicles preparation from rat liver. BIG1 depletion reduced surface ABCA1 on HepG2 cells and inhibited by 60% cholesterol release. In contrast, BIG1 over-expression increased surface ABCA1 and cholesterol secretion. With partial restoration of BIG1 through over-expression in BIG1-depleted cells, surface ABCA1 was also restored. Biotinylation and glutathione cleavage revealed that BIG1 siRNA dramatically decreased the internalization and recycling of ABCA1. This novel function of BIG1 was dependent on the guanine nucleotide-exchange activity and achieved through activation of ADP-ribosylation factor 1 (ARF1). Conclusions BIG1, through its ability to activate ARF1, regulates cell surface levels and function of ABCA1, indicating a transcription-independent mechanism for controlling ABCA1 action. PMID:23220274

  5. Molecular cloning, characterization, and expression of human ADP-ribosylation factors: Two guanine nucleotide-dependent activators of cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobak, D.A.; Nightingale, M.S.; Murtagh, J.J.

    1989-08-01

    ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A){sup +} RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A){sup +} RNA are consistent with the presence of at least two,more » and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFS also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs.« less

  6. ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells.

    PubMed

    Krey, Jocelyn F; Dumont, Rachel A; Wilmarth, Philip A; David, Larry L; Johnson, Kenneth R; Barr-Gillespie, Peter G

    2018-01-24

    Sensory hair cells require control of physical properties of their apical plasma membranes for normal development and function. Members of the ADP-ribosylation factor (ARF) small GTPase family regulate membrane trafficking and cytoskeletal assembly in many cells. We identified ELMO domain-containing protein 1 (ELMOD1), a guanine nucleoside triphosphatase activating protein (GAP) for ARF6, as the most highly enriched ARF regulator in hair cells. To characterize ELMOD1 control of trafficking, we analyzed mice of both sexes from a strain lacking functional ELMOD1 [roundabout ( rda )]. In rda/rda mice, cuticular plates of utricle hair cells initially formed normally, then degenerated after postnatal day 5; large numbers of vesicles invaded the compromised cuticular plate. Hair bundles initially developed normally, but the cell's apical membrane lifted away from the cuticular plate, and stereocilia elongated and fused. Membrane trafficking in type I hair cells, measured by FM1-43 dye labeling, was altered in rda/rda mice. Consistent with the proposed GAP role for ELMOD1, the ARF6 GTP/GDP ratio was significantly elevated in rda/rda utricles compared with controls, and the level of ARF6-GTP was correlated with the severity of the rda/rda phenotype. These results suggest that conversion of ARF6 to its GDP-bound form is necessary for final stabilization of the hair bundle. SIGNIFICANCE STATEMENT Assembly of the mechanically sensitive hair bundle of sensory hair cells requires growth and reorganization of apical actin and membrane structures. Hair bundles and apical membranes in mice with mutations in the Elmod1 gene degenerate after formation, suggesting that the ELMOD1 protein stabilizes these structures. We show that ELMOD1 is a GTPase-activating protein in hair cells for the small GTP-binding protein ARF6, known to participate in actin assembly and membrane trafficking. We propose that conversion of ARF6 into the GDP-bound form in the apical domain of hair cells is

  7. Sec71 functions as a GEF for the small GTPase Arf1 to govern dendrite pruning of Drosophila sensory neurons.

    PubMed

    Wang, Yan; Zhang, Heng; Shi, Meng; Liou, Yih-Cherng; Lu, Lei; Yu, Fengwei

    2017-05-15

    Pruning, whereby neurons eliminate their excess neurites, is central for the maturation of the nervous system. In Drosophila , sensory neurons, ddaCs, selectively prune their larval dendrites without affecting their axons during metamorphosis. However, it is unknown whether the secretory pathway plays a role in dendrite pruning. Here, we show that the small GTPase Arf1, an important regulator of the secretory pathway, is specifically required for dendrite pruning of ddaC/D/E sensory neurons but dispensable for apoptosis of ddaF neurons. Analyses of the GTP- and GDP-locked forms of Arf1 indicate that the cycling of Arf1 between GDP-bound and GTP-bound forms is essential for dendrite pruning. We further identified Sec71 as a guanine nucleotide exchange factor for Arf1 that preferentially interacts with its GDP-bound form. Like Arf1, Sec71 is also important for dendrite pruning, but not for apoptosis, of sensory neurons. Arf1 and Sec71 are interdependent for their localizations on Golgi. Finally, we show that the Sec71/Arf1-mediated trafficking process is a prerequisite for Rab5-dependent endocytosis to facilitate endocytosis and degradation of the cell-adhesion molecule Neuroglian (Nrg). © 2017. Published by The Company of Biologists Ltd.

  8. ARF1 and SAR1 GTPases in Endomembrane Trafficking in Plants

    PubMed Central

    Cevher-Keskin, Birsen

    2013-01-01

    Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Among the small GTP-binding proteins, ARF1 (ADP-ribosylation factor 1) and SAR1 (Secretion-Associated RAS super family 1) are commonly conserved among all eukaryotes with respect to both their functional and sequential characteristics. The ARF1 and SAR1 GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in COPI (Coat Protein Complex I)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular COPII-mediated protein trafficking from the ER to the Golgi apparatus. This review offers a summary of vesicular trafficking with an emphasis on the ARF1 and SAR1 expression patterns at early growth stages and in the de-etiolation process. PMID:24013371

  9. An Arf-GAP promotes endocytosis and hyphal growth of Ashbya gossypii.

    PubMed

    Oscarsson, Therese; Walther, Andrea; Lengeler, Klaus B; Wendland, Jürgen

    2017-12-29

    The ADP-ribosylation factor (ARF) family of GTPases are highly conserved from yeast to human and regulate vesicle budding. Sec7 domain containing proteins stimulate the guanine nucleotide exchange on Arf proteins, while ARF-GTPase activating proteins stimulate the hydrolysis of GTP. Since vesicle trafficking is important for hyphal growth, we studied the Ashbya gossypii homolog of Saccharomyces cerevisiae ARF3 along with its putative GEF and GTPase-activating protein (GAP) encoded by YEL1 and GTS1, respectively. Deletion of YEL1 had no discernible phenotype and deletion of ARF3 had only a minor defect in vacuolar fusion. In contrast, deletion of GTS1 severely impaired hyphal growth, and mutants showed defects in the maintenance of polarity and the localization of cortical actin patches. The uptake of the lipophilic dye FM4-64 was delayed in gts1 hyphae, indicating a defect in endocytosis. Gts1 has several protein domains, of which the Arf-GAP domain is required for complementation of the gts1 mutant phenotype. GFP-tagged GTS1 under control of its endogenous promoter localized to the plasma membrane but was enriched at hyphal tips and septal sites corresponding to a role in polarized vesicle trafficking. Our results indicate that this ARF-GTPase module plays an important role for filamentous hyphal growth. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. An AGEF-1/Arf GTPase/AP-1 Ensemble Antagonizes LET-23 EGFR Basolateral Localization and Signaling during C. elegans Vulva Induction

    PubMed Central

    Skorobogata, Olga; Escobar-Restrepo, Juan M.; Rocheleau, Christian E.

    2014-01-01

    LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal. The LIN-2 Cask/LIN-7 Veli/LIN-10 Mint (LIN-2/7/10) complex binds LET-23 EGFR, is required for its basolateral membrane localization, and therefore, vulva induction. Besides the LIN-2/7/10 complex, the trafficking pathways that regulate LET-23 EGFR localization have not been defined. Here we identify vh4, a hypomorphic allele of agef-1, as a strong suppressor of the lin-2 mutant Vulvaless (Vul) phenotype. AGEF-1 is homologous to the mammalian BIG1 and BIG2 Arf GTPase guanine nucleotide exchange factors (GEFs), which regulate secretory traffic between the Trans-Golgi network, endosomes and the plasma membrane via activation of Arf GTPases and recruitment of the AP-1 clathrin adaptor complex. Consistent with a role in trafficking we show that AGEF-1 is required for protein secretion and that AGEF-1 and the AP-1 complex regulate endosome size in coelomocytes. The AP-1 complex has previously been implicated in negative regulation of LET-23 EGFR, however the mechanism was not known. Our genetic data indicate that AGEF-1 is a strong negative regulator of LET-23 EGFR signaling that functions in the VPCs at the level of the receptor. In line with AGEF-1 being an Arf GEF, we identify the ARF-1.2 and ARF-3 GTPases as also negatively regulating signaling. We find that the agef-1(vh4) mutation results in increased LET-23 EGFR on the basolateral membrane in both wild-type and lin-2 mutant animals. Furthermore, unc-101(RNAi), a component of the AP-1 complex, increased LET-23 EGFR on the basolateral membrane in lin-2 and agef-1(vh4); lin-2 mutant animals. Thus, an AGEF-1/Arf GTPase/AP-1 ensemble functions opposite the LIN-2/7/10 complex to antagonize LET-23 EGFR basolateral membrane localization and signaling

  11. An AGEF-1/Arf GTPase/AP-1 ensemble antagonizes LET-23 EGFR basolateral localization and signaling during C. elegans vulva induction.

    PubMed

    Skorobogata, Olga; Escobar-Restrepo, Juan M; Rocheleau, Christian E

    2014-10-01

    LET-23 Epidermal Growth Factor Receptor (EGFR) signaling specifies the vulval cell fates during C. elegans larval development. LET-23 EGFR localization on the basolateral membrane of the vulval precursor cells (VPCs) is required to engage the LIN-3 EGF-like inductive signal. The LIN-2 Cask/LIN-7 Veli/LIN-10 Mint (LIN-2/7/10) complex binds LET-23 EGFR, is required for its basolateral membrane localization, and therefore, vulva induction. Besides the LIN-2/7/10 complex, the trafficking pathways that regulate LET-23 EGFR localization have not been defined. Here we identify vh4, a hypomorphic allele of agef-1, as a strong suppressor of the lin-2 mutant Vulvaless (Vul) phenotype. AGEF-1 is homologous to the mammalian BIG1 and BIG2 Arf GTPase guanine nucleotide exchange factors (GEFs), which regulate secretory traffic between the Trans-Golgi network, endosomes and the plasma membrane via activation of Arf GTPases and recruitment of the AP-1 clathrin adaptor complex. Consistent with a role in trafficking we show that AGEF-1 is required for protein secretion and that AGEF-1 and the AP-1 complex regulate endosome size in coelomocytes. The AP-1 complex has previously been implicated in negative regulation of LET-23 EGFR, however the mechanism was not known. Our genetic data indicate that AGEF-1 is a strong negative regulator of LET-23 EGFR signaling that functions in the VPCs at the level of the receptor. In line with AGEF-1 being an Arf GEF, we identify the ARF-1.2 and ARF-3 GTPases as also negatively regulating signaling. We find that the agef-1(vh4) mutation results in increased LET-23 EGFR on the basolateral membrane in both wild-type and lin-2 mutant animals. Furthermore, unc-101(RNAi), a component of the AP-1 complex, increased LET-23 EGFR on the basolateral membrane in lin-2 and agef-1(vh4); lin-2 mutant animals. Thus, an AGEF-1/Arf GTPase/AP-1 ensemble functions opposite the LIN-2/7/10 complex to antagonize LET-23 EGFR basolateral membrane localization and signaling.

  12. Structural Dynamics Control Allosteric Activation of Cytohesin Family Arf GTPase Exchange Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malaby, Andrew W.; Das, Sanchaita; Chakravarthy, Srinivas

    Membrane dynamic processes including vesicle biogenesis depend on Arf guanosine triphosphatase (GTPase) activation by guanine nucleotide exchange factors (GEFs) containing a catalytic Sec7 domain and a membrane-targeting module such as a pleckstrin homology (PH) domain. The catalytic output of cytohesin family Arf GEFs is controlled by autoinhibitory interactions that impede accessibility of the exchange site in the Sec7 domain. These restraints can be relieved through activator Arf-GTP binding to an allosteric site comprising the PH domain and proximal autoinhibitory elements (Sec7-PH linker and C-terminal helix). Small-angle X-ray scattering and negative-stain electron microscopy were used to investigate the structural organization andmore » conformational dynamics of cytohesin-3 (Grp1) in autoinhibited and active states. The results support a model in which hinge dynamics in the autoinhibited state expose the activator site for Arf-GTP binding, while subsequent C-terminal helix unlatching and repositioning unleash conformational entropy in the Sec7-PH linker to drive exposure of the exchange site.« less

  13. Valproic acid-inducible Arl4D and cytohesin-2/ARNO, acting through the downstream Arf6, regulate neurite outgrowth in N1E-115 cells.

    PubMed

    Yamauchi, Junji; Miyamoto, Yuki; Torii, Tomohiro; Mizutani, Reiko; Nakamura, Kazuaki; Sanbe, Atsushi; Koide, Hiroshi; Kusakawa, Shinji; Tanoue, Akito

    2009-07-15

    The mood-stabilizing agent valproic acid (VPA) potently promotes neuronal differentiation. As yet, however, little is known about the underlying molecular mechanism. Here, we show that VPA upregulates cytohesin-2 and mediates neurite outgrowth in N1E-115 neuroblastoma cells. Cytohesin-2 is the guanine-nucleotide exchange factor (GEF) for small GTPases of the Arf family; it regulates many aspects of cellular functions including morphological changes. Treatment with the specific cytohesin family inhibitor SecinH3 or knockdown of cytohesin-2 with its siRNA results in blunted induction of neurite outgrowth in N1E-115 cells. The outgrowth is specifically inhibited by siRNA knockdown of Arf6, but not by that of Arf1. Furthermore, VPA upregulates Arl4D, an Arf-like small GTPase that has recently been identified as the regulator that binds to cytohesin-2. Arl4D knockdown displays an inhibitory effect on neurite outgrowth resulting from VPA, while expression of constitutively active Arl4D induces outgrowth. We also demonstrate that the addition of cell-permeable peptide, coupling the cytohesin-2-binding region of Arl4D into cells, reduces the effect of VPA. Thus, Arl4D is a previously unknown regulator of neurite formation through cytohesin-2 and Arf6, providing another example that the functional interaction of two different small GTPases controls an important cellular function.

  14. ARF6 Activated by the LHCG Receptor through the Cytohesin Family of Guanine Nucleotide Exchange Factors Mediates the Receptor Internalization and Signaling*

    PubMed Central

    Kanamarlapudi, Venkateswarlu; Thompson, Aiysha; Kelly, Eamonn; López Bernal, Andrés

    2012-01-01

    The luteinizing hormone chorionic gonadotropin receptor (LHCGR) is a Gs-coupled GPCR that is essential for the maturation and function of the ovary and testis. LHCGR is internalized following its activation, which regulates the biological responsiveness of the receptor. Previous studies indicated that ADP-ribosylation factor (ARF)6 and its GTP-exchange factor (GEF) cytohesin 2 regulate LHCGR internalization in follicular membranes. However, the mechanisms by which ARF6 and cytohesin 2 regulate LHCGR internalization remain incompletely understood. Here we investigated the role of the ARF6 signaling pathway in the internalization of heterologously expressed human LHCGR (HLHCGR) in intact cells using a combination of pharmacological inhibitors, siRNA and the expression of mutant proteins. We found that human CG (HCG)-induced HLHCGR internalization, cAMP accumulation and ARF6 activation were inhibited by Gallein (βγ inhibitor), Wortmannin (PI 3-kinase inhibitor), SecinH3 (cytohesin ARF GEF inhibitor), QS11 (an ARF GAP inhibitor), an ARF6 inhibitory peptide and ARF6 siRNA. However, Dynasore (dynamin inhibitor), the dominant negative mutants of NM23-H1 (dynamin activator) and clathrin, and PBP10 (PtdIns 4,5-P2-binding peptide) inhibited agonist-induced HLHCGR and cAMP accumulation but not ARF6 activation. These results indicate that heterotrimeric G-protein, phosphatidylinositol (PI) 3-kinase (PI3K), cytohesin ARF GEF and ARF GAP function upstream of ARF6 whereas dynamin and clathrin act downstream of ARF6 in the regulation of HCG-induced HLHCGR internalization and signaling. In conclusion, we have identified the components and molecular details of the ARF6 signaling pathway required for agonist-induced HLHCGR internalization. PMID:22523074

  15. ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons.

    PubMed

    Eva, Richard; Crisp, Sarah; Marland, Jamie R K; Norman, Jim C; Kanamarlapudi, Venkateswarlu; ffrench-Constant, Charles; Fawcett, James W

    2012-07-25

    Integrins are involved in axon growth and regeneration. Manipulation of integrins is a route to promoting axon regeneration and understanding regeneration failure in the CNS. Expression of α9 integrin promotes axon regeneration, so we have investigated α9β1 trafficking and transport in axons and at the growth cone. We have previously found that α9 and β1 integrins traffic via Rab11-positive recycling endosomes in peripheral axons and growth cones. However, transport via Rab11 is slow, while rapid transport occurs in vesicles lacking Rab11. We have further studied α9 and β1 integrin transport and traffic in adult rat dorsal root ganglion axons and PC12 cells. Integrins are in ARF6 vesicles during rapid axonal transport and during trafficking in the growth cone. We report that rapid axonal transport of these integrins and their trafficking at the cell surface is regulated by ARF6. ARF6 inactivation by expression of ACAP1 leads to increased recycling of β1 integrins to the neuronal surface and to increased anterograde axonal transport. ARF6 activation by expression of the neuronal guanine nucleotide exchange factors, ARNO or EFA6, increases retrograde integrin transport in axons and increases integrin internalization. ARF6 inactivation increases integrin-mediated outgrowth, while activation decreases it. The coordinated changes in integrin transport and recycling resulting from ARF6 activation or inactivation are the probable mechanism behind this regulation of axon growth. Our data suggest a novel mechanism of integrin traffic and transport in peripheral axons, regulated by the activation state of ARF6, and suggest that ARF6 might be targeted to enhance integrin-dependent axon regeneration after injury.

  16. Machineries regulating the activity of the small GTPase Arf6 in cancer cells are potential targets for developing innovative anti-cancer drugs.

    PubMed

    Yamauchi, Yohei; Miura, Yuki; Kanaho, Yasunori

    2017-01-01

    The Small GTPase ADP-ribosylation factor 6 (Arf6) functions as the molecular switch in cellular signaling pathways by cycling between GDP-bound inactive and GTP-bound active form, which is precisely regulated by two regulators, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Numerous studies have shown that these machineries play critical roles in tumor angiogenesis/growth and cancer cell invasion/metastasis through regulating the cycling of Arf6. Here, we summarize accumulating knowledge for involvement of Arf6 GEFs/GAPs and small molecule inhibitors of Arf6 signaling/cycling in cancer progression, and discuss possible strategies for developing innovative anti-cancer drugs targeting Arf6 signaling/cycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Arf6 GTPase-activating proteins ARAP2 and ACAP1 define distinct endosomal compartments that regulate integrin α5β1 traffic.

    PubMed

    Chen, Pei-Wen; Luo, Ruibai; Jian, Xiaoying; Randazzo, Paul A

    2014-10-31

    Arf6 and the Arf6 GTPase-activating protein (GAP) ACAP1 are established regulators of integrin traffic important to cell adhesion and migration. However, the function of Arf6 with ACAP1 cannot explain the range of Arf6 effects on integrin-based structures. We propose that Arf6 has different functions determined, in part, by the associated Arf GAP. We tested this idea by comparing the Arf6 GAPs ARAP2 and ACAP1. We found that ARAP2 and ACAP1 had opposing effects on apparent integrin β1 internalization. ARAP2 knockdown slowed, whereas ACAP1 knockdown accelerated, integrin β1 internalization. Integrin β1 association with adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif (APPL)-positive endosomes and EEA1-positive endosomes was affected by ARAP2 knockdown and depended on ARAP2 GAP activity. ARAP2 formed a complex with APPL1 and colocalized with Arf6 and APPL in a compartment distinct from the Arf6/ACAP1 tubular recycling endosome. In addition, although ACAP1 and ARAP2 each colocalized with Arf6, they did not colocalize with each other and had opposing effects on focal adhesions (FAs). ARAP2 overexpression promoted large FAs, but ACAP1 overexpression reduced FAs. Taken together, the data support a model in which Arf6 has at least two sites of opposing action defined by distinct Arf6 GAPs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements.

    PubMed Central

    D'Souza-Schorey, C; Boshans, R L; McDonough, M; Stahl, P D; Van Aelst, L

    1997-01-01

    The ARF6 GTPase, the least conserved member of the ADP ribosylation factor (ARF) family, associates with the plasma membrane and intracellular endosome vesicles. Mutants of ARF6 defective in GTP binding and hydrolysis have a marked effect on endocytic trafficking and the gross morphology of the peripheral membrane system. Here we report that expression of the GTPase-defective mutant of ARF6, ARF6(Q67L), remodels the actin cytoskeleton by inducing actin polymerization at the cell periphery. This cytoskeletal rearrangement was inhibited by co-expression of ARF6(Q67L) with deletion mutants of POR1, a Rac1-interacting protein involved in membrane ruffling, but not with the dominant-negative mutant of Rac1, Rac1(S17N). A synergistic effect between POR1 and ARF6 for the induction of actin polymerization was detected. Furthermore, we observed that ARF6 interacts directly with POR1 and that this interaction was GTP dependent. These findings indicate that ARF6 and Rac1 function on distinct signaling pathways to mediate cytoskeletal reorganization, and suggest a role for POR1 as an important regulatory element in orchestrating cytoskeletal rearrangements at the cell periphery induced by ARF6 and Rac1. PMID:9312003

  19. HIV-1 Nef hijacks clathrin coats by stabilizing AP-1:Arf1 polygons.

    PubMed

    Shen, Qing-Tao; Ren, Xuefeng; Zhang, Rui; Lee, Il-Hyung; Hurley, James H

    2015-10-23

    The lentiviruses HIV and simian immunodeficiency virus (SIV) subvert intracellular membrane traffic as part of their replication cycle. The lentiviral Nef protein helps viruses evade innate and adaptive immune defenses by hijacking the adaptor protein 1 (AP-1) and AP-2 clathrin adaptors. We found that HIV-1 Nef and the guanosine triphosphatase Arf1 induced trimerization and activation of AP-1. Here we report the cryo-electron microscopy structures of the Nef- and Arf1-bound AP-1 trimer in the active and inactive states. A central nucleus of three Arf1 molecules organizes the trimers. We combined the open trimer with a known dimer structure and thus predicted a hexagonal assembly with inner and outer faces that bind the membranes and clathrin, respectively. Hexagons were directly visualized and the model validated by reconstituting clathrin cage assembly. Arf1 and Nef thus play interconnected roles in allosteric activation, cargo recruitment, and coat assembly, revealing an unexpectedly intricate organization of the inner AP-1 layer of the clathrin coat. Copyright © 2015, American Association for the Advancement of Science.

  20. Expression of a dominant allele of human ARF1 inhibits membrane traffic in vivo

    PubMed Central

    1994-01-01

    ADP-ribosylation factor (ARF) proteins and inhibitory peptides derived from ARFs have demonstrated activities in a number of in vitro assays that measure ER-to-Golgi and intra-Golgi transport and endosome fusion. To better understand the roles of ARF proteins in vivo, stable cell lines were obtained from normal rat kidney (NRK) cells transfected with either wild-type or a dominant activating allele ([Q71L]) of the human ARF1 gene under the control of the interferon-inducible mouse Mx1 promoter. Upon addition of interferon, expression of ARF1 proteins increased with a half-time of 7-8 h, as determined by immunoblot analysis. Induction of mutant ARF1, but not wild-type ARF1, led to an inhibition of protein secretion with kinetics similar to that observed for induction of protein expression. Examination of the Golgi apparatus and the ER by indirect immunofluorescence or transmission electron microscopy revealed that expression of low levels of mutant ARF1 protein correlated with a dramatic increase in vesiculation of the Golgi apparatus and expansion of the ER lumen, while expression of substantially higher levels of wild-type ARF1 had no discernible effect. Endocytosis was also inhibited by expression of mutant ARF1, but not by the wild-type protein. Finally, the expression of [Q71L]ARF1, but not wild-type ARF1, antagonized the actions of brefeldin A, as determined by the delayed loss of ARF and beta-COP from Golgi membranes and disruption of the Golgi apparatus. General models for the actions of ARF1 in membrane traffic events are discussed. PMID:8294513

  1. A BAR domain in the N terminus of the Arf GAP ASAP1 affects membrane structure and trafficking of epidermal growth factor receptor.

    PubMed

    Nie, Zhongzhen; Hirsch, Dianne S; Luo, Ruibai; Jian, Xiaoying; Stauffer, Stacey; Cremesti, Aida; Andrade, Josefa; Lebowitz, Jacob; Marino, Michael; Ahvazi, Bijan; Hinshaw, Jenny E; Randazzo, Paul A

    2006-01-24

    Arf GAPs are multidomain proteins that function in membrane traffic by inactivating the GTP binding protein Arf1. Numerous Arf GAPs contain a BAR domain, a protein structural element that contributes to membrane traffic by either inducing or sensing membrane curvature. We have examined the role of a putative BAR domain in the function of the Arf GAP ASAP1. ASAP1's N terminus, containing the putative BAR domain together with a PH domain, dimerized to form an extended structure that bound to large unilamellar vesicles containing acidic phospholipids, properties that define a BAR domain. A recombinant protein containing the BAR domain of ASAP1, together with the PH and Arf GAP domains, efficiently bent the surface of large unilamellar vesicles, resulting in the formation of tubular structures. This activity was regulated by Arf1*GTP binding to the Arf GAP domain. In vivo, the tubular structures induced by ASAP1 mutants contained epidermal growth factor receptor (EGFR) and Rab11, and ASAP1 colocalized in tubular structures with EGFR during recycling of receptor. Expression of ASAP1 accelerated EGFR trafficking and slowed cell spreading. An ASAP1 mutant lacking the BAR domain had no effect. The N-terminal BAR domain of ASAP1 mediates membrane bending and is necessary for ASAP1 function. The Arf dependence of the bending activity is consistent with ASAP1 functioning as an Arf effector.

  2. Quantitative Analysis of Guanine Nucleotide Exchange Factors (GEFs) as Enzymes

    PubMed Central

    Randazzo, Paul A; Jian, Xiaoying; Chen, Pei-Wen; Zhai, Peng; Soubias, Olivier; Northup, John K

    2014-01-01

    The proteins that possess guanine nucleotide exchange factor (GEF) activity, which include about ~800 G protein coupled receptors (GPCRs),1 15 Arf GEFs,2 81 Rho GEFs,3 8 Ras GEFs,4 and others for other families of GTPases,5 catalyze the exchange of GTP for GDP on all regulatory guanine nucleotide binding proteins. Despite their importance as catalysts, relatively few exchange factors (we are aware of only eight for ras superfamily members) have been rigorously characterized kinetically.5–13 In some cases, kinetic analysis has been simplistic leading to erroneous conclusions about mechanism (as discussed in a recent review14). In this paper, we compare two approaches for determining the kinetic properties of exchange factors: (i) examining individual equilibria, and; (ii) analyzing the exchange factors as enzymes. Each approach, when thoughtfully used,14,15 provides important mechanistic information about the exchange factors. The analysis as enzymes is described in further detail. With the focus on the production of the biologically relevant guanine nucleotide binding protein complexed with GTP (G•GTP), we believe it is conceptually simpler to connect the kinetic properties to cellular effects. Further, the experiments are often more tractable than those used to analyze the equilibrium system and, therefore, more widely accessible to scientists interested in the function of exchange factors. PMID:25332840

  3. Molecular analysis of ARF1 expression profiles during development of physic nut (Jatropha curcas L.).

    PubMed

    Qin, Xiaobo; Lin, Fanrong; Lii, Yifan; Gou, Chunbao; Chen, Fang

    2011-03-01

    A cDNA clone designated arf1 was isolated from a physic nut (Jatropha curcas L.) endosperm cDNA library which encodes a small GTP-binding protein and has significant homology to ADP-ribosylation factors (ARF) in plants, animals and microbes. The cDNA contains an open reading frame that encodes a polypeptide of 181 amino acids with a calculated molecular mass of 20.7 kDa. The deduced amino acid sequence showed high homology to known ARFs from other organisms. The products of the arf1 obtained by overexpression in E. coli revealed the specific binding activity toward GTP. The expression of arf1 was observed in flowers, roots, stems and leaves as analyzed by RT-PCR, and its transcriptional level was highest in flowers. In particular, the accumulation of arf1 transcripts was different under various environmental stresses in seedlings. The results suggest that arf1 plays distinct physiological roles in Jatropha curcas cells.

  4. The Structure of RalF, an ADP-Ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amor,J.; Swails, J.; Zhu, X.

    2005-01-01

    The Legionella pneumophila protein RalF is secreted into host cytosol via the Dot/Icm type IV transporter where it acts to recruit ADP-ribosylation factor (Arf) to pathogen-containing phagosomes in the establishment of a replicative organelle. The presence in RalF of the Sec7 domain, present in all Arf guanine nucleotide exchange factors, has suggested that recruitment of Arf is an early step in pathogenesis. We have determined the crystal structure of RalF and of the isolated Sec7 domain and found that RalF is made up of two domains. The Sec7 domain is homologous to mammalian Sec7 domains. The C-terminal domain forms amore » cap over the active site in the Sec7 domain and contains a conserved folding motif, previously observed in adaptor subunits of vesicle coat complexes. The importance of the capping domain and of the glutamate in the 'glutamic finger,' conserved in all Sec7 domains, to RalF functions was examined using three different assays. These data highlight the functional importance of domains other than Sec7 in Arf guanine nucleotide exchange factors to biological activities and suggest novel mechanisms of regulation of those activities.« less

  5. A Structure-Based Mechanism for Arf1-Dependent Recruitment of Coatomer to Membranes

    PubMed Central

    Yu, Xinchao; Breitman, Marianna; Goldberg, Jonathan

    2012-01-01

    Summary Budding of COPI-coated vesicles from Golgi membranes requires an Arf-family G protein and the coatomer complex recruited from cytosol. Arf is also required with coatomer-related clathrin adaptor complexes to bud vesicles from the trans-Golgi network and endosomal compartments. To understand the structural basis for Arf-dependent recruitment of a vesicular coat to the membrane, we determined the structure of Arf1 bound to the γζ-COP subcomplex of coatomer. Structure-guided biochemical analysis reveals that a second Arf1-GTP molecule binds to βδ-COP at a site common to the γ- and β-COP subunits. The Arf1-binding sites on coatomer are spatially related to PtdIns4,5P2-binding sites on the endocytic AP2 complex, providing evidence that the orientation of membrane binding is general for this class of vesicular coat proteins. A bivalent GTP-dependent binding mode has implications for the dynamics of coatomer interaction with the Golgi and for the selection of cargo molecules. PMID:22304919

  6. MUC1-ARF-A Novel MUC1 Protein That Resides in the Nucleus and Is Expressed by Alternate Reading Frame Translation of MUC1 mRNA.

    PubMed

    Chalick, Michael; Jacobi, Oded; Pichinuk, Edward; Garbar, Christian; Bensussan, Armand; Meeker, Alan; Ziv, Ravit; Zehavi, Tania; Smorodinsky, Nechama I; Hilkens, John; Hanisch, Franz-Georg; Rubinstein, Daniel B; Wreschner, Daniel H

    2016-01-01

    Translation of mRNA in alternate reading frames (ARF) is a naturally occurring process heretofore underappreciated as a generator of protein diversity. The MUC1 gene encodes MUC1-TM, a signal-transducing trans-membrane protein highly expressed in human malignancies. Here we show that an AUG codon downstream to the MUC1-TM initiation codon initiates an alternate reading frame thereby generating a novel protein, MUC1-ARF. MUC1-ARF, like its MUC1-TM 'parent' protein, contains a tandem repeat (VNTR) domain. However, the amino acid sequence of the MUC1-ARF tandem repeat as well as N- and C- sequences flanking it differ entirely from those of MUC1-TM. In vitro protein synthesis assays and extensive immunohistochemical as well as western blot analyses with MUC1-ARF specific monoclonal antibodies confirmed MUC1-ARF expression. Rather than being expressed at the cell membrane like MUC1-TM, immunostaining showed that MUC1-ARF protein localizes mainly in the nucleus: Immunohistochemical analyses of MUC1-expressing tissues demonstrated MUC1-ARF expression in the nuclei of secretory luminal epithelial cells. MUC1-ARF expression varies in different malignancies. While the malignant epithelial cells of pancreatic cancer show limited expression, in breast cancer tissue MUC1-ARF demonstrates strong nuclear expression. Proinflammatory cytokines upregulate expression of MUC1-ARF protein and co-immunoprecipitation analyses demonstrate association of MUC1-ARF with SH3 domain-containing proteins. Mass spectrometry performed on proteins coprecipitating with MUC1-ARF demonstrated Glucose-6-phosphate 1-dehydrogenase (G6PD) and Dynamin 2 (DNM2). These studies not only reveal that the MUC1 gene generates a previously unidentified MUC1-ARF protein, they also show that just like its 'parent' MUC1-TM protein, MUC1-ARF is apparently linked to signaling and malignancy, yet a definitive link to these processes and the roles it plays awaits a precise identification of its molecular functions

  7. A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes

    PubMed Central

    Williams, Leor; Carles, Cristel C.; Osmont, Karen S.; Fletcher, Jennifer C.

    2005-01-01

    Two classes of small RNAs, microRNAs and short-interfering RNA (siRNAs), have been extensively studied in plants and animals. In Arabidopsis, the capacity to uncover previously uncharacterized small RNAs by means of conventional strategies seems to be reaching its limits. To discover new plant small RNAs, we developed a protocol to mine an Arabidopsis nonannotated, noncoding EST database. Using this approach, we identified an endogenous small RNA, trans-acting short-interfering RNA–auxin response factor (tasiR-ARF), that shares a 21- and 22-nt region of sequence similarity with members of the ARF gene family. tasiR-ARF has characteristics of both short-interfering RNA and microRNA, recently defined as tasiRNA. Accumulation of trans-acting siRNA depends on DICER-LIKE1 and RNA-DEPENDENT RNA POLYMERASE6 but not RNA-DEPENDENT RNA POLYMERASE2. We demonstrate that tasiR-ARF targets three ARF genes, ARF2, ARF3/ETT, and ARF4, and that both the tasiR-ARF precursor and its target genes are evolutionarily conserved. The identification of tasiRNA-ARF as a low-abundance, previously uncharacterized small RNA species proves our method to be a useful tool to uncover additional small regulatory RNAs. PMID:15980147

  8. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion

    PubMed Central

    Rennoll-Bankert, Kristen E.; Rahman, M. Sayeedur; Gillespie, Joseph J.; Guillotte, Mark L.; Kaur, Simran J.; Lehman, Stephanie S.; Beier-Sexton, Magda; Azad, Abdu F.

    2015-01-01

    Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for Ral

  9. Kinetics of Interaction between ADP-ribosylation Factor-1 (Arf1) and the Sec7 Domain of Arno Guanine Nucleotide Exchange Factor, Modulation by Allosteric Factors, and the Uncompetitive Inhibitor Brefeldin A

    PubMed Central

    Rouhana, Jad; Padilla, André; Estaran, Sébastien; Bakari, Sana; Delbecq, Stephan; Boublik, Yvan; Chopineau, Joel; Pugnière, Martine; Chavanieu, Alain

    2013-01-01

    The GDP/GTP nucleotide exchange of Arf1 is catalyzed by nucleotide exchange factors (GEF), such as Arno, which act through their catalytic Sec7 domain. This exchange is a complex mechanism that undergoes conformational changes and intermediate complex species involving several allosteric partners such as nucleotides, Mg2+, and Sec7 domains. Using a surface plasmon resonance approach, we characterized the kinetic binding parameters for various intermediate complexes. We first confirmed that both GDP and GTP counteract equivalently to the free-nucleotide binary Arf1-Arno complex stability and revealed that Mg2+ potentiates by a factor of 2 the allosteric effect of GDP. Then we explored the uncompetitive inhibitory mechanism of brefeldin A (BFA) that conducts to an abortive pentameric Arf1-Mg2+-GDP-BFA-Sec7 complex. With BFA, the association rate of the abortive complex is drastically reduced by a factor of 42, and by contrast, the 15-fold decrease of the dissociation rate concurs to stabilize the pentameric complex. These specific kinetic signatures have allowed distinguishing the level and nature as well as the fate in real time of formed complexes according to experimental conditions. Thus, we showed that in the presence of GDP, the BFA-resistant Sec7 domain of Arno can also associate to form a pentameric complex, which suggests that the uncompetitive inhibition by BFA and the nucleotide allosteric effect combine to stabilize such abortive complex. PMID:23255605

  10. The structural basis of Arf effector specificity: the crystal structure of ARF6 in a complex with JIP4.

    PubMed

    Isabet, Tatiana; Montagnac, Guillaume; Regazzoni, Karine; Raynal, Bertrand; El Khadali, Fatima; England, Patrick; Franco, Michel; Chavrier, Philippe; Houdusse, Anne; Ménétrey, Julie

    2009-09-16

    The JNK-interacting proteins, JIP3 and JIP4, are specific effectors of the small GTP-binding protein ARF6. The interaction of ARF6-GTP with the second leucine zipper (LZII) domains of JIP3/JIP4 regulates the binding of JIPs to kinesin-1 and dynactin. Here, we report the crystal structure of ARF6-GTP bound to the JIP4-LZII at 1.9 A resolution. The complex is a heterotetramer with dyad symmetry arranged in an ARF6-(JIP4)(2)-ARF6 configuration. Comparison of the ARF6-JIP4 interface with the equivalent region of ARF1 shows the structural basis of JIP4's specificity for ARF6. Using site-directed mutagenesis and surface plasmon resonance, we further show that non-conserved residues at the switch region borders are the key structural determinants of JIP4 specificity. A structure-derived model of the association of the ARF6-JIP3/JIP4 complex with membranes shows that the JIP4-LZII coiled-coil should lie along the membrane to prevent steric hindrances, resulting in only one ARF6 molecule bound. Such a heterotrimeric complex gives insights to better understand the ARF6-mediated motor switch regulatory function.

  11. HIV-1 requires Arf6-mediated membrane dynamics to efficiently enter and infect T lymphocytes

    PubMed Central

    García-Expósito, Laura; Barroso-González, Jonathan; Puigdomènech, Isabel; Machado, José-David; Blanco, Julià; Valenzuela-Fernández, Agustín

    2011-01-01

    As the initial barrier to viral entry, the plasma membrane along with the membrane trafficking machinery and cytoskeleton are of fundamental importance in the viral cycle. However, little is known about the contribution of plasma membrane dynamics during early human immunodeficiency virus type 1 (HIV-1) infection. Considering that ADP ribosylation factor 6 (Arf6) regulates cellular invasion via several microorganisms by coordinating membrane trafficking, our aim was to study the function of Arf6-mediated membrane dynamics on HIV-1 entry and infection of T lymphocytes. We observed that an alteration of the Arf6–guanosine 5′-diphosphate/guanosine 5′-triphosphate (GTP/GDP) cycle, by GDP-bound or GTP-bound inactive mutants or by specific Arf6 silencing, inhibited HIV-1 envelope–induced membrane fusion, entry, and infection of T lymphocytes and permissive cells, regardless of viral tropism. Furthermore, cell-to-cell HIV-1 transmission of primary human CD4+ T lymphocytes was inhibited by Arf6 knockdown. Total internal reflection fluorescence microscopy showed that Arf6 mutants provoked the accumulation of phosphatidylinositol-(4,5)-biphosphate–associated structures on the plasma membrane of permissive cells, without affecting CD4-viral attachment but impeding CD4-dependent HIV-1 entry. Arf6 silencing or its mutants did not affect fusion, entry, and infection of vesicular stomatitis virus G–pseudotyped viruses or ligand-induced CXCR4 or CCR5 endocytosis, both clathrin-dependent processes. Therefore we propose that efficient early HIV-1 infection of CD4+ T lymphocytes requires Arf6-coordinated plasma membrane dynamics that promote viral fusion and entry. PMID:21346189

  12. Effect of myristoylated N-terminus of Arf1 on the bending rigidity of phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Burrola Gabilondo, Beatriz; Zhou, Hernan; Randazzo, Paul A.; Losert, Wolfgang

    2010-03-01

    The protein Arf1 is part of the COPI vesicle transport process from the Golgi to the ER. It binds to membranes via a myristoylated N-terminus and it has been shown to tubulate Large Unilamellar Vesicles. The effect of the N-terminus of Arf1 on physical properties of membranes has not been studied, with the exception of curvature. We previously found that the myristoylated N-terminus increases the packing of the lipid molecules, but has no effect on the lateral mobility. We tested the hypothesis that myristoylated peptides affect the bending rigidity of phospholipid Giant Unilamellar Vesicles (GUV). We use optical tweezers to pull tethers from GUV and measure the force of pulling the tether, as well as the retraction speed of the tether once it is released. We also used flicker spectroscopy to estimate the values of the mechanical properties of GUV. We will present results of the force and tether retraction measurements, as well as mechanical properties estimates from flicker, for GUV in the presence of varying concentrations of myristoylated and non-myristoylated N-terminus of Arf1, and compare these with measurements for GUV in the absence of peptide.

  13. p14ARF Post-Transcriptional Regulation of Nuclear Cyclin D1 in MCF-7 Breast Cancer Cells: Discrimination between a Good and Bad Prognosis?

    PubMed Central

    McGowan, Eileen M.; Tran, Nham; Alling, Nikki; Yagoub, Daniel; Sedger, Lisa M.; Martiniello-Wilks, Rosetta

    2012-01-01

    As part of a cell’s inherent protection against carcinogenesis, p14ARF is upregulated in response to hyperproliferative signalling to induce cell cycle arrest. This property makes p14ARF a leading candidate for cancer therapy. This study explores the consequences of reactivating p14ARF in breast cancer and the potential of targeting p14ARF in breast cancer treatment. Our results show that activation of the p14ARF-p53-p21-Rb pathway in the estrogen sensitive MCF-7 breast cancer cells induces many hallmarks of senescence including a large flat cell morphology, multinucleation, senescence-associated-β-gal staining, and rapid G1 and G2/M phase cell cycle arrest. P14ARF also induces the expression of the proto-oncogene cyclin D1, which is most often associated with a transition from G1-S phase and is highly expressed in breast cancers with poor clinical prognosis. In this study, siRNA knockdown of cyclin D1, p21 and p53 show p21 plays a pivotal role in the maintenance of high cyclin D1 expression, cell cycle and growth arrest post-p14ARF induction. High p53 and p14ARF expression and low p21/cyclin D1 did not cause cell-cycle arrest. Knockdown of cyclin D1 stops proliferation but does not reverse senescence-associated cell growth. Furthermore, cyclin D1 accumulation in the nucleus post-p14ARF activation correlated with a rapid loss of nucleolar Ki-67 protein and inhibition of DNA synthesis. Latent effects of the p14ARF-induced cellular processes resulting from high nuclear cyclin D1 accumulation included a redistribution of Ki-67 into the nucleoli, aberrant nuclear growth (multinucleation), and cell proliferation. Lastly, downregulation of cyclin D1 through inhibition of ER abrogated latent recurrence. The mediation of these latent effects by continuous expression of p14ARF further suggests a novel mechanism whereby dysregulation of cyclin D1 could have a double-edged effect. Our results suggest that p14ARF induced-senescence is related to late-onset breast cancer in

  14. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The color additive guanine shall conform in identity and specifications to the requirements of § 73.1329 (a)(1) and (b). (2) Color additive mixtures of guanine may contain the following diluents: (i) For...

  15. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Guanine. 73.1329 Section 73.1329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine is...

  16. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Guanine. 73.1329 Section 73.1329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine is...

  17. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Guanine. 73.1329 Section 73.1329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine is...

  18. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes.

    PubMed

    Wang, Yijun; Deng, Dexiang; Shi, Yating; Miao, Nan; Bian, Yunlong; Yin, Zhitong

    2012-03-01

    Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.

  19. The Arf-GDP-regulated recruitment of GBF1 to Golgi membranes requires domains HDS1 and HDS2 and a Golgi-localized protein receptor.

    PubMed

    Quilty, Douglas; Chan, Calvin J; Yurkiw, Katherine; Bain, Alexandra; Babolmorad, Ghazal; Melançon, Paul

    2018-04-19

    We previously proposed a novel mechanism by which the enzyme Golgi-specific Brefeldin A resistance factor 1 (GBF1) is recruited to the membranes of the cis -Golgi, based on in vivo experiments. Here, we extended our in vivo analysis on the production of regulatory Arf-GDP and observed that ArfGAP2 and ArfGAP3 do not play a role in GBF1 recruitment. We confirm that Arf-GDP localization is critical, as a TGN-localized Arf-GDP mutant protein fails to promote GBF1 recruitment. We also reported the establishment of an in vitro GBF1 recruitment assay that supports the regulation of GBF1 recruitment by Arf-GDP. This in vitro assay yielded further evidence for the requirement of a Golgi-localized protein because heat denaturation or protease treatment of Golgi membranes abrogated GBF1 recruitment. Finally, combined in vivo and in vitro measurements indicated that the recruitment to Golgi membranes via a putative receptor requires only the HDS1 and HDS2 domains in the C-terminal half of GBF1. © 2018. Published by The Company of Biologists Ltd.

  20. The yeast Arf-GAP Glo3p is required for the endocytic recycling of cell surface proteins.

    PubMed

    Kawada, Daiki; Kobayashi, Hiromu; Tomita, Tsuyoshi; Nakata, Eisuke; Nagano, Makoto; Siekhaus, Daria Elisabeth; Toshima, Junko Y; Toshima, Jiro

    2015-01-01

    Small GTP-binding proteins of the Ras superfamily play diverse roles in intracellular trafficking. Among them, the Rab, Arf, and Rho families function in successive steps of vesicle transport, in forming vesicles from donor membranes, directing vesicle trafficking toward target membranes and docking vesicles onto target membranes. These proteins act as molecular switches that are controlled by a cycle of GTP binding and hydrolysis regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In this study we explored the role of GAPs in the regulation of the endocytic pathway using fluorescently labeled yeast mating pheromone α-factor. Among 25 non-essential GAP mutants, we found that deletion of the GLO3 gene, encoding Arf-GAP protein, caused defective internalization of fluorescently labeled α-factor. Quantitative analysis revealed that glo3Δ cells show defective α-factor binding to the cell surface. Interestingly, Ste2p, the α-factor receptor, was mis-localized from the plasma membrane to the vacuole in glo3Δ cells. Domain deletion mutants of Glo3p revealed that a GAP-independent function, as well as the GAP activity, of Glo3p is important for both α-factor binding and Ste2p localization at the cell surface. Additionally, we found that deletion of the GLO3 gene affects the size and number of Arf1p-residing Golgi compartments and causes a defect in transport from the TGN to the plasma membrane. Furthermore, we demonstrated that glo3Δ cells were defective in the late endosome-to-TGN transport pathway, but not in the early endosome-to-TGN transport pathway. These findings suggest novel roles for Arf-GAP Glo3p in endocytic recycling of cell surface proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis.

    PubMed

    Zhang, Gui-Zhi; Jin, Shang-Hui; Li, Pan; Jiang, Xiao-Yi; Li, Yan-Jie; Hou, Bing-Kai

    2017-12-01

    Ectopic expression of auxin glycosyltransferase UGT84A2 in Arabidopsis can delay flowering through increased indole-3-butyric acid and suppressed transcription of ARF6, ARF8 and flowering-related genes FT, SOC1, AP1 and LFY. Auxins are critical regulators for plant growth and developmental processes. Auxin homeostasis is thus an important issue for plant biology. Here, we identified an indole-3-butyric acid (IBA)-specific glycosyltransferase, UGT84A2, and characterized its role in Arabidopsis flowering development. UGT84A2 could catalyze the glycosylation of IBA, but not indole-3-acetic acid (IAA). UGT84A2 transcription expression was clearly induced by IBA. When ectopically expressing in Arabidopsis, UGT84A2 caused obvious delay in flowering. Correspondingly, the increase of IBA level, the down-regulation of AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8, and the down-regulation of flowering-related genes such as FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO1(SOC1), APETALA1 (AP1), and LEAFY(LFY) were observed in transgenic plants. When exogenously applying IBA to wild-type plants, the late flowering phenotype, the down-regulation of ARF6, ARF8 and flowering-related genes recurred. We examined the arf6arf8 double mutants and found that the expression of flowering-related genes was also substantially decreased in these mutants. Together, our results suggest that glycosyltransferase UGT84A2 may be involved in flowering regulation through indole-3-butyric acid-mediated transcriptional repression of ARF6, ARF8 and downstream flowering pathway genes.

  2. The integrity of the plant Golgi apparatus depends on cell growth-controlled activity of GNL1.

    PubMed

    Du, Wenyan; Tamura, Kentaro; Stefano, Giovanni; Brandizzi, Federica

    2013-05-01

    Membrane traffic and organelle integrity in the plant secretory pathway depend on ARF-GTPases, which are activated by guanine-nucleotide exchange factors (ARF-GEFs). While maintenance of conserved roles, evolution of unique functions as well as tissue-specific roles have been shown for a handful of plant ARF-GEFs, a fundamental yet unanswered question concerns the extent to which their function overlaps during cell growth. To address this, we have characterized pao, a novel allele of GNOM-like 1 (GNL1), a brefeldin A (BFA)-insensitive ARF-GEF, isolated through a confocal microscopy-based forward genetics screen of the Golgi in Arabidopsis thaliana. Specifically, we have analyzed the dependence of the integrity of trafficking routes and secretory organelles on GNL1 availability during expansion stages of cotyledon epidermal cells, an exquisite model system for vegetative cell growth analyses in intact tissues. We show that Golgi traffic is influenced largely by GNL1 availability at early stages of cotyledon cell expansion but by BFA-sensitive GEFs when cell growth terminates. These data reveal an unanticipated level of complexity in the biology of GNL1 by showing that its cellular roles are correlated with cell growth. These results also indicate that the cell growth stage is an important element weighting into functional analyses of the cellular roles of ARF-GEFs.

  3. ELMO Domains, Evolutionary and Functional Characterization of a Novel GTPase-activating Protein (GAP) Domain for Arf Protein Family GTPases*

    PubMed Central

    East, Michael P.; Bowzard, J. Bradford; Dacks, Joel B.; Kahn, Richard A.

    2012-01-01

    The human family of ELMO domain-containing proteins (ELMODs) consists of six members and is defined by the presence of the ELMO domain. Within this family are two subclassifications of proteins, based on primary sequence conservation, protein size, and domain architecture, deemed ELMOD and ELMO. In this study, we used homology searching and phylogenetics to identify ELMOD family homologs in genomes from across eukaryotic diversity. This demonstrated not only that the protein family is ancient but also that ELMOs are potentially restricted to the supergroup Opisthokonta (Metazoa and Fungi), whereas proteins with the ELMOD organization are found in diverse eukaryotes and thus were likely the form present in the last eukaryotic common ancestor. The segregation of the ELMO clade from the larger ELMOD group is consistent with their contrasting functions as unconventional Rac1 guanine nucleotide exchange factors and the Arf family GTPase-activating proteins, respectively. We used unbiased, phylogenetic sorting and sequence alignments to identify the most highly conserved residues within the ELMO domain to identify a putative GAP domain within the ELMODs. Three independent but complementary assays were used to provide an initial characterization of this domain. We identified a highly conserved arginine residue critical for both the biochemical and cellular GAP activity of ELMODs. We also provide initial evidence of the function of human ELMOD1 as an Arf family GAP at the Golgi. These findings provide the basis for the future study of the ELMOD family of proteins and a new avenue for the study of Arf family GTPases. PMID:23014990

  4. Effects of Site-Specific Guanine C8-Modifications on an Intramolecular DNA G-Quadruplex

    PubMed Central

    Lech, Christopher Jacques; Cheow Lim, Joefina Kim; Wen Lim, Jocelyn Mei; Amrane, Samir; Heddi, Brahim; Phan, Anh Tuân

    2011-01-01

    Understanding the fundamentals of G-quadruplex formation is important both for targeting G-quadruplexes formed by natural sequences and for engineering new G-quadruplexes with desired properties. Using a combination of experimental and computational techniques, we have investigated the effects of site-specific substitution of a guanine with C8-modified guanine derivatives, including 8-bromo-guanine, 8-O-methyl-guanine, 8-amino-guanine, and 8-oxo-guanine, within a well-defined (3 + 1) human telomeric G-quadruplex platform. The effects of substitutions on the stability of the G-quadruplex were found to depend on the type and position of the modification among different guanines in the structure. An interesting modification-dependent NMR chemical-shift effect was observed across basepairing within a guanine tetrad. This effect was reproduced by ab initio quantum mechanical computations, which showed that the observed variation in imino proton chemical shift is largely influenced by changes in hydrogen-bond geometry within the guanine tetrad. PMID:22004753

  5. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence

    PubMed Central

    Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues

    2015-01-01

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction. PMID:26578773

  6. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence.

    PubMed

    Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues

    2015-11-17

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction.

  7. Genome-wide identification and characterization of auxin response factor (ARF) family genes related to flower and fruit development in papaya (Carica papaya L.).

    PubMed

    Liu, Kaidong; Yuan, Changchun; Li, Haili; Lin, Wanhuang; Yang, Yanjun; Shen, Chenjia; Zheng, Xiaolin

    2015-11-05

    Auxin and auxin signaling are involved in a series of developmental processes in plants. Auxin Response Factors (ARFs) is reported to modulate the expression of target genes by binding to auxin response elements (AuxREs) and influence the transcriptional activation of down-stream target genes. However, how ARF genes function in flower development and fruit ripening of papaya (Carica papaya L.) is largely unknown. In this study, a comprehensive characterization and expression profiling analysis of 11 C. papaya ARF (CpARF) genes was performed using the newly updated papaya reference genome data. We analyzed CpARF expression patterns at different developmental stages. CpARF1, CpARF2, CpARF4, CpARF5, and CpARF10 showed the highest expression at the initial stage of flower development, but decreased during the following developmental stages. CpARF6 expression increased during the developmental process and reached its peak level at the final stage of flower development. The expression of CpARF1 increased significantly during the fruit ripening stages. Many AuxREs were included in the promoters of two ethylene signaling genes (CpETR1 and CpETR2) and three ethylene-synthesis-related genes (CpACS1, CpACS2, and CpACO1), suggesting that CpARFs might be involved in fruit ripening via the regulation of ethylene signaling. Our study provided comprehensive information on ARF family in papaya, including gene structures, chromosome locations, phylogenetic relationships, and expression patterns. The involvement of CpARF gene expression changes in flower and fruit development allowed us to understand the role of ARF-mediated auxin signaling in the maturation of reproductive organs in papaya.

  8. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy.

    PubMed

    Falace, Antonio; Filipello, Fabia; La Padula, Veronica; Vanni, Nicola; Madia, Francesca; De Pietri Tonelli, Davide; de Falco, Fabrizio A; Striano, Pasquale; Dagna Bricarelli, Franca; Minetti, Carlo; Benfenati, Fabio; Fassio, Anna; Zara, Federico

    2010-09-10

    Idiopathic epilepsies (IEs) are a group of disorders characterized by recurrent seizures in the absence of detectable brain lesions or metabolic abnormalities. IEs include common disorders with a complex mode of inheritance and rare Mendelian traits suggesting the occurrence of several alleles with variable penetrance. We previously described a large family with a recessive form of idiopathic epilepsy, named familial infantile myoclonic epilepsy (FIME), and mapped the disease locus on chromosome 16p13.3 by linkage analysis. In the present study, we found that two compound heterozygous missense mutations (D147H and A509V) in TBC1D24, a gene of unknown function, are responsible for FIME. In situ hybridization analysis revealed that Tbc1d24 is mainly expressed at the level of the cerebral cortex and the hippocampus. By coimmunoprecipitation assay we found that TBC1D24 binds ARF6, a Ras-related family of small GTPases regulating exo-endocytosis dynamics. The main recognized function of ARF6 in the nervous system is the regulation of dendritic branching, spine formation, and axonal extension. TBC1D24 overexpression resulted in a significant increase in neurite length and arborization and the FIME mutations significantly reverted this phenotype. In this study we identified a gene mutation involved in autosomal-recessive idiopathic epilepsy, unveiled the involvement of ARF6-dependent molecular pathway in brain hyperexcitability and seizures, and confirmed the emerging role of subtle cytoarchitectural alterations in the etiology of this group of common epileptic disorders. 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Investigation of the role of GBF1 in the replication of positive-sense single-stranded RNA viruses.

    PubMed

    Ferlin, Juliette; Farhat, Rayan; Belouzard, Sandrine; Cocquerel, Laurence; Bertin, Antoine; Hober, Didier; Dubuisson, Jean; Rouillé, Yves

    2018-06-20

    GBF1 has emerged as a host factor required for the replication of positive-sense single-stranded RNA viruses of different families, but its mechanism of action is still unknown. GBF1 is a guanine nucleotide exchange factor for Arf family members. Recently, we identified Arf4 and Arf5 (class II Arfs) as host factors required for the replication of hepatitis C virus (HCV), a GBF1-dependent virus. To assess whether a GBF1/class II Arf pathway is conserved among positive-sense single-stranded RNA viruses, we investigated yellow fever virus (YFV), Sindbis virus (SINV), coxsackievirus B4 (CVB4) and human coronavirus 229E (HCoV-229E). We found that GBF1 is involved in the replication of these viruses. However, using siRNA or CRISPR-Cas9 technologies, it was seen that the depletion of Arf1, Arf3, Arf4 or Arf5 had no impact on viral replication. In contrast, the depletion of Arf pairs suggested that class II Arfs could be involved in HCoV-229E, YFV and SINV infection, as for HCV, but not in CVB4 infection. In addition, another Arf pair, Arf1 and Arf4, appears to be essential for YFV and SINV infection, but not for infection by other viruses. Finally, CVB4 infection was not inhibited by any combination of Arf depletion. We conclude that the mechanism of action of GBF1 in viral replication appears not to be conserved, and that a subset of positive-sense single-stranded RNA viruses from different families might require class II Arfs for their replication.

  10. SmARF8, a transcription factor involved in parthenocarpy in eggplant.

    PubMed

    Du, Liming; Bao, Chonglai; Hu, Tianhua; Zhu, Qinmei; Hu, Haijiao; He, Qunyan; Mao, Weihai

    2016-02-01

    Parthenocarpic fruit is a very attractive trait for consumers and especially in eggplants where seeds can lead to browning of the flesh and bitterness. However, the molecular mechanisms underlying parthenocarpy in eggplant still remain unknown. Some auxin response factors have been previously shown in model species, such as Arabidopsis and tomato, to play an important role in such a process. Here, we have identified a natural parthenocarpic mutant and showed that ARF8 from eggplant (SmARF8), is down-regulated in buds compared to wild-type plants. Further characterization of SmARF8 showed that it is a nuclear protein and an active transcriptional regulator. We determined that amino acids 629-773 of SmARF8 act as the transcriptional activation domain, the C terminus of SmARF8 is the protein-binding domain, and that SmARF8 might form homodimers. Expression analysis in eggplant showed that SmARF8 is expressed ubiquitously in all tissues and organs and is responsive to auxin. Eggplant transgenic lines harboring RNA interference of SmARF8 exhibited parthenocarpy in unfertilized flowers, suggesting that SmARF8 negatively regulates fruit initiation. Interestingly, SmARF8-overexpressing Arabidopsis lines also induced parthenocarpy. These results indicate that SmARF8 could affect the dimerization of auxin/indole acetic acid repressors with SmARF8 via domains III and IV and thus induce fruit development. Furthermore, the introduction of SmARF8 full-length cDNA could partially complement the parthenocarpic phenotypes in Arabidopsis arf8-1 and arf8-4 mutants. Collectively, our results demonstrate that SmARF8 may act as a key negative regulator involved in parthenocarpic fruit development of eggplant. These findings give more insights into the conserved mechanisms leading to parthenocarpy in which auxin signaling plays a pivotal role, and provide potential target for eggplant breeding.

  11. Arf Suppresses Hepatic Vascular Neoplasia in a Carcinogen-Exposed Murine Model

    PubMed Central

    Busch, Stephanie E; Gurley, Kay E; Moser, Russell D; Kemp, Christopher J

    2013-01-01

    Hepatic haemangiosarcoma is a deadly malignancy whose aetiology remains poorly understood. Inactivation of the CDKN2A locus, which houses the ARF and p16INK4a tumour suppressor genes, is a common event in haemangiosarcoma patients, but the precise role of ARF in vascular tumourigenesis is unknown. To determine the extent to which ARF suppresses vascular neoplasia, we examined the incidence of hepatic vascular lesions in Arf-deficient mice exposed to the carcinogen urethane (i.p. 1 mg/g). Loss of Arf resulted in elevated morbidity and increased the incidence of both haemangiomas and incipient haemangiosarcomas. Suppression of vascular lesion development by ARF was heavily dependent on both Arf gene-dosage and the genetic strain of the mouse. Trp53-deficient mice also developed hepatic vascular lesions after exposure to urethane, suggesting that ARF signals through a p53-dependent pathway to inhibit the development of hepatic haemangiosarcoma. Our findings provide strong evidence that inactivation of Arf is a causative event in vascular neoplasia and suggest that the ARF pathway may be a novel molecular target for therapeutic intervention in haemangiosarcoma patients. PMID:22430984

  12. GLTSCR2 promotes the nucleoplasmic translocation and subsequent degradation of nucleolar ARF.

    PubMed

    Lee, Sun; Cho, Young-Eun; Kim, Sang-Hoon; Kim, Yong-Jun; Park, Jae-Hoon

    2017-03-07

    The alternative reading frame protein (p14ARF/ARF) is a key determinant of cell fate, acting as a potent tumor suppressor through a p53/MDM2-dependent pathway or promoting apoptosis in a p53-independent manner. The ARF protein is mainly expressed in the nucleolus and sequestered by nucleophosmin (NPM), whereas ARF-binding proteins, including p53 and MDM2, predominantly reside in the nucleoplasm. This raises the question of how nucleolar ARF binds nucleoplasmic signaling proteins to suppress tumor growth or inhibit cell cycle progression. GLTSCR2 (also known as PICT-1) is a nucleolar protein involved in both tumor suppression and oncogenesis in concert with p53, NPM, and/or MYC. Here, we show that GLTSCR2 increases nucleoplasmic ARF translocation and its degradation. Specifically, GLTSCR2 bound to ARF, and GLTSCR2-ARF complexes were released to the nucleoplasm, where GLTSCR2 increased the binding affinity of ARF for ULF/TRIP12 (a nucleoplasmic E3-ubiquitin ligase of ARF) and enhanced ARF degradation through the polyubiquitination pathway. Our results demonstrate that nucleolar/nucleoplasmic GLTSCR2 is a strong candidate for promoting the subcellular localization and protein stability of ARF.

  13. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.

    PubMed

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-06-07

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.

  14. 21 CFR 73.1329 - Guanine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in this subpart as safe and suitable for use in color additive mixtures for coloring externally... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1329 Guanine. (a) Identity. (1) The color additive guanine is the crystalline material obtained from fish scales and consists principally of the two purines...

  15. 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments

    PubMed Central

    Dodonova, Svetlana O; Aderhold, Patrick; Kopp, Juergen; Ganeva, Iva; Röhling, Simone; Hagen, Wim J H; Sinning, Irmgard; Wieland, Felix; Briggs, John A G

    2017-01-01

    COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of βδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly. DOI: http://dx.doi.org/10.7554/eLife.26691.001 PMID:28621666

  16. ARF tumor suppression in the nucleolus.

    PubMed

    Maggi, Leonard B; Winkeler, Crystal L; Miceli, Alexander P; Apicelli, Anthony J; Brady, Suzanne N; Kuchenreuther, Michael J; Weber, Jason D

    2014-06-01

    Since its discovery close to twenty years ago, the ARF tumor suppressor has played a pivotal role in the field of cancer biology. Elucidating ARF's basal physiological function in the cell has been the focal interest of numerous laboratories throughout the world for many years. Our current understanding of ARF is constantly evolving to include novel frameworks for conceptualizing the regulation of this critical tumor suppressor. As a result of this complexity, there is great need to broaden our understanding of the intricacies governing the biology of the ARF tumor suppressor. The ARF tumor suppressor is a key sensor of signals that instruct a cell to grow and proliferate and is appropriately localized in nucleoli to limit these processes. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Discrete Determinants in ArfGAP2/3 Conferring Golgi Localization and Regulation by the COPI Coat

    PubMed Central

    Kliouchnikov, Lena; Bigay, Joëlle; Mesmin, Bruno; Parnis, Anna; Rawet, Moran; Goldfeder, Noga; Antonny, Bruno

    2009-01-01

    From yeast to mammals, two types of GTPase-activating proteins, ArfGAP1 and ArfGAP2/3, control guanosine triphosphate (GTP) hydrolysis on the small G protein ADP-ribosylation factor (Arf) 1 at the Golgi apparatus. Although functionally interchangeable, they display little similarity outside the catalytic GTPase-activating protein (GAP) domain, suggesting differential regulation. ArfGAP1 is controlled by membrane curvature through its amphipathic lipid packing sensor motifs, whereas Golgi targeting of ArfGAP2 depends on coatomer, the building block of the COPI coat. Using a reporter fusion approach and in vitro assays, we identified several functional elements in ArfGAP2/3. We show that the Golgi localization of ArfGAP3 depends on both a central basic stretch and a carboxy-amphipathic motif. The basic stretch interacts directly with coatomer, which we found essential for the catalytic activity of ArfGAP3 on Arf1-GTP, whereas the carboxy-amphipathic motif interacts directly with lipid membranes but has minor role in the regulation of ArfGAP3 activity. Our findings indicate that the two types of ArfGAP proteins that reside at the Golgi use a different combination of protein–protein and protein–lipid interactions to promote GTP hydrolysis in Arf1-GTP. PMID:19109418

  18. Computational Study of Oxidation of Guanine by Singlet Oxygen (1 Δg ) and Formation of Guanine:Lysine Cross-Links.

    PubMed

    Thapa, Bishnu; Munk, Barbara H; Burrows, Cynthia J; Schlegel, H Bernhard

    2017-04-27

    Oxidation of guanine in the presence of lysine can lead to guanine-lysine cross-links. The ratio of the C4, C5 and C8 crosslinks depends on the manner of oxidation. Type II photosensitizers such as Rose Bengal and methylene blue can generate singlet oxygen, which leads to a different ratio of products than oxidation by type I photosensitizers or by one electron oxidants. Modeling reactions of singlet oxygen can be quite challenging. Reactions have been explored using CASSCF, NEVPT2, DFT, CCSD(T), and BD(T) calculations with SMD implicit solvation. The spin contamination in open-shell calculations were corrected by Yamaguchi's approximate spin projection method. The addition of singlet oxygen to guanine to form guanine endo- peroxide proceeds step-wise via a zwitterionic peroxyl intermediate. The subsequent barrier for ring closure is smaller than the initial barrier for singlet oxygen addition. Ring opening of the endoperoxide by protonation at C4-O is followed by loss of a proton from C8 and dehydration to produce 8-oxoG ox . The addition of lysine (modelled by methylamine) or water across the C5=N7 double bond of 8-oxoG ox is followed by acyl migration to form the final spiro products. The barrier for methylamine addition is significantly lower than for water addition and should be the dominant reaction channel. These results are in good agreement with the experimental results for the formation of guanine-lysine cross-links by oxidation by type II photosensitizers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning.

    PubMed

    Wesolowski, Jordan; Weber, Mary M; Nawrotek, Agata; Dooley, Cheryl A; Calderon, Mike; St Croix, Claudette M; Hackstadt, Ted; Cherfils, Jacqueline; Paumet, Fabienne

    2017-05-02

    The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion. IMPORTANCE Chlamydia trachomatis is an important cause of morbidity and a significant economic burden in the world. However, how Chlamydia develops its intracellular compartment, the so-called inclusion, is poorly understood. Using genetically engineered Chlamydia mutants, we discovered that the effector protein CT813 recruits and activates host ADP-ribosylation factor 1 (ARF1) and ARF4 to regulate microtubules. In this context, CT813 acts as a molecular platform that induces the posttranslational modification of microtubules around the inclusion. These cages are then used to reposition the Golgi complex during infection and promote the development of the inclusion. This study provides the first evidence that ARF1 and ARF4 play critical roles in controlling posttranslationally modified

  20. Dynamics of ARF regulation that control senescence and cancer.

    PubMed

    Ko, Aram; Han, Su Yeon; Song, Jaewhan

    2016-11-01

    ARF is an alternative reading frame product of the INK4a/ARF locus, inactivated in numerous human cancers. ARF is a key regulator of cellular senescence, an irreversible cell growth arrest that suppresses tumor cell growth. It functions by sequestering MDM2 (a p53 E3 ligase) in the nucleolus, thus activating p53. Besides MDM2, ARF has numerous other interacting partners that induce either cellular senescence or apoptosis in a p53-independent manner. This further complicates the dynamics of the ARF network. Expression of ARF is frequently disrupted in human cancers, mainly due to epigenetic and transcriptional regulation. Vigorous studies on various transcription factors that either positively or negatively regulate ARF transcription have been carried out. However, recent focus on posttranslational modifications, particularly ubiquitination, indicates wider dynamic controls of ARF than previously known. In this review, we discuss the role and dynamic regulation of ARF in senescence and cancer. [BMB Reports 2016; 49(11): 598-606].

  1. The small GTPase Arf6 regulates sea urchin morphogenesis

    PubMed Central

    Stepicheva, Nadezda A.; Dumas, Megan; Kobi, Priscilla; Donaldson, Julie G.; Song, Jia L.

    2017-01-01

    The small GTPase Arf6 is a conserved protein that is expressed in all metazoans. Arf6 remodels cytoskeletal actin and mediates membrane protein trafficking between the plasma membrane in its active form and endosomal compartments in its inactive form. While a rich knowledge exists for the cellular functions of Arf6, relatively little is known about its physiological role in development. This study examines the function of Arf6 in mediating cellular morphogenesis in early development. We dissect the function of Arf6 with a loss-of-function morpholino and constitutively active Arf6-Q67L construct. We focus on the two cell types that undergo active directed migration: the primary mesenchyme cells (PMCs) that give rise to the sea urchin skeleton and endodermal cells that form the gut. Our results indicate that Arf6 plays an important role in skeleton formation and PMC migration, in part due to its ability to remodel actin. We also found that embryos injected with Arf6 morpholino have gastrulation defects and embryos injected with constitutively active Arf6 have endodermal cells detached from the gut epithelium with decreased junctional cadherin staining, indicating that Arf6 may mediate the recycling of cadherin. Thus, Arf6 impacts cells that undergo coordinated movement to form embryonic structures in the developing embryo. PMID:28188999

  2. PI3K regulates endocytosis after insulin secretion by mediating signaling crosstalk between Arf6 and Rab27a.

    PubMed

    Yamaoka, Mami; Ando, Tomomi; Terabayashi, Takeshi; Okamoto, Mitsuhiro; Takei, Masahiro; Nishioka, Tomoki; Kaibuchi, Kozo; Matsunaga, Kohichi; Ishizaki, Ray; Izumi, Tetsuro; Niki, Ichiro; Ishizaki, Toshimasa; Kimura, Toshihide

    2016-02-01

    In secretory cells, endocytosis is coupled to exocytosis to enable proper secretion. Although endocytosis is crucial to maintain cellular homeostasis before and after secretion, knowledge about secretagogue-induced endocytosis in secretory cells is still limited. Here, we searched for proteins that interacted with the Rab27a GTPase-activating protein (GAP) EPI64 (also known as TBC1D10A) and identified the Arf6 guanine-nucleotide-exchange factor (GEF) ARNO (also known as CYTH2) in pancreatic β-cells. We found that the insulin secretagogue glucose promotes phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation through phosphoinositide 3-kinase (PI3K), thereby recruiting ARNO to the intracellular side of the plasma membrane. Peripheral ARNO promotes clathrin assembly through its GEF activity for Arf6 and regulates the early stage of endocytosis. We also found that peripheral ARNO recruits EPI64 to the same area and that the interaction requires glucose-induced endocytosis in pancreatic β-cells. Given that GTP- and GDP-bound Rab27a regulate exocytosis and the late stage of endocytosis, our results indicate that the glucose-induced activation of PI3K plays a pivotal role in exocytosis-endocytosis coupling, and that ARNO and EPI64 regulate endocytosis at distinct stages. © 2016. Published by The Company of Biologists Ltd.

  3. Mapping the binding site of aflatoxin B/sub 1/ in DNA: systematic analysis of the reactivity of aflatoxin B/sub 1/ with guanines in different DNA sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benasutti, M.; Ejadi, S.; Whitlow, M.D.

    The mutagenic and carcinogenic chemical aflatoxin B/sub 1/ (AFB/sub 1/) reacts almost exclusively at the N(7)-position of guanine following activation to its reactive form, the 8,9-epoxide (AFB/sub 1/ oxide). In general N(7)-guanine adducts yield DNA strand breaks when heated in base, a property that serves as the basis for the Maxam-Gilbert DNA sequencing reaction specific for guanine. Using DNA sequencing methods, other workers have shown that AFB/sub 1/ oxide gives strand breaks at positions of guanines; however, the guanine bands varied in intensity. This phenomenon has been used to infer that AFB/sub 1/ oxide prefers to react with guanines inmore » some sequence contexts more than in others and has been referred to as sequence specificity of binding. Herein, data on the reaction of AFB/sub 1/ oxide with several synthetic DNA polymers with different sequences are presented, and (following hydrolysis) adduct levels are determine by high-pressure liquid chromatography. These results reveal that for AFB/sub 1/ oxide (1) the N(7)-guanine adduct is the major adduct found in all of the DNA polymers, (2) adduct levels vary in different sequences, and, thus, sequence specificity is also observed by this more direct method, and (3) the intensity of bands in DNA sequencing gels is likely to reflect adduct levels formed at the N(7)-position of guanine. Knowing this, a reinvestigation of the reactivity of guanines in different DNA sequences using DNA sequencing methods was undertaken. Methods are developed to determine the X (5'-side) base and the Y (3'-side) base are most influential in determining guanine reactivity. These rules in conjunction with molecular modeling studies were used to assess the binding sites that might be utilized by AFB/sub 1/ oxide in its reaction with DNA.« less

  4. Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein*

    PubMed Central

    García-Márquez, Adrián; Gijsbers, Abril; de la Mora, Eugenio; Sánchez-Puig, Nuria

    2015-01-01

    Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1. PMID:25991726

  5. Stable isotope labeling-mass spectrometry analysis of methyl- and pyridyloxobutyl-guanine adducts of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in p53-derived DNA sequences.

    PubMed

    Rajesh, Mathur; Wang, Gang; Jones, Roger; Tretyakova, Natalia

    2005-02-15

    The p53 tumor suppressor gene is a primary target in smoking-induced lung cancer. Interestingly, p53 mutations observed in lung tumors of smokers are concentrated at guanine bases within endogenously methylated (Me)CG dinucleotides, e.g., codons 157, 158, 245, 248, and 273 ((Me)C = 5-methylcytosine). One possible mechanism for the increased mutagenesis at these sites involves targeted binding of metabolically activated tobacco carcinogens to (Me)CG sequences. In the present work, a stable isotope labeling HPLC-ESI(+)-MS/MS approach was employed to analyze the formation of guanine lesions induced by the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) within DNA duplexes representing p53 mutational "hot spots" and surrounding sequences. Synthetic DNA duplexes containing p53 codons 153-159, 243-250, and 269-275 were prepared, where (Me)C was incorporated at all physiologically methylated CG sites. In each duplex, one of the guanine bases was replaced with [1,7,NH(2)-(15)N(3)-2-(13)C]-guanine, which served as an isotope "tag" to enable specific quantification of guanine lesions originating from that position. After incubation with NNK diazohydroxides, HPLC-ESI(+)-MS/MS analysis was used to determine the yields of NNK adducts at the isotopically labeled guanine and at unlabeled guanine bases elsewhere in the sequence. We found that N7-methyl-2'-deoxyguanosine and N7-[4-oxo-4-(3-pyridyl)but-1-yl]guanine lesions were overproduced at the 3'-guanine bases within polypurine runs, while the formation of O(6)-methyl-2'-deoxyguanosine and O(6)-[4-oxo-4-(3-pyridyl)but-1-yl]-2'-deoxyguanosine adducts was specifically preferred at the 3'-guanine base of 5'-GG and 5'-GGG sequences. In contrast, the presence of 5'-neighboring (Me)C inhibited O(6)-guanine adduct formation. These results indicate that the N7- and O(6)-guanine adducts of NNK are not overproduced at the endogenously methylated CG dinucleotides within the p53 tumor suppressor gene

  6. Poliovirus Replication Requires the N-terminus but not the Catalytic Sec7 Domain of ArfGEF GBF1

    PubMed Central

    Belov, George A.; Kovtunovych, Gennadiy; Jackson, Catherine L.; Ehrenfeld, Ellie

    2010-01-01

    Viruses are intracellular parasites whose reproduction relies on factors provided by the host. The cellular protein GBF1 is critical for poliovirus replication. Here we show that the contribution of GBF1 to virus replication is different from its known activities in uninfected cells. Normally GBF1 activates the Arf GTPases necessary for formation of COPI transport vesicles. GBF1 function is modulated by p115 and Rab1b. However, in polio-infected cells, p115 is degraded and neither p115 nor Rab1b knock-down affects virus replication. Poliovirus infection is very sensitive to BFA, an inhibitor of Arf activation by GBF1. BFA targets the catalytic Sec7 domain of GBF1. Nevertheless the BFA block of polio replication is rescued by expression of only the N-terminal region of GBF1 lacking the Sec7 domain. Replication of BFA-resistant poliovirus in the presence of BFA is uncoupled from Arf activation but is dependent on GBF1. Thus the function(s) of this protein essential for viral replication can be separated from those required for cellular metabolism. PMID:20497182

  7. Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function.

    PubMed Central

    Poon, P P; Cassel, D; Spang, A; Rotman, M; Pick, E; Singer, R A; Johnston, G C

    1999-01-01

    ARF proteins, which mediate vesicular transport, have little or no intrinsic GTPase activity. They rely on the actions of GTPase-activating proteins (GAPs) for their function. The in vitro GTPase activity of the Saccharomyces cerevisiae ARF proteins Arf1 and Arf2 is stimulated by the yeast Gcs1 protein, and in vivo genetic interactions between arf and gcs1 mutations implicate Gcs1 in vesicular transport. However, the Gcs1 protein is dispensable, indicating that additional ARF GAP proteins exist. We show that the structurally related protein Glo3, which is also dispensable, also exhibits ARF GAP activity. Genetic and in vitro approaches reveal that Glo3 and Gcs1 have an overlapping essential function at the endoplasmic reticulum (ER)-Golgi stage of vesicular transport. Mutant cells deficient for both ARF GAPs cannot proliferate, undergo a dramatic accumulation of ER and are defective for protein transport between ER and Golgi. The glo3Delta and gcs1Delta single mutations each interact with a sec21 mutation that affects a component of COPI, which mediates vesicular transport within the ER-Golgi shuttle, while increased dosage of the BET1, BOS1 and SEC22 genes encoding members of a v-SNARE family that functions within the ER-Golgi alleviates the effects of a glo3Delta mutation. An in vitro assay indicates that efficient retrieval from the Golgi to the ER requires these two proteins. These findings suggest that Glo3 and Gcs1 ARF GAPs mediate retrograde vesicular transport from the Golgi to the ER. PMID:9927415

  8. Bmi1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor

    PubMed Central

    Biehs, Brian; Hu, Jimmy Kuang-Hsien; Strauli, Nicolas B.; Sangiorgi, Eugenio; Jung, Heekyung; Heber, Ralf-Peter; Ho, Sunita; Goodwin, Alice F.; Dasen, Jeremy S.; Capecchi, Mario R.; Klein, Ophir D.

    2013-01-01

    The polycomb group gene Bmi1 is required for maintenance of adult stem cells in many organs1, 2. Inactivation of Bmi1 leads to impaired stem cell self-renewal due to deregulated gene expression. One critical target of BMI1 is Ink4a/Arf, which encodes the cell cycle inhibitors p16ink4a and p19Arf3. However, deletion of Ink4a/Arf only partially rescues Bmi1 null phenotypes4, indicating that other important targets of BMI1 exist. Here, using the continuously-growing mouse incisor as a model system, we report that Bmi1 is expressed by incisor stem cells and that deletion of Bmi1 resulted in fewer stem cells, perturbed gene expression, and defective enamel production. Transcriptional profiling revealed that Hox expression is normally repressed by BMI1 in the adult, and functional assays demonstrated that BMI1-mediated repression of Hox genes preserves the undifferentiated state of stem cells. As Hox gene upregulation has also been reported in other systems when Bmi1 is inactivated1, 2, 5–7, our findings point to a general mechanism whereby BMI1-mediated repression of Hox genes is required for the maintenance of adult stem cells and for prevention of inappropriate differentiation. PMID:23728424

  9. Somatotropinomas, but not nonfunctioning pituitary adenomas, maintain a functional apoptotic RET/Pit1/ARF/p53 pathway that is blocked by excess GDNF.

    PubMed

    Diaz-Rodriguez, Esther; Garcia-Rendueles, Angela R; Ibáñez-Costa, Alejandro; Gutierrez-Pascual, Ester; Garcia-Lavandeira, Montserrat; Leal, Alfonso; Japon, Miguel A; Soto, Alfonso; Venegas, Eva; Tinahones, Francisco J; Garcia-Arnes, Juan A; Benito, Pedro; Angeles Galvez, Maria; Jimenez-Reina, Luis; Bernabeu, Ignacio; Dieguez, Carlos; Luque, Raul M; Castaño, Justo P; Alvarez, Clara V

    2014-11-01

    Acromegaly is caused by somatotroph cell adenomas (somatotropinomas [ACROs]), which secrete GH. Human and rodent somatotroph cells express the RET receptor. In rodents, when normal somatotrophs are deprived of the RET ligand, GDNF (Glial Cell Derived Neurotrophic Factor), RET is processed intracellularly to induce overexpression of Pit1 [Transcription factor (gene : POUF1) essential for transcription of Pituitary hormones GH, PRL and TSHb], which in turn leads to p19Arf/p53-dependent apoptosis. Our purpose was to ascertain whether human ACROs maintain the RET/Pit1/p14ARF/p53/apoptosis pathway, relative to nonfunctioning pituitary adenomas (NFPAs). Apoptosis in the absence and presence of GDNF was studied in primary cultures of 8 ACROs and 3 NFPAs. Parallel protein extracts were analyzed for expression of RET, Pit1, p19Arf, p53, and phospho-Akt. When GDNF deprived, ACRO cells, but not NFPAs, presented marked level of apoptosis that was prevented in the presence of GDNF. Apoptosis was accompanied by RET processing, Pit1 accumulation, and p14ARF and p53 induction. GDNF prevented all these effects via activation of phospho-AKT. Overexpression of human Pit1 (hPit1) directly induced p19Arf/p53 and apoptosis in a pituitary cell line. Using in silico studies, 2 CCAAT/enhancer binding protein alpha (cEBPα) consensus-binding sites were found to be 100% conserved in mouse, rat, and hPit1 promoters. Deletion of 1 cEBPα site prevented the RET-induced increase in hPit1 promoter expression. TaqMan qRT-PCR (real time RT-PCR) for RET, Pit1, Arf, TP53, GDNF, steroidogenic factor 1, and GH was performed in RNA from whole ACRO and NFPA tumors. ACRO but not NFPA adenomas express RET and Pit1. GDNF expression in the tumors was positively correlated with RET and negatively correlated with p53. In conclusion, ACROs maintain an active RET/Pit1/p14Arf/p53/apoptosis pathway that is inhibited by GDNF. Disruption of GDNF's survival function might constitute a new therapeutic route in

  10. Poliovirus replication requires the N-terminus but not the catalytic Sec7 domain of ArfGEF GBF1.

    PubMed

    Belov, George A; Kovtunovych, Gennadiy; Jackson, Catherine L; Ehrenfeld, Ellie

    2010-10-01

    Viruses are intracellular parasites whose reproduction relies on factors provided by the host. The cellular protein GBF1 is critical for poliovirus replication. Here we show that the contribution of GBF1 to virus replication is different from its known activities in uninfected cells. Normally GBF1 activates the ADP-ribosylation factor (Arf) GTPases necessary for formation of COPI transport vesicles. GBF1 function is modulated by p115 and Rab1b. However, in polio-infected cells, p115 is degraded and neither p115 nor Rab1b knock-down affects virus replication. Poliovirus infection is very sensitive to brefeldin A (BFA), an inhibitor of Arf activation by GBF1. BFA targets the catalytic Sec7 domain of GBF1. Nevertheless the BFA block of polio replication is rescued by expression of only the N-terminal region of GBF1 lacking the Sec7 domain. Replication of BFA-resistant poliovirus in the presence of BFA is uncoupled from Arf activation but is dependent on GBF1. Thus the function(s) of this protein essential for viral replication can be separated from those required for cellular metabolism. © Published 2010. This article is a US Government work and is in the public domain in the USA.

  11. Molecular dynamics simulations of membrane deformation induced by amphiphilic helices of Epsin, Sar1p, and Arf1

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Lu

    2018-03-01

    The N-terminal amphiphilic helices of proteins Epsin, Sar1p, and Arf1 play a critical role in initiating membrane deformation. The interactions of these amphiphilic helices with the lipid membranes are investigated in this study by combining the all-atom and coarse-grained simulations. In the all-atom simulations, the amphiphilic helices of Epsin and Sar1p are found to have a shallower insertion depth into the membrane than the amphiphilic helix of Arf1, but remarkably, the amphiphilic helices of Epsin and Sar1p induce higher asymmetry in the lipid packing between the two monolayers of the membrane. The insertion depth of amphiphilic helix into the membrane is determined not only by the overall hydrophobicity but also by the specific distributions of polar and non-polar residues along the helix. To directly compare their ability to deform the membrane, the coarse-grained simulations are performed to investigate the membrane deformation under the insertion of multiple helices. Project supported by the National Natural Science Foundation of China (Grant Nos. 91427302 and 11474155).

  12. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling.

    PubMed

    Pawar, Archana; Meier, Jeremy A; Dasgupta, Anwesha; Diwanji, Neha; Deshpande, Neha; Saxena, Kritika; Buwa, Natasha; Inchanalkar, Siddhi; Schwartz, Martin Alexander; Balasubramanian, Nagaraj

    2016-09-01

    Integrin dependent regulation of growth factor signalling confers anchorage dependence that is deregulated in cancers. Downstream of integrins and oncogenic Ras the small GTPase Ral is a vital mediator of adhesion dependent trafficking and signalling. This study identifies a novel regulatory crosstalk between Ral and Arf6 that controls Ral function in cells. In re-adherent mouse fibroblasts (MEFs) integrin dependent activation of RalA drives Arf6 activation. Independent of adhesion constitutively active RalA and RalB could both however activate Arf6. This is further conserved in oncogenic H-Ras containing bladder cancer T24 cells, which express anchorage independent active Ral that supports Arf6 activation. Arf6 mediates active Ral-exocyst dependent delivery of raft microdomains to the plasma membrane that supports anchorage independent growth signalling. Accordingly in T24 cells the RalB-Arf6 crosstalk is seen to preferentially regulate anchorage independent Erk signalling. Active Ral we further find uses a Ral-RalBP1-ARNO-Arf6 pathway to mediate Arf6 activation. This study hence identifies Arf6, through this regulatory crosstalk, to be a key downstream mediator of Ral isoform function along adhesion dependent pathways in normal and cancer cells. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Arf6 negatively controls the rapid recycling of the β2 adrenergic receptor.

    PubMed

    Macia, Eric; Partisani, Mariagrazia; Paleotti, Olivia; Luton, Frederic; Franco, Michel

    2012-09-01

    β2-adrenergic receptor (β2AR), a member of the GPCR (G-protein coupled receptor) family, is internalized in a ligand- and β-arrestin-dependent manner into early endosomes, and subsequently recycled back to the plasma membrane. Here, we report that β-arrestin promotes the activation of the small G protein Arf6, which regulates the recycling and degradation of β2AR. We demonstrate in vitro that the C-terminal region of β-arrestin1 interacts directly and simultaneously with Arf6GDP and its specific exchange factor EFA6, to promote Arf6 activation. Similarly, the ligand-mediated activation of β2AR leads to the formation of Arf6GTP in vivo in a β-arrestin-dependent manner. Expression of either EFA6 or an activated Arf6 mutant caused accumulation of β2AR in the degradation pathway. This phenotype could be rescued by the expression of an activated mutant of Rab4, suggesting that Arf6 acts upstream of Rab4. We propose a model in which Arf6 plays an essential role in β2AR desensitization. The ligand-mediated stimulation of β2AR relocates β-arrestin to the plasma membrane, and triggers the activation of Arf6 by EFA6. The activation of Arf6 leads to accumulation of β2AR in the degradation pathway, and negatively controls Rab4-dependent fast recycling to prevent the re-sensitization of β2AR.

  14. ArF halftone PSM cleaning process optimization for next-generation lithography

    NASA Astrophysics Data System (ADS)

    Son, Yong-Seok; Jeong, Seong-Ho; Kim, Jeong-Bae; Kim, Hong-Seok

    2000-07-01

    ArF lithography which is expected for the next generation optical lithography is adapted for 0.13 micrometers design-rule and beyond. ArF half-tone phase shift mask (HT PSM) will be applied as 1st generation of ArF lithography. Also ArF PSM cleaning demands by means of tighter controls related to phase angle, transmittance and contamination on the masks. Phase angle on ArF HT PSM should be controlled within at least +/- 3 degree and transmittance controlled within at least +/- 3 percent after cleaning process and pelliclization. In the cleaning process of HT PSM, requires not only the remove the particle on mask, but also control to half-tone material for metamorphosis. Contamination defects on the Qz of half tone type PSM is not easy to remove on the photomask surface. New technology and methods of cleaning will be developed in near future, but we try to get out for limit contamination on the mask, without variation of phase angle and transmittance after cleaning process.

  15. An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.

    PubMed

    West, Junior J; Zulueta-Coarasa, Teresa; Maier, Janna A; Lee, Donghoon M; Bruce, Ashley E E; Fernandez-Gonzalez, Rodrigo; Harris, Tony J C

    2017-08-07

    In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 20 CFR 228.16 - Adjustments in the age reduction factor (ARF).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Adjustments in the age reduction factor (ARF... RETIREMENT ACT COMPUTATION OF SURVIVOR ANNUITIES The Tier I Annuity Component § 228.16 Adjustments in the age reduction factor (ARF). Upon the attainment of retirement age, the previously-computed age reduction factor...

  17. 20 CFR 228.16 - Adjustments in the age reduction factor (ARF).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Adjustments in the age reduction factor (ARF... RETIREMENT ACT COMPUTATION OF SURVIVOR ANNUITIES The Tier I Annuity Component § 228.16 Adjustments in the age reduction factor (ARF). Upon the attainment of retirement age, the previously-computed age reduction factor...

  18. 20 CFR 228.16 - Adjustments in the age reduction factor (ARF).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Adjustments in the age reduction factor (ARF... RETIREMENT ACT COMPUTATION OF SURVIVOR ANNUITIES The Tier I Annuity Component § 228.16 Adjustments in the age reduction factor (ARF). Upon the attainment of retirement age, the previously-computed age reduction factor...

  19. 20 CFR 228.16 - Adjustments in the age reduction factor (ARF).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Adjustments in the age reduction factor (ARF... RETIREMENT ACT COMPUTATION OF SURVIVOR ANNUITIES The Tier I Annuity Component § 228.16 Adjustments in the age reduction factor (ARF). Upon the attainment of retirement age, the previously-computed age reduction factor...

  20. 20 CFR 228.16 - Adjustments in the age reduction factor (ARF).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Adjustments in the age reduction factor (ARF... RETIREMENT ACT COMPUTATION OF SURVIVOR ANNUITIES The Tier I Annuity Component § 228.16 Adjustments in the age reduction factor (ARF). Upon the attainment of retirement age, the previously-computed age reduction factor...

  1. Putative terminator and/or effector functions of Arf GAPs in the trafficking of clathrin-coated vesicles.

    PubMed

    Kon, Shunsuke; Funaki, Tomo; Satake, Masanobu

    2011-05-01

    The role of ArfGAP1 as a terminator or effector in COPi-vesicle formation has been the subject of ongoing discussions. Here, the discussion on the putative terminator/effector functions has been enlarged to include Arf GAP members involved in the formation of clathrin-coated vesicles. ACAP1, whose role has been studied extensively, enhances the recycling of endocytosed proteins to the plasma membrane. Importantly, this positive role appears to be an overall reflection of both the terminator and effector activities attributed to ACAP1. Other Arf GAP subtypes have also been suggested to possess both terminator and effector activities. Interestingly, while most Arf GAP proteins regulate membrane trafficking by acting as facilitators, a few Arf GAP subtypes act as inhibitors.

  2. Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning

    PubMed Central

    Wesolowski, Jordan; Weber, Mary M.; Nawrotek, Agata; Dooley, Cheryl A.; Calderon, Mike; St. Croix, Claudette M.; Hackstadt, Ted; Cherfils, Jacqueline

    2017-01-01

    ABSTRACT The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion. PMID:28465429

  3. Loss of p19Arf in a Rag1−/− B-cell precursor population initiates acute B-lymphoblastic leukemia

    PubMed Central

    Hauer, Julia; Mullighan, Charles; Morillon, Estelle; Wang, Gary; Bruneau, Julie; Brousse, Nicole; Lelorc'h, Marc; Romana, Serge; Boudil, Amine; Tiedau, Daniela; Kracker, Sven; Bushmann, Frederic D.; Borkhardt, Arndt; Fischer, Alain; Hacein-Bey-Abina, Salima

    2011-01-01

    In human B-acute lymphoblastic leukemia (B-ALL), RAG1-induced genomic alterations are important for disease progression. However, given that biallelic loss of the RAG1 locus is observed in a subset of cases, RAG1's role in the development of B-ALL remains unclear. We chose a p19Arf−/−Rag1−/− mouse model to confirm the previously published results concerning the contribution of CDKN2A (p19ARF /INK4a) and RAG1 copy number alterations in precursor B cells to the initiation and/or progression to B-acute lymphoblastic leukemia (B-ALL). In this murine model, we identified a new, Rag1-independent leukemia-initiating mechanism originating from a Sca1+CD19+ precursor cell population and showed that Notch1 expression accelerates the cells' self-renewal capacity in vitro. In human RAG1-deficient BM, a similar CD34+CD19+ population expressed p19ARF. These findings suggest that combined loss of p19Arf and Rag1 results in B-cell precursor leukemia in mice and may contribute to the progression of precursor B-ALL in humans. PMID:21622646

  4. Key roles of Arf small G proteins and biosynthetic trafficking for animal development.

    PubMed

    Rodrigues, Francisco F; Harris, Tony J C

    2017-04-14

    Although biosynthetic trafficking can function constitutively, it also functions specifically for certain developmental processes. These processes require either a large increase to biosynthesis or the biosynthesis and targeted trafficking of specific players. We review the conserved molecular mechanisms that direct biosynthetic trafficking, and discuss how their genetic disruption affects animal development. Specifically, we consider Arf small G proteins, such as Arf1 and Sar1, and their coat effectors, COPI and COPII, and how these proteins promote biosynthetic trafficking for cleavage of the Drosophila embryo, the growth of neuronal dendrites and synapses, extracellular matrix secretion for bone development, lumen development in epithelial tubes, notochord and neural tube development, and ciliogenesis. Specific need for the biosynthetic trafficking system is also evident from conserved CrebA/Creb3-like transcription factors increasing the expression of secretory machinery during several of these developmental processes. Moreover, dysfunctional trafficking leads to a range of developmental syndromes.

  5. Internalization of exogenous ADP-ribosylation factor 6 (Arf6) proteins into cells.

    PubMed

    Afroze, Syeda H; Uddin, M Nasir; Cao, Xiaobo; Asea, Alexzander; Gizachew, Dawit

    2011-08-01

    Endogenous Arf6 is a myristoylated protein mainly involved in endosomal membrane traffic and structural organization at the plasma membrane. It has been shown that Arf6 mediates cancer cell invasion and shedding of plasma membrane microvesicles derived from tumor cells. In this article, we determined that Arf6 proteins both in the GDP and GTPγS bound forms can enter cells when simply added in the cell culture medium without requiring the myristoyl group. The GTPγS bound can enter cells at a faster rate than the GDP-bound Arf6. Despite the role of the endogenous Arf6 in endocytosis and membrane trafficking, the internalization of exogenous Arf6 may involve non-endocytic processes. As protein therapeutics is becoming important in medicine, we examined the effect of the uptake of Arf6 proteins on cellular functions and determined that exogenous Arf6 inhibits proliferation, invasion, and migration of cells. Future studies of the internalization of Arf6 mutants will reveal key residues that play a role in the internalization of Arf6 and its interaction and possible structural conformations bound to the plasma membrane.

  6. Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Natascha A.; Lee, Wing-Kee; Abouhamed, Marouan

    2008-07-01

    Filtered metal-protein complexes, such as cadmium-metallothionein-1 (CdMT-1) or transferrin (Tf) are apically endocytosed partly via megalin/cubilin by kidney proximal tubule (PT) cells where CdMT-1 internalization causes apoptosis. Small GTPase ARF (ADP-ribosylation factor) proteins regulate endocytosis and vesicular trafficking. We investigated roles of ARF6, which has been shown to be involved in internalization of ligands and endocytic trafficking in PT cells, following MT-1/CdMT-1 and Tf uptake by PT cells. WKPT-0293 Cl.2 cells derived from rat PT S1 segment were transfected with hemagglutinin-tagged wild-type (ARF6-WT) or dominant negative (ARF6-T27N) forms of ARF6. Using immunofluorescence, endogenous ARF6 was associated with the plasma membranemore » (PM) as well as juxtanuclear and co-localized with Rab5a and Rab11 involved in early and recycling endosomal trafficking. Immunofluorescence staining of megalin showed reduced surface labelling in ARF6 dominant negative (ARF6-DN) cells. Intracellular Alexa Fluor 546-conjugated MT-1 uptake was reduced in ARF6-DN cells and CdMT-1 (14.8 {mu}M for 24 h) toxicity was significantly attenuated from 27.3 {+-} 3.9% in ARF6-WT to 11.1 {+-} 4.0% in ARF6-DN cells (n = 6, P < 0.02). Moreover, reduced Alexa Fluor 546-conjugated Tf uptake was observed in ARF-DN cells (75.0 {+-} 4.6% versus 3.9 {+-} 3.9% of ARF6-WT cells, n = 3, P < 0.01) and/or remained near the PM (89.3 {+-} 5. 6% versus 45.2 {+-} 14.3% of ARF6-WT cells, n = 3, P < 0.05). In conclusion, the data support roles for ARF6 in receptor-mediated endocytosis and trafficking of MT-1/Tf to endosomes/lysosomes and CdMT-1 toxicity of PT cells.« less

  7. Pathogenesis of persistent hyperplastic primary vitreous in mice lacking the arf tumor suppressor gene.

    PubMed

    Martin, Amy C; Thornton, J Derek; Liu, Jiewiu; Wang, XiaoFei; Zuo, Jian; Jablonski, Monica M; Chaum, Edward; Zindy, Frederique; Skapek, Stephen X

    2004-10-01

    Persistent hyperplastic primary vitreous (PHPV) is an idiopathic developmental eye disease associated with failed involution of the hyaloid vasculature. The present work addressed the pathogenesis of PHPV in a mouse model that replicates many aspects of the human disease. Ophthalmoscopic and histologic analyses documented pathologic processes in eyes of mice lacking the Arf gene compared with Ink4a-deficient and wild-type control animals. Immunohistochemical staining, in situ hybridization, and RT-PCR demonstrated the expression of relevant gene products. Arf gene expression was determined by in situ hybridization using wholemounts of wild-type mouse eyes and by immunofluorescence staining for green fluorescent protein (GFP) in Arf(+/GFP) heterozygous knock-in mouse eyes. Abnormalities in Arf(-/-) mice mimicked those found in patients with severe PHPV. The mice had microphthalmia; fibrovascular, retrolental tissue containing retinal pigment epithelial cells and remnants of the hyaloid vascular system; posterior lens capsule destruction with lens degeneration and opacity; and severe retinal dysplasia and detachment. Eyes of mice lacking the overlapping Ink4a gene were normal. Arf was selectively expressed in perivascular cells within the vitreous of the postnatal eye. Cells composing the retrolental mass in Arf(-/-) mice expressed the Arf promoter. The remnant hyaloid vessels expressed Flk-1. Its ligand, vascular endothelial growth factor (Vegf), was expressed in the retrolental tissue and the adjacent dysplastic neuroretina. Arf(-/-) mice have features that accurately mimic severe PHPV. In the HVS, Arf expression in perivascular cells may block their accumulation or repress Vegf expression to promote HVS involution and prevent PHPV.

  8. Genomewide identification and expression analysis of the ARF gene family in apple.

    PubMed

    Luo, Xiao-Cui; Sun, Mei-Hong; Xu, Rui-Rui; Shu, Huai-Rui; Wang, Jia-Wei; Zhang, Shi-Zhong

    2014-12-01

    Auxin response factors (ARF) are transcription factors that regulate auxin responses in plants. Although the genomewide analysis of this family has been performed in some species, little is known regarding ARF genes in apple (Malus domestica). In this study, 31 putative apple ARF genes have been identified and located within the apple genome. The phylogenetic analysis revealed that MdARFs could be divided into three subfamilies (groups I, II and III). The predicted MdARFs were distributed across 15 of 17 chromosomes with different densities. In addition, the analysis of exon-intron junctions and of the intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Expression profile analyses of MdARF genes were performed in different tissues (root, stem, leaf, flower and fruit), and all the selected genes were expressed in at least one of the tissues that were tested, which indicated that MdARFs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this report is the first to provide a genomewide analysis of the apple ARF gene family. This study provides valuable information for understanding the classification and putative functions of the ARF signal in apple.

  9. The calcium-sensing receptor changes cell shape via a beta-arrestin-1 ARNO ARF6 ELMO protein network.

    PubMed

    Bouschet, Tristan; Martin, Stéphane; Kanamarlapudi, Venkateswarlu; Mundell, Stuart; Henley, Jeremy M

    2007-08-01

    G-protein-coupled receptors (GPCRs) transduce the binding of extracellular stimuli into intracellular signalling cascades that can lead to morphological changes. Here, we demonstrate that stimulation of the calcium-sensing receptor (CaSR), a GPCR that promotes chemotaxis by detecting increases in extracellular calcium, triggers plasma membrane (PM) ruffling via a pathway that involves beta-arrestin 1, Arf nucleotide binding site opener (ARNO), ADP-ribosylating factor 6 (ARF6) and engulfment and cell motility protein (ELMO). Expression of dominant negative beta-arrestin 1 or its knockdown with siRNA impaired the CaSR-induced PM ruffling response. Expression of a catalytically inactive ARNO also reduced CaSR-induced PM ruffling. Furthermore, beta-arrestin 1 co-immunoprecipitated with the CaSR and ARNO under resting conditions. Agonist treatment did not markedly alter beta-arrestin 1 binding to the CaSR or to ARNO but it did elicit the translocation and colocalisation of the CaSR, beta-arrestin 1 and ARNO to membrane protrusions. Furthermore, ARF6 and ELMO, two proteins known to couple ARNO to the cytoskeleton, were required for CaSR-dependent morphological changes and translocated to the PM ruffles. These data suggest that cells ruffle upon CaSR stimulation via a mechanism that involves translocation of beta-arrestin 1 pre-assembled with the CaSR or ARNO, and that ELMO plays an essential role in this CaSR-signalling-induced cytoskeletal reorganisation.

  10. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicidemore » gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF

  11. Aspergillus nidulans ArfB Plays a Role in Endocytosis and Polarized Growth ▿ †

    PubMed Central

    Lee, Soo Chan; Schmidtke, Sabrina N.; Dangott, Lawrence J.; Shaw, Brian D.

    2008-01-01

    Filamentous fungi undergo polarized growth throughout most of their life cycles. The Spitzenkörper is an apical organelle composed primarily of vesicles that is unique to filamentous fungi and is likely to act as a vesicle supply center for tip growth. Vesicle assembly and trafficking are therefore important for hyphal growth. ADP ribosylation factors (Arfs), a group of small GTPase proteins, play an important role in nucleating vesicle assembly. Little is known about the role of Arfs in filamentous hyphal growth. We found that Aspergillus nidulans is predicted to encode six Arf family proteins. Analysis of protein sequence alignments suggests that A. nidulans ArfB shares similarity with ARF6 of Homo sapiens and Arf3p of Saccharomyces cerevisiae. An arfB null allele (arfB disrupted by a transposon [arfB::Tn]) was characterized by extended isotropic growth of germinating conidia followed by cell lysis or multiple, random germ tube emergence, consistent with a failure to establish polarity. The mutant germ tubes and hyphae that do form initially meander abnormally off of the axis of polarity and frequently exhibit dichotomous branching at cell apices, consistent with a defect in polarity maintenance. FM4-64 staining of the arfB::Tn strain revealed that another phenotypic characteristic seen for arfB::Tn is a reduction and delay in endocytosis. ArfB is myristoylated at its N terminus. Green fluorescent protein-tagged ArfB (ArfB::GFP) localizes to the plasma membrane and endomembranes and mutation (ArfBG2A::GFP) of the N-terminal myristoylation motif disperses the protein to the cytoplasm rather than to the membranes. These results demonstrate that ArfB functions in endocytosis to play important roles in polarity establishment during isotropic growth and polarity maintenance during hyphal extension. PMID:18539885

  12. Persistent hyperplastic primary vitreous due to somatic mosaic deletion of the arf tumor suppressor.

    PubMed

    Thornton, J Derek; Swanson, Doug J; Mary, Michelle N; Pei, Deqing; Martin, Amy C; Pounds, Stanley; Goldowitz, Dan; Skapek, Stephen X

    2007-02-01

    Mice lacking the Arf tumor-suppressor gene develop eye disease reminiscent of persistent hyperplastic primary vitreous (PHPV). The current work explores mechanisms by which Arf promotes eye development, and its absence causes a PHPV-like disease. Chimeric mice were made by fusing wild-type and Arf(-/-) morulae. In these experiments, wild-type cells are identified by transgenic expression of GFP from a constitutive promoter. PCR-based genotyping and quantitative analyses after immunofluorescence staining of tissue and cultured cells documented the relative contribution of wild-type and Arf(-/-) cells to different tissues in the eye and different types of cells in the vitreous. The contributions of the Arf(-/-) lineage to the tail DNA, cornea, retina, and retina pigment epithelium (RPE) correlated with each other in wild-type<-->Arf(-/-) chimeric mice. Newborn chimeras had primary vitreous hyperplasia, evident as a retrolental mass. The mass was usually present when the proportion of Arf(-/-) cells was relatively high and absent when the Arf(-/-) proportion was low. The Pdgfrbeta- and Sma-expressing cells within the mass arose predominantly from the Arf(-/-) population. Ectopic Arf expression induced smooth muscle proteins in cultured pericyte-like cells, and Arf and Sma expression overlapped in hyaloid vessels. In the mouse model, loss of Arf in only a subset of cells causes a PHPV-like disease. The data indicate that both cell autonomous and non-cell autonomous effects of Arf may contribute to its role in vitreous development.

  13. Guanine base stacking in G-quadruplex nucleic acids

    PubMed Central

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  14. Arf6 regulates EGF-induced internalization of E-cadherin in breast cancer cells.

    PubMed

    Xu, Rui; Zhang, Yujie; Gu, Luo; Zheng, Jianchao; Cui, Jie; Dong, Jing; Du, Jun

    2015-01-01

    E-cadherin internalization facilitates dissolution of adherens junctions and promotes tumor cell epithelial-mesenchymal transition (EMT) and migration. Our previous results have shown that Arf6 exerts pro-migratory action in breast cancer cells after EGF stimulation. Despite the fact that EGF signaling stimulates EMT of breast cancer cells, the effect of Arf6 on internalization of E-cadherin of breast cancer cells under EGF treatment remains to be determined. Here, we showed that EGF dose-dependently stimulated E-cadherin internalization by MCF-7 cells with the maximal effect at 50 ng/ml. Meanwhile, EGF treatment markedly increased Arf6 activation. Arf6 was involved in complexes of E-cadherin, and more E-cadherin was pulled down with Arf6 when the activity of the latter was increased. Immunoblotting and immunofluorescence assays showed that transfection breast cancer cells with Arf6-T27N or Arf6 siRNA suppressed EGF-induced E-cadherin internalization. Taken together, our study demonstrated that Arf6 activation plays a potential role in EGF-induced E-cadherin internalization, providing new mechanism underlying the effect of Arf6 on promoting breast cancer cell metastasis.

  15. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets.

    PubMed

    Kanamarlapudi, Venkateswarlu; Owens, Sian E; Saha, Keya; Pope, Robert J; Mundell, Stuart J

    2012-01-01

    Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y(1) and P2Y(12) purinoceptors. Recently, we demonstrated that P2Y(1) and P2Y(12) purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y(1) and P2Y(12) purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y(1) or P2Y(12) purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.

  16. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose. (b...

  17. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose. (b...

  18. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2329 Guanine. (a) Identity and specifications. (1) The... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and, in addition, nitrocellulose. (b...

  19. 21 CFR 73.2329 - Guanine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Guanine. 73.2329 Section 73.2329 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring...

  20. Crystallization and preliminary X-ray diffraction studies of hyperthermophilic archaeal Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus P1.

    PubMed

    Kounosu, Asako; Hasegawa, Kazuya; Iwasaki, Toshio; Kumasaka, Takashi

    2010-07-01

    The hyperthermophilic archaeal Rieske-type [2Fe-2S] ferredoxin (ARF) from Sulfolobus solfataricus P1 contains a low-potential Rieske-type [2Fe-2S] cluster that has served as a tractable model for ligand-substitution studies on this protein family. Recombinant ARF harbouring a pET30a vector-derived N-terminal extension region plus a hexahistidine tag has been heterologously overproduced in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using 0.05 M sodium acetate, 0.05 M HEPES, 2 M ammonium sulfate pH 5.5. The crystals diffracted to 1.85 A resolution and belonged to the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = 60.72, c = 83.31 A. The asymmetric unit contains one protein molecule.

  1. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis)

    PubMed Central

    Li, Si-Bei; OuYang, Wei-Zhi; Hou, Xiao-Jin; Xie, Liang-Liang; Hu, Chun-Gen; Zhang, Jin-Zhi

    2015-01-01

    Auxin response factors (ARFs) are an important family of proteins in auxin-mediated response, with key roles in various physiological and biochemical processes. To date, a genome-wide overview of the ARF gene family in citrus was not available. A systematic analysis of this gene family in citrus was begun by carrying out a genome-wide search for the homologs of ARFs. A total of 19 nonredundant ARF genes (CiARF) were found and validated from the sweet orange. A comprehensive overview of the CiARFs was undertaken, including the gene structures, phylogenetic analysis, chromosome locations, conserved motifs of proteins, and cis-elements in promoters of CiARF. Furthermore, expression profiling using real-time PCR revealed many CiARF genes, albeit with different patterns depending on types of tissues and/or developmental stages. Comprehensive expression analysis of these genes was also performed under two hormone treatments using real-time PCR. Indole-3-acetic acid (IAA) and N-1-napthylphthalamic acid (NPA) treatment experiments revealed differential up-regulation and down-regulation, respectively, of the 19 citrus ARF genes in the callus of sweet orange. Our comprehensive analysis of ARF genes further elucidates the roles of CiARF family members during citrus growth and development process. PMID:25870601

  2. Genetic Alterations of RDINK4/ARF Enhancer in Human Cancer Cells

    PubMed Central

    Li, Junan; Knobloch, Thomas J.; Poi, Ming J.; Zhang, Zhaoxia; Davis, Andrew T.; Muscarella, Peter; Weghorst, Christopher M.

    2017-01-01

    Recent identification of an enhancer element, RDINK4/ARF (RD), in the prominent INK4/ARF locus provides a novel mechanism to simultaneously regulate the transcription of p15INK4B (p15), p14ARF, and p16INK4A (p16) tumor suppressor genes. While genetic inactivation of p15, p14ARF, and p16 in human tumors has been extensively studied, little is known about genetic alterations of RD and its impact on p15, p14ARF, and p16 in human cancer. The purpose of this study was to investigate the potential existence of genetic alterations of RD in human cancer cells. DNAs extracted from 17 different cancer cell lines and 31 primary pheochromocytoma tumors were analyzed for deletion and mutation of RD using qPCR and direct DNA sequencing. We found that RD was deleted in human cancer cell lines and pheochromocytoma tumors at frequencies of 41.2% (7/17) and 13.0% (4/31), respectively. While some of these RD deletion events occurred along with deletions of the entire INK4/ARF locus, other RD deletion events were independent of genetic alterations in p15, p14ARF, and p16. Furthermore, the status of RD was poorly associated with the expression of p15, p14ARF, and p16 in tested cancer cell lines and tumors. This study demonstrates for the first time that deletion of the RD enhancer is a prevalent event in human cancer cells. Its implication in carcinogenesis remains to be further explored. PMID:23065809

  3. HIV1 V3 loop hypermutability is enhanced by the guanine usage bias in the part of env gene coding for it.

    PubMed

    Khrustalev, Vladislav Victorovich

    2009-01-01

    Guanine is the most mutable nucleotide in HIV genes because of frequently occurring G to A transitions, which are caused by cytosine deamination in viral DNA minus strands catalyzed by APOBEC enzymes. Distribution of guanine between three codon positions should influence the probability for G to A mutation to be nonsynonymous (to occur in first or second codon position). We discovered that nucleotide sequences of env genes coding for third variable regions (V3 loops) of gp120 from HIV1 and HIV2 have different kinds of guanine usage biases. In the HIV1 reference strain and 100 additionally analyzed HIV1 strains the guanine usage bias in V3 loop coding regions (2G>1G>3G) should lead to elevated nonsynonymous G to A transitions occurrence rates. In the HIV2 reference strain and 100 other HIV2 strains guanine usage bias in V3 loop coding regions (3G>2G>1G) should protect V3 loops from hypermutability. According to the HIV1 and HIV2 V3 alignment, insertion of the sequence enriched with 2G (21 codons in length) occurred during the evolution of HIV1 predecessor, while insertion of the different sequence enriched with 3G (19 codons in length) occurred during the evolution of HIV2 predecessor. The higher is the level of 3G in the V3 coding region, the lower should be the immune escaping mutation occurrence rates. This hypothesis was tested in this study by comparing the guanine usage in V3 loop coding regions from HIV1 fast and slow progressors. All calculations have been performed by our algorithms "VVK In length", "VVK Dinucleotides" and "VVK Consensus" (www.barkovsky.hotmail.ru).

  4. The leukemia-associated Rho guanine nucleotide exchange factor LARG is required for efficient replication stress signaling

    PubMed Central

    Beveridge, Ryan D; Staples, Christopher J; Patil, Abhijit A; Myers, Katie N; Maslen, Sarah; Skehel, J Mark; Boulton, Simon J; Collis, Spencer J

    2014-01-01

    We previously identified and characterized TELO2 as a human protein that facilitates efficient DNA damage response (DDR) signaling. A subsequent yeast 2-hybrid screen identified LARG; Leukemia-Associated Rho Guanine Nucleotide Exchange Factor (also known as Arhgef12), as a potential novel TELO2 interactor. LARG was previously shown to interact with Pericentrin (PCNT), which, like TELO2, is required for efficient replication stress signaling. Here we confirm interactions between LARG, TELO2 and PCNT and show that a sub-set of LARG co-localizes with PCNT at the centrosome. LARG-deficient cells exhibit replication stress signaling defects as evidenced by; supernumerary centrosomes, reduced replication stress-induced γH2AX and RPA nuclear foci formation, and reduced activation of the replication stress signaling effector kinase Chk1 in response to hydroxyurea. As such, LARG-deficient cells are sensitive to replication stress-inducing agents such as hydroxyurea and mitomycin C. Conversely we also show that depletion of TELO2 and the replication stress signaling kinase ATR leads to RhoA signaling defects. These data therefore reveal a level of crosstalk between the RhoA and DDR signaling pathways. Given that mutations in both ATR and PCNT can give rise to the related primordial dwarfism disorders of Seckel Syndrome and Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) respectively, which both exhibit defects in ATR-dependent checkpoint signaling, these data also raise the possibility that mutations in LARG or disruption to RhoA signaling may be contributory factors to the etiology of a sub-set of primordial dwarfism disorders. PMID:25485589

  5. SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis.

    PubMed

    Sieburth, Leslie E; Muday, Gloria K; King, Edward J; Benton, Geoff; Kim, Sun; Metcalf, Kasee E; Meyers, Lindsay; Seamen, Emylie; Van Norman, Jaimie M

    2006-06-01

    To identify molecular mechanisms controlling vein patterns, we analyzed scarface (sfc) mutants. sfc cotyledon and leaf veins are largely fragmented, unlike the interconnected networks in wild-type plants. SFC encodes an ADP ribosylation factor GTPase activating protein (ARF-GAP), a class with well-established roles in vesicle trafficking regulation. Quadruple mutants of SCF and three homologs (ARF-GAP DOMAIN1, 2, and 4) showed a modestly enhanced vascular phenotype. Genetic interactions between sfc and pinoid and between sfc and gnom suggest a possible function for SFC in trafficking of auxin efflux regulators. Genetic analyses also revealed interaction with cotyledon vascular pattern2, suggesting that lipid-based signals may underlie some SFC ARF-GAP functions. To assess possible roles for SFC in auxin transport, we analyzed sfc roots, which showed exaggerated responses to exogenous auxin and higher auxin transport capacity. To determine whether PIN1 intracellular trafficking was affected, we analyzed PIN1:green fluorescent protein (GFP) dynamics using confocal microscopy in sfc roots. We found normal PIN1:GFP localization at the apical membrane of root cells, but treatment with brefeldin A resulted in PIN1 accumulating in smaller and more numerous compartments than in the wild type. These data suggest that SFC is required for normal intracellular transport of PIN1 from the plasma membrane to the endosome.

  6. ADP-ribosylation Factor 6 (ARF6) Bidirectionally Regulates Dendritic Spine Formation Depending on Neuronal Maturation and Activity*

    PubMed Central

    Kim, Yoonju; Lee, Sang-Eun; Park, Joohyun; Kim, Minhyung; Lee, Boyoon; Hwang, Daehee; Chang, Sunghoe

    2015-01-01

    Recent studies have reported conflicting results regarding the role of ARF6 in dendritic spine development, but no clear answer for the controversy has been suggested. We found that ADP-ribosylation factor 6 (ARF6) either positively or negatively regulates dendritic spine formation depending on neuronal maturation and activity. ARF6 activation increased the spine formation in developing neurons, whereas it decreased spine density in mature neurons. Genome-wide microarray analysis revealed that ARF6 activation in each stage leads to opposite patterns of expression of a subset of genes that are involved in neuronal morphology. ARF6-mediated Rac1 activation via the phospholipase D pathway is the coincident factor in both stages, but the antagonistic RhoA pathway becomes involved in the mature stage. Furthermore, blocking neuronal activity in developing neurons using tetrodotoxin or enhancing the activity in mature neurons using picrotoxin or chemical long term potentiation reversed the effect of ARF6 on each stage. Thus, activity-dependent dynamic changes in ARF6-mediated spine structures may play a role in structural plasticity of mature neurons. PMID:25605715

  7. Phosphorylation-dependent Regulation of Connecdenn/DENND1 Guanine Nucleotide Exchange Factors*

    PubMed Central

    Kulasekaran, Gopinath; Nossova, Nadya; Marat, Andrea L.; Lund, Ingrid; Cremer, Christopher; Ioannou, Maria S.; McPherson, Peter S.

    2015-01-01

    Connecdenn 1/2 are DENN (differentially expressed in normal and neoplastic cells) domain-bearing proteins that function as GEFs (guanine nucleotide exchange factors) for the small GTPase Rab35. Disruption of connecdenn/Rab35 function leads to defects in the recycling of multiple cargo proteins from endosomes with altered cell function, yet the regulation of connecdenn GEF activity is unexplored. We now demonstrate that connecdenn 1/2 are autoinhibited such that the purified, full-length proteins have significantly less Rab35 binding and GEF activity than the isolated DENN domain. Both proteins are phosphorylated with prominent phosphorylation sites between residues 500 and 600 of connecdenn 1. A large scale proteomics screen revealed that connecdenn 1 is phosphorylated at residues Ser-536 and Ser-538 in an Akt-dependent manner in response to insulin stimulation of adipocytes. Interestingly, we find that an Akt inhibitor reduces connecdenn 1 interaction with Rab35 after insulin treatment of adipocytes. Remarkably, a peptide flanking Ser-536/Ser-538 binds the DENN domain of connecdenn 1, whereas a phosphomimetic peptide does not. Moreover, connecdenn 1 interacts with 14-3-3 proteins, and this interaction is also disrupted by Akt inhibition and by mutation of Ser-536/Ser-538. We propose that Akt phosphorylation of connecdenn 1 downstream of insulin activation regulates connecdenn 1 function through an intramolecular interaction. PMID:26055712

  8. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    PubMed Central

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  9. Identification of ARF and AUX/IAA gene families in Rafflesia cantleyi

    NASA Astrophysics Data System (ADS)

    Elias, Nur Atiqah Mohd; Goh, Hoe-Han; Isa, Nurulhikma Md; Wan, Kiew-Lian

    2016-11-01

    Rafflesia is a unique plant that produces the largest flowers in the world. It has a short blooming period of 6 to 7 days. Due to its rarity and limited accessibility, little is known about the growth and developmental process in the Rafflesia plant. In all plant species, auxin is the key hormone that is involved in growth and development. The auxin signal transduction involves members of the ARF transcription factor and AUX/IAA regulator families, which activate or inhibit the regulation of auxin response genes, thereby control the developmental process in plants. To gain a better understanding of molecular regulations in the Rafflesia plant development during flowering, members of the ARF and AUX/IAA gene families were identified from the transcriptome data of flower blooming stages in Rafflesia cantleyi. Based on Rafflesia unique transcripts (UTs) against the Arabidopsis TAIR database using BLASTX search, a total of nine UTs were identified as ARF transcription factors, while another seven UTs were identified as AUX/IAA regulators. These genes were found to be expressed in all three R. cantleyi flower stages i.e. days 1 (F1), 3 (F2), and 5 (F3). Gene expression analysis identified three genes that are differentially expressed in stage F1 vs. F2 i.e. IAA4 is upregulated while IAA8 and ARF3 are downregulated. These genes may be involved in the activation and/or inhibition of the auxin signal transduction pathway. Further analysis of these genes may unravel their function in the phenotypic development of the Rafflesia plant.

  10. The Arf-inducing Transcription Factor Dmp1 Encodes a Transcriptional Activator of Amphiregulin, Thrombospondin-1, JunB and Egr1

    PubMed Central

    Mallakin, Ali; Sugiyama, Takayuki; Kai, Fumitake; Taneja, Pankaj; Kendig, Robert D.; Frazier, Donna P.; Maglic, Dejan; Matise, Lauren A.; Willingham, Mark C.; Inoue, Kazushi

    2009-01-01

    Dmp1 (Dmtf1) encodes a Myb-like transcription factor implicated in tumor suppression through direct activation of the Arf-p53 pathway. The human DMP1 gene is frequently deleted in non-small cell lung cancers, especially those that retain wild-type INK4a/ARF and/or p53. To identify novel genes that are regulated by Dmp1, transcriptional profiles of lung tissue from Dmp1-null and wild-type mice were generated using the GeneChip Microarray. Comparative analysis of gene expression changes between the two groups resulted in identification of numerous genes that may be regulated by Dmp1. Notably, amphiregulin (Areg), thrombospondin-1 (Tsp-1), JunB, Egr1, adrenomedullin (Adm), Bcl-3 and methyl-CpG binding domain protein 1 (Mbd1) were downregulated in the lungs from Dmp1-null mice while Gas1 and Ect2 genes were upregulated. These target genes were chosen for further analyses since they are involved in cell proliferation, transcription, angiogenesis/metastasis, apoptosis, or DNA methylation, and thus could account for the tumor suppressor phenotype of Dmp1. Dmp1 directly bound to the genomic loci of Areg, Tsp-1, JunB and Egr1. Significant upregulation or downregulation of the novel Dmp1 target genes was observed upon transient expression of Dmp1 in alveolar epithelial cells, an effect which was nullified by the inhibition of de novo mRNA synthesis. Interestingly, these genes and their protein products were significantly downregulated or upregulated in the lungs from Dmp1-heterozygous mice as well. Identification of novel Dmp1 target genes not only provides insights into the effects of Dmp1 on global gene expression, but also sheds light on the mechanism of haploid insufficiency of Dmp1 in tumor suppression. PMID:19816943

  11. Crystallization and preliminary X-ray diffraction studies of hyperthermophilic archaeal Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus P1

    PubMed Central

    Kounosu, Asako; Hasegawa, Kazuya; Iwasaki, Toshio; Kumasaka, Takashi

    2010-01-01

    The hyperthermophilic archaeal Rieske-type [2Fe–2S] ferredoxin (ARF) from Sulfolobus solfataricus P1 contains a low-potential Rieske-type [2Fe–2S] cluster that has served as a tractable model for ligand-substitution studies on this protein family. Recombinant ARF harbouring a pET30a vector-derived N-­terminal extension region plus a hexahistidine tag has been heterologously overproduced in Escherichia coli, purified and crystallized by the hanging-drop vapour-diffusion method using 0.05 M sodium acetate, 0.05 M HEPES, 2 M ammonium sulfate pH 5.5. The crystals diffracted to 1.85 Å resolution and belonged to the tetragonal space group P43212, with unit-cell parameters a = 60.72, c = 83.31 Å. The asymmetric unit contains one protein molecule. PMID:20606288

  12. Development of an ultra performance LC/MS method to quantify cisplatin 1,2 intrastrand guanine-guanine adducts

    PubMed Central

    Baskerville-Abraham, Irene M.; Boysen, Gunnar; Troutman, J. Mitchell; Mutlu, Esra; Collins, Leonard; deKrafft, Kathryn E.; Lin, Wenbin; King, Candice; Chaney, Stephen G.; Swenberg, James A.

    2009-01-01

    Platinum chemotherapeutic agents have been widely used in the treatment of cancer. Cisplatin was the first of the platinum based chemotherapeutic agents and therefore has been extensively studied as an anti-tumor agent since the late 1960s. Because this agent forms several DNA adducts, a highly sensitive and specific quantitative assay is needed to correlate the molecular dose of individual adducts with the effects of treatment. An ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for quantification of 1,2 guanine-guanine intrastrand cisplatin adducts [CP-d(GpG)], using 15N10 CP-d(GpG) as an internal standard, was developed. The internal standard was characterized by MS/MS and its concentration was validated by ICP-MS. Samples containing CP-d(GpG) in DNA were purified by enzyme hydrolysis , centrifugal filtration and HPLC with fraction collection prior to quantification by UPLC-MS/MS in the selective reaction monitoring (SRM) mode (m/z 412.5→248.1 for CP-d(GpG); m/z 417.5→253.1 for [15N10] CP-d(GpG)). Recovery of standards was >90% and quantification was unaffected by increasing concentrations of calf thymus DNA. This method utilizes 25 μg of DNA per injection. The limit of quantification was 3 fmol or 3.7 adducts per 108 nucleotides, which approaches the sensitivity of the 32P postlabeling method for this adduct. These data suggested that this method is suitable for in vitro and in vivo assessment of CP-d(GpG) adducts formed by cisplatin and carboplatin. Subsequently the method was applied to studies using ovarian carcinoma cell lines and C57/BL6 mice to illustrate that this method is capable of quantifying CP-d(GpG) adducts using biologically relevant systems and doses. The development of biomarkers to determine tissue-specific molecular dosimetry during treatment will lead to a more complete understanding of both therapeutic and adverse effects of cisplatin and carboplatin. This will support the refinement of therapeutic

  13. [Triplet expansion cytosine-guanine-guanine: Three cases of OMIM syndrome in the same family].

    PubMed

    González-Pérez, Jesús; Izquierdo-Álvarez, Silvia; Fuertes-Rodrigo, Cristina; Monge-Galindo, Lorena; Peña-Segura, José Luis; López-Pisón, Francisco Javier

    2016-04-01

    The dynamic increase in the number of triplet repeats of cytosine-guanine-guanine (CGG) in the FMR1 gene mutation is responsible for three OMIM syndromes with a distinct clinical phenotype: Fragile X syndrome (FXS) and two pathologies in adult carriers of the premutation (55-200 CGG repeats): Primary ovarian insufficiency (FXPOI) and tremor-ataxia syndrome (FXTAS) associated with FXS. CGG mutation dynamics of the FMR1 gene were studied in DNA samples from peripheral blood from the index case and other relatives of first, second and third degree by TP-PCR, and the percentage methylation. Diagnosis of FXS was confirmed in three patients (21.4%), eight patients (57.1%) were confirmed in the premutation range transmitters, one male patient with full mutation/permutation mosaicism (7.1%) and two patients (14.3%) with normal study. Of the eight permutated patients, three had FXPOI and one male patient had FXTAS. Our study suggests the importance of making an early diagnosis of SXF in order to carry out a family study and genetic counselling, which allow the identification of new cases or premutated patients with FMR1 gene- associated syndromes (FXTAS, FXPOI). Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  14. Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking

    PubMed Central

    Huang, Yunjie; Joshi, Smita; Xiang, Binggang; Kanaho, Yasunori; Li, Zhenyu; Bouchard, Beth A.; Moncman, Carole L.

    2016-01-01

    Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate–ribosylation factor 6 (Arf6) is a small guanosine triphosphate–binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)–labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function. PMID:26738539

  15. Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking.

    PubMed

    Huang, Yunjie; Joshi, Smita; Xiang, Binggang; Kanaho, Yasunori; Li, Zhenyu; Bouchard, Beth A; Moncman, Carole L; Whiteheart, Sidney W

    2016-03-17

    Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate-ribosylation factor 6 (Arf6) is a small guanosine triphosphate-binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)-labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function. © 2016 by The American Society of Hematology.

  16. Selective amplification of an mRNA and related pseudogene for a human ADP-ribosylation factor, a guanine nucleotide-dependent protein activator of cholera toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monaco, L.; Murtagh, J.J.; Newman, K.B.

    1990-03-01

    ADP-ribosylation factors (ARFs) are {approx}20-kDa proteins that act as GTP-dependent allosteric activators of cholera toxin. With deoxyinosine-containing degenerate oligonucleotide primers corresponding to conserved GTP-binding domains in ARFs, the polymerase chain reaction (PCR) was used to amplify simultaneously from human DNA portions of three ARF genes that include codons for 102 amino acids, with intervening sequences. Amplification products that differed in size because of differences in intron sizes were separated by agarose gel electrophoresis. One amplified DNA contained no introns and had a sequence different from those of known AFRs. Based on this sequence, selective oligonucleotide probes were prepared and usedmore » to isolate clone {Psi}ARF 4, a putative ARF pseudogene, from a human genomic library in {lambda} phage EMBL3. Reverse transcription-PCR was then used to clone from human poly(A){sup +} RNA the cDNA corresponding to the expressed homolog of {Psi}ARF 4, referred to as human ARF 4. It appears that {Psi}ARF 4 arose during human evolution by integration of processed ARF 4 mRNA into the genome. Human ARF 4 differs from previously identified mammalian ARFs 1, 2, and 3. Hybridization of ARF 4-specific oligonucleotide probes with human, bovine, and rat RNA revealed a single 1.8-kilobase mRNA, which was clearly distinguished from the 1.9-kilobase mRNA for ARF 1 in these tissues. The PCR provides a powerful tool for investigating diversity in this and other multigene families, especially with primers targeted at domains believed to have functional significance.« less

  17. MEKK1 is a Novel Regulator of the Dmp1-Arf-p53 Pathway and Prognostic Indicator in Breast Cancer

    DTIC Science & Technology

    2012-12-01

    hDMP1, INK4a/ARF, p53 or Hdm2 amplification. Kaplan -Meier analyses have been conducted to study the impact for the impact of loss or gain of each locus on...Palma P, Pellegrini S, Fina P et al. Mdm2 gene alterations and mdm2 protein expression in breast carcinomas. J Pathol 1995; 175: 31–38. 21 Turbin DA

  18. Ancient Complexity, Opisthokont Plasticity, and Discovery of the 11th Subfamily of Arf GAP Proteins

    PubMed Central

    Schlacht, Alexander; Mowbrey, Kevin; Elias, Marek; Kahn, Richard A.; Dacks, Joel B.

    2013-01-01

    The organelle paralogy hypothesis is one model for the acquisition of non-endosymbiotic organelles, generated from molecular evolutionary analyses of proteins encoding specificity in the membrane traffic system. GTPase Activating Proteins (GAPs) for the ADP-ribosylation factor (Arfs) GTPases are additional regulators of the kinetics and fidelity of membrane traffic. Here we describe molecular evolutionary analyses of Arf GAP protein family. Of the ten subfamilies previously defined in humans, we find that five were likely present in the Last Eukaryotic Common Ancestor (LECA). Of the three more recently derived subfamilies, one was likely present in the ancestor of opisthokonts (animals and fungi) and apusomonads (flagellates classified as the sister lineage to opisthokonts), while two arose in the holozoan lineage. We also propose to have identified a novel ancient subfamily (ArfGAPC2), present in diverse eukaryotes but which is lost frequently, including in the opisthokonts. Surprisingly few ancient domains accompanying the ArfGAP domain were identified, in marked contrast to the extensively decorated human Arf GAPs. Phylogenetic analyses of the subfamilies reveal patterns of single and multiple gene duplications specific to the Holozoa, to some degree mirroring evolution of Arf GAP targets, the Arfs. Conservation, and lack thereof, of various residues in the ArfGAP structure provide contextualization of previously identified functional amino acids and their application to Arf GAP biology in general. Overall, our results yield insights into current Arf GAP biology, reveal complexity in the ancient eukaryotic ancestor, and integrate the Arf GAP family into a proposed mechanism for the evolution of non-endosymbiotic organelles. PMID:23433073

  19. Endocytosis of hERG Is Clathrin-Independent and Involves Arf6

    PubMed Central

    Abuarab, Nada; Smith, Andrew J.; Hardy, Matthew E. L.; Elliott, David J. S.; Sivaprasadarao, Asipu

    2013-01-01

    The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. PMID:24392021

  20. The Opposing Roles of Nucleophosmin and the ARF Tumor Suppressor in Breast Cancer

    DTIC Science & Technology

    2007-04-01

    P ., R. K. Busch, B. C. Valdez, and H. Busch. 1996 . C23 interacts with B23, a putative nucleolar...beneficial anti-cancer activity of peptides in vivo. Injection of a peptide from the von Hippel -Lindau (VHL) tumor suppressor inhibited the growth and... 240 WT Arf -/- 1 2 3 4 5 0 C y to s o lic 3 H -M e th y l M e th io n in e c p m ( x 1 0 3 ) A 28S 18S WT chase (min): Arf -/- 120 240 120 240 N

  1. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis.

    PubMed

    Wu, Bei; Li, Yun-He; Wu, Jian-Yong; Chen, Qi-Zhu; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2011-06-01

    An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T(3) transgenic lines had about 20-30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).

  2. [Arf6, RalA and BIRC5 protein expression in non small cell lung cancer].

    PubMed

    Knizhnik, A V; Kovaleva, O B; Laktionov, K K; Mochal'nikova, V V; Komel'kov, A V; Chevkina, E M; Zborovskaia, I B

    2011-01-01

    Evaluation of tumor markers expression pattern which determines individual progression parameters is one of the major topics in molecular oncopathology research. This work presents research on expression analysis of several Ras-Ral associated signal transduction pathway proteins (Arf6, RalA and BIRC5) in accordance with clinical criteria in non small cell lung cancer patients. Using Western-blot analysis and RT-PCR Arf6, RalA and BIRC5 expression has been analyzed in parallel in 53 non small cell lung cancer samples of different origin. Arf6 protein expression was elevated in 55% non small cell lung cancer tumor samples in comparison with normal tissue. In the group of squamous cell lung cancer Arf6 expression elevation was observed more often. RalA protein expression was decreased in comparison to normal tissue samples in 64% of non small cell lung cancer regardless to morphological structure. Correlation between RalA protein expression decrease and absence of regional metastases was revealed for squamous cell lung cancer. BIRC5 protein expression in tumor samples versus corresponding normal tissue was 1.3 times more often elevated in the squamous cell lung cancer group (in 76% tumor samples). At the same time elevation of BIRC5 expression was fixed only in 63% of adenocarcinoma tumor samples. A statistically significant decrease (p = 0.0158) of RalA protein expression and increase (p = 0.0498) of Arf6 protein expression in comparison with normal tissue was found for T1-2N0M0 and T1-2N1-2M0 groups of squamous cell lung cancer correspondingly.

  3. ARF1·GTP, Tyrosine-based Signals, and Phosphatidylinositol 4,5-Bisphosphate Constitute a Minimal Machinery to Recruit the AP-1 Clathrin Adaptor to Membranes

    PubMed Central

    Crottet, Pascal; Meyer, Daniel M.; Rohrer, Jack; Spiess, Martin

    2002-01-01

    At the trans-Golgi network, clathrin coats containing AP-1 adaptor complexes are formed in an ARF1-dependent manner, generating vesicles transporting cargo proteins to endosomes. The mechanism of site-specific targeting of AP-1 and the role of cargo are poorly understood. We have developed an in vitro assay to study the recruitment of purified AP-1 adaptors to chemically defined liposomes presenting peptides corresponding to tyrosine-based sorting motifs. AP-1 recruitment was found to be dependent on myristoylated ARF1, GTP or nonhydrolyzable GTP-analogs, tyrosine signals, and small amounts of phosphoinositides, most prominently phosphatidylinositol 4,5-bisphosphate, in the absence of any additional cytosolic or membrane bound proteins. AP-1 from cytosol could be recruited to a tyrosine signal independently of the lipid composition, but the rate of recruitment was increased by phosphatidylinositol 4,5-bisphosphate. The results thus indicate that cargo proteins are involved in coat recruitment and that the local lipid composition contributes to specifying the site of vesicle formation. PMID:12388765

  4. Alterations in RDINK4/ARF-mediated en bloc regulation of the INK4-ARF locus in human squamous cell carcinoma of the head and neck

    PubMed Central

    Poi, Ming J.; Knobloch, Thomas J.; Sears, Marta T.; Warner, Blake M.; Uhrig, Lana K.; Weghorst, Christopher M.; Li, Junan

    2014-01-01

    The presence of RDINK4/ARF (RD) enhancer in the INK4-ARF locus provides a novel mechanism to simultaneously increase the transcription of p15INK4b (p15), p14ARF (p14), and p16INK4a (p16). While such up-regulation can be repressed through interactions between RD and oncoproteins CDC6 and BMI1, little is known about the involvement of RD in cancer. In this study we investigated RD deletions in 30 squamous cell carcinoma of the head and neck (SCCHN) and the patient-matched High At-Risk Mucosa specimens (HARM, “phenotypically normal” tissues neighboring SCCHN foci but beyond the surgical resection margin). RD was deleted (homozygously/heterozygously) in SCCHN and HARM at the incidence of 36.7% (11/30) and 13.3% (4/30), respectively. In comparison, no RD deletion was detected in 26 oral buccal brush biopsy specimens from healthy donors. Both p16 and p14 were lowly expressed in SCCHN and HARM, and their mRNA expression levels were positively associated with each other (p<0.01). Moreover, BMI1 was highly expressed in both SCCHN and HARM, and BMI1 over-expression was associated with p16 down-regulation in SCCHN (p<0.05). These results indicate that RD deletion and BMI1 overexpression frequently occur in the early stage of oral carcinogenesis and BMI1 overexpression may down-regulate the transcription of p16 and p14 through interfering with RD. PMID:24302590

  5. Role of a guanine nucleotide-binding protein in. cap alpha. /sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornett, L.E.; Norris, J.S.

    1987-11-01

    In this study the mechanisms involved in ..cap alpha../sub 1/-adrenergic receptor-mediated Ca/sup 2 +/ mobilization at the level of the plasma membrane were investigated. Stimulation of /sup 45/Ca/sup 2 +/ efflux from saponin-permeabilized DDT/sub 1/ MF-2 cells was observed with the addition of either the ..cap alpha../sub 1/-adrenergic agonist phenylephrine and guanosine-5'-triphosphate or the nonhydrolyzable guanine nucleotide guanylyl-imidodiphosphate. In the presence of (/sup 32/P) NAD, pertussis toxin was found to catalyze ADP-ribosylation of a M/sub r/ = 40,500 (n = 8) peptide in membranes prepared from DDT/sub 1/, MF-2 cells, possibly the ..cap alpha..-subunit of N/sub i/. However, stimulation ofmore » unidirectional /sup 45/Ca/sup 2 +/ efflux by phenylephrine was not affected by previous treatment of cells with 100 ng/ml pertussis toxin. These data suggest that the putative guanine nucleotide-binding protein which couples the ..cap alpha../sub 1/-adrenergic receptor to Ca/sup 2 +/ mobilization in DDT/sub 1/ MF-2 cells is not a pertussis toxin substrate and may possibly be an additional member of guanine nucleotide binding protein family.« less

  6. Pathogenesis of Persistent Hyperplastic Primary Vitreous in Mice Lacking the Arf Tumor Suppressor Gene

    PubMed Central

    Martin, Amy C.; Thornton, J. Derek; Liu, Jiewiu; Wang, XiaoFei; Zuo, Jian; Jablonski, Monica M.; Chaum, Edward; Zindy, Frederique; Skapek, Stephen X.

    2006-01-01

    Purpose Persistent hyperplastic primary vitreous (PHPV) is an idiopathic developmental eye disease associated with failed involution of the hyaloid vasculature. The present work addressed the pathogenesis of PHPV in a mouse model that replicates many aspects of the human disease. Methods Ophthalmoscopic and histologic analyses documented pathologic processes in eyes of mice lacking the Arf gene compared with Ink4a-deficient and wild-type control animals. Immunohistochemical staining, in situ hybridization, and RT-PCR demonstrated the expression of relevant gene products. Arf gene expression was determined by in situ hybridization using wholemounts of wild-type mouse eyes and by immunofluorescence staining for green fluores-cent protein (GFP) in Arf+/GFP heterozygous knock-in mouse eyes. Results Abnormalities in Arf−/− mice mimicked those found in patients with severe PHPV. The mice had microphthalmia; fibrovascular, retrolental tissue containing retinal pigment epithelial cells and remnants of the hyaloid vascular system; posterior lens capsule destruction with lens degeneration and opacity; and severe retinal dysplasia and detachment. Eyes of mice lacking the overlapping Ink4a gene were normal. Arf was selectively expressed in perivascular cells within the vitreous of the postnatal eye. Cells composing the retrolental mass in Arf−/− mice expressed the Arf promoter. The remnant hyaloid vessels expressed Flk-1. Its ligand, vascular endothelial growth factor (Vegf), was expressed in the retrolental tissue and the adjacent dysplastic neuroretina. Conclusions Arf−/− mice have features that accurately mimic severe PHPV. In the HVS, Arf expression in perivascular cells may block their accumulation or repress Vegf expression to promote HVS involution and prevent PHPV. PMID:15452040

  7. Spectral characterization of guanine C4-OH adduct: a radiation and quantum chemical study.

    PubMed

    Phadatare, Suvarna D; Sharma, Kiran Kumar K; Rao, B S M; Naumov, S; Sharma, Geeta K

    2011-11-24

    The reaction of hydroxyl radical ((•)OH) with guanine was investigated under restricted pH condition (pH 4.6) using pulse radiolysis technique. The time-resolved optical transient absorption spectra showed two peaks centered at 300 and 330 nm at 4 μs after the pulse which exhibited different reactivity toward molecular oxygen (O(2)). The peak at 300 nm was found to be relatively more stable than the peak at 330 nm. The peak corresponding to 330 nm decayed within 20 μs having a first order rate constant 4-7 × 10(4) s(-1) and was pH dependent. On longer time scale, the species decayed by a bimolecular process. The presence of O(2) did not affect its decay rate constant. The (•)OH reacts with guanine at pH 4.6 with a diffusion-controlled second order rate constant of ≥1 × 10(10) mol(-1) dm(3) s(-1). The reaction of Br(2)(•-), O(2)(•-), and 2-hydroxy-2-propyl radical with guanine was also investigated to differentiate among the one-electron oxidized, one-electron reduced species of guanine and the guanine-OH adducts formed in the reaction of (•)OH at pH 4.6. On the basis of the spectral characteristics and reactivity toward O(2), two guanine-OH adduct species were identified (i) the C4-OH adduct species absorbing at 330 nm which has not been reported so far and (ii) the C8-OH adduct species absorbing at 300 nm in agreement with the known literature absorption features. Quantum chemical calculations using BHandHLYP with 6-31+G(d,p) basis set and excited state calculations using TDDFT for all possible transients complement the assignment of the observed spectral peak at 330 nm to the C4-OH adduct of guanine. Furthermore, steady state radiolysis revealed the formation of 8-hydroxy-guanine whose precursor is known to be the C8-OH adduct species. © 2011 American Chemical Society

  8. Vesicular transport protein Arf6 modulates cytoskeleton dynamics for polar body extrusion in mouse oocyte meiosis.

    PubMed

    Duan, Xing; Zhang, Hao-Lin; Pan, Meng-Hao; Zhang, Yu; Sun, Shao-Chen

    2018-02-01

    Arf6 (ADP-ribosylation factor 6) is known to play important roles in membrane dynamics through the regulation of actin filament reorganization for multiple cellular processes such as cytokinesis, phagocytosis, cell migration and tumor cell invasion. However, the functions of Arf6 in mammalian oocyte meiosis have not been clarified. In present study we showed that Arf6 expressed in mouse oocytes and was mainly distributed around the spindle during meiosis. Depletion of Arf6 by morpholino microinjection caused oocytes failing to extrude first polar body. Further analysis indicated that Arf6 knock down caused the aberrant actin distribution, which further induced the failure of meiotic spindle movement. And the loss of oocyte polarity also confirmed this. The regulation of Arf6 on actin filaments in mouse oocytes might be due to its effects on the phosphorylation level of cofilin and the expression of Arp2/3 complex. Moreover, we found that the decrease of Arf6 caused the disruption of spindle formation, indicating the multiple roles of Arf6 on cytoskeleton dynamics in meiosis. In summary, our results indicated that Arf6 was involved in mouse oocyte meiosis through its functional roles in actin-mediated spindle movement and spindle organization. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Increased Arf/p53 activity in stem cells, aging and cancer.

    PubMed

    Carrasco-Garcia, Estefania; Moreno, Manuel; Moreno-Cugnon, Leire; Matheu, Ander

    2017-04-01

    Arf/p53 pathway protects the cells against DNA damage induced by acute stress. This characteristic is the responsible for its tumor suppressor activity. Moreover, it regulates the chronic type of stress associated with aging. This is the basis of its anti-aging activity. Indeed, increased gene dosage of Arf/p53 displays elongated longevity and delayed aging. At a cellular level, it has been recently shown that increased dosage of Arf/p53 delays age-associated stem cell exhaustion and the subsequent decline in tissue homeostasis and regeneration. However, p53 can also promote aging if constitutively activated. In this context, p53 reduces tissue regeneration, which correlates with premature exhaustion of stem cells. We discuss here the current evidence linking the Arf/p53 pathway to the processes of aging and cancer through stem cell regulation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Oxidized Guanine Base Lesions Function in 8-Oxoguanine DNA Glycosylase-1-mediated Epigenetic Regulation of Nuclear Factor κB-driven Gene Expression*

    PubMed Central

    Pan, Lang; Hao, Wenjing; Ba, Xueqing

    2016-01-01

    A large percentage of redox-responsive gene promoters contain evolutionarily conserved guanine-rich clusters; guanines are the bases most susceptible to oxidative modification(s). Consequently, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the most abundant base lesions in promoters and is primarily repaired via the 8-oxoguanine DNA glycosylase-1 (OOG1)-initiated base excision repair pathway. In view of a prompt cellular response to oxidative challenge, we hypothesized that the 8-oxoG lesion and the cognate repair protein OGG1 are utilized in transcriptional gene activation. Here, we document TNFα-induced enrichment of both 8-oxoG and OGG1 in promoters of pro-inflammatory genes, which precedes interaction of NF-κB with its DNA-binding motif. OGG1 bound to 8-oxoG upstream from the NF-κB motif increased its DNA occupancy by promoting an on-rate of both homodimeric and heterodimeric forms of NF-κB. OGG1 depletion decreased both NF-κB binding and gene expression, whereas Nei-like glycosylase-1 and -2 had a marginal effect. These results are the first to document a novel paradigm wherein the DNA repair protein OGG1 bound to its substrate is coupled to DNA occupancy of NF-κB and functions in epigenetic regulation of gene expression. PMID:27756845

  11. Improved therapeutic effectiveness by combining recombinant p14(ARF) with antisense complementary DNA of EGFR in laryngeal squamous cell carcinoma.

    PubMed

    Liu, Feng; Du, JinTao; Xian, Junming; Liu, Yafeng; Liu, Shixi; Lin, Yan

    2015-01-01

    The tumor suppressor p14(ARF) and proto-oncogene epidermal growth factor receptor (EGFR) play important roles in the development of laryngeal squamous cell carcinoma (LSCC). This study was aimed to determine whether combining recombinant p14(ARF) with antisense complementary DNA of EGFR could improve the therapeutic effectiveness in LSCC. After human larynx cancer cells (Hep-2) were infected with recombinant adenoviruses (Ad-p14(ARF) and Ad-antisense EGFR) together or alone in vitro, the proliferation and cell cycle distribution of Hep-2 cells were detected by MTT assay and flow cytometer analysis, respectively. Furthermore, the antitumor effects of recombinant adenoviruses together or alone on Hep-2 xenografts were examined in vivo. The levels of p14(ARF) and EGFR expressed in Hep-2 cells and xenografts were determined by western blot assay. Ad-p14(ARF) combining with Ad-antisense EGFR markedly inhibited the Hep-2 proliferation compared with alone (P=0.001, P=0.002 respectively). Combination of Ad-p14(ARF) and Ad-antisense EGFR led to the proportion of Hep-2 cells in G0/G1 phases increased by up to 86.9%. The down-expression of EGFR protein and overexpression of p14(ARF) protein were observed in vitro and in vivo, and this effect was preserved when Ad-p14(ARF) was combined with Ad-antisense EGFR. Besides, Ad-p14(ARF) plus Ad-antisense EGFR significantly (P<0.05) increased the antitumor activity against Hep-2 tumor xenografts comparing with Ad-p14(ARF) or Ad-antisense EGFR alone. Combination Ad-p14(ARF) with Ad-antisense EGFR significantly increased the antitumor responses in LSCC. An effectively potential gene therapy to prevent proliferation of LSCC was provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15.

    PubMed

    Inoue, Satoshi; Hao, Zhenyue; Elia, Andrew J; Cescon, David; Zhou, Lily; Silvester, Jennifer; Snow, Bryan; Harris, Isaac S; Sasaki, Masato; Li, Wanda Y; Itsumi, Momoe; Yamamoto, Kazuo; Ueda, Takeshi; Dominguez-Brauer, Carmen; Gorrini, Chiara; Chio, Iok In Christine; Haight, Jillian; You-Ten, Annick; McCracken, Susan; Wakeham, Andrew; Ghazarian, Danny; Penn, Linda J Z; Melino, Gerry; Mak, Tak W

    2013-05-15

    Tumorigenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation, apoptosis, and/or senescence. Many gene products involved in these processes are substrates of the E3 ubiquitin ligase Mule/Huwe1/Arf-BP1 (Mule), but whether Mule acts as an oncogene or tumor suppressor in vivo remains controversial. We generated K14Cre;Mule(flox/flox(y)) (Mule kKO) mice and subjected them to DMBA/PMA-induced skin carcinogenesis, which depends on oncogenic Ras signaling. Mule deficiency resulted in increased penetrance, number, and severity of skin tumors, which could be reversed by concomitant genetic knockout of c-Myc but not by knockout of p53 or p19Arf. Notably, in the absence of Mule, c-Myc/Miz1 transcriptional complexes accumulated, and levels of p21CDKN1A (p21) and p15INK4B (p15) were down-regulated. In vitro, Mule-deficient primary keratinocytes exhibited increased proliferation that could be reversed by Miz1 knockdown. Transfer of Mule-deficient transformed cells to nude mice resulted in enhanced tumor growth that again could be abrogated by Miz1 knockdown. Our data demonstrate in vivo that Mule suppresses Ras-mediated tumorigenesis by preventing an accumulation of c-Myc/Miz1 complexes that mediates p21 and p15 down-regulation.

  13. Capturing Transient Endoperoxide in the Singlet Oxygen Oxidation of Guanine.

    PubMed

    Lu, Wenchao; Liu, Jianbo

    2016-02-24

    The chemistry of singlet O2 toward the guanine base of DNA is highly relevant to DNA lesion, mutation, cell death, and pathological conditions. This oxidative damage is initiated by the formation of a transient endoperoxide through the Diels-Alder cycloaddition of singlet O2 to the guanine imidazole ring. However, no endoperoxide formation was directly detected in native guanine or guanosine, even at -100 °C. Herein, gas-phase ion-molecule scattering mass spectrometry was utilized to capture unstable endoperoxides in the collisions of hydrated guanine ions (protonated or deprotonated) with singlet O2 at ambient temperature. Corroborated by results from potential energy surface exploration, kinetic modeling, and dynamics simulations, various aspects of endoperoxide formation and transformation (including its dependence on guanine ionization and hydration states, as well as on collision energy) were determined. This work has pieced together reaction mechanisms, kinetics, and dynamics data concerning the early stage of singlet O2 induced guanine oxidation, which is missing from conventional condensed-phase studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Design and synthesis of novel adenine fluorescence probe based on Eu(III) complexes with dtpa-bis(guanine) ligand

    NASA Astrophysics Data System (ADS)

    Tian, Fengyun; Jiang, Xiaoqing; Dou, Xuekai; Wu, Qiong; Wang, Jun; Song, Youtao

    2017-05-01

    A novel adenine (Ad) fluorescence probe (EuIII-dtpa-bis(guanine)) was designed and synthesized by improving experimental method based on the Eu(III) complex and dtpa-bis(guanine) ligand. The dtpa-bis(guanine) ligand was first synthesized by the acylation action between dtpaa and guanine (Gu), and the corresponding Eu(III) complex was successfully prepared through heat-refluxing method with dtpa-bis(guanine) ligand. As a novel fluorescence probe, the EuIII-dtpa-bis(guanine) complex can detect adenine (Ad) with characteristics of strong targeting, high specificity and high recognition ability. The detection mechanism of the adenine (Ad) using this probe in buffer solution was studied by ultraviolet-visible (UV-vis) and fluorescence spectroscopy. When the EuIII-dtpa-bis(guanine) was introduced to the adenine (Ad) solution, the fluorescence emission intensity was significantly enhanced. However, adding other bases such as guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) with similar composition and structure to that of adenine (Ad) to the EuIII-dtpa-bis(guanine) solution, the fluorescence emission intensities are nearly invariable. Meanwhile, the interference of guanine (Gu), xanthine (Xa), hypoxanthine (Hy) and uric acid (Ur) on the detection of the adenine using EuIII-dtpa-bis(guanine) probe was also studied. It was found that presence of these bases does not affect the detection of adenine (Ad). A linear response of fluorescence emission intensities of EuIII-dtpa-bis(guanine) at 570 nm as a function of adenine (Ad) concentration in the range of 0.00-5.00 × 10- 5 mol L- 1 was observed. The detection limit is about 4.70 × 10- 7 mol L- 1.

  15. Genome-Wide Identification, Phylogeny, and Expression Analysis of ARF Genes Involved in Vegetative Organs Development in Switchgrass.

    PubMed

    Wang, Jianli; Wu, Zhenying; Shen, Zhongbao; Bai, Zetao; Zhong, Peng; Ma, Lichao; Pan, Duofeng; Zhang, Ruibo; Li, Daoming; Zhang, Hailing; Fu, Chunxiang; Han, Guiqing; Guo, Changhong

    2018-01-01

    Auxin response factors (ARFs) have been reported to play vital roles during plant growth and development. In order to reveal specific functions related to vegetative organs in grasses, an in-depth study of the ARF gene family was carried out in switchgrass ( Panicum virgatum L.), a warm-season C4 perennial grass that is mostly used as bioenergy and animal feedstock. A total of 47 putative ARF genes ( PvARFs ) were identified in the switchgrass genome (2n = 4x = 36), 42 of which were anchored to the seven pairs of chromosomes and found to be unevenly distributed. Sixteen PvARFs were predicted to be potential targets of small RNAs (microRNA160 and 167). Phylogenetically speaking, PvARFs were divided into seven distinct subgroups based on the phylogeny, exon/intron arrangement, and conserved motif distribution. Moreover, 15 pairs of PvARFs have different temporal-spatial expression profiles in vegetative organs (2nd, 3rd, and 4th internode and leaves), which implies that different PvARFs have specific functions in switchgrass growth and development. In addition, at least 14 pairs of PvARFs respond to naphthylacetic acid (NAA) treatment, which might be helpful for us to study on auxin response in switchgrass. The comprehensive analysis, described here, will facilitate the future functional analysis of ARF genes in grasses.

  16. C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions.

    PubMed

    Mohanan, Vishnu; Nakata, Toru; Desch, A Nicole; Lévesque, Chloé; Boroughs, Angela; Guzman, Gaelen; Cao, Zhifang; Creasey, Elizabeth; Yao, Junmei; Boucher, Gabrielle; Charron, Guy; Bhan, Atul K; Schenone, Monica; Carr, Steven A; Reinecker, Hans-Christian; Daly, Mark J; Rioux, John D; Lassen, Kara G; Xavier, Ramnik J

    2018-03-09

    Polymorphisms in C1orf106 are associated with increased risk of inflammatory bowel disease (IBD). However, the function of C1orf106 and the consequences of disease-associated polymorphisms are unknown. Here we demonstrate that C1orf106 regulates adherens junction stability by regulating the degradation of cytohesin-1, a guanine nucleotide exchange factor that controls activation of ARF6. By limiting cytohesin-1-dependent ARF6 activation, C1orf106 stabilizes adherens junctions. Consistent with this model, C1orf106 -/- mice exhibit defects in the intestinal epithelial cell barrier, a phenotype observed in IBD patients that confers increased susceptibility to intestinal pathogens. Furthermore, the IBD risk variant increases C1orf106 ubiquitination and turnover with consequent functional impairments. These findings delineate a mechanism by which a genetic polymorphism fine-tunes intestinal epithelial barrier integrity and elucidate a fundamental mechanism of cellular junctional control. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. ArfB links protein lipidation and endocytosis to polarized growth of Aspergillus nidulans

    PubMed Central

    Lee, Soo Chan

    2008-01-01

    Aspergillus nidulans undergoes polarized hyphal growth during the majority of its life cycle. Regulatory mechanisms for hyphal polarity have been intensively investigated in a variety of filamentous fungi. Two important cellular processes, which have received recent attention, include protein myristoylation and endocytosis. It is clear that protein myristoylation is essential for polarity establishment because germinating A. nidulans conidia lost polarity in the presence of cerulenin, a lipid metabolism inhibitor and in an N-myristoyl transferase mutant background. Only 41 predicted proteins encoded by A. nidulans posses an N-myristoylation motif, one of which is ADP ribosylation factor B (ArfB). Disruption of ArfB leads to failure of polarity establishment and maintenance during early morphogenesis and in a delay in endocytosis. Therefore, ArfB connects N-myristoylation and endocytosis to polarized growth. Exocytotic vesicle trafficking through the Spitzenkörper may also require Arf proteins in their role in vesicle formation. Taken together, ArfB is one of the important key components for the fungal hyphal growth. PMID:19704790

  18. Isolation of cucumber CsARF cDNAs and expression of the corresponding mRNAs during gravity-regulated morphogenesis of cucumber seedlings

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yamasaki, S.; Fujii, N.; Hagen, G.; Guilfoyle, T.; Takahashi, H.

    Cucumber seedlings grown in a horizontal position develop a protuberance called peg on the lower side of the transition zone between the hypocotyl and the root. We have suggested that peg formation on the upper side of the gravistimulated transition zone is suppressed because cucumber seedlings grown in a vertical position or microgravity symmetrically develop two pegs on the transition zone. Plant hormone, auxin, is considered to play a crucial role in the gravity-regulated formation of peg. We have shown that the mRNAs of auxin-inducible genes (CsIAAs) isolated from cucumber accumulate more abundantly in the lower side of the transition zone than in the upper side when peg formation initiates. To reveal the mechanism of transcriptional regulation by auxin for peg formation, we isolated five cDNAs of Auxin Response Factors (ARFs) from cucumber and compared their mRNA accumulation with those of CsIAA1 and CsIAA2. The tissue specificity of mRNA accumulation of CsARF2 was similar to those of CsIAA1 and CsIAA2. The structural character of CsARF2 predicts it is transcriptional activator. These results suggest that CsARF2 may be involved in activation of the transcription of auxin-inducible genes including CsIAA1 for peg formation. Because mRNA accumulation of five CsARFs, including CsARF2, were affected by neither gravity nor auxin, transcriptional activity of CsARF2 may be regulated at post-transcriptional level to induce asymmetric mRNA accumulation of auxin-inducible genes in the transition zone.

  19. p14(ARF) nuclear overexpression in aggressive B-cell lymphomas is a sensor of malfunction of the common tumor suppressor pathways.

    PubMed

    Sánchez-Aguilera, Abel; Sánchez-Beato, Margarita; García, Juan F; Prieto, Ignacio; Pollan, Marina; Piris, Miguel A

    2002-02-15

    p14(ARF), the alternative product from the human INK4a/ARF locus, antagonizes Hdm2 and mediates p53 activation in response to oncogenic stimuli. An immunohistochemical study of p14(ARF) expression in 74 samples of aggressive B-cell lymphomas was performed, demonstrating an array of different abnormalities. A distinct nucleolar expression pattern was detected in nontumoral tissue and a subset of lymphomas (50/74). In contrast, a group of cases (8/74) showed absence of p14(ARF) expression, dependent either on promoter hypermethylation or gene loss. Additionally, 16 out of 74 cases displayed an abnormal nuclear p14(ARF) overexpression not confined to the nucleoli, as confirmed by confocal microscopy, and that was associated with high levels of p53 and Hdm2. A genetic study of these cases failed to show any alteration in the p14(ARF) gene, but revealed the presence of p53 mutations in over 50% of these cases. An increased growth fraction and a more aggressive clinical course, with a shortened survival time, also characterized the group of tumors with p14(ARF) nuclear overexpression. Moreover, this p14(ARF) expression pattern was more frequent in tumors displaying accumulated alterations in the p53, p16(INK4a), and p27(KIP1) tumor supressors. These observations, together with the consideration of the central role of p14(ARF) in cell cycle control, suggest that p14(ARF) abnormal nuclear overexpression is a sensor of malfunction of the major cell cycle regulatory pathways, and consequently a marker of a high tumor aggressivity.

  20. Oxidation kinetics of guanine in DNA molecules adsorbed onto indium tin oxide electrodes.

    PubMed

    Armistead, P M; Thorp, H H

    2001-02-01

    Oligonucleotides containing the guanine nucleobase were adsorbed onto ITO electrodes from mixtures of DMF and acetate buffer. Chronocoulometry and chronoamperometry were performed on the modified electrodes in both phosphate buffer and buffer containing low concentrations of the inorganic complex Ru(bpy)3(2+) (bpy = 2,2' bipyridine), which catalyzes guanine oxidation. The charge and current evolution with and without the catalyst were compared to the charge and current evolution for electrodes that were treated with identical oligonucleotides that were substituted at every guanine with the electrochemically inert nucleobase hypoxanthine. Chronocoulometry over 2.5 s shows that roughly 2 electrons per guanine were transferred to the electrode in both the presence and absence of Ru(bpy)3(2+), although at a slower rate for the uncatalyzed process. Chronoamperograms measured over 250 ms can be fit to a double exponential decay, with the intensity of the fast component roughly 6-20 times greater than that of the slow component. First- and second-order rate constants for catalytic and direct guanine oxidation were determined from the fast component. The maximum catalytic enhancement for immobilized guanine was found to be i(cat)/i(d) = 4 at 25 microM Ru(bpy)3(2+). The second-order rate constant for the catalyzed reaction was 1.3 x 10(7) M(-1) s(-1), with an apparent dissociation constant of 8.8 microM. When compared to parallel studies in solution, a smaller value of the dissociation constant and a larger value of the second-order rate constant are observed, probably due to distortion of the immobilized DNA, an increase in the local negative charge due to the oxygen sites on the ITO surface, and redox cycling of the catalyst, which maintains the surface concentration of the active form.

  1. Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2007-07-01

    The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.

  2. ADP-Ribosylation Factor 6 and a Functional PIX/p95-APP1 Complex Are Required for Rac1B-mediated Neurite Outgrowth

    PubMed Central

    Albertinazzi, Chiara; Za, Lorena; Paris, Simona; de Curtis, Ivan

    2003-01-01

    The mechanisms coordinating adhesion, actin organization, and membrane traffic during growth cone migration are poorly understood. Neuritogenesis and branching from retinal neurons are regulated by the Rac1B/Rac3 GTPase. We have identified a functional connection between ADP-ribosylation factor (Arf) 6 and p95-APP1 during the regulation of Rac1B-mediated neuritogenesis. P95-APP1 is an ADP-ribosylation factor GTPase-activating protein (ArfGAP) of the GIT family expressed in the developing nervous system. We show that Arf6 has a predominant role in neurite extension compared with Arf1 and Arf5. Cotransfection experiments indicate a specific and cooperative potentiation of neurite extension by Arf6 and the carboxy-terminal portion of p95-APP1. Localization studies in neurons expressing different p95-derived constructs show a codistribution of p95-APP1 with Arf6, but not Arf1. Moreover, p95-APP1–derived proteins with a mutated or deleted ArfGAP domain prevent Rac1B-induced neuritogenesis, leading to PIX-mediated accumulation at large Rab11-positive endocytic vesicles. Our data support a role of p95-APP1 as a specific regulator of Arf6 in the control of membrane trafficking during neuritogenesis. PMID:12686588

  3. ADP-ribosylation factor arf6p may function as a molecular switch of new end take off in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Atsushi

    2008-02-01

    Small GTPases act as molecular switches in a wide variety of cellular processes. In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from a monopolar manner to a bipolar manner, which is known as 'New End Take Off' (NETO). Here I report the identification of a gene, arf6{sup +}, encoding an ADP-ribosylation factor small GTPase, that may be essential for NETO. arf6{delta} cells completely fail to undergo NETO. arf6p localizes at both cell ends and presumptive septa in a cell-cycle dependent manner. And its polarized localization is not dependent on microtubules, actin cytoskeletons and some NETO factors (bud6p,more » for3p, tea1p, tea3p, and tea4p). Notably, overexpression of a fast GDP/GTP-cycling mutant of arf6p can advance the timing of NETO. These findings suggest that arf6p functions as a molecular switch for the activation of NETO in fission yeast.« less

  4. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    PubMed

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  5. Role of the ARF Tumor Suppressor in Prostate Cancer

    DTIC Science & Technology

    2005-10-01

    found that ARF expression is absence from highly proliferative prostate adenocarcinomas and this correlates with the increased expression of the p53...prostate is unknown. The preliminary data for my orginal proposal indicated that prostate adenocarcinomas typically maintain wild type p53 (97%), but...independent mechanisms to regulate prostate cell proliferation. Table 1. Protein Expression in Prostate Adenocarcinomas Human prostate tissue samples

  6. Human Krüppel-related 3 (HKR3) Is a Novel Transcription Activator of Alternate Reading Frame (ARF) Gene*

    PubMed Central

    Yoon, Jae-Hyeon; Choi, Won-Il; Jeon, Bu-Nam; Koh, Dong-In; Kim, Min-Kyeong; Kim, Myung-Hwa; Kim, Jungho; Hur, Sujin Susanne; Kim, Kyung-Sup; Hur, Man-Wook

    2014-01-01

    HKR3 (Human Krüppel-related 3) is a novel POK (POZ-domain Krüppel-like zinc-finger) family transcription factor. Recently, some of the POK (POZ-domain Krüppel-like zinc finger) family proteins have been shown to play roles in cell cycle arrest, apoptosis, cell proliferation, and oncogenesis. We investigated whether HKR3, an inhibitor of cell proliferation and an uncharacterized POK family protein, could regulate the cell cycle by controlling expression of genes within the p53 pathway (ARF-MDM2-TP53-p21WAF/CDKN1A). HKR3 potently activated the transcription of the tumor suppressor gene ARF by acting on the proximal promoter region (bp, −149∼+53), which contains Sp1 and FBI-1 binding elements (FREs). HKR3 interacted with the co-activator p300 to activate ARF transcription, which increased the acetylation of histones H3 and H4 within the proximal promoter. Oligonucleotide pull-down assays and ChIP assays revealed that HKR3 interferes with the binding of the proto-oncogenic transcription repressor FBI-1 to proximal FREs, thus derepressing ARF transcription. PMID:24382891

  7. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides.

  8. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  9. The Opposing Roles of Nucleophosmin and the ARF Tumor Suppressor in Breast Cancer

    DTIC Science & Technology

    2006-04-01

    born to be weak. Trends Cell Biol. 15:121–124. 26. Li, Y. P ., R. K. Busch, B. C. Valdez, and H. Busch. 1996 . C23 interacts with B23, a putative...peptides in vivo. Injection of a peptide from the von Hippel -Lindau (VHL) tumor suppressor inhibited the growth and invasiveness of renal tumor...NPM IB: NPM IB: p19ARF 1° 2° 3° 4° 5° s up er na ta nt 2 5 % i n p u t 28S 18S WT Arf -/- 120 240 120 240chase (min) N C N CN C N C

  10. Coupling of guanine nucleotide inhibitory protein to somatostatin receptors on pancreatic acinar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, C.; Matozaki, T.; Nagao, M.

    1987-09-01

    Guanine nucleotides and pertussis toxin were used to investigate whether somatostatin receptors interact with the guanine nucleotide inhibitory protein (NI) on pancreatic acinar membranes in the rat. Guanine nucleotides reduced /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes up to 80%, with rank order of potency being 5'-guanylyl imidodiphosphate (Gpp(NH)p)>GTP>TDP>GMP. Scatchard analysis revealed that the decrease in somatostatin binding caused by Gpp(NH)p was due to the decrease in the maximum binding capacity without a significant change in the binding affinity. The inhibitory effect of Gpp(NH)p was partially abolished in the absence of Mg/sup 2 +/. When pancreatic acini were treated withmore » 1 ..mu..g/ml pertussis toxin for 4 h, subsequent /sup 125/I-(Tyr/sup 1/)somatostatin binding to acinar membranes was reduced. Pertussis toxin treatment also abolished the inhibitory effect of somatostatin on vasoactive intestinal peptide-stimulated increase in cellular content of adenosine 3',5'-cyclic monophosphate (cAMP) in the acini. The present results suggest that 1) somatostatin probably functions in the pancreas to regulate adenylate cyclase enzyme system via Ni, 2) the extent of modification of Ni is correlated with the ability of somatostatin to inhibit cAMP accumulation in acini, and 3) guanine nucleotides also inhibit somatostatin binding to its receptor.« less

  11. Cloning and expression of the hypoxanthine-guanine phosphoribosyltransferase gene from Trypanosoma brucei.

    PubMed Central

    Allen, T E; Ullman, B

    1993-01-01

    The hypoxanthine-guanine phosphoribosyltransferase (HGPRT) enzyme of Trypanosoma brucei and related parasites provides a rational target for the treatment of African sleeping sickness and several other parasitic diseases. To characterize the T. brucei HGPRT enzyme in detail, the T. brucei hgprt was isolated within a 4.2 kb SalI-KpnI genomic insert and sequenced. Nucleotide sequence analysis revealed an open reading frame of 630 bp that encoded a protein of 210 amino acids with a M(r) = 23.4 kd. After gap alignment, the T. brucei HGPRT exhibited 21-23% amino acid sequence identity, mostly in three clustered regions, with the HGPRTs from human, S. mansoni, and P falciparum, indicating that the trypanosome enzyme was the most divergent of the group. Surprisingly, the T. brucei HGPRT was more homologous to the hypoxanthine phosphoribosyltransferase (HPRT) from the prokaryote V. harveyi than to the eukaryotic HGPRTs. Northern blot analysis revealed two trypanosome transcripts of 1.4 and 1.9 kb, each expressed to equivalent degrees in insect vector and mammalian forms of the parasite. The T. brucei hgprt was inserted into an expression plasmid and transformed into S phi 606 E. coli that are deficient in both HPRT and xanthine-guanine phosphoribosyltransferase activities. Soluble, enzymatically active recombinant T. brucei HGPRT was expressed to high levels and purified to homogeneity by GTP-agarose affinity chromatography. The purified recombinant enzyme recognized hypoxanthine, guanine, and allopurinol, but not xanthine or adenine, as substrates and was inhibited by a variety of nucleotide effectors. The availability of a molecular clone encoding the T. brucei hgprt and large quantities of homogeneous recombinant HGPRT enzyme provides an experimentally manipulable molecular and biochemical system for the rational design of novel therapeutic agents for the treatment of African sleeping sickness and other diseases of parasitic origin. Images PMID:8265360

  12. The THO Complex Non-Cell-Autonomously Represses Female Germline Specification through the TAS3-ARF3 Module.

    PubMed

    Su, Zhenxia; Zhao, Lihua; Zhao, Yuanyuan; Li, Shaofang; Won, SoYoun; Cai, Hanyang; Wang, Lulu; Li, Zhenfang; Chen, Piaojuan; Qin, Yuan; Chen, Xuemei

    2017-06-05

    In most sexually reproducing plants, a single somatic, sub-epidermal cell in an ovule is selected to differentiate into a megaspore mother cell, which is committed to giving rise to the female germline. However, it remains unclear how intercellular signaling among somatic cells results in only one cell in the sub-epidermal layer differentiating into the megaspore mother cell. Here we uncovered a role of the THO complex in restricting the megaspore mother cell fate to a single cell. Mutations in TEX1, HPR1, and THO6, components of the THO/TREX complex, led to the formation of multiple megaspore mother cells, which were able to initiate gametogenesis. We demonstrated that TEX1 repressed the megaspore mother cell fate by promoting the biogenesis of TAS3-derived trans-acting small interfering RNA (ta-siRNA), which represses ARF3 expression. The TEX1 protein was present in epidermal cells, but not in the germline, and, through TAS3-derived ta-siRNA, restricted ARF3 expression to the medio domain of ovule primordia. Expansion of ARF3 expression into lateral epidermal cells in a TAS3 ta-siRNA-insensitive mutant led to the formation of supernumerary megaspore mother cells, suggesting that TEX1- and TAS3-mediated restriction of ARF3 expression limits excessive megaspore mother cell formation non-cell-autonomously. Our findings reveal the role of a small-RNA pathway in the regulation of female germline specification in Arabidopsis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    PubMed

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC.

  14. Endogenous 5-methylcytosine protects neighboring guanines from N7 and O6-methylation and O6-pyridyloxobutylation by the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.

    PubMed

    Ziegel, Rebecca; Shallop, Anthony; Upadhyaya, Pramod; Jones, Roger; Tretyakova, Natalia

    2004-01-20

    All CG dinucleotides along exons 5-8 of the p53 tumor suppressor gene contain endogenous 5-methylcytosine (MeC). These same sites (e.g., codons 157, 158, 245, 248, and 273) are mutational hot spots in smoking-induced lung cancer. Several groups used the UvrABC endonuclease incision assay to demonstrate that methylated CG dinucleotides of the p53 gene are the preferred binding sites for the diol epoxides of bay region polycyclic aromatic hydrocarbons (PAH). In contrast, effects of endogenous cytosine methylation on the distribution of DNA lesions induced by tobacco-specific nitrosamines, e.g., 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), have not been elucidated. In the work presented here, a stable isotope labeling HPLC-ESI-MS/MS approach was employed to analyze the reactivity of the N7 and O6 positions of guanines within hemimethylated and fully methylated CG dinucleotides toward NNK-derived methylating and pyridyloxobutylating species. 15N3-labeled guanine bases were placed within synthetic DNA sequences representing endogenously methylated p53 codons 154, 157, and 248, followed by treatment with acetylated precursors to NNK diazohydroxides. HPLC-ESI-MS/MS analysis was used to determine the relative yields of N7- and O6-guanine adducts at the 15N3-labeled position. In all cases, the presence of MeC inhibited the formation of N7-methylguanine, O6-methylguanine, and O6-pyridyloxobutylguanine at a neighboring G, with the greatest decrease observed in fully methylated dinucleotides and at guanines preceded by MeC. Furthermore, the O6-Me-dG/N7-Me-G molar ratios were decreased in the presence of the 5'-neighboring MeC, suggesting that the observed decline in O6-alkylguanine adduct yields is, at least partially, a result of an altered reactivity pattern in methylated CG dinucleotides. These results indicate that, unlike N2-guanine adducts of PAH diol epoxides, NNK-induced N7- and O6-alkylguanine adducts are not preferentially formed at the endogenously

  15. N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte

    PubMed Central

    Dutta, Dipak; Nagapradeep, N.; Zhu, Haijin; Forsyth, Maria; Verma, Sandeep; Bhattacharyya, Aninda J.

    2016-01-01

    Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it’s in-built supply of Li+-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10−7 to 10−3 Ω−1 cm−1) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80–100 °C, from a dual Li+ and H+ (<100 °C) to a pure Li+ conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries. PMID:27091631

  16. Suppression of breast cancer metastasis through the inactivation of ADP-ribosylation factor 1.

    PubMed

    Xie, Xiayang; Tang, Shou-Ching; Cai, Yafei; Pi, Wenhu; Deng, Libin; Wu, Guangyu; Chavanieu, Alain; Teng, Yong

    2016-09-06

    Metastasis is the major cause of cancer-related death in breast cancer patients, which is controlled by specific sets of genes. Targeting these genes may provide a means to delay cancer progression and allow local treatment to be more effective. We report for the first time that ADP-ribosylation factor 1 (ARF1) is the most amplified gene in ARF gene family in breast cancer, and high-level amplification of ARF1 is associated with increased mRNA expression and poor outcomes of patients with breast cancer. Knockdown of ARF1 leads to significant suppression of migration and invasion in breast cancer cells. Using the orthotopic xenograft model in NSG mice, we demonstrate that loss of ARF1 expression in breast cancer cells inhibits pulmonary metastasis. The zebrafish-metastasis model confirms that the ARF1 gene depletion suppresses breast cancer cells to metastatic disseminate throughout fish body, indicating that ARF1 is a very compelling target to limit metastasis. ARF1 function largely dependents on its activation and LM11, a cell-active inhibitor that specifically inhibits ARF1 activation through targeting the ARF1-GDP/ARNO complex at the Golgi, significantly impairs metastatic capability of breast cancer cell in zebrafish. These findings underline the importance of ARF1 in promoting metastasis and suggest that LM11 that inhibits ARF1 activation may represent a potential therapeutic approach to prevent or treat breast cancer metastasis.

  17. Tobacco TTG2 and ARF8 function concomitantly to control flower colouring by regulating anthocyanin synthesis genes.

    PubMed

    Li, P; Chen, X; Sun, F; Dong, H

    2017-07-01

    Recently we elucidated that tobacco TTG2 cooperates with ARF8 to regulate the vegetative growth and seed production. Here we show that TTG2 and ARF8 control flower colouring by regulating expression of ANS and DFR genes, which function in anthocyanin biosynthesis. Genetic modifications that substantially altered expression levels of the TTG2 gene and production quantities of TTG2 protein were correlated with flower development and colouring. Degrees of flower colour were increased by TTG2 overexpression but decreased through TTG2 silencing, in coincidence with high and low concentrations of anthocyanins in flowers. Of five genes involved in the anthocyanin biosynthesis pathway, only ANS and DFR were TTG2-regulated and displayed enhancement and diminution of expression with TTG2 overexpression and silencing, respectively. The floral expression of ANS and DFR also needed a functional ARF8 gene, as ANS and DFR expression were attenuated by ARF8 silencing, which concomitantly diminished the role of TTG2 in anthocyanin production. While ARF8 required TTG2 to be expressed by itself and to regulate ANS and DFR expression, the concurrent presence of normally functional TTG2 and ARF8 was critical for floral production of anthocyanins and also for flower colouration. Our data suggest that TTG2 functions concomitantly with ARF8 to control degrees of flower colour by regulating expression of ANS and DFR, which are involved in the anthocyanin biosynthesis pathway. ARF8 depends on TTG2 to regulate floral expression of ANS and DFR with positive effects on anthocyanin production and flower colour. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases

    PubMed Central

    Rogers, Faye A; Lloyd, Janice A; Tiwari, Meetu Kaushik

    2014-01-01

    Triplex structures generated by sequence-specific triplex-forming oligonucleotides (TFOs) have proven to be promising tools for gene targeting strategies. In addition, triplex technology has been highly utilized to study the molecular mechanisms of DNA repair, recombination and mutagenesis. However, triplex formation utilizing guanine-rich oligonucleotides as third strands can be inhibited by potassium-induced self-association resulting in G-quadruplex formation. We report here that guanine-rich TFOs partially substituted with 8-aza-7-deaza-guanine (PPG) have improved target site binding in potassium compared with TFOs containing the natural guanine base. We designed PPG-substituted TFOs to bind to a polypurine sequence in the supFG1 reporter gene. The binding efficiency of PPG-substituted TFOs to the target sequence was analyzed using electrophoresis mobility gel shift assays. We have determined that in the presence of potassium, the non-substituted TFO, AG30 did not bind to its target sequence, however binding was observed with the PPG-substituted AG30 under conditions with up to 140 mM KCl. The PPG-TFOs were able to maintain their ability to induce genomic modifications as measured by an assay for gene-targeted mutagenesis. In addition, these compounds were capable of triplex-induced DNA double strand breaks, which resulted in activation of apoptosis. PMID:25483840

  19. Design and Lithographic Characteristics of Alicyclic Fluoropolymer for ArF Chemically Amplified Resists

    NASA Astrophysics Data System (ADS)

    Maeda, Katsumi; Nakano, Kaichiro; Shirai, Masamitsu

    2006-12-01

    We designed a novel alicyclic fluoropolymer, poly[3-hydroxy-4-(hexafluoro-2-hydroxyisopropyl)tricyclodecene], as an ArF (193 nm) chemically amplified resist. This fluoropolymer has a hexafluoroisopropanol group as an alkaline soluble unit and a hydroxyl group for improving adhesion. This polymer also exhibited a high transparency of 93%/150 nm at 193 nm, high thermal stability (355 °C), and a good adhesion to a Si substrate compared with a poly(norbornene) with a hexafluoroisopropanol group. The etching rate of our developed fluoropolymer for CF4 gas was 1.29 times that of the KrF resist. Moreover, a chemically amplified positive resist comprising an ethoxymethyl-protected polymer and a photoacid generator achieved a 110 nm line-and-space pattern with an ArF exposure.

  20. Interconversion of two GDP-bound conformations and their selection in an Arf-family small G protein.

    PubMed

    Okamura, Hideyasu; Nishikiori, Masaki; Xiang, Hongyu; Ishikawa, Masayuki; Katoh, Etsuko

    2011-07-13

    ADP-ribosylation factor (Arf) and other Arf-family small G proteins participate in many cellular functions via their characteristic GTP/GDP conformational cycles, during which a nucleotide(∗)Mg(2+)-binding site communicates with a remote N-terminal helix. However, the conformational interplay between the nucleotides, the helix, the protein core, and Mg(2+) has not been fully delineated. Herein, we report a study of the dynamics of an Arf-family protein, Arl8, under various conditions by means of NMR relaxation spectroscopy. The data indicated that, when GDP is bound, the protein core, which does not include the N-terminal helix, reversibly transition between an Arf-family GDP form and another conformation that resembles the Arf-family GTP form. Additionally, we found that the N-terminal helix and Mg(2+), respectively, stabilize the aforementioned former and latter conformations in a population-shift manner. Given the dynamics of the conformational changes, we can describe the Arl8 GTP/GDP cycle in terms of an energy diagram. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Endogenous melatonin and oxidatively damaged guanine in DNA

    PubMed Central

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan; Sobel, Eugene

    2009-01-01

    Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight). Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR) was associated with significantly higher levels of 8-oxodG (p < 0.05), but not with 8-oxoGua. Among the fathers, age range 46-80, lower melatonin production was associated with

  2. Endogenous melatonin and oxidatively damaged guanine in DNA.

    PubMed

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan; Sobel, Eugene

    2009-10-18

    A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Mother-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight). Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR) was associated with significantly higher levels of 8-oxodG (p < 0.05), but not with 8-oxoGua. Among the fathers, age range 46-80, lower melatonin production was associated with marginally higher levels of

  3. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei

    PubMed Central

    Yavuz, Sevil; Warren, Graham

    2017-01-01

    A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei. The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases. PMID:28495798

  4. Characterization of the activation of small GTPases by their GEFs on membranes using artificial membrane tethering.

    PubMed

    Peurois, François; Veyron, Simon; Ferrandez, Yann; Ladid, Ilham; Benabdi, Sarah; Zeghouf, Mahel; Peyroche, Gérald; Cherfils, Jacqueline

    2017-03-23

    Active, GTP-bound small GTPases need to be attached to membranes by post-translational lipid modifications in order to process and propagate information in cells. However, generating and manipulating lipidated GTPases has remained difficult, which has limited our quantitative understanding of their activation by guanine nucleotide exchange factors (GEFs) and their termination by GTPase-activating proteins. Here, we replaced the lipid modification by a histidine tag in 11 full-length, human small GTPases belonging to the Arf, Rho and Rab families, which allowed to tether them to nickel-lipid-containing membranes and characterize the kinetics of their activation by GEFs. Remarkably, this strategy uncovered large effects of membranes on the efficiency and/or specificity in all systems studied. Notably, it recapitulated the release of autoinhibition of Arf1, Arf3, Arf4, Arf5 and Arf6 GTPases by membranes and revealed that all isoforms are efficiently activated by two GEFs with different regulatory regimes, ARNO and Brag2. It demonstrated that membranes stimulate the GEF activity of Trio toward RhoG by ∼30 fold and Rac1 by ∼10 fold, and uncovered a previously unknown broader specificity toward RhoA and Cdc42 that was undetectable in solution. Finally, it demonstrated that the exceptional affinity of the bacterial RabGEF DrrA for the phosphoinositide PI(4)P delimits the activation of Rab1 to the immediate vicinity of the membrane-bound GEF. Our study thus validates the histidine-tag strategy as a potent and simple means to mimic small GTPase lipidation, which opens a variety of applications to uncover regulations brought about by membranes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. ArF excimer laser debrides burns without destruction of viable tissue: A pilot study.

    PubMed

    Prasad, Atulya; Sawicka, Katarzyna M; Pablo, Kelly B; Macri, Lauren K; Felsenstein, Jerome; Wynne, James J; Clark, Richard A F

    2018-05-01

    Recent evidence indicates that early removal of eschar by tangential debridement can promote healing. Laser debridement can be used for debridement of areas that prove challenging for debridement using tangential excision. In particular, irradiation with an ArF excimer laser ablates desiccated eschar and is self-terminating, preserving hydrated or viable tissue. Thermal burns were created on the flanks of two outbred, female Yorkshire pigs using aluminum bars heated to 70°C and applied for different lengths of time. Three days after injury, burns were debrided using an ArF excimer laser (193nm). Tissue was harvested immediately after debridement and 7days after debridement (10days after burn). Data from a pilot study demonstrates that ArF excimer laser irradiation removes burn eschar and promotes healing at 10days after burn. ArF excimer laser debridement is self-terminating and preserves underlying and adjacent perfused tissue. Potentially, this modality would be ideal for the complex curvilinear structures of the body. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  6. Guanine-based amphiphiles: synthesis, ion transport properties and biological activity.

    PubMed

    Musumeci, Domenica; Irace, Carlo; Santamaria, Rita; Milano, Domenico; Tecilla, Paolo; Montesarchio, Daniela

    2015-03-01

    Novel amphiphilic guanine derivatives, here named Gua1 and Gua2, have been prepared through few, simple and efficient synthetic steps. In ion transport experiments through phospholipid bilayers, carried out to evaluate their ability to mediate H(+) transport, Gua2 showed high activity. When this compound was investigated for ion-selective transport activities, no major differences were observed in the behaviour with cations while, in the case of anions, selective activity was observed in the series I(-)>Br(-)>Cl(-)>F(-). The bioactivity of these guanine analogues has been evaluated on a panel of human tumour and non-tumour cell lines in preliminary in vitro cytotoxicity assays, showing a relevant antiproliferative profile for Gua2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira da Silva, Claudio; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sao Paulo, Rua Botucatu, 862, 6o andar, 04023-062 Sao Paulo, SP; Alves da Silva, Erika

    2009-01-16

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RHmore » strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP{sub 2} and PIP{sub 3} to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.« less

  8. Crosslinking reactions of 4-amino-6-oxo-2-vinylpyrimidine with guanine derivatives and structural analysis of the adducts

    PubMed Central

    Kusano, Shuhei; Ishiyama, Shogo; Lam, Sik Lok; Mashima, Tsukasa; Katahira, Masato; Miyamoto, Kengo; Aida, Misako; Nagatsugi, Fumi

    2015-01-01

    DNA interstrand crosslinks (ICLs) are the primary mechanism for the cytotoxic activity of many clinical anticancer drugs, and numerous strategies for forming ICLs have been developed. One such method is using crosslink-forming oligonucleotides (CFOs). In this study, we designed a 4-amino-6-oxo-2-vinylpyrimidine (AOVP) derivative with an acyclic spacer to react selectively with guanine. The AOVP CFO exhibited selective crosslinking reactivity with guanine and thymine in DNA, and with guanine in RNA. These crosslinking reactions with guanine were accelerated in the presence of CoCl2, NiCl2, ZnCl2 and MnCl2. In addition, we demonstrated that the AOVP CFO was reactive toward 8-oxoguanine opposite AOVP in the duplex DNA. The structural analysis of each guanine and 8-oxoguanine adduct in the duplex DNA was investigated by high-resolution NMR. The results suggested that AOVP reacts at the N2 amine in guanine and at the N1 or N2 amines in 8-oxoguanine in the duplex DNA. This study demonstrated the first direct determination of the adduct structure in duplex DNA without enzyme digestion. PMID:26245348

  9. Genetic evidence for the essential role of PfNT1 in the transport and utilization of xanthine, guanine, guanosine and adenine by Plasmodium falciparum.

    PubMed

    El Bissati, Kamal; Downie, Megan J; Kim, Seong-Kyoun; Horowitz, Michael; Carter, Nicola; Ullman, Buddy; Ben Mamoun, Choukri

    2008-10-01

    The malaria parasite, Plasmodium falciparum, is unable to synthesize the purine ring de novo and is therefore wholly dependent upon purine salvage from the host for survival. Previous studies have indicated that a P. falciparum strain in which the purine transporter PfNT1 had been disrupted was unable to grow on physiological concentrations of adenosine, inosine and hypoxanthine. We have now used an episomally complemented pfnt1Delta knockout parasite strain to confirm genetically the functional role of PfNT1 in P. falciparum purine uptake and utilization. Episomal complementation by PfNT1 restored the ability of pfnt1Delta parasites to transport and utilize adenosine, inosine and hypoxanthine as purine sources. The ability of wild-type and pfnt1Delta knockout parasites to transport and utilize the other physiologically relevant purines adenine, guanine, guanosine and xanthine was also examined. Unlike wild-type and complemented P. falciparum parasites, pfnt1Delta parasites could not proliferate on guanine, guanosine or xanthine as purine sources, and no significant transport of these substrates could be detected in isolated parasites. Interestingly, whereas isolated pfnt1Delta parasites were still capable of adenine transport, these parasites grew only when adenine was provided at high, non-physiological concentrations. Taken together these results demonstrate that, in addition to hypoxanthine, inosine and adenosine, PfNT1 is essential for the transport and utilization of xanthine, guanine and guanosine.

  10. Unique spectrum of activity of 9-[(1,3-dihydroxy-2-propoxy)methyl]-guanine against herpesviruses in vitro and its mode of action against herpes simplex virus type 1.

    PubMed Central

    Cheng, Y C; Huang, E S; Lin, J C; Mar, E C; Pagano, J S; Dutschman, G E; Grill, S P

    1983-01-01

    A guanosine analog, 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine (DHPG), was found to inhibit herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, cytomegalovirus, and Epstein-Barr virus replication by greater than 50% at concentrations that do not inhibit cell growth in culture. The potency of the drug against all of these viruses is greater than that of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir). DHPG was active against HSV-1 growth during the early phase of virus replication and had no activity when added at a later time after infection. Its antiviral activity was irreversible. Thymidine partially neutralized its action. The anti-HSV-1 activity of DHPG was dependent on the induction and the properties of virus-induced thymidine kinase. Virus variants that induced altered virus thymidine kinase and became resistant to acyclovir were still as sensitive to DHPG as the parental virus. DHPG is active against five different HSV variants with induced altered DNA polymerase and resistance to acyclovir. PMID:6302704

  11. Comprehensive mutation analysis of PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1 genes is suggestive of a non- neoplastic nature of phenytoin induced gingival overgrowth.

    PubMed

    Swamikannu, Bhuminathan; Kumar, Kishore S; Jayesh, Raghavendra S; Rajendran, Senthilnathan; Muthupalani, Rajendran Shanmugam; Ramanathan, Arvind

    2013-01-01

    Dilantin sodium (phenytoin) is an antiepileptic drug, which is routinely used to control generalized tonic clonic seizure and partial seizure episodes. A few case reports of oral squamous cell carcinomas arising from regions of phenytoin induced gingival overgrowth (GO), and overexpression of mitogenic factors and p53 have presented this condition as a pathology with potential to transform into malignancy. We recently investigated the genetic status of p53 and H-ras, which are known to be frequently mutated in Indian oral carcinomas in GO tissues and found them to only contain wild type sequences, which suggested a non-neoplastic nature of phenytoin induced GO. However, besides p53 and H-ras, other oncogenes and tumor suppressors such as PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1, are frequently altered in oral squamous cell carcinoma, and hence are required to be analyzed in phenytoin induced GO tissues to be affirmative of its non-neoplastic nature. 100ng of chromosomal DNA isolated from twenty gingival overgrowth tissues were amplified with primers for exons 9 and 20 of PIK3CA, exons 1α, 1β and 2 of p16INK4a and p14ARF, and exon 2 of p21Waf1/Cip1, in independent reactions. PCR amplicons were subsequently gel purified and eluted products were sequenced. Sequencing analysis of the twenty samples of phenytoin induced gingival growth showed no mutations in the analyzed exons of PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1. The present data indicate that the mutational alterations of genes, PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1 that are frequently mutated in oral squamous cell carcinomas are rare in phenytoin induced gingival growth. Thus the findings provide further evidence that phenytoin induced gingival overgrowth as a non-neoplastic lesion, which may be considered as clinically significant given the fact that the epileptic patients are routinely administered with phenytoin for the rest of their lives to control seizure episodes.

  12. Comparison of Australian Recommended Food Score (ARFS) and Plasma Carotenoid Concentrations: A Validation Study in Adults

    PubMed Central

    Ashton, Lee; Williams, Rebecca; Rollo, Megan; Pezdirc, Kristine; Collins, Clare

    2017-01-01

    Diet quality indices can predict nutritional adequacy of usual intake, but validity should be determined. The aim was to assess the validity of total and sub-scale score within the Australian Recommended Food Score (ARFS), in relation to fasting plasma carotenoid concentrations. Diet quality and fasting plasma carotenoid concentrations were assessed in 99 overweight and obese adults (49.5% female, aged 44.6 ± 9.9 years) at baseline and after three months (198 paired observations). Associations were assessed using Spearman’s correlation coefficients and regression analysis, and agreement using weighted kappa (Kw). Small, significantly positive correlations were found between total ARFS and plasma concentrations of total carotenoids (r = 0.17, p < 0.05), β-cryptoxanthin (r = 0.18, p < 0.05), β-carotene (r = 0.20, p < 0.01), and α-carotene (r = 0.19, p < 0.01). Significant agreement between ARFS categories and plasma carotenoid concentrations was found for total carotenoids (Kw 0.12, p = 0.02), β-carotene (Kw 0.14, p < 0.01), and α-carotene (Kw 0.13, p < 0.01). In fully-adjusted regression models the only signification association with ARFS total score was for α-carotene (β = 0.19, p < 0.01), while ARFS meat and fruit sub-scales demonstrated significant relationships with α-carotene, β-carotene, and total carotenoids (p < 0.05). The weak associations highlight the issues with self-reporting dietary intakes in overweight and obese populations. Further research is required to evaluate the use of the ARFS in more diverse populations. PMID:28817083

  13. The Human ARF Cell Cycle Regulatory Gene Promoter Is a CpG Island Which Can Be Silenced by DNA Methylation and Down-Regulated by Wild-Type p53

    PubMed Central

    Robertson, Keith D.; Jones, Peter A.

    1998-01-01

    The INK4a/ARF locus encodes two proteins involved in tumor suppression in a manner virtually unique in mammalian cells. Distinct first exons, driven from separate promoters, splice onto a common exon 2 and 3 but utilize different reading frames to produce two completely distinct proteins, both of which play roles in cell cycle control. INK4a, a critical element of the retinoblastoma gene pathway, binds to and inhibits the activities of CDK4 and CDK6, while ARF, a critical element of the p53 pathway, increases the level of functional p53 via interaction with MDM2. Here we clone and characterize the promoter of the human ARF gene and show that it is a CpG island characteristic of a housekeeping gene which contains numerous Sp1 sites. Both ARF and INK4a are coordinately expressed in cells except when their promoter regions become de novo methylated. In one of these situations, ARF transcription could be reactivated by treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine, and the reactivation kinetics of ARF and INK4a were found to differ slightly in a cell line in which both genes were silenced by methylation. The ARF promoter was also found to be highly responsive to E2F1 expression, in keeping with previous results at the RNA level. Lastly, transcription from the ARF promoter was down-regulated by wild-type p53 expression, and the magnitude of the effect correlated with the status of the endogenous p53 gene. This finding points to the existence of an autoregulatory feedback loop between p53, MDM2, and ARF, aimed at keeping p53 levels in check. PMID:9774662

  14. Theoretical study of hydrated copper(II) interactions with guanine: a computational density functional theory study.

    PubMed

    Pavelka, Matej; Shukla, Manoj K; Leszczynski, Jerzy; Burda, Jaroslav V

    2008-01-17

    Optimization of the hydrated Cu(II)(N7-guanine) structures revealed a number of minima on the potential energy surface. For selected structures, energy decompositions together with the determination of electronic properties (partial charges and electron spin densities) were performed. In the complexes of guanine with the bare copper cation and that with the monoaqua ligated cation, an electron transfer from guanine to Cu(II) was observed, resulting in a Cu(I)-guanine(+) type of complex. Conformers with two aqua ligands are borderline systems characterized by a Cu partial charge of +0.7e and a similar value of the spin density (0.6e) localized on guanine. When tetracoordination of copper was achieved, only then the prevailing electron spin density is unambiguously localized on copper. The energetic preference of diaqua-Cu-(N7,O6-guanine) over triaqua-Cu-(N7-guanine) was found for the four-coordinate structures. However, the energy difference between these two conformations decreases with the number of water molecules present in the systems, and in complexes with five water molecules this preference is preserved only at DeltaG level where thermal and entropy terms are included.

  15. The Arf GAP CNT-2 regulates the apoptotic fate in C. elegans asymmetric neuroblast divisions.

    PubMed

    Singhvi, Aakanksha; Teuliere, Jerome; Talavera, Karla; Cordes, Shaun; Ou, Guangshuo; Vale, Ronald D; Prasad, Brinda C; Clark, Scott G; Garriga, Gian

    2011-06-07

    During development, all cells make the decision to live or die. Although the molecular mechanisms that execute the apoptotic program are well defined, less is known about how cells decide whether to live or die. In C. elegans, this decision is linked to how cells divide asymmetrically [1, 2]. Several classes of molecules are known to regulate asymmetric cell divisions in metazoans, yet these molecules do not appear to control C. elegans divisions that produce apoptotic cells [3]. We identified CNT-2, an Arf GTPase-activating protein (GAP) of the AGAP family, as a novel regulator of this type of neuroblast division. Loss of CNT-2 alters daughter cell size and causes the apoptotic cell to adopt the fate of its sister cell, resulting in extra neurons. CNT-2's Arf GAP activity is essential for its function in these divisions. The N terminus of CNT-2, which contains a GTPase-like domain that defines the AGAP class of Arf GAPs, negatively regulates CNT-2's function. We provide evidence that CNT-2 regulates receptor-mediated endocytosis and consider the implications of its role in asymmetric cell divisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Progesterone and calcitriol reduce invasive potential of endometrial cancer cells by targeting ARF6, NEDD9 and MT1-MMP.

    PubMed

    Waheed, Sana; Dorjbal, Batsukh; Hamilton, Chad A; Maxwell, G Larry; Rodriguez, Gustavo C; Syed, Viqar

    2017-12-26

    Previously, we have demonstrated that progesterone and calcitriol synergistically inhibit growth of endometrial and ovarian cancer by enhancing apoptosis and causing cell cycle arrest. Metastasis is the main reason of mortality in cancer patients. Activation of ADP-Ribosylation Factor 6 (ARF6), Neural Precursor cell expressed Developmentally Downregulated 9 (NEDD9), and Membrane-Type-1 Matrix Metalloproteinase (MT1-MMP) have been implicated in promoting tumor growth and metastasis. We examined the effects of progesterone, calcitriol and progesterone-calcitriol combination on metastasis promoting proteins in endometrial cancer. Expression of ARF6, NEDD9, and MT1-MMP was enhanced in advanced-stage endometrial tumors and in cancer cell lines compared to normal tissues and immortalized EM-E6/E7-TERT endometrial epithelial cells. Knockdown of these proteins significantly inhibited the invasiveness of the cancer cells. The expression levels of all three proteins was reduced with progesterone and progesterone-calcitriol combination treatment, whereas calcitriol alone showed no effect on their expression but moderately decreased MT1-MMP activity. Fluorescence microscopy showed membrane expression of MT1-MMP in vehicle and calcitriol-treated endometrial cancer cells. However, progesterone and calcitriol-progesterone combination treatment revealed MT1-MMP in the cytoplasm. Furthermore, progesterone and calcitriol reduced the activity of MT1-MMP, MMP-9, and MMP-2. In addition, invadopodia regulatory proteins were attenuated in both progesterone and progesterone-calcitriol combination treated cells as well as in MT1-MMP knockdown cells. Thus, targeting the aberrant MT1-MMP signaling with progesterone-calcitriol may be a novel approach to impede MT1-MMP mediated cancer dissemination and may have therapeutic benefits for endometrial cancer patients.

  17. Progesterone and calcitriol reduce invasive potential of endometrial cancer cells by targeting ARF6, NEDD9 and MT1-MMP

    PubMed Central

    Waheed, Sana; Dorjbal, Batsukh; Hamilton, Chad A.; Maxwell, G. Larry; Rodriguez, Gustavo C.; Syed, Viqar

    2017-01-01

    Previously, we have demonstrated that progesterone and calcitriol synergistically inhibit growth of endometrial and ovarian cancer by enhancing apoptosis and causing cell cycle arrest. Metastasis is the main reason of mortality in cancer patients. Activation of ADP-Ribosylation Factor 6 (ARF6), Neural Precursor cell expressed Developmentally Downregulated 9 (NEDD9), and Membrane-Type-1 Matrix Metalloproteinase (MT1-MMP) have been implicated in promoting tumor growth and metastasis. We examined the effects of progesterone, calcitriol and progesterone-calcitriol combination on metastasis promoting proteins in endometrial cancer. Expression of ARF6, NEDD9, and MT1-MMP was enhanced in advanced-stage endometrial tumors and in cancer cell lines compared to normal tissues and immortalized EM-E6/E7-TERT endometrial epithelial cells. Knockdown of these proteins significantly inhibited the invasiveness of the cancer cells. The expression levels of all three proteins was reduced with progesterone and progesterone-calcitriol combination treatment, whereas calcitriol alone showed no effect on their expression but moderately decreased MT1-MMP activity. Fluorescence microscopy showed membrane expression of MT1-MMP in vehicle and calcitriol-treated endometrial cancer cells. However, progesterone and calcitriol-progesterone combination treatment revealed MT1-MMP in the cytoplasm. Furthermore, progesterone and calcitriol reduced the activity of MT1-MMP, MMP-9, and MMP-2. In addition, invadopodia regulatory proteins were attenuated in both progesterone and progesterone-calcitriol combination treated cells as well as in MT1-MMP knockdown cells. Thus, targeting the aberrant MT1-MMP signaling with progesterone-calcitriol may be a novel approach to impede MT1-MMP mediated cancer dissemination and may have therapeutic benefits for endometrial cancer patients. PMID:29371931

  18. The Opposing Roles of Nucleophosmin and the ARF Tumor Suppressor in Breast Cancer

    DTIC Science & Technology

    2005-04-01

    3. Bertwistle, D ., M. Sugimoto, and C . J. Sherr. 2004. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin...Kindbeiter, J. C . Sanchez, A. Greco, D . Hochstrasser, and J. J. Diaz. 2002. Functional proteomic analysis of human nucleolus. Mol Biol Cell 13:4100-9...21. Sherr, C . J., and J. D . Weber. 2000. The ARF/p53 pathway. Curr Opin Genet Dev 10:94-9. 22. Spector, D . L., R. L. Ochs, and H. Busch. 1984

  19. Rapid and simple G-quadruplex DNA aptasensor with guanine chemiluminescence detection.

    PubMed

    Cho, Sandy; Park, Lucienne; Chong, Richard; Kim, Young Teck; Lee, Ji Hoon

    2014-02-15

    Cost-effective and sensitive aptasensor with guanine chemiluminescence detection capable of simply quantifying thrombin in human serum was developed using thrombin aptamer (TBA), one of the G-quadruplex DNA aptamers, without expensive nanoparticles and complicated procedures. Guanines of G-quadruplex TBA-conjugated carboxyfluorescein (6-FAM) bound with thrombin do not react with 3,4,5-trimethoxylphenylglyoxal (TMPG) in the presence of tetra-n-propylammonium hydroxide (TPA), whereas guanines of free TBA- and TBA-conjugated 6-FAM immobilized on the surface of graphene oxide rapidly react with TMPG to emit light. Thus, guanine chemiluminescence in 5% human serum with thrombin was lower than that without thrombin when TBA-conjugated 6-FAM was added in two samples and incubated for 20 min. In other words, the brightness of guanine chemiluminescence was quenched due to the formation of G-quadruplex TBA-conjugated 6-FAM bound with thrombin in a sample. High-energy intermediate, capable of emitting dim light by itself, formed from the reaction between guanines of TBA and TMPG in the presence of TPA, transfers energy to 6-FAM to emit bright light based on the principle of chemiluminescence energy transfer (CRET). G-quadruplex TBA aptasensor devised using the rapid interaction between TBA-conjugated 6-FAM and thrombin quantified trace levels of thrombin without complicated procedures. The limit of detection (LOD = background + 3 × standard deviation) of G-quadruplex TBA aptasensor with good linear calibration curve, accuracy, precision, and recovery was as low as 12.3 nM in 5% human serum. Using the technology reported in this research, we expect that various types of G-quadruplex DNA aptasensors capable of specifically sensing a target molecule such as ATP, HIV, ochratoxin, potassium ions, and thrombin can be developed. © 2013 Elsevier B.V. All rights reserved.

  20. The p16INK4alpha/p19ARF gene mutations are infrequent and are mutually exclusive to p53 mutations in Indian oral squamous cell carcinomas.

    PubMed

    Kannan, K; Munirajan, A K; Krishnamurthy, J; Bhuvarahamurthy, V; Mohanprasad, B K; Panishankar, K H; Tsuchida, N; Shanmugam, G

    2000-03-01

    Eighty-seven untreated primary oral squamous cell carcinomas (SCCs) associated with betel quid and tobacco chewing from Indian patients were analysed for the presence of mutations in the commonly shared exon 2 of p16INK4alpha/p19ARF genes. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing analysis were used to detect mutations. SSCP analysis indicated that only 9% (8/87) of the tumours had mutation in p16INK4alpha/p19ARF genes. Seventy-two tumours studied here were previously analysed for p53 mutations and 21% (15/72) of them were found to have mutations in p53 gene. Only one tumour was found to have mutation at both p53 and p16INK4alpha/p19ARF genes. Thus, the mutation rates observed were 21% for p53, 9% for p16INK4alpha/p19ARF, and 1% for both. Sequencing analysis revealed two types of mutations; i) G to C (GCAG to CCAG) transversion type mutation at intron 1-exon 2 splice junction and ii) another C to T transition type mutation resulting in CGA to TGA changing arginine to a termination codon at p16INK4alpha gene codon 80 and the same mutation will alter codon 94 of p19ARF gene from CCG to CTG (proline to leucine). These results suggest that p16INK4alpha/p19ARF mutations are less frequent than p53 mutations in Indian oral SCCs. The p53 and p16INK4alpha/p19ARF mutational events are independent and are mutually exclusive suggesting that mutational inactivation of either p53 or p16INK4alpha/p19ARF may alleviate the need for the inactivation of the other gene.

  1. Lifetimes and reaction pathways of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions.

    PubMed

    Rokhlenko, Yekaterina; Geacintov, Nicholas E; Shafirovich, Vladimir

    2012-03-14

    The exposure of guanine in the oligonucleotide 5'-d(TCGCT) to one-electron oxidants leads initially to the formation of the guanine radical cation G(•+), its deptotonation product G(-H)(•), and, ultimately, various two- and four-electron oxidation products via pathways that depend on the oxidants and reaction conditions. We utilized single or successive multiple laser pulses (308 nm, 1 Hz rate) to generate the oxidants CO(3)(•-) and SO(4)(•-) (via the photolysis of S(2)O(8)(2-) in aqueous solutions in the presence and absence of bicarbonate, respectively) at concentrations/pulse that were ∼20-fold lower than the concentration of 5'-d(TCGCT). Time-resolved absorption spectroscopy measurements following single-pulse excitation show that the G(•+) radical (pK(a) = 3.9) can be observed only at low pH and is hydrated within 3 ms at pH 2.5, thus forming the two-electron oxidation product 8-oxo-7,8-dihydroguanosine (8-oxoG). At neutral pH, and single pulse excitation, the principal reactive intermediate is G(-H)(•), which, at best, reacts only slowly with H(2)O and lives for ∼70 ms in the absence of oxidants/other radicals to form base sequence-dependent intrastrand cross-links via the nucleophilic addition of N3-thymidine to C8-guanine (5'-G*CT* and 5'-T*CG*). Alternatively, G(-H)(•) can be oxidized further by reaction with CO(3)(•-), generating the two-electron oxidation products 8-oxoG (C8 addition) and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih, by C5 addition). The four-electron oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), appear only after a second (or more) laser pulse. The levels of all products, except 8-oxoG, which remains at a low constant value, increase with the number of laser pulses.

  2. Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis

    PubMed Central

    Yu, Hong; Soler, Marçal; Mila, Isabelle; San Clemente, Hélène; Savelli, Bruno; Dunand, Christophe; Paiva, Jorge A. P.; Myburg, Alexander A.; Bouzayen, Mondher; Grima-Pettenati, Jacqueline; Cassan-Wang, Hua

    2014-01-01

    Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF) are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation. PMID:25269088

  3. Increased mobility and on/off ratio in organic field-effect transistors using low-cost guanine-pentacene multilayers

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Zheng, Yifan; Taylor, André D.; Yu, Junsheng; Katz, Howard E.

    2017-07-01

    Layer-by-layer deposited guanine and pentacene in organic field-effect transistors (OFETs) is introduced. Through adjusting the layer thickness ratio of guanine and pentacene, the tradeoff of two electronic parameters in OFETs, charge carrier mobility and current on/off ratio, was controlled. The charge mobility was enhanced by depositing pentacene over and between guanine layers and by increasing the proportion of pentacene in the layer-by-layer system, while the current on/off ratio was increased via the decreased off current induced by the guanine layers. The tunable device performance was mainly ascribed to the trap and dopant neutralizing properties of the guanine layers, which would decrease the density of free hydroxyl groups in the OFETs. Furthermore, the cost of the devices could be reduced remarkably via the adoption of low-cost guanine.

  4. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    PubMed Central

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species. PMID:19283127

  5. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes.

    PubMed

    Kim, D G; Riggs, R D

    1991-07-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that was naturally infested by ARF18 than in autoclaved field soil. Although ARF18 grew well at 25 C on cornmeal agar over a wide pH range, it did not sporulate on 28 media and thus could not be identified to genus or species.

  6. Somatic INK4a-ARF locus mutations: a significant mechanism of gene inactivation in squamous cell carcinomas of the head and neck.

    PubMed

    Poi, M J; Yen, T; Li, J; Song, H; Lang, J C; Schuller, D E; Pearl, D K; Casto, B C; Tsai, M D; Weghorst, C M

    2001-01-01

    The INK4a-ARF locus is located on human chromosome 9p21 and is known to encode two functionally distinct tumor-suppressor genes. The p16(INK4a) (p16) tumor-suppressor gene product is a negative regulator of cyclin-dependent kinases 4 and 6, which in turn positively regulate progression of mammalian cells through the cell cycle. The p14(ARF) tumor-suppressor gene product specifically interacts with human double minute 2, leading to the subsequent stabilization of p53 and G(1) arrest. Previous investigations analyzing the p16 gene in squamous cell carcinomas of the head and neck (SCCHNs) have suggested the predominate inactivating events to be homozygous gene deletions and hypermethylation of the p16 promoter. Somatic mutational inactivation of p16 has been reported to be low (0-10%, with a combined incidence of 25 of 279, or 9%) and to play only a minor role in the development of SCCHN. The present study examined whether this particular mechanism of INK4a/ARF inactivation, specifically somatic mutation, has been underestimated in SCCHN by determining the mutational status of the p16 and p14(ARF) genes in 100 primary SCCHNs with the use of polymerase chain reaction technology and a highly sensitive, nonradioactive modification of single-stranded conformational polymorphism (SSCP) analysis termed "cold" SSCP. Exons 1alpha, 1beta, and 2 of INK4a/ARF were amplified using intron-based primers or a combination of intron- and exon-based primers. A total of 27 SCCHNs (27%) exhibited sequence alterations in this locus, 22 (22%) of which were somatic sequence alterations and five (5%) of which were a single polymorphism in codon 148. Of the 22 somatic alterations, 20 (91%) directly or indirectly involved exon 2, and two (9%) were located within exon 1alpha. No mutations were found in exon 1beta. All 22 somatic mutations would be expected to yield altered p16 proteins, but only 15 of them should affect p14(ARF) proteins. Specific somatic alterations included microdeletions or

  7. Involvement of Bmi-1 gene in the development of gastrointestinal stromal tumor by regulating p16Ink4A/p14ARF gene expressions: An in vivo and in vitro study.

    PubMed

    Wang, Jiang-Li; Wu, Jiang-Hong; Hong, Cai; Wang, Ya-Nong; Zhou, Ye; Long, Zi-Wen; Zhou, Ying; Qin, Hai-Shu

    2017-12-01

    This study was conducted in order to explore the role that Bmi-1 plays during the development of a gastrointestinal stromal tumor (GIST) by regulation of the p16 Ink4A and p14 ARF expressions. Eighty-six patients diagnosed with GIST were selected to take part in this experiment. The Bmi-1 protein expressions in GIST and adjacent normal tissues were detected using immunohistochemistry and further analyzed by using photodensitometry. To monitor and track the progression of the GIST, a 3-year follow-up was conducted for all affected patients. After cell transfection, the GIST cells were assigned into the control group (without transfection), the negative control (NC) group (transfected with Bmi-1-Scramble plasmid), and the Bmi-1 shRNA group (transfected with the pcDNA3.1-Bmi-1 shRNA plasmid). Protein and mRNA expressions collected from Bmi-1, p16 lnk4A , P14 ARF , cyclin D1, and CDK4 were measured using both the RT-qPCR and western blotting methods Cell senescence was assessed and obtained by using the β-Galactosidase (β-Gal) activity assay. The use of a Soft agar colony formation assay and CCK-8 assay were performed in order to detect the cell growth and subsequent proliferation. Cell invasion and migration were analyzed using the Transwell assay and scratch test. Bmi-1 in the GIST tissues was found to be significantly higher and the p16 lnk4A and P14 ARF expressions were lower than those in the adjacent normal tissues. Bmi-1 was negatively correlated with p16 lnk4A and P14 ARF expressions according to the correlation analysis. Bmi-1 expression was associated with the TNM stage, postoperative recurrence, metastasis, tumor size, and the 5-year survival rate. Area under ROC curve was calculated at 0.884, and sensitivity, specificity, and accuracy of Bmi-1 predicting the GIST were 67.44%, 97.67%, and 65.12%, respectively. Patients exhibiting a high Bmi-1 expression in the GIST tissues had lower survival rates than those with low Bmi-1 expression. In comparison with

  8. MUC1-ARF—A Novel MUC1 Protein That Resides in the Nucleus and Is Expressed by Alternate Reading Frame Translation of MUC1 mRNA

    PubMed Central

    Pichinuk, Edward; Garbar, Christian; Bensussan, Armand; Meeker, Alan; Ziv, Ravit; Zehavi, Tania; Smorodinsky, Nechama I.; Hilkens, John; Hanisch, Franz-Georg; Rubinstein, Daniel B.; Wreschner, Daniel H.

    2016-01-01

    Translation of mRNA in alternate reading frames (ARF) is a naturally occurring process heretofore underappreciated as a generator of protein diversity. The MUC1 gene encodes MUC1-TM, a signal-transducing trans-membrane protein highly expressed in human malignancies. Here we show that an AUG codon downstream to the MUC1-TM initiation codon initiates an alternate reading frame thereby generating a novel protein, MUC1-ARF. MUC1-ARF, like its MUC1-TM 'parent’ protein, contains a tandem repeat (VNTR) domain. However, the amino acid sequence of the MUC1-ARF tandem repeat as well as N- and C- sequences flanking it differ entirely from those of MUC1-TM. In vitro protein synthesis assays and extensive immunohistochemical as well as western blot analyses with MUC1-ARF specific monoclonal antibodies confirmed MUC1-ARF expression. Rather than being expressed at the cell membrane like MUC1-TM, immunostaining showed that MUC1-ARF protein localizes mainly in the nucleus: Immunohistochemical analyses of MUC1-expressing tissues demonstrated MUC1-ARF expression in the nuclei of secretory luminal epithelial cells. MUC1-ARF expression varies in different malignancies. While the malignant epithelial cells of pancreatic cancer show limited expression, in breast cancer tissue MUC1-ARF demonstrates strong nuclear expression. Proinflammatory cytokines upregulate expression of MUC1-ARF protein and co-immunoprecipitation analyses demonstrate association of MUC1-ARF with SH3 domain-containing proteins. Mass spectrometry performed on proteins coprecipitating with MUC1-ARF demonstrated Glucose-6-phosphate 1-dehydrogenase (G6PD) and Dynamin 2 (DNM2). These studies not only reveal that the MUC1 gene generates a previously unidentified MUC1-ARF protein, they also show that just like its ‘parent’ MUC1-TM protein, MUC1-ARF is apparently linked to signaling and malignancy, yet a definitive link to these processes and the roles it plays awaits a precise identification of its molecular functions

  9. Effects of Site-Directed Mutagenesis of Escherichia coli Heat-Labile Enterotoxin on ADP-Ribosyltransferase Activity and Interaction with ADP-Ribosylation Factors

    PubMed Central

    A. Stevens, Linda; Moss, Joel; Vaughan, Martha; Pizza, Mariagrazia; Rappuoli, Rino

    1999-01-01

    Escherichia coli heat-labile enterotoxin (LT), an oligomeric protein with one A subunit (LTA) and five B subunits, exerts its effects via the ADP-ribosylation of Gsα, a guanine nucleotide-binding (G) protein that activates adenylyl cyclase. LTA also ADP-ribosylates simple guanidino compounds (e.g., arginine) and catalyzes its own auto-ADP-ribosylation. All LTA-catalyzed reactions are enhanced by ADP-ribosylation factors (ARFs), 20-kDa guanine nucleotide-binding proteins. Replacement of arginine-7 (R7K), valine-53 (V53D), serine-63 (S63K), valine 97 (V97K), or tyrosine-104 (Y104K) in LTA resulted in fully assembled but nontoxic proteins. S63K, V53D, and R7K are catalytic-site mutations, whereas V97K and Y104K are amino acid replacements adjacent to and outside of the catalytic site, respectively. The effects of mutagenesis were quantified by measuring ADP-ribosyltransferase activity (i.e., auto-ADP-ribosylation and ADP-ribosylagmatine synthesis) and interaction with ARF (i.e., inhibition of ARF-stimulated cholera toxin ADP-ribosyltransferase activity and effects of ARF on mutant auto-ADP-ribosylation). All mutants were inactive in the ADP-ribosyltransferase assay; however, auto-ADP-ribosylation in the presence of recombinant human ARF6 was detected, albeit much less than that of native LT (Y104K > V53D > V97K > R7K, S63K). Based on the lack of inhibition by free ADP-ribose, the observed auto-ADP-ribosylation activity was enzymatic and not due to the nonenzymatic addition of free ADP-ribose. V53D, S63K, and R7K were more effective than Y104K or V97K in blocking ARF stimulation of cholera toxin ADP-ribosyltransferase. Based on these data, it appears that ARF-binding and catalytic sites are not identical and that a region outside the NAD cleft may participate in the LTA-ARF interaction. PMID:9864224

  10. Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology.

    PubMed

    Matsuo, Naoki; Terao, Mami; Nabeshima, Yo-ichi; Hoshino, Mikio

    2003-09-01

    Rho family GTPases are suggested to be pivotal for growth cone behavior, but regulation of their activities in response to environmental cues remains elusive. Here, we describe roles of STEF and Tiam1, guanine nucleotide exchange factors for Rac1, in neurite growth and growth cone remodeling. We reveal that, in primary hippocampal neurons, STEF/Tiam1 are localized within growth cones and essential for formation of growth cone lamellipodia, eventually contributing to neurite growth. Furthermore, experiments using a dominant-negative form demonstrate that STEF/Tiam1 mediate extracellular laminin signals to activate Rac1, promoting neurite growth in N1E-115 neuroblastoma cells. STEF/Tiam1 are revealed to mediate Cdc42 signal to activate Rac1 during lamellipodial formation. We also show that RhoA inhibits the STEF/Tiam1-Rac1 pathway. These data are used to propose a model that extracellular and intracellular information is integrated by STEF/Tiam1 to modulate the balance of Rho GTPase activities in the growth cone and, consequently, to control growth cone behavior.

  11. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

    PubMed Central

    Swasey, Steven M.; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G.

    2015-01-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science. PMID:25973536

  12. Silver (I) as DNA glue: Ag(+)-mediated guanine pairing revealed by removing Watson-Crick constraints.

    PubMed

    Swasey, Steven M; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G

    2015-05-14

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag(+) is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg(2+). In contrast to prior studies of Ag(+) incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag(+)-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag(+) bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag(+)-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science.

  13. PRL-3 promotes breast cancer progression by downregulating p14ARF-mediated p53 expression.

    PubMed

    Xie, Hua; Wang, Hao

    2018-03-01

    Prior studies have demonstrated that phosphatase of regenerating liver-3 (PRL-3) serves avital function in cell proliferation and metastasis in breast cancer. However, the molecular mechanisms underlying the function of PRL-3 in breast cancer remain unknown. PRL-3 expression was analyzed in 24 pairs of breast cancer and normal tissues using the reverse transcription-quantitative polymerase chain reaction assay. The results of the present study identified that the expression of PLR-3 in breast cancer tissues was increased 4.2-fold, compared with normal tissues. Notably, overexpression of PRL-3 significantly promoted the proliferation of cancer cells and inhibited endogenous p53 expression by downregulating the expression level of p14 alternate reading frame (p14 ARF ). In addition, decreased expression levels of PRL-3 resulted in decreased breast cancer cell proliferation and increased expression level of p14 ARF . These results suggested that PRL-3 enhances cell proliferation by downregulating p14 ARF expression, which results in decreased levels ofp53. The results of the present study demonstrated that PRL-3 promotes tumor proliferation by affecting the p14 ARF -p53 axis, and that it may serve as a prognostic marker for patients with breast cancer.

  14. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA Annealing of induced absorption in quartz glasses by ArF laser radiation

    NASA Astrophysics Data System (ADS)

    Sergeev, P. B.; Sergeev, A. P.

    2010-11-01

    Annealing of individual bands of electron-beam-induced absorption (IA) in the region of 150 — 400 nm in KS-4V, KU-1, and Corning 7980 (ArF Grade) quartz glasses by ArF laser radiation is studied. It is shown that the phototransformation of the IA spectra occurs mainly due to a significant decrease in the amplitudes of bands at λ = 183.5, 213, and 260 nm. The role played by interstitial oxygen, hydrogen, and chlorine in the formation and relaxation of glass defects is considered.

  15. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA.

    PubMed

    Huang, Ke-Jing; Niu, De-Jun; Sun, Jun-Yong; Han, Cong-Hui; Wu, Zhi-Wei; Li, Yan-Li; Xiong, Xiao-Qin

    2011-02-01

    A nano-material carboxylic acid functionalized graphene (graphene-COOH) was prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electrooxidation behaviors of adenine and guanine on the graphene-COOH modified glassy carbon electrode (graphene-COOH/GCE) were carefully investigated by cyclic voltammetry and differential pulse voltammetry. The results indicated that both adenine and guanine showed the increase of the oxidation peak currents with the negative shift of the oxidation peak potentials in contrast to that on the bare glassy carbon electrode. The electrochemical parameters of adenine and guanine on the graphene-COOH/GCE were calculated and a simple and reliable electroanalytical method was developed for the detection of adenine and guanine, respectively. The modified electrode exhibited good behaviors in the simultaneous detection of adenine and guanine with the peak separation as 0.334V. The detection limit for individual determination of guanine and adenine was 5.0×10(-8)M and 2.5×10(-8)M (S/N=3), respectively. Furthermore, the measurements of thermally denatured single-stranded DNA were carried out and the value of (G+C)/(A+T) of single-stranded DNA was calculated as 0.80. The biosensor exhibited some advantages, such as simplicity, rapidity, high sensitivity, good reproducibility and long-term stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. A DFT investigation on interactions between asymmetric derivatives of cisplatin and nucleobase guanine

    NASA Astrophysics Data System (ADS)

    Tai, Truong Ba; Nhat, Pham Vu

    2017-07-01

    The interactions of hydrolysis products of cisplatin and its asymmetric derivatives cis- and trans-[PtCl2(iPram)(Mepz)] with guanine were studied using DFT methods. These interactions are dominated by electrostatic effects, namely hydrogen bond contributions and there exists a charge flow from H-atoms of ligands to the O-atoms of guanine. The replacement of NH3 moieties by larger functional groups accompanies with a moderate reaction between PtII and guanine molecule, diminishing the cytotoxicity of the drug. The asymmetric and symmetric NH2 stretching modes of complexes having strong hydrogen bond interactions are red shifted importantly as compared to complexes without presence of hydrogen bond interactions.

  17. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification

    PubMed Central

    Lech, Christopher Jacques

    2017-01-01

    Abstract Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0–13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin–avidin conjugation approach. PMID:28499037

  18. Temperature monitoring by infrared radiation measurements during ArF excimer laser ablation with cornea

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Arai, Tsunenori; Sato, Shunichi; Nakano, Hironori; Obara, Minoru; Kikuchi, Makoto

    1999-06-01

    We measured infrared thermal radiation from porcine cornea during various fluences ArF excimer laser ablations with 1 microsecond(s) rise time. To obtain absolute temperature by means of Stefan-Boltzman law of radiation, we carried out a collection efficiency and detective sensitivity by a pre-experiment using panel heater. We measured the time course of the thermal radiation intensity with various laser fluences. We studied the relation between the peak cornea temperature during the ablation and irradiation fluences. We found the ablation situations, i.e., sub-ablation threshold, normal thermal ablation, and over-heated ablation, may be judged by both of the measured temperature transient waveforms and peak temperature. The boundary fluences corresponding to normal thermal ablation were 90 and 160 mJ/cm2. Our fast remote temperature monitoring during cornea ablation might be useful to control ablation quality/quantity of the cornea ArF laser ablation, that is PRK.

  19. An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana

    DOE PAGES

    Doyle, Siamsa M.; Haeger, Ash; Vain, Thomas; ...

    2015-02-02

    Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering themore » polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF–defective mutants gnom-like 1 ( gnl1-1) and gnom ( van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. In conclusion, our data confirm a role for GNOM in endoplasmic reticulum (ER)–Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development.« less

  20. C/EBPbeta represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19(Arf).

    PubMed

    Ewing, S J; Zhu, S; Zhu, F; House, J S; Smart, R C

    2008-11-01

    CCAAT/enhancer-binding protein-beta (C/EBPbeta) is a mediator of cell survival and tumorigenesis. When C/EBPbeta(-/-) mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19(Arf) and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19(Arf) is dramatically elevated in C/EBPbeta(-/-) epidermis and that C/EBPbeta represses a p19(Arf) promoter reporter. To determine whether p19(Arf) is responsible for the proapoptotic phenotype in C/EBPbeta(-/-) mice, C/EBPbeta(-/-);p19(Arf-/-) mice were generated. C/EBPbeta(-/-);p19(Arf-/-) mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19(Arf) is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPbeta(-/-) epidermis, we generated K14-ER:Ras;C/EBPbeta(-/-) mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPbeta(-/-) mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPbeta represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPbeta may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents.

  1. New investigations of the guanine trichloro cuprate(II) complex crystal

    NASA Astrophysics Data System (ADS)

    Fabijanić, Ivana; Matković-Čalogović, Dubravka; Pilepić, Viktor; Ivanišević, Irena; Mohaček-Grošev, Vlasta; Sanković, Krešimir

    2017-01-01

    Crystals of the guanine trichloro cuprate(II) complex, (HGua)2[Cu2Cl6]·2H2O (HGua = protonated guanine), were prepared and analysed by spectroscopic (IR, Raman) and computational methods. A new single-crystal X-ray diffraction analysis was conducted to obtain data with lower standard uncertainties than those in the previously published structure. Raman and IR spectroscopy and quantum-mechanical analysis gave us new insight into the vibrational states of the (HGua)2[Cu2Cl6]·2H2O crystal. The vibrational spectra of the crystal were assigned by performing a normal coordinate analysis for a free dimer with a centre of inversion as the only symmetry element. The stretching vibration observed at 279 cm-1 in the infrared spectrum corresponds to the N-Cu bond. The noncovalent interaction (NCI) plots and quantum theory of atoms in molecules (QTAIM) analysis of the electron density obtained from periodic DFT calculations elucidated the interactions that exist within the crystal structure. Closed-shell ionic attractions, as well as weak and medium strength hydrogen bonds, prevailed in the crystal packing.

  2. Genetic Separation of Hypoxanthine and Guanine-Xanthine Phosphoribosyltransferase Activities by Deletion Mutations in Salmonella typhimurium

    PubMed Central

    Gots, Joseph S.; Benson, Charles E.; Shumas, Susan R.

    1972-01-01

    Certain proAB deletion mutants of Salmonella typhimurium were found to be simultaneously deleted in a gene required for the utilization of guanine and xanthine (designated gxu). These mutants were resistant to 8-azaguanine and when carrying an additional pur mutation were unable to use guanine or xanthine as a purine source. The defect was correlated with deficiencies in the uptake and phosphoribosyltransferase activities for guanine and xanthine. Hypoxanthine and adenine activities were unaltered. The deficiency was restored to normal by transduction to pro+ and in F′ merodiploids. PMID:4563984

  3. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification.

    PubMed

    Lech, Christopher Jacques; Phan, Anh Tuân

    2017-06-20

    Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0-13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin-avidin conjugation approach. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. IGFBP2 is a candidate biomarker for Ink4a-Arf status and a therapeutic target for high-grade gliomas.

    PubMed

    Moore, Lynette M; Holmes, Kristen M; Smith, Sarah M; Wu, Ying; Tchougounova, Elena; Uhrbom, Lene; Sawaya, Raymond; Bruner, Janet M; Fuller, Gregory N; Zhang, Wei

    2009-09-29

    The levels of insulin-like growth factor-binding protein 2 (IGFBP2) are elevated during progression of many human cancers. By using a glial-specific transgenic mouse system (RCAS/Ntv-a), we reported previously that IGFBP2 is an oncogenic factor for glioma progression in combination with platelet-derived growth factor-beta (PDGFB). Because the INK4a-ARF locus is often deleted in high-grade gliomas (anaplastic oligodendroglioma and glioblastoma), we investigated the effect of the Ink4a-Arf-null background on IGFBP2-mediated progression of PDGFB-initiated oligodendroglioma. We demonstrate here that homozygous deletion of Ink4a-Arf bypasses the requirement of exogenously introduced IGFBP2 for glioma progression. Instead, absence of Ink4a-Arf resulted in elevated endogenous tumor cell IGFBP2. An inverse relationship between p16(INK4a) and IGFBP2 expression was also observed in human glioma tissue samples and in 90 different cancer cell lines by using Western blotting and reverse-phase protein lysate arrays. When endogenous IGFBP2 expression was attenuated by an RCAS vector expressing antisense IGFBP2 in our mouse model, a decreased incidence of anaplastic oligodendroglioma as well as prolonged survival was observed. Thus, p16(INK4a) is a negative regulator of the IGFBP2 oncogene. Loss of Ink4a-Arf results in increased IGFBP2, which contributes to glioma progression, thereby implicating IGFBP2 as a marker and potential therapeutic target for Ink4a-Arf-deleted gliomas.

  5. IGFBP2 is a candidate biomarker for Ink4a-Arf status and a therapeutic target for high-grade gliomas

    PubMed Central

    Moore, Lynette M.; Holmes, Kristen M.; Smith, Sarah M.; Wu, Ying; Tchougounova, Elena; Uhrbom, Lene; Sawaya, Raymond; Bruner, Janet M.; Fuller, Gregory N.; Zhang, Wei

    2009-01-01

    The levels of insulin-like growth factor-binding protein 2 (IGFBP2) are elevated during progression of many human cancers. By using a glial-specific transgenic mouse system (RCAS/Ntv-a), we reported previously that IGFBP2 is an oncogenic factor for glioma progression in combination with platelet-derived growth factor-β (PDGFB). Because the INK4a-ARF locus is often deleted in high-grade gliomas (anaplastic oligodendroglioma and glioblastoma), we investigated the effect of the Ink4a-Arf-null background on IGFBP2-mediated progression of PDGFB-initiated oligodendroglioma. We demonstrate here that homozygous deletion of Ink4a-Arf bypasses the requirement of exogenously introduced IGFBP2 for glioma progression. Instead, absence of Ink4a-Arf resulted in elevated endogenous tumor cell IGFBP2. An inverse relationship between p16INK4a and IGFBP2 expression was also observed in human glioma tissue samples and in 90 different cancer cell lines by using Western blotting and reverse-phase protein lysate arrays. When endogenous IGFBP2 expression was attenuated by an RCAS vector expressing antisense IGFBP2 in our mouse model, a decreased incidence of anaplastic oligodendroglioma as well as prolonged survival was observed. Thus, p16INK4a is a negative regulator of the IGFBP2 oncogene. Loss of Ink4a-Arf results in increased IGFBP2, which contributes to glioma progression, thereby implicating IGFBP2 as a marker and potential therapeutic target for Ink4a-Arf-deleted gliomas. PMID:19805356

  6. Speedy routing recovery protocol for large failure tolerance in wireless sensor networks.

    PubMed

    Lee, Joa-Hyoung; Jung, In-Bum

    2010-01-01

    Wireless sensor networks are expected to play an increasingly important role in data collection in hazardous areas. However, the physical fragility of a sensor node makes reliable routing in hazardous areas a challenging problem. Because several sensor nodes in a hazardous area could be damaged simultaneously, the network should be able to recover routing after node failures over large areas. Many routing protocols take single-node failure recovery into account, but it is difficult for these protocols to recover the routing after large-scale failures. In this paper, we propose a routing protocol, referred to as ARF (Adaptive routing protocol for fast Recovery from large-scale Failure), to recover a network quickly after failures over large areas. ARF detects failures by counting the packet losses from parent nodes, and upon failure detection, it decreases the routing interval to notify the neighbor nodes of the failure. Our experimental results indicate that ARF could provide recovery from large-area failures quickly with less packets and energy consumption than previous protocols.

  7. The involvement of InMIR167 in the regulation of expression of its target gene InARF8, and their participation in the vegetative and generative development of Ipomoea nil plants.

    PubMed

    Glazińska, Paulina; Wojciechowski, Waldemar; Wilmowicz, Emilia; Zienkiewicz, Agnieszka; Frankowski, Kamil; Kopcewicz, Jan

    2014-02-15

    The plant hormone auxin plays a critical role in regulating plant growth and development. Recent advances have been made that having improved our understanding of auxin response pathways, primarily by characterizing the genes encoding auxin response factors (ARFs) in Arabidopsis. In addition, the expression of some ARFs is regulated by microRNAs (miRNAs). In Arabidopsis thaliana, ARF6 and ARF8 are targeted by miR167, whereas ARF10, ARF16 and ARF17 are targeted by miR160. Nevertheless, little is known about any possible interactions between miRNAs and the auxin signaling pathway during plant development. In this study, we isolated the miR167 target gene InARF8 cDNA from the cotyledons of the short day plant (SDP) Ipomoea nil (named also Pharbitis nil). Additionally, the In-miR167 precursor was identified from the I. nil EST database and analyses of InARF8 mRNA, In-pre-miR167 and mature miR167 accumulation in the plant's vegetative and generative organs were performed. The identified cDNA of InARF8 contains a miR167 complementary sequence and shows significant similarity to ARF8 cDNAs of other plant species. The predicted amino acid sequence of InARF8 includes all of the characteristic domains for ARF family transcription factors (B3 DNA-binding domain, AUX/IAA-CTD and a glutamine-rich region). Quantitative RT-PCR reactions and in situ hybridization indicated that InARF8 was expressed primarily in the shoot apices, leaf primordia and hypocotyls of I. nil seedlings, as well as in flower pistils and petals. The InARF8 transcript level increased consistently during the entire period of pistil development, whereas in the stamens, the greatest transcriptional activity occurred only during the intensive elongation phase. Additionally, an expression analysis of both the precursor In-pre-miR167 molecules identified and mature miRNA was performed. We observed that, in most of the organs examined, the InARF8 expression pattern was opposite to that of MIR167, indicating that

  8. Structure-wise discrimination of adenine and guanine by proteins on the basis of their nonbonded interactions.

    PubMed

    Usha, S; Selvaraj, S

    2015-01-01

    We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid-ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.

  9. Ablation and cone formation mechanism on CR-39 by ArF laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakeri Jooybari, B., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir; Nuclear Science and Technology Research Institute NSRT, Tehran; Afarideh, H., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir

    In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39more » ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.« less

  10. Three-dimensional aspects of the shrinking phenomenon of ArF resist

    NASA Astrophysics Data System (ADS)

    Laufer, Ido; Eytan, Giora E.; Dror, Ophir

    2002-07-01

    Previous studies of the interaction of electron beams with different types of ArF resists have shown the undesired phenomenon of the resist shrinkage. The lateral component of this shrinkage has been detected and quantified easily by SEM CD measurements. However, the vertical extent of this phenomenon has to date remained unknown. In this work we present measurements of the changes in height and sidewall angles of an ArF line by using a new e-beam tilting ability of the Vera SEM 3D. The 3D measurement results show that the height of the line shrinks in similar proportions to the top and bottom CDs, with a difference in the magnitude. Due to higher penetration depth of the e-beam on the top of the line than on the sidewall, the vertical shrinkage reaches steady state more rapidly than the lateral shrinkage. We also found a slight reduction in sidewall angle, which is less than one degree even under high e-beam exposure.

  11. Guanine- Formation During the Thermal Polymerization of Amino Acids

    NASA Technical Reports Server (NTRS)

    Mc Caw, B. K.; Munoz, E. F.; Ponnamperuma, C.; Young, R. S.

    1964-01-01

    The action of heat on a mixture of amino acids was studied as a possible abiological pathway for the synthesis of purines and pyrimidines. Guanine was detected. This result is significant in the context of chemical evolution.

  12. Quartz 9-inch size mask blanks for ArF PSM (Phase Shift Mask)

    NASA Astrophysics Data System (ADS)

    Harashima, Noriyuki; Isozaki, Tatsuya; Kawanishi, Arata; Kanai, Shuichiro; Kageyama, Kagehiro; Iso, Hiroyuki; Chishima, Tatsuya

    2017-07-01

    Semiconductor technology nodes are steadily miniaturizing. On the other hand, various efforts have been made to reduce costs, mass production lines have shifted from 200 mmφ of Si wafer to 300 mmφ, and technology development of Si wafer 450 mmφ is also in progress. As a photomask, 6-inch size binary Cr mask has been used for many years, but in recent years, the use of 9-inch binary Cr masks for Proximity Lithography Process in automotive applications, MEMS, packages, etc. has increased, and cost reduction has been taken. Since the miniaturization will progress in the above applications in the future, products corresponding to miniaturization are also desired in 9-inch photomasks. The high grade Cr - binary mask blanks used in proximity exposure process, there is a prospect of being able to use it by ULVAC COATING CORPORATION's tireless research. As further demands for miniaturization, KrF and ArF Lithography Process, which are used for steppers and scanners , there are also a demand for 9-inch size Mask Blanks. In ULVAC COATING CORPORATION, we developed a 9 - inch size KrF PSM mask Blanks prototype in 2016 and proposed a new high grade 9 - inch photomask. This time, we have further investigated and developed 9-inch size ArF PSM Mask Blanks corresponding to ArF Lithography Process, so we report it.

  13. Mdm2 overexpression and p14(ARF) inactivation are two mutually exclusive events in primary human lung tumors.

    PubMed

    Eymin, Béatrice; Gazzeri, Sylvie; Brambilla, Christian; Brambilla, Elisabeth

    2002-04-18

    Pathways involving p53 and pRb tumor suppressor genes are frequently deregulated during lung carcinogenesis. Through its location at the interface of these pathways, Mdm2 can modulate the function of both p53 and pRb genes. We have examined here the pattern of expression of Mdm2 in a series of 192 human lung carcinomas of all histological types using both immunohistochemical and Western blot analyses and four distinct antibodies mapping different epitopes onto the Mdm2 protein. Using Immunohistochemistry (IHC), Mdm2 was overexpressed as compared to normal lung in 31% (60 out of 192) of all tumors analysed, whatever their histological types. Western blotting was performed on 28 out of the 192 tumoral samples. Overexpression of p85/90, p74/76 and p57 Mdm2 isoforms was detected in 18% (5 out of 28), 25% (7 out of 28) and 39% (11 out of 28) of the cases respectively. Overall, overexpression of at least one isoform was observed in 14 out of 28 (50%) lung tumors and concomittant overexpression of at least two isoforms in 7 out of 28 (25%) cases. A good concordance (82%) was observed between immunohistochemical and Western blot data. Interestingly, a highly significant inverse relationship was detected between p14(ARF) loss and Mdm2 overexpression either in NSCLC (P=0.0089) or in NE lung tumors (P<0.0001). Furthermore, a Mdm2/p14(ARF) >1 ratio was correlated with a high grade phenotype among NE tumors overexpressing Mdm2 (P=0.0021). Taken together, these data strongly suggest that p14(ARF)and Mdm2 act on common pathway(s) to regulate p53 and/or pRb-dependent or independent functions and that the Mdm2 : p14(ARF) ratio might act as a rheostat in modulating the activity of both proteins.

  14. The A2 Adenosine Receptor: Guanine Nucleotide Modulation of Agonist Binding Is Enhanced by Proteolysis

    PubMed Central

    NANOFF, CHRISTIAN; JACOBSON, KENNETH A.; STILES, GARY L.

    2012-01-01

    SUMMARY Agonist binding to the A2 adenosine receptor (A2AR) and its regulation by guanine nucleotides was studied using the newly developed radioligand 125l-2-[4-(2-{2-[(4-ammnophenyl)methylcarbonylamino]ethylaminnocarbonyl}ethyl)phenyl]ethylamino-5′-N-ethylcarboxamidoadenosine (1251-PAPA-APEC) and its photoaffinity analog 125l-azido-PAPA-APEC. A single protein of Mr 45,000, displaying the appropriate A2AR pharmacology, is Iabeled in membranes from bovine striatum, PC12 cells, and frog erythrocytes. In DDT1 MF2 cells the labeled protein has a slightly lower molecular weight. Incorporation of 125l-azido-PAPA-APEC into membranes from rabbit striatum, however, reveals two specifically labeled peptides (Mr ~47,O00 and 38,000), both of which display A2AR pharmacology. Inhibition of protease activity leads to a decrease in the amount of the Mr 38,000 protein, with only the Mr 47,000 protein remaining. This suggests that the Mr 38,000 peptide is a proteolytic product of the Mr 47,000 A2AR protein. In membranes containing the intact undigested A2AR protein, guanine nucleotides induce a small to insignificant decrease in agonist binding, which is atypical of stimulatory Gs-coupled receptors. This minimal effect is observed in rabbit striatal membranes prepared in the presence of protease inhibitors, as well as in the other tissues studied. Binding to rabbit stnatal membranes that possess the partially digested receptor protein, however, reveals a 50% reduction in maximal specific agonist binding upon addition of guanine nucleotides. Inhibition of proteolysis in rabbit striatum, on the other hand, results in a diminished ability of guanine nucleotides to regulate agonist binding. Thus, the enhanced effectiveness of guanine nucleotides in rabbit striatal membranes is associated with the generation of the Mr 38,000 peptide fragment. Guanosine 5′-(β,γ-imido)triphosphate reduces photoaffinity labeling by 55% in the Mr 38,000 protein, whereas the labeling is decreased by

  15. Structure of Radicals from X-irradiated Guanine Derivatives: An Experimental and Computational Study of Sodium Guanosine Dihydrate Single Crystals

    PubMed Central

    Jayatilaka, Nayana; Nelson, William H.

    2008-01-01

    In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824

  16. The Area Resource File: ARF. A Manpower Planning and Research Tool.

    ERIC Educational Resources Information Center

    Applied Management Sciences, Inc., Silver Spring, MD.

    This publication describes the Area Resource File (ARF), a computer-based, county-specific health information system with broad analytical capabilities which utilizes manpower and manpower-related data that are available on a compatible basis for all counties in the United States, and which was developed to summarize statistics from many disparate…

  17. Effects of Some Pesticides on the Growth of ARF18 and Its Pathogenicity to Heterodera glycines

    PubMed Central

    Kim, D. G.; Riggs, R. D.

    1998-01-01

    The effects of 22 pesticides on the mycelial growth and pathogenicity of the biocontrol fungus ARFI8 to Heterodera glycines were tested in vitro. The chemicals were added to agar at 10, 100, and 1,000 ppm a.i.; a block of agar containing the fungus was added to each test concentration; and fungal growth was measured. Subsequently, a block of the fungus on the pesticide-containing agar was used to determine the ability of the fungus to parasitize eggs of H. glycines. Aldicarb, bentazone, and chlorothalonil had little or no effect on fungal growth, whereas benomyl and thiophanate methyl completely inhibited growth of the fungus at 10 ppm. The relative insensitivity of ARF18 to certain pesticides would permit selected use of those pesticides with ARF18 in an integrated control program if the effects on the fungus in the field are similar to results from petri dish studies. PMID:19274211

  18. Phospholipase D2 Is Involved in the Formation of Golgi Tubules and ArfGAP1 Recruitment

    PubMed Central

    Martínez-Martínez, Narcisa; Martínez-Alonso, Emma; Ballesta, José; Martínez-Menárguez, José A.

    2014-01-01

    Lipids and lipid-modifying enzymes play a key role in the biogenesis, maintenance and fission of transport carriers in the secretory and endocytic pathways. In the present study we demonstrate that phosphatidic acid generated by phospholipase D2 (PLD2) is involved in the formation of Golgi tubules. The main evidence to support this is: 1) inhibitors of phosphatidic acid formation and PLD2 depletion inhibit the formation of tubules containing resident enzymes and regulators of intra-Golgi transport in a low temperature (15°C) model of Golgi tubulation but do not affect brefeldin A-induced tubules, 2) inhibition of PLD2 enzymatic activity and PLD2 depletion in cells cultured under physiological conditions (37°C) induce the formation of tubules specifically containing Golgi matrix proteins, and, 3) over-expression of PLD2 induces the formation of a tubular network. In addition, it was found that the generation of this lipid by the isoenzyme is necessary for ArfGAP1 recruitment to Golgi membranes. These results suggest that both proteins are involved in the molecular mechanisms which drive the formation of different types of Golgi tubules. PMID:25354038

  19. Hydroxyl Radical (OH•) Reaction with Guanine in an Aqueous Environment: A DFT Study

    PubMed Central

    Kumar, Anil; Pottiboyina, Venkata; Sevilla, Michael D.

    2011-01-01

    The reaction of hydroxyl radical (OH•) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH• with DNA proceeds mainly through the addition of OH• to the C=C bond of the DNA bases. However, recently it has been reported that the principal reaction of OH• with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH• to the C=C bond. In the present work, these two reaction pathways of OH• attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH• at C4=C5 double bond of guanine is barrier free and the adduct radical (G-OH•) has only a small activation barrier of ca. 1 – 6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G•+---OH−). The formation of ion-pair is a result of the highly oxidizing nature of the OH• in aqueous media. The resulting ion-pair (G•+---OH−) deprotonates to form H2O and neutral G radicals favoring G(N1-H)• with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C4)-OH• (adduct) to G(N1-H)• and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH•), (G•+---OH−), and G(N1-H)• were further characterized by the CAM-B3LYP calculations of their UV-visible spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N1 and N2 sites of guanine by the OH• show that this is also a competitive route to produce G(N2-H)•, G(N1-H)• and H2O. PMID:22050033

  20. Gap Fill Materials Using Cyclodextrin Derivatives in ArF Lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi; Hashimoto, Keisuke

    2007-11-01

    High planarizing gap fill materials based on β-cyclodextrin in ArF photoresist under-layer materials have been developed for fast etching in CF4 gas. Gap fill materials used in the via-first dual damascene process need to have high etch rates to prevent crowning or fencing on top of the trench after etching and a small thickness bias between the dense and blanket areas to minimize issues observed during trench lithography by narrowing the process latitude. Cyclodextrin is a circular oligomer with a nanoscale porous structure that has a high number of oxygen atoms, as calculated using the Ohnishi parameter, providing high etch rates. Additionally, since gap fill materials using cyclodextrin derivatives have low viscosities and molecular weights, they are expected to exhibit excellent flow properties and minimal thermal shrinkage during baking. In this paper, we describe the composition and basic film properties of gap fill materials; planarization in the via-first dual damascene process and etch rates in CF4 gas compared with dextrin with α-glycoside bonds in polysaccharide, poly(2-hydroxypropyl methacrylate) and poly(4-hydroxystyrene). The β-cyclodextrin used in this study was obtained by esterifying the hydroxyl groups of dextrin resulting in improved wettability on via substrates and solubility in photoresist solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and ethyl lactate. Gap fill materials using cyclodextrin derivatives showed good planarization and via filling performance without observing voids in via holes. In addition to superior via filling performance, the etch rate of gap fill materials using β-cyclodextrin derivatives was 2.8-2.9 times higher than that of an ArF photoresist, evaluated under CF4 gas conditions by reactive ion etching. These results were attributed to the combination of both nanoscale porous structures and a high density of oxygen atoms in our gap fill materials using cyclodextrin

  1. Magnetic Control of the Light Reflection Anisotropy in a Biogenic Guanine Microcrystal Platelet.

    PubMed

    Iwasaka, Masakazu; Mizukawa, Yuri; Roberts, Nicholas W

    2016-01-12

    Bioinspired but static optical devices such as lenses, retarders, and reflectors have had a significant impact on the designs of many man-made optical technologies. However, while numerous adaptive and flexible optical mechanisms are found throughout the animal kingdom, highly desirable biomimetic copies of these remarkable smart systems remain, in many cases, a distant dream. Many aquatic animals have evolved highly efficient reflectors based on multilayer stacks of the crystallized nucleic acid base guanine. With exceptional levels of spectral and intensity control, these reflectors represent an interesting design pathway towards controllable micromirror structures. Here we show that individual guanine crystals, with dimensions of 5 μm × 20 μm × 70 nm, can be magnetically controlled to act as individual micromirrors. By applying magnetic fields of 500 mT, the reflectivity of these crystals can be switched off and on for the change in reflectivity. Overall, the use of guanine represents a novel design scheme for a highly efficient and controllable synthetic organic micromirror array.

  2. Mould-devouring mites differ in guanine excretion from dust-eating Acari, a possible error source in mite allergen exposure studies.

    PubMed

    Kort, H S; Schober, G; Koren, L G; Scharringa, J

    1997-08-01

    Measurement of guanine in dust proved a good assessment of mite allergen exposure. Exposure to mite allergens may lead to atopic inflictions. In a semi-natural test system the development of Dermatophagoides pteronyssinus (Trouessart) and Glycyphagus domesticus (De Geer), and the presence of their guanine excretion, was examined in a dust-soiled and mouldy environment. Mites were counted after heat-escape, and guanine was detected by means of capillary zone electrophoresis. For each species, 50 mites randomly taken, were inoculated on soiled test-surfaces of 10 x 10 cm. Rough wooden board, gypsum board, tufted carpet, and a self-made mattress representing wall surfaces and home-textiles, respectively, were used. Eight weeks after inoculation with mites only, the surfaces were all mould ridden, and mite and guanine measurements were taken. The Spearman rank correlation test and the Mann-Whitney U-test were used in statistical analysis. The confidence limit was set at 1%. Among the various test-surfaces, no differences were found regarding total mite numbers and amount of guanine present (P > 0.01). For the dust-eating mite D. pteronyssinus, total mite numbers correlated with the amount of guanine present (P = 0.002) on all inoculated surfaces, indicating feeding on the protein-rich dust. For the mould devouring mite G. domesticus, however, no such correlation was found (P = 0.72). Apparently, they mainly consumed fungal carbohydrates during this experiment. The allergological relevance of storage mites has been under discussion for the last 25 years. In humid homes, these mites will feed almost exclusively on fungi and may produce allergenic or irritating substances different from those arising on protein-rich laboratory media used in allergen extract production or present in carpets, bedding and furniture.

  3. The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Pang, Shaoping; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-12-01

    Completion of the whole genome sequencing of citrus enabled us to perform genome-wide identification and functional analysis of the gene families involved in agronomic traits and morphological diversity of citrus. In this study, 22 CitARF, 11 CitGH3 and 26 CitAUX/IAA genes were identified in citrus, respectively. Phylogenetic analysis revealed that all the genes of each gene family could be subdivided into three groups and showed strong evolutionary conservation. The GH3 and AUX/IAA gene families shrank and ARF gene family was highly conserved in the citrus genome after speciation from Arabidopsis thaliana. Tissue-specific expression profiles revealed that 54 genes were expressed in at least one tissue while just 5 genes including CitARF07, CitARF20, CitGH3.04, CitAUX/IAA25 and CitAUX/IAA26 with very low expression level in all tissues tested, suggesting that the CitARF, CitGH3 and CitAUX/IAA gene families played important roles in the development of citrus organs. In addition, our data found that the expression of 2 CitARF, 4 CitGH3 and 4 AUX/IAA genes was affected by IAA treatment, and 7 genes including, CitGH3.04, CitGH3.07, CitAUX/IAA03, CitAUX/IAA04, CitAUX/IAA18, CitAUX/IAA19 and CitAUX/IAA23 were related to fruitlet abscission. This study provides a foundation for future studies on elucidating the precise role of citrus ARF, GH3 and AUX/IAA genes in early steps of auxin signal transduction and open up a new opportunity to uncover the molecular mechanism underlying citrus fruitlet abscission.

  4. pH-Dependent Singlet O2 Oxidation Kinetics of Guanine and 9-Methylguanine: An Online Mass Spectrometry and Spectroscopy Study Combined with Theoretical Exploration.

    PubMed

    Lu, Wenchao; Sun, Yan; Zhou, Wenjing; Liu, Jianbo

    2018-01-11

    We report a kinetic and mechanistic study on the title reactions, in which 1 O 2 was generated by the reaction of H 2 O 2 with Cl 2 and bubbled into an aqueous solution of guanine and 9-methylguanine (9MG) at different pH values. Oxidation kinetics and product branching ratios were measured using online electrospray ionization mass spectrometry coupled with absorption and emission spectrophotometry, and product structures were determined by collision-induced dissociation (CID) tandem mass spectrometry. Experiments revealed strong pH dependence of the reactions. The oxidation of guanine is noticeable only in basic solution, while the oxidation of 9MG is weak in acidic solution, increases in neutral solution, and becomes intensive in basic solution. 5-Guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) were detected as the major oxidation products of guanine and 9MG, and Sp became dominant in basic solution. A reaction intermediate was captured in mass spectra, and assigned to gem-diol on the basis of CID measurements. This intermediate served as the precursor for the formation of Gh. After taking into account solution compositions at each pH, first-order oxidation rate constants were extracted for individual species: that is, 3.2-3.6 × 10 7 M -1 s -1 for deprotonated guanine, and 1.2 × 10 6 and 4.6-4.9 × 10 7 M -1 s -1 for neutral and deprotonated 9MG, respectively. Guided by approximately spin-projected density-functional-theory-calculated reaction potential energy surfaces, the kinetics for the initial 1 O 2 addition to guanine and 9MG was evaluated using transition state theory (TST). The comparison between TST modeling and experiment confirms that 1 O 2 addition is rate-limiting for oxidation, which forms endoperoxide and peroxide intermediates as determined in previous measurements of the same systems in the gas phase.

  5. Structural outline of the detailed mechanism for elongation factor Ts-mediated guanine nucleotide exchange on elongation factor Tu.

    PubMed

    Thirup, Søren S; Van, Lan Bich; Nielsen, Tine K; Knudsen, Charlotte R

    2015-07-01

    Translation elongation factor EF-Tu belongs to the superfamily of guanine-nucleotide binding proteins, which play key cellular roles as regulatory switches. All G-proteins require activation via exchange of GDP for GTP to carry out their respective tasks. Often, guanine-nucleotide exchange factors are essential to this process. During translation, EF-Tu:GTP transports aminoacylated tRNA to the ribosome. GTP is hydrolyzed during this process, and subsequent reactivation of EF-Tu is catalyzed by EF-Ts. The reaction path of guanine-nucleotide exchange is structurally poorly defined for EF-Tu and EF-Ts. We have determined the crystal structures of the following reaction intermediates: two structures of EF-Tu:GDP:EF-Ts (2.2 and 1.8Å resolution), EF-Tu:PO4:EF-Ts (1.9Å resolution), EF-Tu:GDPNP:EF-Ts (2.2Å resolution) and EF-Tu:GDPNP:pulvomycin:Mg(2+):EF-Ts (3.5Å resolution). These structures provide snapshots throughout the entire exchange reaction and suggest a mechanism for the release of EF-Tu in its GTP conformation. An inferred sequence of events during the exchange reaction is presented. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    PubMed Central

    Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer

    2016-01-01

    AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690

  7. Scaffold-hopping from xanthines to tricyclic guanines: A case study of dipeptidyl peptidase 4 (DPP4) inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pissarnitski, Dmitri A.; Zhao, Zhiqiang; Cole, David

    2016-11-01

    Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.

  8. The Guanine Cation Radical: Investigation of Deprotonation States by ESR and DFT

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D.

    2008-01-01

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G•+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2′-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation, G•+ (pH 3–5), singly deprotonated species, G(-H)• (pH 7–9) and doubly deprotonated species, G(-2H)•− (pH>11) are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N substituted derivatives at N1, N2 N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G•+, G(-H)•, and G(-2H)•−. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)•. Using the B3LYP/6–31G(d) method, the geometries and energies of G•+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)• and G(N2-H)•, were investigated. In a non-hydrated state G(N2-H)• is found to be more stable than G(N1-H)• but on hydration with 7 water molecules G(N1-H)• is found to be more stable than G(N2-H)•. The theoretically calculated hyperfine coupling constants (HFCC) of G•+, G(N1-H)• and G(-2H)•− match the experimentally observed HFCCs best on hydration with 7 or more waters. For G(-2H)•−, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until 9 or 10 waters of hydration are included. PMID:17125389

  9. Capturing the radical ion-pair intermediate in DNA guanine oxidation

    PubMed Central

    Jie, Jialong; Liu, Kunhui; Wu, Lidan; Zhao, Hongmei; Song, Di; Su, Hongmei

    2017-01-01

    Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl− in the chlorine radical–initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl− is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA. PMID:28630924

  10. Detection of Guanine and Adenine Using an Aminated Reduced Graphene Oxide Functional Membrane-Modified Glassy Carbon Electrode

    PubMed Central

    Li, Di; Yang, Xiao-Lu; Xiao, Bao-Lin; Geng, Fang-Yong; Hong, Jun; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2017-01-01

    A new electrochemical sensor based on a Nafion, aminated reduced graphene oxide and chitosan functional membrane-modified glassy carbon electrode was proposed for the simultaneous detection of adenine and guanine. Fourier transform-infrared spectrometry (FTIR), transmission electron microscopy (TEM), and electrochemical methods were utilized for the additional characterization of the membrane materials. The prepared electrode was utilized for the detection of guanine (G) and adenine (A). The anodic peak currents to G and A were linear in the concentrations ranging from 0.1 to 120 μM and 0.2 to 110 μM, respectively. The detection limits were found to be 0.1 μM and 0.2 μM, respectively. Moreover, the modified electrode could also be used to determine G and A in calf thymus DNA. PMID:28718793

  11. Discovery of Aminopiperidine Indoles That Activate the Guanine Nucleotide Exchange Factor SOS1 and Modulate RAS Signaling.

    PubMed

    Abbott, Jason R; Hodges, Timothy R; Daniels, R Nathan; Patel, Pratiq A; Kennedy, Jack Phillip; Howes, Jennifer E; Akan, Denis T; Burns, Michael C; Sai, Jiqing; Sobolik, Tammy; Beesetty, Yugandhar; Lee, Taekyu; Rossanese, Olivia W; Phan, Jason; Waterson, Alex G; Fesik, Stephen W

    2018-06-01

    Deregulated RAS activity, often the result of mutation, is implicated in approximately 30% of all human cancers. Despite this statistic, no clinically successful treatment for RAS-driven tumors has yet been developed. One approach for modulating RAS activity is to target and affect the activity of proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1). Here, we report on structure-activity relationships (SAR) in an indole series of compounds. Using structure-based design, we systematically explored substitution patterns on the indole nucleus, the pendant amino acid moiety, and the linker unit that connects these two fragments. Best-in-class compounds activate the nucleotide exchange process at sub-micromolar concentrations in vitro, increase levels of active RAS-GTP in HeLa cells, and elicit signaling changes in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway, resulting in a decrease in pERK1/2 T202/Y204 protein levels at higher compound concentrations.

  12. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein regulates neurite development via PI3K-AKT and ERK signaling pathways.

    PubMed

    Zhou, C; Li, C; Li, D; Wang, Y; Shao, W; You, Y; Peng, J; Zhang, X; Lu, L; Shen, X

    2013-12-19

    The elongation of neuron is highly dependent on membrane trafficking. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein 1 (BIG1) functions in the membrane trafficking between the Golgi apparatus and the plasma membrane. BFA, an uncompetitive inhibitor of BIG1 can inhibit neurite outgrowth and polarity development. In this study, we aimed to define the possible role of BIG1 in neurite development and to further investigate the potential mechanism. By immunostaining, we found that BIG1 was extensively colocalized with synaptophysin, a marker for synaptic vesicles in soma and partly in neurites. The amount of both protein and mRNA of BIG1 were up-regulated during rat brain development. BIG1 depletion significantly decreased the neurite length and inhibited the phosphorylation of phosphatidylinositide 3-kinase (PI3K) and protein kinase B (AKT). Inhibition of BIG1 guanine nucleotide-exchange factor (GEF) activity by BFA or overexpression of the dominant-negative BIG1 reduced PI3K and AKT phosphorylation, indicating regulatory effects of BIG1 on PI3K-AKT signaling pathway is dependent on its GEF activity. BIG1 siRNA or BFA treatment also significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation. Overexpression of wild-type BIG1 significantly increased ERK phosphorylation, but the dominant-negative BIG1 had no effect on ERK phosphorylation, indicating the involvement of BIG1 in ERK signaling regulation may not be dependent on its GEF activity. Our result identified a novel function of BIG1 in neurite development. The newly recognized function integrates the function of BIG1 in membrane trafficking with the activation of PI3K-AKT and ERK signaling pathways which are critical in neurite development. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development.

    PubMed

    Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae

    2014-01-01

    Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid 'Tamnara' grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during

  14. Biocatalytic separation of N-7/N-9 guanine nucleosides.

    PubMed

    Singh, Sunil K; Sharma, Vivek K; Olsen, Carl E; Wengel, Jesper; Parmar, Virinder S; Prasad, Ashok K

    2010-11-19

    Vorbrüggen coupling of trimethylsilylated 2-N-isobutanoylguanine with peracetylated pentofuranose derivatives generally gives inseparable N-7/N-9 glycosyl mixtures. We have shown that the two isomers can be separated biocatalytically by Novozyme-435-mediated selective deacetylation of the 5'-O-acetyl group of peracetylated N-9 guanine nucleosides.

  15. ASC-J9(®) suppresses castration resistant prostate cancer progression via degrading the enzalutamide-induced androgen receptor mutant AR-F876L.

    PubMed

    Wang, Ronghao; Lin, Wanying; Lin, Changyi; Li, Lei; Sun, Yin; Chang, Chawnshang

    2016-08-28

    Androgen deprivation therapy (ADT) with the newly developed powerful anti-androgen enzalutamide (Enz, also known as MDV3100) has promising therapeutic effects to suppress castration resistant prostate cancer (CRPC) and extending patients' lives an extra 4.8 months. However, most Enz therapy eventually fails with the development of Enz resistance. The detailed mechanisms how CRPC develops Enz resistance remain unclear and may involve multiple mechanisms. Among them, the induction of the androgen receptor (AR) mutant AR-F876L in some CRPC patients may represent one driving force that confers Enz resistance. Here, we demonstrate that the AR degradation enhancer, ASC-J9(®), not only degrades wild-type AR, but also has the ability to target AR-F876L. The consequence of suppressing AR-F876L may then abrogate AR-F876L mediated CRPC cell proliferation and metastasis. Thus, developing ASC-J9(®) as a new therapeutic approach may represent a novel therapy to better suppress CRPC that has already developed Enz resistance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Phosphodiester-mediated reaction of cisplatin with guanine in oligodeoxyribonucleotides.

    PubMed

    Campbell, Meghan A; Miller, Paul S

    2008-12-02

    The cancer chemotherapeutic agent cis-diamminedichloroplatinum(II) or cisplatin reacts primarily with guanines in DNA to form 1,2-Pt-GG and 1,3-Pt-GNG intrastrand cross-links and, to a lesser extent, G-G interstrand cross-links. Recent NMR evidence has suggested that cisplatin can also form a coordination complex with the phosphodiester internucleotide linkage of DNA. We have examined the effects of the phosphodiester backbone on the reactions of cisplatin with oligodeoxyribonucleotides that lack or contain a GTG sequence. Cisplatin forms a stable adduct with TpT that can be isolated by reversed phase HPLC. The cis-Pt-TpT adduct contains a single Pt, as determined by atomic absorption spectroscopy (AAS) and by electrospray ionization mass spectrometry (ESI-MS), and is resistant to digestion by snake venom phosphodiesterase. Treatment of the adduct with sodium cyanide regenerates TpT. Similar adduct formation was observed when T(pT)(8) was treated with cisplatin, but not when the phosphodiester linkages of T(pT)(8) were replaced with methylphosphonate groups. These results suggest that the platinum may be coordinated with the oxygens of the thymine and possibly with those of the phosphodiester group. As expected, reaction of a 9-mer containing a GTG sequence with cisplatin yielded an adduct that contained a 1,3-Pt-GTG intrastrand cross-link. However, we found that the number and placement of phosphodiesters surrounding a GTG sequence significantly affected intrastrand cross-link formation. Increasing the number of negatively charged phosphodiesters in the oligonucleotide increased the amount of GTG platination. Surrounding the GTG sequence with nonionic methylphosphonate linkages inhibited or eliminated cross-link formation. These observations suggest that interactions between cisplatin and the negatively charged phosphodiester backbone may play an important role in facilitating platination of guanine nucleotides in DNA.

  17. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L.

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specificmore » chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.« less

  18. Defect printability of ArF alternative phase-shift mask: a critical comparison of simulation and experiment

    NASA Astrophysics Data System (ADS)

    Ozawa, Ken; Komizo, Tooru; Ohnuma, Hidetoshi

    2002-07-01

    An alternative phase shift mask (alt-PSM) is a promising device for extending optical lithography to finer design rules. There have been few reports, however, on the mask's ability to identify phase defects. We report here an alt-PSM of a single-trench type with undercut for ArF exposure, with programmed phase defects used to evaluate defect printability by measuring aerial images with a Zeiss MSM193 measuring system. The experimental results are simulated using the TEMPEST program. First, a critical comparison of the simulation and the experiment is conducted. The actual measured topographies of quartz defects are used in the simulation. Moreover, a general simulation study on defect printability using an alt-PSM for ArF exposure is conducted. The defect dimensions, which produce critical CD errors, are determined by simulation that takes into account the full 3-dimensional structure of phase defects as well as a simplified structure. The critical dimensions of an isolated bump defect identified by the alt-PSM of a single-trench type with undercut for ArF exposure are 300 nm in bottom dimension and 74 degrees in height (phase) for the real shape, where the depth of wet-etching is 100 nm and the CD error limit is +/- 5 percent.

  19. Mutagenic and cytotoxic properties of 6-thioguanine, S6-methylthioguanine, and guanine-S6-sulfonic acid.

    PubMed

    Yuan, Bifeng; Wang, Yinsheng

    2008-08-29

    Thiopurine drugs, including 6-thioguanine ((S)G), 6-mercaptopurine, and azathioprine, are widely employed anticancer agents and immunosuppressants. The formation of (S)G nucleotides from the thiopurine prodrugs and their subsequent incorporation into nucleic acids are important for the drugs to exert their cytotoxic effects. (S)G in DNA can be methylated by S-adenosyl-l-methionine to give S(6)-methylthioguanine (S(6)mG) and oxidized by UVA light to render guanine-S(6)-sulfonic acid ((SO3H)G). Here, we constructed single-stranded M13 shuttle vectors carrying a (S)G, S(6)mG, or (SO3H)G at a unique site and allowed the vectors to propagate in wild-type and bypass polymerase-deficient Escherichia coli cells. Analysis of the replication products by using the competitive replication and adduct bypass and a slightly modified restriction enzyme digestion and post-labeling assays revealed that, although none of the three thionucleosides considerably blocked DNA replication in all transfected E. coli cells, both S(6)mG and (SO3H)G were highly mutagenic, which resulted in G-->A mutation at frequencies of 94 and 77%, respectively, in wild-type E. coli cells. Deficiency in bypass polymerases does not result in alteration of mutation frequencies of these two lesions. In contrast to what was found from previous steady-state kinetic analysis, our data demonstrated that 6-thioguanine is mutagenic, with G-->A transition occurring at a frequency of approximately 10%. The mutagenic properties of 6-thioguanine and its derivatives revealed in the present study offered important knowledge about the biological implications of these thionucleosides.

  20. Neon reduction program on Cymer ArF light sources

    NASA Astrophysics Data System (ADS)

    Kanawade, Dinesh; Roman, Yzzer; Cacouris, Ted; Thornes, Josh; O'Brien, Kevin

    2016-03-01

    In response to significant neon supply constraints, Cymer has responded with a multi-part plan to support its customers. Cymer's primary objective is to ensure that reliable system performance is maintained while minimizing gas consumption. Gas algorithms were optimized to ensure stable performance across all operating conditions. The Cymer neon support plan contains four elements: 1. Gas reduction program to reduce neon by >50% while maintaining existing performance levels and availability; 2. short-term containment solutions for immediate relief. 3. qualification of additional gas suppliers; and 4. long-term recycling/reclaim opportunity. The Cymer neon reduction program has shown excellent results as demonstrated through the comparison on standard gas use versus the new >50% reduced neon performance for ArF immersion light sources. Testing included stressful conditions such as repetition rate, duty cycle and energy target changes. No performance degradation has been observed over typical gas lives.

  1. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1.

    PubMed

    Vercoulen, Yvonne; Kondo, Yasushi; Iwig, Jeffrey S; Janssen, Axel B; White, Katharine A; Amini, Mojtaba; Barber, Diane L; Kuriyan, John; Roose, Jeroen P

    2017-09-27

    RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.

  2. Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration

    PubMed Central

    Tseng, Yun-Yu; Rabadán, M. Angeles; Krishna, Shefali; Hall, Alan

    2017-01-01

    Efficient collective migration depends on a balance between contractility and cytoskeletal rearrangements, adhesion, and mechanical cell–cell communication, all controlled by GTPases of the RHO family. By comprehensive screening of guanine nucleotide exchange factors (GEFs) in human bronchial epithelial cell monolayers, we identified GEFs that are required for collective migration at large, such as SOS1 and β-PIX, and RHOA GEFs that are implicated in intercellular communication. Down-regulation of the latter GEFs differentially enhanced front-to-back propagation of guidance cues through the monolayer and was mirrored by down-regulation of RHOA expression and myosin II activity. Phenotype-based clustering of knockdown behaviors identified RHOA-ARHGEF18 and ARHGEF3-ARHGEF28-ARHGEF11 clusters, indicating that the latter may signal through other RHO-family GTPases. Indeed, knockdown of RHOC produced an intermediate between the two phenotypes. We conclude that for effective collective migration, the RHOA-GEFs → RHOA/C → actomyosin pathways must be optimally tuned to compromise between generation of motility forces and restriction of intercellular communication. PMID:28512143

  3. Gibberellin Application at Pre-Bloom in Grapevines Down-Regulates the Expressions of VvIAA9 and VvARF7, Negative Regulators of Fruit Set Initiation, during Parthenocarpic Fruit Development

    PubMed Central

    Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae

    2014-01-01

    Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid ‘Tamnara’ grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during

  4. Electron microscopic visualization of complementary labeled DNA with platinum-containing guanine derivative.

    PubMed

    Loukanov, Alexandre; Filipov, Chavdar; Mladenova, Polina; Toshev, Svetlin; Emin, Saim

    2016-04-01

    The object of the present report is to provide a method for a visualization of DNA in TEM by complementary labeling of cytosine with guanine derivative, which contains platinum as contrast-enhanced heavy element. The stretched single-chain DNA was obtained by modifying double-stranded DNA. The labeling method comprises the following steps: (i) stretching and adsorption of DNA on the support film of an electron microscope grid (the hydrophobic carbon film holding negative charged DNA); (ii) complementary labeling of the cytosine bases from the stretched single-stranded DNA pieces on the support film with platinum containing guanine derivative to form base-specific hydrogen bond; and (iii) producing a magnified image of the base-specific labeled DNA. Stretched single-stranded DNA on a support film is obtained by a rapid elongation of DNA pieces on the surface between air and aqueous buffer solution. The attached platinum-containing guanine derivative serves as a high-dense marker and it can be discriminated from the surrounding background of support carbon film and visualized by use of conventional TEM observation at 100 kV accelerated voltage. This method allows examination of specific nucleic macromolecules through atom-by-atom analysis and it is promising way toward future DNA-sequencing or molecular diagnostics of nucleic acids by electron microscopic observation. © 2016 Wiley Periodicals, Inc.

  5. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    PubMed

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. C/EBPβ represses p53 to promote cell survival downstream of DNA damage independent of oncogenic Ras and p19Arf

    PubMed Central

    Ewing, SJ; Zhu, S; Zhu, F; House, JS; Smart, RC

    2013-01-01

    CCAAT/enhancer-binding protein-β (C/EBPβ) is a mediator of cell survival and tumorigenesis. When C/EBPβ−/− mice are treated with carcinogens that produce oncogenic Ras mutations in keratinocytes, they respond with abnormally elevated keratinocyte apoptosis and a block in skin tumorigenesis. Although this aberrant carcinogen-induced apoptosis results from abnormal upregulation of p53, it is not known whether upregulated p53 results from oncogenic Ras and its ability to induce p19Arf and/or activate DNA-damage response pathways or from direct carcinogen-induced DNA damage. We report that p19Arf is dramatically elevated in C/EBPβ−/− epidermis and that C/EBPβ represses a p19Arf promoter reporter. To determine whether p19Arf is responsible for the proapoptotic phenotype in C/EBPβ−/− mice, C/EBPβ−/−;p19Arf−/− mice were generated. C/EBPβ−/−;p19Arf−/− mice responded to carcinogen treatment with increased p53 and apoptosis, indicating p19Arf is not essential. To ascertain whether oncogenic Ras activation induces aberrant p53 and apoptosis in C/EBPβ−/− epidermis, we generated K14-ER:Ras; C/EBPβ−/− mice. Oncogenic Ras activation induced by 4-hydroxytamoxifen did not produce increased p53 or apoptosis. Finally, when C/EBPβ−/− mice were treated with differing types of DNA-damaging agents, including alkylating chemotherapeutic agents, they displayed aberrant levels of p53 and apoptosis. These results indicate that C/EBPβ represses p53 to promote cell survival downstream of DNA damage and suggest that inhibition of C/EBPβ may be a target for cancer cotherapy to increase the efficacy of alkylating chemotherapeutic agents. PMID:18636078

  7. Nitrosamine-induced carcinogenesis. The alkylation of N-7 of guanine of nucleic acids of the rat by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl methanesulphonate

    PubMed Central

    Swann, P. F.; Magee, P. N.

    1971-01-01

    1. The extent of ethylation of N-7 of guanine in the nucleic acids of rat tissue in vivo by diethylnitrosamine, N-ethyl-N-nitrosourea and ethyl methanesulphonate was measured. 2. All compounds produced measurable amounts of 7-ethyl-guanine. 3. A single dose of diethylnitrosamine or N-ethyl-N-nitrosourea produced tumours of the kidney in the rat. Three doses of ethyl methanesulphonate produced kidney tumours, but a single dose did not. 4. A single dose of diethylnitrosamine produced twice as much ethylation of N-7 of guanine in DNA of kidney as did N-ethyl-N-nitrosourea. A single dose of both compounds induced kidney tumours, although of a different histological type. 5. A single dose of ethyl methanesulphonate produced ten times as much ethylation of N-7 of guanine in kidney DNA as did N-ethyl-N-nitrosourea without producing tumours. 6. The relevance of these findings to the hypothesis that alkylation of a cellular component is the mechanism of induction of tumours by nitroso compounds is discussed. PMID:5145908

  8. Anti-herpesvirus activity of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl)guanine.

    PubMed Central

    Smee, D F; Martin, J C; Verheyden, J P; Matthews, T R

    1983-01-01

    The antiherpetic effects of a novel purine acyclic nucleoside, 9-(1,3-dihydroxy-2-propoxymethyl)guanine (DHPG), were compared with those of acyclovir in cell cultures and in mice. The modes of action of DHPG and acyclovir were similar in that herpes thymidine kinase phosphorylated each compound, and both agents selectively inhibited viral over host cell DNA synthesis. In 50% plaque reduction assays in Vero cells, the drugs inhibited herpes simplex virus types 1 and 2 thymidine kinase-positive strains at 0.2 to 2.4 microM. DHPG was markedly more active than acyclovir against human cytomegalovirus (50% inhibitory doses were 7 and 95 microM, respectively). Each nucleoside inhibited uninfected cell macromolecule synthesis and cell proliferation at concentrations far above those required to inhibit herpes simplex virus replication. Although the two compounds had many similarities in their behavior in vitro, the important difference was the superior performance of DHPG against herpesvirus-induced encephalitis and vaginitis in vivo. Thus, mortality in mice infected with herpesvirus type 2 was reduced 50% by daily doses of 7 to 10 mg of DHPG/kg, whereas an equally effective daily dose of acyclovir was approximately 500 mg/kg. DHPG at a daily dose of 50 mg/kg was also superior to acyclovir at 100 mg/kg per day in its inhibition of herpetic vaginal lesions in mice. PMID:6307132

  9. Rayleigh rejection filters for 193-nm ArF laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1993-01-01

    Selected organic absorbers and their solvents are evaluated as spectral filters for the rejection of 193-nm Rayleigh light associated with the use of an ArF excimer laser for Raman spectroscopy. A simply constructed filter cell filled with 0.5 percent acetone in water and an optical path of 7 mm is shown effectively to eliminate stray Rayleigh light underlying the Raman spectrum from air while transmitting 60 percent of the Raman light scattered by O2.

  10. The flash-quench technique in protein-DNA electron transfer: reduction of the guanine radical by ferrocytochrome c.

    PubMed

    Stemp, E D; Barton, J K

    2000-08-21

    Electron transfer from a protein to oxidatively damaged DNA, specifically from ferrocytochrome c to the guanine radical, was examined using the flash-quench technique. Ru(phen)2dppz2+ (dppz = dipyridophenazine) was employed as the photosensitive intercalator, and ferricytochrome c (Fe3+ cyt c), as the oxidative quencher. Using transient absorption and time-resolved luminescence spectroscopies, we examined the electron-transfer reactions following photoexcitation of the ruthenium complex in the presence of poly(dA-dT) or poly(dG-dC). The luminescence-quenching titrations of excited Ru(phen)2dppz2+ by Fe3+ cyt c are nearly identical for the two DNA polymers. However, the spectral characteristics of the long-lived transient produced by the quenching depend strongly upon the DNA. For poly(dA-dT), the transient has a spectrum consistent with formation of a [Ru(phen)2dppz3+, Fe2+ cyt c] intermediate, indicating that the system regenerates itself via electron transfer from the protein to the Ru(III) metallointercalator for this polymer. For poly(dG-dC), however, the transient has the characteristics expected for an intermediate of Fe2+ cyt c and the neutral guanine radical. The characteristics of the transient formed with the GC polymer are consistent with rapid oxidation of guanine by the Ru(III) complex, followed by slow electron transfer from Fe2+ cyt c to the guanine radical. These experiments show that electron holes on DNA can be repaired by protein and demonstrate how the flash-quench technique can be used generally in studying electron transfer from proteins to guanine radicals in duplex DNA.

  11. Crystal Structures of Two Archaeal 8-Oxoguanine DNA Glycosylases Provide Structural Insight into Guanine/8-Oxoguanine Distinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faucher, Frédérick; Duclos, Stéphanie; Bandaru, Viswanath

    Among the four DNA bases, guanine is particularly vulnerable to oxidative damage and the most common oxidative product, 7,8-dihydro-8-oxoguanine (8-oxoG), is the most prevalent lesion observed in DNA molecules. Fortunately, 8-oxoG is recognized and excised by the 8-oxoguanine DNA glycosylase (Ogg) of the base excision repair pathway. Ogg enzymes are divided into three separate families, namely, Ogg1, Ogg2, and archaeal GO glycosylase (AGOG). To date, structures of members of both Ogg1 and AGOG families are known but no structural information is available for members of Ogg2. Here we describe the first crystal structures of two archaeal Ogg2: Methanocaldococcus janischii Oggmore » and Sulfolobus solfataricus Ogg. A structural comparison with OGG1 and AGOG suggested that the C-terminal lysine of Ogg2 may play a key role in discriminating between guanine and 8-oxoG. This prediction was substantiated by measuring the glycosylase/lyase activity of a C-terminal deletion mutant of MjaOgg.« less

  12. Association of genetic polymorphisms in GADD45A, MDM2, and p14{sup ARF} with the risk of chronic benzene poisoning in a Chinese occupational population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Pin; Zhang Zhongbin; Wan Junxiang

    2009-10-01

    Benzene reactive metabolites can lead to DNA damage and trigger the p53-dependent defense responses to maintain genomic stability. We hypothesized that the p53-dependent genes may play a role in the development of chronic benzene poisoning (CBP). In a case-control study of 303 patients with benzene poisoning and 295 workers occupationally exposed to benzene in south China, we investigated associations between the risk of CBP and polymorphisms in three p53-dependent genes. Potential interactions of these polymorphisms with lifestyle factors were also explored. We found p14{sup ARF} rs3731245 polymorphism was associated with risk of CBP (P = 0.014). Compared with those carryingmore » the GG genotype, individuals carrying p14{sup ARF} rs3731245 GA+AA genotypes had a reduced risk of CBP ([adjusted odds ratio (OR{sub adj}) = 0.57, 95%CI = 0.36-0.89]. Further analysis showed p14{sup ARF} TGA/TAG diplotype was associated with an increased risk of CBP (P = 0.0006), whereas p14{sup ARF} TGG/TAA diplotype was associated with a decreased risk of CBP (P = 0.0000001). In addition, we found individuals carrying both MDM2 Del1518 WW genotype and p14{sup ARF} rs3731245 GA+AA genotypes had a lower risk of CBP (OR{sub adj} = 0.25; 95%CI = 0.10-0.62; P = 0.003). Although these results require confirmation and extension, our findings suggest that genetic polymorphisms in p14{sup ARF} may have an impact on the risk of CBP in the study population.« less

  13. Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS

    PubMed Central

    Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.

    2015-01-01

    Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348

  14. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments

    PubMed Central

    Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.

    2016-01-01

    Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050

  15. The formation of DNA sugar radicals from photoexcitation of guanine cation radicals.

    PubMed

    Shukla, Lata I; Pazdro, Robert; Huang, James; DeVreugd, Christopher; Becker, David; Sevilla, Michael D

    2004-05-01

    In this investigation of radical formation and reaction in gamma- irradiated DNA and model compounds, we report the conversion of the guanine cation radical (one-electron oxidized guanine, G(.+)) to the C1' sugar radical and another sugar radical at the C3' or C4' position (designated C3'(.)/C4'(.)) by visible and UV photolysis. Electron spin resonance (ESR) spectroscopic investigations were performed on salmon testes DNA as well as 5'-dGMP, 3'-dGMP, 2'-deoxyguanosine and other nucleosides/nucleotides as model systems. DNA samples (25- 150 mg/ml D(2)O) were prepared with Tl(3+) or Fe(CN)(3-)(6) as electron scavengers. Upon gamma irradiation of such samples at 77 K, the electron-gain path in the DNA is strongly suppressed and predominantly G(.+) is found; after UV or visible photolysis, the fraction of the C1' sugar radical increases with a concomitant reduction in the fraction of G(.+). In model systems, 3'- dGMP(+.) and 5'-dGMP(+.) were produced by attack of Cl(.-)(2) on the parent nucleotide in 7 M LiCl glass. Subsequent visible photolysis of the 3'-dGMP(+.) (77 K) results predominantly in formation of C1'(.) whereas photolysis of 5'-dGMP(+.) results predominantly in formation of C3'(.)/C4'(.). We propose that sugar radical formation is a result of delocalization of the hole in the electronically excited base cation radical into the sugar ring, followed by deprotonation at specific sites on the sugar.

  16. Interaction of a Blumeria graminis f. sp. hordei effector candidate with a barley ARF-GAP suggests that host vesicle trafficking is a fungal pathogenicity target.

    PubMed

    Schmidt, Sarah M; Kuhn, Hannah; Micali, Cristina; Liller, Corinna; Kwaaitaal, Mark; Panstruga, Ralph

    2014-08-01

    Filamentous phytopathogens, such as fungi and oomycetes, secrete effector proteins to establish successful interactions with their plant hosts. In contrast with oomycetes, little is known about effector functions in true fungi. We used a bioinformatics pipeline to identify Blumeria effector candidates (BECs) from the obligate biotrophic barley powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh). BEC1-BEC5 are expressed at different time points during barley infection. BEC1, BEC2 and BEC4 have orthologues in the Arabidopsis thaliana-infecting powdery mildew fungus Golovinomyces orontii. Arabidopsis lines stably expressing the G. orontii BEC2 orthologue, GoEC2, are more susceptible to infection with the non-adapted fungus Erysiphe pisi, suggesting that GoEC2 contributes to powdery mildew virulence. For BEC3 and BEC4, we identified thiopurine methyltransferase, a ubiquitin-conjugating enzyme, and an ADP ribosylation factor-GTPase-activating protein (ARF-GAP) as potential host targets. Arabidopsis knockout lines of the respective HvARF-GAP orthologue (AtAGD5) allowed higher entry levels of E. pisi, but exhibited elevated resistance to the oomycete Hyaloperonospora arabidopsidis. We hypothesize that ARF-GAP proteins are conserved targets of powdery and downy mildew effectors, and we speculate that BEC4 might interfere with defence-associated host vesicle trafficking. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  17. An experimental and theoretical core-level study of tautomerism in guanine.

    PubMed

    Plekan, Oksana; Feyer, Vitaliy; Richter, Robert; Coreno, Marcello; Vall-Llosera, Gemma; Prince, Kevin C; Trofimov, Alexander B; Zaytseva, Irina L; Moskovskaya, Tatyana E; Gromov, Evgeniy V; Schirmer, Jochen

    2009-08-20

    The core level photoemission and near edge X-ray photoabsorption spectra of guanine in the gas phase have been measured and the results interpreted with the aid of high level ab initio calculations. Tautomers are clearly identified spectroscopically, and their relative free energies and Boltzmann populations at the temperature of the experiment (600 K) have been calculated and compared with the experimental results and with previous calculations. We obtain good agreement between experiment and the Boltzmann weighted theoretical photoemission spectra, which allows a quantitative determination of the ratio of oxo to hydroxy tautomer populations. For the photoabsorption spectra, good agreement is found for the C 1s and O 1s spectra but only fair agreement for the N 1s edge.

  18. Arf and Rho GAP adapter protein ARAP1 participates in the mobilization of TRAIL-R1/DR4 to the plasma membrane.

    PubMed

    Símová, Sárka; Klíma, Martin; Cermak, Lukas; Sourková, Vladimíra; Andera, Ladislav

    2008-03-01

    TRAIL, a ligand of the TNFalpha family, induces upon binding to its pro-death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5 the apoptosis of cancer cells. Activated receptors incite the formation of the Death-Inducing Signaling Complex followed by the activation of the downstream apoptotic signaling. TRAIL-induced apoptosis is regulated at multiple levels, one of them being the presence and relative number of TRAIL pro- and anti-apoptotic receptors on the cytoplasmic membrane. In a yeast two-hybrid search for proteins that interact with the intracellular part (ICP) of DR4, we picked ARAP1, an adapter protein with ArfGAP and RhoGAP activities. In yeast, DR4(ICP) interacts with the alternatively spliced ARAP1 lacking 11 amino acids from the PH5 domain. Transfected ARAP1 co-precipitates with DR4 and co-localizes with it in the endoplasmic reticulum/Golgi, at the cytoplasmic membrane and in early endosomes of TRAIL-treated cells. ARAP1 knockdown significantly compromises the localization of DR4 at the cell surface of several tumor cell lines and slows down their TRAIL-induced death. ARAP1 overexpressed in HEL cells does not affect their TRAIL-induced apoptosis or the membrane localization of DR4, but it enhances the cell-surface presentation of phosphatidyl serine. Our data indicate that ARAP1 is likely involved in the regulation of the cell-specific trafficking of DR4 and might thus affect the efficacy of TRAIL-induced apoptosis.

  19. Mechanism of epoxide hydrolysis in microsolvated nucleotide bases adenine, guanine and cytosine: a DFT study.

    PubMed

    Vijayalakshmi, Kunduchi P; Mohan, Neetha; Ajitha, Manjaly J; Suresh, Cherumuttathu H

    2011-07-21

    Six water molecules have been used for microsolvation to outline a hydrogen bonded network around complexes of ethylene epoxide with nucleotide bases adenine (EAw), guanine (EGw) and cytosine (ECw). These models have been developed with the MPWB1K-PCM/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) level of DFT method and calculated S(N)2 type ring opening of the epoxide due to amino group of the nucleotide bases, viz. the N6 position of adenine, N2 position of guanine and N4 position of cytosine. Activation energy (E(act)) for the ring opening was found to be 28.06, 28.64, and 28.37 kcal mol(-1) respectively for EAw, EGw and ECw. If water molecules were not used, the reactions occurred at considerably high value of E(act), viz. 53.51 kcal mol(-1) for EA, 55.76 kcal mol(-1) for EG and 56.93 kcal mol(-1) for EC. The ring opening led to accumulation of negative charge on the developing alkoxide moiety and the water molecules around the charge localized regions showed strong hydrogen bond interactions to provide stability to the intermediate systems EAw-1, EGw-1 and ECw-1. This led to an easy migration of a proton from an activated water molecule to the alkoxide moiety to generate a hydroxide. Almost simultaneously, a proton transfer chain reaction occurred through the hydrogen bonded network of water molecules and resulted in the rupture of one of the N-H bonds of the quaternized amino group. The highest value of E(act) for the proton transfer step of the reaction was 2.17 kcal mol(-1) for EAw, 2.93 kcal mol(-1) for EGw and 0.02 kcal mol(-1) for ECw. Further, the overall reaction was exothermic by 17.99, 22.49 and 13.18 kcal mol(-1) for EAw, EGw and ECw, respectively, suggesting that the reaction is irreversible. Based on geometric features of the epoxide-nucleotide base complexes and the energetics, the highest reactivity is assigned for adenine followed by cytosine and guanine. Epoxide-mediated damage of DNA is reported in the literature and the present results suggest that

  20. A design of energy detector for ArF excimer lasers

    NASA Astrophysics Data System (ADS)

    Feng, Zebin; Han, Xiaoquan; Zhou, Yi; Bai, Lujun

    2017-08-01

    ArF excimer lasers with short wavelength and high photon energy are widely applied in the field of integrated circuit lithography, material processing, laser medicine, and so on. Excimer laser single pulse energy is a very important parameter in the application. In order to detect the single pulse energy on-line, one energy detector based on photodiode was designed. The signal processing circuit connected to the photodiode was designed so that the signal obtained by the photodiode was amplified and the pulse width was broadened. The amplified signal was acquired by a data acquisition card and stored in the computer for subsequent data processing. The peak of the pulse signal is used to characterize the single pulse energy of ArF excimer laser. In every condition of deferent pulse energy value levels, a series of data about laser pulses energy were acquired synchronously using the Ophir energy meter and the energy detector. A data set about the relationship between laser pulse energy and the peak of the pulse signal was acquired. Then, by using the data acquired, a model characterizing the functional relationship between the energy value and the peak value of the pulse was trained based on an algorithm of machine learning, Support Vector Regression (SVR). By using the model, the energy value can be obtained directly from the energy detector designed in this project. The result shows that the relative error between the energy obtained by the energy detector and by the Ophir energy meter is less than 2%.

  1. Structure of the catalytic domain of Plasmodium falciparum ARF GTPase-activating protein (ARFGAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, William J.; Senkovich, Olga; Chattopadhyay, Debasish

    2012-03-26

    The crystal structure of the catalytic domain of the ADP ribosylation factor GTPase-activating protein (ARFGAP) from Plasmodium falciparum has been determined and refined to 2.4 {angstrom} resolution. Multiwavelength anomalous diffraction (MAD) data were collected utilizing the Zn{sup 2+} ion bound at the zinc-finger domain and were used to solve the structure. The overall structure of the domain is similar to those of mammalian ARFGAPs. However, several amino-acid residues in the area where GAP interacts with ARF1 differ in P. falciparum ARFGAP. Moreover, a number of residues that form the dimer interface in the crystal structure are unique in P. falciparummore » ARFGAP.« less

  2. Stability of the guanine endoperoxide intermediate: a computational challenge for density functional theory.

    PubMed

    Grüber, Raymond; Monari, Antonio; Dumont, Elise

    2014-12-11

    The addition of singlet molecular oxygen (1)O2 onto guanine is a most important and deleterious reaction in biological damage. We assess the efficiency of density functional theory for evaluating the respective stabilities of two intermediates that can form upon (1)O2 addition: a charge-separated adduct with a peroxide anion at the C8 position of guanine, and the corresponding cyclic endoperoxide across the 4,8-bond, of the imidazole ring. The reference post Hartree-Fock SCS-MP3/aug-cc-pVTZ//MP2/DZP++ level of theory provides an unambiguous assignment in favor of the endoperoxide intermediate, based on implicitly solvated structures, by -8.0 kcal·mol(-1). This value is taken as the reference for a systematic and extended benchmarck performed on 58 exchange--correlation functionals. While B3LYP remains commonly used for studying oxidative DNA lesions, we prove that the stability of the peroxide anion is overestimated by this functional, but also by other commonly used exchange-correlation functionals. The significant error (ca. +3 kcal·mol(-1) over a representative set of 58 functionals) arises from overdelocalization but also from the description of the dynamic correlation by the density functional. The significantly improved performance of several recently proposed functionals, including range-separated hybrids such as LC-BLYP, is outlined. We believe that our results will be of great help to further studies on the versatile chemistry of singlet oxygen-induced DNA damage, where complex reaction mechanisms are required to be depicted at a quantum level.

  3. Fluorescent Sensing of Guanine and Guanosine Monophosphate with Conjugated Receptors Incorporating Aniline and Naphthyridine Moieties.

    PubMed

    Lu, Shao-Hung; Phang, Riping; Fang, Jim-Min

    2016-04-15

    Ethyne-linked naphthyridine-aniline conjugated molecules are selective sensors of decylguanine in dichloromethane and guanosine monophosphate in water (Kass = 16,000 M(-1)). The 2-acetamido-1,8-naphthyridine moiety binds with guanine in a DAA-ADD triply hydrogen-bonded motif. The aniline moiety enhances an electron-donating effect, and the substituent is tuned to attain extra hydrogen bonds, π-π stacking, and electrostatic interactions. The proposed binding modes are supported by a Job plot, ESI-MS, (1)H NMR, UV-vis, and fluorescence spectral analyses.

  4. Collateral damage-free debridement using 193nm ArF laser

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-03-01

    Burn eschar and other necrotic areas of the skin and soft tissue are anhydrous compared to the underlying viable tissue. A 193 nm ArF excimer laser, emitting electromagnetic radiation at 6.4 eV at fluence exceeding the ablation threshold, will debride such necrotic areas. Because such radiation is strongly absorbed by aqueous chloride ions through the nonthermal process of electron photodetachment, debridement will cease when hydrated (with chloride ions) viable tissue is exposed, avoiding collateral damage to this tissue. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  5. Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides.

    PubMed

    Joffe, Avrum; Mock, Steven; Yun, Byeong Hwa; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Shafirovich, Vladimir

    2003-08-01

    A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion

  6. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  7. Electron attachment to the guanine-cytosine nucleic acid base pair and the effects of monohydration and proton transfer.

    PubMed

    Gupta, Ashutosh; Jaeger, Heather M; Compaan, Katherine R; Schaefer, Henry F

    2012-05-17

    The guanine-cytosine (GC) radical anion and its interaction with a single water molecule is studied using ab initio and density functional methods. Z-averaged second-order perturbation theory (ZAPT2) was applied to GC radical anion for the first time. Predicted spin densities show that the radical character is localized on cytosine. The Watson-Crick monohydrated GC anion is compared to neutral GC·H2O, as well as to the proton-transferred analogue on the basis of structural and energetic properties. In all three systems, local minima are identified that correspond to water positioned in the major and minor grooves of macromolecular DNA. On the anionic surface, two novel structures have water positioned above or below the GC plane. On the neutral and anionic surfaces, the global minimum can be described as water interacting with the minor groove. These structures are predicted to have hydration energies of 9.7 and 11.8 kcal mol(-1), respectively. Upon interbase proton-transfer (PT), the anionic global minimum has water positioned in the major groove, and the hydration energy increases to 13.4 kcal mol(-1). PT GC·H2O(•-) has distonic character; the radical character resides on cytosine, while the negative charge is localized on guanine. The effects of proton transfer are further investigated through the computed adiabatic electron affinities (AEA) of GC and monohydrated GC, and the vertical detachment energies (VDE) of the corresponding anions. Monohydration increases the AEAs and VDEs by only 0.1 eV, while proton-transfer increases the VDEs substantially (0.8 eV). The molecular charge distribution of monohydrated guanine-cytosine radical anion depends heavily on interbase proton transfer.

  8. The guanine nucleotide exchange factor Ric-8A induces domain separation and Ras domain plasticity in Gαi1

    PubMed Central

    Van Eps, Ned; Thomas, Celestine J.; Hubbell, Wayne L.; Sprang, Stephen R.

    2015-01-01

    Heterotrimeric G proteins are activated by exchange of GDP for GTP at the G protein alpha subunit (Gα), most notably by G protein-coupled transmembrane receptors. Ric-8A is a soluble cytoplasmic protein essential for embryonic development that acts as both a guanine nucleotide exchange factor (GEF) and a chaperone for Gα subunits of the i, q, and 12/13 classes. Previous studies demonstrated that Ric-8A stabilizes a dynamically disordered state of nucleotide-free Gα as the catalytic intermediate for nucleotide exchange, but no information was obtained on the structures involved or the magnitude of the structural fluctuations. In the present study, site-directed spin labeling (SDSL) together with double electron-electron resonance (DEER) spectroscopy is used to provide global distance constraints that identify discrete members of a conformational ensemble in the Gαi1:Ric-8A complex and the magnitude of structural differences between them. In the complex, the helical and Ras-like nucleotide-binding domains of Gαi1 pivot apart to occupy multiple resolved states with displacements as large as 25 Å. The domain displacement appears to be distinct from that observed in Gαs upon binding of Gs to the β2 adrenergic receptor. Moreover, the Ras-like domain exhibits structural plasticity within and around the nucleotide-binding cavity, and the switch I and switch II regions, which are known to adopt different conformations in the GDP- and GTP-bound states of Gα, undergo structural rearrangements. Collectively, the data show that Ric-8A induces a conformationally heterogeneous state of Gαi and provide insight into the mechanism of action of a nonreceptor Gα GEF. PMID:25605908

  9. Pressure-tuning infrared and Raman microscopy study of the DNA bases: adenine, guanine, cytosine, and thymine.

    PubMed

    Yang, Seung Yun; Butler, Ian S

    2013-12-01

    Diamond-anvil cell, pressure-tuning infrared (IR), and Raman microspectroscopic measurements have been undertaken to examine the effects of high pressures up to about 45 kbar on the vibrational spectra of the four DNA bases, adenine, cytosine, guanine, and thymine. Small structural changes were evident for all the four bases, viz., for adenine and cytosine at 28-31 kbar; for guanine at 16-19 kbar; and for thymine at 25-26 kbar. These changes are most likely associated with alterations in the intermolecular hydrogen-bonding interactions. The pressure dependences of the main peaks observed in the IR spectra of the two phases of guanine lie in the -0.07-0.66 (low-pressure phase) and 0.06-0.91 (high-pressure phase) cm⁻¹/kbar ranges. Also, in the Raman spectra of this nucleoside base, the dν/dP values range from -0.07-0.31 (low-pressure phase) to 0.08-0.50 (high-pressure phase) cm⁻¹/kbar. Similar ranges of dν/dP values were obtained for the other three nucleoside bases.

  10. Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch

    PubMed Central

    Hanke, Christian A.

    2017-01-01

    Riboswitches are genetic regulatory elements that control gene expression depending on ligand binding. The guanine-sensing riboswitch (Gsw) binds ligands at a three-way junction formed by paired regions P1, P2, and P3. Loops L2 and L3 cap the P2 and P3 helices and form tertiary interactions. Part of P1 belongs to the switching sequence dictating the fate of the mRNA. Previous studies revealed an intricate relationship between ligand binding and presence of the tertiary interactions, and between ligand binding and influence on the P1 region. However, no information is available on the interplay among these three main regions in Gsw. Here we show that stabilization of the L2-L3 region by tertiary interactions, and the ligand binding site by ligand binding, cooperatively influences the structural stability of terminal base pairs in the P1 region in the presence of Mg2+ ions. The results are based on molecular dynamics simulations with an aggregate simulation time of ~10 μs across multiple systems of the unbound state of the Gsw aptamer and a G37A/C61U mutant, and rigidity analyses. The results could explain why the three-way junction is a central structural element also in other riboswitches and how the cooperative effect could become contextual with respect to intracellular Mg2+ concentration. The results suggest that the transmission of allosteric information to P1 can be entropy-dominated. PMID:28640851

  11. Rates of Chemical Cleavage of DNA and RNA Oligomers Containing Guanine Oxidation Products

    PubMed Central

    2016-01-01

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design. PMID:25853314

  12. A new nucleoside analog, 9-[[2-hydroxy-1-(hydroxymethyl)ethoxyl]methyl]guanine, highly active in vitro against herpes simplex virus types 1 and 2.

    PubMed Central

    Smith, K O; Galloway, K S; Kennell, W L; Ogilvie, K K; Radatus, B K

    1982-01-01

    A novel nucleoside analog, 9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]-guanine (BIOLF-62), was found to have potent antiviral activity against herpes simplex virus types 1 and 2 at concentrations well below cytotoxic levels. For example, the Patton strain of herpes simplex virus type 1 was susceptible at concentrations 140- to 2,900-fold below that which inhibited cell division by 50%, depending upon the cell line used for assay. Different herpesvirus strains varied considerably in their susceptibility to the drug, as did results obtained with the same virus strain in different cell lines. BIOLF-62 compared favorably with 5-iodo-2'-deoxyuridine and acyclovir with respect to ratios of viral to cell inhibitory drug concentrations. Patterns of drug resistance to herpesvirus mutants suggested that the primary mode of action of BIOLF-62 is different from that of known antiviral compounds. Human adenovirus type 2, varicella-zoster virus, and Epstein-Barr virus were inhibited by this drug but at concentrations within the cell inhibitory range. Vaccinia virus and human cytomegalovirus were not inhibited at high drug concentrations. PMID:6289741

  13. A multi-functional guanine derivative for studying the DNA G-quadruplex structure.

    PubMed

    Ishizuka, Takumi; Zhao, Pei-Yan; Bao, Hong-Liang; Xu, Yan

    2017-10-23

    In the present study, we developed a multi-functional guanine derivative, 8F G, as a G-quadruplex stabilizer, a fluorescent probe for the detection of G-quadruplex formation, and a 19 F sensor for the observation of the G-quadruplex. We demonstrate that the functional nucleoside bearing a 3,5-bis(trifluoromethyl)benzene group at the 8-position of guanine stabilizes the DNA G-quadruplex structure and fluoresces following the G-quadruplex formation. Furthermore, we show that the functional sensor can be used to directly observe DNA G-quadruplexes by 19 F-NMR in living cells. To our knowledge, this is the first study showing that the nucleoside derivative simultaneously allows for three kinds of functions at a single G-quadruplex DNA. Our results suggest that the multi-functional nucleoside derivative can be broadly used for studying the G-quadruplex structure and serves as a powerful tool for examining the molecular basis of G-quadruplex formation in vitro and in living cells.

  14. Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes.

    PubMed

    Tang, Weihao; Tam, Joshua H K; Seah, Claudia; Chiu, Justin; Tyrer, Andrea; Cregan, Sean P; Meakin, Susan O; Pasternak, Stephen H

    2015-07-14

    Alzheimer's disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β - and γ - secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer's disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production.

  15. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations.

    PubMed

    Hu, Guodong; Ma, Aijing; Wang, Jihua

    2017-04-24

    Riboswitches regulate gene expression through direct and specific interactions with small metabolite molecules. Binding of a ligand to its RNA target is high selectivity and affinity and induces conformational changes of the RNA's secondary and tertiary structure. The structural difference of two purine riboswitches aptamers is caused by only one single mutation, where cytosine 74 in the guanine riboswitch is corresponding to a uracil 74 in adenine riboswitch. Here we employed molecular dynamics (MD) simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and thermodynamic integration computational methodologies to evaluate the energetic and conformational changes of ligands binding to purine riboswitches. The snapshots used in MM-PBSA calculation were extracted from ten 50 ns MD simulation trajectories for each complex. These free energy results are in consistent with the experimental data and rationalize the selectivity of the riboswitches for different ligands. In particular, it is found that the loss in binding free energy upon mutation is mainly electrostatic in guanine (GUA) and riboswitch complex. Furthermore, new hydrogen bonds are found in mutated complexes. To reveal the conformational properties of guanine riboswitch, we performed a total of 6 μs MD simulations in both the presence and the absence of the ligand GUA. The MD simulations suggest that the conformation of guanine riboswitch depends on the distance of two groups in the binding pocket of ligand. The conformation is in a close conformation when U51-A52 is close to C74-U75.

  16. Structure of Plasmodium falciparum ADP-ribosylation factor 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, William J.; Smith, Craig D.; Senkovich, Olga

    Vesicular trafficking may play a crucial role in the pathogenesis and survival of the malaria parasite. ADP-ribosylation factors (ARFs) are among the major components of vesicular trafficking pathways in eukaryotes. The crystal structure of ARF1 GTPase from Plasmodium falciparum has been determined in the GDP-bound conformation at 2.5 {angstrom} resolution and is compared with the structures of mammalian ARF1s.

  17. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains.

    PubMed

    Côté, Jean-François; Vuori, Kristiina

    2006-01-01

    Rho family GTPases regulate a large variety of biological processes, including the reorganization of the actin cytoskeleton. Like other members of the Ras superfamily of small GTP-binding proteins, Rho GTPases cycle between a GDP-bound (inactive) and a GTP-bound (active) state, and, when active, the GTPases relay extracellular signals to a large number of downstream effectors. Guanine nucleotide exchange factors (GEFs) promote the exchange of GDP for GTP on Rho GTPases, thereby activating them. Most Rho-GEFs mediate their effects through their signature domain known as the Dbl Homology-Pleckstrin Homology (DH-PH) module. Recently, we and others identified a family of evolutionarily conserved, DOCK180-related proteins that also display GEF activity toward Rho GTPases. The DOCK180-family of proteins lacks the canonical DH-PH module. Instead, they rely on a novel domain, termed DHR-2, DOCKER, or CZH2, to exchange GDP for GTP on Rho targets. In this chapter, the experimental approach that we used to uncover the exchange activity of the DHR-2 domain of DOCK180-related proteins will be described.

  18. Quantitative analysis of the interactions between prenyl Rab9, GDP dissociation inhibitor-alpha, and guanine nucleotides.

    PubMed

    Shapiro, A D; Pfeffer, S R

    1995-05-12

    Rab9 is a Ras-like GTPase required for the transport of mannose 6-phosphate receptors between late endosomes and the trans Golgi network. Rab9 occurs in the cytosol as a complex with GDP dissociation inhibitor (GDI), which we have shown delivers prenyl Rab9 to late endosomes in a functional form. We report here basal rate constants for guanine nucleotide dissociation and GTP hydrolysis for prenyl Rab9. Both rate constants were influenced in part by the hydrophobic environment of the prenyl group. Guanine nucleotide dissociation and GTP hydrolysis rates were lower in the presence of lipid; detergent stimulated intrinsic nucleotide exchange. GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 2.4-fold. GDI-alpha associated with prenyl Rab9 with a KD of 60 nM in 0.1% Lubrol and 23 nM in 0.02% Lubrol. In 0.1% Lubrol, GDI-alpha inhibited GDP dissociation half maximally at 72 +/- 18 nM, consistent with the KD determinations. These data suggest that GDI-alpha associates with prenyl Rab9 with a KD of < or = 23 nM under physiological conditions. Finally, a previously uncharacterized minor form of GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 1.9-fold and bound prenyl Rab9 with a KD of 67 nM in 0.1% Lubrol.

  19. Generating Two-Dimensional Repertoire of siRNA Linc-ROR and siRNA mRNA ARF6 from the lincRNA-RoR/miR-145/ARF6 expression Pathway that involved in the progression of Triple Negative Breast Cancer

    NASA Astrophysics Data System (ADS)

    Aditya Parikesit, Arli; Nurdiansyah, Rizki

    2018-01-01

    The research for finding the cure for breast cancer is currently entering the interesting phase of the transcriptomics based method. With the application of Next Generation Sequencing (NGS), molecular information on breast cancer could be gathered. Thus, both in silico and wet lab research has determined that the role of lincRNA-RoR/miR-145/ARF6 expression Pathway could not be ignored as one of the cardinal starting points for Triple-Negative Breast Cancer (TNBC). As the most hazardous type of breast cancer, TNBC should be treated with the most advanced approach that available in the scientific community. Bioinformatics approach has found the possible siRNA-based drug candidates for TNBC. It was found that siRNA that interfere with lincRNA-ROR and mRNA ARF6 could be a feasible opportunity as the drug candidate for TNBC. However, this claim should be validated with more thorough thermodynamics and kinetics computational approach as the comprehensive way to comprehend their molecular repertoire. In this respect, the claim was validated using various tools such as the RNAfold server to determine the 2D structure, Barriers server to comprehend the RNA folding kinetics, RNAeval server to validate the siRNA-target interaction. It was found that the thermodynamics and kinetics repertoire of the siRNA are indeed rational and feasible. In this end, our computation approach has proven that our designed siRNA could interact with lincRNA-RoR/miR-145/ARF6 expression Pathway.

  20. Examination of the effect of the annealing cation on higher order structures containing guanine or isoguanine repeats

    PubMed Central

    Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.

    2010-01-01

    Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468

  1. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    PubMed

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  2. Higher order structural effects stabilizing the reverse Watson–Crick Guanine-Cytosine base pair in functional RNAs

    PubMed Central

    Chawla, Mohit; Abdel-Azeim, Safwat; Oliva, Romina; Cavallo, Luigi

    2014-01-01

    The G:C reverse Watson–Crick (W:W trans) base pair, also known as Levitt base pair in the context of tRNAs, is a structurally and functionally important base pair that contributes to tertiary interactions joining distant domains in functional RNA molecules and also participates in metabolite binding in riboswitches. We previously indicated that the isolated G:C W:W trans base pair is a rather unstable geometry, and that dicationic metal binding to the Guanine base or posttranscriptional modification of the Guanine can increase its stability. Herein, we extend our survey and report on other H-bonding interactions that can increase the stability of this base pair. To this aim, we performed a bioinformatics search of the PDB to locate all the occurencies of G:C trans base pairs. Interestingly, 66% of the G:C trans base pairs in the PDB are engaged in additional H-bonding interactions with other bases, the RNA backbone or structured water molecules. High level quantum mechanical calculations on a data set of representative crystal structures were performed to shed light on the structural stability and energetics of the various crystallographic motifs. This analysis was extended to the binding of the preQ1 metabolite to a preQ1-II riboswitch. PMID:24121683

  3. Catalysis in human hypoxanthine-guanine phosphoribosyltransferase: Asp 137 acts as a general acid/base.

    PubMed

    Xu, Y; Grubmeyer, C

    1998-03-24

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) catalyzes the reversible formation of IMP and GMP from their respective bases hypoxanthine (Hx) and guanine (Gua) and the phosphoribosyl donor 5-phosphoribosyl-1-pyrophosphate (PRPP). The net formation and cleavage of the nucleosidic bond requires removal/addition of a proton at the purine moiety, allowing enzymic catalysis to reduce the energy barrier associated with the reaction. The pH profile of kcat for IMP pyrophosphorolysis revealed an essential acidic group with pKa of 7.9 whereas those for IMP or GMP formation indicated involvement of essential basic groups. Based on the crystal structure of human HGPRTase, protonation/deprotonation is likely to occur at N7 of the purine ring, and Lys 165 or Asp 137 are each candidates for the general base/acid. We have constructed, purified, and kinetically characterized two mutant HGPRTases to test this hypothesis. D137N displayed an 18-fold decrease in kcat for nucleotide formation with Hx as substrate, a 275-fold decrease in kcat with Gua, and a 500-fold decrease in kcat for IMP pyrophosphorolysis. D137N also showed lower KD values for nucleotides and PRPP. The pH profiles of kcat for D137N were severely altered. In contrast to D137N, the kcat for K165Q was decreased only 2-fold in the forward reaction and was slightly increased in the reverse reaction. The Km and KD values showed that K165Q interacts with substrates more weakly than does the wild-type enzyme. Pre-steady-state experiments with K165Q indicated that the phosphoribosyl transfer step was fast in the forward reaction, as observed with the wild type. In contrast, D137N showed slower phosphoribosyl transfer chemistry, although guanine (3000-fold reduction) was affected much more than hypoxanthine (32-fold reduction). In conclusion, Asp137 acts as a general catalytic acid/base for HGPRTase and Lys165 makes ground-state interactions with substrates.

  4. Inactivation of INK4a and ARF induces myocardial proliferation and improves cardiac repair following ischemia‑reperfusion.

    PubMed

    An, Songtao; Chen, Yan; Gao, Chuanyu; Qin, Bingyu; Du, Xianhui; Meng, Fanmin; Qi, Yanyan

    2015-10-01

    The growth of the heart during mammalian embryonic development is primarily dependent on an increase in the number of cardiomyocytes (CM). However, shortly following birth, CMs cease proliferating and further growth of the myocardium is achieved via hypertrophic expansion of the existing CM population. The cyclin-dependent kinase inhibitor 2A (Cdkn2a) locus encodes overlapping genes for two tumor suppressor proteins, p16INK4a and p19 alternative reading frame (ARF). To determine whether decreased Cdkn2a gene expression results in improved cardiac regeneration in vitro and in vivo following cardiac injury, the proliferation of CMs isolated from Cdkn2a knockout (KO) and wild‑type (WT) mice in vitro and in vivo were evaluated following generation of ischemia reperfusion (IR) injury. The KO mice demonstrated enhanced CM proliferation not only in vitro, but also in vivo. Furthermore, heart function was improved and scar size was decreased in the KO mice compared with that of the WT mice. The results also indicated that microRNA (miR)‑1 and miR‑195 expression levels associated with cell proliferation were reduced following IR injury in KO mice compared with those of WT mice. These results suggested that the inactivation of INK4a and ARF stimulated CM proliferation and promoted cardiac repair.

  5. Arabidopsis ARF-GTP exchange factor, GNOM, mediates transport required for innate immunity and focal accumulation of syntaxin PEN1

    PubMed Central

    Nielsen, Mads Eggert; Feechan, Angela; Böhlenius, Henrik; Ueda, Takashi; Thordal-Christensen, Hans

    2012-01-01

    Penetration resistance to powdery mildew fungi, conferred by localized cell wall appositions (papillae), is one of the best-studied processes in plant innate immunity. The syntaxin PENETRATION (PEN)1 is required for timely appearance of papillae, which contain callose and extracellular membrane material, as well as PEN1 itself. Appearance of membrane material in papillae suggests secretion of exosomes. These are potentially derived from multivesicular bodies (MVBs), supported by our observation that ARA6-labeled organelles assemble at the fungal attack site. However, the trafficking components that mediate delivery of extracellular membrane material are unknown. Here, we show that the delivery is independent of PEN1 function. Instead, we find that application of brefeldin (BF)A blocks the papillary accumulation of GFP-PEN1–labeled extracellular membrane and callose, while impeding penetration resistance. We subsequently provide evidence indicating that the responsible BFA-sensitive ADP ribosylation factor–GTP exchange factor (ARF-GEF) is GNOM. Firstly, analysis of the transheterozygote gnomB4049/emb30-1 (gnomB/E) mutant revealed a delay in papilla formation and reduced penetration resistance. Furthermore, a BFA-resistant version of GNOM restored the BFA-sensitive papillary accumulation of GFP-PEN1 and callose. Our data, therefore, provide a link between GNOM and disease resistance. We suggest that papilla formation requires rapid reorganization of material from the plasma membrane mediated by GNOM. The papilla material is subsequently presumed to be sorted into MVBs and directed to the site of fungal attack, rendering the epidermal plant cell inaccessible for the invading powdery mildew fungus. PMID:22733775

  6. Anti-herpesvirus activity profile of 4'-thioarabinofuranosyl purine and uracil nucleosides and activity of 1-beta-D-2'-fluoro-4'-thioarabinofuranosyl guanine and 2,6-diaminopurine against clinical isolates of human cytomegalovirus.

    PubMed

    Machida, H; Ashida, N; Miura, S; Endo, M; Yamada, K; Kitano, K; Yoshimura, Y; Sakata, S; Ijichi, O; Eizuru, Y

    1998-08-01

    Newly synthesized 4'-thio- and 2'-fluoro-4'-thioarabinofuranosyl purine and pyrimidine nucleosides were compared with the corresponding 4'-oxo type arabinosyl nucleosides for anti-herpesvirus and anti-cell proliferative potencies. 4'-Thioarabinosyl- and 2'-fluoro-4'-thioarabinofuranosyl 5-substituted uracils had selective antiviral activities, but were not superior to 4'-oxo nucleosides, except for the activity of 5-ethyl-uracil 4'-thio nucleosides against herpes simplex virus. Furthermore, 4'-thio substituted derivatives of sorivudine (BV-araU) and related compounds, and 2'-fluoro-5-methyl-arabinosyluracil exhibited reduced activity against varicella-zoster virus compared with the parent compounds. The 4'-thioarabinosyluracils, except for 5-methyluracil derivatives, were inactive against human cytomegalovirus (HCMV). 4'-Thioarabinofuranosyl guanine and diaminopurine had the most potent anti-HCMV and anti-proliferative activities, whereas arabinosyl guanine and diaminopurine had only marginal antiviral activity. 2'-Fluoro-4'-thioarabinofuranosyl derivatives of guanine (4'-thio-FaraG) and 2,6-diaminopurine (4'-thio-FaraDAP), however, had particularly high activity against all herpesviruses tested with anti-proliferative activity equipotent to that of arabinosyl guanine and diaminopurine. 4'-Thio- and 2'-fluoro-4'-thioarabinofuranosyladenines exhibited biological activities similar to that of arabinosyladenine. Both 4'-thio-FaraG and 4'-thio-FaraDAP had a 6-fold lower ED50 than ganciclovir against clinical isolates of HCMV. A ganciclovir-resistant isolate, obtained from a patient who had received long-term ganciclovir-treatment, was susceptible to 4'-thio-FaraG and 4'-thio-FaraDAP.

  7. Polymerase recognition of 2-thio-iso-guanine·5-methyl-4-pyrimidinone (iGs·P)--A new DD/AA base pair.

    PubMed

    Lee, Dong-Kye; Switzer, Christopher

    2016-02-15

    Polymerase specificity is reported for a previously unknown base pair with a non-standard DD/AA hydrogen bonding pattern: 2-thio-iso-guanine·5-methyl-4-pyrimidinone. Our findings suggest that atomic substitution may provide a solution for low fidelity previously associated with enzymatic copying of iso-guanine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Expression of ADP-ribosylation factor (ARF)-like protein 6 during mouse embryonic development.

    PubMed

    Takada, Tatsuyuki; Iida, Keiko; Sasaki, Hiroshi; Taira, Masanori; Kimura, Hiroshi

    2005-01-01

    ADP-ribosylation factor (ARF)-like protein 6 (ARL6) is a member of the ARF-like protein (ARL) subfamily of small GTPases (Moss, 1995; Chavrier, 1999). ARLs are highly conserved through evolution and most of them possess the consensus sequence required for GTP binding and hydrolysis (Pasquallato, 2002). Among ARLs, ARL6 which was initially isolated from a J2E erythroleukemic cell line is divergent in its consensus sequences and its expression has been shown to be limited to the brain and kidney in adult mouse (Ingley, 1999). Recently, it was reported that mutations of the ARL6 gene cause type 3 Bardet-Biedl syndrome in humans and that ARL6 is involved in ciliary transport in C. elegans (Chiang, 2004; Fan, 2004). Here, we investigated the expression pattern of ARL6 during early mouse development by whole-mount in situ hybridization and found that interestingly, ARL6 mRNA was localized around the node at 7.0-7.5 days post coitum (dpc) embryos, while weak expression was also found in the ectoderm. At the later stage (8.5 dpc) ARL6 was expressed in the neural plate and probably in the somites. Based on these results, a possible role of ARL6 in early development is discussed in relation to the findings in human and C. elegans (Chiang, 2004; Fan, 2004).

  9. Controllable Change of Photoluminescence Spectra of Silicone Rubber Modified by 193 nm ArF Excimer Laser

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Iyono, Minako; Inoue, Narumi

    2009-12-01

    Photoluminescence spectra of silicone rubber ([SiO(CH3)2]n) photochemically modified by a 193 nm ArF excimer laser was found to be controllable. Compared with the modification in air, the photoluminescence spectra could be blueshifted by the modification in vacuum or the additional irradiation of ArF excimer laser in vacuum after the modification in air. To redshift, on the other hand, the additional irradiation of a 157 nm F2 laser in air after the modification in air, the modification in oxygen gas, or the postannealing after the modification in oxygen gas was effective. The blue and redshifts of the photoluminescence were essentially due to the acceleration of reduction and oxidation reactions of silicone rubber, respectively, because the photoluminescence derives its origin from oxygen deficiency centers and peroxy centers of the silica structure in the modified silicone rubber. On the basis of the spectra changes, colorful light-guiding sheets made of silicone rubber under illumination of a 375 nm light-emitting diode were successfully fabricated for cellular phone use.

  10. Quantitative Proteomic Analysis of Host-virus Interactions Reveals a Role for Golgi Brefeldin A Resistance Factor 1 (GBF1) in Dengue Infection*

    PubMed Central

    Carpp, Lindsay N.; Rogers, Richard S.; Moritz, Robert L.; Aitchison, John D.

    2014-01-01

    Dengue virus is considered to be the most important mosquito-borne virus worldwide and poses formidable economic and health care burdens on many tropical and subtropical countries. Dengue infection induces drastic rearrangement of host endoplasmic reticulum membranes into complex membranous structures housing replication complexes; the contribution(s) of host proteins and pathways to this process is poorly understood but is likely to be mediated by protein-protein interactions. We have developed an approach for obtaining high confidence protein-protein interaction data by employing affinity tags and quantitative proteomics, in the context of viral infection, followed by robust statistical analysis. Using this approach, we identified high confidence interactors of NS5, the viral polymerase, and NS3, the helicase/protease. Quantitative proteomics allowed us to exclude a large number of presumably nonspecific interactors from our data sets and imparted a high level of confidence to our resulting data sets. We identified 53 host proteins reproducibly associated with NS5 and 41 with NS3, with 13 of these candidates present in both data sets. The host factors identified have diverse functions, including retrograde Golgi-to-endoplasmic reticulum transport, biosynthesis of long-chain fatty-acyl-coenzyme As, and in the unfolded protein response. We selected GBF1, a guanine nucleotide exchange factor responsible for ARF activation, from the NS5 data set for follow up and functional validation. We show that GBF1 plays a critical role early in dengue infection that is independent of its role in the maintenance of Golgi structure. Importantly, the approach described here can be applied to virtually any organism/system as a tool for better understanding its molecular interactions. PMID:24855065

  11. A label-free electrochemical sensor for detection of mercury(II) ions based on the direct growth of guanine nanowire.

    PubMed

    Huang, Yan Li; Gao, Zhong Feng; Jia, Jing; Luo, Hong Qun; Li, Nian Bing

    2016-05-05

    A simple, sensitive and label-free electrochemical sensor is developed for detection of Hg(2+) based on the strong and stable T-Hg(2+)-T mismatches. In the presence of Mg(2+), the parallel G-quadruplex structures could be specifically recognized and precipitated in parallel conformation. Therefore, the guanine nanowire was generated on the electrode surface, triggering the electrochemical H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). In this research, a new method of signal amplification for the quantitative detection of Hg(2+) was described based on the direct growth of guanine nanowire via guanine nanowire. Under optimum conditions, Hg(2+) was detected in the range of 100 pM-100 nM, and the detection limit is 33 pM. Compared to the traditional single G-quadruplex label unit, this electrochemical sensor showed high sensitivity and selectivity for detecting Hg(2+). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Simultaneous protection of organic p- and n-channels in complementary inverter from aging and bias-stress by DNA-base guanine/Al2O3 double layer.

    PubMed

    Lee, Junyeong; Hwang, Hyuncheol; Min, Sung-Wook; Shin, Jae Min; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Hee Sung; Im, Seongil

    2015-01-28

    Although organic field-effect transistors (OFETs) have various advantages of lightweight, low-cost, mechanical flexibility, and nowadays even higher mobility than amorphous Si-based FET, stability issue under bias and ambient condition critically hinder its practical application. One of the most detrimental effects on organic layer comes from penetrated atmospheric species such as oxygen and water. To solve such degradation problems, several molecular engineering tactics are introduced: forming a kinetic barrier, lowering the level of molecule orbitals, and increasing the band gap. However, direct passivation of organic channels, the most promising strategy, has not been reported as often as other methods. Here, we resolved the ambient stability issues of p-type (heptazole)/or n-type (PTCDI-C13) OFETs and their bias-stability issues at once, using DNA-base small molecule guanine (C5H5N5O)/Al2O3 bilayer. The guanine protects the organic channels as buffer/and H getter layer between the channels and capping Al2O3, whereas the oxide capping resists ambient molecules. As a result, both p-type and n-type OFETs are simultaneously protected from gate-bias stress and 30 days-long ambient aging, finally demonstrating a highly stable, high-gain complementary-type logic inverter.

  13. High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis

    PubMed Central

    Xu, Xiaozhao; Li, Xu; Hu, Xingwang; Wu, Ting; Wang, Yi; Xu, Xuefeng; Zhang, Xinzhong; Han, Zhenhai

    2017-01-01

    Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156), the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA), semi-lignified leafy cuttings from juvenile phase (Mx-J) and rejuvenated (Mx-R) Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1), PIN10, and rootless concerning crown and seminal roots-like (RTCS-like) genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A) trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26) and some auxin response factor (ARF) gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana) plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings. PMID:28674551

  14. Exploring the Use of a Guanine-Rich Catalytic DNA for Sulfoxide Preparation

    PubMed Central

    Dellafiore, María A.; Montserrat, Javier M.; Iribarren, Adolfo M.

    2015-01-01

    A guanine-rich DNA oligonucleotide complexed with hemin was used to catalyze controlled oxygen transfer reactions to different sulfides for sulfoxide preparation in the presence of H2O2. Comparable activities were obtained when using fully modified L-DNA. In addition, oligonucleotide immobilization led to an active catalyst which could be successfully recovered and reused without loss of activity. PMID:26066510

  15. Aptamer/Au nanoparticles/cobalt sulfide nanosheets biosensor for 17β-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification.

    PubMed

    Huang, Ke-Jing; Liu, Yu-Jie; Zhang, Ji-Zong; Cao, Jun-Tao; Liu, Yan-Ming

    2015-05-15

    We have developed a sensitive sensing platform for 17β-estradiol by combining the aptamer probe and hybridization reaction. In this assay, 2-dimensional cobalt sulfide nanosheet (CoS) was synthesized by a simple hydrothermal method with L-cysteine as sulfur donor. An electrochemical aptamer biosensor was constructed by assembling a thiol group tagged 17β-estradiol aptamer on CoS and gold nanoparticles (AuNPs) modified electrode. Methylene blue was applied as a tracer and a guanine-rich complementary DNA sequence was designed to bind with the unbound 17β-estradiol aptamer for signal amplification. The binding of guanine-rich DNA to the aptamer was inhibited when the aptamer captured 17β-estradiol. Using guanine-rich DNA in the assay greatly amplified the redox signal of methylene blue bound to the detection probe. The CoS/AuNPs film formed on the biosensor surface appeared to be a good conductor for accelerating the electron transfer. The method demonstrated a high sensitivity of detection with the dynamic concentration range spanning from 1.0×10(-9) to 1.0×10(-12) M and a detection limit of 7.0×10(-13) M. Besides, the fabricated biosensor exhibited good selectivity toward 17β-estradiol even when interferents were presented at 100-fold concentrations. Our attempt will extend the application of the CoS nanosheet and this signal amplification assay to biosensing areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A compositional segmentation of the human mitochondrial genome is related to heterogeneities in the guanine mutation rate

    PubMed Central

    Samuels, David C.; Boys, Richard J.; Henderson, Daniel A.; Chinnery, Patrick F.

    2003-01-01

    We applied a hidden Markov model segmentation method to the human mitochondrial genome to identify patterns in the sequence, to compare these patterns to the gene structure of mtDNA and to see whether these patterns reveal additional characteristics important for our understanding of genome evolution, structure and function. Our analysis identified three segmentation categories based upon the sequence transition probabilities. Category 2 segments corresponded to the tRNA and rRNA genes, with a greater strand-symmetry in these segments. Category 1 and 3 segments covered the protein- coding genes and almost all of the non-coding D-loop. Compared to category 1, the mtDNA segments assigned to category 3 had much lower guanine abundance. A comparison to two independent databases of mitochondrial mutations and polymorphisms showed that the high substitution rate of guanine in human mtDNA is largest in the category 3 segments. Analysis of synonymous mutations showed the same pattern. This suggests that this heterogeneity in the mutation rate is partly independent of respiratory chain function and is a direct property of the genome sequence itself. This has important implications for our understanding of mtDNA evolution and its use as a ‘molecular clock’ to determine the rate of population and species divergence. PMID:14530452

  17. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore

    NASA Astrophysics Data System (ADS)

    Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.

    2015-02-01

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2‧-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5‧ or 3‧ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  18. Constructing a novel 8-hydroxy-2'-deoxyguanosine electrochemical sensor and application in evaluating the oxidative damages of DNA and guanine.

    PubMed

    Guo, Zhipan; Liu, Xiuhui; Liu, Yuelin; Wu, Guofan; Lu, Xiaoquan

    2016-12-15

    8-Hydroxy-2'-deoxyguanosine (8-OHdG) is commonly identified as a biomarker of oxidative DNA damage. In this work, a novel and facile 8-OHdG sensor was developed based on the multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE). It exhibited good electrochemical responses toward the oxidation of 8-OHdG, and the linear ranges were 5.63×10(-8)-6.08×10(-6)M and 6.08×10(-6)-1.64×10(-5)M, with the detection limit of 1.88×10(-8)M (S/N=3). Moreover, the fabricated sensor was applied for the determination of 8-OHdG generated from damaged DNA and guanine, respectively, and the oxidation currents of 8-OHdG increased along with the damaged DNA and guanine within certain concentrations. These results could be used to evaluate the DNA damage, and provide useful information on diagnosing diseases caused by mutation and deficiency of the immunity system. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Calculating hyperfine couplings in large ionic crystals containing hundreds of QM atoms: subsystem DFT is the key.

    PubMed

    Kevorkyants, Ruslan; Wang, Xiqiao; Close, David M; Pavanello, Michele

    2013-11-14

    We present an application of the linear scaling frozen density embedding (FDE) formulation of subsystem DFT to the calculation of isotropic hyperfine coupling constants (hfcc's) of atoms belonging to a guanine radical cation embedded in a guanine hydrochloride monohydrate crystal. The model systems range from an isolated guanine to a 15,000 atom QM/MM cluster where the QM region is comprised of 36 protonated guanine cations, 36 chlorine anions, and 42 water molecules. Our calculations show that the embedding effects of the surrounding crystal cannot be reproduced by small model systems nor by a pure QM/MM procedure. Instead, a large QM region is needed to fully capture the complicated nature of the embedding effects in this system. The unprecedented system size for a relativistic all-electron isotropic hfcc calculation can be approached in this work because the local nature of the electronic structure of the organic crystals considered is fully captured by the FDE approach.

  20. 193 nm ArF laser ablation and patterning of chitosan thin films

    NASA Astrophysics Data System (ADS)

    Aesa, A. A.; Walton, C. D.

    2018-06-01

    This paper reports laser ablation studies on spin-coated biopolymer chitosan films, β-l,4-1inked 2-amino-2-deoxy- d-glucopyranose. Chitosan has been irradiated using an ArF laser emitting at 193 nm. An ablation threshold of F T = 85±8 mJ cm-2 has been determined from etch rate measurements. Laser-ablated chitosan is characterised using white light interferometry, scanning electron microscopy, and thermo-gravimetric analysis. Laser ablation of chitosan is discussed in terms of thermal and photoacoustic mechanisms. Heat transfer is simulated to assist in the understanding of laser-irradiated chitosan using a finite-element method and the software package COMSOL Multi-Physics™. As a demonstrator, a micro-array of square structures in the form of a crossed grating has been fabricated by laser ablation using a mask projection scanning method. The initial investigations show no evidence of thermal damage occurring to the adjacent chitosan when operating at a moderately low laser fluence of 110 mJ cm-2.

  1. Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hall, James P.; Poynton, Fergus E.; Keane, Páraic M.; Gurung, Sarah P.; Brazier, John A.; Cardin, David J.; Winter, Graeme; Gunnlaugsson, Thorfinnur; Sazanovich, Igor V.; Towrie, Michael; Cardin, Christine J.; Kelly, John M.; Quinn, Susan J.

    2015-12-01

    To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl-DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

  2. Monitoring one-electron photo-oxidation of guanine in DNA crystals using ultrafast infrared spectroscopy.

    PubMed

    Hall, James P; Poynton, Fergus E; Keane, Páraic M; Gurung, Sarah P; Brazier, John A; Cardin, David J; Winter, Graeme; Gunnlaugsson, Thorfinnur; Sazanovich, Igor V; Towrie, Michael; Cardin, Christine J; Kelly, John M; Quinn, Susan J

    2015-12-01

    To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl-DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

  3. Neurotrophin responsiveness of sympathetic neurons is regulated by rapid mobilization of the p75 receptor to the cell surface through TrkA activation of Arf6.

    PubMed

    Edward Hickman, F; Stanley, Emily M; Carter, Bruce D

    2018-05-22

    The p75 neurotrophin receptor (p75NTR) plays an integral role in patterning the sympathetic nervous system during development. Initially, p75NTR is expressed at low levels as sympathetic axons project toward their targets, which enables neurotrophin-3 (NT3) to activate TrkA receptors and promote growth. Upon reaching nerve growth factor (NGF) producing tissues, p75NTR is up regulated resulting in formation of TrkA-p75 complexes, which are high affinity binding sites selective for NGF, thereby blunting NT3 signaling. The level of p75NTR expressed on the neuron surface is instrumental in regulating trophic factor response; however, the mechanisms by which p75NTR expression is regulated are poorly understood. Here, we demonstrate a rapid, translation independent increase in surface expression of p75NTR in response to NGF in rat sympathetic neurons. p75NTR was mobilized to the neuron surface from GGA3-postitive vesicles through activation of the GTPase Arf6, which was stimulated by NGF, but not NT3 binding to TrkA. Arf6 activation required PI3 kinase activity and was prevented by an inhibitor of the cytohesin family of Arf6 GEFs. Overexpression of a constitutively active Arf6 mutant (Q67L) was sufficient to significantly increase surface expression of p75NTR even in the absence of NGF. Functionally, expression of active Arf6 markedly attenuated the ability of NT3 to promote neuronal survival and neurite outgrowth while the NGF response was unaltered. These data suggest that NGF activation of Arf6 through TrkA is critical for the increase in p75NTR surface expression that enables the switch in neurotrophin responsiveness during development in the sympathetic nervous system. SIGNIFICANCE STATEMENT p75NTR is instrumental in the regulation of neuronal survival and apoptosis during development and is also implicated as a contributor to aberrant neurodegeneration in numerous conditions. Therefore, a better understanding of the mechanisms that mediate p75NTR surface

  4. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6

    PubMed Central

    2010-01-01

    Background Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated

  5. Investigation on gas medium parameters for an ArF excimer laser through orthogonal experimental design

    NASA Astrophysics Data System (ADS)

    Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu

    2018-02-01

    Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.

  6. Guanine limitation results in CodY-dependent and -independent alteration of Staphylococcus aureus physiology and gene expression.

    PubMed

    King, Alyssa N; Borkar, Samiksha; Samuels, David J; Batz, Zachary; Bulock, Logan; Sadykov, Marat R; Bayles, Kenneth W; Brinsmade, Shaun R

    2018-04-30

    In Staphylococcus aureus , the global transcriptional regulator CodY modulates the expression of hundreds of genes in response to the availability of GTP and the branched-chain amino acids isoleucine, leucine, and valine (ILV). CodY DNA-binding activity is high when GTP and ILV are abundant. When GTP and ILV are limited, CodY's affinity for DNA drops, altering expression of CodY regulated targets. In this work, we investigated the impact of guanine nucleotides on S. aureus physiology and CodY activity by constructing a guaA null mutant (Δ guaA ). De novo biosynthesis of guanine monophosphate is abolished due to the guaA mutation; thus, the mutant cells require exogenous guanosine for growth. We also found that CodY activity was reduced when we knocked out guaA , activating the Agr two-component system and increasing secreted protease activity. Notably, in a rich, complex medium, we detected an increase in alternative sigma factor B activity in the Δ guaA mutant, which results in a 5-fold increase in production of the antioxidant pigment staphyloxanthin. Under biologically relevant flow conditions, Δ guaA cells failed to form robust biofilms when limited for guanine or guanosine. RNA-seq analysis of S. aureus transcriptome during growth in guanosine-limited chemostats revealed substantial CodY-dependent and -independent alteration of gene expression profiles. Importantly, these changes increase production of proteases and δ-toxin, suggesting that S. aureus exhibits a more invasive lifestyle when limited for guanosine. Further, gene-products upregulated under GN limitation, including those necessary for lipoic acid biosynthesis and sugar transport, may prove to be useful drug targets for treating Gram-positive infections. Importance Staphylococcus aureus infections impose a serious economic burden on healthcare facilities and patients because of the emergence of strains resistant to last-line antibiotics. Understanding the physiological processes governing

  7. Gene expression of the p16(INK4a)-Rb and p19(Arf)-p53-p21(Cip/Waf1) signaling pathways in the regulation of hematopoietic stem cell aging by ginsenoside Rg1.

    PubMed

    Yue, Z; Rong, J; Ping, W; Bing, Y; Xin, Y; Feng, L D; Yaping, W

    2014-12-04

    The elucidation of the molecular mechanisms underlying the effects of traditional Chinese medicines in clinical practice is a key step toward their worldwide application, and this topic is currently a subject of intense research interest. Rg1, a component of ginsenoside, has recently been shown to perform several pharmacological functions; however, the underlying mechanisms of these effects remain unclear. In the present study, we investigated whether Rg1 has an anti-senescence effect on hematopoietic stem cells (HSCs) and the possible molecular mechanisms driving any effects. The results showed that Rg1 could effectively delay tert-butyl hydroperoxide (t-BHP)-induced senescence and inhibit gene expression in the p16(INK4a)-Rb and p19(Arf)-p53-p21(Cip/Waf1) signaling pathways in HSCs. Our study suggested that these two signaling pathways might be potential targets for elucidating the molecular mechanisms of the Rg1 anti-senescence effect.

  8. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  9. The Guanine Nucleotide Exchange Factor Tiam1 Affects Neuronal Morphology; Opposing Roles for the Small GTPases Rac and Rho

    PubMed Central

    van Leeuwen, Frank N.; Kain, Hendrie E.T.; van der Kammen, Rob A.; Michiels, Frits; Kranenburg, Onno W.; Collard, John G.

    1997-01-01

    The invasion-inducing T-lymphoma invasion and metastasis 1 (Tiam1) protein functions as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1. Differentiation-dependent expression of Tiam1 in the developing brain suggests a role for this GEF and its effector Rac1 in the control of neuronal morphology. Here we show that overexpression of Tiam1 induces cell spreading and affects neurite outgrowth in N1E-115 neuroblastoma cells. These effects are Rac-dependent and strongly promoted by laminin. Overexpression of Tiam1 recruits the α6β1 integrin, a laminin receptor, to specific adhesive contacts at the cell periphery, which are different from focal contacts. Cells overexpressing Tiam1 no longer respond to lysophosphatidic acid– induced neurite retraction and cell rounding, processes mediated by Rho, suggesting that Tiam1-induced activation of Rac antagonizes Rho signaling. This inhibition can be overcome by coexpression of constitutively active RhoA, which may indicate that regulation occurs at the level of Rho or upstream. Conversely, neurite formation induced by Tiam1 or Rac1 is further promoted by inactivating Rho. These results demonstrate that Rac- and Rho-mediated pathways oppose each other during neurite formation and that a balance between these pathways determines neuronal morphology. Furthermore, our data underscore the potential role of Tiam1 as a specific regulator of Rac during neurite formation and illustrate the importance of reciprocal interactions between the cytoskeleton and the extracellular matrix during this process. PMID:9348295

  10. Role of guanine nucleotides in the vinblastine-induced self-association of tubulin: effects of guanosine alpha,beta-methylenetriphosphate and guanosine alpha,beta-methylenediphosphate.

    PubMed

    Vulevic, B; Lobert, S; Correia, J J

    1997-10-21

    It is now well established that guanine nucleotides are allosteric effectors of the vinca alkaloid-induced self-association of tubulin. GDP enhances self-association for vinblastine-, vincristine- and vinorelbine-induced spiral assembly relative to GTP by 0.90 +/- 0.17 kcal/mol [Lobert et al. (1996) Biochemistry 35, 6806-6814]. Since chemical modifications of the vinca alkaloid structure are known to modulate the overall affinity of drug binding, it is very likely that, by Wyman linkage, chemical modifications of guanine nucleotide allosteric effectors also modulate drug binding. Here we compare the effects of the GTP and GDP alpha,beta-methylene analogues GMPCPP and GMPCP on vinblastine-induced tubulin association in 10 and 100 mM piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes), 1 mM MgSO4, and 2 mM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA), pH 6. 9, at different temperatures. We found that GMPCPP perfectly mimics GTP in its effect on spiral assembly under all ionic strength and temperature conditions. However, GMPCP in 10 mM Pipes behaves not as a GDP analogue, but as a GTP analogue. In 100 mM Pipes, GMPCP has characteristics that are intermediate between GDP and GTP. These data suggest that the alpha,beta methylene group in GMPCP and GMPCPP is sufficient to produce a GTP-like effect on vinblastine-induced tubulin self-assembly. This is consistent with previous observations that GMPCP-tubulin will assemble into microtubules in a 2 M glycerol and 100 mM Pipes buffer [Vulevic & Correia (1997) Biophys. J. 72, 1357-1375]. Our results demonstrate that an alpha,beta methylene modification of the guanine nucleotide phosphate moiety can induce a salt-dependent conformational change in the tubulin heterodimer that favors the GTP-tubulin structure. This has important implications for understanding allosteric interactions that occur in the binding of guanine nucleotides to tubulin.

  11. Mapping three guanine oxidation products along DNA following exposure to three types of reactive oxygen species.

    PubMed

    Matter, Brock; Seiler, Christopher L; Murphy, Kristopher; Ming, Xun; Zhao, Jianwei; Lindgren, Bruce; Jones, Roger; Tretyakova, Natalia

    2018-06-01

    Reactive oxygen and nitrogen species generated during respiration, inflammation, and immune response can damage cellular DNA, contributing to aging, cancer, and neurodegeneration. The ability of oxidized DNA bases to interfere with DNA replication and transcription is strongly influenced by their chemical structures and locations within the genome. In the present work, we examined the influence of local DNA sequence context, DNA secondary structure, and oxidant identity on the efficiency and the chemistry of guanine oxidation in the context of the Kras protooncogene. A novel isotope labeling strategy developed in our laboratory was used to accurately map the formation of 2,2-diamino-4-[(2-deoxy-β-D-erythropentofuranosyl)amino]- 5(2 H)-oxazolone (Z), 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG), and 8-nitroguanine (8-NO 2 -G) lesions along DNA duplexes following photooxidation in the presence of riboflavin, treatment with nitrosoperoxycarbonate, and oxidation in the presence of hydroxyl radicals. Riboflavin-mediated photooxidation preferentially induced OG lesions at 5' guanines within GG repeats, while treatment with nitrosoperoxycarbonate targeted 3'-guanines within GG and AG dinucleotides. Little sequence selectivity was observed following hydroxyl radical-mediated oxidation. However, Z and 8-NO 2 -G adducts were overproduced at duplex ends, irrespective of oxidant identity. Overall, our results indicate that the patterns of Z, OG, and 8-NO 2 -G adduct formation in the genome are distinct and are influenced by oxidant identity and the secondary structure of DNA. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Mapping Structurally Defined Guanine Oxidation Products along DNA Duplexes: Influence of Local Sequence Context and Endogenous Cytosine Methylation

    PubMed Central

    2015-01-01

    DNA oxidation by reactive oxygen species is nonrandom, potentially leading to accumulation of nucleobase damage and mutations at specific sites within the genome. We now present the first quantitative data for sequence-dependent formation of structurally defined oxidative nucleobase adducts along p53 gene-derived DNA duplexes using a novel isotope labeling-based approach. Our results reveal that local nucleobase sequence context differentially alters the yields of 2,2,4-triamino-2H-oxal-5-one (Z) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (OG) in double stranded DNA. While both lesions are overproduced within endogenously methylated MeCG dinucleotides and at 5′ Gs in runs of several guanines, the formation of Z (but not OG) is strongly preferred at solvent-exposed guanine nucleobases at duplex ends. Targeted oxidation of MeCG sequences may be caused by a lowered ionization potential of guanine bases paired with MeC and the preferential intercalation of riboflavin photosensitizer adjacent to MeC:G base pairs. Importantly, some of the most frequently oxidized positions coincide with the known p53 lung cancer mutational “hotspots” at codons 245 (GGC), 248 (CGG), and 158 (CGC) respectively, supporting a possible role of oxidative degradation of DNA in the initiation of lung cancer. PMID:24571128

  13. DAMGO binding to mouse brain membranes: influence of salts, guanine nucleotides, substance P, and substance P fragments.

    PubMed

    Krumins, S A; Kim, D C; Igwe, O J; Larson, A A

    1993-01-01

    Substance P (SP) appears to mediate many processes of the central nervous system, including pain. This report deals with modulation of opioid binding in the mouse brain by SP and SP fragments, as well as by salts and guanine nucleotides. Binding studies of the selective mu opioid receptor agonist [D-Ala2, MePhe4,Gly(ol)5]enkephalin (DAMGO) to mouse brain membrane preparations demonstrated that guanine nucleotide modulation of DAMGO binding affinity was modified by SP. However, SP had little or no influence on inhibition of DAMGO binding induced by salts, such as MgCl2, CaCl2, or NaCl. By replacing GTP with GppNHp, SP (0.1 nM) produced multiple affinity forms of the DAMGO receptor, while at a higher concentration (10 nM), SP lost its influence on DAMGO binding. Furthermore, 0.1 nM SP changed DAMGO binding parameters in a medium containing NaCl, CaCl2, and GppNHp such that the high- and low-affinity conformations of the receptor converted to a single site following the addition of SP to the incubation medium. While the C-terminal SP fragment SP(5-11) was without effect, the N-terminal SP fragments SP(1-9) and SP(1-7) appeared to imitate SP in modifying GppNHp-modulated DAMGO binding. These results suggest that SP functions as a modulator of opioid binding at the mu receptor and it appears that the N-terminus of SP plays a role in the modulatory process.

  14. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  15. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.

    PubMed

    Jena, N R; Mishra, P C

    2005-07-28

    Mechanisms of formation of the mutagenic product 8-oxoguanine (8OG) due to reactions of guanine with two separate OH* radicals and with H2O2 were investigated at the B3LYP/6-31G, B3LYP/6-311++G, and B3LYP/AUG-cc-pVDZ levels of theory. Single point energy calculations were carried out with the MP2/AUG-cc-pVDZ method employing the optimized geometries at the B3LYP/AUG-cc-pVDZ level. Solvent effect was treated using the PCM and IEF-PCM models. Reactions of two separate OH* radicals and H2O2 with the C2 position of 5-methylimidazole (5MI) were investigated taking 5MI as a model to study reactions at the C8 position of guanine. The addition reaction of an OH* radical at the C8 position of guanine is found to be nearly barrierless while the corresponding adduct is quite stable. The reaction of a second OH* radical at the C8 position of guanine leading to the formation of 8OG complexed with a water molecule can take place according to two different mechanisms, involving two steps each. According to one mechanism, at the first step, 8-hydroxyguanine (8OHG) complexed with a water molecule is formed ,while at the second step, 8OHG is tautomerized to 8OG. In the other mechanism, at the first step, an intermediate complexed (IC) with a water molecule is formed, the five-membered ring of which is open, while at the second step, the five-membered ring is closed and a hydrogen bonded complex of 8OG with a water molecule is formed. The reaction of H2O2 with guanine leading to the formation of 8OG complexed with a water molecule can also take place in accordance with two different mechanisms having two steps each. At the first step of one mechanism, H2O2 is dissociated into two OH* groups that react with guanine to form the same IC as that formed in the reaction with two separate OH* radicals, and the subsequent step of this mechanism is also the same as that of the reaction of guanine with two separate OH* radicals. At the first step of the other mechanism of the reaction of

  16. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao

    2015-02-01

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.

  17. GNOM regulates root hydrotropism and phototropism independently of PIN-mediated auxin transport.

    PubMed

    Moriwaki, Teppei; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki

    2014-02-01

    Plant roots exhibit tropisms in response to gravity, unilateral light and moisture gradients. During gravitropism, an auxin gradient is established by PIN auxin transporters, leading to asymmetric growth. GNOM, a guanine nucleotide exchange factor of ARF GTPase (ARF-GEF), regulates PIN localization by regulating subcellular trafficking of PINs. Therefore, GNOM is important for gravitropism. We previously isolated mizu-kussei2 (miz2), which lacks hydrotropic responses; MIZ2 is allelic to GNOM. Since PIN proteins are not required for root hydrotropism in Arabidopsis, the role of GNOM in root hydrotropism should differ from that in gravitropism. To examine this possibility, we conducted genetic analysis of gnom(miz2) and gnom trans-heterozygotes. The mutant gnom(miz2), which lacks hydrotropic responses, was partially recovered by gnom(emb30-1), which lacks GEF activity, but not by gnom(B4049), which lacks heterotypic domain interactions. Furthermore, the phototropic response of gnom trans-heterozygotes differed from that of the pin2 mutant allele eir1-1. Moreover, defects in the polarities of PIN2 and auxin distribution in a severe gnom mutant were recovered by gnom(miz2). Therefore, an unknown GNOM-mediated vesicle trafficking system may mediate root hydrotropism and phototropism independently of PIN trafficking. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine Interface - A Proposal for High Mobility, Organic Graphene Field Effect Transistors

    DTIC Science & Technology

    2015-07-01

    AFRL-AFOSR-UK-TR-2015-0034 Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene /Guanine...Interface – A Proposal for High Mobility, Organic Graphene Field Effect Transistors Eva Campo BANGOR UNIVERSITY COLLEGE ROAD BANGOR...April 2015 4. TITLE AND SUBTITLE Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene /Guanine Interface - A

  19. Isotope Dilution nanoLC/ESI+-HRMS3 Quantitation of Urinary N7-(1-Hydroxy-3-buten-2-yl) Guanine Adducts in Humans and Their Use as Biomarkers of Exposure to 1,3-Butadiene.

    PubMed

    Sangaraju, Dewakar; Boldry, Emily J; Patel, Yesha M; Walker, Vernon; Stepanov, Irina; Stram, Daniel; Hatsukami, Dorothy; Tretyakova, Natalia

    2017-02-20

    1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a known human carcinogen. Occupational exposure to BD in the polymer and monomer industries is associated with an increased incidence of lymphoma. BD is present in automobile exhaust, cigarette smoke, and forest fires, raising concern about potential exposure of the general population to this carcinogen. Following inhalation exposure, BD is bioactivated to 3,4-epoxy-1-butene (EB). If not detoxified, EB is capable of modifying guanine and adenine bases of DNA to form nucleobase adducts, which interfere with accurate DNA replication and cause cancer-initiating mutations. We have developed a nanoLC/ESI + -HRMS 3 methodology for N7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) adducts in human urine (limit of detection: 0.25 fmol/mL urine; limit of quantitation: 1.0 fmol/mL urine). This new method was successfully used to quantify EB-GII in urine of F344 rats treated with 0-200 ppm of BD, occupationally exposed workers, and smokers belonging to two different ethnic groups. EB-GII amounts increased in a dose-dependent manner in urine of laboratory rats exposed to 0, 62.5, or 200 ppm of BD. Urinary EB-GII levels were significantly increased in workers occupationally exposed to 0.1-2.2 ppm of BD (1.25 ± 0.51 pg/mg of creatinine) as compared to administrative controls exposed to <0.01 ppm of BD (0.22 ± 0.08 and pg/mg of creatinine) (p = 0.0024), validating the use of EB-GII as a biomarker of human exposure to BD. EB-GII was also detected in smokers' urine with European American smokers excreting significantly higher amounts of EB-GII than African American smokers (0.48 ± 0.09 vs 0.12 ± 0.02 pg/mg of creatinine, p = 3.1 × 10 -7 ). Interestingly, small amounts of EB-GII were observed in animals and humans with no known exposure to BD, providing preliminary evidence for its endogenous formation. Urinary EB-GII adduct levels and urinary mercapturic acids of BD (MHBMA, DHBMA) were compared

  20. The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch

    PubMed Central

    2017-01-01

    The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with S-substitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening. PMID:28910418

  1. Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River tundra fire, North Slope, Alaska

    Treesearch

    Benjamin M. Jones; Crystal A. Kolden; Randi Jandt; John T. Abatzoglu; Frank Urban; Christopher D. Arp

    2009-01-01

    In 2007, the Anaktuvuk River Fire (ARF) became the largest recorded tundra fire on the North Slope of Alaska. The ARF burned for nearly three months, consuming more than 100,000 ha. At its peak in early September, the ARF burned at a rate of 7000 ha d-1. The conditions potentially responsible for this large tundra fire include modeled record high...

  2. 15N nuclear magnetic resonance studies on the tautomerism of 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanosine, and other C8-substituted guanine nucleosides.

    PubMed

    Cho, B P; Kadlubar, F F; Culp, S J; Evans, F E

    1990-01-01

    The favored tautomeric and ionic structures were examined for the oxidative DNA damage adduct 8-hydroxy-2'-deoxyguanosine and its RNA analogue 8-hydroxyguanosine by 15N NMR spectroscopy. In addition, 15N chemical shifts and coupling constants from 13 different guanine nucleosides, including a wide variety of C8 substitutions (OH, SH, Br, OCH2C6H5, OCH3, SCH3, and SO2CH3), have been analyzed with respect to their tautomeric structures. A -98.5-Hz proton-nitrogen coupling constant observed for the N7 resonance of 8-hydroxyguanosine in dimethyl sulfoxide was evidence for 8-keto substitution, which is contrary to the structure implied by the generally used nomenclature. The pH dependence of 15N NMR spectra of 8-hydroxyguanosine in aqueous solution showed downfield shifts of the N1 and N7 resonances that were greater than 50 ppm, which indicated the conversion from a neutral 6,8-diketo to a 6-enolate-8-keto (pKa1 = 8.6) and finally to a 6,8-dienolate structure (pKa2 = 11.7). There was no evidence of an 8-enol substituent in the absence of ionization. It is proposed that the syn conformation of these oxidized bases in duplex DNA and RNA can be further stabilized by abnormal hydrogen bonding or mispairing that involves N7-H. The combined data show that 15N NMR is a sensitive probe to examine tautomerism of the guanine ring system. The analysis indicates that the change from a single to a double bond for the C8 substituent, and the accompanying removal of the normal double bond between N7 and C8 on the imidazole ring system, has no detectable effect on the tautomerism at the N1-O6 site of the pyrimidine ring system for both the 8-keto and 8-thio substitutions. In addition, large differences in electronegativity of the C8 substituents do not alter the N1-O6 tautomerism.

  3. cAMP regulates DEP domain-mediated binding of the guanine nucleotide exchange factor Epac1 to phosphatidic acid at the plasma membrane.

    PubMed

    Consonni, Sarah V; Gloerich, Martijn; Spanjaard, Emma; Bos, Johannes L

    2012-03-06

    Epac1 is a cAMP-regulated guanine nucleotide exchange factor for the small G protein Rap. Upon cAMP binding, Epac1 undergoes a conformational change that results in its release from autoinhibition. In addition, cAMP induces the translocation of Epac1 from the cytosol to the plasma membrane. This relocalization of Epac1 is required for efficient activation of plasma membrane-located Rap and for cAMP-induced cell adhesion. This translocation requires the Dishevelled, Egl-10, Pleckstrin (DEP) domain, but the molecular entity that serves as the plasma membrane anchor and the possible mechanism of regulated binding remains elusive. Here we show that Epac1 binds directly to phosphatidic acid. Similar to the cAMP-induced Epac1 translocation, this binding is regulated by cAMP and requires the DEP domain. Furthermore, depletion of phosphatidic acid by inhibition of phospholipase D1 prevents cAMP-induced translocation of Epac1 as well as the subsequent activation of Rap at the plasma membrane. Finally, mutation of a single basic residue within a polybasic stretch of the DEP domain, which abolishes translocation, also prevents binding to phosphatidic acid. From these results we conclude that cAMP induces a conformational change in Epac1 that enables DEP domain-mediated binding to phosphatidic acid, resulting in the tethering of Epac1 at the plasma membrane and subsequent activation of Rap.

  4. Meta-analyses of microarrays of Arabidopsis asymmetric leaves1 (as1), as2 and their modifying mutants reveal a critical role for the ETT pathway in stabilization of adaxial-abaxial patterning and cell division during leaf development.

    PubMed

    Takahashi, Hiro; Iwakawa, Hidekazu; Ishibashi, Nanako; Kojima, Shoko; Matsumura, Yoko; Prananingrum, Pratiwi; Iwasaki, Mayumi; Takahashi, Anna; Ikezaki, Masaya; Luo, Lilan; Kobayashi, Takeshi; Machida, Yasunori; Machida, Chiyoko

    2013-03-01

    It is necessary to use algorithms to analyze gene expression data from DNA microarrays, such as in clustering and machine learning. Previously, we developed the knowledge-based fuzzy adaptive resonance theory (KB-FuzzyART), a clustering algorithm suitable for analyzing gene expression data, to find clues for identifying gene networks. Leaf primordia form around the shoot apical meristem (SAM), which consists of indeterminate stem cells. Upon initiation of leaf development, adaxial-abaxial patterning is crucial for lateral expansion, via cellular proliferation, and the formation of flat symmetric leaves. Many regulatory genes that specify such patterning have been identified. Analysis by the KB-FuzzyART and subsequent molecular and genetic analyses previously showed that ASYMMETRIC LEAVES1 (AS1) and AS2 repress the expression of some abaxial-determinant genes, such as AUXIN RESPONSE FACTOR3 (ARF3)/ETTIN (ETT) and ARF4, which are responsible for defects in leaf adaxial-abaxial polarity in as1 and as2. In the present study, genetic analysis revealed that ARF3/ETT and ARF4 were regulated by modifier genes, BOBBER1 (BOB1) and ELONGATA3 (ELO3), together with AS1-AS2. We analyzed expression arrays with as2 elo3 and as2 bob1, and extracted genes downstream of ARF3/ETT by using KB-FuzzyART and molecular analyses. The results showed that expression of Kip-related protein (KRP) (for inhibitors of cyclin-dependent protein kinases) and Isopentenyltransferase (IPT) (for biosynthesis of cytokinin) genes were controlled by AS1-AS2 through ARF3/ETT and ARF4 functions, which suggests that the AS1-AS2-ETT pathway plays a critical role in controlling the cell division cycle and the biosynthesis of cytokinin around SAM to stabilize leaf development in Arabidopsis thaliana.

  5. Guanine oxidation signal enhancement in DNA via a polyacrylonitrile nanofiber-coated and cyclic voltammetry-treated pencil graphite electrode

    NASA Astrophysics Data System (ADS)

    Aladag Tanik, Nilay; Demirkan, Elif; Aykut, Yakup

    2018-07-01

    This study investigated the electrochemical detection of specific nucleic acid hybridization sequences using a nanofiber-coated pencil graphite biosensor. The biosensor was developed to detect Val66Met single point mutations in the brain-derived neurotrophic factor gene, which is frequently observed in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and bipolar disorder. The oxidation signal of the most electroactive and stable DNA base, i.e., guanine, was used at approximately +1.0 V. Pencil graphite electrode (PGE) surfaces were coated with polyacrylonitrile nanofibers by electrospinning. Cyclic voltammetry was applied to the nanofiber-coated PGE to pretreat its surfaces. The application of cyclic voltammetry to the nanofiber-coated PGE surfaces before attaching the probe yielded a four fold increase in the oxidation signal for guanine compared with that using the untreated and uncoated PGE surface. The signal reductions were 70% for hybridization, 10% for non-complementary binding, and 14% for a single mismatch compared with the probe. The differences in full match, non-complementary, and mismatch binding indicated that the biosensor selectively detected the target, and that it was possible to determine hybridization in about 65 min. The detection limit was 0.19 μg/ml at a target concentration of 10 ppm.

  6. Guanine Plus Cytosine Contents of the Deoxyribonucleic Acids of Some Sulfate-Reducing Bacteria: a Reassessment

    PubMed Central

    Skyring, G. W.; Jones, H. E.

    1972-01-01

    Guanine plus cytosine (GC) contents of the deoxyribonucleic acids of Desulfovibrio and Desulfotomaculum have been used as a basis for classification. Some of these data have been incorrectly calculated, resulting in errors of as much as 5% GC. This situation has been corrected by a reanalysis of existing data and by the contribution of new data. PMID:5011245

  7. Reliable high-power injection locked 6kHz 60W laser for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Watanabe, Hidenori; Komae, Shigeo; Tanaka, Satoshi; Nohdomi, Ryoichi; Yamazaki, Taku; Nakarai, Hiroaki; Fujimoto, Junichi; Matsunaga, Takashi; Saito, Takashi; Kakizaki, Kouji; Mizoguchi, Hakaru

    2007-03-01

    Reliable high power 193nm ArF light source is desired for the successive growth of ArF-immersion technology for 45nm node generation. In 2006, Gigaphoton released GT60A, high power injection locked 6kHz/60W/0.5pm (E95) laser system, to meet the demands of semiconductor markets. In this paper, we report key technologies for reliable mass production GT laser systems and GT60A high durability performance test results up to 20 billion pulses.

  8. Acyclic phosph(on)ate inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase

    PubMed Central

    Clinch, Keith; Crump, Douglas R.; Evans, Gary B.; Hazleton, Keith Z.; Mason, Jennifer M.; Schramm, Vern L.

    2013-01-01

    The pathogenic protozoa responsible for malaria lack enzymes for the de novo synthesis of purines and rely on purine salvage from the host. In Plasmodium falciparum (Pf), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) converts hypoxanthine to inosine monophosphate and is essential for purine salvage making the enzyme an anti-malarial drug target. We have synthesized a number of simple acyclic aza-C- nucleosides and shown that some are potent inhibitors of Pf HGXPRT while showing excellent selectivity for the Pf versus the human enzyme. PMID:23810424

  9. Structural Transformation of Guanine Coordination Motifs in Water Induced by Metal ions and Temperature.

    PubMed

    Li, Wei; Jin, Jing; Liu, Xiaoqing; Wang, Li

    2018-06-15

    The transformation effects of metal ions and temperature on the DNA bases guanine (G) metal-organic coordination motifs in water have been investigated by scanning tunneling microcopy (STM). The G molecules form an ordered hydrogen-bonded structure at the water- highly oriented pyrolytic graphite (HOPG) interface. The STM observations reveal that the canonical G/9H form can be transformed into the G/(3H, 7H) tautomer by increasing the temperature of the G solution to 38.6oC. Moreover, metal ions bind with G molecules to form G4Fe13+, G3Fe32+ and the heterochiral intermixed G4Na1+ metal-organic networks after the introduction of the alkali-metal ions in cellular environment.

  10. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals

    NASA Astrophysics Data System (ADS)

    Chikashige, T.; Iwasaka, M.

    2018-05-01

    In this study, a new method was investigated to form light-reflecting dots at the micrometer scale using the magnetic orientations of biogenic guanine crystals obtained from fish skin and scales. The crystal platelets, possessing average dimensions of 5 μm×20 μm×100 nm, were dispersed in water and observed during exposure to vertical magnetic fields up to 5 T. The magnetic field direction was parallel to Earth's gravity, and allowed the narrowest edges of the crystals to be observed at the micrometer scale for the first time. The magnetic orientation process was initiated under conditions where the crystal platelets in water were laid on a glass substrate or where the platelets had random orientations. In the former case, the crystal platelets followed a two-stage magnetic orientation process where, in the first step, the platelet widths were aligned in the magnetic field direction. The second step required rotation of the ˜20-μm-long plates with respect to the Earth's gravity, where application of a 5 T magnetic field enabled their orientation. Real-time images of the magnetically aligning platelets provided new evidence that the crystal platelets also emitted reflected light from a very narrow window at two crystal planes (i.e., (0 1 ¯ 2 ¯ ) and (0 1 ¯ 2 )). In the latter case with random platelet orientation, spatially-condensed light-reflecting dots appeared while the guanine crystal platelets were floating and maintaining their orientation. The technique developed for controlling light-reflecting microscale objects in an aqueous medium can be applied to produce a type of microfluidic optical tool.

  11. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolationmore » of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.« less

  12. Guanine nucleotide dissociation inhibitor is essential for Rab1 function in budding from the endoplasmic reticulum and transport through the Golgi stack

    PubMed Central

    1994-01-01

    The small GTPase Rab1 is required for vesicular traffic from the ER to the cis-Golgi compartment, and for transport between the cis and medial compartments of the Golgi stack. In the present study, we examine the role of guanine nucleotide dissociation inhibitor (GDI) in regulating the function of Rab1 in the transport of vesicular stomatitis virus glycoprotein (VSV-G) in vitro. Incubation in the presence of excess GDI rapidly (t1/2 < 30 s) extracted Rab1 from membranes, inhibiting vesicle budding from the ER and sequential transport between the cis-, medial-, and trans-Golgi cisternae. These results demonstrate a direct role for GDI in the recycling of Rab proteins. Analysis of rat liver cytosol by gel filtration revealed that a major pool of Rab1 fractionates with a molecular mass of approximately 80 kD in the form of a GDI-Rab1 complex. When the GDI-Rab1 complex was depleted from cytosol by use of a Rab1-specific antibody, VSV-G failed to exit the ER. However, supplementation of depleted cytosol with a GDI-Rab1 complex prepared in vitro from recombinant forms of Rab1 and GDI efficiently restored export from the ER, and transport through the Golgi stack. These results provide evidence that a cytosolic GDI-Rab1 complex is required for the formation of non-clathrin-coated vesicles mediating transport through the secretory pathway. PMID:8089173

  13. The ArF laser for the next-generation multiple-patterning immersion lithography supporting green operations

    NASA Astrophysics Data System (ADS)

    Ishida, Keisuke; Ohta, Takeshi; Miyamoto, Hirotaka; Kumazaki, Takahito; Tsushima, Hiroaki; Kurosu, Akihiko; Matsunaga, Takashi; Mizoguchi, Hakaru

    2016-03-01

    Multiple patterning ArF immersion lithography has been expected as the promising technology to satisfy tighter leading edge device requirements. One of the most important features of the next generation lasers will be the ability to support green operations while further improving cost of ownership and performance. Especially, the dependence on rare gases, such as Neon and Helium, is becoming a critical issue for high volume manufacturing process. The new ArF excimer laser, GT64A has been developed to cope with the reduction of operational costs, the prevention against rare resource shortage and the improvement of device yield in multiple-patterning lithography. GT64A has advantages in efficiency and stability based on the field-proven injection-lock twin-chamber platform (GigaTwin platform). By the combination of GigaTwin platform and the advanced gas control algorithm, the consumption of rare gases such as Neon is reduced to a half. And newly designed Line Narrowing Module can realize completely Helium free operation. For the device yield improvement, spectral bandwidth stability is important to increase image contrast and contribute to the further reduction of CD variation. The new spectral bandwidth control algorithm and high response actuator has been developed to compensate the offset due to thermal change during the interval such as the period of wafer exchange operation. And REDeeM Cloud™, new monitoring system for managing light source performance and operations, is on-board and provides detailed light source information such as wavelength, energy, E95, etc.

  14. ArF step-and-scan system with 0.75 NA for the 0.10μm node

    NASA Astrophysics Data System (ADS)

    Vleeming, Bert; Heskamp, Barbra; Bakker, Hans; Verstappen, Leon; Finders, Jo; Stoeten, Jan; Boerret, Rainer; Roempp, Oliver

    2001-09-01

    It is widely expected that 193 nm lithography will be the technology of choice for volume production of the 0.10 micrometer device generation. For this purpose the PAS5500/1100TM Step & Scan system, the second generation ArF tool, was developed. It is based on the PAS5500/900TM, the body of which has been adapted to fit the new 0.75 NA StarlithTM projection optics. This high NA enables mass manufacturing of devices following the 0.10 micrometer design rule. The system features a 10 W 2 kHz ArF laser and the AERIALTM II illuminator that can be equipped with a QUASARTM (multipole) option. In order to minimize wafer processing influences on overlay performance ATHENATM off- axis alignment with phase modulator is implemented. The usage of Reticle Blue Alignment will further improve overlay as well as increase the system stability. In this paper the PAS5500/1100TM system layout is discussed and the first imaging and overlay results are presented. Imaging performance is illustrated by SEM pictures of 0.10 micrometer dense lines, 0.15, 0.13 and 0.12 micrometer dense contact holes, 0.10 micrometer DRAM isolation patterns, image plane deviation and system distortion fingerprints. Alignment reproducibility and single machine overlay results demonstrate the overlay capability.

  15. High-tensile strength sticking induced by ArF excimer laser surface treatment of poly(tetrafluoroethylene)

    NASA Astrophysics Data System (ADS)

    Hopp, Bela; Revesz, K.; Bor, Zsolt

    1998-07-01

    A successful enhancement of sticking of PTFE is demonstrated using ArF excimer laser irradiation in the presence of novel photoreagents. The applied laser fluence was very low at the sample - photoreagent liquid interface compared to the energy density applied in earlier investigations. After the treatment the PTFE films were glued by epoxy resin. It was found that at low doses the tensile strength of the sticking increased rapidly with the UV pulse number and the reached a saturation value, which was 6.66 MPa for triethylamine, 5.56 MPa in the case of 1,2-diaminoethane and 4.64 MPa for triethylene-tetramine. These are around two hundred times higher than the value of the untreated surface. It was found that this procedure makes the metallization and painting of PTFE surface also possible. A photoinduced electron transfer mechanism was suggested to describe the photoreaction, which is responsible for the increase of adhesion features on PTFE surface.

  16. ADP-ribosylation factor6 regulates both [3H]-noradrenaline and [14C]-glutamate exocytosis through phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Zheng, Qian; Bobich, Joseph A

    2004-10-01

    GTP phosphohydrolase (cell regulating) (EC 3.6.1.47, ADP-ribosylation factor6, ARF6) has been shown to play an important role in different steps of membrane trafficking. It also regulates chromaffin granule exocytosis through phosphatidylcholine phosphatidohydrolase (EC 3.1.4.14, PLD) activation. In this study, the role of ARF6 in neurotransmitter release from both dense-core granules (DCGs) and synaptic vesicles (SVs) in rat brain cortex nerve endings was investigated. We observed that synaptosomal ARF6 is largely particulate but moves to a less easily pelleted compartment upon nerve ending stimulation. We also found that direct inhibition of ARF6 by a specific antibody or interference with ARF6 downstream effects by a myristoylated N-terminal ARF6 peptide both significantly decreased both [3H]-noradrenaline and [14C]-glutamate exocytosis. Addition of phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP2) partially or completely restored exocytosis. These findings suggest that ARF6 plays important regulatory roles for both DCG and SV exocytosis by activating PLD and ATP:1-phosphatidyl-1D-myo-inositol 4-phosphate 5-phosphotransferase (EC 2.7.1.68, PI4P-5K) to enhance PIP2 synthesis and nerve ending membrane trafficking.

  17. A guanine insert in OsBBS1 leads to early leaf senescence and salt stress sensitivity in rice (Oryza sativa L.).

    PubMed

    Zeng, Dong-Dong; Yang, Cheng-Cong; Qin, Ran; Alamin, Md; Yue, Er-Kui; Jin, Xiao-Li; Shi, Chun-Hai

    2018-06-01

    A rice receptor-like kinase gene OSBBS1/OsRLCK109 was identified; this gene played vital roles in leaf senescence and the salt stress response. Early leaf senescence can cause negative effects on rice yield, but the underlying molecular regulation is not fully understood. bilateral blade senescence 1 (bbs1), an early leaf senescence mutant with a premature senescence phenotype that occurs mainly performing at the leaf margins, was isolated from a rice mutant population generated by ethylmethane sulfonate (EMS) treatment. The mutant showed premature leaf senescence beginning at the tillering stage and exhibited severe symptoms at the late grain-filling stage. bbs1 showed accelerated dark-induced leaf senescence. The OsBBS1 gene was cloned by a map-based cloning strategy, and a guanine (G) insertion was found in the first exon of LOC_Os03g24930. This gene encodes a receptor-like cytoplasmic kinase and was named OsRLCK109 in a previous study. Transgenic LOC_Os03g24930 knockout plants generated by a CRISPR/Cas9 strategy exhibited similar early leaf senescence phenotypes as did the bbs1 mutant, which confirmed that LOC_Os03g24930 was the OsBBS1 gene. OsBBS1/OsRLCK109 was expressed in all detected tissues and was predominantly expressed in the main vein region of mature leaves. The expression of OsBBS1 could be greatly induced by salt stress, and the bbs1 mutant exhibited hypersensitivity to salt stress. In conclusion, this is the first identification of OsRLCKs participating in leaf senescence and playing critical roles in the salt stress response in rice (Oryza sativa L.).

  18. Rotation of Guanine Amino Groups in G-Quadruplexes: A Probe for Local Structure and Ligand Binding.

    PubMed

    Adrian, Michael; Winnerdy, Fernaldo Richtia; Heddi, Brahim; Phan, Anh Tuân

    2017-08-22

    Nucleic acids are dynamic molecules whose functions may depend on their conformational fluctuations and local motions. In particular, amino groups are dynamic components of nucleic acids that participate in the formation of various secondary structures such as G-quadruplexes. Here, we present a cost-efficient NMR method to quantify the rotational dynamics of guanine amino groups in G-quadruplex nucleic acids. An isolated spectrum of amino protons from a specific tetrad-bound guanine can be extracted from the nuclear Overhauser effect spectroscopy spectrum based on the close proximity between the intra-residue imino and amino protons. We apply the method in different structural contexts of G-quadruplexes and their complexes. Our results highlight the role of stacking and hydrogen-bond interactions in restraining amino-group rotation. The measurement of the rotation rate of individual amino groups could give insight into the dynamic processes occurring at specific locations within G-quadruplex nucleic acids, providing valuable probes for local structure, dynamics, and ligand binding. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways*

    PubMed Central

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T.; Gasparutto, Didier; Geacintov, Nicholas E.; Saparbaev, Murat

    2015-01-01

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506–2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3′-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. PMID:25903131

  20. Rat L (long interspersed repeated DNA) elements contain guanine-rich homopurine sequences that induce unpairing of contiguous duplex DNA.

    PubMed Central

    Usdin, K; Furano, A V

    1988-01-01

    The L family (long interspersed repeated DNA) of mobile genetic elements is a persistent feature of the mammalian genome. In rats, this family contains approximately equal to 40,000 members and accounts for approximately equal to 10% of the haploid genome. We demonstrate here that the guanine-rich homopurine stretches located at the right end of L-DNA induce oligonucleotide uptake by contiguous duplex DNA. The uptake is dependent on negative supercoiling and the length of the homopurine stretch and occurs even when the L-DNA homopurine stretches are introduced into a different DNA environment. The bound oligomer primes DNA synthesis when DNA polymerase and deoxyribonucleoside triphosphates are added, resulting in a faithful copy of the template to which the oligonucleotide had bound. The implications of this property of the L-DNA guanine-rich homopurine stretches in the amplification, recombination, and dispersal of L elements is discussed. Images PMID:2837766

  1. Wsc1 and Mid2 Are Cell Surface Sensors for Cell Wall Integrity Signaling That Act through Rom2, a Guanine Nucleotide Exchange Factor for Rho1

    PubMed Central

    Philip, Bevin; Levin, David E.

    2001-01-01

    Wsc1 and Mid2 are highly O-glycosylated cell surface proteins that reside in the plasma membrane of Saccharomyces cerevisiae. They have been proposed to function as mechanosensors of cell wall stress induced by wall remodeling during vegetative growth and pheromone-induced morphogenesis. These proteins are required for activation of the cell wall integrity signaling pathway that consists of the small G-protein Rho1, protein kinase C (Pkc1), and a mitogen-activated protein kinase cascade. We show here by two-hybrid experiments that the C-terminal cytoplasmic domains of Wsc1 and Mid2 interact with Rom2, a guanine nucleotide exchange factor (GEF) for Rho1. At least with regard to Wsc1, this interaction is mediated by the Rom2 N-terminal domain. This domain is distinct from the Rho1-interacting domain, suggesting that the GEF can interact simultaneously with a sensor and with Rho1. We also demonstrate that extracts from wsc1 and mid2 mutants are deficient in the ability to catalyze GTP loading of Rho1 in vitro, providing evidence that the function of the sensor-Rom2 interaction is to stimulate nucleotide exchange toward this G-protein. In a related line of investigation, we identified the PMT2 gene in a genetic screen for mutations that confer an additive cell lysis defect with a wsc1 null allele. Pmt2 is a member of a six-protein family in yeast that catalyzes the first step in O mannosylation of target proteins. We demonstrate that Mid2 is not mannosylated in a pmt2 mutant and that this modification is important for signaling by Mid2. PMID:11113201

  2. Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: The role of electron-driven proton-transfer processes

    PubMed Central

    Sobolewski, Andrzej L.; Domcke, Wolfgang; Hättig, C.

    2005-01-01

    The UV spectra of three different conformers of the guanine/cytosine base pair were recorded recently with UV-IR double-resonance techniques in a supersonic jet [Abo-Riziq, A., Grace, L., Nir, E., Kabelac, M., Hobza, P. & de Vries, M. S. (2005) Proc. Natl. Acad. Sci. USA 102, 20–23]. The spectra provide evidence for a very efficient excited-state deactivation mechanism that is specific for the Watson–Crick structure and may be essential for the photostability of DNA. Here we report results of ab initio electronic-structure calculations for the excited electronic states of the three lowest-energy conformers of the guanine/cytosine base pair. The calculations reveal that electron-driven interbase proton-transfer processes play an important role in the photochemistry of these systems. The exceptionally short lifetime of the UV-absorbing states of the Watson–Crick conformer is tentatively explained by the existence of a barrierless reaction path that connects the spectroscopic 1π π * excited state with the electronic ground state via two electronic curve crossings. For the non-Watson–Crick structures, the photochemically reactive state is located at higher energies, resulting in a barrier for proton transfer and, thus, a longer lifetime of the UV-absorbing 1π π * state. The computational results support the conjecture that the photochemistry of hydrogen bonds plays a decisive role for the photostability of the molecular encoding of the genetic information in isolated DNA base pairs. PMID:16330778

  3. In vitro formation of recycling vesicles from endosomes requires adaptor protein-1/clathrin and is regulated by rab4 and the connector rabaptin-5.

    PubMed

    Pagano, Adriana; Crottet, Pascal; Prescianotto-Baschong, Cristina; Spiess, Martin

    2004-11-01

    The involvement of clathrin and associated adaptor proteins in receptor recycling from endosomes back to the plasma membrane is controversial. We have used an in vitro assay to identify the molecular requirements for the formation of recycling vesicles. Cells expressing the asialoglycoprotein receptor H1, a typical recycling receptor, were surface biotinylated and then allowed to endocytose for 10 min. After stripping away surface-biotin, the cells were permeabilized and the cytosol washed away. In a temperature-, cytosol-, and nucleotide-dependent manner, the formation of sealed vesicles containing biotinylated H1 could be reconstituted. Vesicle formation was strongly inhibited upon immunodepletion of adaptor protein (AP)-1, but not of AP-2 or AP-3, from the cytosol, and was restored by readdition of purified AP-1. Vesicle formation was stimulated by supplemented clathrin, but inhibited by brefeldin A, consistent with the involvement of ARF1 and a brefeldin-sensitive guanine nucleotide exchange factor. The GTPase rab4, but not rab5, was required to generate endosome-derived vesicles. Depletion of rabaptin-5/rabex-5, a known interactor of both rab4 and gamma-adaptin, stimulated and addition of the purified protein strongly inhibited vesicle production. The results indicate that recycling is mediated by AP-1/clathrin-coated vesicles and regulated by rab4 and rabaptin-5/rabex-5.

  4. Downregulation of guanine nucleotide-binding protein beta 1 (GNB1) is associated with worsened prognosis of clearcell renal cell carcinoma and is related to VEGF signaling pathway.

    PubMed

    Chen, C; Chi, H; Min, L; Junhua, Z

    2017-01-01

    Clear-cell renal cell carcinoma (ccRCC) is characterized by genetic abnormalities, while the role of Guanine Nucleotide-Binding Protein Beta 1 (GNB1) in ccRCC has not been studied. We thus aimed to evaluate the expression and prognostic value of GNB1 in ccRCC. A two-stage study (exploration and validation) was conducted using in silico and immunohistochemical (IHC) scoring of ccRCC samples from our institute, to evaluate the association between GNB1 expression and clinicopathological parameters of ccRCC patients. Pathway analyses were performed for genes coexpressed with GNB1 using the KOBAS platform to profile the function of GNB1 and IHC validation. In the exploration stage, data from TCGA ccRCC dataset were reproduced, which contained 537 patients with ccRCC and found that downregulation of GNB1 was significantly associated with worse prognosis. IHC staining from the Human Protein Atlas showed significantly downregulation of GNB1 in ccRCC tissue compared with normal kidney. Pathway analysis showed significantly altered vascular endothelial growth factor (VEGF) signaling pathways among which expressions of 3 genes (WASF2, NRP1, and HIP1) were significantly associated with GNB1 expression, respectively. In the validation stage, included were 80 ccRCC samples and GNB1 expression was scored using IHC positivity. GNB1 expression was negatively associated with tumor stage, lymph node invasion, metastasis, older age, and increased tumor grade. Female gender and receiving neoadjuvant therapy were also associated with decreased GNB1 expression. The expressions of WASF2, NRP1 and HIP1 were also studied and found that they were significantly associated with GNB1. GNB1 was downregulated in ccRCC. Decreased GNB1 expression was associated with worsened disease characteristics and prognosis. GNB1 was related with VEGF signaling in ccRCC, implying a therapeutic potential of this factor.

  5. MDM2 is an important prognostic and predictive factor for platin-pemetrexed therapy in malignant pleural mesotheliomas and deregulation of P14/ARF (encoded by CDKN2A) seems to contribute to an MDM2-driven inactivation of P53.

    PubMed

    Walter, R F H; Mairinger, F D; Ting, S; Vollbrecht, C; Mairinger, T; Theegarten, D; Christoph, D C; Schmid, K W; Wohlschlaeger, J

    2015-03-03

    Malignant pleural mesothelioma (MPM) is a highly aggressive tumour that is first-line treated with a combination of cisplatin and pemetrexed. Until now, predictive and prognostic biomarkers are lacking, making it a non-tailored therapy regimen with unknown outcome. P53 is frequently inactivated in MPM, but mutations are extremely rare. MDM2 and P14/ARF are upstream regulators of P53 that may contribute to P53 inactivation. A total of 72 MPM patients were investigated. MDM2 immunoexpression was assessed in 65 patients. MDM2 and P14/ARF mRNA expression was analysed in 48 patients of the overall collective. The expression results were correlated to overall survival (OS) and progression-free survival (PFS). OS and PFS correlated highly significantly with MDM2 mRNA and protein expression, showing a dismal prognosis for patients with elevated MDM2 expression (for OS: Score (logrank) test: P⩽0.002, and for PFS: Score (logrank) test; P<0.007). MDM2 was identified as robust prognostic and predictive biomarker for MPM on the mRNA and protein level. P14/ARF mRNA expression reached no statistical significance, but Kaplan-Meier curves distinguished patients with low P14/ARF expression and hence shorter survival from patients with higher expression and prolonged survival. MDM2 is a prognostic and predictive marker for a platin-pemetrexed therapy of patients with MPMs. Downregulation of P14/ARF expression seems to contribute to MDM2-overexpression-mediated P53 inactivation in MPM patients.

  6. Fingerprints of Both Watson-Crick and Hoogsteen Isomers of the Isolated (Cytosine-Guanine)H+ Pair.

    PubMed

    Cruz-Ortiz, Andrés F; Rossa, Maximiliano; Berthias, Francis; Berdakin, Matías; Maitre, Philippe; Pino, Gustavo A

    2017-11-16

     Gas phase protonated guanine-cytosine (CGH + ) pair was generated using an electrospray ionization source from solutions at two different pH (5.8 and 3.2). Consistent evidence from MS/MS fragmentation patterns and differential ion mobility spectra (DIMS) point toward the presence of two isomers of the CGH + pair, whose relative populations depend strongly on the pH of the solution. Gas phase infrared multiphoton dissociation (IRMPD) spectroscopy in the 900-1900 cm -1 spectral range further confirms that the Watson-Crick isomer is preferentially produced (91%) at pH = 5.8, while the Hoogsteen isomer predominates (66%) at pH = 3.2). These fingerprint signatures are expected to be useful for the development of new analytical methodologies and to trigger isomer selective photochemical studies of protonated DNA base pairs.

  7. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..Smore » binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.« less

  8. Molecular Dynamics Simulation of Telomere and TRF1

    NASA Astrophysics Data System (ADS)

    Kaburagi, Masaaki; Fukuda, Masaki; Yamada, Hironao; Miyakawa, Takeshi; Morikawa, Ryota; Takasu, Masako; Kato, Takamitsu A.; Uesaka, Mitsuru

    Telomeres play a central role in determining longevity of a cell. Our study focuses on the interaction between telomeric guanines and TRF1 as a means to observe the telomeric based mechanism of the genome protection. In this research, we performed molecular dynamics simulations of a telomeric DNA and TRF1. Our results show a stable structure with a high affinity for the specific protein. Additionally, we calculated the distance between guanines and the protein in their complex state. From this comparison, we found the calculated values of distance to be very similar, and the angle of guanines in their complex states was larger than that in their single state.

  9. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.

    PubMed

    Zhang, Yanxiang; Paschold, Anja; Marcon, Caroline; Liu, Sanzhen; Tai, Huanhuan; Nestler, Josefine; Yeh, Cheng-Ting; Opitz, Nina; Lanz, Christa; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways.

    PubMed

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat

    2015-06-05

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Age-related guanine nucleotide exchange factor, mouse Zizimin2, induces filopodia in bone marrow-derived dendritic cells

    PubMed Central

    2012-01-01

    Background We recently isolated and identified Zizimin2 as a functional factor that is highly expressed in murine splenic germinal center B cells after immunization with T-cell-dependent antigen. Zizimin2 was revealed to be a new family member of Dock (dedicator of cytokinesis), Dock11, which is the guanine nucleotide exchange factor for Cdc42, a low-molecular-weight GTPase. However, the molecular function of Zizimin2 in acquired immunity has not been elucidated. Results In this study, we show that the protein expression of Zizimin2, which is also restricted to lymphoid tissues and lymphocytes, is reduced in aged mice. Over-expression of full-length Zizimin2 induced filopodial formation in 293T cells, whereas expression of CZH2 domain inhibited it. Stimulation of Fcγ receptor and Toll-like receptor 4 triggered Zizimin2 up-regulation and Cdc42 activation in bone marrow-derived dendritic cells. Conclusions These data suggest that Zizimin2 is an immune-related and age-regulated guanine nucleotide exchange factor, which facilitates filopodial formation through activation of Cdc42, which results in activation of cell migration. PMID:22494997

  12. Binding effects of Mn²⁺ and Zn²⁺ ions on the vibrational properties of guanine-cytosine base pairs in the Watson-Crick and Hoogsteen configurations.

    PubMed

    Morari, Cristian; Bogdan, Diana; Muntean, Cristina M

    2012-11-01

    The binding effects of Mn²⁺ and Zn²⁺ ions on the vibrational properties of guanine-cytosine base pairs have been performed using density functional theory investigations. The calculations were carried out on Watson-Crick and Hoogsteen configurations of the base pairs. We have found, that in Watson-Crick configuration, the metal is coordinated to N7 atom of guanine while, in the case of Hoogsteen configuration, the coordination is at N3 atom of guanine. We have pointed out the vibrational bands that can be used to detect the presence of metallic ions in the Watson-Crick and Hoogsteen structures. Our results show that the vibrational amplitudes of metallic atoms are strong for wavenumbers lower than 600 cm⁻¹. Also, we predict that the distinction between Watson-Crick and Hoogsteen configurations can be seen around 85, 170 and 310 cm⁻¹.

  13. Removal of sulfur compounds from diesel using ArF laser and oxygen.

    PubMed

    Gondal, M A; Siddiqui, M N; Al-Hooshani, K

    2013-01-01

    A laser-based technique for deep desulfurization of diesel and other hydrocarbon fuels by removal of dimethyldibenzothiophene (DMDBT), a persistent sulfur contaminant in fuel oils has been developed. We report a selective laser excitation of DMDBT in diesel and model compounds such as n-hexane in a reaction chamber under oxygen environment where oxidative reactions can take place. ArF laser emitting at 193 nm was employed for excitation of oxygen and DMDBT, while for process optimization, the laser energy was varied from 50 to 200 mJ/cm(2). The laser-irradiated DMDBT solution under continuous oxygen flow was analyzed by UV absorption spectrometer to determine the photochemical oxidative degradation of DMDBT. In just 5 min of laser irradiation time, almost 95% DMDBT was depleted in a diesel containing 200 ppm of DMDBT. This article provides a new method for the removal of sulfur compounds from diesel by laser based photochemical process.

  14. Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)

    NASA Astrophysics Data System (ADS)

    Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki

    2007-03-01

    Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.

  15. CD8 T cell response and evolutionary pressure to HIV-1 cryptic epitopes derived from antisense transcription

    PubMed Central

    Carlson, Jonathan; Yan, Jiyu; Akinsiku, Olusimidele T.; Schaefer, Malinda; Sabbaj, Steffanie; Bet, Anne; Levy, David N.; Heath, Sonya; Tang, Jianming; Kaslow, Richard A.; Walker, Bruce D.; Ndung’u, Thumbi; Goulder, Philip J.; Heckerman, David; Hunter, Eric; Goepfert, Paul A.

    2010-01-01

    Retroviruses pack multiple genes into relatively small genomes by encoding several genes in the same genomic region with overlapping reading frames. Both sense and antisense HIV-1 transcripts contain open reading frames for known functional proteins as well as numerous alternative reading frames (ARFs). At least some ARFs have the potential to encode proteins of unknown function, and their antigenic properties can be considered as cryptic epitopes (CEs). To examine the extent of active immune response to virally encoded CEs, we analyzed human leukocyte antigen class I–associated polymorphisms in HIV-1 gag, pol, and nef genes from a large cohort of South Africans with chronic infection. In all, 391 CEs and 168 conventional epitopes were predicted, with the majority (307; 79%) of CEs derived from antisense transcripts. In further evaluation of CD8 T cell responses to a subset of the predicted CEs in patients with primary or chronic infection, both sense- and antisense-encoded CEs were immunogenic at both stages of infection. In addition, CEs often mutated during the first year of infection, which was consistent with immune selection for escape variants. These findings indicate that the HIV-1 genome might encode and deploy a large potential repertoire of unconventional epitopes to enhance vaccine-induced antiviral immunity. PMID:20065064

  16. Areal-reduction factors for the precipitation of the 1-day design storm in Texas

    USGS Publications Warehouse

    Asquith, William H.

    1999-01-01

    The reduction of the precipitation depth from a design storm for a point to an effective (mean) depth over a watershed often is important for cost-effective design of hydraulic structures by reducing the volume of precipitation. A design storm for a point is the depth of precipitation that has a specified duration and frequency (recurrence interval). The effective depth can be calculated by multiplying the design-storm depth by an areal-reduction factor (ARF). ARF ranges from 0 to 1, varies with the recurrence interval of the design storm, and is a function of watershed characteristics such as watershed size and shape, geographic location, and time of year that the design storm occurs. This report documents an investigation of ARF by the U.S. Geological Survey, in cooperation with the Texas Department of Transportation, for the 1-day design storm for Austin, Dallas, and Houston, Texas. The ?annual maxima-centered? approach used in this report specifically considers the distribution of concurrent precipitation surrounding an annual precipitation maxima. Unlike previously established approaches, the annual maxima-centered approach does not require the spatial averaging of precipitation nor explicit definition of a representative area of a particular storm in the analysis. Graphs of the relation between ARF and circular watershed area (to about 7,000 square miles) are provided, and a technique to calculate ARF for noncircular watersheds is discussed.

  17. Novel topcoat materials with improved receding angles and dissolution properties for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Yun, Sang Geun; Lee, Jin Young; Yang, Young Soo; Shin, Seung Wook; Lee, Sung Jae; Kwon, Hyo Young; Cho, Youn Jin; Choi, Seung Jib; Choi, Sang Jun; Kim, Jong Seob; Chang, Tuwon

    2010-04-01

    A topcoat material plays a significant role in achieving technology nodes below 45 nm via ArF immersion lithography. Switching the exposure medium between the lens and the photoresist (PR) film from gas (air, n=1) to liquid (H2O, n=1.44) may lead to leaching of the polymer, the photoacid generator (PAG), or the solvent. These substances can contaminate the lens or cause bubbles, which can lead to defects during the patterning. Previously reported topcoat materials mainly use hydrophobic fluoro-compounds and carboxylic acids to provide high dissolution rates (DR) to basic developers as well as high receding contact angles (RCA). Recently, the demand for a new top-coat material has risen since current materials cause water-mark defects and decreases in scan speeds, due to insufficient RCA's. However, RCA and DR are in a trade-off relationship as an increase in RCA generally results in a lower DR. To overcome this, a novel polymer with high-fluorine content was synthesized to produce a topcoat material with improved DR (120 nm/s in 2.38 wt% TMAH) and RCA (>70°). In addition, a strategy to control the pattern profile according to needs of customers was found.

  18. The transcription factor EGR1 localizes to the nucleolus and is linked to suppression of ribosomal precursor synthesis.

    PubMed

    Ponti, Donatella; Bellenchi, Gian Carlo; Puca, Rosa; Bastianelli, Daniela; Maroder, Marella; Ragona, Giuseppe; Roussel, Pascal; Thiry, Marc; Mercola, Dan; Calogero, Antonella

    2014-01-01

    EGR1 is an immediate early gene with a wide range of activities as transcription factor, spanning from regulation of cell growth to differentiation. Numerous studies show that EGR1 either promotes the proliferation of stimulated cells or suppresses the tumorigenic growth of transformed cells. Upon interaction with ARF, EGR1 is sumoylated and acquires the ability to bind to specific targets such as PTEN and in turn to regulate cell growth. ARF is mainly localized to the periphery of nucleolus where is able to negatively regulate ribosome biogenesis. Since EGR1 colocalizes with ARF under IGF-1 stimulation we asked the question of whether EGR1 also relocate to the nucleolus to interact with ARF. Here we show that EGR1 colocalizes with nucleolar markers such as fibrillarin and B23 in the presence of ARF. Western analysis of nucleolar extracts from HeLa cells was used to confirm the presence of EGR1 in the nucleolus mainly as the 100 kDa sumoylated form. We also show that the level of the ribosomal RNA precursor 47S is inversely correlated to the level of EGR1 transcripts. The EGR1 iseffective to regulate the synthesis of the 47S rRNA precursor. Then we demonstrated that EGR1 binds to the Upstream Binding Factor (UBF) leading us to hypothesize that the regulating activity of EGR1 is mediated by its interaction within the transcriptional complex of RNA polymerase I. These results confirm the presence of EGR1 in the nucleolus and point to a role for EGR1 in the control of nucleolar metabolism.

  19. TGF-β regulates LARG and GEF-H1 during EMT to affect stiffening response to force and cell invasion

    PubMed Central

    Osborne, Lukas D.; Li, George Z.; How, Tam; O'Brien, E. Tim; Blobe, Gerard C.; Superfine, Richard; Mythreye, Karthikeyan

    2014-01-01

    Recent studies implicate a role for cell mechanics in cancer progression. The epithelial-to-mesenchymal transition (EMT) regulates the detachment of cancer cells from the epithelium and facilitates their invasion into stromal tissue. Although classic EMT hallmarks include loss of cell–cell adhesions, morphology changes, and increased invasion capacity, little is known about the associated mechanical changes. Previously, force application on integrins has been shown to initiate cytoskeletal rearrangements that result in increased cell stiffness and a stiffening response. Here we demonstrate that transforming growth factor β (TGF-β)–induced EMT results in decreased stiffness and loss of the normal stiffening response to force applied on integrins. We find that suppression of the RhoA guanine nucleotide exchange factors (GEFs) LARG and GEF-H1 through TGF-β/ALK5–enhanced proteasomal degradation mediates these changes in cell mechanics and affects EMT-associated invasion. Taken together, our results reveal a functional connection between attenuated stiffness and stiffening response and the increased invasion capacity acquired after TGF-β–induced EMT. PMID:25143398

  20. Modulation of aerosol radiative forcing due to mixing state in clear and cloudy-sky: A case study from Delhi National Capital Region, India

    NASA Astrophysics Data System (ADS)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul K.; Singh, Sachchidanand; Tiwari, Suresh; Agarwal, Poornima

    2016-04-01

    .4, 2.2±1.1, -1.4±1.4, -0.15±0.13, while, surface ARF is -16.4±3.1, -7.6±1.7, -31.5±4.7, -17.1±8.4, respectively for the MAMJ, JAS, ON and DJF seasons. Post-monsoon and winter season shows negative values of TOA ARF, hence suggest 'cooling'. The associated heating rate profiles show higher values for 'WS-BC+Dust+WINS' case as compared to other cases, with relatively large values during the winter and post-monsoon seasons, while lower value was observed for 'BC-WINS+WS+Dust'. We examined the modulation of clear sky ARF by 'water-cloud' and 'ice-cloud' separately. The seasonal mean ARF for both water and ice clouds show nearly similar characteristics as observed for clear-sky case, with relatively large ARF at TOA and surface in water cloud case as compared to ice cloud during all the seasons. As a result, the associated heating rate is also relatively higher in water cloud case as compared to ice cloud. Such large modulation of ARF due to mixing state calls for a coordinated effort to create a mixing state database for this region to reduce the uncertainty in climate forcing.

  1. Dynamics of linker residues modulate the nucleic acid binding properties of the HIV-1 nucleocapsid protein zinc fingers.

    PubMed

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity.

  2. Charge splitters and charge transport junctions based on guanine quadruplexes

    NASA Astrophysics Data System (ADS)

    Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.

    2018-04-01

    Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.

  3. Role of the Guanine Nucleotide Exchange Factor Rom2 in Cell Wall Integrity Maintenance of Aspergillus fumigatus

    PubMed Central

    Samantaray, Sweta; Neubauer, Michael; Helmschrott, Christoph

    2013-01-01

    Aspergillus fumigatus is a mold and the causal agent of invasive aspergillosis, a systemic disease with high lethality. Recently, we identified and functionally characterized three stress sensors implicated in the cell wall integrity (CWI) signaling of this pathogen, namely, Wsc1, Wsc3, and MidA. Here, we functionally characterize Rom2, a guanine nucleotide exchange factor with essential function for the cell wall integrity of A. fumigatus. A conditional rom2 mutant has severe growth defects under repressive conditions and incorporates all phenotypes of the three cell wall integrity sensor mutants, e.g., the echinocandin sensitivity of the Δwsc1 mutant and the Congo red, calcofluor white, and heat sensitivity of the ΔmidA mutant. Rom2 interacts with Rho1 and shows a similar intracellular distribution focused at the hyphal tips. Our results place Rom2 between the cell surface stress sensors Wsc1, Wsc3, MidA, and Rho1 and their downstream effector mitogen-activated protein (MAP) kinase module Bck1-Mkk2-MpkA. PMID:23264643

  4. EHB1 and AGD12, two calcium-dependent proteins affect gravitropism antagonistically in Arabidopsis thaliana.

    PubMed

    Dümmer, Michaela; Michalski, Christian; Essen, Lars-Oliver; Rath, Magnus; Galland, Paul; Forreiter, Christoph

    2016-11-01

    The ADP-RIBOSYLATION FACTOR GTPase-ACTIVATING PROTEIN (AGD) 12, a member of the ARF-GAP protein family, affects gravitropism in Arabidopsis thaliana. A loss-of-function mutant lacking AGD12 displayed diminished gravitropism in roots and hypocotyls indicating that both organs are affected by this regulator. AGD12 is structurally related to ENHANCED BENDING (EHB) 1, previously described as a negative effector of gravitropism. In contrast to agd12 mutants, ehb1 loss-of function seedlings displayed enhanced gravitropic bending. While EHB1 and AGD12 both possess a C-terminal C2/CaLB-domain, EHB1 lacks the N-terminal ARF-GAP domain present in AGD12. Subcellular localization analysis using Brefeldin A indicated that both proteins are elements of the trans Golgi network. Physiological analyses provided evidence that gravitropic signaling might operate via an antagonistic interaction of ARF-GAP (AGD12) and EHB1 in their Ca 2+ -activated states. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Probing the structure of RecA-DNA filaments. Advantages of a fluorescent guanine analog.

    PubMed

    Singleton, Scott F; Roca, Alberto I; Lee, Andrew M; Xiao, Jie

    2007-04-23

    The RecA protein of Escherichia coli plays a crucial roles in DNA recombination and repair, as well as various aspects of bacterial pathogenicity. The formation of a RecA-ATP-ssDNA complex initiates all RecA activities and yet a complete structural and mechanistic description of this filament has remained elusive. An analysis of RecA-DNA interactions was performed using fluorescently labeled oligonucleotides. A direct comparison was made between fluorescein and several fluorescent nucleosides. The fluorescent guanine analog 6-methylisoxanthopterin (6MI) demonstrated significant advantages over the other fluorophores and represents an important new tool for characterizing RecA-DNA interactions.

  6. Free terminal amines in DNA-binding peptides alter the product distribution from guanine radicals produced by single electron oxidation.

    PubMed

    Konigsfeld, Katie M; Lee, Melissa; Urata, Sarah M; Aguilera, Joe A; Milligan, Jamie R

    2012-03-01

    Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.

  7. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome

    PubMed Central

    Torres, Rosa J; Puig, Juan G

    2007-01-01

    Deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity is an inborn error of purine metabolism associated with uric acid overproduction and a continuum spectrum of neurological manifestations depending on the degree of the enzymatic deficiency. The prevalence is estimated at 1/380,000 live births in Canada, and 1/235,000 live births in Spain. Uric acid overproduction is present inall HPRT-deficient patients and is associated with lithiasis and gout. Neurological manifestations include severe action dystonia, choreoathetosis, ballismus, cognitive and attention deficit, and self-injurious behaviour. The most severe forms are known as Lesch-Nyhan syndrome (patients are normal at birth and diagnosis can be accomplished when psychomotor delay becomes apparent). Partial HPRT-deficient patients present these symptoms with a different intensity, and in the least severe forms symptoms may be unapparent. Megaloblastic anaemia is also associated with the disease. Inheritance of HPRT deficiency is X-linked recessive, thus males are generally affected and heterozygous female are carriers (usually asymptomatic). Human HPRT is encoded by a single structural gene on the long arm of the X chromosome at Xq26. To date, more than 300 disease-associated mutations in the HPRT1 gene have been identified. The diagnosis is based on clinical and biochemical findings (hyperuricemia and hyperuricosuria associated with psychomotor delay), and enzymatic (HPRT activity determination in haemolysate, intact erythrocytes or fibroblasts) and molecular tests. Molecular diagnosis allows faster and more accurate carrier and prenatal diagnosis. Prenatal diagnosis can be performed with amniotic cells obtained by amniocentesis at about 15–18 weeks' gestation, or chorionic villus cells obtained at about 10–12 weeks' gestation. Uric acid overproduction can be managed by allopurinol treatment. Doses must be carefully adjusted to avoid xanthine lithiasis. The lack of precise

  8. Development of a novel biosensing system based on the structural change of a polymerized guanine-quadruplex DNA nanostructure.

    PubMed

    Morita, Yo; Yoshida, Wataru; Savory, Nasa; Han, Sung Woong; Tera, Masayuki; Nagasawa, Kazuo; Nakamura, Chikashi; Sode, Koji; Ikebukuro, Kazunori

    2011-08-15

    By inserting an adenosine aptamer into an aptamer that forms a G-quadruplex, we developed an adaptor molecule, named the Gq-switch, which links an electrode with flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) that is capable of transferring electron to a electrode directly. First, we selected an FADGDH-binding aptamer and identified that its sequence is composed of two blocks of consecutive six guanine bases and it forms a polymerized G-quadruplex structure. Then, we inserted a sequence of an adenosine aptamer between the two blocks of consecutive guanine bases, and we found it also bound to adenosine. Then we named it as Gq-switch. In the absence of adenosine, the Gq-switch-FADGDH complex forms a 30-nm high bulb-shaped structure that changes in the presence of adenosine to give an 8-nm high wire-shaped structure. This structural change brings the FADGDH sufficiently close to the electrode for electron transfer to occur, and the adenosine can be detected from the current produced by the FADGDH. Adenosine was successfully detected with a concentration dependency using the Gq-switch-FADGDH complex immobilized Au electrode by measuring response current to the addition of glucose. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the {alpha} subunit of G{sub i} and other G proteins in solution. However, the occurrence of the phosphorylation of G{sub 1} within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which themore » {alpha} subunits of G{sub i} undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with ({gamma}{sup 32}P)ATP and ({sup 32}P)H{sub 3}PO{sub 4}, respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G{sub i{alpha}}-despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G{sub z{alpha}}, or antibodies for both G{sub z{alpha}} and G{sub i{alpha}}, precipitated a 40-kDa phosphoprotein.« less

  10. Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines.

    PubMed

    Melnikova, Vladislava O; Bolshakov, Svetlana V; Walker, Christopher; Ananthaswamy, Honnavara N

    2004-03-25

    We have conducted an analysis of genetic alterations in spontaneous murine melanoma cell line B16F0 and its two metastatic clones, B16F1 and B16F10 and the carcinogen-induced murine melanoma cell lines CM519, CM3205, and K1735. We found that unlike human melanomas, the murine melanoma cell lines did not have activating mutations in the Braf oncogene at exon 11 or 15. However, there were distinct patterns of alterations in the ras, Ink4a/Arf, and p53 genes in the two melanoma groups. In the spontaneous B16 melanoma cell lines, expression of p16Ink4a and p19Arf tumor suppressor proteins was lost as a consequence of a large deletion spanning Ink4a/Arf exons 1alpha, 1beta, and 2. In contrast, the carcinogen-induced melanoma cell lines expressed p16Ink4a but had inactivating mutations in either p19Arf (K1735) or p53 (CM519 and CM3205). Inactivation of p19Arf or p53 in carcinogen-induced melanomas was accompanied by constitutive activation of mitogen-activated protein kinases (MAPKs) and/or mutation-associated activation of N-ras. These results indicate that genetic alterations in p16Ink4a/p19Arf, p53 and ras-MAPK pathways can cooperate in the development of murine melanoma.

  11. Proto-oncogene FBI-1 represses transcription of p21CIP1 by inhibition of transcription activation by p53 and Sp1.

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Yun, Chae-Ok; Kim, Pyung-Hwan; Kim, Sung-Eun; Choi, Kang-Yell; Kim, Se Hoon; Hur, Man-Wook

    2009-05-08

    Aberrant transcriptional repression through chromatin remodeling and histone deacetylation has been postulated as the driving force for tumorigenesis. FBI-1 (formerly called Pokemon) is a member of the POK family of transcriptional repressors. Recently, FBI-1 was characterized as a critical oncogenic factor that specifically represses transcription of the tumor suppressor gene ARF, potentially leading indirectly to p53 inactivation. Our investigations on transcriptional repression of the p53 pathway revealed that FBI-1 represses transcription of ARF, Hdm2 (human analogue of mouse double minute oncogene), and p21CIP1 (hereafter indicated as p21) but not of p53. FBI-1 showed a more potent repressive effect on p21 than on p53. Our data suggested that FBI-1 is a master controller of the ARF-Hdm2-p53-p21 pathway, ultimately impinging on cell cycle arrest factor p21, by inhibiting upstream regulators at the transcriptional and protein levels. FBI-1 acted as a competitive transcriptional repressor of p53 and Sp1 and was shown to bind the proximal Sp1-3 GC-box and the distal p53-responsive elements of p21. Repression involved direct binding competition of FBI-1 with Sp1 and p53. FBI-1 also interacted with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylating Ac-H3 and Ac-H4 histones at the promoter. FBI-1 caused cellular transformation, promoted cell cycle proliferation, and significantly increased the number of cells in S phase. FBI-1 is aberrantly overexpressed in many human solid tumors, particularly in adenocarcinomas and squamous carcinomas. The role of FBI-1 as a master controller of the p53 pathway therefore makes it an attractive therapeutic target.

  12. Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution

    PubMed Central

    Merkulova, Maria; Hurtado-Lorenzo, Andrés; Hosokawa, Hiroyuki; Zhuang, Zhenjie; Brown, Dennis; Ausiello, Dennis A.

    2011-01-01

    Previously, we demonstrated that the vacuolar-type H+-ATPase (V-ATPase) a2-subunit functions as an endosomal pH sensor that interacts with the ADP-ribosylation factor (Arf) guanine nucleotide exchange factor, ARNO. In the present study, we showed that ARNO directly interacts not only with the a2-subunit but with all a-isoforms (a1–a4) of the V-ATPase, indicating a widespread regulatory interaction between V-ATPase and Arf GTPases. We then extended our search for other ARNO effectors that may modulate V-ATPase-dependent vesicular trafficking events and actin cytoskeleton remodeling. Pull-down experiments using cytosol of mouse proximal tubule cells (MTCs) showed that ARNO interacts with aldolase, but not with other enzymes of the glycolytic pathway. Direct interaction of aldolase with the pleckstrin homology domain of ARNO was revealed by pull-down assays using recombinant proteins, and surface plasmon resonance revealed their high avidity interaction with a dissociation constant: KD = 2.84 × 10−10 M. MTC cell fractionation revealed that aldolase is also associated with membranes of early endosomes. Functionally, aldolase knockdown in HeLa cells produced striking morphological changes accompanied by long filamentous cell protrusions and acidic vesicle redistribution. However, the 50% knockdown we achieved did not modulate the acidification capacity of endosomal/lysosomal compartments. Finally, a combination of small interfering RNA knockdown and overexpression revealed that the expression of aldolase is inversely correlated with gelsolin levels in HeLa cells. In summary, we have shown that aldolase forms a complex with ARNO/Arf6 and the V-ATPase and that it may contribute to remodeling of the actin cytoskeleton and/or the trafficking and redistribution of V-ATPase-dependent acidic compartments via a combination of protein-protein interaction and gene expression mechanisms. PMID:21307348

  13. Free energy profiles for two ubiquitous damaging agents: methylation and hydroxylation of guanine in B-DNA.

    PubMed

    Grüber, R; Aranda, J; Bellili, A; Tuñón, I; Dumont, E

    2017-06-07

    DNA methylation and hydroxylation are two ubiquitous reactions in DNA damage induction, yet insights are scarce concerning the free energy of activation within B-DNA. We resort to multiscale simulations to investigate the attack of a hydroxyl radical and of the primary diazonium onto a guanine embedded in a solvated dodecamer. Reaction free energy profiles characterize two strongly exergonic processes, yet allow unprecedented quantification of the barrier towards this damage reaction, not higher than 6 kcal mol -1 and sometimes inexistent, and of the exergonicities. In the case of the [G(C8)-OH]˙ intermediate, we challenge the functional dependence of such simulations: recently-proposed functionals, such as M06-2X and LC-BLYP, agree on a ∼4 kcal mol -1 barrier, whereas the hybrid GGA B3LYP functional predicts a barrier-less pathway. In the long term, multiscale approaches can help build up a unified panorama of DNA lesion induction. These results stress the importance of DFT/MM-MD simulations involving new functionals towards the sound modelling of biomolecule damage even in the ground state.

  14. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil

    PubMed Central

    2016-01-01

    Using picosecond excitation at 1064 nm, surface-enhanced hyper-Raman scattering (SEHRS) spectra of the nucleobases adenine, guanine, cytosine, thymine, and uracil with two different types of silver nanoparticles were obtained. Comparing the SEHRS spectra with SERS data from the identical samples excited at 532 nm and with known infrared spectra, the major bands in the spectra are assigned. Due to the different selection rules for the one- and two-photon excited Raman scattering, we observe strong variation in relative signal strengths of many molecular vibrations obtained in SEHRS and SERS spectra. The two-photon excited spectra of the nucleobases are found to be very sensitive with respect to molecule–nanoparticle interactions. Using both the SEHRS and SERS data, a comprehensive vibrational characterization of the interaction of nucleobases with silver nanostructures can be achieved. PMID:28077982

  15. Raman Shifting a Tunable ArF Excimer Laser to Wavelengths of 190 to 240 nm With a Forced Convection Raman Cell

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Tunable radiation, at ultraviolet wavelengths, is produced by Raman shifting a modified 285-mJ ArF excimer laser. Multiple Stokes outputs are observed in H2, CH4, D2, N2, SF6, and CF4 (20, 22, 53, 21, 2.1, and 0.35 percent, respectively). Numbers in parentheses are the first Stokes energy conversion efficiencies. We can access 70 percent of the frequency range 42000-52000 cm (exp -1) (190-240 nm) with Stokes energies that vary from 0.2 microJoule to 58 mJ inside the Raman cell. By using 110 mJ of pump energy and D 2 , the tunable first Stokes energy varies over the 29-58 mJ range as the wavelength is tuned over the 204-206 nm range. Dependence on input energy, gas pressure, He mixture fraction, and circulation of the gas in the forced convection Raman cell is discussed; Stokes conversion is also discussed for laser repetition rates from 1 to 100 Hz. An empirical equation is given to determine whether forced convection can improve outputs for a given repetition rate.

  16. Proto-oncogene FBI-1 Represses Transcription of p21CIP1 by Inhibition of Transcription Activation by p53 and Sp1*S⃞

    PubMed Central

    Choi, Won-Il; Jeon, Bu-Nam; Yun, Chae-Ok; Kim, Pyung-Hwan; Kim, Sung-Eun; Choi, Kang-Yell; Kim, Se Hoon; Hur, Man-Wook

    2009-01-01

    Aberrant transcriptional repression through chromatin remodeling and histone deacetylation has been postulated as the driving force for tumorigenesis. FBI-1 (formerly called Pokemon) is a member of the POK family of transcriptional repressors. Recently, FBI-1 was characterized as a critical oncogenic factor that specifically represses transcription of the tumor suppressor gene ARF, potentially leading indirectly to p53 inactivation. Our investigations on transcriptional repression of the p53 pathway revealed that FBI-1 represses transcription of ARF, Hdm2 (human analogue of mouse double minute oncogene), and p21CIP1 (hereafter indicated as p21) but not of p53. FBI-1 showed a more potent repressive effect on p21 than on p53. Our data suggested that FBI-1 is a master controller of the ARF-Hdm2-p53-p21 pathway, ultimately impinging on cell cycle arrest factor p21, by inhibiting upstream regulators at the transcriptional and protein levels. FBI-1 acted as a competitive transcriptional repressor of p53 and Sp1 and was shown to bind the proximal Sp1–3 GC-box and the distal p53-responsive elements of p21. Repression involved direct binding competition of FBI-1 with Sp1 and p53. FBI-1 also interacted with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylating Ac-H3 and Ac-H4 histones at the promoter. FBI-1 caused cellular transformation, promoted cell cycle proliferation, and significantly increased the number of cells in S phase. FBI-1 is aberrantly overexpressed in many human solid tumors, particularly in adenocarcinomas and squamous carcinomas. The role of FBI-1 as a master controller of the p53 pathway therefore makes it an attractive therapeutic target. PMID:19244234

  17. Role of catechins on ET-1 induced stimulation of PLD and NADPH oxidase activities in pulmonary smooth muscle cells: Determination of the probable mechanism by molecular docking studies.

    PubMed

    Chakraborti, Sajal; Sarkar, Jaganmay; Bhuyan, Rajabrata; Chakraborti, Tapati

    2017-12-05

    Treatment of human pulmonary artery smooth muscle cells with ET-1 stimulated PLD and NADPH oxidase activities, which were inhibited upon pretreatment with bosentan (ET-1 receptor antagonist), FIPI (PLD inhibitor), apocynin (NADPH oxidase inhibitor) and EGCG & ECG (catechins having galloyl group), but not EGC & EC (catechins devoid of galloyl group). Herein, we determined the probable mechanism by which the galloyl group containing catechins inhibit ET-1 induced stimulation of PLD activity by molecular docking analyses based on our biochemical studies. ET-1 induced stimulation of PLD activity was inhibited by SecinH3 (inhibitor of cytohesin). Arf-6 and cytohesin-1 were associated in the cell membrane, which was not inhibited by the catechins during ET-1 treatment to the cells. However, EGCG and ECG inhibited binding of GTPγS with Arf-6 even in presence of cytohesin-1. The molecular docking analyses revealed that the galloyl group containing catechins (EGCG/ECG) with cytohesin1-Arf6GDP, but not the non-galloyl-containing catechins (EGC and EC), prevents GDP/GTP exchange in Arf-6 which seems to be an important mechanism for inhibition of ET-1 induced activation of PLD and subsequently increase in NADPH oxidase activities.

  18. AUXIN RESPONSE FACTOR17 Is Essential for Pollen Wall Pattern Formation in Arabidopsis1[C][W][OA

    PubMed Central

    Yang, Jun; Tian, Lei; Sun, Ming-Xi; Huang, Xue-Yong; Zhu, Jun; Guan, Yue-Feng; Jia, Qi-Shi; Yang, Zhong-Nan

    2013-01-01

    In angiosperms, pollen wall pattern formation is determined by primexine deposition on the microspores. Here, we show that AUXIN RESPONSE FACTOR17 (ARF17) is essential for primexine formation and pollen development in Arabidopsis (Arabidopsis thaliana). The arf17 mutant exhibited a male-sterile phenotype with normal vegetative growth. ARF17 was expressed in microsporocytes and microgametophytes from meiosis to the bicellular microspore stage. Transmission electron microscopy analysis showed that primexine was absent in the arf17 mutant, which leads to pollen wall-patterning defects and pollen degradation. Callose deposition was also significantly reduced in the arf17 mutant, and the expression of CALLOSE SYNTHASE5 (CalS5), the major gene for callose biosynthesis, was approximately 10% that of the wild type. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that ARF17 can directly bind to the CalS5 promoter. As indicated by the expression of DR5-driven green fluorescent protein, which is an synthetic auxin response reporter, auxin signaling appeared to be specifically impaired in arf17 anthers. Taken together, our results suggest that ARF17 is essential for pollen wall patterning in Arabidopsis by modulating primexine formation at least partially through direct regulation of CalS5 gene expression. PMID:23580594

  19. From lin-benzoguanines to lin-benzohypoxanthines as ligands for Zymomonas mobilis tRNA-guanine transglycosylase: replacement of protein-ligand hydrogen bonding by importing water clusters.

    PubMed

    Barandun, Luzi Jakob; Immekus, Florian; Kohler, Philipp C; Tonazzi, Sandro; Wagner, Björn; Wendelspiess, Severin; Ritschel, Tina; Heine, Andreas; Kansy, Manfred; Klebe, Gerhard; Diederich, François

    2012-07-23

    The foodborne illness shigellosis is caused by Shigella bacteria that secrete the highly cytotoxic Shiga toxin, which is also formed by the closely related enterohemorrhagic Escherichia coli (EHEC). It has been shown that tRNA-guanine transglycosylase (TGT) is essential for the pathogenicity of Shigella flexneri. Herein, the molecular recognition properties of a guanine binding pocket in Zymomonas mobilis TGT are investigated with a series of lin-benzohypoxanthine- and lin-benzoguanine-based inhibitors that bear substituents to occupy either the ribose-33 or the ribose-34 pocket. The three inhibitor scaffolds differ by the substituent at C(6) being H, NH(2), or NH-alkyl. These differences lead to major changes in the inhibition constants, pK(a) values, and binding modes. Compared to the lin-benzoguanines, with an exocyclic NH(2) at C(6), the lin-benzohypoxanthines without an exocyclic NH(2) group have a weaker affinity as several ionic protein-ligand hydrogen bonds are lost. X-ray cocrystal structure analysis reveals that a new water cluster is imported into the space vacated by the lacking NH(2) group and by a conformational shift of the side chain of catalytic Asp102. In the presence of an N-alkyl group at C(6) in lin-benzoguanine ligands, this water cluster is largely maintained but replacement of one of the water molecules in the cluster leads to a substantial loss in binding affinity. This study provides new insight into the role of water clusters at enzyme active sites and their challenging substitution by ligand parts, a topic of general interest in contemporary structure-based drug design. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. α2-COP is involved in early secretory traffic in Arabidopsis and is required for plant growth

    PubMed Central

    Gimeno-Ferrer, Fátima; Pastor-Cantizano, Noelia; Bernat-Silvestre, César; Selvi-Martínez, Pilar; Vera-Sirera, Francisco; Gao, Caiji; Perez-Amador, Miguel Angel; Jiang, Liwen; Aniento, Fernando

    2017-01-01

    Abstract COP (coat protein) I-coated vesicles mediate intra-Golgi transport and retrograde transport from the Golgi to the endoplasmic reticulum. These vesicles form through the action of the small GTPase ADP-ribosylation factor 1 (ARF1) and the COPI heptameric protein complex (coatomer), which consists of seven subunits (α-, β-, β′-, γ-, δ-, ε- and ζ-COP). In contrast to mammals and yeast, several isoforms for coatomer subunits, with the exception of γ and δ, have been identified in Arabidopsis. To understand the role of COPI proteins in plant biology, we have identified and characterized a loss-of-function mutant of α2-COP, an Arabidopsis α-COP isoform. The α2-cop mutant displayed defects in plant growth, including small rosettes, stems and roots and mislocalization of p24δ5, a protein of the p24 family containing a C-terminal dilysine motif involved in COPI binding. The α2-cop mutant also exhibited abnormal morphology of the Golgi apparatus. Global expression analysis of the α2-cop mutant revealed altered expression of plant cell wall-associated genes. In addition, a strong upregulation of SEC31A, which encodes a subunit of the COPII coat, was observed in the α2-cop mutant; this also occurs in a mutant of a gene upstream of COPI assembly, GNL1, which encodes an ARF-guanine nucleotide exchange factor (GEF). These findings suggest that loss of α2-COP affects the expression of secretory pathway genes. PMID:28025315

  1. Multiscale QM/MM molecular dynamics study on the first steps of guanine damage by free hydroxyl radicals in solution.

    PubMed

    Abolfath, Ramin M; Biswas, P K; Rajnarayanam, R; Brabec, Thomas; Kodym, Reinhard; Papiez, Lech

    2012-04-19

    Understanding the damage of DNA bases from hydrogen abstraction by free OH radicals is of particular importance to understanding the indirect effect of ionizing radiation. Previous studies address the problem with truncated DNA bases as ab initio quantum simulations required to study such electronic-spin-dependent processes are computationally expensive. Here, for the first time, we employ a multiscale and hybrid quantum mechanical-molecular mechanical simulation to study the interaction of OH radicals with a guanine-deoxyribose-phosphate DNA molecular unit in the presence of water, where all of the water molecules and the deoxyribose-phosphate fragment are treated with the simplistic classical molecular mechanical scheme. Our result illustrates that the presence of water strongly alters the hydrogen-abstraction reaction as the hydrogen bonding of OH radicals with water restricts the relative orientation of the OH radicals with respect to the DNA base (here, guanine). This results in an angular anisotropy in the chemical pathway and a lower efficiency in the hydrogen-abstraction mechanisms than previously anticipated for identical systems in vacuum. The method can easily be extended to single- and double-stranded DNA without any appreciable computational cost as these molecular units can be treated in the classical subsystem, as has been demonstrated here. © 2012 American Chemical Society

  2. Quadruplexes of human telomere dG{sub 3}(TTAG{sub 3}){sub 3} sequences containing guanine abasic sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skolakova, Petra; Bednarova, Klara; Vorlickova, Michaela

    Research highlights: {yields} Loss of a guanine base does not hinder the formation of G-quadruplex of human telomere sequence. {yields} Each depurination strongly destabilizes the quadruplex of dG{sub 3}(TTAG{sub 3}){sub 3} in NaCl and KCl. {yields} Conformational change of the abasic analogs of dG{sub 3}(TTAG{sub 3}){sub 3} is inhibited in KCl. {yields} The effects abasic sites may affect telomere-end structures in vivo. -- Abstract: This study was performed to evaluate how the loss of a guanine base affects the structure and stability of the three-tetrad G-quadruplex of 5'-dG{sub 3}(TTAG{sub 3}){sub 3}, the basic quadruplex-forming unit of the human telomere DNA.more » None of the 12 possible abasic sites hindered the formation of quadruplexes, but all reduced the thermodynamic stability of the parent quadruplex in both NaCl and KCl. The base loss did not change the Na{sup +}-stabilized intramolecular antiparallel architecture, based on CD spectra, but held up the conformational change induced in dG{sub 3}(TTAG{sub 3}){sub 3} in physiological concentration of KCl. The reduced stability and the inhibited conformational transitions observed here in vitro for the first time may predict that unrepaired abasic sites in G-quadruplexes could lead to changes in the chromosome's terminal protection in vivo.« less

  3. Dynamics of Linker Residues Modulate the Nucleic Acid Binding Properties of the HIV-1 Nucleocapsid Protein Zinc Fingers

    PubMed Central

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity. PMID:25029439

  4. Assessment of Cpa, Scl1 and Scl2 in clinical group A streptococcus isolates and patients from north India: an evaluation of the host pathogen interaction.

    PubMed

    Chaudhary, Priyanka; Kumar, Rajesh; Sagar, Vivek; Sarkar, Subendu; Singh, Rupneet; Ghosh, Sujata; Singh, Surjit; Chakraborti, Anuradha

    2018-01-01

    Group A streptococcus (GAS) infection remains a major concern due to multiple diseases including pharyngitis, impetigo, acute rheumatic fever (ARF) and rheumatic heart disease (RHD). It uses different adhesins and virulence factors like Cpa (collagen binding protein) and Scl (collagen-like protein) in its pathogenicity. Scl having similarities with human collagen may contribute to inducing autoimmunity in the host. Here we assessed gene expression, antibody titer of Cpa, Scl1 and Scl2 in both clinical GAS isolates (n = 45) and blood (n = 45) obtained from pharyngitis, ARF (acute rheumatic fever) and RHD respectively. Skin isolates (n = 30) were obtained from impetigo patients. The study revealed a total of 27 GAS emm types. Frequency of cpa, scl1, scl2 was high in ARF isolates. The antibody titer of these proteins was high in all isolates, and also in patients with pharyngitis and ARF. All isolates showed high binding affinity toward collagen I and IV, which further indicates a potential host pathogen interaction. Our study reflects a strong association of Cpa and Scls in early and post-GAS pathogenicity. However, the increased antibody titer of Scl1 and Scl2 during ARF may be attributed to a cogent immune response in the host. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. The persistent challenge of rheumatic fever in the Northern Mariana Islands.

    PubMed

    Seckeler, Michael D; Barton, Leslie L; Brownstein, Rachel

    2010-03-01

    Acute rheumatic fever (ARF) is a major cause of morbidity and mortality in developing nations. The objective of this study was to determine the disease burden of ARF among the indigenous and non-indigenous populations of the Northern Mariana Islands. This was a chart review of all pediatric outpatients seen from 1984 to 2006 with ICD-9 codes corresponding to rheumatic fever or any rheumatic cardiac sequelae. The study was set in the only comprehensive inpatient facility and only public pediatric clinic in the Northern Mariana Islands. One hundred fifty-eight cases of ARF were identified. Age at diagnosis ranged from 2.9 to 17.1 years (median 10.6 years). Fever and carditis were the most common presenting findings. The average annualized incidence of ARF was 85.8 per 100,000 person-years for those aged 5-14 years. Sixty-six percent of patients with ARF were of Chamorro or Carolinian ancestry, despite comprising only 39% of the total population, with a combined average annualized incidence of ARF of 167 per 100,000 person-years. This is the first documentation of the incidence of pediatric ARF in the Northern Mariana Islands, delineating the large disease burden in the indigenous and other Pacific Island ethnic groups. Impediments to diagnosis and primary and secondary prevention were identified. The data provide strong support for the need for primary and secondary prevention of ARF. Copyright 2009 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Vacuum-Ultraviolet photoionization studies of the microhydrationof DNA bases (Guanine, Cytosine, Adenine and Thymine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belau, L.; Wilson, K.R.; Leone, S.R.

    2007-01-22

    In this work, we report on a photoionization study of the microhydration of the four DNA bases. Gas-phase clusters of water with DNA bases [guanine (G), cytosine (C), adenine (A), and thymine (T)] are generated via thermal vaporization of the bases and expansion of the resultant vapor in a continuous supersonic jet expansion of water seeded in Ar. The resulting clusters are investigated by single-photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for the DNA bases and the following water (W) clusters: G, GW{sub n} (n = 1-3);more » C, CW{sub n} (n = 1-3); A, AW{sub n} (n = 1,2); and T, TW{sub n} (n = 1-3). Appearance energies (AE) are derived from the onset of these PIE curves (all energies in eV): G (8.1 {+-} 0.1), GW (8.0 {+-} 0.1), GW{sub 2} (8.0 {+-} 0.1), and GW{sub 3} (8.0); C (8.65 {+-} 0.05), CW (8.45 {+-} 0.05), CW{sub 2} (8.4 {+-} 0.1), and CW{sub 3} (8.3 {+-} 0.1); A (8.30 {+-} 0.05), AW (8.20 {+-} 0.05), and AW{sub 2} (8.1 {+-} 0.1); T (8.90 {+-} 0.05); and TW (8.75 {+-} 0.05), TW{sub 2} (8.6 {+-} 0.1), and TW{sub 3} (8.6 {+-} 0.1). The AEs of the DNA bases decrease slightly with the addition of water molecules (up to three) but do not converge to values found for photoinduced electron removal from DNA bases in solution.« less

  7. Vacuum-ultraviolet photoionization studies of the microhydration of DNA bases (guanine, cytosine, adenine, and thymine).

    PubMed

    Belau, Leonid; Wilson, Kevin R; Leone, Stephen R; Ahmed, Musahid

    2007-08-09

    In this work, we report on a photoionization study of the microhydration of the four DNA bases. Gas-phase clusters of water with DNA bases [guanine (G), cytosine (C), adenine (A), and thymine (T)] are generated via thermal vaporization of the bases and expansion of the resultant vapor in a continuous supersonic jet expansion of water seeded in Ar. The resulting clusters are investigated by single-photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for the DNA bases and the following water (W) clusters: G, GWn (n = 1-3); C, CWn (n = 1-3); A, AWn (n = 1,2); and T, TWn (n = 1-3). Appearance energies (AE) are derived from the onset of these PIE curves (all energies in eV): G (8.1 +/- 0.1), GW (8.0 +/- 0.1), GW2 (8.0 +/- 0.1), and GW3 (8.0); C (8.65 +/- 0.05), CW (8.45 +/- 0.05), CW2 (8.4 +/- 0.1), and CW3 (8.3 +/- 0.1); A (8.30 +/- 0.05), AW (8.20 +/- 0.05), and AW2 (8.1 +/- 0.1); T (8.90 +/- 0.05); and TW (8.75 +/- 0.05), TW2 (8.6 +/- 0.1), and TW3 (8.6 +/- 0.1). The AEs of the DNA bases decrease slightly with the addition of water molecules (up to three) but do not converge to values found for photoinduced electron removal from DNA bases in solution.

  8. Genome-wide siRNA screen identifies UNC50 as a regulator of Shiga toxin 2 trafficking

    PubMed Central

    Iles, Lakesla R.; Bartholomeusz, Geoffrey

    2017-01-01

    Shiga toxins 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol. Early endosome-to-Golgi transport allows the toxins to evade degradation in lysosomes. Targeting this trafficking step has therapeutic promise, but the mechanism of trafficking for the more potent toxin STx2 is unclear. To identify host factors required for early endosome-to-Golgi trafficking of STx2, we performed a viability-based genome-wide siRNA screen in HeLa cells. 564, 535, and 196 genes were found to be required for toxicity induced by STx1 only, STx2 only, and both toxins, respectively. We focused on validating endosome/Golgi-localized hits specific for STx2 and found that depletion of UNC50 blocked early endosome-to-Golgi trafficking and induced lysosomal degradation of STx2. UNC50 acted by recruiting GBF1, an ADP ribosylation factor–guanine nucleotide exchange factor (ARF-GEF), to the Golgi. These results provide new information about STx2 trafficking mechanisms and may advance efforts to generate therapeutically viable toxin-trafficking inhibitors. PMID:28883040

  9. Genome-wide siRNA screen identifies UNC50 as a regulator of Shiga toxin 2 trafficking.

    PubMed

    Selyunin, Andrey S; Iles, Lakesla R; Bartholomeusz, Geoffrey; Mukhopadhyay, Somshuvra

    2017-10-02

    Shiga toxins 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol. Early endosome-to-Golgi transport allows the toxins to evade degradation in lysosomes. Targeting this trafficking step has therapeutic promise, but the mechanism of trafficking for the more potent toxin STx2 is unclear. To identify host factors required for early endosome-to-Golgi trafficking of STx2, we performed a viability-based genome-wide siRNA screen in HeLa cells. 564, 535, and 196 genes were found to be required for toxicity induced by STx1 only, STx2 only, and both toxins, respectively. We focused on validating endosome/Golgi-localized hits specific for STx2 and found that depletion of UNC50 blocked early endosome-to-Golgi trafficking and induced lysosomal degradation of STx2. UNC50 acted by recruiting GBF1, an ADP ribosylation factor-guanine nucleotide exchange factor (ARF-GEF), to the Golgi. These results provide new information about STx2 trafficking mechanisms and may advance efforts to generate therapeutically viable toxin-trafficking inhibitors. © 2017 Selyunin et al.

  10. Intrinsic Nucleic Acid Dynamics Modulates HIV-1 Nucleocapsid Protein Binding to Its Targets

    PubMed Central

    Bazzi, Ali; Zargarian, Loussiné; Chaminade, Françoise; De Rocquigny, Hugues; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2012-01-01

    HIV-1 nucleocapsid protein (NC) is involved in the rearrangement of nucleic acids occurring in key steps of reverse transcription. The protein, through its two zinc fingers, interacts preferentially with unpaired guanines in single-stranded sequences. In mini-cTAR stem-loop, which corresponds to the top half of the cDNA copy of the transactivation response element of the HIV-1 genome, NC was found to exhibit a clear preference for the TGG sequence at the bottom of mini-cTAR stem. To further understand how this site was selected among several potential binding sites containing unpaired guanines, we probed the intrinsic dynamics of mini-cTAR using 13C relaxation measurements. Results of spin relaxation time measurements have been analyzed using the model-free formalism and completed by dispersion relaxation measurements. Our data indicate that the preferentially recognized guanine in the lower part of the stem is exempt of conformational exchange and highly mobile. In contrast, the unrecognized unpaired guanines of mini-cTAR are involved in conformational exchange, probably related to transient base-pairs. These findings support the notion that NC preferentially recognizes unpaired guanines exhibiting a high degree of mobility. The ability of NC to discriminate between close sequences through their dynamic properties contributes to understanding how NC recognizes specific sites within the HIV genome. PMID:22745685

  11. Acyclic Immucillin Phosphonates. Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazelton, Keith Z.; Ho, Meng-Chaio; Cassera, Maria B.

    We found that Plasmodium falciparum is the primary cause of deaths from malaria. It is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. We present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPsmore » are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.« less

  12. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress

    PubMed Central

    Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055

  13. HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss.

    PubMed

    Shin, C H; Robinson, J P; Sonnen, J A; Welker, A E; Yu, D X; VanBrocklin, M W; Holmen, S L

    2017-08-10

    Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is a ligand for the EGF receptor (EGFR), one of the most commonly amplified receptor tyrosine kinases (RTKs) in glioblastoma (GBM). While HBEGF has been found to be expressed in a subset of malignant gliomas, its sufficiency for glioma initiation has not been evaluated. In this study, we demonstrate that HBEGF can initiate GBM in mice in the context of Ink4a/Arf and Pten loss, and that these tumors are similar to the classical GBM subtype observed in patients. Isogenic astrocytes from these mice showed activation not only of Egfr but also the RTK Axl in response to HBEGF stimulation. Deletion of either Egfr or Axl decreased the tumorigenic properties of HBEGF-transformed cells; however, only EGFR was able to rescue the phenotype in cells lacking both RTKs indicating that Egfr is required for activation of Axl in this context. Silencing of HBEGF in vivo resulted in tumor regression and significantly increased survival, suggesting that HBEGF may be a clinically relevant target.

  14. HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss

    PubMed Central

    Shin, Clifford H.; Robinson, James P.; Sonnen, Joshua A.; Welker, Adam E.; Yu, Diana X.; VanBrocklin, Matthew W.; Holmen, Sheri L.

    2017-01-01

    Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is a ligand for the epidermal growth factor receptor (EGFR), one of the most commonly amplified receptor tyrosine kinases (RTK) in glioblastoma. While HBEGF has been found to be expressed in a subset of malignant gliomas, its sufficiency for glioma initiation has not been evaluated. In this study, we demonstrate that HBEGF can initiate glioblastoma (GBM) in mice in the context of Ink4a/Arf and Pten loss, and that these tumors are similar to the classical GBM subtype observed in patients. Isogenic astrocytes from these mice showed activation not only of Egfr but also the RTK Axl in response to HBEGF stimulation. Deletion of either Egfr or Axl decreased the tumorigenic properties of HBEGF transformed cells; however only EGFR was able to rescue the phenotype in cells lacking both RTKs indicating that Egfr is required for activation of Axl in this context. Silencing of HBEGF in vivo resulted in tumor regression and significantly increased survival suggesting that HBEGF may be a clinically relevant target. PMID:28368403

  15. Co-localization of endogenous Arf6 and its activator EFA6D in the granular convoluted tubule cells of mouse submandibular glands under normal conditions and when stimulated by isoproterenol, noradrenaline and carbachol.

    PubMed

    Tachow, Apussara; Thoungseabyoun, Wipawee; Phuapittayalert, Laorrat; Petcharat, Kanoktip; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2017-10-01

    This study proposed to investigate the localization at light and electron microscopic levels of Arf6 and its activator EFA6D in the mouse submandibular gland (SMG) under normal conditions and when stimulated by adrenergic or cholinergic agonists. SMGs of male adult mice were utilized for immunoblotting and immuno-light and -electron microscopic analyses. Isoproterenol and noradrenalin were used as adrenergics, while carbachol was used for the cholinergic stimulant. SMGs were examined at 15, 30, 60 and 120min after intraperitoneal injection of these agents. Immunoreactivities for both Arf6 and its activator EFA6D were similarly intense in the basolateral domain of GCTs, but no significant immunoreactivities were seen in the apical domain of GCT cells or any domain of acinar cells under normal conditions. In immuno-electron microscopy, the immunoreactive materials were mainly deposited on the basolateral plasma membranes and subjacent cytoplasm. Shortly after injection of isoproterenol and noradrenaline, but not carbachol, the immunoreactivities for both molecules were additionally seen on the apical plasmalemma of most, if not all, GCT cells, but not acinar cells. The present findings suggest that the direct involvement of Arf6/EFA6D in regulatory exocytosis at the apical plasma membrane of acinar and GCT cells is apparently to be smaller, if present, than that of endocytosis at the basolateral membranes of GCT cells under normal conditions. This also suggests that the two molecules function additionally at the apical membrane of GCT cells for modulation of saliva secretion under β-adrenoceptor stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses

    PubMed Central

    Chen, Zhehao; Yuan, Ye; Fu, Di; Shen, Chenjia; Yang, Yanjun

    2017-01-01

    Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs, including DnARF1, DnARF4, and DnARF6, were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1, DnARF4, and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale. To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment. PMID:28471373

  17. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinale under Abiotic Stresses.

    PubMed

    Chen, Zhehao; Yuan, Ye; Fu, Di; Shen, Chenjia; Yang, Yanjun

    2017-05-04

    Auxin response factor (ARF) proteins play roles in plant responses to diverse environmental stresses by binding specifically to the auxin response element in the promoters of target genes. Using our latest public Dendrobium transcriptomes, a comprehensive characterization and analysis of 14 DnARF genes were performed. Three selected DnARFs , including DnARF1 , DnARF4 , and DnARF6 , were confirmed to be nuclear proteins according to their transient expression in epidermal cells of Nicotiana benthamiana leaves. Furthermore, the transcription activation abilities of DnARF1 , DnARF4 , and DnARF6 were tested in a yeast system. Our data showed that DnARF6 is a transcriptional activator in Dendrobium officinale . To uncover the basic information of DnARF gene responses to abiotic stresses, we analyzed their expression patterns under various hormones and abiotic treatments. Based on our data, several hormones and significant stress responsive DnARF genes have been identified. Since auxin and ARF genes have been identified in many plant species, our data is imperative to reveal the function of ARF mediated auxin signaling in the adaptation to the challenging Dendrobium environment.

  18. Structural Basis of Membrane Targeting by the Dock180 Family of Rho Family Guanine Exchange Factors (Rho-GEFs)*

    PubMed Central

    Premkumar, Lakshmanane; Bobkov, Andrey A.; Patel, Manishha; Jaroszewski, Lukasz; Bankston, Laurie A.; Stec, Boguslaw; Vuori, Kristiina; Côté, Jean-Francois; Liddington, Robert C.

    2010-01-01

    The Dock180 family of atypical Rho family guanine nucleotide exchange factors (Rho-GEFs) regulate a variety of processes involving cellular or subcellular polarization, including cell migration and phagocytosis. Each contains a Dock homology region-1 (DHR-1) domain that is required to localize its GEF activity to a specific membrane compartment where levels of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) are up-regulated by the local activity of PtdIns 3-kinase. Here we define the structural and energetic bases of phosphoinositide specificity by the DHR-1 domain of Dock1 (a GEF for Rac1), and show that DHR-1 utilizes a C2 domain scaffold and surface loops to create a basic pocket on its upper surface for recognition of the PtdIns(3,4,5)P3 head group. The pocket has many of the characteristics of those observed in pleckstrin homology domains. We show that point mutations in the pocket that abolish phospholipid binding in vitro ablate the ability of Dock1 to induce cell polarization, and propose a model that brings together recent mechanistic and structural studies to rationalize the central role of DHR-1 in dynamic membrane targeting of the Rho-GEF activity of Dock180. PMID:20167601

  19. Proximity matching for ArF and KrF scanners

    NASA Astrophysics Data System (ADS)

    Kim, Young Ki; Pohling, Lua; Hwee, Ng Teng; Kim, Jeong Soo; Benyon, Peter; Depre, Jerome; Hong, Jongkyun; Serebriakov, Alexander

    2009-03-01

    There are many IC-manufacturers over the world that use various exposure systems and work with very high requirements in order to establish and maintain stable lithographic processes of 65 nm, 45 nm and below. Once the process is established, manufacturer desires to be able to run it on different tools that are available. This is why the proximity matching plays a key role to maximize tools utilization in terms of productivity for different types of exposure tools. In this paper, we investigate the source of errors that cause optical proximity mismatch and evaluate several approaches for proximity matching of different types of 193 nm and 248 nm scanner systems such as set-get sigma calibration, contrast adjustment, and, finally, tuning imaging parameters by optimization with Manual Scanner Matcher. First, to monitor the proximity mismatch, we collect CD measurement data for the reference tool and for the tool-to-be-matched. Normally, the measurement is performed for a set of line or space through pitch structures. Secondly, by simulation or experiment, we determine the sensitivity of the critical structures with respect to small adjustment of exposure settings such as NA, sigma inner, sigma outer, dose, focus scan range etc. that are called 'proximity tuning knobs'. Then, with the help of special optimization software, we compute the proximity knob adjustment that has to be applied to the tool-to-be-matched to match the reference tool. Finally, we verify successful matching by exposing on the tool-to-be-matched with tuned exposure settings. This procedure is applicable for inter- and intra scanner type matching, but possibly also for process transfers to the design targets. In order to illustrate the approach we show experimental data as well as results of imaging simulations. The set demonstrate successful matching of critical structures for ArF scanners of different tool generations.

  20. Myosin II–interacting guanine nucleotide exchange factor promotes bleb retraction via stimulating cortex reassembly at the bleb membrane

    PubMed Central

    Jiao, Meng; Wu, Di; Wei, Qize

    2018-01-01

    Blebs are involved in various biological processes such as cell migration, cytokinesis, and apoptosis. While the expansion of blebs is largely an intracellular pressure-driven process, the retraction of blebs is believed to be driven by RhoA activation that leads to the reassembly of the actomyosin cortex at the bleb membrane. However, it is still poorly understood how RhoA is activated at the bleb membrane. Here, we provide evidence demonstrating that myosin II–interacting guanine nucleotide exchange factor (MYOGEF) is implicated in bleb retraction via stimulating RhoA activation and the reassembly of an actomyosin network at the bleb membrane during bleb retraction. Interaction of MYOGEF with ezrin, a well-known regulator of bleb retraction, is required for MYOGEF localization to retracting blebs. Notably, knockout of MYOGEF or ezrin not only disrupts RhoA activation at the bleb membrane, but also interferes with nonmuscle myosin II localization and activation, as well as actin polymerization in retracting blebs. Importantly, MYOGEF knockout slows down bleb retraction. We propose that ezrin interacts with MYOGEF and recruits it to retracting blebs, where MYOGEF activates RhoA and promotes the reassembly of the cortical actomyosin network at the bleb membrane, thus contributing to the regulation of bleb retraction. PMID:29321250

  1. Coexpression of α6β4 Integrin and Guanine Nucleotide Exchange Factor Net1 Identifies Node-Positive Breast Cancer Patients at High Risk for Distant Metastasis

    PubMed Central

    Gilcrease, Michael Z.; Kilpatrick, Shannan K.; Woodward, Wendy A.; Zhou, Xiao; Nicolas, Marlo M.; Corley, Lynda J.; Fuller, Gregory N.; Tucker, Susan L.; Diaz, Leslie K.; Buchholz, Thomas A.; Frost, Jeffrey A.

    2009-01-01

    Preclinical data indicate that α6β4 integrin signaling through Ras homolog gene family, member A, plays an important role in tumor cell motility. The objective of this study was to determine whether the combined expression of α6β4 integrin and neuroepithelioma transforming gene 1 (Net1), a guanine nucleotide exchange factor specific for Ras homolog gene family member A, is associated with adverse clinical outcome in breast cancer patients. Immunohistochemical expression of each protein was evaluated in a tumor tissue microarray prepared from the primary tumors of 94 node-positive patients with invasive breast carcinoma treated with total mastectomy and doxorubicin-based chemotherapy without radiation with a median follow-up of 12.5 years. Associations between staining results and multiple clinicopathologic variables were investigated. Although there was no significant association between α6β4 integrin or Net1 expression and clinical outcome when each marker was considered individually, coexpression of α6β4 and Net1 was associated with decreased distant metastasis–free survival (P = 0.030). In the subset of patients with hormone receptor–positive tumors, coexpression of α6β4 and Net1 was associated with a decrease in distant metastasis–free and overall survival (P < 0.001 and P = 0.006, respectively). Although an association between human epidermal growth factor receptor 2 expression and coexpression of α6β4 and Net1 (P = 0.008) was observed, coexpression of α6β4 and Net1 (hazard ratio, 1.63; P = 0.02) and lymphovascular invasion (hazard ratio, 2.35; P = 0.02) were the only factors independently associated with the development of distant metastasis in multivariate analysis. These findings suggest that coexpression of α6β4 integrin and Net1 could be a useful biomarker for aggressive disease in node-positive breast cancer patients. PMID:19124484

  2. BLOC-3 Mutated in Hermansky-Pudlak Syndrome Is a Rab32/38 Guanine Nucleotide Exchange Factor

    PubMed Central

    Gerondopoulos, Andreas; Langemeyer, Lars; Liang, Jin-Rui; Linford, Andrea; Barr, Francis A.

    2012-01-01

    Summary Hermansky-Pudlak syndrome (HPS) is a human disease characterized by partial loss of pigmentation and impaired blood clotting [1–3]. These symptoms are caused by defects in the biogenesis of melanosomes and platelet dense granules, often referred to as lysosome-related organelles [2]. Genes mutated in HPS encode subunits of the biogenesis of lysosome-related organelles complexes (BLOCs). BLOC-1 and BLOC-2, together with the AP-3 clathrin adaptor complex, act at early endosomes to sort components required for melanin formation and melanosome biogenesis away from the degradative lysosomal pathway toward early stage melanosomes [4–6]. However the molecular functions of the Hps1-Hps4 complex BLOC-3 remain mysterious [7–9]. Like other trafficking pathways, melanosome biogenesis and transport of enzymes involved in pigmentation involves specific Rab GTPases, in this instance Rab32 and Rab38 [10–12]. We now demonstrate that BLOC-3 is a Rab32 and Rab38 guanine nucleotide exchange factor (GEF). Silencing of the BLOC-3 subunits Hps1 and Hps4 results in the mislocalization of Rab32 and Rab38 and reduction in pigmentation. In addition, we show that BLOC-3 can promote specific membrane recruitment of Rab32/38. BLOC-3 therefore defines a novel Rab GEF family with a specific function in the biogenesis of lysosome-related organelles. PMID:23084991

  3. The Chromobacterium violaceum type III effector CopE, a guanine nucleotide exchange factor for Rac1 and Cdc42, is involved in bacterial invasion of epithelial cells and pathogenesis.

    PubMed

    Miki, Tsuyoshi; Akiba, Kinari; Iguchi, Mirei; Danbara, Hirofumi; Okada, Nobuhiko

    2011-06-01

    The type III secretion system (T3SS) encoded by Chromobacterium pathogenicity islands 1 and 1a (Cpi-1/-1a) is critical for Chromobacterium violaceum pathogenesis. T3SS-dependent virulence is commonly characterized by type III effector virulence function, but the full repertoire of the effector proteins of Cpi-1/-1a T3SS is unknown. In this study, we showed that expression of Cpi-1/-1a T3SS is controlled by the master regulator CilA. We used transcriptional profiling with DNA microarrays to define CilA regulon and identified genes encoding T3SS effectors whose translocation into host cells was dependent on Cpi-1/-1a T3SS. From these effectors, we found that CopE (CV0296) has similarities to a guanine nucleotide exchange factor (GEF) for Rho GTPases in its C-terminal portion. The N-terminal portions (1-81 amino acids) of CopE and a CivB as a putative chaperone were required for its translocation. CopE specifically activates Rac1 and Cdc42 followed by the induction of actin cytoskeletal rearrangement. Interestingly, C. violaceum invades human epithelial HeLa cells in a Cpi-1/-1a-encoded T3SS- and CopE-dependent manner. Finally, C. violaceum strains lacking copE and expressing a CopE-G168V deficient in GEF activity were attenuated for virulence in mice, suggesting that CopE contributes to the virulence of this pathogen. © 2011 Blackwell Publishing Ltd.

  4. Study of swelling behavior in ArF resist during development by the QCM method (3): observations of swelling layer elastic modulus

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Atsushi

    2013-03-01

    The QCM method allows measurements of impedance, an index of swelling layer viscosity in a photoresist during development. While impedance is sometimes used as a qualitative index of change in the viscosity of the swelling layer, it has to date not been used quantitatively, for data analysis. We explored a method for converting impedance values to elastic modulus (Pa), a coefficient expressing viscosity. Applying this method, we compared changes in the viscosity of the swelling layer in an ArF resist generated during development in a TMAH developing solution and in a TBAH developing solution. This paper reports the results of this comparative study.

  5. betaPIX controls cell motility and neurite extension by regulating the distribution of GIT1.

    PubMed

    Za, Lorena; Albertinazzi, Chiara; Paris, Simona; Gagliani, Mariacristina; Tacchetti, Carlo; de Curtis, Ivan

    2006-07-01

    Cell motility entails the reorganization of the cytoskeleton and membrane trafficking for effective protrusion. GIT1/p95-APP1 is a member of a family of GTPase-activating proteins for ARF GTPases that affect endocytosis, adhesion and migration. GIT1 associates with paxillin and a complex including the Rac/Cdc42 exchanging factors PIX/Cool and the kinase PAK. In this study, we show that overexpression of betaPIX induces the accumulation of endogenous and overexpressed GIT1 at large structures similar to those induced by an ArfGAP-defective mutant of GIT1 (p95-C2). Immunohistochemical analysis and immunoelectron microscopy reveal that these structures include the endogenous transferrin receptor. Time-lapse analysis during motogenic stimuli shows that the formation and perinuclear accumulation of the p95-C2-positive structures is paralleled by inhibition of lamellipodium formation and cell retraction. Both dimerization and a functional SH3 domain of betaPIX are required for the accumulation of GIT1 in fibroblasts, which is prevented by the monomeric PIX-PG-DeltaLZ. This mutant also prevents the formation of endocytic aggregates and inhibition of neurite outgrowth in retinal neurons expressing p95-C2. Our results indicate that betaPIX is an important regulator of the subcellular distribution of GIT1, and suggest that alteration in the level of expression of the complex affects the endocytic compartment and cell motility.

  6. (3H)WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-12-01

    In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5more » mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.« less

  7. ArF scanner performance improvement by using track integrated CD optimization

    NASA Astrophysics Data System (ADS)

    Huang, Jacky; Yu, Shinn-Sheng; Ke, Chih-Ming; Wu, Timothy; Wang, Yu-Hsi; Gau, Tsai-Sheng; Wang, Dennis; Li, Allen; Yang, Wenge; Kaoru, Araki

    2006-03-01

    In advanced semiconductor processing, shrinking CD is one of the main objectives when moving to the next generation technology. Improving CD uniformity (CDU) with shrinking CD is one of the biggest challenges. From ArF lithography CD error budget analysis, PEB (post exposure bake) contributes more than 40% CD variations. It turns out that hot plate performance such as CD matching and within-plate temperature control play key roles in litho cell wafer per hour (WPH). Traditionally wired or wireless thermal sensor wafers were used to match and optimize hot plates. However, sensor-to-sensor matching and sensor data quality vs. sensor lifetime or sensor thermal history are still unknown. These concerns make sensor wafers more suitable for coarse mean-temperature adjustment. For precise temperature adjustment, especially within-hot-plate temperature uniformity, using CD instead of sensor wafer temperature is a better and more straightforward metrology to calibrate hot plates. In this study, we evaluated TEL clean track integrated optical CD metrology (IM) combined with TEL CD Optimizer (CDO) software to improve 193-nm resist within-wafer and wafer-to-wafer CD uniformity. Within-wafer CD uniformity is mainly affected by the temperature non-uniformity on the PEB hot plate. Based on CD and PEB sensitivity of photo resists, a physical model has been established to control the CD uniformity through fine-tuning PEB temperature settings. CD data collected by track integrated CD metrology was fed into this model, and the adjustment of PEB setting was calculated and executed through track internal APC system. This auto measurement, auto feed forward, auto calibration and auto adjustment system can reduce the engineer key-in error and improve the hot plate calibration cycle time. And this PEB auto calibration system can easily bring hot-plate-to-hot-plate CD matching to within 0.5nm and within-wafer CDU (3σ) to less than 1.5nm.

  8. Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene based on functionalized silica nanoparticle labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Liu, Guodong; Wu, Hong

    2008-03-03

    We present a poly(guanine)-functionalized silica nanoparticle (NP) label-based electrochemical immunoassay for sensitively detecting 2,4,6-trinitrotoluene (TNT). This immunoassay takes advantage of magnetic bead–based platform for competitive displacement immunoreactions and separation, and use electroactive nanoparticles as labels for signal amplification. For this assay, anti-TNT-coated magnetic beads interacted with TNT analog-conjugated poly(guanine)-silica NPs and formed analog-anti-TNT immunocomplexes on magnetic beads. The immunocomplexes coated magnetic beads were exposed to TNT samples, which resulted in displacing the analog conjugated poly(guanine) silica NPs into solution by TNT. In contrast, there are no guanine residues releasing into the solution in the absence of TNT. The reaction solutionmore » was then separated from the magnetic beads and transferred to the electrode surface for electrochemical measurements of guanine oxidation with Ru(bpy)32+ as mediator. The sensitivity of this TNT assay was greatly enhanced through dual signal amplifications: 1) a large amount of guanine residues on silica nanoparticles is introduced into the test solution by displacement immunoreactions and 2) a Ru(bpy)32+-induced guanine catalytic oxidation further enhances the electrochemical signal. Some experimental parameters for the nanoparticle label-based electrochemical immunoassay were studied and the performance of this assay was evaluated. The method is found to be very sensitive and the detection limit of this assay is ~ 0.1 ng mL-1 TNT. The electrochemical immunoassay based on the poly[guanine]-functionalized silica NP label offers a new approach for sensitive detection of explosives.« less

  9. A syndrome of congenital microcephaly, intellectual disability and dysmorphism with a homozygous mutation in FRMD4A.

    PubMed

    Fine, Dina; Flusser, Hagit; Markus, Barak; Shorer, Zamir; Gradstein, Libe; Khateeb, Shareef; Langer, Yshia; Narkis, Ginat; Birk, Ruth; Galil, Aharon; Shelef, Ilan; Birk, Ohad S

    2015-12-01

    A consanguineous Bedouin Israeli kindred presented with a novel autosomal recessive intellectual disability syndrome of congenital microcephaly, low anterior hairline, bitemporal narrowing, low-set protruding ears, strabismus and tented thick eyebrows with sparse hair in their medial segment. Brain imaging demonstrated various degrees of agenesis of corpus callosum and hypoplasia of the vermis and cerebellum. Genome-wide linkage analysis followed by fine mapping defined a 7.67 Mb disease-associated locus (LOD score 4.99 at θ=0 for marker D10S1653). Sequencing of the 48 genes within the locus identified a single non-synonymous homozygous duplication frameshift mutation of 13 nucleotides (c.2134_2146dup13) within the coding region of FRMD4A, that was common to all affected individuals and not found in 180 non-related Bedouin controls. Three of 50 remotely related healthy controls of the same tribe were heterozygous for the mutation. FRMD4A, member of the FERM superfamily, is involved in cell structure, transport and signaling. It regulates cell polarity by playing an important role in the activation of ARF6, mediating the interaction between Par3 and the ARF6 guanine nucleotide exchange factor. ARF6 is known to modulate cell polarity in neurons, and regulates dendritic branching in hippocampal neurons and neurite outgrowth. The FRMD4 domain that is essential for determining cell polarity through interaction with Par3 is truncated by the c.2134_2146dup13 mutation. FRMD4A polymorphisms were recently suggested to be a risk factor for Alzheimer's disease. We now show a homozygous frameshift mutation of the same gene in a severe neurologic syndrome with unique dysmorphism.

  10. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    PubMed

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  11. Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Morris, Lydia P; Conley, Andrew B; Degtyareva, Natalya; Jordan, I King; Doetsch, Paul W

    2017-11-01

    The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M.

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increasedmore » the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.« less

  13. C2H4ArF2 1,1-Difluoroethane - argon (1/1)

    NASA Astrophysics Data System (ADS)

    Demaison, J.

    This document is part of Part 1 of Subvolume D 'Asymmetric Top Molecules' of Volume 29 'Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy' of Landolt-Börnstein - Group II 'Molecules and Radicals'.

  14. NMR solution structure of an N2-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: Intercalation from the minor groove with ruptured Watson-Crick base pairing

    PubMed Central

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H.; Cai, Yuqin; Rodriguez, Fabian A.; Sayer, Jane M.; Jerina, Donald M.; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2012-01-01

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the non-planar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely-studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14-position with the exocyclic amino group of guanine. Here, we present the first NMR solution structure of a DB[a,l]P-derived adduct, the 14R (+)-trans-anti-DB[a,l]P–N2-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N2-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3’-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3’-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE - DNA adduct conformation differs from: (1) the classical intercalation motif where Watson-Crick base-pairing is intact at the lesion site, and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix . The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed. PMID:23121427

  15. Large-Scale 1:1 Computing Initiatives: An Open Access Database

    ERIC Educational Resources Information Center

    Richardson, Jayson W.; McLeod, Scott; Flora, Kevin; Sauers, Nick J.; Kannan, Sathiamoorthy; Sincar, Mehmet

    2013-01-01

    This article details the spread and scope of large-scale 1:1 computing initiatives around the world. What follows is a review of the existing literature around 1:1 programs followed by a description of the large-scale 1:1 database. Main findings include: 1) the XO and the Classmate PC dominate large-scale 1:1 initiatives; 2) if professional…

  16. Drug-related acute renal failure in hospitalised patients.

    PubMed

    Iavecchia, Lujan; Cereza García, Gloria; Sabaté Gallego, Mònica; Vidal Guitart, Xavier; Ramos Terrades, Natalia; de la Torre, Judith; Segarra Medrano, Alfons; Agustí Escasany, Antònia

    2015-01-01

    The information available on the incidence and the characteristics of patients with acute renal failure (ARF) related to drugs is scarce. To estimate the incidence of drug-related ARF in hospitalised patients and to compare their characteristics with those of patients with ARF due to other causes. We selected a prospective cohort of patients with ARF during hospital admission (July 2010-July 2011). Information on patients' demographics, medical antecedents, ARF risk factors, ARF severity according to the RIFLE classification and hospital drug administration was collected. We analysed the relationship of drugs with the ARF episodes using Spanish Pharmacovigilance System methods and algorithm. A total of 194 cases had an episode of hospital-acquired ARF. The median age of patients was 72 years [IQR 20]; 60% were men. The ARF incidence during hospitalization was 9.6 per 1,000 admissions. According to the RIFLE classification, a risk of kidney damage or kidney injury was present in 77.8% of cases. In 105 (54.1%) cases, ARF was drug-related; the drugs most frequently involved were diuretics, agents acting on the renin-angiotensin system, immunosuppressants, β-blocking agents, calcium channel blockers, contrast media and non-steroid anti-inflammatory drugs. Patients with drug-related ARF had more multi-morbidity, fewer ARF risk factors and lower mortality. Half of ARF episodes during hospitalisation were drug related. Patients with drug-related ARF had higher cardiovascular morbidity than those with ARF related to other causes, but they had a lower frequency of ARF risk factors and mortality. Copyright © 2015 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  17. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    PubMed

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The PDZ domain of the guanine nucleotide exchange factor PDZGEF directs binding to phosphatidic acid during brush border formation.

    PubMed

    Consonni, Sarah V; Brouwer, Patricia M; van Slobbe, Eleonora S; Bos, Johannes L

    2014-01-01

    PDZGEF is a guanine nucleotide exchange factor for the small G protein Rap. It was recently found that PDZGEF contributes to establishment of intestinal epithelial polarity downstream of the kinase Lkb1. By binding to phosphatidic acid enriched at the apical membrane, PDZGEF locally activates Rap2a resulting in induction of brush border formation via a pathway that includes the polarity players TNIK, Mst4 and Ezrin. Here we show that the PDZ domain of PDZGEF is essential and sufficient for targeting PDZGEF to the apical membrane of polarized intestinal epithelial cells. Inhibition of PLD and consequently production of phosphatidic acid inhibitis targeting of PDZGEF to the plasma membrane. Furthermore, localization requires specific positively charged residues within the PDZ domain. We conclude that local accumulation of PDZGEF at the apical membrane during establishment of epithelial polarity is mediated by electrostatic interactions between positively charged side chains in the PDZ domain and negatively charged phosphatidic acid.

  19. The PDZ Domain of the Guanine Nucleotide Exchange Factor PDZGEF Directs Binding to Phosphatidic Acid during Brush Border Formation

    PubMed Central

    Consonni, Sarah V.; Brouwer, Patricia M.; van Slobbe, Eleonora S.; Bos, Johannes L.

    2014-01-01

    PDZGEF is a guanine nucleotide exchange factor for the small G protein Rap. It was recently found that PDZGEF contributes to establishment of intestinal epithelial polarity downstream of the kinase Lkb1. By binding to phosphatidic acid enriched at the apical membrane, PDZGEF locally activates Rap2a resulting in induction of brush border formation via a pathway that includes the polarity players TNIK, Mst4 and Ezrin. Here we show that the PDZ domain of PDZGEF is essential and sufficient for targeting PDZGEF to the apical membrane of polarized intestinal epithelial cells. Inhibition of PLD and consequently production of phosphatidic acid inhibitis targeting of PDZGEF to the plasma membrane. Furthermore, localization requires specific positively charged residues within the PDZ domain. We conclude that local accumulation of PDZGEF at the apical membrane during establishment of epithelial polarity is mediated by electrostatic interactions between positively charged side chains in the PDZ domain and negatively charged phosphatidic acid. PMID:24858808

  20. Simulations of the effect of intensive biomass burning in July 2015 on Arctic radiative budget

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Lisok, J.; Xian, P.

    2017-12-01

    The impact of biomass burning (BB) on aerosol optical properties and radiative budget in the polar region following an intense boreal fire event in North America in July 2015 is explored in this paper. Presented data are obtained from the Navy Aerosol Analysis and Prediction System (NAAPS) reanalysis and the Fu-Liou radiative transfer model. NAAPS provides particle concentrations and aerosol optical depth (AOD) at 1° x 1° spatial and 6-hourly temporal resolution, its AOD and vertical profiles were validated with field measurements for this event. Direct aerosol radiative forcings (ARF) at the surface, the top of the atmosphere (TOA) and within the atmosphere are calculated for clear-sky and all-sky conditions, with the surface albedo and cloud properties constrained by satellite retrievals. The mean ARFs at the surface, the TOA, and within the atmosphere averaged for the north pole region (latitudes north of 75.5N) and the study period (July 5-15, 2015) are -13.1 ± 2.7, 0.3 ± 2.1, and 13.4 ± 2.7 W/m2 for clear-sky and -7.3 ± 1.8, 5.0 ± 2.6, and 12.3 ± 1.6 W/m2 for all-sky conditions respectively. Local ARFs can be a several times larger e.g. the clear-sky surface and TOA ARF reach over Alaska -85 and -30 W/m2 and over Svalbard -41 and -20 W/m2 respectively. The ARF is found negative at the surface (almost zero over high albedo region though) with the maximum forcing over the BB source region, and weaker forcing under all-sky conditions compared to the clear-sky conditions. Unlike the ARFs at the surface and within the atmosphere, which have consistent forcing signs all over the polar region, the ARF at the TOA changes signs from negative (cooling) over the source region (Alaska) to positive (heating) over bright surfaces (e.g., Greenland) because of strong surface albedo effect. NAAPS simulations also show that the transported BB particle over the Arctic are in the low-to-middle troposphere and above low-level clouds, resulting in little difference in ARFs

  1. Dysregulated Arl1, a regulator of post-Golgi vesicle tethering, can inhibit endosomal transport and cell proliferation in yeast

    PubMed Central

    Benjamin, Jeremy J. R.; Poon, Pak P.; Drysdale, John D.; Wang, Xiangmin; Singer, Richard A.; Johnston, Gerald C.

    2011-01-01

    Small monomeric G proteins regulated in part by GTPase-activating proteins (GAPs) are molecular switches for several aspects of vesicular transport. The yeast Gcs1 protein is a dual-specificity GAP for ADP-ribosylation factor (Arf) and Arf-like (Arl)1 G proteins, and also has GAP-independent activities. The absence of Gcs1 imposes cold sensitivity for growth and endosomal transport; here we present evidence that dysregulated Arl1 may cause these impairments. We show that gene deletions affecting the Arl1 or Ypt6 vesicle-tethering pathways prevent Arl1 activation and membrane localization, and restore growth and trafficking in the absence of Gcs1. A mutant version of Gcs1 deficient for both ArfGAP and Arl1GAP activity in vitro still allows growth and endosomal transport, suggesting that the function of Gcs1 that is required for these processes is independent of GAP activity. We propose that, in the absence of this GAP-independent regulation by Gcs1, the resulting dysregulated Arl1 prevents growth and impairs endosomal transport at low temperatures. In cells with dysregulated Arl1, an increased abundance of the Arl1 effector Imh1 restores growth and trafficking, and does so through Arl1 binding. Protein sequestration at the trans-Golgi membrane by dysregulated, active Arl1 may therefore be the mechanism of inhibition. PMID:21562219

  2. GTP analogues promote release of the alpha subunit of the guanine nucleotide binding protein, Gi2, from membranes of rat glioma C6 BU1 cells.

    PubMed Central

    Milligan, G; Mullaney, I; Unson, C G; Marshall, L; Spiegel, A M; McArdle, H

    1988-01-01

    The major pertussis-toxin-sensitive guanine nucleotide-binding protein of rat glioma C6 BU1 cells corresponded immunologically to Gi2. Antibodies which recognize the alpha subunit of this protein indicated that it has an apparent molecular mass of 40 kDa and a pI of 5.7. Incubation of membranes of these cells with guanosine 5'-[beta gamma-imido]triphosphate, or other analogues of GTP, caused release of this polypeptide from the membrane in a time-dependent manner. Analogues of GDP or of ATP did not mimic this effect. The GTP analogues similarly caused release of the alpha subunit of Gi2 from membranes of C6 cells in which this G-protein had been inactivated by pretreatment with pertussis toxin. The beta subunit was not released from the membrane under any of these conditions, indicating that the release process was a specific response to the dissociation of the G-protein after binding of the GTP analogue. Similar nucleotide profiles for release of the alpha subunits of forms of Gi were noted for membranes of both the neuroblastoma x glioma hybrid cell line NG108-15 and of human platelets. These data provide evidence that: (1) pertussis-toxin-sensitive G-proteins, in native membranes, do indeed dissociate into alpha and beta gamma subunits upon activation; (2) the alpha subunit of 'Gi-like' proteins need not always remain in intimate association with the plasma membrane; and (3) the alpha subunit of Gi2 can still dissociate from the beta/gamma subunits after pertussis-toxin-catalysed ADP-ribosylation. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:3140801

  3. The influence of ArF excimer laser micromachining on physicochemical properties of bioresorbable poly(L-lactide)

    NASA Astrophysics Data System (ADS)

    Stepak, Bogusz D.; Antończak, Arkadiusz J.; Szustakiewicz, Konrad; Pezowicz, Celina; Abramski, Krzysztof M.

    2016-03-01

    The main advantage of laser processing is a non-contact character of material removal and high precision attainable thanks to low laser beam dimensions. This technique enables forming a complex, submillimeter geometrical shapes such as vascular stents which cannot be manufactured using traditional techniques e.g. injection moulding or mechanical treatment. In the domain of nanosecond laser sources, an ArF excimer laser appears as a good candidate for laser micromachining of bioresorbable polymers such as poly(L-lactide). Due to long pulse duration, however, there is a risk of heat diffusion and accumulation in the material. In addition, due to short wavelength (193 nm) photochemical process can modify the chemical composition of ablated surfaces. The motivation for this research was to evaluate the influence of laser micromachining on physicochemical properties of poly(L-lactide). We performed calorimetric analysis of laser machined samples by using differential scanning calorimetry (DSC). It allowed us to find the optimal process parameters for heat affected zone (HAZ) reduction. The chemical composition of the ablated surface was investigated by FTIR in attenuated total reflectance (ATR) mode.

  4. Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation

    PubMed Central

    Sreenivasachary, Nampally; Lehn, Jean-Marie

    2005-01-01

    The guanosine hydrazide 1 yields a stable supramolecular hydrogel based on the formation of a guanine quartet (G-quartet) in presence of metal cations. The effect of various parameters (concentration, nature of metal ion, and temperature) on the properties of this gel has been studied. Proton NMR spectroscopy is shown to allow a molecular characterization of the gelation process. Hydrazide 1 and its assemblies can be reversibly decorated by acylhydrazone formation with various aldehydes, resulting in formation of highly viscous dynamic hydrogels. When a mixture of aldehydes is used, the dynamic system selects the aldehyde that leads to the most stable gel. Mixing hydrazides 1, 9 and aldehydes 6, 8 in 1:1:1:1 ratio generated a constitutional dynamic library containing the four acylhydrazone derivatives A, B, C, and D. The library constitution displayed preferential formation of the acylhydrazone B that yields the strongest gel. Thus, gelation redirects the acylhydrazone distribution in the dynamic library as guanosine hydrazide 1 scavenges preferentially aldehyde 8, under the pressure of gelation because of the collective interactions in the assemblies of G-quartets B, despite the strong preference of the competing hydrazide 9 for 8. Gel formation and component selection are thermoreversible. The process amounts to gelation-driven self-organization with component selection and amplification in constitutional dynamic hydrogels based on G-quartet formation and reversible covalent connections. The observed self-organization and component selection occur by means of a multilevel self-assembly involving three dynamic processes, two of supramolecular and one of reversible covalent nature. They extend constitutional dynamic chemistry to phase-organization and phase-transition events. PMID:15840720

  5. Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation.

    PubMed

    Sreenivasachary, Nampally; Lehn, Jean-Marie

    2005-04-26

    The guanosine hydrazide 1 yields a stable supramolecular hydrogel based on the formation of a guanine quartet (G-quartet) in presence of metal cations. The effect of various parameters (concentration, nature of metal ion, and temperature) on the properties of this gel has been studied. Proton NMR spectroscopy is shown to allow a molecular characterization of the gelation process. Hydrazide 1 and its assemblies can be reversibly decorated by acylhydrazone formation with various aldehydes, resulting in formation of highly viscous dynamic hydrogels. When a mixture of aldehydes is used, the dynamic system selects the aldehyde that leads to the most stable gel. Mixing hydrazides 1, 9 and aldehydes 6, 8 in 1:1:1:1 ratio generated a constitutional dynamic library containing the four acylhydrazone derivatives A, B, C, and D. The library constitution displayed preferential formation of the acylhydrazone B that yields the strongest gel. Thus, gelation redirects the acylhydrazone distribution in the dynamic library as guanosine hydrazide 1 scavenges preferentially aldehyde 8, under the pressure of gelation because of the collective interactions in the assemblies of G-quartets B, despite the strong preference of the competing hydrazide 9 for 8. Gel formation and component selection are thermoreversible. The process amounts to gelation-driven self-organization with component selection and amplification in constitutional dynamic hydrogels based on G-quartet formation and reversible covalent connections. The observed self-organization and component selection occur by means of a multilevel self-assembly involving three dynamic processes, two of supramolecular and one of reversible covalent nature. They extend constitutional dynamic chemistry to phase-organization and phase-transition events.

  6. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGES

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  7. Evolution of complete proteomes: guanine-cytosine pressure, phylogeny and environmental influences blend the proteomic architecture

    PubMed Central

    2013-01-01

    Background Guanine-cytosine (GC) composition is an important feature of genomes. Likewise, amino acid composition is a distinct, but less valued, feature of proteomes. A major concern is that it is not clear what valuable information can be acquired from amino acid composition data. To address this concern, in-depth analyses of the amino acid composition of the complete proteomes from 63 archaea, 270 bacteria, and 128 eukaryotes were performed. Results Principal component analysis of the amino acid matrices showed that the main contributors to proteomic architecture were genomic GC variation, phylogeny, and environmental influences. GC pressure drove positive selection on Ala, Arg, Gly, Pro, Trp, and Val, and adverse selection on Asn, Lys, Ile, Phe, and Tyr. The physico-chemical framework of the complete proteomes withstood GC pressure by frequency complementation of GC-dependent amino acid pairs with similar physico-chemical properties. Gln, His, Ser, and Val were responsible for phylogeny and their constituted components could differentiate archaea, bacteria, and eukaryotes. Environmental niche was also a significant factor in determining proteomic architecture, especially for archaea for which the main amino acids were Cys, Leu, and Thr. In archaea, hyperthermophiles, acidophiles, mesophiles, psychrophiles, and halophiles gathered successively along the environment-based principal component. Concordance between proteomic architecture and the genetic code was also related closely to genomic GC content, phylogeny, and lifestyles. Conclusions Large-scale analyses of the complete proteomes of a wide range of organisms suggested that amino acid composition retained the trace of GC variation, phylogeny, and environmental influences during evolution. The findings from this study will help in the development of a global understanding of proteome evolution, and even biological evolution. PMID:24088322

  8. Flexible exportation mechanisms of arthrofactin in Pseudomonas sp. MIS38.

    PubMed

    Lim, S P; Roongsawang, N; Washio, K; Morikawa, M

    2009-07-01

    To obtain further insights into transportation mechanisms of a most effective biosurfactant, arthrofactin in Pseudomonas sp. MIS38. A cluster genes arfA/B/C encodes an arthrofactin synthetase complex (ArfA/B/C). Downstream of the arfA/B/C lie genes encoding a putative periplasmic protein (ArfD, 362 aa) and a putative ATP-binding cassette transporter (ArfE, 651 aa), namely arfD and arfE, respectively. The arfA/B/C, arfD, and arfE form an operon suggesting their functional connection. Gene knockout mutants ArfD:Km, ArfE:Km, ArfD:Tc/ArfE:Km, and gene overexpression strains MIS38(pME6032_arfD/E) and ArfE:Km(pME6032_arfD/E) were prepared and analysed for arthrofactin production profiles. It was found that the production levels of arthrofactin were temporally reduced in the mutants or increased in the gene overexpression strains, but they eventually became similar level to that of MIS38. Addition of ABC transporter inhibitors, glibenclamide and sodium ortho-vanadate dramatically reduced the production levels of arthrofactin. This excludes a possibility that arthrofactin is exported by diffusion with the aid of its own high surfactant activity. ArfD/E is not an exclusive but a primary exporter of arthrofactin during early growth stage. Reduction in the arthrofactin productivity of arfD and arfE knockout mutants was eventually rescued by another ABC transporter system. Effects of arfD and arfE overexpression were evident only for 1-day cultivation. Multiple ATP dependent active transporter systems are responsible for the production of arthrofactin. Pseudomonas bacteria are characterized to be endued with multiple exporter and efflux systems for secondary metabolites including antibiotics, plant toxins, and biosurfactants. The present work demonstrates exceptionally flexible and highly controlled transportation mechanisms of a most effective lipopeptide biosurfactant, arthrofactin in Pseudomonas sp. MIS38. Because lipopeptide biosurfactants are known to enhance efficacy of

  9. Mechanisms of the Formation of Adenine, Guanine, and Their Analogues in UV-Irradiated Mixed NH3:H2O Molecular Ices Containing Purine

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Stein, Tamar; Head-Gordon, Martin; Lee, Timothy J.

    2017-08-01

    We investigated the formation mechanisms of the nucleobases adenine and guanine and the nucleobase analogues hypoxanthine, xanthine, isoguanine, and 2,6-diaminopurine in a UV-irradiated mixed 10:1 H2O:NH3 ice seeded with precursor purine by using ab initio and density functional theory computations. Our quantum chemical investigations suggest that a multistep reaction mechanism involving purine cation, hydroxyl and amino radicals, together with water and ammonia, explains the experimentally obtained products in an independent study. The relative abundances of these products appear to largely follow from relative thermodynamic stabilities. The key role of the purine cation is likely to be the reason why purine is not functionalized in pure ammonia ice, where cations are promptly neutralized by free electrons from NH3 ionization. Amine group addition to purine is slightly favored over hydroxyl group attachment based on energetics, but hydroxyl is much more abundant due to higher abundance of H2O. The amino group is preferentially attached to the 6 position, giving 6-aminopurine, that is, adenine, while the hydroxyl group is preferentially attached to the 2 position, leading to 2-hydroxypurine. A second substitution by hydroxyl or amino group occurs at either the 6 or the 2 position depending on the first substitution. Given that H2O is far more abundant than NH3 in the experimentally studied ices (as well as based on interstellar abundances), xanthine and isoguanine are expected to be the most abundant bi-substituted photoproducts.

  10. 26 CFR 1.6655-4 - Large corporations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 13 2013-04-01 2013-04-01 false Large corporations. 1.6655-4 Section 1.6655-4... Large corporations. (a) Large corporation defined. The term large corporation means any corporation (or a predecessor corporation) that had taxable income of at least $1,000,000 for any taxable year...

  11. 26 CFR 1.6655-4 - Large corporations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Large corporations. 1.6655-4 Section 1.6655-4... Large corporations. (a) Large corporation defined. The term large corporation means any corporation (or a predecessor corporation) that had taxable income of at least $1,000,000 for any taxable year...

  12. 26 CFR 1.6655-4 - Large corporations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 13 2014-04-01 2014-04-01 false Large corporations. 1.6655-4 Section 1.6655-4... Large corporations. (a) Large corporation defined. The term large corporation means any corporation (or a predecessor corporation) that had taxable income of at least $1,000,000 for any taxable year...

  13. 26 CFR 1.6655-4 - Large corporations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 13 2012-04-01 2012-04-01 false Large corporations. 1.6655-4 Section 1.6655-4... Large corporations. (a) Large corporation defined. The term large corporation means any corporation (or a predecessor corporation) that had taxable income of at least $1,000,000 for any taxable year...

  14. Specific replacement of Q base in the anticodon of tRNA by guanine catalyzed by a cell-free extract of rabbit reticulocytes.

    PubMed Central

    Okada, N; Harada, F; Nishimura, S

    1976-01-01

    Guanylation of tRNA by a lysate of rabbit reticulocytes was reported previously by Farkas and Singh. This reaction was investigated further using 18 purified E. coli tRNAs as acceptors.Results showed that only tRNATyr, tRNAHis, tRNAAsn and tRNAAsp which contain the modified nucleoside Q in the anticodon acted as acceptors. Analysis of the nucleotide sequences in the guanylated tRNA showed that guanine specifically replaced Q base in these tRNAs. Images PMID:792816

  15. Osmotic nephrosis with mannitol: review article.

    PubMed

    Nomani, Ali Zohair; Nabi, Zahid; Rashid, Humayun; Janjua, Jamal; Nomani, Hanna; Majeed, Azer; Chaudry, Sohail Raza; Mazhar, Ayesha Saad

    2014-08-01

    Mannitol is commonly used to lower intracranial and intraocular pressures. Large doses/massive infusions of mannitol have been found to be associated with acute renal failure (MI-ARF), that is, osmotic nephrosis. While many researchers have reported individual experiences with this pathology, we felt that there is need of an updated comprehensive review of all reported cases with elaboration of etiology, pathogenesis, diagnosis and management plan for MI-ARF. The purpose of the present communication is to share our own experience with MI-ARF, to review the effect of mannitol on kidney function and to highlight the dynamics of MI-ARF with considerations for the cautious use of mannitol in patients with risk factors for kidney diseases.

  16. Highly sensitive bacteria quantification using immunomagnetic separation and electrochemical detection of guanine-labeled secondary beads.

    PubMed

    Jayamohan, Harikrishnan; Gale, Bruce K; Minson, Bj; Lambert, Christopher J; Gordon, Neil; Sant, Himanshu J

    2015-05-22

    In this paper, we report the ultra-sensitive indirect electrochemical detection of E. coli O157:H7 using antibody functionalized primary (magnetic) beads for capture and polyguanine (polyG) oligonucleotide functionalized secondary (polystyrene) beads as an electrochemical tag. Vacuum filtration in combination with E. coli O157:H7 specific antibody modified magnetic beads were used for extraction of E. coli O157:H7 from 100 mL samples. The magnetic bead conjugated E. coli O157:H7 cells were then attached to polyG functionalized secondary beads to form a sandwich complex (magnetic bead/E. coli secondary bead). While the use of magnetic beads for immuno-based capture is well characterized, the use of oligonucleotide functionalized secondary beads helps combine amplification and potential multiplexing into the system. The antibody functionalized secondary beads can be easily modified with a different antibody to detect other pathogens from the same sample and enable potential multiplexing. The polyGs on the secondary beads enable signal amplification up to 10⁸ guanine tags per secondary bead (7.5 x 10⁶ biotin-FITC per secondary bead, 20 guanines per oligonucleotide) bound to the target (E. coli). A single-stranded DNA probe functionalized reduced graphene oxide modified glassy carbon electrode was used to bind the polyGs on the secondary beads. Fluorescent imaging was performed to confirm the hybridization of the complex to the electrode surface. Differential pulse voltammetry (DPV) was used to quantify the amount of polyG involved in the hybridization event with tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)3(2+)) as the mediator. The amount of polyG signal can be correlated to the amount of E. coli O157:H7 in the sample. The method was able to detect concentrations of E. coli O157:H7 down to 3 CFU/100 mL, which is 67 times lower than the most sensitive technique reported in literature. The signal to noise ratio for this work was 3. We also demonstrate the use of the

  17. Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing.

    PubMed

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H; Cai, Yuqin; Rodriguez, Fabian A; Sayer, Jane M; Jerina, Donald M; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E

    2012-12-04

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.

  18. Protein–protein interactions and selection: yeast-based approaches that exploit guanine nucleotide-binding protein signaling.

    PubMed

    Ishii, Jun; Fukuda, Nobuo; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2010-05-01

    For elucidating protein–protein interactions, many methodologies have been developed during the past two decades. For investigation of interactions inside cells under physiological conditions, yeast is an attractive organism with which to quickly screen for hopeful candidates using versatile genetic technologies, and various types of approaches are now available.Among them, a variety of unique systems using the guanine nucleotide-binding protein (G-protein) signaling pathway in yeast have been established to investigate the interactions of proteins for biological study and pharmaceutical research. G-proteins involved in various cellular processes are mainly divided into two groups: small monomeric G-proteins,and heterotrimeric G-proteins. In this minireview, we summarize the basic principles and applications of yeast-based screening systems, using these two types of G-protein, which are typically used for elucidating biological protein interactions but are differentiated from traditional yeast two-hybrid systems.

  19. Cloning of an ADP-ribosylation factor gene from banana (Musa acuminata) and its expression patterns in postharvest ripening fruit.

    PubMed

    Wang, Yuan; Wu, Jing; Xu, Bi-Yu; Liu, Ju-Hua; Zhang, Jian-Bin; Jia, Cai-Hong; Jin, Zhi-Qiang

    2010-08-15

    A full-length cDNA encoding an ADP-ribosylation factor (ARF) from banana (Musa acuminata) fruit was cloned and named MaArf. It contains an open reading frame encoding a 181-amino-acid polypeptide. Sequence analysis showed that MaArf shared high similarity with ARF of other plant species. The genomic sequence of MaArf was also obtained using polymerase chain reaction (PCR). Sequence analysis showed that MaArf was a split gene containing five exons and four introns in genomic DNA. Reverse-transcriptase PCR was used to analyze the spatial expression of MaArf. The results showed that MaArf was expressed in all the organs examined: root, rhizome, leaf, flower and fruit. Real-time quantitative PCR was used to explore expression patterns of MaArf in postharvest banana. There was differential expression of MaArf associated with ethylene biosynthesis. In naturally ripened banana, expression of MaArf was in accordance with ethylene biosynthesis. However, in 1-methylcyclopropene-treated banana, the expression of MaArf was inhibited and changed little. When treated with ethylene, MaArf expression in banana fruit significantly increased in accordance with ethylene biosynthesis; the peak of MaArf was 3 d after harvest, 11 d earlier than for naturally ripened banana fruits. These results suggest that MaArf is induced by ethylene in regulating postharvest banana ripening. Finally, subcellular localization assays showed the MaArf protein in the cytoplasm. Copyright 2010 Elsevier GmbH. All rights reserved.

  20. Mixed adenine/guanine quartets with three trans-a2 Pt(II) (a=NH(3) or MeNH(2)) cross-links: linkage and rotational isomerism, base pairing, and loss of NH(3).

    PubMed

    Albertí, Francisca M; Rodríguez-Santiago, Luis; Sodupe, Mariona; Mirats, Andrea; Kaitsiotou, Helena; Sanz Miguel, Pablo J; Lippert, Bernhard

    2014-03-17

    Of the numerous ways in which two adenine and two guanines (N9 positions blocked in each) can be cross-linked by three linear metal moieties such as trans-a2 Pt(II) (with a=NH3 or MeNH2 ) to produce open metalated purine quartets with exclusive metal coordination through N1 and N7 sites, one linkage isomer was studied in detail. The isomer trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)}2 ][(ClO4 )6 ]⋅3H2 O (1) (with 9-EtA=9-ethyladenine and 9-MeGH=9-methylguanine) was crystallized from water and found to adopt a flat Z-shape in the solid state as far as the trinuclear cation is concerned. In the presence of excess 9-MeGH, a meander-like construct, trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)2 }][(ClO4 )6 ]⋅[(9-MeGH)2 ]⋅7 H2 O (2) is formed, in which the two extra 9-MeGH nucleobases are hydrogen bonded to the two terminal platinated guanine ligands of 1. Compound 1, and likewise the analogous complex 1 a (with NH3 ligands only), undergo loss of an ammonia ligand and formation of NH4 (+) when dissolved in [D6 ]DMSO. From the analogy between the behavior of 1 and 1 a it is concluded that a NH3 ligand from the central Pt atom is lost. Addition of 1-methylcytosine (1-MeC) to such a DMSO solution reveals coordination of 1-MeC to the central Pt. In an analogous manner, 9-MeGH can coordinate to the central Pt in [D6 ]DMSO. It is proposed that the proton responsible for formation of NH4 (+) is from one of the exocyclic amino groups of the two adenine bases, and furthermore, that this process is accompanied by a conformational change of the cation from Z-form to U-form. DFT calculations confirm the proposed mechanism and shed light on possible pathways of this process. Calculations show that rotational isomerism is not kinetically hindered and that it would preferably occur previous to the displacement of NH3 by DMSO. This displacement is the most energetically costly step, but it is compensated by the proton

  1. Fourier transform infrared spectroscopy study on order-disorder transition in Langmuir-Blodgett films of 7-(2-octadecyloxycarbonylethyl)guanine before and after recognition to cytidine

    NASA Astrophysics Data System (ADS)

    Miao, Wangen; Luo, Xuzhong; Wu, Sanxie; Liang, Yingqiu

    2004-01-01

    Order-disorder transitions of 9-monolayer Langmuir-Blodgett (LB) films of 7-(2-octadecyloxycarbonylethyl)guanine (ODCG) before and after recognition to cytidine were investigated by Fourier transform infrared (FTIR) spectroscopy. The different order-disorder transitions suggest that molecular recognition between ODCG and cytidine influence these two LB films on the order-disorder process of alkyl tailchain. Cleavage of the multi-hydrogen bonds was also observed by the infrared spectroscopy at elevated temperature.

  2. Fourier transform infrared spectroscopy study on order-disorder transition in Langmuir-Blodgett films of 7-(2-octadecyloxycarbonylethyl)guanine before and after recognition to cytidine.

    PubMed

    Miao, Wangen; Luo, Xuzhong; Wu, Sanxie; Liang, Yingqiu

    2004-01-01

    Order-disorder transitions of 9-monolayer Langmuir-Blodgett (LB) films of 7-(2-octadecyloxycarbonylethyl)guanine (ODCG) before and after recognition to cytidine were investigated by Fourier transform infrared (FTIR) spectroscopy. The different order-disorder transitions suggest that molecular recognition between ODCG and cytidine influence these two LB films on the order-disorder process of alkyl tailchain. Cleavage of the multi-hydrogen bonds was also observed by the infrared spectroscopy at elevated temperature.

  3. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis.

    PubMed

    Yang, Zhong-Bao; Geng, Xiaoyu; He, Chunmei; Zhang, Feng; Wang, Rong; Horst, Walter J; Ding, Zhaojun

    2014-07-01

    The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth. The TAA1-regulated local auxin biosynthesis in the root-apex TZ in response to Al stress is dependent on ethylene, as revealed by manipulating ethylene homeostasis via the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid, the inhibitor of ethylene biosynthesis aminoethoxyvinylglycine, or mutant analysis. In response to Al stress, ethylene signaling locally upregulates TAA1 expression and thus auxin responses in the TZ and results in auxin-regulated root growth inhibition through a number of auxin response factors (ARFs). In particular, ARF10 and ARF16 are important in the regulation of cell wall modification-related genes. Our study suggests a mechanism underlying how environmental cues affect root growth plasticity through influencing local auxin biosynthesis and signaling. © 2014 American Society of Plant Biologists. All rights reserved.

  4. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP-1.

    PubMed

    Matalon, Omri; Ben-Shmuel, Aviad; Kivelevitz, Jessica; Sabag, Batel; Fried, Sophia; Joseph, Noah; Noy, Elad; Biber, Guy; Barda-Saad, Mira

    2018-03-01

    Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between β-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems. © 2018 The Authors.

  5. Cell Proliferation and Epidermal Growth Factor Signaling in Non-small Cell Lung Adenocarcinoma Cell Lines Are Dependent on Rin1

    PubMed Central

    Tomshine, Jin C.; Severson, Sandra R.; Wigle, Dennis A.; Sun, Zhifu; Beleford, Daniah A. T.; Shridhar, Vijayalakshmi; Horazdovsky, Bruce F.

    2009-01-01

    Rin1 is a Rab5 guanine nucleotide exchange factor that plays an important role in Ras-activated endocytosis and growth factor receptor trafficking in fibroblasts. In this study, we show that Rin1 is expressed at high levels in a large number of non-small cell lung adenocarcinoma cell lines, including Hop62, H650, HCC4006, HCC827, EKVX, HCC2935, and A549. Rin1 depletion from A549 cells resulted in a decrease in cell proliferation that was correlated to a decrease in epidermal growth factor receptor (EGFR) signaling. Expression of wild type Rin1 but not the Rab5 guanine nucleotide exchange factor-deficient Rin1 (Rin1Δ) complemented the Rin1 depletion effects, and overexpression of Rin1Δ had a dominant negative effect on cell proliferation. Rin1 depletion stabilized the cell surface levels of EGFR, suggesting that internalization was necessary for robust signaling in A549 cells. In support of this conclusion, introduction of either dominant negative Rab5 or dominant negative dynamin decreased A549 proliferation and EGFR signaling. These data demonstrate that proper internalization and endocytic trafficking are critical for EGFR-mediated signaling in A549 cells and suggest that up-regulation of Rin1 in A549 cell lines may contribute to their proliferative nature. PMID:19570984

  6. C2H4ArF2 1,2-Difluoroethane - argon (1/1)

    NASA Astrophysics Data System (ADS)

    Demaison, J.

    This document is part of Part 1 of Subvolume D 'Asymmetric Top Molecules' of Volume 29 'Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy' of Landolt-Börnstein - Group II 'Molecules and Radicals'.

  7. Studies on the energy metabolism of opossum (Didelphis virginiana) erythrocytes: V. Utilization of hypoxanthine for the synthesis of adenine and guanine nucleotides in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethlenfalvay, N.C.; White, J.C.; Chadwick, E.

    1990-06-01

    High pressure liquid radiochromatography was used to test the ability of opossum erythrocytes to incorporate tracer amounts of (G-{sup 3}H) hypoxanthine (Hy) into ({sup 3}H) labelled triphosphates of adenine and guanine. In the presence of supraphysiologic (30 mM) phosphate which is optimal for PRPP synthesis, both ATP and GTP are extensively labelled. When physiologic (1 mM) medium phosphate is used, red cells incubated under an atmosphere of nitrogen accumulate ({sup 3}H) ATP in a linear fashion suggesting ongoing PRPP synthesis in red cells whose hemoglobin is deoxygenated. In contrast, a lesser increase of labelled ATP is observed in cells incubatedmore » under oxygen, suggesting that conditions for purine nucleotide formation from ambient Hy are more favorable in the venous circulation.« less

  8. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis.

    PubMed

    Stone, Bethany B; Stowe-Evans, Emily L; Harper, Reneé M; Celaya, R Brandon; Ljung, Karin; Sandberg, Göran; Liscum, Emmanuel

    2008-01-01

    Phototropism represents a differential growth response by which plant organs can respond adaptively to changes in the direction of incident light to optimize leaf/stem positioning for photosynthetic light capture and root growth orientation for water/nutrient acquisition. Studies over the past few years have identified a number of components in the signaling pathway(s) leading to development of phototropic curvatures in hypocotyls. These include the phototropin photoreceptors (phot1 and phot2) that perceive directional blue-light (BL) cues and then stimulate signaling, leading to relocalization of the plant hormone auxin, as well as the auxin response factor NPH4/ARF7 that responds to changes in local auxin concentrations to directly mediate expression of genes likely encoding proteins necessary for development of phototropic curvatures. While null mutations in NPH4/ARF7 condition an aphototropic response to unidirectional BL, seedlings carrying the same mutations recover BL-dependent phototropic responsiveness if co-irradiated with red light (RL) or pre-treated with either ethylene. In the present study, we identify second-site enhancer mutations in the nph4 background that abrogate these recovery responses. One of these mutations--map1 (modifier of arf7 phenotypes 1)--was found to represent a missense allele of AUX1--a gene encoding a high-affinity auxin influx carrier previously associated with a number of root responses. Pharmacological studies and analyses of additional aux1 mutants confirmed that AUX1 functions as a modulator of hypocotyl phototropism. Moreover, we have found that the strength of dependence of hypocotyl phototropism on AUX1-mediated auxin influx is directly related to the auxin responsiveness of the seedling in question.

  9. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications.

    PubMed

    Salnikova, Lyubov E; Smelaya, Tamara V; Golubev, Arkadiy M; Rubanovich, Alexander V; Moroz, Viktor V

    2013-11-01

    This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.

  10. 26 CFR 1.6655-4 - Large corporations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Large corporations. 1.6655-4 Section 1.6655-4... corporations. (a) Large corporation defined. The term large corporation means any corporation (or a predecessor corporation) that had taxable income of at least $1,000,000 for any taxable year during the testing period...

  11. Mutation at a distance caused by homopolymeric guanine repeats in Saccharomyces cerevisiae

    PubMed Central

    McDonald, Michael J.; Yu, Yen-Hsin; Guo, Jheng-Fen; Chong, Shin Yen; Kao, Cheng-Fu; Leu, Jun-Yi

    2016-01-01

    Mutation provides the raw material from which natural selection shapes adaptations. The rate at which new mutations arise is therefore a key factor that determines the tempo and mode of evolution. However, an accurate assessment of the mutation rate of a given organism is difficult because mutation rate varies on a fine scale within a genome. A central challenge of evolutionary genetics is to determine the underlying causes of this variation. In earlier work, we had shown that repeat sequences not only are prone to a high rate of expansion and contraction but also can cause an increase in mutation rate (on the order of kilobases) of the sequence surrounding the repeat. We perform experiments that show that simple guanine repeats 13 bp (base pairs) in length or longer (G13+) increase the substitution rate 4- to 18-fold in the downstream DNA sequence, and this correlates with DNA replication timing (R = 0.89). We show that G13+ mutagenicity results from the interplay of both error-prone translesion synthesis and homologous recombination repair pathways. The mutagenic repeats that we study have the potential to be exploited for the artificial elevation of mutation rate in systems biology and synthetic biology applications. PMID:27386516

  12. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  13. JBP485 improves gentamicin-induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xinjin; Meng, Qiang; Liu, Qi

    2013-09-01

    We investigated the effects of JBP485 (an anti-inflammatory dipeptide and a substrate of OAT) on regulation of the expression and function of renal Oat1 and Oat3, which can accelerate the excretion of accumulated uremic toxins (e.g. indoxyl sulfate) in the kidney to improve gentamicin-induced ARF in rats. JBP485 caused a significant decrease in the accumulation of endogenous substances (creatinine, blood urea nitrogen and indoxyl sulfate) in vivo, an increase in the excretion of exogenous compounds (lisinopril and inulin) into urine, and up-regulation of the expressions of renal Oat1 and Oat3 in the kidney tissues and slices via substrate induction. Tomore » determine the effect of JBP485 on the accelerated excretion of uremic toxins mediated by Oat1 and Oat3, the mRNA and protein expression levels of renal basolateral Oats were assessed by quantitative real-time PCR, western blot, immunohistochemical analysis and an immunofluorescence method. Gentamicin down-regulated the expression of Oats mRNA and protein in rat kidney, and these effects were reversed after administration of JBP485. In addition, JBP485 caused a significant decrease in MPO and MDA levels in the kidney, and improved the pathological condition of rat kidney. These results indicated that JBP485 improved acute renal failure by increasing the expression and function of Oat1 and Oat3, and by decreasing overoxidation of the kidney in gentamicin-induced ARF rats. - Highlights: • JBP485 could up-regulate function and expression of Oat1 and Oat3 in kidney. • Effects of JBP485 on ARF are mediated by stimulating excretion of uremic toxins. • JBP485 protected against gentamicin-induced ARF by decreasing MPO and MDA.« less

  14. Mode of action of (R)-9-[4-hydroxy-2-(hydroxymethyl)butyl]guanine against herpesviruses.

    PubMed Central

    Lowe, D M; Alderton, W K; Ellis, M R; Parmar, V; Miller, W H; Roberts, G B; Fyfe, J A; Gaillard, R; Ertl, P; Snowden, W

    1995-01-01

    The activity, metabolism, and mode of action of (R)-9-[4-hydroxy-2-(hydroxymethyl)butyl]guanine (H2G) against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) and varicella-zoster virus (VZV) were studied. Compared to acyclovir (ACV), H2G has superior activity against VZV (50% inhibitory concentration of 2.3 microM) and Epstein-Barr virus (50% inhibitory concentration of 0.9 microM), comparable activity against HSV-1, and weaker activity against HSV-2. The antiviral effect on HSV-1 showed persistence after removal of compound. H2G was metabolized to its mono-, di- and triphosphate derivatives in virus-infected cells, with H2G-triphosphate being the predominant product. Only small amounts of H2G-triphosphate were detected in uninfected cells (1 to 10 pmol/10(6) cells), whereas the level in HSV-1-infected cells reached 1,900 pmol/10(6) cells. H2G was a substrate for all three viral thymidine kinases and could also be phosphorylated by mitochondrial deoxyguanosine kinase. The intracellular half-life of H2G-triphosphate varied in uninfected (2.5 h) and infected (HSV-1, 14 h; VZV, 3.7 h) cells but was always longer than the half-life of ACV-triphosphate (1 to 2 h). H2G-triphosphate inhibited HSV-1, HSV-2, and VZV DNA polymerases competitively with dGTP (Ki of 2.8, 2.2, and 0.3 microM, respectively) but could not replace dGTP as a substrate in a polymerase assay. H2G was not an obligate chain terminator but would only support limited DNA chain extension. Only very small amounts of radioactivity, which were too low to be identified by high-performance liquid chromatography analysis of the digested DNA, could be detected in purified DNA from uninfected cells incubated with [3H]H2G. Thus, H2G acts as an anti-herpesvirus agent, particularly potent against VZV, by formation of high concentrations of relatively stable H2G-triphosphate, which is a potent inhibitor of the viral DNA polymerases. PMID:7486922

  15. Preliminary evaluation of cytosine-phosphate-guanine oligodeoxynucleotides bound to gelatine nanoparticles as immunotherapy for canine atopic dermatitis.

    PubMed

    Wagner, I; Geh, K J; Hubert, M; Winter, G; Weber, K; Classen, J; Klinger, C; Mueller, R S

    2017-07-29

    Cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN) are a promising new immunotherapeutic treatment option for canine atopic dermatitis (AD). The aim of this uncontrolled pilot study was to evaluate clinical and immunological effects of gelatine nanoparticle (GNP)-bound CpG ODN (CpG GNP) on atopic dogs. Eighteen dogs with AD were treated for 8 weeks (group 1, n=8) or 18 weeks (group 2, n=10). Before inclusion and after 2 weeks, 4 weeks, 6 weeks (group 1+2), 8 weeks, 12 weeks and 16 weeks (group 2) 75 µg CpG ODN/dog (bound to 1.5 mg GNP) were injected subcutaneously. Pruritus was evaluated daily by the owner. Lesions were evaluated and serum concentrations and mRNA expressions of interferon-γ, tumour necrosis factor-α, transforming growth factor-β, interleukin (IL) 10 and IL-4 (only mRNA expression) were determined at inclusion and after 8 weeks (group 1+2) and 18 weeks (group 2). Lesions and pruritus improved significantly from baseline to week 8. Mean improvements from baseline to week 18 were 23 per cent and 44 per cent for lesions and pruritus, respectively, an improvement of ≥50 per cent was seen in six out of nine and three out of six dogs, respectively. IL-4 mRNA expression decreased significantly. The results of this study show a clinical improvement of canine AD with CpG GNP comparable to allergen immunotherapy. Controlled studies are needed to confirm these findings. British Veterinary Association.

  16. pH-Modulated Watson-Crick duplex-quadruplex equilibria of guanine-rich and cytosine-rich DNA sequences 140 base pairs upstream of the c-kit transcription initiation site.

    PubMed

    Bucek, Pavel; Jaumot, Joaquim; Aviñó, Anna; Eritja, Ramon; Gargallo, Raimundo

    2009-11-23

    Guanine-rich regions of DNA are sequences capable of forming G-quadruplex structures. The formation of a G-quadruplex structure in a region 140 base pairs (bp) upstream of the c-kit transcription initiation site was recently proposed (Fernando et al., Biochemistry, 2006, 45, 7854). In the present study, the acid-base equilibria and the thermally induced unfolding of the structures formed by a guanine-rich region and by its complementary cytosine-rich strand in c-kit were studied by means of circular dichroism and molecular absorption spectroscopies. In addition, competition between the Watson-Crick duplex and the isolated structures was studied as a function of pH value and temperature. Multivariate data analysis methods based on both hard and soft modeling were used to allow accurate quantification of the various acid-base species present in the mixtures. Results showed that the G-quadruplex and i-motif coexist with the Watson-Crick duplex over the pH range from 3.0 to 6.5, approximately, under the experimental conditions tested in this study. At pH 7.0, the duplex is practically the only species present.

  17. Characterization of Shikonin Derivative Secretion in Lithospermum erythrorhizon Hairy Roots as a Model of Lipid-Soluble Metabolite Secretion from Plants

    PubMed Central

    Tatsumi, Kanade; Yano, Mariko; Kaminade, Kenta; Sugiyama, Akifumi; Sato, Mayuko; Toyooka, Kiminori; Aoyama, Takashi; Sato, Fumihiko; Yazaki, Kazufumi

    2016-01-01

    Shikonin derivatives are specialized lipophilic metabolites, secreted in abundant amounts from the root epidermal cells of Lithospermum erythrorhizon. Because they have anti-microbial activities, these compounds, which are derivatives of red naphthoquinone, are thought to serve as a chemical barrier for plant roots. The mechanism by which they are secreted from cells is, however, largely unknown. The shikonin production system in L. erythrorhizon is an excellent model for studying the mechanism by which lipophilic compounds are secreted from plant cells, because of the abundant amounts of these compounds produced by L. erythrorhizon, the 0 to 100% inducibility of their production, the light-specific inhibition of production, and the visibility of these products as red pigments. To date, many factors regulating shikonin biosynthesis have been identified, but no mechanism that regulates shikonin secretion without inhibiting biosynthesis has been detected. This study showed that inhibitors of membrane traffic strongly inhibit shikonin secretion without inhibiting shikonin production, suggesting that the secretion of shikonin derivatives into the apoplast utilizes pathways common to the ADP-ribosylation factor/guanine nucleotide exchange factor (ARF/GEF) system and actin filament polymerization, at least in part. These findings provide clues about the machinery involved in secreting lipid-soluble metabolites from cells. PMID:27507975

  18. Characterization of Shikonin Derivative Secretion in Lithospermum erythrorhizon Hairy Roots as a Model of Lipid-Soluble Metabolite Secretion from Plants.

    PubMed

    Tatsumi, Kanade; Yano, Mariko; Kaminade, Kenta; Sugiyama, Akifumi; Sato, Mayuko; Toyooka, Kiminori; Aoyama, Takashi; Sato, Fumihiko; Yazaki, Kazufumi

    2016-01-01

    Shikonin derivatives are specialized lipophilic metabolites, secreted in abundant amounts from the root epidermal cells of Lithospermum erythrorhizon. Because they have anti-microbial activities, these compounds, which are derivatives of red naphthoquinone, are thought to serve as a chemical barrier for plant roots. The mechanism by which they are secreted from cells is, however, largely unknown. The shikonin production system in L. erythrorhizon is an excellent model for studying the mechanism by which lipophilic compounds are secreted from plant cells, because of the abundant amounts of these compounds produced by L. erythrorhizon, the 0 to 100% inducibility of their production, the light-specific inhibition of production, and the visibility of these products as red pigments. To date, many factors regulating shikonin biosynthesis have been identified, but no mechanism that regulates shikonin secretion without inhibiting biosynthesis has been detected. This study showed that inhibitors of membrane traffic strongly inhibit shikonin secretion without inhibiting shikonin production, suggesting that the secretion of shikonin derivatives into the apoplast utilizes pathways common to the ADP-ribosylation factor/guanine nucleotide exchange factor (ARF/GEF) system and actin filament polymerization, at least in part. These findings provide clues about the machinery involved in secreting lipid-soluble metabolites from cells.

  19. [Effect of silencing Bmi-1 expression in reversing cisplatin resistance in lung cancer cells and its mechanism].

    PubMed

    Mao, Nan; He, Guansheng; Rao, Jinjun; Lv, Lin

    2014-06-01

    To investigate the effect of silencing Bmi-1 expression in reversing cisplatin resistance in human lung cancer cells and explore the possible mechanisms. Cisplatin-resistant A549/DDP cells with small interference RNA (siRNA)-mediated Bmi-1 expression silencing were examined for cisplatin sensitivity using MTT assay and alterations in cell cycle distribution and apoptosis with flow cytometry, and the changes in cell senescence was assessed using β-galactosidase staining. The protein expressions of Bmi-1, P14(ARF), P16(INK4a), P53, P21, Rb and ubi-H2AK119 in the cells were determined with Western blotting. A549/DDP cells showed significantly higher Bmi-1 expression than A549 cells. After siRNA-mediated Bmi-1 silencing, A549/DDP cells showed significantly enhanced cisplatin sensitivity with an increased IC50 from 40.3±4.1 µmol/L to 18.3±2.8 µmol/L (P<0.01) and increased cell percentage in G0/G1 phase from (48.9±2.3)% to (78.7±7.6)% (P<0.01). Silencing Bmi-1 did not cause significant changes in the cell apoptosis rate but induced obvious senescence phenotype in A549/DDP cells with down-regulated expression of ubi-H2AK119 and up-regulated expressions of P14(ARF), P16(INK4a), P53, P21 and Rb. Silencing Bmi-1 by RNA interference can induce cell senescence and resensitize A549/DDP cells to cisplatin possibly by regulating INK4a/ARF/Rb senescence pathway.

  20. The processed isoform of the translation termination factor eRF3 localizes to the nucleus to interact with the ARF tumor suppressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Yoshifumi; Kumagai, Naomichi; Hosoda, Nao

    2014-03-14

    Highlights: • So far, eRF3 has been thought to function exclusively in the cytoplasm. • eRF3 is a nucleo-cutoplasmic shuttling protein. • eRF3 has a leptomycin-sensitive nuclear export signal (NES). • Removal of NES by proteolytic cleavage allows eRF3 to translocate to the nucleus. • The processed eRF3 (p-eRF3) interacts with a nuclear tumor suppressor ARF. - Abstract: The eukaryotic releasing factor eRF3 is a multifunctional protein that plays pivotal roles in translation termination as well as the initiation of mRNA decay. eRF3 also functions in the regulation of apoptosis; eRF3 is cleaved at Ala73 by an as yet unidentifiedmore » protease into processed isoform of eRF3 (p-eRF3), which interacts with the inhibitors of apoptosis proteins (IAPs). The binding of p-eRF3 with IAPs leads to the release of active caspases from IAPs, which promotes apoptosis. Although full-length eRF3 is localized exclusively in the cytoplasm, p-eRF3 localizes in the nucleus as well as the cytoplasm. We here focused on the role of p-eRF3 in the nucleus. We identified leptomycin-sensitive nuclear export signal (NES) at amino acid residues 61–71 immediately upstream of the cleavage site Ala73. Thus, the proteolytic cleavage of eRF3 into p-eRF3 leads to release an amino-terminal fragment containing NES to allow the relocalization of eRF3 into the nucleus. Consistent with this, p-eRF3 more strongly interacted with the nuclear ARF tumor suppressor than full-length eRF3. These results suggest that while p-eRF3 interacts with IAPs to promote apoptosis in the cytoplasm, p-eRF3 also has some roles in regulating cell death in the nucleus.« less

  1. Small-GTPase-associated signaling by the guanine nucleotide exchange factors CpDock180 and CpCdc24, the GTPase effector CpSte20, and the scaffold protein CpBem1 in Claviceps purpurea.

    PubMed

    Herrmann, Andrea; Tillmann, Britta A M; Schürmann, Janine; Bölker, Michael; Tudzynski, Paul

    2014-04-01

    Monomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability of Claviceps purpurea to infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling in C. purpurea.

  2. Differential Effects of the Putative GBF1 Inhibitors Golgicide A and AG1478 on Enterovirus Replication▿

    PubMed Central

    van der Linden, Lonneke; van der Schaar, Hilde M.; Lanke, Kjerstin H. W.; Neyts, Johan; van Kuppeveld, Frank J. M.

    2010-01-01

    The genus Enterovirus, belonging to the family Picornaviridae, includes well-known pathogens, such as poliovirus, coxsackievirus, and rhinovirus. Brefeldin A (BFA) impedes replication of several enteroviruses through inhibition of Golgi-specific BFA resistance factor 1 (GBF1), a regulator of secretory pathway integrity and transport. GBF1 mediates the GTP exchange of Arf1, which in activated form recruits coatomer protein complex I (COP-I) to Golgi vesicles, a process important in transport between the endoplasmic reticulum and Golgi vesicles. Recently, the drugs AG1478 and Golgicide A (GCA) were put forward as new inhibitors of GBF1. In this study, we investigated the effects of these putative GBF1 inhibitors on secretory pathway function and enterovirus replication. We show that both drugs induced fragmentation of the Golgi vesicles and caused dissociation of Arf1 and COP-I from Golgi membranes, yet they differed in their effect on GBF1 localization. The effects of AG1478, but not those of GCA, could be countered by overexpression of Arf1, indicating a difference in their molecular mechanism of action. Consistent with this idea, we observed that GCA drastically reduced replication of coxsackievirus B3 (CVB3) and other human enterovirus species, whereas AG1478 had no effect at all on enterovirus replication. Time-of-addition studies and analysis of RNA replication using a subgenomic replicon both showed that GCA suppresses RNA replication of CVB3, which could be countered by overexpression of GBF1. These results indicate that, in contrast to AG1478, GCA inhibits CVB3 RNA replication by targeting GBF1. AG1478 and GCA may be valuable tools to further dissect enterovirus replication. PMID:20504936

  3. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation

    PubMed Central

    Zou, Siying; Teixeira, Alexandra M.; Yin, Mingzhu; Xiang, Yaozu; Xavier-Ferruccio, Juliana; Zhang, Ping-xia; Hwa, John; Min, Wang; Krause, Diane S.

    2018-01-01

    Summary Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal hemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout, shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using 2 different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice. PMID:27345948

  4. Leukaemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation.

    PubMed

    Zou, Siying; Teixeira, Alexandra M; Yin, Mingzhu; Xiang, Yaozu; Xavier-Ferrucio, Juliana; Zhang, Ping-Xia; Hwa, John; Min, Wang; Krause, Diane S

    2016-08-30

    Leukemia-Associated RhoGEF (LARG) is highly expressed in platelets, which are essential for maintaining normal haemostasis. We studied the function of LARG in murine and human megakaryocytes and platelets with Larg knockout (KO), shRNA-mediated knockdown and small molecule-mediated inhibition. We found that LARG is important for human, but not murine, megakaryocyte maturation. Larg KO mice exhibit macrothrombocytopenia, internal bleeding in the ovaries and prolonged bleeding times. KO platelets have impaired aggregation, α-granule release and integrin α2bβ3 activation in response to thrombin and thromboxane, but not to ADP. The same agonist-specific reductions in platelet aggregation occur in human platelets treated with a LARG inhibitor. Larg KO platelets have reduced RhoA activation and myosin light chain phosphorylation, suggesting that Larg plays an agonist-specific role in platelet signal transduction. Using two different in vivo assays, Larg KO mice are protected from in vivo thrombus formation. Together, these results establish that LARG regulates human megakaryocyte maturation, and is critical for platelet function in both humans and mice.

  5. Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM (ywiD).

    PubMed

    Marino, M; Ramos, H C; Hoffmann, T; Glaser, P; Jahn, D

    2001-12-01

    Bacillus subtilis grows under anaerobic conditions utilizing nitrate ammonification and various fermentative processes. The two-component regulatory system ResDE and the redox regulator Fnr are the currently known parts of the regulatory system for anaerobic adaptation. Mutation of the open reading frame ywiD located upstream of the respiratory nitrate reductase operon narGHJI resulted in elimination of the contribution of nitrite dissimilation to anaerobic nitrate respiratory growth. Significantly reduced nitrite reductase (NasDE) activity was detected, while respiratory nitrate reductase activity was unchanged. Anaerobic induction of nasDE expression was found to be significantly dependent on intact ywiD, while anaerobic narGHJI expression was ywiD independent. Anaerobic transcription of hmp, encoding a flavohemoglobin-like protein, and of the fermentative operons lctEP and alsSD, responsible for lactate and acetoin formation, was partially dependent on ywiD. Expression of pta, encoding phosphotransacetylase involved in fermentative acetate formation, was not influenced by ywiD. Transcription of the ywiD gene was anaerobically induced by the redox regulator Fnr via the conserved Fnr-box (TGTGA-6N-TCACT) centered 40.5 bp upstream of the transcriptional start site. Anaerobic induction of ywiD by resDE was found to be indirect via resDE-dependent activation of fnr. The ywiD gene is subject to autorepression and nitrite repression. These results suggest a ResDE --> Fnr --> YwiD regulatory cascade for the modulation of genes involved in the anaerobic metabolism of B. subtilis. Therefore, ywiD was renamed arfM for anaerobic respiration and fermentation modulator.

  6. The use of primary rat hepatocytes to achieve metabolic activation of promutagens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase mutational assay.

    PubMed

    Bermudez, E; Couch, D B; Tillery, D

    1982-01-01

    A method is described in which primary rat hepatocytes have been cocultured with Chinese hamster ovary (CHO) cells to provide metabolic activation of promutagens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) mutational assay. Single cell hepatocyte suspensions were prepared from male Fischer-344 rats using the in situ collagenase perfusion technique. Hepatocytes were allowed to attach for 1.5 hours in tissue culture dishes containing an approximately equal number of CHO cells in log growth. The cocultures were exposed to promutagens for up to 20 hours in serum-free medium. The survival and 6-thioguanine-resistant fraction of treated CHO cells were then determined as in the standard CHO/HGPRT assay. Aflatoxin B1 (AFB1) 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene (B(A)P) were found to produce increases in the mutant fractions of treated CHO cells as a function of concentration. The time required for optimum expression of the mutant phenotype following exposure to DMBA and AFB1 was approximately 8 days. Primary cell-mediated mutagenesis may be useful in elucidating metabolic pathways important in the production and detoxification of genotoxic products in vivo.

  7. Myosin II-interacting guanine nucleotide exchange factor promotes bleb retraction via stimulating cortex reassembly at the bleb membrane.

    PubMed

    Jiao, Meng; Wu, Di; Wei, Qize

    2018-03-01

    Blebs are involved in various biological processes such as cell migration, cytokinesis, and apoptosis. While the expansion of blebs is largely an intracellular pressure-driven process, the retraction of blebs is believed to be driven by RhoA activation that leads to the reassembly of the actomyosin cortex at the bleb membrane. However, it is still poorly understood how RhoA is activated at the bleb membrane. Here, we provide evidence demonstrating that myosin II-interacting guanine nucleotide exchange factor (MYOGEF) is implicated in bleb retraction via stimulating RhoA activation and the reassembly of an actomyosin network at the bleb membrane during bleb retraction. Interaction of MYOGEF with ezrin, a well-known regulator of bleb retraction, is required for MYOGEF localization to retracting blebs. Notably, knockout of MYOGEF or ezrin not only disrupts RhoA activation at the bleb membrane, but also interferes with nonmuscle myosin II localization and activation, as well as actin polymerization in retracting blebs. Importantly, MYOGEF knockout slows down bleb retraction. We propose that ezrin interacts with MYOGEF and recruits it to retracting blebs, where MYOGEF activates RhoA and promotes the reassembly of the cortical actomyosin network at the bleb membrane, thus contributing to the regulation of bleb retraction. © 2018 Jiao et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Quenching of light flickering in synthetic guanine crystals in aqueous solutions under strong static magnetic fields

    NASA Astrophysics Data System (ADS)

    Mootha, A.; Takanezawa, Y.; Iwasaka, M.

    2018-05-01

    The present study focused on the vibration of micro crystal particles of guanine due to Brownian motion. The organic particle has a refractive index of 1.83 and caused a flickering of light. To test the possibility of using magnetic properties under wet conditions, changes in the frequency of particle vibration by applying magnetic fields were investigated. At first, we found that the exposure at 5 T inhibited the flickering light intensities and the particle vibration slightly decreased. Next, we carried out a high speed camera measurement of the Brownian motion of the particle with a time resolution of 100 flame per second (fps) with and without magnetic field exposures. It was revealed that the vibrational speed of synthetic particles was enhanced at 500 mT. Detailed analyses of the particle vibration by changing the direction of magnetic fields versus the light source revealed that the Brownian motion's vibrational frequency was entrained under magnetic fields at 500 mT, and an increase in vibration speed to 20Hz was observed. Additional measurements of light scattering fluctuation using photo-detector and analyses on auto-correlation also confirmed this speculation. The studied Brownian vibration may be influenced by the change in mechanical interactions between the vibration particles and surrounding medium. The discovered phenomena can be applied for molecular and biological interactions in future studies.

  9. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-05-11

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.

  10. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed Central

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-01-01

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process. Images PMID:1645868

  11. QuadBase2: web server for multiplexed guanine quadruplex mining and visualization

    PubMed Central

    Dhapola, Parashar; Chowdhury, Shantanu

    2016-01-01

    DNA guanine quadruplexes or G4s are non-canonical DNA secondary structures which affect genomic processes like replication, transcription and recombination. G4s are computationally identified by specific nucleotide motifs which are also called putative G4 (PG4) motifs. Despite the general relevance of these structures, there is currently no tool available that can allow batch queries and genome-wide analysis of these motifs in a user-friendly interface. QuadBase2 (quadbase.igib.res.in) presents a completely reinvented web server version of previously published QuadBase database. QuadBase2 enables users to mine PG4 motifs in up to 178 eukaryotes through the EuQuad module. This module interfaces with Ensembl Compara database, to allow users mine PG4 motifs in the orthologues of genes of interest across eukaryotes. PG4 motifs can be mined across genes and their promoter sequences in 1719 prokaryotes through ProQuad module. This module includes a feature that allows genome-wide mining of PG4 motifs and their visualization as circular histograms. TetraplexFinder, the module for mining PG4 motifs in user-provided sequences is now capable of handling up to 20 MB of data. QuadBase2 is a comprehensive PG4 motif mining tool that further expands the configurations and algorithms for mining PG4 motifs in a user-friendly way. PMID:27185890

  12. Determination of the kinetics of guanine nucleotide exchange on EF-Tu and EF-Ts: continuing uncertainties.

    PubMed

    Manchester, Keith L

    2004-01-30

    An analysis is made of the rate constants for the reactions involving the interactions of EF-Tu, EF-Ts, GDP, and GTP recently derived by Gromadski et al. [Biochemistry 41 (2002) 162]. Though their measured values appear to allow a reasonable rate of nucleotide exchange sufficient to support rates of protein synthesis in vivo, their data underestimate the thermodynamic barrier involved in nucleotide exchange and therefore cannot be considered definitive. A kinetic scheme consistent with the thermodynamic barrier can be achieved by modification of various rate constants, particularly of those involving the release of EF-Ts from EF-Tu.GTP.EF-Ts, but such constants are markedly different from what are experimentally observed. It thus remains impossible at present satisfactorily to model guanine nucleotide exchange on EF-Tu, catalysed by EF-Ts by a double displacement mechanism, with experimentally derived rate constants. Metabolic control analysis has been applied to determine the degree of flux control of the different steps in the pathway.

  13. Increased mortality in hematological malignancy patients with acute respiratory failure from undetermined etiology: a Groupe de Recherche en Réanimation Respiratoire en Onco-Hématologique (Grrr-OH) study.

    PubMed

    Contejean, Adrien; Lemiale, Virginie; Resche-Rigon, Matthieu; Mokart, Djamel; Pène, Frédéric; Kouatchet, Achille; Mayaux, Julien; Vincent, François; Nyunga, Martine; Bruneel, Fabrice; Rabbat, Antoine; Perez, Pierre; Meert, Anne-Pascale; Benoit, Dominique; Hamidfar, Rebecca; Darmon, Michael; Jourdain, Mercé; Renault, Anne; Schlemmer, Benoît; Azoulay, Elie

    2016-12-01

    Acute respiratory failure (ARF) is the most frequent complication in patients with hematological malignancies and is associated with high morbidity and mortality. ARF etiologies are numerous, and despite extensive diagnostic workflow, some patients remain with undetermined ARF etiology. This is a post-hoc study of a prospective multicenter cohort performed on 1011 critically ill hematological patients. Relationship between ARF etiology and hospital mortality was assessed using a multivariable regression model adjusting for confounders. This study included 604 patients with ARF. All patients underwent noninvasive diagnostic tests, and a bronchoscopy and bronchoalveolar lavage (BAL) was performed in 155 (25.6%). Definite diagnoses were classified into four exclusive etiological categories: pneumonia (44.4%), non-infectious diagnoses (32.6%), opportunistic infection (10.1%) and undetermined (12.9%), with corresponding hospital mortality rates of 40, 35, 55 and 59%, respectively. Overall hospital mortality was 42%. By multivariable analysis, factors associated with hospital mortality were invasive pulmonary aspergillosis (OR 7.57 (95% CI 3.06-21.62); p < 0.005), use of invasive mechanical ventilation (OR 1.65 (95% CI 1.07-2.55); p = 0.02), a SOFA score >7 (OR 3.32 (95% CI 2.15-5.15); p < 0.005) and an undetermined ARF etiology (OR 2.92 (95% CI 1.71-5.07); p < 0.005). In patients with hematological malignancies and ARF, up to 13% remain with undetermined ARF etiology despite comprehensive diagnostic workup. Undetermined ARF etiology is independently associated with hospital mortality. Studies to guide second-line diagnostic strategies are warranted. ClinicalTrials.Gov NCT01172132.

  14. Dissociation of Rac1(GDP)·RhoGDI Complexes by the Cooperative Action of Anionic Liposomes Containing Phosphatidylinositol 3,4,5-Trisphosphate, Rac Guanine Nucleotide Exchange Factor, and GTP*

    PubMed Central

    Ugolev, Yelena; Berdichevsky, Yevgeny; Weinbaum, Carolyn; Pick, Edgar

    2008-01-01

    Rac plays a pivotal role in the assembly of the superoxide-generating NADPH oxidase of phagocytes. In resting cells, Rac is found in the cytosol in complex with Rho GDP dissociation inhibitor (RhoGDI). NADPH oxidase assembly involves dissociation of the Rac·RhoGDI complex and translocation of Rac to the membrane. We reported that liposomes containing high concentrations of monovalent anionic phospholipids cause Rac·RhoGDI complex dissociation (Ugolev, Y., Molshanski-Mor, S., Weinbaum, C., and Pick, E. (2006) J. Biol. Chem.281 ,19204 -1921916702219). We now designed an in vitro model mimicking membrane phospholipid remodeling during phagocyte stimulation in vivo. We showed that liposomes of “resting cell membrane” composition (less than 20 mol % monovalent anionic phospholipids), supplemented with 1 mol % of polyvalent anionic phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) in conjunction with constitutively active forms of the guanine nucleotide exchange factors (GEFs) for Rac, Trio, or Tiam1 and a non-hydrolyzable GTP analogue, cause dissociation of Rac1(GDP)·RhoGDI complexes, GDP to GTP exchange on Rac1, and binding of Rac1(GTP) to the liposomes. Complexes were not dissociated in the absence of GEF and GTP, and optimal dissociation required the presence of PtdIns(3,4,5)P3 in the liposomes. Dissociation of Rac1(GDP)·RhoGDI complexes was correlated with the affinity of particular GEF constructs, via the N-terminal pleckstrin homology domain, for PtdIns(3,4,5)P3 and involved GEF-mediated GDP to GTP exchange on Rac1. Phagocyte membranes enriched in PtdIns(3,4,5)P3 responded by NADPH oxidase activation upon exposure in vitro to Rac1(GDP)·RhoGDI complexes, p67phox, GTP, and Rac GEF constructs with affinity for PtdIns(3,4,5)P3 at a level superior to that of native membranes. PMID:18505730

  15. On the Formation and Properties of Interstrand DNA-DNA Cross-links Forged by Reaction of an Abasic Site With the Opposing Guanine Residue of 5′-CAp Sequences in Duplex DNA

    PubMed Central

    Johnson, Kevin M.; Price, Nathan E.; Wang, Jin; Fekry, Mostafa I.; Dutta, Sanjay; Seiner, Derrick R.; Wang, Yinsheng; Gates, Kent S.

    2014-01-01

    We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5′-CAp sequence under conditions of reductive amination (NaCNBH3, pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions and, once formed, the cross-link was stable to a variety of work-up conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LCMS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N2-amino group of the opposing guanine residue in 5′-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH3/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N2-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH3. PMID:23215239

  16. High-performance liquid chromatography/electrospray mass spectrometry for the analysis of modified bases in DNA: 7-(2-hydroxyethyl)guanine, the major ethylene oxide-DNA adduct.

    PubMed

    Leclercq, L; Laurent, C; De Pauw, E

    1997-05-15

    A method was developed for the analysis of 7-(2-hydroxyethyl)guanine (7HEG), the major DNA adduct formed after exposure to ethylene oxide (EO). The method is based on DNA neutral thermal hydrolysis, adduct micro-concentration, and final characterization and quantification by HPLC coupled to single-ion monitoring electrospray mass spectrometry (HPLC/SIR-ESMS). The method was found to be selective, sensitive, and easy to handle with no need for enzymatic digestion or previous sample derivatization. Detection limit was found to be close to 1 fmol of adduct injected (10(-10) M), thus allowing the detection of approximately three modified bases on 10(8) intact nucleotides in blood sample analysis. Quantification results are shown for 7HEG after calf thymus DNA and blood exposure to various doses of EO, in both cases obtaining clear dose-response relationships.

  17. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    PubMed Central

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  18. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    PubMed Central

    2011-01-01

    Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-/-, integrin-beta1-/-, focal adhesion kinase (FAK)-/- and Src/Yes/Fyn-/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1/2-/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker molecule between Cdc42 and

  19. Spiroiminodihydantoin lesions derived from guanine oxidation: structures, energetics, and functional implications.

    PubMed

    Jia, Lei; Shafirovich, Vladimir; Shapiro, Robert; Geacintov, Nicholas E; Broyde, Suse

    2005-04-26

    Reactive oxygen species present in the cell generate DNA damage. One of the major oxidation products of guanine in DNA, 8-oxo-7,8-dihydroguanine, formed by loss of two electrons, is among the most extensively studied base lesions. The further removal of two electrons from this product can yield spiroiminodihydantoin (Sp) R and S stereoisomers. Both in vitro and in vivo experiments have shown that the Sp stereoisomers are highly mutagenic, causing G --> T and G --> C transversions. Hence, they are of interest as examples of endogenous DNA damage that may initiate cancer. To interpret the mutagenic properties of the Sp lesions, an understanding of their structural properties is needed. To elucidate these structural effects, we have carried out computational investigations at the level of the Sp-modified base and nucleoside. At the base level, quantum mechanical geometry optimization studies have revealed exact mirror image symmetry of the R and S stereoisomers, with a near-perpendicular geometry of the two rings. At the nucleoside level, an extensive survey of the potential energy surface by molecular mechanics calculations using AMBER has provided three-dimensional potential energy maps. These maps reveal that the range and flexibility of the glycosidic torsion angles are significantly more restricted in both stereoisomeric adducts than in unmodified 2'-deoxyguanosine. The structural and energetic results suggest that the unusual geometric, steric, and hydrogen bonding properties of these lesions underlie their mutagenicity. In addition, stereoisomer-specific differences indicate the possibility that their processing by cellular replication and repair enzymes may be differentially affected by their absolute configuration.

  20. Utility of Serum Creatinine, Creatine Kinase and Urinary Myoglobin in Detecting Acute Renal Failure due to Rhabdomyolysis in Trauma and Electrical Burns Patients.

    PubMed

    Bhavsar, Preetish; Rathod, Kirtikumar Jagdish; Rathod, Darshana; Chamania, C S

    2013-02-01

    Rhabdomyolysis due to trauma and burns is an important cause of acute renal failure (ARF) secondary to myoglobinuria. To prevent morbidity and mortality from ARF due to rhabdomyolysis, early detection of ARF by monitoring the biochemical parameters such as serum creatinine, serum creatine kinase (CK), and urinary myoglobin (UM) can be helpful. The aims of the study were (1) to detect ARF due to rhabdomyolysis using serum creatinine, serum CK, and UM in trauma and electrical burn patients (2) to compare utility of these parameters in early prediction of ARF in patients of rhabdomyolysis. A total of 50 patients with trauma and electrical burns were included in the study. Serum creatinine, serum CK, and UM measurements were done at the time of admission and after 48 h. Diagnosis of ARF was made in the patients by Rifle's criteria. The presence of significant elevation of creatinine, serum CK, and UM at the time of admission and after 48 h was compared in patients developing ARF by Fisher's exact test. Fifteen of the 50 patients developed ARF as per the defined criteria. Of these, 9 patients (60 %) had raised level of serum creatinine above 1.4 mg% at admission and 14 patients (93.33 %) had CK level >1250 U/L at admission, whereas UM was positive in 6 (40 %) patients. Serum creatinine was significantly raised in all of the 15 ARF patients (100 %) after 48 h of admission and serum CK was raised in 14 of the 15 ARF patients (93.33 %). UM was negative in all the patients after 48 h of admission. Statistical analysis showed that rise in serum CK on admission was significantly increased in patients developing ARF as compared with serum creatinine and UM (P < 0.0001). On admission, CK is a better predictor of ARF due to rhabdomyolysis than creatinine and UM. Initial creatinine is a better predictor of ARF due to rhabdomyolysis than UM. UM assay is not a good investigation for early prediction of ARF in rhabdomyolysis.

  1. Formation of diastereomeric benzo[a]pyrene diol epoxide-guanine adducts in p53 gene-derived DNA sequences.

    PubMed

    Matter, Brock; Wang, Gang; Jones, Roger; Tretyakova, Natalia

    2004-06-01

    G --> T transversion mutations in the p53 tumor suppressor gene are characteristic of smoking-related lung tumors, suggesting that these genetic changes may result from exposure to tobacco carcinogens. It has been previously demonstrated that the diol epoxide metabolites of bay region polycyclic aromatic hydrocarbons present in tobacco smoke, e.g., benzo[a]pyrene diol epoxide (BPDE), preferentially bind to the most frequently mutated guanine nucleotides within p53 codons 157, 158, 248, and 273 [Denissenko, M. F., Pao, A., Tang, M., and Pfeifer, G. P. (1996) Science 274, 430-432]. However, the methodology used in that work (ligation-mediated polymerase chain reaction in combination with the UvrABC endonuclease incision assay) cannot establish the chemical structures and stereochemical identities of BPDE-guanine lesions. In the present study, we employ a stable isotope-labeling HPLC-MS/MS approach [Tretyakova, N., Matter, B., Jones, R., and Shallop, A. (2002) Biochemistry 41, 9535-9544] to analyze the formation of diastereomeric N(2)-BPDE-dG lesions within double-stranded oligodeoxynucleotides representing p53 lung cancer mutational hotspots and their surrounding DNA sequences. (15)N-labeled dG was placed at defined positions within DNA duplexes containing 5-methylcytosine at all physiologically methylated sites, followed by (+/-)-anti-BPDE treatment and enzymatic hydrolysis of the adducted DNA to 2'-deoxynucleosides. Capillary HPLC-ESI(+)-MS/MS was used to establish the amounts of (-)-trans-N(2)-BPDE-dG, (+)-cis-N(2)-BPDE-dG, (-)-cis-N(2)-BPDE-dG, and (+)-trans-N(2)-BPDE-dG originating from the (15)N-labeled bases. We found that all four N(2)-BPDE-dG diastereomers were formed preferentially at the methylated CG dinucleotides, including the frequently mutated p53 codons 157, 158, 245, 248, and 273. The contributions of individual diastereomers to the total adducts number at a given site varied between 70.8 and 92.9% for (+)-trans-N(2)-BPDE-dG, 5.6 and 16.7% for

  2. Large space systems technology, 1980, volume 1

    NASA Technical Reports Server (NTRS)

    Kopriver, F., III (Compiler)

    1981-01-01

    The technological and developmental efforts in support of the large space systems technology are described. Three major areas of interests are emphasized: (1) technology pertient to large antenna systems; (2) technology related to large space systems; and (3) activities that support both antenna and platform systems.

  3. Syk-mediated tyrosine phosphorylation of mule promotes TNF-induced JNK activation and cell death.

    PubMed

    Lee, C K; Yang, Y; Chen, C; Liu, J

    2016-04-14

    The transcription factor Miz1 negatively regulates TNF-induced JNK activation and cell death by suppressing TRAF2 K63-polyubiquitination; upon TNF stimulation, the suppression is relieved by Mule/ARF-BP1-mediated Miz1 ubiquitination and subsequent degradation. It is not known how Mule is activated by TNF. Here we report that TNF activates Mule by inducing the dissociation of Mule from its inhibitor ARF. ARF binds to and thereby inhibits the E3 ligase activity of Mule in the steady state. TNF induces tyrosine phosphorylation of Mule, which subsequently dissociates from ARF and becomes activated. Inhibition of Mule phosphorylation by silencing of the Spleen Tyrosine Kinase (Syk) prevents its dissociation from ARF, thereby inhibiting Mule E3 ligase activity and TNF-induced JNK activation and cell death. Our data provides a missing link in TNF signaling pathway that leads to JNK activation and cell death.

  4. Acute renal failure in acute poisoning: prospective study from a tertiary care centre of South India.

    PubMed

    Sweni, Shah; Meenakshisundaram, Ramachandran; Sakthirajan, R; Rajendiran, Chinnasamy; Thirumalaikolundusubramanian, Ponniah

    2012-03-01

    Cases of people presenting with poisoning are likely to develop acute renal failure (ARF), which may be due to multiple mechanisms/aetiologies. These cases need careful observation and appropriate treatment. To find the risk of ARF among acute poisoning cases, identify the underlying causes and to analyse the outcome. In this prospective study with nested case control, 1,250 cases admitted to the Poison Control, Training and Research Centre of Government General Hospital, Madras Medical College were monitored and evaluated for development of ARF. Patients with history of diabetes/hypertension, known chronic kidney disease, chronic NSAID therapy, those on drugs that increase serum creatinine by inhibiting creatinine secretion and other co-morbid illnesses were excluded. Data were interpreted after subjecting them to bivariate logistic regression and then step wise multivariate analysis. Thirty-two cases developed ARF. Twenty-four were due to snake bite, the rest due to chemical poisons. Chances of developing ARF were greater (6.15%) among the poisoning due to bites and stings than chemical poisoning (0.9%). Five in the former and seven in the latter expired. Among cases bitten by snakes, only 22 (7%) cases bitten by Russell Viper Daboia russelii developed renal failure. Copper sulphate and rat killer poisonings were the commonest causes of chemical induced ARF, dichromate, indigenous medicines and vasmol 33 (paraphenelyne diamine) were the least causes for ARF. None of the patients with organophosphate developed ARF nor did any of the 150 admitted for overdose of medicines developed ARF. The risk of ARF among the cases of poisoning was 2.5%. The outcome of ARF among bites and stings was better than chemical poisoning, and the difference was highly significant (p= 0.005, OR = 0.04-1.0, 95% CI = 0.004-0.38). Early recognition and appropriate measures reduce the occurrence of ARF. © 2011 European Dialysis and Transplant Nurses Association/European Renal Care

  5. Toxicity, Mutagenicity, and Mutational Spectra of Vinyl Chloride, 2- Chloroethylene Oxide, and Chloracetaldehyde in a Human Lymphoblastoid Line Expressing Cytochrome P450IIE1.

    DTIC Science & Technology

    1992-01-01

    concluded that CEO was the alkylating agent involved in conversion of adenosine to l,N 6 -ethenoadenosine. 1,N6 - Ethenoadenosine was not produced by CEO...guanines as nearest neighbors upon the alkylation of a guanine residue in DNA. N-methyl-N- nitrosourea (MNU) was reacted with a synthetic polynucleotide...the alkylating agent MNNG or the intercalating agent ICR-191. In the study they determined that mutants comprising at least one percent of the total

  6. Folding of guanine quadruplex molecules-funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies.

    PubMed

    Šponer, Jiří; Bussi, Giovanni; Stadlbauer, Petr; Kührová, Petra; Banáš, Pavel; Islam, Barira; Haider, Shozeb; Neidle, Stephen; Otyepka, Michal

    2017-05-01

    Guanine quadruplexes (GQs) play vital roles in many cellular processes and are of much interest as drug targets. In contrast to the availability of many structural studies, there is still limited knowledge on GQ folding. We review recent molecular dynamics (MD) simulation studies of the folding of GQs, with an emphasis paid to the human telomeric DNA GQ. We explain the basic principles and limitations of all types of MD methods used to study unfolding and folding in a way accessible to non-specialists. We discuss the potential role of G-hairpin, G-triplex and alternative GQ intermediates in the folding process. We argue that, in general, folding of GQs is fundamentally different from funneled folding of small fast-folding proteins, and can be best described by a kinetic partitioning (KP) mechanism. KP is a competition between at least two (but often many) well-separated and structurally different conformational ensembles. The KP mechanism is the only plausible way to explain experiments reporting long time-scales of GQ folding and the existence of long-lived sub-states. A significant part of the natural partitioning of the free energy landscape of GQs comes from the ability of the GQ-forming sequences to populate a large number of syn-anti patterns in their G-tracts. The extreme complexity of the KP of GQs typically prevents an appropriate description of the folding landscape using just a few order parameters or collective variables. We reconcile available computational and experimental studies of GQ folding and formulate basic principles characterizing GQ folding landscapes. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. K-ras gene sequence effects on the formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-DNA adducts.

    PubMed

    Ziegel, Rebecca; Shallop, Anthony; Jones, Roger; Tretyakova, Natalia

    2003-04-01

    The tobacco specific pulmonary carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is metabolically activated to electrophilic species that form methyl and pyridyloxobutyl adducts with genomic DNA, including O(6)-methylguanine, N7-methylguanine, and O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine. If not repaired, these lesions could lead to mutations and the initiation of cancer. Previous studies used ligation-mediated polymerase chain reaction (LMPCR) in combination with PAGE to examine the distribution of NNK-induced strand breaks and alkali labile lesions (e.g., N7-methylguanine) within gene sequences. However, LMPCR cannot be used to establish the distribution patterns of highly promutagenic O(6)-methylguanine and O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine adducts of NNK. We have developed methods based on stable isotope labeling HPLC-electrospray ionization tandem mass spectrometry (HPLC-ESI MS/MS) that enable us to accurately quantify NNK-induced adducts at defined sites within DNA sequences. In the present study, the formation of N7-methylguanine, O(6)-methylguanine, and O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine adducts at specific positions within a K-ras gene-derived double-stranded DNA sequence (5'-G(1)G(2)AG(3)CTG(4)G(5)TG(6)G(7)CG(8)TA G(9)G(10)C-3') was investigated following treatment with activated NNK metabolites. All three lesions preferentially formed at the second position of codon 12 (GGT), the major mutational hotspot for G-->A and G-->T base substitutions observed in smoking-induced lung tumors. Therefore, our data support the involvement of NNK and other tobacco specific nitrosamines in mutagenesis and carcinogenesis.

  8. Antinociceptive effects of intracerebroventricular administration of guanine-based purines in mice: evidences for the mechanism of action.

    PubMed

    Schmidt, André P; Böhmer, Ana Elisa; Leke, Renata; Schallenberger, Cristhine; Antunes, Catiele; Pereira, Mery Stéfani L; Wofchuk, Susana T; Elisabetsky, Elaine; Souza, Diogo O

    2008-10-09

    It is well known that adenine-based purines exert multiple effects on pain transmission. However, less attention has been given to the potential effects of guanine-based purines (GBPs) on pain transmission. The aim of this study was to investigate the effects of intracerebroventricular (i.c.v.) guanosine and GMP on mice pain models. Mice received an i.c.v. injection of vehicle (saline or 10 muM NaOH), guanosine (5 to 400 nmol), or GMP (240 to 960 nmol). Additional groups were also pre-treated with i.c.v. injection of the A(1)/A(2A) antagonist caffeine (15 nmol), the non-selective opioid antagonist naloxone (12.5 nmol), or the 5'-nucleotidase inhibitor AOPCP (1 nmol). Measurements of CSF purine levels and cortical glutamate uptake were performed after treatments. Guanosine and GMP produced dose-dependent antinociceptive effects. Neither caffeine nor naloxone affected guanosine antinociception. Pre-treatment with AOPCP completely prevented GMP antinociception, indicating that conversion of GMP to guanosine is required for its antinociceptive effects. Intracerebroventricular administration of guanosine and GMP induced, respectively, a 180- and 1800-fold increase on CSF guanosine levels. Guanosine was able to prevent the decrease on cortical glutamate uptake induced by intraplantar capsaicin. This study provides new evidence on the mechanism of action of GBPs, with guanosine and GMP presenting antinociceptive effects in mice. This effect seems to be independent of adenosine and opioid receptors; it is, however, at least partially associated with modulation of the glutamatergic system by guanosine.

  9. The epidemiology of rheumatic fever in the Tairawhiti/Gisborne region of New Zealand: 1997-2009.

    PubMed

    Siriett, Victoria; Crengle, Sue; Lennon, Diana; Stonehouse, Mary; Cramp, Geoffrey

    2012-11-09

    To establish Acute Rheumatic Fever (ARF) rates within the Tairawhiti District Health Board (1997-2009) to identify communities for primary prevention programmes. ARF cases (1997-2009) sought by audit of Gisborne Hospital admissions, penicillin prophylaxis lists and the EpiSurv notifiable disease database. ARF rates (n=44 cases) during 1997 to 2009 (7.6/100,000) with a continuing significant disparity between Maori (n=40, 15.2/100,000) and non-Maori, (n=3, 1.1/100,000). One case was Pacific. This disparity was marked in school-aged children (5-14 years: Maori 59/100,000 vs non-Maori 8/100,000). Over 80% of ARF cases demonstrated heart damage (18% moderate, 20% severe and 8% requiring heart surgery). ARF cases were strongly associated with living and schooling within high deprivation areas Forty ARF cases were enrolled in 13/21 Gisborne schools, 4/18 East Coast schools and 2/17 western rural schools. (No school for 8 cases). When assessed as a percentage of school rolls there were no discernable differences between primary, intermediate and secondary schools. Of the 44 cases, 35 (80%) resided in areas of NZDep06 score 8-10 (most deprived). Very high ARF rates were recorded in the 1960's; the continuing burden of ARF in Maori children indicate a strong requirement for primary prevention strategies. Progress has plateaued in the last 20 years.

  10. Calcium diacylglycerol guanine nucleotide exchange factor I (CalDAG-GEFI) gene mutations in a thrombopathic Simmental calf.

    PubMed

    Boudreaux, M K; Schmutz, S M; French, P S

    2007-11-01

    Simmental thrombopathia is an inherited platelet disorder that closely resembles the platelet disorders described in Basset Hounds and Eskimo Spitz dogs. Recently, two different mutations in the gene encoding calcium diacylglycerol guanine nucleotide exchange factor I (CalDAG-GEFI) were described to be associated with the Basset Hound and Spitz thrombopathia disorders, and a third distinct mutation was identified in CalDAG-GEFI in thrombopathic Landseers of European Continental Type. The gene encoding CalDAG-GEFI was sequenced using DNA obtained from normal cattle and from a thrombopathic calf studied in Canada. The affected calf was found to have a nucleotide change (c.701 T>C), which would result in the substitution of a proline for a leucine within structurally conserved region two (SCR2) of the catalytic domain of the protein. This change is likely responsible for the thrombopathic phenotype observed in Simmental cattle and underscores the critical nature of this signal transduction protein in platelets.

  11. Levels of HIV1 gp120 3D B-cell epitopes mutability and variability: searching for possible vaccine epitopes.

    PubMed

    Khrustalev, Vladislav Victorovich

    2010-01-01

    We used a DiscoTope 1.2 (http://www.cbs.dtu.dk/services/DiscoTope/), Epitopia (http://epitopia.tau.ac.il/) and EPCES (http://www.t38.physik.tu-muenchen.de/programs.htm) algorithms to map discontinuous B-cell epitopes in HIV1 gp120. The most mutable nucleotides in HIV genes are guanine (because of G to A hypermutagenesis) and cytosine (because of C to U and C to A mutations). The higher is the level of guanine and cytosine usage in third (neutral) codon positions and the lower is their level in first and second codon positions of the coding region, the more stable should be an epitope encoded by this region. We compared guanine and cytosine usage in regions coding for five predicted 3D B-cell epitopes of gp120. To make this comparison we used GenBank resource: 385 sequences of env gene obtained from ten HIV1-infected individuals were studied (http://www.barkovsky.hotmail.ru/Data/Seqgp120.htm). The most protected from nonsynonymous nucleotide mutations of guanine and cytosine 3D B-cell epitope is situated in the first conserved region of gp120 (it is mapped from 66th to 86th amino acid residue). We applied a test of variability to confirm this finding. Indeed, the less mutable predicted B-cell epitope is the less variable one. MEGA4 (standard PAM matrix) was used for the alignments and "VVK Consensus" algorithm (http://www.barkovsky.hotmail.ru) was used for the calculations.

  12. ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D2 receptors mediated by GRK and PKC in transfected cells

    PubMed Central

    Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM

    2013-01-01

    Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues involved in GRK-mediated internalization of D2 receptors, which induced receptor resensitization. ARF6 mediated the recycling of D2 receptors internalized in response to agonist stimulation. In contrast, GASP-1 mediated the down-regulation of D2 receptors internalized in a PKC-dependent manner. Conclusions and Implications GRK- and PKC-mediated internalizations of D2 receptors occur through different intracellular trafficking pathways and mediate distinct functional roles. Distinct S/T residues within D2 receptors and different sorting proteins are involved in the dissimilar regulation of D2 receptors by GRK2 and PKC. PMID:23082996

  13. Enhanced recognition of HIV-1 Cryptic Epitopes Restricted by HLA-Class I alleles Associated with a Favorable Clinical Outcome

    PubMed Central

    Bansal, Anju; Mann, Tiffanie; Sterrett, Sarah; Peng, Binghao J.; Bet, Anne; Carlson, Jonathan M.; Goepfert, Paul A.

    2015-01-01

    Background Cryptic Epitopes (CE) are peptides derived from the translation of one or more of the five alternative reading frames (ARFs; 2 sense and 3 antisense) of genes. Here, we compared response rates to HIV-1 specific CE predicted to be restricted by HLA-I alleles associated with protection against disease progression to those without any such association. Methods Peptides (9–11mer) were designed based on HLA-I binding algorithms for B*27, B*57 or B*5801 (protective alleles) and HLA-B*5301 or B*5501 (non-protective allele) in all five ARFs of the nine HIV-1 encoded proteins. Peptides with >50% probability of being an epitope (n=231) were tested for T cell responses in an IFN-γ ELISpot assay. PBMC samples from HIV-1 seronegative donors (n=42) and HIV-1 seropositive patients with chronic clade B infections (n=129) were used. Results Overall, 16%, 2%, and 2% of CHI patients had CE responses by IFN-γ ELISpot in the protective, non-protective, and seronegative groups, respectively (p=0.009, Fischer’s exact test). Twenty novel CE specific responses were mapped (median magnitude of 95 SFC/106 PBMC) and the majority were both anti-sense derived (90%) as well as represented ARFs of accessory proteins (55%). CE-specific CD8 T cells were multifunctional and proliferated when assessed by intracellular cytokine staining. Conclusions CE responses were preferentially restricted by the protective HLA-I alleles in HIV-1 infection suggesting that they may contribute to viral control in this group of patients. PMID:26322665

  14. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis

    PubMed Central

    Mo, Lan; Zheng, Xiaoyong; Huang, Hong-Ying; Shapiro, Ellen; Lepor, Herbert; Cordon-Cardo, Carlos; Sun, Tung-Tien; Wu, Xue-Ru

    2007-01-01

    Although ras is a potent mitogenic oncogene, its tumorigenicity depends on cellular context and cooperative events. Here we show that low-level expression of a constitutively active Ha-ras in mouse urothelium induces simple urothelial hyperplasia that is resistant to progression to full-fledged bladder tumors even in the absence of Ink4a/Arf. In stark contrast, doubling of the gene dosage of the activated Ha-ras triggered early-onset, rapidly growing, and 100% penetrant tumors throughout the urinary tract. Tumor initiation required superseding a rate-limiting step between simple and nodular hyperplasia, the latter of which is marked by the emergence of mesenchymal components and the coactivation of AKT and STAT pathways as well as PTEN inactivation. These results indicate that overactivation of Ha-ras is both necessary and sufficient to induce bladder tumors along a low-grade, noninvasive papillary pathway, and they shed light on the recent findings that ras activation, via point mutation, overexpression, or intensified signaling from FGF receptor 3, occurs in 70%–90% of these tumors in humans. Our results highlight the critical importance of the dosage/strength of Ha-ras activation in dictating its tumorigenicity — a mechanism of oncogene activation not fully appreciated to date. Finally, our results have clinical implications, as inhibiting ras and/or its downstream effectors, such as AKT and STAT3/5, could provide alternative means to treat low-grade, superficial papillary bladder tumors, the most common tumor in the urinary system. PMID:17256055

  15. Surface morphology and subsurface damaged layer of various glasses machined by 193-nm ArF excimer laser

    NASA Astrophysics Data System (ADS)

    Liao, Yunn-shiuan; Chen, Ying-Tung; Chao, Choung-Lii; Liu, Yih-Ming

    2005-01-01

    Owing to the high bonding energy, most of the glasses are removed by photo-thermal rather than photo-chemical effect when they are ablated by the 193 or 248nm excimer lasers. Typically, the machined surface is covered by re-deposited debris and the sub-surface, sometimes surface as well, is scattered with micro-cracks introduced by thermal stress generated during the process. This study aimed to investigate the nature and extent of the surface morphology and sub-surface damaged (SSD) layer induced by the laser ablation. The effects of laser parameters such as fluence, shot number and repetition rate on the morphology and SSD were discussed. An ArF excimer laser (193 nm) was used in the present study to machine glasses such as soda-lime, Zerodur and BK-7. It is found that the melt ejection and debris deposition tend to pile up higher and become denser in structure under a higher energy density, repetition rate and shot number. There are thermal stress induced lateral cracks when the debris covered top layer is etched away. Higher fluence and repetition rate tend to generate more lateral and median cracks which propagate into the substrate. The changes of mechanical properties of the SSD layer were also investigated.

  16. Guanine-Nucleotide Exchange Factors (RAPGEF3/RAPGEF4) Induce Sperm Membrane Depolarization and Acrosomal Exocytosis in Capacitated Stallion Sperm1

    PubMed Central

    McPartlin, L.A.; Visconti, P.E.; Bedford-Guaus, S.J.

    2011-01-01

    Capacitation encompasses the molecular changes sperm undergo to fertilize an oocyte, some of which are postulated to occur via a cAMP-PRKACA (protein kinase A)-mediated pathway. Due to the recent discovery of cAMP-activated guanine nucleotide exchange factors RAPGEF3 and RAPGEF4, we sought to investigate the separate roles of PRKACA and RAPGEF3/RAPGEF4 in modulating capacitation and acrosomal exocytosis. Indirect immunofluorescence localized RAPGEF3 to the acrosome and subacrosomal ring and RAPGEF4 to the midpiece in equine sperm. Addition of the RAPGEF3/RAPGEF4-specific cAMP analogue 8-(p-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (8pCPT) to sperm incubated under both noncapacitating and capacitating conditions had no effect on protein tyrosine phosphorylation, thus supporting a PRKACA-mediated event. Conversely, activation of RAPGEF3/RAPGEF4 with 8pCPT induced acrosomal exocytosis in capacitated equine sperm at rates (34%) similar (P > 0.05) to those obtained in progesterone- and calcium ionophore-treated sperm. In the mouse, capacitation-dependent hyperpolarization of the sperm plasma membrane has been shown to recruit low voltage-activated T-type Ca2+ channels, which later open in response to zona pellucida-induced membrane depolarization. We hypothesized that RAPGEF3 may be inducing acrosomal exocytosis via depolarization-dependent Ca2+ influx, as RAPGEF3/RAPGEF4 have been demonstrated to play a role in the regulation of ion channels in somatic cells. We first compared the membrane potential (Em) of noncapacitated (−37.11 mV) and capacitated (−53.74 mV; P = 0.002) equine sperm. Interestingly, when sperm were incubated (6 h) under capacitating conditions in the presence of 8pCPT, Em remained depolarized (−32.06 mV). Altogether, these experiments support the hypothesis that RAPGEF3/RAPGEF4 activation regulates acrosomal exocytosis via its modulation of Em, a novel role for RAPGEF3/RAPGEF4 in the series of events required to

  17. Characterization of Neurofibromas of the Skin and Spinal Roots in a Mouse Model

    DTIC Science & Technology

    2010-02-01

    Overall mortality was low (Figure 5B). We never detected any MPNSTs or neurofibromas in these mice, though we did observe some hematopoietic neoplasms ...observed a significant frequency of hematopoietic neoplasms among Nf1+/Ink4a/ Arf/, Nf1+/Ink4a/Arf+/, and Nf1+/+Ink4a/Arf/ mice (Fig- ure 5E...These included mainly lymphomas and histiocytic neo- plasms, but we observed some acute myeloid leukemias as well as some mice with myeloproliferative

  18. Characterization of Neurofibromas of the Skin and Spinal Roots in a Mouse Model

    DTIC Science & Technology

    2009-02-01

    was low (Figure 5B). We never detected any MPNSTs or neurofibromas in these mice, though we did observe some hematopoietic neoplasms , particularly...significant frequency of hematopoietic neoplasms among Nf1+/Ink4a/ Arf/, Nf1+/Ink4a/Arf+/, and Nf1+/+Ink4a/Arf/ mice (Fig- ure 5E). These included...mainly lymphomas and histiocytic neo- plasms, but we observed some acute myeloid leukemias as well as some mice with myeloproliferative disease. NCSCs Did

  19. Biomarker and Drug Target Discovery Using Proteomics in a New Rat Model of Sepsis-Induced Acute Renal Failure

    PubMed Central

    Holly, Mikaela K.; Dear, James W.; Hu, Xuzhen; Schechter, Alan N.; Gladwin, Mark T.; Hewitt, Stephen M.; Yuen, Peter S.T.; Star, Robert A.

    2008-01-01

    Background Sepsis is one of the common causes of acute renal failure (ARF). The objective of this study was to identify new biomarkers and therapeutic targets. We present a new rat model of sepsis-induced ARF based on cecal ligation and puncture (CLP). We used this model to find urinary proteins which may be potential biomarkers and/or drug targets. Methods Aged rats were treated with fluids and antibiotics after CLP. Urinary proteins from septic rats without ARF and urinary proteins from septic rats with ARF were compared by difference in-gel electrophoresis (DIGE). Results CLP surgery elevated IL-6 and IL-10 serum cytokines and blood nitrite compared with sham-operated rats. However there was a range of serum creatinine values at 24 hrs (0.4–2.3 mg/dL) and only 24% developed ARF. Histology confirmed renal injury in these rats. 49% of rats did not develop ARF. Rats without ARF also had less liver injury. The mortality rate at 24 hrs was 27% but was increased by housing the post-surgery rats in metabolic cages. Creatinine clearance and urine output 2–8 hours after CLP was significantly reduced in rats which died within 24 hours. Using DIGE we identified changes in a number of urinary proteins including albumin, brush-border enzymes (eg., meprin-1-alpha) and serine protease inhibitors. The meprin-1-alpha inhibitor actinonin prevented ARF in aged mice. Conclusion In summary we describe a new rat model of sepsis-induced ARF which has a heterogeneous response similar to humans. This model allowed us to use DIGE to find changes in urinary proteins and this approach identified a potential biomarker and drug target – meprin-1-alpha. PMID:16760904

  20. Guanine nucleotide binding protein-like 3 is a potential prognosis indicator of gastric cancer.

    PubMed

    Chen, Jing; Dong, Shuang; Hu, Jiangfeng; Duan, Bensong; Yao, Jian; Zhang, Ruiyun; Zhou, Hongmei; Sheng, Haihui; Gao, Hengjun; Li, Shunlong; Zhang, Xianwen

    2015-01-01

    Guanine nucleotide binding protein-like 3 (GNL3) is a GIP-binding nuclear protein that has been reported to be involved in various biological processes, including cell proliferation, cellular senescence and tumorigenesis. This study aimed to investigate the expression level of GNL3 in gastric cancer and to evaluate the relationship between its expression and clinical variables and overall survival of gastric cancer patients. The expression level of GNL3 was examined in 89 human gastric cancer samples using immunohistochemistry (IHC) staining. GNL3 in gastric cancer tissues was significantly upregulated compared with paracancerous tissues. GNL3 expression in adjacent non-cancerous tissues was associated with sex and tumor size. Survival analyses showed that GNL3 expression in both gastric cancer and adjacent non-cancerous tissues were not related to overall survival. However, in the subgroup of patients with larger tumor size (≥ 6 cm), a close association was found between GNL3 expression in gastric cancer tissues and overall survival. GNL3-positive patients had a shorter survival than GNL3-negative patients. Our study suggests that GNL3 might play an important role in the progression of gastric cancer and serve as a biomarker for poor prognosis in gastric cancer patients.